WorldWideScience

Sample records for plastic-like effect laboratory

  1. Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach.

    Directory of Open Access Journals (Sweden)

    Giulia eBettas Ardisson

    2014-12-01

    Full Text Available The progressive application of new biodegradable plastics in agriculture calls for improved testing approaches to assure their environmental safety. Full biodegradation (≥ 90% prevents accumulation in soil, which is the first tier of testing. The application of specific ecotoxicity tests is the second tier of testing needed to show safety for the soil ecosystem. Soil microbial nitrification is widely used as a bioindicator for evaluating the impact of chemicals on soil but it is not applied for evaluating the impact of biodegradable plastics. In this work the International Standard test for biodegradation of plastics in soil (ISO 17556, 2012 was applied both to measure biodegradation and to prepare soil samples needed for a subsequent nitrification test based on another International Standard (ISO 14238, 2012. The plastic mulch film tested in this work showed full biodegradability and no inhibition of the nitrification potential of the soil in comparison with the controls. The laboratory approach suggested in this Technology Report enables (i to follow the course of biodegradation, (ii a strict control of variables and environmental conditions, (iii the application of very high concentrations of test material (to maximize the possible effects. This testing approach could be taken into consideration in improved testing schemes aimed at defining the biodegradability of plastics in soil.

  2. Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach.

    Science.gov (United States)

    Bettas Ardisson, Giulia; Tosin, Maurizio; Barbale, Marco; Degli-Innocenti, Francesco

    2014-01-01

    The progressive application of new biodegradable plastics in agriculture calls for improved testing approaches to assure their environmental safety. Full biodegradation (≥90%) prevents accumulation in soil, which is the first tier of testing. The application of specific ecotoxicity tests is the second tier of testing needed to show safety for the soil ecosystem. Soil microbial nitrification is widely used as a bioindicator for evaluating the impact of chemicals on soil but it is not applied for evaluating the impact of biodegradable plastics. In this work the International Standard test for biodegradation of plastics in soil (ISO 17556, 2012) was applied both to measure biodegradation and to prepare soil samples needed for a subsequent nitrification test based on another International Standard (ISO 14238, 2012). The plastic mulch film tested in this work showed full biodegradability and no inhibition of the nitrification potential of the soil in comparison with the controls. The laboratory approach suggested in this Technology Report enables (i) to follow the course of biodegradation, (ii) a strict control of variables and environmental conditions, (iii) the application of very high concentrations of test material (to maximize the possible effects). This testing approach could be taken into consideration in improved testing schemes aimed at defining the biodegradability of plastics in soil.

  3. Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex.

    Science.gov (United States)

    Fuhl, Anna; Müller-Dahlhaus, Florian; Lücke, Caroline; Toennes, Stefan W; Ziemann, Ulf

    2015-12-01

    Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOH<10mM, EtOH<20mM) was compared to single oral doses of alprazolam (APZ, 1mg) a classical benzodiazepine, and zolpidem (ZLP, 10 mg), a non-benzodiazepine hypnotic, in a double-blinded randomized placebo-controlled crossover design in ten healthy human subjects. EtOH<10mM and EtOH<20mM but not APZ or ZLP enhanced the PASLTD-induced LTD-like plasticity, while APZ and ZLP but not EtOH<10mM or EtOH<20mM decreased SPV. Non-sedating low doses of ethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks.

  4. Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials

    Directory of Open Access Journals (Sweden)

    Liu Lang

    2016-05-01

    Full Text Available Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.

  5. Neuromodulatory neurotransmitters influence LTP-like plasticity in human cortex: a pharmaco-TMS study.

    Science.gov (United States)

    Korchounov, Alexei; Ziemann, Ulf

    2011-08-01

    Long-term potentiation (LTP) of synaptic efficacy is considered a fundamental mechanism of learning and memory. At the cellular level a large body of evidence demonstrated that the major neuromodulatory neurotransmitters dopamine (DA), norepinephrine (NE), and acetylcholine (ACh) influence LTP magnitude. Noninvasive brain stimulation protocols provide the opportunity to study LTP-like plasticity at the systems level of human cortex. Here we applied paired associative stimulation (PAS) to induce LTP-like plasticity in the primary motor cortex of eight healthy subjects. In a double-blind, randomized, placebo-controlled, crossover design, the acute effects of a single oral dose of the neuromodulatory drugs cabergoline (DA agonist), haloperidol (DA antagonist), methylphenidate (indirect NE agonist), prazosine (NE antagonist), tacrine (ACh agonist), and biperiden (ACh antagonist) on PAS-induced LTP-like plasticity were examined. The antagonists haloperidol, prazosine, and biperiden depressed significantly the PAS-induced LTP-like plasticity observed under placebo, whereas the agonists cabergoline, methylphenidate, and tacrine had no effect. Findings demonstrate that antagonists in major neuromodulatory neurotransmitter systems suppress LTP-like plasticity at the systems level of human cortex, in accord with evidence of their modulating action of LTP at the cellular level. This provides further supportive evidence for the known detrimental effects of these drugs on LTP-dependent mechanisms such as learning and memory.

  6. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  7. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice.

    Science.gov (United States)

    Zhao, Yunan; Wang, Zhongli; Dai, Jianguo; Chen, Lin; Huang, Yufang; Zhan, Zhen

    2012-03-17

    Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Boosting the LTP-like plasticity effect of intermittent theta-burst stimulation using gamma transcranial alternating current stimulation.

    Science.gov (United States)

    Guerra, Andrea; Suppa, Antonio; Bologna, Matteo; D'Onofrio, Valentina; Bianchini, Edoardo; Brown, Peter; Di Lazzaro, Vincenzo; Berardelli, Alfredo

    2018-03-24

    Transcranial Alternating Current Stimulation (tACS) consists in delivering electric current to the brain using an oscillatory pattern that may entrain the rhythmic activity of cortical neurons. When delivered at gamma frequency, tACS modulates motor performance and GABA-A-ergic interneuron activity. Since interneuronal discharges play a crucial role in brain plasticity phenomena, here we co-stimulated the primary motor cortex (M1) in healthy subjects by means of tACS during intermittent theta-burst stimulation (iTBS), a transcranial magnetic stimulation paradigm known to induce long-term potentiation (LTP)-like plasticity. We measured and compared motor evoked potentials before and after gamma, beta and sham tACS-iTBS. While we delivered gamma-tACS, we also measured short-interval intracortical inhibition (SICI) to detect any changes in GABA-A-ergic neurotransmission. Gamma, but not beta and sham tACS, significantly boosted and prolonged the iTBS-induced after-effects. Interestingly, the extent of the gamma tACS-iTBS after-effects correlated directly with SICI changes. Overall, our findings point to a link between gamma oscillations, interneuronal GABA-A-ergic activity and LTP-like plasticity in the human M1. Gamma tACS-iTBS co-stimulation might represent a new strategy to enhance and prolong responses to plasticity-inducing protocols, thereby lending itself to future applications in the neurorehabilitation setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Reversal of long-term potentiation-like plasticity processes after motor learning disrupts skill retention.

    Science.gov (United States)

    Cantarero, Gabriela; Lloyd, Ashley; Celnik, Pablo

    2013-07-31

    Plasticity of synaptic connections in the primary motor cortex (M1) is thought to play an essential role in learning and memory. Human and animal studies have shown that motor learning results in long-term potentiation (LTP)-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. Moreover, biochemical processes essential for LTP are also crucial for certain types of motor learning and memory. Thus, it has been speculated that the occlusion of LTP-like plasticity after learning, indicative of how much LTP was used to learn, is essential for retention. Here we provide supporting evidence of it in humans. Induction of LTP-like plasticity can be abolished using a depotentiation protocol (DePo) consisting of brief continuous theta burst stimulation. We used transcranial magnetic stimulation to assess whether application of DePo over M1 after motor learning affected (1) occlusion of LTP-like plasticity and (2) retention of motor skill learning. We found that the magnitude of motor memory retention is proportional to the magnitude of occlusion of LTP-like plasticity. Moreover, DePo stimulation over M1, but not over a control site, reversed the occlusion of LTP-like plasticity induced by motor learning and disrupted skill retention relative to control subjects. Altogether, these results provide evidence of a link between occlusion of LTP-like plasticity and retention and that this measure could be used as a biomarker to predict retention. Importantly, attempts to reverse the occlusion of LTP-like plasticity after motor learning comes with the cost of reducing retention of motor learning.

  10. Prospects for microbiological solutions to environmental pollution with plastics.

    Science.gov (United States)

    Krueger, Martin C; Harms, Hauke; Schlosser, Dietmar

    2015-11-01

    Synthetic polymers, commonly named plastics, are among the most widespread anthropogenic pollutants of marine, limnic and terrestrial ecosystems. Disruptive effects of plastics are known to threaten wildlife and exert effects on natural food webs, but signs for and knowledge on plastic biodegradation are limited. Microorganisms are the most promising candidates for an eventual bioremediation of environmental plastics. Laboratory studies have reported various effects of microorganisms on many types of polymers, usually by enzymatic hydrolysis or oxidation. However, most common plastics have proved to be highly recalcitrant even under conditions known to favour microbial degradation. Knowledge on environmental degradation is yet scarcer. With this review, we provide a comprehensive overview of the current knowledge on microbiological degradation of several of the most common plastic types. Furthermore, we illustrate the analytical challenges concerning the evaluation of plastic biodegradation as well as constraints likely standing against the evolution of effective biodegradation pathways.

  11. LTP-like plasticity in the visual system and in the motor system appear related in young and healthy subjects

    Directory of Open Access Journals (Sweden)

    Stefan eKlöppel

    2015-09-01

    Full Text Available LTP-like plasticity measured by visual evoked potentials (VEP can be induced in the intact human brain by presenting checkerboard reversals. Also associated with LTP-like plasticity, around two third of participants respond to transcranial magnetic stimulation with a paired-associate stimulation (PAS protocol with a potentiation of their motor evoked potentials. LTP-like processes are also required for verbal and motor learning tasks. We compared effect sizes, responder rates and intercorrelations as well as the potential influence of attention between these four assessments in a group of 37 young and healthy volunteers. We observed a potentiation effect of the N75 and P100 VEP component which positively correlated with plasticity induced by PAS. Subjects with a better subjective alertness were more likely to show PAS and VEP potentiation. No correlation was found between the other assessments. Effect sizes and responder rates of VEP potentiation were higher compared to PAS. Our results indicate a high variability of LTP-like effects and no evidence for a system-specific nature. As a consequence, studies wishing to assess individual levels of LTP-like plasticity should employ a combination of multiple assessments.

  12. Maternal Diet and Insulin-Like Signaling Control Intergenerational Plasticity of Progeny Size and Starvation Resistance.

    Directory of Open Access Journals (Sweden)

    Jonathan D Hibshman

    2016-10-01

    Full Text Available Maternal effects of environmental conditions produce intergenerational phenotypic plasticity. Adaptive value of these effects depends on appropriate anticipation of environmental conditions in the next generation, and mismatch between conditions may contribute to disease. However, regulation of intergenerational plasticity is poorly understood. Dietary restriction (DR delays aging but maternal effects have not been investigated. We demonstrate maternal effects of DR in the roundworm C. elegans. Worms cultured in DR produce fewer but larger progeny. Nutrient availability is assessed in late larvae and young adults, rather than affecting a set point in young larvae, and maternal age independently affects progeny size. Reduced signaling through the insulin-like receptor daf-2/InsR in the maternal soma causes constitutively large progeny, and its effector daf-16/FoxO is required for this effect. nhr-49/Hnf4, pha-4/FoxA, and skn-1/Nrf also regulate progeny-size plasticity. Genetic analysis suggests that insulin-like signaling controls progeny size in part through regulation of nhr-49/Hnf4, and that pha-4/FoxA and skn-1/Nrf function in parallel to insulin-like signaling and nhr-49/Hnf4. Furthermore, progeny of DR worms are buffered from adverse consequences of early-larval starvation, growing faster and producing more offspring than progeny of worms fed ad libitum. These results suggest a fitness advantage when mothers and their progeny experience nutrient stress, compared to an environmental mismatch where only progeny are stressed. This work reveals maternal provisioning as an organismal response to DR, demonstrates potentially adaptive intergenerational phenotypic plasticity, and identifies conserved pathways mediating these effects.

  13. Ingestion and fragmentation of plastic carrier bags by the amphipod Orchestia gammarellus: Effects of plastic type and fouling load.

    Science.gov (United States)

    Hodgson, D J; Bréchon, A L; Thompson, R C

    2018-02-01

    Inappropriate disposal of plastic debris has led to the contamination of marine habitats worldwide. This debris can be ingested by organisms; however, the extent to which chewing and gut transit modifies plastic debris is unclear. Detritivores, such as amphipods, ingest and shred natural organic matter and are fundamental to its breakdown. Here we examine ingestion and shredding of plastic carrier bags by Orchestia gammarellus. A laboratory experiment showed these amphipods shredded plastic carrier bags, generating numerous microplastic fragments (average diameter 488.59μm). The presence of a biofilm significantly increased the amount of shredding, but plastic type (conventional, degradable and biodegradable) had no effect. Subsequent field observations confirmed similar shredding occurred on the strandline. Rates of shredding will vary according to amphipod density; however, our data indicates that shredding by organisms could substantially accelerate the formation microplastics in the environment. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Testing plastic deformations of materials in the introductory undergraduate mechanics laboratory

    International Nuclear Information System (INIS)

    Romo-Kröger, C M

    2012-01-01

    Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for the complete loading-unloading cycle is to subject a tubular object to torsion. This paper suggests simple experiments for studying properties concerning elasticity and plasticity in elements of common use, subjected to stretching or compression, and also torsion reinforcing. The experiments use plastic binders, rubber bands and metal springs under a moderate load. This paper discusses an experiment with an original device to measure torsion deformations as a function of applied torques, which permitted construction of the hysteresis cycle for a rubber hose and various tubes. Another experiment was designed to define the temporal recovery of a plastic spring with initial stretching. A simple mathematical model was developed to explain this phenomenon. (paper)

  15. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  16. Effect of drug precursors and chemicals relevant to clandestine laboratory investigation on plastic bags used for collection and storage.

    Science.gov (United States)

    Michelot, Harmonie; Fu, Shanlin; Stuart, Barbara; Shimmon, Ronald; Raymond, Tony; Crandell, Tony; Roux, Claude

    2017-04-01

    In the area of clandestine laboratory investigations, plastic bags are used to collect and store evidence, such as solvents, precursors, and other compounds usually employed for the manufacturing of drugs (although liquids may be stored in glass containers within the bags first). In this study, three different types of plastic bags were provided by the NSW Police Force and investigated for their suitability for evidence collection: two different types of low-density polyethylene (LDPE) bags and one type of polyvinyl chloride (PVC) bag. Three different experiments were carried out: (1) storing relevant chemicals in the bags for up to three months; (2) exposing the bags including their content to accelerated conditions using a weatherometer, and (3) simulating an expected real case scenario. This study indicates that drugs and related chemicals stored in plastic bags may lead to a change in the composition of the chemical and an alteration or degradation of the plastic bag. All experiments led to the same conclusion: the polyvinyl chloride bags appeared to be the most affected. LDPE bags seem to be more appropriate for routine use, although it has been established they are not suitable for the collection of liquids (unless pre-packaged in, for instance, a glass container). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Motor learning interference is proportional to occlusion of LTP-like plasticity.

    Science.gov (United States)

    Cantarero, Gabriela; Tang, Byron; O'Malley, Rebecca; Salas, Rachel; Celnik, Pablo

    2013-03-13

    Learning interference occurs when learning something new causes forgetting of an older memory (retrograde interference) or when learning a new task disrupts learning of a second subsequent task (anterograde interference). This phenomenon, described in cognitive, sensory, and motor domains, limits our ability to learn multiple tasks in close succession. It has been suggested that the source of interference is competition of neural resources, although the neuronal mechanisms are unknown. Learning induces long-term potentiation (LTP), which can ultimately limit the ability to induce further LTP, a phenomenon known as occlusion. In humans we quantified the magnitude of occlusion of anodal transcranial direct current stimulation-induced increased excitability after learning a skill task as an index of the amount of LTP-like plasticity used. We found that retention of a newly acquired skill, as reflected by performance in the second day of practice, is proportional to the magnitude of occlusion. Moreover, the degree of behavioral interference was correlated with the magnitude of occlusion. Individuals with larger occlusion after learning the first skill were (1) more resilient to retrograde interference and (2) experienced larger anterograde interference when training a second task, as expressed by decreased performance of the learned skill in the second day of practice. This effect was not observed if sufficient time elapsed between training the two skills and LTP-like occlusion was not present. These findings suggest competition of LTP-like plasticity is a factor that limits the ability to remember multiple tasks trained in close succession.

  18. Emission characteristics of PBDEs during flame-retardant plastics extruding process: field investigation and laboratorial simulation.

    Science.gov (United States)

    Deng, Chao; Li, Ying; Li, Jinhui; Chen, Yuan; Li, Huafen

    2017-10-01

    Though mechanical recycling of WEEE plastics is supposed to be a promising method, PBDEs release and the resulting contamination during its processing remain unclear yet. The distribution of PBDEs pollution in production lines was investigated from two flame-retardant plastic modification plants in Southern China. This was followed by laboratory simulation experiments to characterize the emission processes. PBDEs concentrations ranged from 37 to 31,305 ng/L in cooling water and from 40,043 to 216,653 ng/g dry wt in solid samples taken during the field investigation. In the laboratory simulation, concentrations ranged from 146 to 433 ng/L in cooling water and from 411,436 to 747,516 ng/Nm 3 in flue gas. All samples were dominated by BDE-209 among the congeners. Temperatures and impurities in plastic substrate can significantly affect PBDEs release. Special attention should be paid to the risks of water directly discharge from the cooling system, especially for the biological sludge and sediments, as well as flue gas emissions to the environment.

  19. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  20. LABORATORY EVALUATION ON PERFORMANCE OF GLASS FIBER REINFORCED PLASTIC MORTAR PIPE CULVERTS

    Directory of Open Access Journals (Sweden)

    Huawang Shi

    2018-04-01

    Full Text Available This paper investigated the performance and behaviour of glass fiber reinforced plastic mortar (FRPM pipes under different loading conditions. FRPM pipes with inner diameter of 1500 mm were prefabricated in factory. Mechanics performance testing (ring and axial compressive strength and elastic modulus, stiffness and fatigue test were carried out in laboratory. Ring stiffness test provided pipe stiffness (PS which is a function of geometry and material type of pipe through parallel plate loading test (PPLT. The fatigue test and micro-structure measure method were used to evaluate the durability effects of FRPM under repeated compression load. Results indicated that FRPM pipes had better mechanic performances as the road culverts under soils. It may be helpful for the design and construction of FRPM culverts.

  1. A robust frame element with cyclic plasticity and local joint effects

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2018-01-01

    A robust elasto-plastic element is developed for analysis of frame structures. The element consists of a beam member with end joints with properties permitting representation of the effect of section forces in adjoining members, like axial forces. By use of the equilibrium formulation...... is developed, using a mid-step state to obtain representative information about the return path. The element is implemented in a co-rotational large-deformation computer program for frame structures. The formulation is illustrated by application to a couple of typical offshore frame structures, and comparison...... of different representations of the plastic effects illustrates the importance of a robust element with realistic representation of the cyclic plastic mechanisms....

  2. Occurrence and effects of plastic additives on marine environments and organisms: A review.

    Science.gov (United States)

    Hermabessiere, Ludovic; Dehaut, Alexandre; Paul-Pont, Ika; Lacroix, Camille; Jezequel, Ronan; Soudant, Philippe; Duflos, Guillaume

    2017-09-01

    Plastics debris, especially microplastics, have been found worldwide in all marine compartments. Much research has been carried out on adsorbed pollutants on plastic pieces and hydrophobic organic compounds (HOC) associated with microplastics. However, only a few studies have focused on plastic additives. These chemicals are incorporated into plastics from which they can leach out as most of them are not chemically bound. As a consequence of plastic accumulation and fragmentation in oceans, plastic additives could represent an increasing ecotoxicological risk for marine organisms. The present work reviewed the main class of plastic additives identified in the literature, their occurrence in the marine environment, as well as their effects on and transfers to marine organisms. This work identified polybrominated diphenyl ethers (PBDE), phthalates, nonylphenols (NP), bisphenol A (BPA) and antioxidants as the most common plastic additives found in marine environments. Moreover, transfer of these plastic additives to marine organisms has been demonstrated both in laboratory and field studies. Upcoming research focusing on the toxicity of microplastics should include these plastic additives as potential hazards for marine organisms, and a greater focus on the transport and fate of plastic additives is now required considering that these chemicals may easily leach out from plastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Worth the "Likes"? The Use of Facebook among Plastic Surgeons and Its Perceived Impact.

    Science.gov (United States)

    Chang, Jessica B; Woo, Shoshana L; Cederna, Paul S

    2015-05-01

    Facebook is the leading online media platform used by plastic surgeons. This study examined Facebook use among plastic surgeons and its perceived impact. A survey on Facebook use was distributed to two groups of plastic surgeons: 500 with professional Facebook pages and 500 without Facebook pages. Responses were stripped of identifying information and analyzed for statistical significance (p Facebook reported a negative impact on their practice, whereas 57 percent reported a very positive or positive impact. There was no correlation with perceived impact and number of "likes." Perceived advantages of Facebook included facilitation of patient feedback/communication (77 percent) and increased practice exposure (67 percent). Many surgeons (15 to 36 percent) did not follow the direct impact of Facebook on their practices. Some reported that Facebook was responsible for only one to 50 professional Web site hits and less than 5 percent of their new patient referrals in the past year. Estimated conversion-to-surgery rates were highly variable for Facebook users and nonusers. Most Facebook nonusers (67 percent) expected a "neutral" impact, expressing more concerns about unsolicited advertising (51 percent) and wasting time (47 percent). Plastic surgeons tend to perceive Facebook's impact on their practices as positive, but most do not track its direct effects on professional Web site hits, new referrals, or conversion-to-surgery rates. Plastic surgeons using Facebook are encouraged to monitor these parameters to determine whether its continued use is actually worthwhile.

  4. Effects of Waste Plastic on the Physical and Rheological Properties of Bitumen

    Science.gov (United States)

    Ezree Abdullah, Mohd; Asyiqin Ahmad, Nurul; Putra Jaya, Ramadhansyah; Hassan, Norhidayah Abdul; Yaacob, Haryati; Rosli Hainin, Mohd

    2017-05-01

    Plastic disposal is one of the major problems for developing countries like Malaysia, at the same time Malaysia needs a large network of roads for its smooth economic and social development. The limited source of bitumen needs a deep thinking to ensure fast road construction. Therefore, the use of plastic waste in road construction not only can help to protect environment but also able to help the road construction industry. The aims of this research are to study the effects of waste plastic on rheological properties of bitumen. Modified bitumen was prepared by using blending techniques. Bitumen was heated and plastic waste was slowly added. Rheological properties of bitumen were performance by penetration, softening point, viscosity and direct shear rheometer test. The results showed that when content of plastic waste increase, the penetration value, softening point and viscosity of bitumen also increase. Generally, plastic waste improves the performance of bitumen when it was added into bitumen. It can be said that the usage helps to improve the performance of the road pavement which also reduces the rutting effect.

  5. LABORATORY EVALUATION ON PERFORMANCE OF GLASS FIBER REINFORCED PLASTIC MORTAR PIPE CULVERTS

    OpenAIRE

    Huawang Shi; Lianyu Wei

    2018-01-01

    This paper investigated the performance and behaviour of glass fiber reinforced plastic mortar (FRPM) pipes under different loading conditions. FRPM pipes with inner diameter of 1500 mm were prefabricated in factory. Mechanics performance testing (ring and axial compressive strength and elastic modulus), stiffness and fatigue test were carried out in laboratory. Ring stiffness test provided pipe stiffness (PS) which is a function of geometry and material type of pipe through parallel plate lo...

  6. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity.

    Science.gov (United States)

    Monte-Silva, Katia; Liebetanz, David; Grundey, Jessica; Paulus, Walter; Nitsche, Michael A

    2010-09-15

    The neuromodulator dopamine affects learning and memory formation and their likely physiological correlates, long-term depression and potentiation, in animals and humans. It is known from animal experiments that dopamine exerts a dosage-dependent, inverted U-shaped effect on these functions. However, this has not been explored in humans so far. In order to reveal a non-linear dose-dependent effect of dopamine on cortical plasticity in humans, we explored the impact of 25, 100 and 200 mg of L-dopa on transcranial direct current (tDCS)-induced plasticity in twelve healthy human subjects. The primary motor cortex served as a model system, and plasticity was monitored by motor evoked potential amplitudes elicited by transcranial magnetic stimulation. As compared to placebo medication, low and high dosages of L-dopa abolished facilitatory as well as inhibitory plasticity, whereas the medium dosage prolonged inhibitory plasticity, and turned facilitatory plasticity into inhibition. Thus the results show clear non-linear, dosage-dependent effects of dopamine on both facilitatory and inhibitory plasticity, and support the assumption of the importance of a specific dosage of dopamine optimally suited to improve plasticity. This might be important for the therapeutic application of dopaminergic agents, especially for rehabilitative purposes, and explain some opposing results in former studies.

  7. Peripheral administration of lactate produces antidepressant-like effects

    KAUST Repository

    Carrard, A; Elsayed, M; Margineanu, Michael B.; Boury-Jamot, B; Fragniè re, L; Meylan, E M; Petit, J-M; Fiumelli, Hubert; Magistretti, Pierre J.; Martin, J-L

    2016-01-01

    In addition to its role as metabolic substrate that can sustain neuronal function and viability, emerging evidence supports a role for l-lactate as an intercellular signaling molecule involved in synaptic plasticity. Clinical and basic research studies have shown that major depression and chronic stress are associated with alterations in structural and functional plasticity. These findings led us to investigate the role of l-lactate as a potential novel antidepressant. Here we show that peripheral administration of l-lactate produces antidepressant-like effects in different animal models of depression that respond to acute and chronic antidepressant treatment. The antidepressant-like effects of l-lactate are associated with increases in hippocampal lactate levels and with changes in the expression of target genes involved in serotonin receptor trafficking, astrocyte functions, neurogenesis, nitric oxide synthesis and cAMP signaling. Further elucidation of the mechanisms underlying the antidepressant effects of l-lactate may help to identify novel therapeutic targets for the treatment of depression.

  8. Peripheral administration of lactate produces antidepressant-like effects

    KAUST Repository

    Carrard, A

    2016-10-18

    In addition to its role as metabolic substrate that can sustain neuronal function and viability, emerging evidence supports a role for l-lactate as an intercellular signaling molecule involved in synaptic plasticity. Clinical and basic research studies have shown that major depression and chronic stress are associated with alterations in structural and functional plasticity. These findings led us to investigate the role of l-lactate as a potential novel antidepressant. Here we show that peripheral administration of l-lactate produces antidepressant-like effects in different animal models of depression that respond to acute and chronic antidepressant treatment. The antidepressant-like effects of l-lactate are associated with increases in hippocampal lactate levels and with changes in the expression of target genes involved in serotonin receptor trafficking, astrocyte functions, neurogenesis, nitric oxide synthesis and cAMP signaling. Further elucidation of the mechanisms underlying the antidepressant effects of l-lactate may help to identify novel therapeutic targets for the treatment of depression.

  9. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  10. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Science.gov (United States)

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  11. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like...

  12. Reaction-diffusion-like formalism for plastic neural networks reveals dissipative solitons at criticality

    Science.gov (United States)

    Grytskyy, Dmytro; Diesmann, Markus; Helias, Moritz

    2016-06-01

    Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated.

  13. Population differences in host use by a seed-beetle: local adaptation, phenotypic plasticity and maternal effects.

    Science.gov (United States)

    Amarillo-Suárez, Angela R; Fox, Charles W

    2006-11-01

    For insects that develop inside discrete hosts, both host size and host quality constrain offspring growth, influencing the evolution of body size and life history traits. Using a two-generation common garden experiment, we quantified the contribution of maternal and rearing hosts to differences in growth and life history traits between populations of the seed-feeding beetle Stator limbatus that use a large-seeded host, Acacia greggii, and a small-seeded host, Pseudosamanea guachapele. Populations differed genetically for all traits when beetles were raised in a common garden. Contrary to expectations from the local adaptation hypothesis, beetles from all populations were larger, developed faster and had higher survivorship when reared on seeds of A. greggii (the larger host), irrespective of their native host. We observed two host plant-mediated maternal effects: offspring matured sooner, regardless of their rearing host, when their mothers were reared on P. guachapele (this was not caused by an effect of rearing host on egg size), and females laid larger eggs on P. guachapele. This is the first study to document plasticity by S. limbatus in response to P. guachapele, suggesting that plasticity is an ancestral trait in S. limbatus that likely plays an important role in diet expansion. Although differences between populations in growth and life history traits are likely adaptations to their host plants, host-associated maternal effects, partly mediated by maternal egg size plasticity, influence growth and life history traits and likely play an important role in the evolution of the breadth of S. limbatus' diet. More generally, phenotypic plasticity mediates the fitness consequences of using novel hosts, likely facilitating colonization of new hosts, but also buffering herbivores from selection post-colonization. Plasticity in response to novel versus normal hosts varied among our study populations such that disentangling the historical role of plasticity in

  14. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Science.gov (United States)

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  15. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  16. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  17. A Coupled Plastic Damage Model for Concrete considering the Effect of Damage on Plastic Flow

    OpenAIRE

    Zhou, Feng; Cheng, Guangxu

    2015-01-01

    A coupled plastic damage model with two damage scalars is proposed to describe the nonlinear features of concrete. The constitutive formulations are developed by assuming that damage can be represented effectively in the material compliance tensor. Damage evolution law and plastic damage coupling are described using the framework of irreversible thermodynamics. The plasticity part is developed without using the effective stress concept. A plastic yield function based on the true stress is ado...

  18. Towards the effective plastic waste management in Bangladesh: a review.

    Science.gov (United States)

    Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain

    2017-12-01

    The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.

  19. Magical Engineering Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Ung

    1988-01-15

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  20. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  1. Impaired induction of long-term potentiation-like plasticity in patients with high-functioning autism and Asperger syndrome.

    Science.gov (United States)

    Jung, Nikolai H; Janzarik, Wibke G; Delvendahl, Igor; Münchau, Alexander; Biscaldi, Monica; Mainberger, Florian; Bäumer, Tobias; Rauh, Reinhold; Mall, Volker

    2013-01-01

    We aimed to investigate the induction of long-term potentiation (LTP)-like plasticity by paired associative stimulation (PAS) in patients with high-functioning autism and Asperger syndrome (HFA/AS). PAS with an interstimulus interval between electrical and transcranial magnetic stimulation of 25 ms (PAS(25)) was performed in patients with HFA/AS (n=9; eight males, one female; mean age 17 y 11 mo, SD 4 y 5 mo) and in typically developing age-matched volunteers (n=9; five males, four females; mean age 22 y 4 mo, SD 5 y 2 mo). The amplitude of motor-evoked potentials was measured before PAS(25), immediately after stimulation, and 30 minutes and 60 minutes later. A PAS protocol adapted to individual N20 latency (PAS(N20+2)) was performed in six additional patients with HFA/AS. Short-interval intracortical inhibition was measured using paired-pulse stimulation. In contrast to the typically developing participants, the patients with HFA/AS did not show a significant increase in motor-evoked potentials after PAS(25). This finding could also be demonstrated after adaptation for N20 latency. Short-interval intracortical inhibition of patients with HFA/AS was normal compared with the comparison group and did not correlate with PAS effect. Our results show a significant impairment of LTP-like plasticity induced by PAS in individuals with HFA/AS compared with typically developing participants. This finding is in accordance with results from animal studies as well as human studies. Impaired LTP-like plasticity in patients with HFA/AS points towards reduced excitatory synaptic connectivity and deficits in sensory-motor integration in these patients. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  2. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression.

    Science.gov (United States)

    Qiao, Hui; An, Shu-Cheng; Xu, Chang; Ma, Xin-Ming

    2017-05-15

    Major depressive disorder (MDD) is one of the most common psychiatric disorder, but the underlying mechanisms are largely unknown. Increasing evidence shows that brain-derived neurotrophic factor (BDNF) plays an important role in the structural plasticity induced by depression. Considering the opposite effects of BDNF and its precursor proBDNF on neural plasticity, we hypothesized that the balance of BDNF and proBDNF plays a critical role in chronic unpredicted mild stress (CUMS)-induced depressive-like behaviors and structural plasticity in the rodent hippocampus. The aims of this study were to compare the functions of BDNF and proBDNF in the CUMS-induced depressive-like behaviors, and determine the effects of BDNF and proBDNF on expressions of kalirin-7, postsynaptic density protein 95 (PSD95) and NMDA receptor subunit NR2B in the hippocampus of stressed and naïve control rats, respectively. Our results showed that CUMS induced depressive-like behaviors, caused a decrease in the ratio of BDNF/proBDNF in the hippocampus and resulted in a reduction in spine density in hippocampal CA1 pyramidal neurons; these alterations were accompanied by a decrease in the levels of kalirin-7, PSD95 and NR2B in the hippocampus. Injection of exogenous BDNF into the CA1 area of stressed rats reversed CUMS-induced depressive-like behaviors and prevented CUMS-induced spine loss and decrease in kalirin-7, NR2B and PSD95 levels. In contrast, injection of exogenous proBDNF into the CA1 region of naïve rats caused depressive-like behavior and an accompanying decrease in both spine density and the levels of kalirin-7, NR2B and PSD95. Taken together, our results suggest that the ratio of BDNF to proBDNF in the hippocampus plays a key role in CUMS-induced depressive-like behaviors and alterations of dendritic spines in hippocampal CA1 pyramidal neurons. Kalirin-7 may play an important role during this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs

    DEFF Research Database (Denmark)

    Pötter-Nerger, Monika; Fischer, Sarah; Mastroeni, Claudia

    2009-01-01

    Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand area of the human primary motor cortex (M1(HAND)) that controls stimulation-induced changes in corticospinal excitability. Here we combined two interventional protocols that induce long-term depression......TMS) of the left dorsal premotor cortex (PMD) was first applied to produce an LTP-like increase (5 Hz rTMS) or LTD-like decrease (1 Hz rTMS) in corticospinal excitability in left M1(HAND) via premotor-to-motor inputs. Following PMD rTMS, paired-associative stimulation (PAS) was applied to the right median nerve...... and left M1(HAND) to induce spike-time-dependent plasticity in sensory-to-motor inputs to left M1(HAND). We adjusted the interstimulus interval to the N20 latency of the median nerve somatosensory-evoked cortical potential to produce an LTP-like increase (PAS(N20+2ms)) or an LTD-like decrease (PAS(N20-5ms...

  4. Comparing the strength of behavioural plasticity and consistency across situations: animal personalities in the hermit crab Pagurus bernhardus.

    Science.gov (United States)

    Briffa, Mark; Rundle, Simon D; Fryer, Adam

    2008-06-07

    Many phenotypic traits show plasticity but behaviour is often considered the 'most plastic' aspect of phenotype as it is likely to show the quickest response to temporal changes in conditions or 'situation'. However, it has also been noted that constraints on sensory acuity, cognitive structure and physiological capacities place limits on behavioural plasticity. Such limits to plasticity may generate consistent differences in behaviour between individuals from the same population. It has recently been suggested that these consistent differences in individual behaviour may be adaptive and the term 'animal personalities' has been used to describe them. In many cases, however, a degree of both behavioural plasticity and relative consistency is probable. To understand the possible functions of animal personalities, it is necessary to determine the relative strength of each tendency and this may be achieved by comparison of statistical effect sizes for tests of difference and concordance. Here, we describe a new statistical framework for making such comparisons and investigate cross-situational plasticity and consistency in the duration of startle responses in the European hermit crab Pagurus bernhardus, in the field and the laboratory. The effect sizes of tests for behavioural consistency were greater than for tests of behavioural plasticity, indicating for the first time the presence of animal personalities in a crustacean model.

  5. Lack of LTP-like plasticity in primary motor cortex in Parkinson's disease.

    Science.gov (United States)

    Suppa, A; Marsili, L; Belvisi, D; Conte, A; Iezzi, E; Modugno, N; Fabbrini, G; Berardelli, A

    2011-02-01

    In this study in patients with Parkinson's disease (PD), off and on dopaminergic therapy, with and without L-dopa-induced dyskinesias (LIDs), we tested intermittent theta-burst stimulation (iTBS), a technique currently used for non-invasively inducing long-term potentiation (LTP)-like plasticity in primary motor cortex (M1). The study group comprised 20 PD patients on and off dopaminergic therapy (11 patients without and 9 patients with LIDs), and 14 age-matched healthy subjects. Patients had mild-to-moderate PD, and no additional neuropsychiatric disorders. We clinically evaluated patients using the Unified Parkinson's Disease Rating Scale (UPDRS) and the Unified Dyskinesia Rating Scale (UDysRS). The left M1 was conditioned with iTBS at 80% active motor threshold intensity. Twenty motor evoked potentials (MEPs) were recorded from right first interosseous muscle before and at 5, 15 and 30 min after iTBS. Between-group analysis of variance (ANOVA) testing healthy subjects versus patients with and without LIDs, on and off therapy showed a significant interaction between factors "Group" and "Time". After iTBS, MEP amplitudes in healthy subjects increased significantly at 5, 15 and 30 min (piTBS fails to increase MEP responses. This finding suggests lack of iTBS-induced LTP-like plasticity in M1 in PD regardless of patients' clinical features. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. On the gradient plasticity approach to size effects. Pt. 1: reviews

    International Nuclear Information System (INIS)

    Malmberg, T.; Tsagrakis, I.; Eleftheriadis, I.; Aifantis, E.C.; Michigan Technol. Univ., Houghton, MI

    2001-03-01

    The influence of specimen size on the plastic deformation and failure behaviour of some metals and steels is considered. This size dependence issue relates to the question of the transferability of mechanical test results of geometrically similar scaled-down structural models to the full scale structures using similitude laws; but it concerns also the validity of small scale laboratory type test results and their use as a basis for the computational modelling of large scale components. In part I ''reviews'' of this report a restricted review of scaled experiments at room temperature of geometrically similar specimens is given. This refers to the initiation of yielding under non-uniform states of deformation and also to the plastic deformation and fracture of smooth tensile specimens. Among others, non-classical continuum mechanics theories have become a means to interpret size effects. Especially gradient concepts are of interest which enrich the classical plasticity theories by higher order spatial strain gradients. These model extensions implicate additional material parameters which can be associated with internal length scales characteristic for the material. In part I a brief review of several gradient theories of plasticity is also given, including both deformation and flow theories and a comparison of the original ''symmetric stress'' theory with the more recent ''asymmetric stress'' theory is provided. The forthcoming part II ''applications'' exemplifies to what extend strain gradient models can describe the size influence on the deformation behaviour. (orig.) [de

  7. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    Science.gov (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  8. Suppression of synaptic plasticity by fullerenol in rat hippocampus in vitro

    Directory of Open Access Journals (Sweden)

    Wang XX

    2016-09-01

    Full Text Available Xin-Xing Wang,1,2,* Ying-Ying Zha,3,* Bo Yang,1 Lin Chen,1,2 Ming Wang1,2 1CAS Key Laboratory of Brain Function and Diseases, 2Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China; 3Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui, People’s Republic of China *These authors contributed equally to this work Abstract: Fullerenol, a water-soluble fullerene derivative, has attracted much attention due to its bioactive properties, including the antioxidative properties and free radical scavenging ability. Due to its superior nature, fullerenol represents a promising diagnostic, therapeutic, and protective agent. Therefore, elucidation of the possible side effects of fullerenol is important in determining its potential role. In the present study, we investigated the acute effects of 5 µM fullerenol on synaptic plasticity in hippocampal brain slices of rats. Incubation with fullerenol for 20 minutes significantly decreased the peak of paired-pulse facilitation and long-term potentiation, indicating that fullerenol suppresses the short- and long-term synaptic plasticity of region I of hippocampus. We found that fullerenol depressed the activity and the expression of nitric oxide (NO synthase in hippocampus. In view of the important role of NO in synaptic plasticity, the inhibition of fullerenol on NO synthase may contribute to the suppression of synaptic plasticity. These findings may facilitate the evaluation of the side effects of fullerenol. Keywords: fullerenol, hippocampal slice, nitric oxide synthase, synaptic plasticity, oxidative stress

  9. Stimulus uncertainty enhances long-term potentiation-like plasticity in human motor cortex.

    Science.gov (United States)

    Sale, Martin V; Nydam, Abbey S; Mattingley, Jason B

    2017-03-01

    Plasticity can be induced in human cortex using paired associative stimulation (PAS), which repeatedly and predictably pairs a peripheral electrical stimulus with transcranial magnetic stimulation (TMS) to the contralateral motor region. Many studies have reported small or inconsistent effects of PAS. Given that uncertain stimuli can promote learning, the predictable nature of the stimulation in conventional PAS paradigms might serve to attenuate plasticity induction. Here, we introduced stimulus uncertainty into the PAS paradigm to investigate if it can boost plasticity induction. Across two experimental sessions, participants (n = 28) received a modified PAS paradigm consisting of a random combination of 90 paired stimuli and 90 unpaired (TMS-only) stimuli. Prior to each of these stimuli, participants also received an auditory cue which either reliably predicted whether the upcoming stimulus was paired or unpaired (no uncertainty condition) or did not predict the upcoming stimulus (maximum uncertainty condition). Motor evoked potentials (MEPs) evoked from abductor pollicis brevis (APB) muscle quantified cortical excitability before and after PAS. MEP amplitude increased significantly 15 min following PAS in the maximum uncertainty condition. There was no reliable change in MEP amplitude in the no uncertainty condition, nor between post-PAS MEP amplitudes across the two conditions. These results suggest that stimulus uncertainty may provide a novel means to enhance plasticity induction with the PAS paradigm in human motor cortex. To provide further support to the notion that stimulus uncertainty and prediction error promote plasticity, future studies should further explore the time course of these changes, and investigate what aspects of stimulus uncertainty are critical in boosting plasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 'Like new': plastic wastes regeneration by radiation induced grafting

    International Nuclear Information System (INIS)

    Laizier, J.; Gaussens, G.; Lemaire, F.

    1978-01-01

    The reclaiming and the recycling of plastic wastes is made especially difficult when those wastes are a mixture of various plastics; this is due to the incompatibility of the polymers. The radiation induced grafting allows to overcome this incompatibility. Results are given which shows that, for various mixtures of reclaimed polyethylene, PVC and polystyrene, an improvement of the properties of the processed blends is obtained by grafting the mixtures of wastes by a suitable polymer; the obtained properties of those regenerated plastic blends are enough attractive from the technical point of view to open a market to those products with a reasonable economical value [fr

  11. The Effect of an Open-Ended Design Experience on Student Achievement in an Engineering Laboratory Course

    Directory of Open Access Journals (Sweden)

    Matthew Cullin

    2017-11-01

    Full Text Available This study explores the effect of incorporating an Open-Ended Design Experience (OEDE into an undergraduate materials science laboratory taken by third-year mechanical engineering students. The focus of the OEDE was carbon fiber reinforced plastics and sandwich structures. The results indicate that the incorporation of OEDE’s in laboratory courses produces significant benefits in terms of student engagement, participation, and perception of competence. In addition, the OEDE was found to enhance students’ ability to apply related concepts as compared to non-OEDE lab activities. The authors conclude that the incorporation of OEDE’s can increase the effectiveness of engineering laboratory courses.

  12. Strain gradient effects on cyclic plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  13. The Cost-Effective Laboratory: Implementation of Economic Evaluation of Laboratory Testing

    Directory of Open Access Journals (Sweden)

    Bogavac-Stanojevic Natasa

    2017-09-01

    Full Text Available Laboratory testing as a part of laboratory in vitro diagnostic (IVD has become required tool in clinical practice for diagnosing, monitoring and prognosis of diseases, as well as for prediction of treatment response. The number of IVD tests available in laboratory practice has increased over the past decades and is likely to further increase in the future. Consequently, there is growing concern about the overutilization of laboratory tests and rising costs for laboratory testing. It is estimated that IVD accounts for between 1.4 and 2.3% of total healthcare expenditure and less than 5% of total hospital cost (Lewin Group report. These costs are rather low when compared to pharmaceuticals and medical aids which account for 15 and 5%, respectively. On the other hand, IVD tests play an important role in clinical practice, as they influence from 60% to 70% of clinical decision-making. Unfortunately, constant increases in healthcare spending are not directly related to healthcare benefit. Since healthcare resources are limited, health payers are interested whether the benefits of IVD tests are actually worth their cost. Many articles have introduced frameworks to assess the economic value of IVD tests. The most appropriate tool for quantitative assessment of their economic value is cost-effectiveness (CEA and cost-utility (CUA analysis. The both analysis determine cost in terms of effectiveness or utilities (combine quantity and quality of life of new laboratory test against its alternative. On the other hand, some investigators recommended calculation of laboratory test value as product of two ratios: Laboratory test value = (Technical accuracy/Turnaround time × (Utility/Costs. Recently, some researches used multicriteria decision analysis which allows comparison of diagnostic strategies in terms of benefits, opportunities, costs and risks. All analyses are constructed to identify laboratory test that produce the greatest healthcare benefit with

  14. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...

  15. Visual attentional load influences plasticity in the human motor cortex.

    Science.gov (United States)

    Kamke, Marc R; Hall, Michelle G; Lye, Hayley F; Sale, Martin V; Fenlon, Laura R; Carroll, Timothy J; Riek, Stephan; Mattingley, Jason B

    2012-05-16

    Neural plasticity plays a critical role in learning, memory, and recovery from injury to the nervous system. Although much is known about the physical and physiological determinants of plasticity, little is known about the influence of cognitive factors. In this study, we investigated whether selective attention plays a role in modifying changes in neural excitability reflecting long-term potentiation (LTP)-like plasticity. We induced LTP-like effects in the hand area of the human motor cortex using transcranial magnetic stimulation (TMS). During the induction of plasticity, participants engaged in a visual detection task with either low or high attentional demands. Changes in neural excitability were assessed by measuring motor-evoked potentials in a small hand muscle before and after the TMS procedures. In separate experiments plasticity was induced either by paired associative stimulation (PAS) or intermittent theta-burst stimulation (iTBS). Because these procedures induce different forms of LTP-like effects, they allowed us to investigate the generality of any attentional influence on plasticity. In both experiments reliable changes in motor cortex excitability were evident under low-load conditions, but this effect was eliminated under high-attentional load. In a third experiment we investigated whether the attentional task was associated with ongoing changes in the excitability of motor cortex, but found no difference in evoked potentials across the levels of attentional load. Our findings indicate that in addition to their role in modifying sensory processing, mechanisms of attention can also be a potent modulator of cortical plasticity.

  16. [Toxicity effects of phthalate substitute plasticizers used in toys].

    Science.gov (United States)

    Hirata-Koizumi, Mutsuko; Takahashi, Mika; Matsumoto, Mariko; Kawamura, Tomoko; Ono, Atsushi; Hirose, Akihiko

    2012-01-01

    Phthalate esters are widely used as plasticizers in polyvinyl chloride products. Because of human health concerns, regulatory authorities in Japan, US, Europe and other countries control the use of di(2-ethylhexyl) phthalate, diisononyl phthalate, di-n-butyl phthalate, butylbenzyl phthalate, diisodecyl phthalate and di-n-octyl phthalate for the toys that can be put directly in infants' mouths. While these regulatory actions will likely reduce the usage of phthalate esters, there is concern that other plasticizers that have not been sufficiently evaluated for safety will be used more frequently. We therefore collected and evaluated the toxicological information on di(2-ethylhexyl) terephthalate (DEHT), 1,2-cyclohexanedicarboxylic acid, diisononyl ester (DINCH), diisononyl adipate (DINA), 2,2,4-trimetyl-1,3-pentanediol diisobutyrate (TXIB), tri-n-butyl citrate (TBC) and acetyl tri-n-butyl citrate (ATBC) which were detected at a relatively high frequency in toys. The collected data have shown that chronic exposure to DEHT affects the eye and nasal turbinate, and DINCH exerts effects on the thyroid and kidney in rats. DINA and TXIB have been reported to have hepatic and renal effects in dogs or rats, and ATBC slightly affected the liver in rats. The NOAELs for repeated dose toxicity are relatively low for DINCH (40 mg/kg bw/day) and TXIB (30 mg/kg bw/day) compared with DEHT, DINA and ATBC. DEHT, TXIB and ATBC have been reported to have reproductive/developmental effects at relatively high doses in rats. For DINA and TBC, available data are insufficient for assessing the hazards, and therefore, adequate toxicity studies should be conducted. In the present review, the toxicity information on 6 alternatives to phthalate plasticizers is summarized, focusing on the effects after oral exposure, which is the route of most concern.

  17. Tribological effects of polymer surface modification through plastic

    Indian Academy of Sciences (India)

    Tribological effects of polymer surface modification through plastic deformation. K O Low K J Wong ... In this regard, a surface modification technique through plastic deformation has been implemented. ... Bulletin of Materials Science | News.

  18. Ocean acidification challenges copepod phenotypic plasticity

    Science.gov (United States)

    Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah; Riebesell, Ulf; Furuhagen, Sara; Engström-Öst, Jonna

    2016-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ˜ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  19. Fracture of anisotropic materials with plastic strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2013-01-01

    A unit cell is adopted to numerically analyze the effect of plastic anisotropy on frac-ture evolution in a micro-reinforced fiber-composite. The matrix material exhibit size-effects and an anisotropic strain-gradient plasticity model accounting for such size-effects through a mate-rial length scale...

  20. Are all hands-on activities equally effective? Effect of using plastic models, organ dissections, and virtual dissections on student learning and perceptions.

    Science.gov (United States)

    Lombardi, Sara A; Hicks, Reimi E; Thompson, Katerina V; Marbach-Ad, Gili

    2014-03-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses.

  1. Experimental evaluation of the interaction effect between plastic and creep deformation

    International Nuclear Information System (INIS)

    Ikegami, K.; Niitsu, Y.

    1985-01-01

    An experimental study of plasticity-creep interaction effects is reported. The combined stress tests are performed on thin wall tubular specimens of SUS 304 stainless steel at room temperature and high temperature (600 0 C). The plastic behaviors subsequent to creep pre-strain and creep behaviors subsequent to plastic pre-strain are obtained for loading along straight stress paths with a corner. The inelastic behaviors including both plastic and creep deformations are experimentally investigated. The interaction effects between plastic and creep deformations are quantitatively estimated with the equi-plastic strain surface. (author)

  2. An incremental flow theory for crystal plasticity incorporating strain gradient effects

    DEFF Research Database (Denmark)

    Nellemann, Christopher; Niordson, Christian Frithiof; Nielsen, Kim Lau

    2017-01-01

    The present work investigates a new approach to formulating a rate-independent strain gradient theory for crystal plasticity. The approach takes as offset recent discussions published in the literature for isotropic plasticity, and a key ingredient of the present work is the manner in which...... a gradient enhanced effective slip measure governs hardening evolution. The effect of both plastic strains and plastic strain gradients are combined into this scalar effective slip quantity, the energy associated with plastic strain is dissipative (unrecoverable), while the energy from plastic strain...... gradients is recoverable (free). The framework developed forms the basis of a finite element implementation and is demonstrated on benchmark problems designed to bring out effects such as strengthening and hardening. Monotonic loading and plane strain deformation is assumed throughout, but despite this, non...

  3. Laboratory test methods to determine the degradation of plastics in marine environmental conditions.

    Science.gov (United States)

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = -66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment.

  4. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

    Science.gov (United States)

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = −66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment. PMID:22737147

  5. Laboratory test methods to determine the degradation of plastics in marine environmental conditions

    Directory of Open Access Journals (Sweden)

    Maurizio eTosin

    2012-06-01

    Full Text Available In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain. However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation. Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi was shown to degrade (total disintegration achieved in less than 9 months when buried in wet sand (simulation test of the tidal zone, to lose mechanical properties but still maintain integrity (tensile strength at break = -66% in 2 years when exposed to sea water in an aquarium (simulation of pelagic domain, and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88% when located at the sediment/sea water interface (simulation of benthic domain. This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment.

  6. Evaluation of a disposable plastic Neubauer counting chamber for semen analysis.

    Science.gov (United States)

    Kirkman-Brown, Jackson; Björndahl, Lars

    2009-02-01

    To evaluate whether disposable plastic counting chambers effectively could replace nondisposable, time-consuming, and potentially dangerous glass hemocytometers. Evaluation of equipment in modern laboratory andrology. Comparison of results obtained with plastic chambers with results obtained with "gold-standard" glass hemocytometer counts. Diagnostic laboratory for andrology. Twenty-one patients undergoing investigation for infertility problems. No interventions with patients; sperm in diluted semen samples were used when patients had allowed the use for research and training. Sperm concentration, difference from results obtained with standard equipment. In the first three experimental series, with use of standard routine phase-contrast microscopy, significantly lower count results were obtained consistently from the plastic chambers than from standard chambers. In the fourth series, with use of specialized equipment, equivalent results were obtained but with a considerably greater time commitment because of difficulties in distinguishing sperm adjacent to the gridlines in the plastic chambers. The plastic disposable chamber type was not suitable for routine semen analysis because results are variable depending on the microscope used, and increased time is necessary to do the assessment accurately.

  7. The plasticity of clays

    Science.gov (United States)

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  8. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  9. Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites.

    Science.gov (United States)

    Craig M. Clemons; Rebecca E. Ibach

    2004-01-01

    The purpose of this study was to clarify the effects of composite processing and moisture sorption on laboratory fungal resistance of wood-plastic composites. A 2-week water soaking or cyclic boiling-drying procedure was used to infuse moisture into composites made from high-density polyethylene filled with 50 percent wood flour and processed by extrusion, compression...

  10. Ocean acidification challenges copepod phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    A. Vehmaa

    2016-11-01

    Full Text Available Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC as a function of acidification (fCO2  ∼  365–1231 µatm and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm or quality (C : N weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  11. Ocean acidification challenges copepod reproductive plasticity

    Science.gov (United States)

    Vehmaa, A.; Almén, A.-K.; Brutemark, A.; Paul, A.; Riebesell, U.; Furuhagen, S.; Engström-Öst, J.

    2015-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia bifilosa in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ~ 365-1231 μatm), and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal if transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female copepod size and egg hatching success. In addition, we found a threshold of fCO2 concentration (~ 1000 μatm), above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon ~ 55 μm) or quality (C : N) weakens the transgenerational effects. However, females with high ORAC produced eggs with high hatching success. Overall, these results indicate that A. bifilosa could be affected by projected near future CO2 levels.

  12. Experimental tests for heritable morphological color plasticity in non-native brown trout (Salmo trutta populations.

    Directory of Open Access Journals (Sweden)

    Peter A H Westley

    Full Text Available The success of invasive species is frequently attributed to phenotypic plasticity, which facilitates persistence in novel environments. Here we report on experimental tests to determine whether the intensity of cryptic coloration patterns in a global invader (brown trout, Salmo trutta was primarily the result of plasticity or heritable variation. Juvenile F1 offspring were created through experimental crosses of wild-caught parents and reared for 30 days in the laboratory in a split-brood design on either light or dark-colored gravel substrate. Skin and fin coloration quantified with digital photography and image analysis indicated strong plastic effects in response to substrate color; individuals reared on dark substrate had both darker melanin-based skin color and carotenoid-based fin colors than other members of their population reared on light substrate. Slopes of skin and fin color reaction norms were parallel between environments, which is not consistent with heritable population-level plasticity to substrate color. Similarly, we observed weak differences in population-level color within an environment, again suggesting little genetic control on the intensity of skin and fin colors. Taken as whole, our results are consistent with the hypothesis that phenotypic plasticity may have facilitated the success of brown trout invasions and suggests that plasticity is the most likely explanation for the variation in color intensity observed among these populations in nature.

  13. Effects of Water Bottle Materials and Filtration on Bisphenol A Content in Laboratory Animal Drinking Water.

    Science.gov (United States)

    Honeycutt, Jennifer A; Nguyen, Jenny Q T; Kentner, Amanda C; Brenhouse, Heather C

    2017-05-01

    Bisphenol A (BPA) is widely used in the polycarbonate plastics and epoxy resins that are found in laboratory animal husbandry materials including cages and water bottles. Concerns about BPA exposure in humans has led to investigations that suggest physiologic health risks including disruptions to the endocrine system and CNS. However, the extent of exposure of laboratory animals to BPA in drinking water is unclear. In the first study, we compared the amount of BPA contamination in water stored in plastic bottles used in research settings with that in glass bottles. The amount of BPA that leached into water was measured across several time points ranging from 24 to 96 h by using a BPA ELISA assay. The results showed that considerable amounts of BPA (approximately 0.15 μg/L) leached from polycarbonate bottles within the first 24 h of storage. In the second study, BPA levels were measured directly from water taken from filtered compared with unfiltered taps. We observed significantly higher BPA levels in water from unfiltered taps (approximately 0.40 μg/L) compared with taps with filtration systems (approximately 0.04 μg/L). Taken together, our findings indicate that the use of different types of water bottles and water sources, combined with the use of different laboratory products (food, caging systems) between laboratories, likely contribute to decreased rigor and reproducibility in research. We suggest that researchers consider reporting the types of water bottles used and that animal care facilities educate staff regarding the importance of flushing nonfiltered water taps when filling animal water bottles.

  14. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  15. Likely-clean concrete disposition at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Betts, J.A.

    2011-01-01

    The vast majority of wastes produced at nuclear licensed sites are no different from wastes produced from other traditional industrial activities. Radiation and contamination control practices ensure that the small amounts of waste materials that contain a radiation and or contamination hazard are segregated and managed appropriately according to the level of hazard. Part of the segregation process involves additional clearance checks of wastes generated in areas where the potential to become radioactively contaminated exists, but is very small and contamination control practices are such that the wastes are believed to be 'likely-clean'. This important clearance step helps to ensure that radioactive contamination is not inadvertently released during disposition of inactive waste materials. Clearance methods for bagged likely-clean wastes (i.e. small volumes of low density wastes) or discreet non-bagged items are well advanced. Clearance of bagged likely-clean wastes involves measuring small volumes of bagged material within purpose built highly sensitive bag monitors. For non-bagged items the outer surfaces are scanned to check for surface contamination using traditional hand-held contamination instrumentation. For certain very bulky and porous materials (such as waste concrete), these traditional clearance methods are impractical or not fully effective. As a somewhat porous (and dense) material, surface scanning cannot always be demonstrated to be conclusive. In order to effectively disposition likely-clean concrete, both the method of clearance (i.e. conversion from likely-clean to clean) and method of disposition have to be considered. Likely-clean concrete wastes have been produced at Chalk River Laboratories (CRL) from demolitions of buildings and structures, as well as small amounts from site maintenance activities. A final disposition method for this material that includes the secondary clearance check that changes the classification of this

  16. Likely-clean concrete disposition at Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Betts, J.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The vast majority of wastes produced at nuclear licensed sites are no different from wastes produced from other traditional industrial activities. Radiation and contamination control practices ensure that the small amounts of waste materials that contain a radiation and or contamination hazard are segregated and managed appropriately according to the level of hazard. Part of the segregation process involves additional clearance checks of wastes generated in areas where the potential to become radioactively contaminated exists, but is very small and contamination control practices are such that the wastes are believed to be 'likely-clean'. This important clearance step helps to ensure that radioactive contamination is not inadvertently released during disposition of inactive waste materials. Clearance methods for bagged likely-clean wastes (i.e. small volumes of low density wastes) or discreet non-bagged items are well advanced. Clearance of bagged likely-clean wastes involves measuring small volumes of bagged material within purpose built highly sensitive bag monitors. For non-bagged items the outer surfaces are scanned to check for surface contamination using traditional hand-held contamination instrumentation. For certain very bulky and porous materials (such as waste concrete), these traditional clearance methods are impractical or not fully effective. As a somewhat porous (and dense) material, surface scanning cannot always be demonstrated to be conclusive. In order to effectively disposition likely-clean concrete, both the method of clearance (i.e. conversion from likely-clean to clean) and method of disposition have to be considered. Likely-clean concrete wastes have been produced at Chalk River Laboratories (CRL) from demolitions of buildings and structures, as well as small amounts from site maintenance activities. A final disposition method for this material that includes the secondary clearance check that changes the classification of this

  17. Radiation effects in polymers for plastic scintillation detectors

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Bross, A.D.; Hurlbut, C.R.; Moser, S.W.

    1994-01-01

    Recent developments in both scintillating plastic optical fibers and photon detection devices have spawned new applications for plastic scintillator detectors. This renewed attention has encouraged research that addresses the radiation stability of plastic scintillators. The optical quality of the polymer degrades with exposure to ionizing radiation and thus the light yield of the detector decreases. A complete understanding of all the mechanisms contributing to this radiation-induced degradation of the polymer can lead to techniques that will extend the radiation stability of these materials. Various radiation damage studies have been performed under different atmospheres and dose rates. Currently, the use of additives to preserve the optical properties of the polymer matrix under radiation is being investigated. The authors discuss the effect of certain antioxidants, plasticizers, and cross-linking agents on the radiation resilience of plastic scintillators

  18. Plastics and environmental health: the road ahead.

    Science.gov (United States)

    North, Emily J; Halden, Rolf U

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.

  19. The plastic rotation effect in an isotropic gradient plasticity model for applications at the meso scale

    NARCIS (Netherlands)

    Poh, Leong Hien; Peerlings, R.H.J.

    2016-01-01

    Although formulated to represent a large system of polycrystals at the macroscopic level, isotropic gradient plasticity models have routinely been adopted at the meso scale. For such purposes, it is crucial to incorporate the plastic rotation effect in order to obtain a reasonable approximation of

  20. PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY

    Science.gov (United States)

    Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya

    The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.

  1. Source properties of dynamic rupture pulses with off-fault plasticity

    KAUST Repository

    Gabriel, A.-A.

    2013-08-01

    Large dynamic stresses near earthquake rupture fronts may induce an inelastic response of the surrounding materials, leading to increased energy absorption that may affect dynamic rupture. We systematically investigate the effects of off-fault plastic energy dissipation in 2-D in-plane dynamic rupture simulations under velocity-and-state-dependent friction with severe weakening at high slip velocity. We find that plasticity does not alter the nature of the transitions between different rupture styles (decaying versus growing, pulse-like versus crack-like, and subshear versus supershear ruptures) but increases their required background stress and nucleation size. We systematically quantify the effect of amplitude and orientation of background shear stresses on the asymptotic properties of self-similar pulse-like ruptures: peak slip rate, rupture speed, healing front speed, slip gradient, and the relative contribution of plastic strain to seismic moment. Peak slip velocity and rupture speed remain bounded. From fracture mechanics arguments, we derive a nonlinear relation between their limiting values, appropriate also for crack-like and supershear ruptures. At low background stress, plasticity turns self-similar pulses into steady state pulses, for which plastic strain contributes significantly to the seismic moment. We find that the closeness to failure of the background stress state is an adequate predictor of rupture speed for relatively slow events. Our proposed relations between state of stress and earthquake source properties in the presence of off-fault plasticity may contribute to the improved interpretation of earthquake observations and to pseudodynamic source modeling for ground motion prediction.

  2. Effects of diazepam and levodopa single doses on motor cortex plasticity modulation in healthy human subjects: A TMS study

    Directory of Open Access Journals (Sweden)

    Ilić Nela V.

    2012-01-01

    Full Text Available Introduction. Administration of pharmacological agents with specific actions on neurotransmitter systems is a powerful driver of functional cortical reorganization. Plastic reorganization of the motor cortex in humans studies by the use of non-invasive stimulation protocols, which mimic the Hebbian model of associative plasticity. Objective. Aiming to explore pharmacological modulation on human motor cortex plasticity, we tested healthy subjects after each dosage of diazepam, levodopa i placebo administration, using paired associative stimulation protocol (PAS that induce fenomena similar to a long-term potentiation and depression, as defined on the synaptic level. Methods. We analyzed effects of benzodiazepines (10 mg, levodopa (200 mg and placebo on PAS protocol in 14 healthy volunteers, using a double-blind placebo-controlled study design. PAS consisted of electrical stimuli pairs at n.medianus and magnetic pulses over the scalp (transcranial magnetic stimulation in precisely defined intervals (ISI was 10 and 25 ms for a total of about 15 minutes (200 pairs. MEP amplitudes before and after (0, 10, 20 and 30 minutes later interventional protocols were compared. Results. When protocols were applied with placebo depending on ISI (10 ms - inhibitory, 25 ms - facilitatory effects, MEP amplitudes decreased or increased, while values in the postinterventional period (0, 10, 20 and 30 min were compared with initial values before the use of SAS. The use of benzodiazepines caused the occlusion of LTP-like effect, in contrast to amplification effects recorded after the administration of levodopa. With respect to the LTD-like protocol, the reverse was true (ANOVA for repeat measurements p<0.001. Conclusion. Administration of GABA-ergic agonist diazepam interferes with the induction of associative plasticity in the motor cortex of healthy individuals, as opposed to the use of levodopa, which stimulates these processes. The observed effects point at a

  3. Methodology for plastic fracture - a progress report

    International Nuclear Information System (INIS)

    Wilkinson, J.P.D.; Smith, R.E.E.

    1977-01-01

    This paper describes the progress of a study to develop a methodology for plastic fracture. Such a fracture mechanics methodology, having application in the plastic region, is required to assess the margin of safety inherent in nuclear reactor pressure vessels. The initiation and growth of flaws in pressure vessels under overload conditions is distinguished by a number of unique features, such as large scale yielding, three-dimensional structural and flaw configurations, and failure instabilities that may be controlled by either toughness or plastic flow. In order to develop a broadly applicable methodology of plastic fracture, these features require the following analytical and experimental studies: development of criteria for crack initiation and growth under large scale yielding; the use of the finite element method to describe elastic-plastic behaviour of both the structure and the crack tip region; and extensive experimental studies on laboratory scale and large scale specimens, which attempt to reproduce the pertinent plastic flow and crack growth phenomena. This discussion centers on progress to date on the selection, through analysis and laboratory experiments, of viable criteria for crack initiation and growth during plastic fracture. (Auth.)

  4. Strain gradient crystal plasticity effects on flow localization

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    for metals described by the reformulated Fleck-Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory...... in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered...

  5. The Portuguese plastic carrier bag tax: The effects on consumers' behavior.

    Science.gov (United States)

    Martinho, Graça; Balaia, Natacha; Pires, Ana

    2017-03-01

    Marine litter from lightweight plastic bags is a global problem that must be solved. A plastic bag tax was implemented in February 2015 to reduce the consumption of plastic grocery bags in Portugal and in turn reduce the potential contribution to marine litter. This study analyzes the effect of the plastic bag tax on consumer behavior to learn how it was received and determine the perceived effectiveness of the tax 4months after its implementation. In addition, the study assessed how proximity to coastal areas could influence behaviors and opinions. The results showed a 74% reduction of plastic bag consumption with a simultaneously 61% increase of reusable plastic bags after the tax was implemented. Because plastic bags were then reused for shopping instead of garbage bags, however, the consumption of garbage bags increased by 12%. Although reduction was achieved, the tax had no effect on the perception of marine litter or the impact of plastic bags on environment and health. The majority of respondents agree with the tax but view it as an extra revenue to the State. The distance to the coast had no meaningful influence on consumer behavior or on the perception of the tax. Although the tax was able to promote the reduction of plastics, the role of hypermarkets and supermarkets in providing alternatives through the distribution of reusable plastic bags was determinant to ensuring the reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Expression of Connexins and SOX2 Reflects the Plasticity of Glioma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Joana Balça-Silva

    2017-08-01

    Full Text Available Glioblastoma (GBM is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs. This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.

  7. Development, maternal effects, and behavioral plasticity.

    Science.gov (United States)

    Mateo, Jill M

    2014-11-01

    Behavioral, hormonal, and genetic processes interact reciprocally, and differentially affect behavior depending on ecological and social contexts. When individual differences are favored either between or within environments, developmental plasticity would be expected. Parental effects provide a rich source for phenotypic plasticity, including anatomical, physiological, and behavioral traits, because parents respond to dynamic cues in their environment and can, in turn, influence offspring accordingly. Because these inter-generational changes are plastic, parents can respond rapidly to changing environments and produce offspring whose phenotypes are well suited for current conditions more quickly than occurs with changes based on evolution through natural selection. I review studies on developmental plasticity and resulting phenotypes in Belding's ground squirrels (Urocitellus beldingi), an ideal species, given the competing demands to avoid predation while gaining sufficient weight to survive an upcoming hibernation, and the need for young to learn their survival behaviors. I will show how local environments and perceived risk of predation influence not only foraging, vigilance, and anti-predator behaviors, but also adrenal functioning, which may be especially important for obligate hibernators that face competing demands on the storage and mobilization of glucose. Mammalian behavioral development is sensitive to the social and physical environments provided by mothers during gestation and lactation. Therefore, maternal effects on offspring's phenotypes, both positive and negative, can be particularly strong. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Plasticity dependent damage evolution in composites with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2015-01-01

    . (2013). In this study the reinforcement is assumed perfectly stiff and consequently only one new cohesive material parameter is introduced. Results are shown for both conventional isotropy as well as plastic anisotropy with higher-order material behavior. Due to fiber-matrix decohesion a sudden stress......A unit cell approach is adopted to numerically analyze the effect of reinforcement size on fracture evolution in metal matrix composites. The matrix material shows plastic size-effects and is modeled by an anisotropic version of the single parameter strain-gradient (higher-order) plasticity model...... by Fleck and Hutchinson (2001). The fracture process along the fiber-matrix interface is modeled using a recently proposed cohesive law extension, where plasticity affects the fracture process as both the average as well as the jump in plastic strain across the interface are accounted for Tvergaard et al...

  9. Repeated Three-Hour Maternal Separation Induces Depression-Like Behavior and Affects the Expression of Hippocampal Plasticity-Related Proteins in C57BL/6N Mice

    Directory of Open Access Journals (Sweden)

    Yaoyao Bian

    2015-01-01

    Full Text Available Adverse early life experiences can negatively affect behaviors later in life. Maternal separation (MS has been extensively investigated in animal models in the adult phase of MS. The study aimed to explore the mechanism by which MS negatively affects C57BL/6N mice, especially the effects caused by MS in the early phase. Early life adversity especially can alter plasticity functions. To determine whether adverse early life experiences induce changes in plasticity in the brain hippocampus, we established an MS paradigm. In this research, the mice were treated with mild (15 min, MS15 or prolonged (180 min, MS180 maternal separation from postnatal day 2 to postnatal day 21. The mice underwent a forced swimming test, a tail suspension test, and an open field test, respectively. Afterward, the mice were sacrificed on postnatal day 31 to determine the effects of MS on early life stages. Results implied that MS induces depression-like behavior and the effects may be mediated partly by interfering with the hippocampal GSK-3β-CREB signaling pathway and by reducing the levels of some plasticity-related proteins.

  10. Can plastic mulching replace irrigation in dryland agriculture?

    Science.gov (United States)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Increasing water use efficiency (WUE) is a key strategy to maintaining crops yield without over-exploiting the scarce water resource. Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil moisture, evapotranspiration (ET), and WUE has not been compared with traditional irrigation method. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in dryland agriculture. Our results showed that plastic mulching technique resulted in yield increase comparable to irrigated crops but used 24% less water. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), plastic mulching increased WUE and available soil moisture. Higher WUE in plastic-mulched croplands was likely a result of greater proportion of available water being used for transpiration than evaporation. If problems related to production costs and residual plastic pollution could be managed, plastic mulching technology would become a promising strategy for dryland farming in other regions.

  11. Cyclic plastic hinges with degradation effects for frame structures

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex...... shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each generalized stress-strain component describing yield level, ultimate stress capacity, elastic...... and stiffness parameters. The cyclic plastic hinges are introduced into a six-component equilibrium-based beam element, using additive element and hinge flexibilities. When converted to stiffness format the plastic hinges are incorporated into the element stiffness matrix. The cyclic plastic hinge model...

  12. The effects of plastic waves on the numerical convergence of the viscous-plastic and elastic-viscous-plastic sea-ice models

    Science.gov (United States)

    Williams, James; Tremblay, L. Bruno; Lemieux, Jean-François

    2017-07-01

    The plastic wave speed is derived from the linearized 1-D version of the widely used viscous-plastic (VP) and elastic-viscous-plastic (EVP) sea-ice models. Courant-Friedrichs-Lewy (CFL) conditions are derived using the propagation speed of the wave. 1-D numerical experiments of the VP, EVP and EVP* models successfully recreate a reference solution when the CFL conditions are satisfied, in agreement with the theory presented. The IMplicit-EXplicit (IMEX) method is shown to effectively alleviate the plastic wave CFL constraint on the timestep in the implicitly solved VP model in both 1-D and 2-D. In 2-D, the EVP and EVP* models show first order error in the simulated velocity field when the plastic wave is not resolved. EVP simulations are performed with various advective timestep, number of subcycles, and elastic-wave damping timescales. It is found that increasing the number of subcycles beyond that needed to resolve the elastic wave does not improve the quality of the solution. It is found that reducing the elastic wave damping timescale reduces the spatial extent of first order errors cause by the unresolved plastic wave. Reducing the advective timestep so that the plastic wave is resolved also reduces the velocity error in terms of magnitude and spatial extent. However, the parameter set required for convergence to within the error bars of satellite (RGPS) deformation fields is impractical for use in climate model simulations. The behavior of the EVP* method is analogous to that of the EVP method except that it is not possible to reduce the damping timescale with α = β.

  13. Developmental pathway genes and neural plasticity underlying emotional learning and stress-related disorders.

    Science.gov (United States)

    Maheu, Marissa E; Ressler, Kerry J

    2017-09-01

    The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk for illnesses like depression and post-traumatic stress disorder, some have turned their attention instead to focusing on so-called "master regulators" of plasticity that may provide a means of controlling these potentially impaired processes in psychiatric illnesses. The mammalian homolog of Tailless (TLX), Wnt, and the homeoprotein Otx2 have all been proposed to constitute master regulators of different forms of plasticity which have, in turn, each been implicated in learning and stress-related disorders. In the present review, we provide an overview of the changing distribution of these genes and their roles both during development and in the adult brain. We further discuss how their distinct expression profiles provide clues as to their function, and may inform their suitability as candidate drug targets in the treatment of psychiatric disorders. © 2017 Maheu and Ressler; Published by Cold Spring Harbor Laboratory Press.

  14. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita; Eng, Susan; Enriquez-Leder, Rosario; Franz, Barbara; Gorden, Patricia; Hanson, Louise; Lamble, Geraldine; Martin, Harriet; Mastrangelo, Iris; McLane, Victoria; Villela, Maria-Alicia; Vivirito, Katherine; Woodhead, Avril

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  15. Preparation of A-150 tissue-equivalent plastic films

    International Nuclear Information System (INIS)

    Saion, E.B.; Shaari, A.H.; Watt, D.E.

    1992-01-01

    A-150 tissue-equivalent (TE) plastic is widely used as a wall material for tissue-equivalent proportional counters (TEPCS) used in experimental microdosimetry. The objective of this note is to give a technical account of how A-150 TE plastic film can be fabricated in the laboratory from commercially available A-150 TE plastic. (author)

  16. Developmental plasticity and the evolution of parental effects.

    Science.gov (United States)

    Uller, Tobias

    2008-08-01

    One of the outstanding challenges for evolutionary biologists is to understand how developmental plasticity can influence the evolutionary process. Developmental plasticity frequently involves parental effects, which might enable adaptive and context-dependent transgenerational transmission of phenotypic strategies. However, parent-offspring conflict will frequently result in parental effects that are suboptimal for parents, offspring or both. The fitness consequences of parental effects at evolutionary equilibrium will depend on how conflicts can be resolved by modifications of developmental processes, suggesting that proximate studies of development can inform ultimate questions. Furthermore, recent studies of plants and animals show how studies of parental effects in an ecological context provide important insights into the origin and evolution of adaptation under variable environmental conditions.

  17. A Review of Wood Plastic Composites effect on the Environment

    Directory of Open Access Journals (Sweden)

    Ahmed Taifor Azeez

    2017-05-01

    Full Text Available Wood Plastic Composites (WPCs are environmentally friend materials with a wide range of applications in the field of constructions, comprising high mechanical and physical properties with low cost raw materials as plastic wastes and different carpentry process wood reminder. The effects of wood, plastic waste and additives on various properties of the material such as mechanical (modulus of elasticity and modulus of rupture, physical (moisture absorption and fire retardancy have been investigated in order to push the output functions of the products to the limits of work conditions requirements. This study, overviews the importance of Wood Plastic Composites in conserving the environment by depletion post consume plastics from landfills, and the impact of these composites in developing the economic via opening new flourished markets for modern products. Both the ecological and economical requirements oblige the Iraqi government to replace the negatively healthy effects formaldehyde wood composites (medium density fiberboard MDF which are widely consumed in Iraqi markets with Wood Plastic Composites. a long-term strategy plan in which the researchers and the capitals meet under supervision of the government is very necessary and recommended in this paper to establish and develop WPCs industry in Iraq.

  18. Thermoinduced plastic flow and shape memory effects

    Directory of Open Access Journals (Sweden)

    Xiao Heng

    2011-01-01

    Full Text Available We propose an enhanced form of thermocoupled J2-flow models of finite deformation elastoplasticity with temperature-dependent yielding and hardening behaviour. The thermomechanical constitutive structure of these models is rendered free and explicit in the rigorous sense of thermodynamic consistency. Namely, with a free energy function explicitly introduced in terms of almost any given form of the thermomechanical constitutive functions, the requirements from the second law are identically fulfilled with positive internal dissipation. We study the case when a dependence of yielding and hardening on temperature is given and demonstrate that thermosensitive yielding with anisotropic hardening may give rise to appreciable plastic flow either in a process of heating or in a cyclic process of heating/cooling, thus leading to the findings of one- and two-way thermoinduced plastic flow. We then show that such theoretical findings turn out to be the effects found in shape memory materials, such as one- and two-way memory effects. Thus, shape memory effects may be explained to be thermoinduced plastic flow resulting from thermosensitive yielding and hardening behaviour. These and other relevant facts may suggest that, from a phenomenological standpoint, thermocoupled elastoplastic J2-flow models with thermosensitive yielding and hardening may furnish natural, straightforward descriptions of thermomechanical behaviour of shape memory materials.

  19. Recycling of plastics

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, W; Menzel, J; Sinn, H

    1976-01-01

    Considering the shortage of raw materials and environmental pollution, the recycling of plastic waste is a very important topic. Pilot plants for research in Funabashi Japan, Franklin (Ohio) U.S.A., and the R 80-process of Krauss Maffei, W. Germany, have demonstrated the possibility of reclaiming plastics from refuse. Old tires and waste from the plastic producing and manufacturing industries are readily available. The pyrolysis of plastic yields gaseous and liquid products, and the exploitation of this cracking reaction has been demonstrated by pilot plants in Japan and Great Britain. Further laboratory scale experiments are taking place in W. Germany. In continuous fluidized beds and in molten salts, polyethylene, polypropylene, polyvinylchloride, polystyrene and rubber are pyrolysed and better than 98 percent conversion is obtained. Up to 40 percent of the feed can be obtained as aromatic compounds, and a pilot plant is under construction. As a first step PVC-containing material can be almost quantitatively dehydrochlorinated.

  20. Compensatory plasticity: time matters

    Directory of Open Access Journals (Sweden)

    Latifa eLazzouni

    2014-06-01

    Full Text Available Plasticity in the human and animal brain is the rule, the base for development, and the way to deal effectively with the environment for making the most efficient use of all the senses. When the brain is deprived of one sensory modality, plasticity becomes compensatory: the exception that invalidates the general loss hypothesis giving the opportunity of effective change. Sensory deprivation comes with massive alterations in brain structure and function, behavioural outcomes, and neural interactions. Blind individuals do as good as the sighted and even more, show superior abilities in auditory, tactile and olfactory processing. This behavioural enhancement is accompanied with changes in occipital cortex function, where visual areas at different levels become responsive to non-visual information. The intact senses are in general used more efficiently in the blind but are also used more exclusively. New findings are disentangling these two aspects of compensatory plasticity. What is due to visual deprivation and what is dependent on the extended use of spared modalities? The latter seems to contribute highly to compensatory changes in the congenitally blind. Short term deprivation through the use of blindfolds shows that cortical excitability of the visual cortex is likely to show rapid modulatory changes after few minutes of light deprivation and therefore changes are possible in adulthood. However, reorganization remains more pronounced in the congenitally blind. Cortico-cortical pathways between visual areas and the areas of preserved sensory modalities are inhibited in the presence of vision, but are unmasked after loss of vision or blindfolding as a mechanism likely to drive cross-modal information to the deafferented visual cortex. Plasticity in the blind is also accompanied with neurochemical and morphological changes; both intrinsic connectivity and functional coupling at rest are altered but are likewise dependent on different sensory

  1. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-05-15

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of plastic strain on fracture strength of cracked components

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2009-01-01

    Nuclear power plant components are occasionally subjected to large load by earthquake and may suffer plastic strain. Although the plastic strain induced in materials increases the strength, it may reduce the fracture toughness due to a crack in the components. In this study, the effect of the plastic strain on strength of cracked components was investigated. Firstly, the change in the tensile properties and fracture toughness due to plastic strain were examined for Type 316 stainless steel and carbon steel (SM490). The degree of nominal plastic strain was 5%, 10%, 20% and 40% (only for stainless steel). Secondly, the J-integral values of surface crack on a pipe were evaluated by finite element analyses. Finally, the critical load for fracture of the cracked pipe was evaluated for various pipe and crack geometries using the J-integral values and the fracture toughness obtained. It was concluded that the plastic strain enhances the fracture strength of the cracked components when the induced plastic strain is less than 10%, although the extremely large plastic strain could reduce the strength. (author)

  3. Effect of plastic strain on fracture strength of cracked components

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2010-01-01

    Nuclear power plant components are occasionally subjected to excessive load by earthquake and may suffer plastic strain. Although the plastic strain introduced in materials increases the strength, it may reduce the fracture toughness. In this study, the effect of the plastic strain on strength of cracked components was investigated. Firstly, the change in the tensile properties and fracture toughness due to plastic strain were examined for Type 316 stainless steel and carbon steel (SM 490). The degree of nominal plastic strain was 5%, 10%, 20% and 40% (only for stainless steel). Secondly, the J-integral values of surface crack on a pipe were evaluated by finite element analyses. Finally, the critical load for fracture of the cracked pipe was evaluated for various pipe and crack geometries using the J-integral values and the fracture toughness obtained. It was concluded that the plastic strain enhances the fracture strength of the cracked components when the induced plastic strain is less than 10%, although the extremely large plastic strain could reduce the strength. (author)

  4. Direct visualization of solute locations in laboratory ice samples

    Directory of Open Access Journals (Sweden)

    T. Hullar

    2016-09-01

    Full Text Available Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air–ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, few studies have examined either solute locations in laboratory samples or the possible factors controlling solute segregation. To address this, we used micro-computed tomography (microCT to examine solute locations in ice samples prepared from either aqueous cesium chloride (CsCl or rose bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (∼ 2 µm. Freezing solutions in plastic vs. glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with rose bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in mobile liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to the freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results.

  5. Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol

    OpenAIRE

    Somashekarappa, H.; Prakash, Y.; Hemalatha, K.; Demappa, T.; Somashekar, R.

    2013-01-01

    The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the f...

  6. Neural Plasticity and Proliferation in the Generation of Antidepressant Effects: Hippocampal Implication

    Directory of Open Access Journals (Sweden)

    Fuencisla Pilar-Cuéllar

    2013-01-01

    Full Text Available It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF, and vascular endothelial growth factor (VEGF through intracellular signalling pathways—cAMP, Wnt/β-catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies.

  7. Environmental effects on fish neural plasticity and cognition.

    Science.gov (United States)

    Ebbesson, L O E; Braithwaite, V A

    2012-12-01

    Most fishes experiencing challenging environments are able to adjust and adapt their physiology and behaviour to help them cope more effectively. Much of this flexibility is supported and influenced by cognition and neural plasticity. The understanding of fish cognition and the role played by different regions of the brain has improved significantly in recent years. Techniques such as lesioning, tract tracing and quantifying changes in gene expression help in mapping specialized brain areas. It is now recognized that the fish brain remains plastic throughout a fish's life and that it continues to be sensitive to environmental challenges. The early development of fish brains is shaped by experiences with the environment and this can promote positive and negative effects on both neural plasticity and cognitive ability. This review focuses on what is known about the interactions between the environment, the telencephalon and cognition. Examples are used from a diverse array of fish species, but there could be a lot to be gained by focusing research on neural plasticity and cognition in fishes for which there is already a wealth of knowledge relating to their physiology, behaviour and natural history, e.g. the Salmonidae. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  8. Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors

    Directory of Open Access Journals (Sweden)

    Xie Yongling

    2012-02-01

    Full Text Available Abstract Background Nanomaterials, as a new kind of materials, have been greatly applied in different fields due to their special properties. With the industrialization of nanostructured materials and increasing public exposure, the biosafety and potential influences on central nervous system (CNS have received more attention. Nanosized zinc oxide (nanoZnO was suggested to up-regulate neuronal excitability and to induce glutamate release in vitro. Therefore, we hypothesized nanoparticles of nanoZnO may lead to changes in balance of neurotransmitter or neuronal excitability of CNS. This study was to investigate if there were effects of nanoZnO on animal model of depression. Methods Male Swiss mice were given lipopolysaccharides (LPS, 100 μg/kg, 100 μg/ml, every other day, 8 times, i.p. from weaning to induce depressive-like behaviors. NanoZnO (5.6 mg/kg, 5.6 mg/ml, every other day, 8 times, i.p. was given as the interaction. The mouse model was characterized using the methods of open field test, tail suspension test and forced swim test. Furthermore, the spatial memory was evaluated using Morris water maze (MWM and the synaptic plasticity was assessed by measuring the long-term potentiation (LTP in the perforant pathway (PP to dentate gyrus (DG in vivo. Results Results indicated that model mice showed disrupted spatial memory and LTP after LPS injections and the behavioral and electrophysiological improvements after nanoZnO treatment. Conclusion Data suggested that nanoZnO may play some roles in CNS of mental disorders, which could provide some useful direction on the new drug exploring and clinical researches.

  9. Effects of glass fibers on the properties of micro molded plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Gasparin, Stefania

    2011-01-01

    Glass fibers are used to reinforce plastics and to improve their mechanical properties. But plastic filled with glass fibers is a concern for molding of micro scale plastic parts. The aim of this paper is to investigate the effects of glass fiber on the replication quality and mechanical properties...... of polymeric thin ribs. It investigates the effect of feature size and gate location on distribution of glass fibers inside the molded parts. The results from this work indicate that glass filled plastic materials have poor replication quality and nonhomogeneous mechanical properties due to the nonuniform...

  10. Modulation of Hippocampal Neural Plasticity by Glucose-Related Signaling

    Directory of Open Access Journals (Sweden)

    Marco Mainardi

    2015-01-01

    Full Text Available Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression, structural plasticity (i.e., dynamics of dendritic spines, and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.

  11. Crack growth resistance for anisotropic plasticity with non-normality effects

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2006-01-01

    For a plastically anisotropic solid a plasticity model using a plastic flow rule with non-normality is applied to predict crack growth. The fracture process is modelled in terms of a traction–separation law specified on the crack plane. A phenomenological elastic–viscoplastic material model...... is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy, and in each case the effect of the normality flow rule is compared with the effect of non-normality. Conditions of small scale yielding are assumed, with mode I loading conditions far from the crack......-tip, and various directions of the crack plane relative to the principal axes of the anisotropy are considered. It is found that the steady-state fracture toughness is significantly reduced when the non-normality flow rule is used. Furthermore, it is shown that the predictions are quite sensitive to the value...

  12. Effect of reinforcement on plastic limit loads of branch junctions

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Myeong, Man-Sik; Yoon, Kee-Bong

    2009-01-01

    This paper provides effects of reinforcement shape and area on plastic limit loads of branch junctions under internal pressure and in-plane/out-of-plane bending, via detailed three-dimensional finite element limit analysis assuming elastic-perfectly plastic material behaviour. It is found that reinforcement is most effective when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  13. Commissioning of a continuous melt densification system for plastic waste. Contributed Paper PE-05

    International Nuclear Information System (INIS)

    Anji Reddy, D.; Chennakeshavalu, G.; Ramesh Babu, B.; Subba Rao, V.; Coelho, G.J.M.; Rao, S.V.S.; Paul, Biplob

    2014-01-01

    Volume reduction of radioactive solid wastes is carried out with an aim to maximize the utilization of disposal space. Cellulosic combustible solid wastes like cotton, paper etc. are treated by incineration and the plastic wastes are volume reduced by baling. Compaction of plastic wastes gives volume reduction factors in the range of 3 to 5. With a view to achieve higher volume reduction factors, a melt-densification process was developed indigenously at CWMF for reducing the volume of plastic wastes before disposal. Based on laboratory results, a pilot plant scale batch Melt Densification Unit was designed and operated. 120 M 3 of Category-I polythene waste was melted and the Volume Reduction Factors (VRF) obtained were up to 20. To meet the future needs and increasing the throughput, a continues-feed, PLC controlled, advanced Melt Densification System was commissioned recently. (author)

  14. An Efficient Procedure for Removal and Inactivation of Alpha-Synuclein Assemblies from Laboratory Materials.

    Science.gov (United States)

    Bousset, Luc; Brundin, Patrik; Böckmann, Anja; Meier, Beat; Melki, Ronald

    2016-01-01

    Preformed α-synuclein fibrils seed the aggregation of soluble α-synuclein in cultured cells and in vivo. This, and other findings, has kindled the idea that α-synuclein fibrils possess prion-like properties. As α-synuclein fibrils should not be considered as innocuous, there is a need for decontamination and inactivation procedures for laboratory benches and non-disposable laboratory material. We assessed the effectiveness of different procedures designed to disassemble α-synuclein fibrils and reduce their infectivity. We examined different commercially available detergents to remove α-synuclein assemblies adsorbed on materials that are not disposable and that are most found in laboratories (e.g. plastic, glass, aluminum or stainless steel surfaces). We show that methods designed to decrease PrP prion infectivity neither effectively remove α-synuclein assemblies adsorbed to different materials commonly used in the laboratory nor disassemble the fibrillar form of the protein with efficiency. In contrast, both commercial detergents and SDS detached α-synuclein assemblies from contaminated surfaces and disassembled the fibrils. We describe three cleaning procedures that effectively remove and disassemble α-synuclein seeds. The methods rely on the use of detergents that are compatible with most non-disposable tools in a laboratory. The procedures are easy to implement and significantly decrease any potential risks associated to handling α-synuclein assemblies.

  15. Direct electroplating of plastic for advanced electrical applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2017-01-01

    Electrodeposition or electroplating is predominantly applied to metallic components. Electroplating of plastics is possible in some cases where an initial electroless plating layer of nickel or copper is made to provide a conductive surface on the plastic part. This paper proposes a method...... for direct electroplating of plastic eliminating the need for slow and expensive processes like electroless metal deposition, PVD coating, painting with conductive inks etc. The results obtained from the test demonstrate the potential of direct electroplating of plastic to enhance the electrical conductivity...... and the use of electroplated plastics for advanced applications like Moulded Interconnect Devices (MIDs)....

  16. A critical analysis of the biological impacts of plasticizers on wildlife

    Science.gov (United States)

    Oehlmann, Jörg; Schulte-Oehlmann, Ulrike; Kloas, Werner; Jagnytsch, Oana; Lutz, Ilka; Kusk, Kresten O.; Wollenberger, Leah; Santos, Eduarda M.; Paull, Gregory C.; Van Look, Katrien J. W.; Tyler, Charles R.

    2009-01-01

    This review provides a critical analysis of the biological effects of the most widely used plasticizers, including dibutyl phthalate, diethylhexyl phthalate, dimethyl phthalate, butyl benzyl phthalate and bisphenol A (BPA), on wildlife, with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians. Moreover, the paper provides novel data on the biological effects of some of these plasticizers in invertebrates, fish and amphibians. Phthalates and BPA have been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations. Molluscs, crustaceans and amphibians appear to be especially sensitive to these compounds, and biological effects are observed at environmentally relevant exposures in the low ng l−1 to µg l−1 range. In contrast, most effects in fish (except for disturbance in spermatogenesis) occur at higher concentrations. Most plasticizers appear to act by interfering with the functioning of various hormone systems, but some phthalates have wider pathways of disruption. Effect concentrations of plasticizers in laboratory experiments coincide with measured environmental concentrations, and thus there is a very real potential for effects of these chemicals on some wildlife populations. The most striking gaps in our current knowledge on the impacts of plasticizers on wildlife are the lack of data for long-term exposures to environmentally relevant concentrations and their ecotoxicity when part of complex mixtures. Furthermore, the hazard of plasticizers has been investigated in annelids, molluscs and arthropods only, and given the sensitivity of some invertebrates, effects assessments are warranted in other invertebrate phyla. PMID:19528055

  17. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    NARCIS (Netherlands)

    Gradus, R.H.J.M.; Nillesen, P; Dijkgraaf, E.; Koppen, R. van

    2017-01-01

    The cost-effectiveness of two different plastic waste treatment options is compared. This paper evaluates the recycling of plastic waste with the more conventional incineration of plastic waste, using data for the Netherlands. Both options have specific revenues and costs. The main benefit from

  18. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex

    Directory of Open Access Journals (Sweden)

    Florian Müller-Dahlhaus

    2010-07-01

    Full Text Available Spike-timing dependent plasticity (STDP has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behaviour such as learning and memory.

  19. Reducing Uncertainty and Confronting Ignorance about the Possible Impacts of Weathering Plastic in the Marine Environment

    OpenAIRE

    Jahnke, Annika; Arp, Hans Petter Heinrich; Escher, Beate I.; Gewert, Berit; Gorokhova, Elena; Kühnel, Dana; Ogonowski, Martin; Potthof, Annegret; Rummel, Christophe Daniel; Schmitt-Jansen, Mechtild; Toorman, Erik; MacLeod, Matthew

    2017-01-01

    Plastic in the global oceans fulfills two of the three conditions for pollution to pose a planetary boundary threat because it is causing planetary-scale exposure that is not readily reversible. Plastic is a planetary boundary threat if it is having a currently unrecognized disruptive effect on a vital Earth system process. Discovering possible unknown effects is likely to be aided by achieving a fuller understanding of the environmental fate of plastic. Weathering of plastic generates microp...

  20. Antidepressant-Like Effect of Isorhynchophylline in Mice.

    Science.gov (United States)

    Xian, Yan-Fang; Fan, Ding; Ip, Siu-Po; Mao, Qing-Qiu; Lin, Zhi-Xiu

    2017-02-01

    Isorhynchophylline (IRN), an oxindole alkaloid, has been identified as the main active ingredient responsible for the biological activities of Uncaria rhynchophylla (Miq) Miq ex Havil. (Rubiaceae). Previous studies in our laboratory have revealed that IRN possesses potent neuroprotective effects in different models of Alzheimer's disease. However, the antidepressant-like effects of IRN are remained unclear. The present study aims to evaluate the antidepressant-like effects of IRN. The antidepressant-like effects of IRN was determined by using animal models of depression including forced swimming and tail suspension tests. The acting mechanism was explored by determining the effect of IRN on the levels of monoamine neurotransmitters and the activities of monoamine oxidases. Intragastric administration of IRN at 10, 20 and 40 mg/kg for 7 days caused a significant reduction of immobility time in both forced swimming and tail suspension tests, while IRN did not stimulate locomotor activity in the open-field test. In addition, IRN treatment antagonized reserpine-induced ptosis and significantly enhanced the levels of monoamine neurotransmitters including norepinephrine (NE) and 5-hydroxytryptamine (5-HT), and the activity of monoamine oxidase A (MAO-A) in the hippocampus and frontal cortex of mice. These results suggest that the antidepressant-like effects of IRN are mediated, at least in part, by the inhibition of monoamine oxidases.

  1. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.......In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...

  2. Plasticity to canopy shade in a monocarpic herb: within- and between-generation effects.

    Science.gov (United States)

    Galloway, Laura F; Etterson, Julie R

    2009-06-01

    Plants exhibit plasticity in response to their current environment and, in some cases, to that of the previous generation (i.e. maternal effects). However, few studies have evaluated both within- and between-generation plasticities and the extent to which they interact to influence fitness, especially in natural environments. The plasticity of adult traits to two generations of natural differences in light was determined for Campanulastrum americanum, a forest-edge herb that expresses annual and biennial life histories. Plasticity was found to an individual's light environment (within generation) and the maternal light environment (between generations). Responses to ambient light for size traits and timing of flowering were probably passive, whereas apparently adaptive responses were found for light acquisition traits. Maternal light influenced the expression of most adult traits but had the strongest effect when plants were germinated in natural environments. The transgenerational effects of light were consistent with adaptive plasticity for several traits. Plastic within-generation changes in flowering time may also result in adaptive between-generation effects by altering the offspring life history schedule. Finally, the results underscore the importance of conducting studies of within- and between-generation plasticity in natural populations, where the environmental context is relevant to that in which the traits evolved.

  3. The effect of smoke from plastics on digital communications equipment

    International Nuclear Information System (INIS)

    Tanaka, T.J.; Chapin, J.T.

    1998-01-01

    Smoke from plastics can cause immediate problems in electrical equipment in the form of shorting and increased leakage currents, as well as long-term corrosion (metal loss). The short-term problems can be especially serious for critical control instrumentation such as that found in nuclear reactors or telecommunications systems. The US Nuclear Regulatory Commission and Sandia National Laboratories are sponsoring a program to determine the modes and probabilities of digital equipment failure during exposure to smoke and up to 24 hours after the exposure. Early tests on computer systems have shown that the most common immediate problems are temporary and are likely to be caused by increased leakage currents. High-voltage circuits are especially vulnerable since the charged particles in smoke are drawn to those surfaces. To study failure probabilities, smoke exposure tests with real-time measurements will be carried out to determine how the electrical properties of the environment are affected by smoke concentration and content. Digital communication cable will be included in the tests because temporary shorts that cannot be detected through dc measurements may cause interruptions in communications between computers. The reaction of the equipment to changed electrical properties of the environment will be modeled. Equipment that can be used for testing and modeling is being solicited

  4. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.

    2003-01-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources

  5. Peripheral Sensory Deprivation Restores Critical-Period-like Plasticity to Adult Somatosensory Thalamocortical Inputs

    Directory of Open Access Journals (Sweden)

    Seungsoo Chung

    2017-06-01

    Full Text Available Recent work has shown that thalamocortical (TC inputs can be plastic after the developmental critical period has closed, but the mechanism that enables re-establishment of plasticity is unclear. Here, we find that long-term potentiation (LTP at TC inputs is transiently restored in spared barrel cortex following either a unilateral infra-orbital nerve (ION lesion, unilateral whisker trimming, or unilateral ablation of the rodent barrel cortex. Restoration of LTP is associated with increased potency at TC input and reactivates anatomical map plasticity induced by whisker follicle ablation. The reactivation of TC LTP is accompanied by reappearance of silent synapses. Both LTP and silent synapse formation are preceded by transient re-expression of synaptic GluN2B-containing N-methyl-D-aspartate (NMDA receptors, which are required for the reappearance of TC plasticity. These results clearly demonstrate that peripheral sensory deprivation reactivates synaptic plasticity in the mature layer 4 barrel cortex with features similar to the developmental critical period.

  6. Maladaptive Plasticity Masks the Effects of Natural Selection in the Red-Shouldered Soapberry Bug.

    Science.gov (United States)

    Cenzer, Meredith L

    2017-10-01

    Natural selection can produce local adaptation, but local adaptation can be masked by maladaptive plasticity. Maladaptive plasticity may arise as a result of gene flow producing novel gene combinations that have not been exposed to selection. In the 1980s, populations of the red-shouldered soapberry bug (Jadera haematoloma) were locally adapted to feed on the seeds of a native host plant and an introduced host plant; by 2014, local differentiation in beak length had been lost, likely as a consequence of increased gene flow. In this study, I assess the relative contributions of natural selection and plasticity to beak length on these two hosts. I confirm the earlier hypothesis that the host plant seedpod drives divergent natural selection on beak length. I then demonstrate that the proximate cause of the loss of observable differentiation in beak length is maladaptive plasticity, which masks persistent genetic differences between host-associated populations. Maladaptive plasticity is highest in areas where the two plants co-occur; in combination with historical measures of plasticity in hybrids, this indicates that maladaptive plasticity may be a consequence of ongoing gene flow. Although natural selection produced locally adapted genotypes in soapberry bugs, maladaptive plasticity is masking phenotypic differences between populations in nature.

  7. Altered synaptic plasticity in Tourette's syndrome and its relationship to motor skill learning.

    Directory of Open Access Journals (Sweden)

    Valerie Cathérine Brandt

    Full Text Available Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics that can be considered motor responses to preceding inner urges. It has been shown that Tourette patients have inferior performance in some motor learning tasks and reduced synaptic plasticity induced by transcranial magnetic stimulation. However, it has not been investigated whether altered synaptic plasticity is directly linked to impaired motor skill acquisition in Tourette patients. In this study, cortical plasticity was assessed by measuring motor-evoked potentials before and after paired associative stimulation in 14 Tourette patients (13 male; age 18-39 and 15 healthy controls (12 male; age 18-33. Tic and urge severity were assessed using the Yale Global Tic Severity Scale and the Premonitory Urges for Tics Scale. Motor learning was assessed 45 minutes after inducing synaptic plasticity and 9 months later, using the rotary pursuit task. On average, long-term potentiation-like effects in response to the paired associative stimulation were present in healthy controls but not in patients. In Tourette patients, long-term potentiation-like effects were associated with more and long-term depression-like effects with less severe urges and tics. While motor learning did not differ between patients and healthy controls 45 minutes after inducing synaptic plasticity, the learning curve of the healthy controls started at a significantly higher level than the Tourette patients' 9 months later. Induced synaptic plasticity correlated positively with motor skills in healthy controls 9 months later. The present study confirms previously found long-term improvement in motor performance after paired associative stimulation in healthy controls but not in Tourette patients. Tourette patients did not show long-term potentiation in response to PAS and also showed reduced levels of motor skill consolidation after 9 months compared to healthy controls. Moreover

  8. Laboratory Measurements of the Dielectronic Recombination Satellite Transitions of He-Like FE XXV and H-Like FE XXVI

    Science.gov (United States)

    Gu, M. F.; Beiersdorfer, P.; Brown, G. V.; Graf, A.; Kelley, R. I.; Kilbourne, C. A.; Porter, F. S.; Kahn, S. M,

    2012-01-01

    We present laboratory spectra of dielectronic recombination (DR) satellite transitions attached to the He-like and H-like iron resonance lines obtained with the NASA Goddard Space Flight Center X-ray calorimeter and produced by a thermal plasma simu1ation technique on the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory. We demonstrate that the calorimeter has sufficient spectral resolution in the 6-9 keV range to provide reliable measurements not only of standard DR satellite to resonance line intensities but also of DR satellite to DR satellite ratios that can be used to diagnose nonthermal electron distributions. Electron temperatures derived from the measured line intensities are consistent with the temperature of the simulated plasma. Temperature measurements based on DR satellite transitions have significant advantages over those based on collisional ionization equilibrium or continuum shape. Thus, successful demonstration of this method with the X-ray calorimeter is an important step fur its application in X-ray astronomy.

  9. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  10. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    International Nuclear Information System (INIS)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-01-01

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  11. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

    OpenAIRE

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plast...

  12. Hybrid friction stir welding for dissimilar materials through electro-plastic effect

    Science.gov (United States)

    Liu, Xun; Lan, Shuhuai; Ni, Jun

    2018-05-29

    A hybrid Friction Stir Welding approach and device for dissimilar materials joining employing Electro-Plastic Effect. The approach and device include an introduction of high density, short period current pulses into traditional friction stir welding process, which therefore can generate a localized softened zone in the workpiece during plastic stirring without significant additional temperature increase. This material softened zone is created by high density current pulses based on Electro-Plastic Effect and will move along with the friction stir welding tool. Smaller downward force, larger processing window and better joint quality for dissimilar materials are expected to be achieved through this hybrid welding technique.

  13. Collective flow effects observed with the Plastic Ball

    International Nuclear Information System (INIS)

    Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.

    1984-01-01

    At the Bevalac, collisions of Ca + Ca and Nb + Nb at 400 MeV/nucleon have been studied with the Plastic Ball/Plastic Wall detector. The Plastic Ball covers the angular region between 10 0 and 160 0 . It consists of 815 detectors where each module is a ΔE-E telescope capable of identifying the hydrogen and helium isotopes and positive pions. The ΔE measurement is performed with a 4-mm thick CaF crystal and the E counter is a 36-cm long plastic scintillator. Both signals are read out by a single photomultiplier tube. Due to the different decay times of the two scintillators, ΔE and E information can be separated by gating two different ADC-s at different times. The positive pions are additionally identified by measuring the delayed decay. The Platic Wall, placed 6 m downstream from the target, covers the angular range from 0 0 to 10 0 and measures time of flight, energy loss and position of the reaction products. In addition, the information from the inner counters (0 0 to 2 0 ) is used to produce a trigger signal. Data show two different collection effects

  14. Transformation plasticity and hot pressing

    International Nuclear Information System (INIS)

    Chaklader, A.C.D.

    1975-01-01

    The transformation plasticity during the phase transition of quartz to cristobalite, monoclinic reversible tetragonal of zirconia, metakaolin to a spinel phase, and brucite to periclase was investigated by studying their compaction characteristics. Viscous flow was found to be the predominant mechanism of mass transport (after an initial particle rearrangement stage) in the case of quartz to cristobalite phase change where the transformation was associated with the formation of an intermediate amorphous silica phase. The results on the monoclinic reversible tetragonal transformation of zirconia indicated that it is most likely controlled by internal strain induced by the stress associated with the volume change (ΔV/V) and the flow stress of the weaker phase. Particle movement and deformation of the weaker phase (possibly tetragonal) may be the manifestation of this plasticity. The plasticity in the case of metakaolin to a spinel phase appeared to start before the exothermic reaction (generally encountered in a dta plot) and may be diffusion controlled. The plasticity encountered during brucite to periclase transformation may be the combined effect of disintegration of precursor particles, vapor-phase lubrication and some deformability of freshly formed very fine MgO particles

  15. Optimization of wood plastic composite decks

    Science.gov (United States)

    Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.

    2018-04-01

    Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.

  16. Age-dependent modulation of synaptic plasticity and insulin mimetic effect of lipoic acid on a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Harsh Sancheti

    Full Text Available Alzheimer's disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits and synaptic plasticity have been shown to be affected in the early stages of Alzheimer's disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer's disease (3xTg-AD that shows progression of pathology as a function of age; two age groups: 6 months (young and 12 months (old were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O and long term potentiation (LTP (measured by electrophysiology. Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice.

  17. Neuron-glia metabolic coupling and plasticity

    OpenAIRE

    Magistretti PJ

    2011-01-01

    Abstract The focus of the current research projects in my laboratory revolves around the question of metabolic plasticity of neuron glia coupling. Our hypothesis is that behavioural conditions such as for example learning or the sleep wake cycle in which synaptic plasticity is well documented or during specific pathological conditions are accompanied by changes in the regulation of energy metabolism of astrocytes. We have indeed observed that the 'metabolic profile' of astrocytes is modified...

  18. The effects of hormones and physical exercise on hippocampal structural plasticity.

    Science.gov (United States)

    Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R

    2016-04-01

    The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Interface crack growth for anisotropic plasticity with non-normality effects

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2007-01-01

    A plasticity model with a non-normality plastic flow rule is used to analyze crack growth along an interface between a solid with plastic anisotropy and an elastic substrate. The fracture process is represented in terms of a traction-separation law specified on the crack plane. A phenomenological...... an oscillating stress singularity, and with conditions of small scale yielding this solution is applied as boundary conditions on the outer edge of the region analyzed. Crack growth resistance curves are calculated numerically, and the effect of the near-tip mode mixity on the steady-state fracture toughness...

  20. Applications of Acupuncture Therapy in Modulating Plasticity of Central Nervous System.

    Science.gov (United States)

    Xiao, Ling-Yong; Wang, Xue-Rui; Yang, Ye; Yang, Jing-Wen; Cao, Yan; Ma, Si-Ming; Li, Tian-Ran; Liu, Cun-Zhi

    2017-11-07

    Acupuncture is widely applied for treatment of various neurological disorders. This manuscript will review the preclinical evidence of acupuncture in mediating neural plasticity, the mechanisms involved. We searched acupuncture, plasticity, and other potential related words at the following sites: PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), and VIP information data base. The following keywords were used: acupuncture, electroacupuncture, plasticity, neural plasticity, neuroplasticity, neurogenesis, neuroblast, stem cell, progenitor cell, BrdU, synapse, synapse structure, synaptogenesis, axon, axon regeneration, synaptic plasticity, LTP, LTD, neurotrophin, neurotrophic factor, BDNF, GDNF, VEGF, bFGF, EGF, NT-3, NT-4, NT-5, p75NTR, neurotransmitter, acetylcholine, norepinephrine, noradrenaline, dopamine, monamine. We assessed the effects of acupuncture on plasticity under pathological conditions in this review. Relevant references were reviewed and presented to reflect the effects of acupuncture on neural plasticity. The acquired literatures mainly focused on neurogenesis, alterations of synapses, neurotrophins (NTs), and neurotranimitters. Acupuncture methods mentioned in this article include manual acupuncture and electroacupuncture. The cumulative evidences demonstrated that acupuncture could induce neural plasticity in rodents exposed to cerebral ischemia. Neural plasticity mediated by acupuncture in other neural disorders, such as Alzheimer's disease, Parkinson's disease, and depression, were also investigated and there is evidence of positive role of acupuncture induced plasticity in these disorders as well. Mediation of neural plasticity by acupuncture is likely associated with its modulation on NTs and neurotransmitters. The exact mechanisms underlying acupuncture's effects on neural plasticity remain to be elucidated. Neural plasticity may be the potential bridge between acupuncture and the treatment of various

  1. Phenotypic plasticity in response to the social environment: effects of density and sex ratio on mating behaviour following ecotype divergence.

    Directory of Open Access Journals (Sweden)

    Kristina Karlsson

    Full Text Available The ability to express phenotypically plastic responses to environmental cues might be adaptive in changing environments. We studied phenotypic plasticity in mating behaviour as a response to population density and adult sex ratio in a freshwater isopod (Asellus aquaticus. A. aquaticus has recently diverged into two distinct ecotypes, inhabiting different lake habitats (reed Phragmites australis and stonewort Chara tomentosa, respectively. In field surveys, we found that these habitats differ markedly in isopod population densities and adult sex ratios. These spatially and temporally demographic differences are likely to affect mating behaviour. We performed behavioural experiments using animals from both the ancestral ecotype ("reed" isopods and from the novel ecotype ("stonewort" isopods population. We found that neither ecotype adjusted their behaviour in response to population density. However, the reed ecotype had a higher intrinsic mating propensity across densities. In contrast to the effects of density, we found ecotype differences in plasticity in response to sex ratio. The stonewort ecotype show pronounced phenotypic plasticity in mating propensity to adult sex ratio, whereas the reed ecotype showed a more canalised behaviour with respect to this demographic factor. We suggest that the lower overall mating propensity and the phenotypic plasticity in response to sex ratio have evolved in the novel stonewort ecotype following invasion of the novel habitat. Plasticity in mating behaviour may in turn have effects on the direction and intensity of sexual selection in the stonewort habitat, which may fuel further ecotype divergence.

  2. Cyclic plastic hinges with degradation effects for frame structures

    OpenAIRE

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each gen...

  3. Nonlocal plasticity effects on fibre debonding in a whisker-reinforced metal

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2002-01-01

    Numerical cell-model analyses for the matrix-fibre debonding in a metal matrix composite are used to study the effect of a characteristic material length in the plasticity description of the matrix material deformations. Characteristic material lengths are already present in the model problem...... in the problem. The nonlocal plasticity effect tends to increase the stress level at a given overall strain, which clearly tends to promote the onset of debonding......., in the form of fibre sizes and the length associated with the debonding process, so the nonlocal plasticity model brings in an additional material length. The analyses for metal reinforced by aligned short fibres are used to obtain an understanding of the interaction of the different length scales...

  4. Weather resistance of inkjet prints on plastic substrates

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2015-06-01

    Full Text Available The development of wide format inkjet printers made the technology available for large area commercials. Outdoor advertising uses a wide range of substrate including paperboard, vinyl, canvas, mesh; the material of the substrate itself has to endure the physical and chemical effects of local weather. Weather elements (humidity, wind, solar irradiation degrade printed products inevitably; plastic products have better resistance against them, than paper based substrates. Service life of the printed product for outdoor application is a key parameter from the customer’s point of view. There are two ways to estimate expected lifetime: on site outdoor testing or laboratory testing. In both cases weathering parameters can be monitored, however laboratory testing devices may produce the desired environmental effects and thus accelerate the aging process. Our research objective was to evaluate the effects of artificial weathering on prints produced by inkjet technology on plastic substrates. We used a large format CMYK inkjet printer (Mutoh Rockhopper II, with Epson DX 4 print heads to print our test chart on two similar substrates (PVC coated tarpaulins with grammages 400 g/m2 and 440 g/m2. Specimen were aged in an Atlas Suntest XLS+ material tester device for equal time intervals. We measured and calculated the gradual changes of the optical properties (optical density, tone value, colour shifts of the test prints.

  5. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2011-04-01

    The focus of the current research projects in my laboratory revolves around the question of metabolic plasticity of neuron-glia coupling. Our hypothesis is that behavioural conditions, such as for example learning or the sleep-wake cycle, in which synaptic plasticity is well documented, or during specific pathological conditions, are accompanied by changes in the regulation of energy metabolism of astrocytes. We have indeed observed that the 'metabolic profile' of astrocytes is modified during the sleep-wake cycle and during conditions mimicking neuroinflammation in the presence or absence of amyloid-β. The effect of amyloid-β on energy metabolism is dependent on its state of aggregation and on internalization of the peptide by astrocytes. Distinct patterns of metabolic activity could be observed during the learning and recall phases in a spatial learning task. Gene expression analysis in activated areas, notably hippocampous and retrosplenial cortex, demonstrated that the expression levels of several genes implicated in astrocyte-neuron metabolic coupling are enhanced by learning. Regarding metabolic plasticity during the sleep-wake cycle, we have observed that the level of expression of a panel of selected genes, which we know are key for neuron-glia metabolic coupling, is modulated by sleep deprivation.

  6. Effects of plastic anisotropy on crack-tip behaviour

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Tvergaard, Viggo; Kuroda, Mitsutoshi

    2002-01-01

    For a crack in a homogeneous material the effect of plastic anisotropy on crack-tip blunting and on the near-tip stress and strain fields is analyzed numerically. The full finite strain analyses are carried out for plane strain under small scale yielding conditions, with purely symmetric mode I...... loading remote from the crack-tip. In cases where the principal axes of the anisotropy are inclined to the plane of the crack it is found that the plastic zones as well as the stress and strain fields just around the blunted tip of the crack become non-symmetric. In these cases the peak strain...... on the blunted tip occurs off the center line of the crack, thus indicating that the crack may want to grow in a different direction. When the anisotropic axes are parallel to the crack symmetry is retained, but the plastic zones and the near-tip fields still differ from those predicted by standard isotropic...

  7. Plastic waste in the marine environment: A review of sources, occurrence and effects.

    Science.gov (United States)

    Li, W C; Tse, H F; Fok, L

    2016-10-01

    This review article summarises the sources, occurrence, fate and effects of plastic waste in the marine environment. Due to its resistance to degradation, most plastic debris will persist in the environment for centuries and may be transported far from its source, including great distances out to sea. Land- and ocean-based sources are the major sources of plastic entering the environment, with domestic, industrial and fishing activities being the most important contributors. Ocean gyres are particular hotspots of plastic waste accumulation. Both macroplastics and microplastics pose a risk to organisms in the natural environment, for example, through ingestion or entanglement in the plastic. Many studies have investigated the potential uptake of hydrophobic contaminants, which can then bioaccumulate in the food chain, from plastic waste by organisms. To address the issue of plastic pollution in the marine environment, governments should first play an active role in addressing the issue of plastic waste by introducing legislation to control the sources of plastic debris and the use of plastic additives. In addition, plastics industries should take responsibility for the end-of-life of their products by introducing plastic recycling or upgrading programmes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Size effects in olivine control strength in low-temperature plasticity regime

    Science.gov (United States)

    Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.

    2017-12-01

    The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.

  9. Cataclastic effects in rock salt laboratory and in situ measurements

    International Nuclear Information System (INIS)

    Gramberg, J.; Roest, J.P.A.

    1984-01-01

    The aim of the research is the determination of eventual cataclastic effects in environmental rock salt of a heated part of a vertical deep test bore hole, a model for HLW disposal. Known cataclastic systems from hard rock mining and rock salt mines will form the starting point for the explanation of convergence of underground cavity walls. In rock salt, however, different elements seem to prevail: crystal plasticity and micro-cataclasis. The environmental measurements at the deep bore hole have to be carried out from a distance. To this end the acoustic micro-seismic method will be a suitable one. The appropriate equipment for micro-seismic cross hole measurement is designed, constructed and tested in the laboratory as well as underground. Acoustic velocity data form a crucial point. A micro-seismic acoustic P-wave model, adapted to the process of structural changes, is developed. P-wave velocity measurements in rock salt cubes in the laboratory are described. An underground cross hole measurement in the wall of a gallery with semi-circular section is treated and analysed. A conclusion was that, in this case, no macro-cataclasis (systematic large fractures) will be involved in the process of gallery convergence, but that the mechanism proved to be a combination of crystal plasticity and micro-cataclasis. The same mechanism might be expected to be present in the environmental rock salt of the HLW-disposal deep bore hole. As a result this environmental rock salt might be expected to be impermeable. A plan for the application of the developed equipment during the heating test on the ECN-deep-bore-hole is shown. A theory on ''disking'' or ''rim cracks'' is presented in an annex

  10. Leaching of plastic additives to marine organisms

    International Nuclear Information System (INIS)

    Koelmans, Albert A.; Besseling, Ellen; Foekema, Edwin M.

    2014-01-01

    It is often assumed that ingestion of microplastics by aquatic species leads to increased exposure to plastic additives. However, experimental data or model based evidence is lacking. Here we assess the potential of leaching of nonylphenol (NP) and bisphenol A (BPA) in the intestinal tracts of Arenicola marina (lugworm) and Gadus morhua (North Sea cod). We use a biodynamic model that allows calculations of the relative contribution of plastic ingestion to total exposure of aquatic species to chemicals residing in the ingested plastic. Uncertainty in the most crucial parameters is accounted for by probabilistic modeling. Our conservative analysis shows that plastic ingestion by the lugworm yields NP and BPA concentrations that stay below the lower ends of global NP and BPA concentration ranges, and therefore are not likely to constitute a relevant exposure pathway. For cod, plastic ingestion appears to be a negligible pathway for exposure to NP and BPA. - Highlights: • Uptake of plastic additives after plastic ingestion was modeled for worms and fish. • This was done for bisphenol A and nonylphenol. • Uncertainty was accounted for by Monte Carlo simulations. • It appeared that exposure by plastic ingestion was negligible for fish. • Plastic ingestion may occasionally be relevant for marine worms. - Leaching of nonylphenol and bisphenol A from ingested microplastic may be relevant for the lugworm, but is irrelevant for fish like cod

  11. Field and Laboratory Decay Evaluations of wood-plastic Composites

    Science.gov (United States)

    Rebecca E. Ibach; Marek Gnatowski; Grace Sun

    2013-01-01

    Experimental wood–plastic composites (WPCs) were made so that they matched the manufacturing process, dimensions, and water absorption of some commercial decking boards. WPC samples from selected formulations were divided into two identical groups. The first group was exposed in exterior conditions in Vancouver, British Columbia, and Hilo, Hawaii, at sun and shadow...

  12. Constraints on the evolution of phenotypic plasticity

    DEFF Research Database (Denmark)

    Murren, Courtney J; Auld, Josh R.; Callahan, Hilary S

    2015-01-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce...... an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits...... to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently...

  13. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence.

    Science.gov (United States)

    Schausberger, Peter; Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C

    2018-04-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii , on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity.

  14. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence

    Science.gov (United States)

    Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C.

    2018-01-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii, on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity. PMID:29765663

  15. The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish, Gambusia holbrooki

    Directory of Open Access Journals (Sweden)

    Mischa P. Turschwell

    2016-03-01

    Full Text Available It has long been hypothesised that there is a functional correlation between brain size and metabolic rate in vertebrates. The present study tested this hypothesis in wild-caught adult mosquitofish Gambusia holbrooki by testing for an intra-specific association between resting metabolic rate (RMR and brain size while controlling for variation in body size, and through the examination of the effects of spatial enrichment and laboratory housing on body mass-independent measures of brain size and RMR. Controlling for body mass, there was no relationship between brain size and RMR in wild-caught fish. Contrary to predictions, spatial enrichment caused a decrease in mass-independent brain size, highlighting phenotypic plasticity in the adult brain. As expected, after controlling for differences in body size, wild-caught fish had relatively larger brains than fish that had been maintained in the laboratory for a minimum of six weeks, but wild-caught fish also had significantly lower mass-independent RMR. This study demonstrates that an organisms' housing environment can cause significant plastic changes to fitness related traits including brain size and RMR. We therefore conclude that current standard laboratory housing conditions may cause captive animals to be non-representative of their wild counterparts, potentially undermining the transferability of previous laboratory-based studies of aquatic ectothermic vertebrates to wild populations.

  16. Vocal plasticity in a reptile.

    Science.gov (United States)

    Brumm, Henrik; Zollinger, Sue Anne

    2017-05-31

    Sophisticated vocal communication systems of birds and mammals, including human speech, are characterized by a high degree of plasticity in which signals are individually adjusted in response to changes in the environment. Here, we present, to our knowledge, the first evidence for vocal plasticity in a reptile. Like birds and mammals, tokay geckos ( Gekko gecko ) increased the duration of brief call notes in the presence of broadcast noise compared to quiet conditions, a behaviour that facilitates signal detection by receivers. By contrast, they did not adjust the amplitudes of their call syllables in noise (the Lombard effect), which is in line with the hypothesis that the Lombard effect has evolved independently in birds and mammals. However, the geckos used a different strategy to increase signal-to-noise ratios: instead of increasing the amplitude of a given call type when exposed to noise, the subjects produced more high-amplitude syllable types from their repertoire. Our findings demonstrate that reptile vocalizations are much more flexible than previously thought, including elaborate vocal plasticity that is also important for the complex signalling systems of birds and mammals. We suggest that signal detection constraints are one of the major forces driving the evolution of animal communication systems across different taxa. © 2017 The Author(s).

  17. Antidepressant-like effect of peony glycosides in mice.

    Science.gov (United States)

    Mao, Qing-Qiu; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2008-09-26

    The root part of Paeonia lactiflora Pall. (Ranunculaceae), known as peony, is often used in Chinese herbal formulae for the treatment of depression-like disorders. Previous studies in our laboratory have shown that an ethanol extract of peony produced antidepressive effects in mouse models of depression. It is well known that peony contains glycosides such as paeoniflorin and albiflorin, yet it remains unclear whether the total glycosides of peony (TGP) are effective. The present study aims to evaluate the antidepressant-like effects of TGP. The antidepressant-like effects of TGP was determined by using animal models of depression including forced swim and tail suspension tests. The acting mechanism was explored by determining the effect of TGP on the activities of monoamine oxidases. Intragastric administration of TGP at 80 and 160 mg/kg for seven days caused a significant reduction of immobility time in both forced swim and tail suspension tests, yet TGP did not stimulate locomotor activity in the open-field test. In addition, TGP treatment antagonized reserpine-induced ptosis and inhibited the activities of monoamine oxidases in mouse cerebrum. These results suggest that the antidepressive effects of TGP are mediated, at least in part, by the inhibition of monoamine oxidases.

  18. A Modified Critical State Two-surface Plasticity Model for Sand

    DEFF Research Database (Denmark)

    Bakmar, Christian LeBlanc; Hededal, O.; Ibsen, Lars Bo

    This paper provides background information and documentation for the implementation of a robust plasticity model as a user-subroutine in the commercial finite difference code, FLAC3D by Itasca. The plasticity model presented is equal to the 3 dimensional critical state two-surface plasticity model...... volumetric and stress-strain behaviour under monotonic and cyclic loading and thereby related observations like accumulation of pore pressure, cyclic mobility and cyclic liquefaction. The plasticity model is implemented with an integration scheme based on the general return mapping algorithm. The integration...... scheme faces convergence difficulties, primarily at very low mean effective stresses. The convergence problems are addressed by suitable correction strategies designed to add robustness, stability and efficiency to the integration scheme. An outline of all model parameters is given with suggestions...

  19. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  20. Nonlocal plasticity effects on interaction of different size voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2004-01-01

    A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for. (C) 2003 Elsevier Ltd. All rights reserved....

  1. Quantification of Fault-Zone Plasticity Effects with Spontaneous Rupture Simulations

    Science.gov (United States)

    Roten, D.; Olsen, K. B.; Day, S. M.; Cui, Y.

    2017-09-01

    Previous studies have shown that plastic yielding in crustal rocks in the fault zone may impose a physical limit to extreme ground motions. We explore the effects of fault-zone non-linearity on peak ground velocities (PGVs) by simulating a suite of surface-rupturing strike-slip earthquakes in a medium governed by Drucker-Prager plasticity using the AWP-ODC finite-difference code. Our simulations cover magnitudes ranging from 6.5 to 8.0, three different rock strength models, and average stress drops of 3.5 and 7.0 MPa, with a maximum frequency of 1 Hz and a minimum shear-wave velocity of 500 m/s. Friction angles and cohesions in our rock models are based on strength criteria which are frequently used for fractured rock masses in civil and mining engineering. For an average stress drop of 3.5 MPa, plastic yielding reduces near-fault PGVs by 15-30% in pre-fractured, low strength rock, but less than 1% in massive, high-quality rock. These reductions are almost insensitive to magnitude. If the stress drop is doubled, plasticity reduces near-fault PGVs by 38-45% and 5-15% in rocks of low and high strength, respectively. Because non-linearity reduces slip rates and static slip near the surface, plasticity acts in addition to, and may partially be emulated by, a shallow velocity-strengthening layer. The effects of plasticity are exacerbated if a fault damage zone with reduced shear-wave velocities and reduced rock strength is present. In the linear case, fault-zone trapped waves result in higher near-surface peak slip rates and ground velocities compared to simulations without a low-velocity zone. These amplifications are balanced out by fault-zone plasticity if rocks in the damage zone exhibit low-to-moderate strength throughout the depth extent of the low-velocity zone (˜5 km). We also perform dynamic non-linear simulations of a high stress drop (8 MPa) M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. Non-linearity in the

  2. Uranium exploration in Pakistan using alpha sensitive plastic films (ASPF)

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, A.A.; Khan, H.A. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Health Physics Div.); Samad Beg, M.A.; Ahmed, Fazal (Atomic Energy Minerals Centre, Lahore (Pakistan))

    1988-01-01

    The Alpha Sensitive Plastic Film (ASPF) technique has been successfully developed in Pakistan. Studies concerning optimisation of tube size, exposure time, position of detector in tube, etching conditions, type of detector, etc. have been done in the laboratory. Some studies like effects of depth, size and grade of ore body and water table were carried out in the field. The application of this technique was fairly successful in sandstone areas. Based on this technique, subsurface uranium occurrences were established in D.G. Khan and Isa Khel. The ASPF-results were confirmed by subsequent drilling and other methods. The technique has been found to be workable and inexpensive. It has been found to supplement the conventional exploration methods, and if applied as a part of normal exploration programme may reduce overall project cost substantially. This paper briefly describes the methodology, parameters, applications and results of the ASPF technique in the field of uranium prospecting and exploration in Pakistan. (author).

  3. Effect of Different Plastic mulch on Growth and Yield of Potato (Solanum tuberosum

    Directory of Open Access Journals (Sweden)

    khosro parvizi

    2018-02-01

    Full Text Available Introduction: The advantages of plastic mulches have been known in production of agricultural crops. Their capability have been demonstrated to help nutrition uptake, precocity and yield of fruit trees, and decreasing of aphid population as viruses pest vectors. It is also demonstrated some advantages of plastic mulch on some traits in potato such as increasing growth rate, yield and number of medium tuber size. Also, the effects of combined use of straw, chopped and polyethylene as well as different levels of irrigation (60, 80, 100, 120% water requirement on yield and water use efficiency in potato have been investigated. In previous studies, it is concentrated on the effect of the special type of plastic on growing aspect of potato and there is no comparative assessment between different types of the mulches. So that in this research we evaluated the responses between types of plastic mulches. Material and Methods: this research was conducted under field conditions. A factorial experiment was designed based on randomized complete block design with three replications. The experimental treatments consisted of mulch in five levels (clear, white, black, double layer and control (without mulch and two cultivars (Agria and Sante. Each plot was designed in 4 m2. For every plot, ridges were divided into complicated double rows with 50 × 150 centimeters wide. Irrigation tapes were placed between every duplicated row. Water requirement was calculated through corrected evapotranspiration (ETo by Penman-Monteith equation with considering 90% water use efficiency. During the growing season some characteristics such as requirement time to 80% emergence, tuberization time, plant height in flowering time, number of stems and leaf area have been measured. Harvesting time was recorded along with measurement of tuber weights. Total yield was measured by random selection of one m2 in each plot. Harvested tubers were separated based on three sizes; edible tuber

  4. Effect of embedment on the plastic behaviour of Bucket Foundations

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim André

    2015-01-01

    studies have indicated the possibility of defining foundation response using plasticity theory. Results of multiple loading tests addressing the effect of embedment on the strain-hardening behavior of shallow bucket foundations under combined loading are reported. The kinematic mechanisms accompanying pre......-failure are presented. It is argued that the drained capacity of offshore bucket foundations and the ratio of plastic increments are largely influenced by embedment depth and the preload ratio V/Vpeak....

  5. Field Performance of Recycled Plastic Foundation for Pipeline

    Science.gov (United States)

    Kim, Seongkyum; Lee, Kwanho

    2015-01-01

    The incidence of failure of embedded pipelines has increased in Korea due to the increasing applied load and the improper compaction of bedding and backfill materials. To overcome these problems, a prefabricated lightweight plastic foundation using recycled plastic was developed for sewer pipelines. A small scale laboratory chamber test and two field tests were conducted to verify its construction workability and performance. From the small scale laboratory chamber test, the applied loads at 2.5% and 5.0% of deformation were 3.45 kgf/cm2 and 5.85 kgf/cm2 for Case S1, and 4.42 kgf/cm2 and 6.43 kgf/cm2 for Case S2, respectively. From the first field test, the vertical deformation of the recycled plastic foundation (Case A2) was very small. According to the analysis based on the PE pipe deformation at the connection (CN) and at the center (CT), the pipe deformation at each part for Case A1 was larger than that for Case A2, which adopted the recycled lightweight plastic foundation. From the second field test, the measured maximum settlements of Case B1 and Case B2 were 1.05 cm and 0.54 cm, respectively. The use of a plastic foundation can reduce the settlement of an embedded pipeline and be an alternative construction method.

  6. Field Performance of Recycled Plastic Foundation for Pipeline

    Directory of Open Access Journals (Sweden)

    Seongkyum Kim

    2015-05-01

    Full Text Available The incidence of failure of embedded pipelines has increased in Korea due to the increasing applied load and the improper compaction of bedding and backfill materials. To overcome these problems, a prefabricated lightweight plastic foundation using recycled plastic was developed for sewer pipelines. A small scale laboratory chamber test and two field tests were conducted to verify its construction workability and performance. From the small scale laboratory chamber test, the applied loads at 2.5% and 5.0% of deformation were 3.45 kgf/cm2 and 5.85 kgf/cm2 for Case S1, and 4.42 kgf/cm2 and 6.43 kgf/cm2 for Case S2, respectively. From the first field test, the vertical deformation of the recycled plastic foundation (Case A2 was very small. According to the analysis based on the PE pipe deformation at the connection (CN and at the center (CT, the pipe deformation at each part for Case A1 was larger than that for Case A2, which adopted the recycled lightweight plastic foundation. From the second field test, the measured maximum settlements of Case B1 and Case B2 were 1.05 cm and 0.54 cm, respectively. The use of a plastic foundation can reduce the settlement of an embedded pipeline and be an alternative construction method.

  7. Influence of shape and size of the particles on jigging separation of plastics mixture.

    Science.gov (United States)

    Pita, Fernando; Castilho, Ana

    2016-02-01

    Plastics are popular for numerous applications due to their high versatility and favourable properties such as endurance, lightness and cheapness. Therefore the generation of plastic waste is constantly increasing, becoming one of the larger categories in municipal solid waste. Almost all plastic materials are recyclable, but for the recycling to be possible it is necessary to separate the different types of plastics. The aim of this research was to evaluate the performance of the jig separation of bi-component plastic mixtures. For this study six granulated plastics had been used: Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D). Plastics mixtures were subjected to jigging in a laboratorial Denver mineral jig. The results showed that the quality of the jigging separation varies with the mixture, the density differences and with the size and shape of the particles. In the case of particles with more regular shapes the quality of separation of bi-component plastic mixtures improved with the increase of the particle size. For lamellar particles the influence of particle size was minimal. In general, the beneficiation of plastics with similar densities was not effective, since the separation efficiency was lower than 25%. However, in bi-component plastic mixtures that join a low density plastic (PS) with a high density one (PMMA, PET-S, PET-D, PVC-M and PVC-D), the quality of the jigging separation was greatly improved. The PS grade in the sunk was less than 1% for all the plastic mixtures. Jigging proved to be an effective method for the separation of bi-component plastic mixtures. Jigging separation will be enhanced if the less dense plastic, that overflows, has a lamellar shape and if the denser plastic, that sinks, has a regular one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Recycling plastic bottles in a creative way

    OpenAIRE

    Pavlin, Suzana

    2016-01-01

    Beside other plastic products, plastic bottles represent a true environmental disaster in the last few years. We assume that hardly anyone asks what happens after they drink that last drop of water out of it. Just like most municipal waste, a plastic bottle can be reused, recycled, burned or deposited into landfill. When the Environment Protection Act is not respected, plastic bottle ends up in the nature, very often in the sea, where it decomposes very slowly and has negative influence on th...

  9. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Department of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.

  10. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species.

    Science.gov (United States)

    Mathieu-Denoncourt, Justine; Wallace, Sarah J; de Solla, Shane R; Langlois, Valerie S

    2015-08-01

    Due to their versatility, robustness, and low production costs, plastics are used in a wide variety of applications. Plasticizers are mixed with polymers to increase flexibility of plastics. However, plasticizers are not covalently bound to plastics, and thus leach from products into the environment. Several studies have reported that two common plasticizers, bisphenol A (BPA) and phthalates, induce adverse health effects in vertebrates; however few studies have addressed their toxicity to non-mammalian species. The aim of this review is to compare the effects of plasticizers in animals, with a focus on aquatic species. In summary, we identified three main chains of events that occur in animals exposed to BPA and phthalates. Firstly, plasticizers affect development by altering both the thyroid hormone and growth hormone axes. Secondly, these chemicals interfere with reproduction by decreasing cholesterol transport through the mitochondrial membrane, leading to reduced steroidogenesis. Lastly, exposure to plasticizers leads to the activation of peroxisome proliferator-activated receptors, the increase of fatty acid oxidation, and the reduction in the ability to cope with the augmented oxidative stress leading to reproductive organ malformations, reproductive defects, and decreased fertility. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Effect of plastic spacer handling on salbutamol lung deposition in asthmatic children

    DEFF Research Database (Denmark)

    Lipworth, Brian J; Lee, Daniel K C; Anhøj, Jacob

    2002-01-01

    AIMS: To study the effects of electrostatics in a plastic spacer on the lung deposition of salbutamol in asthmatic children. METHODS: Twenty-five children (5-12 years) with mild asthma were given salbutamol hydrofluoroalkane pressurized metered dose inhaler 400 micro g via a 750 ml plastic spacer...

  12. Plastics, the environment and human health: current consensus and future trends.

    Science.gov (United States)

    Thompson, Richard C; Moore, Charles J; vom Saal, Frederick S; Swan, Shanna H

    2009-07-27

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the

  13. Plastics, the environment and human health: current consensus and future trends

    Science.gov (United States)

    Thompson, Richard C.; Moore, Charles J.; vom Saal, Frederick S.; Swan, Shanna H.

    2009-01-01

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the

  14. A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastics

    NARCIS (Netherlands)

    R.H.J.M. Gradus (Raymond); R. van Koppen (Rick); E. Dijkgraaf (Elbert); P. Nillesen (Paul)

    2016-01-01

    textabstractThe cost-effectiveness of plastic recycling is compared to energy recovery from plastic incineration in a waste-to-energy plant using data for the Netherlands. Both options have specific benefits and costs. The benefits of recycling are the avoidance of both CO2 that otherwise would be

  15. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain.

    Science.gov (United States)

    Mattsson, Karin; Johnson, Elyse V; Malmendal, Anders; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy

    2017-09-13

    The tremendous increases in production of plastic materials has led to an accumulation of plastic pollution worldwide. Many studies have addressed the physical effects of large-sized plastics on organisms, whereas few have focused on plastic nanoparticles, despite their distinct chemical, physical and mechanical properties. Hence our understanding of their effects on ecosystem function, behaviour and metabolism of organisms remains elusive. Here we demonstrate that plastic nanoparticles reduce survival of aquatic zooplankton and penetrate the blood-to-brain barrier in fish and cause behavioural disorders. Hence, for the first time, we uncover direct interactions between plastic nanoparticles and brain tissue, which is the likely mechanism behind the observed behavioural disorders in the top consumer. In a broader perspective, our findings demonstrate that plastic nanoparticles are transferred up through a food chain, enter the brain of the top consumer and affect its behaviour, thereby severely disrupting the function of natural ecosystems.

  16. [Is the use of plastic capillary tubes justified for blood gases analysis?].

    Science.gov (United States)

    Daurès, Marie-Françoise; Bozonnat, Marie-Cécile; Cristol, Jean-Paul

    2011-01-01

    Some clinical units, such as neonatal or maternity units, preferentially use capillary tubes when analysing blood gases. Using glass tubes is delicate and nurses must recollect blood when breaking. In order to eliminate this problem, we tested flexible, plastic capillary tubes in both the above mentionned units and in our biochemistry laboratory. Each unit, where glass tubes were habitually used, tested 200 flexible, plastic capillary tubes. In addition, the nursing staffed filled out a questionnaire concerned tube usage. Both units clearly preferred using the flexible tubes. In the laboratory, results for blood gas analyses were compared between rigid glass and flexible plastic capillary tubes for 112 patients. Concordance tests did not showed significant differences between the two tube types, except for hematocrit and total haemoglobin. A questionnaire was also presented to the lab technician, who confirmed the easier usability of plastic capillary tubes.

  17. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  18. Preparation of plastic scintillator detectors and physicochemical parameter characterization

    International Nuclear Information System (INIS)

    Hamada, M.M.; Mesquita, C.H. de.

    1988-10-01

    The development of plastic scintillators for use in the nuclear radiation detection is described. The detectors were fabricated by the polymerization of styrene with organic fluors. The organic fluors used were PPO (1,4 diphenyl-oxazol) and POPOP 1,4-di-2-(5-phenyl-oxazolil) - benzene in proportions of 0,5 and 0,05% respectively. Physicochemical parameters related to the quality of this detector are investigated at this laboratory. The evaluation of its fluorescence characteristics, density, melting softening, refractive index, molecular weight, gamma and alpha spectrometry characteristics and finally the comparative pulse height analysis indicate that the plastic scintillator produced at this laboratory is comparable with others already described. (author)

  19. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  20. Charges for plastic bags : Motivational and behavioral effects

    NARCIS (Netherlands)

    Jakovcevic, Adriana; Steg, Linda; Mazzeo, Nadia; Caballero, Romina; Franco, Paul; Putrino, Natalia; Favara, Jesica

    2014-01-01

    Two field studies tested the effects of a charge for single-use plastic bags recently implemented in Buenos Aires City, Argentina. Study 1 showed a greater increase in consumers' own bag use after the charge was introduced in supermarkets where the policy was introduced, in comparison to control

  1. Electrical and photomechanical effects of plastic deformation of mercuric iodide

    International Nuclear Information System (INIS)

    Marschall, J.; Milstein, F.; Gerrish, V.

    1991-01-01

    The effects of bulk plastic deformation of mercuric iodide (HgI 2 ), upon some of the electronic properties relevant to the performance of HgI 2 as a radiation detector were examined experimentally. Hole lifetimes, as well as hole and electron mobilities, were measured at various stages of sample deformation. Hole lifetimes were found to decrease by a factor of 2 under strains of several percent; carrier mobilities varied within experimental error, except during creep loading where electron and hole mobilities decreased by about 65 % and 25 %, respectively. Additionally, dark current measurements were made on specimens with varying degrees of accumulated plastic damage caused by c plane shear. Dark current values did not strongly reflect the extent of bulk plastic damage in deformed specimens. 16 refs., 4 figs., 1 tab

  2. Plastic accumulation in the Mediterranean sea.

    Directory of Open Access Journals (Sweden)

    Andrés Cózar

    Full Text Available Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2, as well as its frequency of occurrence (100% of the sites sampled, are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  3. Plastic Accumulation in the Mediterranean Sea

    KAUST Repository

    Có zar, André s; Sanz-Martí n, Marina; Martí , Elisa; Gonzá lez-Gordillo, J. Ignacio; Ubeda, Bá rbara; Gá lvez, José Á .; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  4. Plastic Accumulation in the Mediterranean Sea

    KAUST Repository

    Cózar, Andrés

    2015-04-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  5. Plastic accumulation in the Mediterranean sea.

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J Ignacio; Ubeda, Bárbara; Gálvez, José Á; Irigoien, Xabier; Duarte, Carlos M

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  6. Plastic Accumulation in the Mediterranean Sea

    Science.gov (United States)

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region. PMID:25831129

  7. Our plastic age.

    Science.gov (United States)

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  8. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  9. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  10. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    Science.gov (United States)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  11. Pathogen-induced Caenorhabditis elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Leroy Magali

    2012-09-01

    Full Text Available Abstract Background Phenotypic plasticity, i.e. the capacity to change the phenotype in response to changes in the environment without alteration of the genotype, is important for coping with unstable environments. In spite of the ample evidence that microorganisms are a major environmental component playing a significant role in eukaryotic organisms health and disease, there is not much information about the effect of microorganism-induced developmental phenotypic plasticity on adult animals’ stress resistance and longevity. Results We examined the consequences of development of Caenorhabditis elegans larvae fed with different bacterial strains on stress resistance and lifespan of adult nematodes. Bacterial strains used in this study were either pathogenic or innocuous to nematodes. Exposure to the pathogen during development did not affect larval survival. However, the development of nematodes on the pathogenic bacterial strains increased lifespan of adult nematodes exposed to the same or a different pathogen. A longer nematode lifespan, developed on pathogens and exposed to pathogens as adults, did not result from an enhanced capacity to kill bacteria, but is likely due to an increased tolerance to the damage inflicted by the pathogenic bacteria. We observed that adult nematodes developed on a pathogen induce higher level of expression of the hsp-16.2 gene and have higher resistance to heat shock than nematodes developed on an innocuous strain. Therefore, the increased resistance to pathogens could be, at least partially, due to the early induction of the heat shock response in nematodes developed on pathogens. The lifespan increase is controlled by the DBL-1 transforming growth factor beta-like, DAF-2/DAF-16 insulin-like, and p38 MAP kinase pathways. Therefore, the observed modulation of adult nematode lifespans by developmental exposure to a pathogen is likely a genetically controlled response. Conclusions Our study shows that development

  12. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  13. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  14. Effect of pond depth and lining plastic color on growth and nitrogen ...

    African Journals Online (AJOL)

    Thus, this study evaluated the effect of pond depth and lining plastic colors on nitrogen fixing capacity of Anabaena species strain E3. Factorial combinations of four pond lining plastic colors and two depths were laid out in a complete randomized design with three replications. The ANOVA results revealed that the 20 cm ...

  15. CX3CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment

    Directory of Open Access Journals (Sweden)

    Laura eMaggi

    2011-10-01

    Full Text Available In recent years several evidence demonstrated that some features of hippocampal biology, like neurogenesis, synaptic transmission, learning and memory performances are deeply modulated by social, motor and sensorial experiences. Fractalkine/CX3CL1 is a transmembrane chemokine abundantly expressed in the brain by neurons, where it modulates glutamatergic transmission and long-term plasticity processes regulating the intercellular communication between glia and neurons, being its specific receptor CX3CR1 expressed by microglia. In this paper we investigated the role of CX3CL1/CX3CR1 signaling on experience-dependent hippocampal plasticity processes. At this aim wt and CX3CR1GFP/GFP mice were exposed to long-lasting-enriched environment (EE and the effects on hippocampal functions were studied by electrophysiological recordings of long-term potentiation (LTP of synaptic activity, behavioral tests of learning and memory in the Morris water maze paradigm and analysis of neurogenesis in the subgranular zone of the dentate gyrus (DG.We found that CX3CR1 deficiency increases hippocampal plasticity and spatial memory blunting the potentiating effects of EE. In contrast, exposure to EE increased the number and migration of neural progenitors in the DG of both wt and CX3CR1GFP/GFP mice. These data indicate that CX3CL1/CX3CR1-mediated signaling is crucial for a normal experience-dependent modulation of hippocampal functions.

  16. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  17. Conversion of Hazardous Motor Vehicle Used Tire and Polystyrene Waste Plastic Mixture into useful Chemical Products

    OpenAIRE

    Moinuddin Sarker; Mohammad Mamunor Rashid

    2014-01-01

    Motor vehicle used tire and polystyrene waste plastic mixture into fuel recovery using thermal degradation process in laboratory batch process. Motor vehicle used tire and polystyrene waste plastic was use 75 gm by weight. Motor vehicle tire was 25 gm and polystyrene waste plastic was 50 gm. In presence of oxygen experiment was performed under laboratory fume hood. Thermal degradation temperature range was 100 - 420 oC and experiment run time was 5 hours. Product fuel density is 0.84 gm/ml an...

  18. Effect of plastic strain on shape memory characteristics in sputter-deposited Ti-Ni thin films

    International Nuclear Information System (INIS)

    Nomura, K.

    1995-01-01

    The plastic strain which is introduced during cooling and heating under a constant stress has an influence upon the transformation and deformation characteristics of sputter-deposited Ti-Ni shape memory alloy thin films. With increasing the accumulated plastic strain, Ms rises and recovery strain increases. The changes in such characteristics are due to the internal stress field that is formed by plastic deformation. However, the change in Ms in Ti-50.5at%Ni is larger than that in Ti-48.9at%Ni, although the plastic strain in the former is lower than that in the latter. In order to understand this point, the effective internal stresses were estimated in both alloys; the internal stress in the former is more effectively created by the introduction of plastic strain than in the latter. (orig.)

  19. FY 1995 report on the results of the R and D of biodegradable plastics; 1995 nendo seibunkaisei plastic kenkyu kaihatsu seika hokokusho. Ippan kokaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the development of biodegradable plastics, the paper made studies on the following items: 1) development of biodegradable plastics through the cultivation of plastic-like polymer producing micro-organisms; 2) development of biodegradable plastics using polysaccharides; 3) development of biodegradable plastics using molecular design/precise polymerization technology. In 1), P of 4HB fraction 10% was biosynthesized in 5L scale and in one stage by giving to fungus body the {gamma}-butyrolactone which was heated/hydrolyzed. In the study of PHB production by gene recombination of algae, the promoter is improved, and it was confirmed that PHB synthetic genes were surely introduced. PHB could be produced 25% by cultivation of acetic acid. In 2), using alkali protease as enzyme catalyst, sugar ester monomer was synthesized from glucose, sucrose and maltose. In 3), effects were grasped of polymerization conditions of succinic acid/1,4-butane diol/carbonate on the molecular weight and reaction velocity. A test on degradability was conducted by the enzyme method to study the structure of olygomer, in particular. Biodegradation of polyurethane was assessed by soil suspension. (NEDO)

  20. Method of solidifying and disposing radioactive waste plastic

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro

    1981-01-01

    Purpose: To solidify radioactive waste as it is with plastic by forming a W/O (Water-in-Oil) emulsion with the radioactive waste and a plastic solidifier, and treating it with a polymerization starting agent, an accelerator, and the like. Method: A predetermined amount of alkaline substance such as sodium hydroxide, triethanol, or the like is added quantitatively to radioactive waste and it is mixed by an agitator. A predetermined amount of solidifier such as unsaturated polyester or the like is added to the mixture and it is further mixed by the agitator to form a stable W/O emulsion. Subsequently, predetermined amounts of polymerization starting agent such as methyl ethyl ketone peroxide and polymerization accelerator such as cobalt naphthenate or the like are added thereto, the mixture is mixed, and is then allowed to stand for at room temperature for the plastic solidification thereof. No reaction occurs after the solidification. (Sekiya, K.)

  1. Plasticity around an Axial Surface Crack in a Cylindrical Shell

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    of the yield zone. The model is used to analyse published test data on surface cracked pressurised pipes. The analysis consists in COD evaluation and estimate of failure as a consequence of plastic instability. A method is proposed which deals with the problem by simultaneous analysis of a number of cracks......This paper presents a plasticity model for deep axial surface cracks in pressurised pipes. The model is used in an investigation of the relative merits of fracture criteria based on COD and plastic instability. Recent investigations have shown that the inconsistency of the singular bending stress...... on the bending stresses is considerable. In the case of surface cracks moments are induced due to the eccentricity of the crack and transverse shear effects should therefore be included. A plasticity model for a rectangular axial surface crack is developed. Like a previous surface crack model by Erdogen...

  2. Potential use of Plastic Waste as Construction Materials: Recent Progress and Future Prospect

    Science.gov (United States)

    Kamaruddin, M. A.; Abdullah, M. M. A.; Zawawi, M. H.; Zainol, M. R. R. A.

    2017-11-01

    Plastic associates products based have been considered as the world most consumer packaging solution. However, substantial quantities of plastic consumption have led to exponential increase of plastic derived waste. Recycling of plastic waste as valued added product such as concrete appears as one of promising solution for alternative use of plastic waste. This paper summarized recent progress on the development of concrete mixture which incorporates plastic wastes as partial aggregate replacement during concrete manufacturing. A collection of data from previous studies that have been researched which employed plastic waste in concrete mixtures were evaluated and conclusions are drawn based on the laboratory results of all the mentioned research papers studied.

  3. Paired-Associative Stimulation-Induced Long-term Potentiation-Like Motor Cortex Plasticity in Healthy Adolescents

    Directory of Open Access Journals (Sweden)

    Jonathan C. Lee

    2017-05-01

    Full Text Available ObjectiveThe objective of this study was to evaluate the feasibility of using paired-associative stimulation (PAS to study excitatory and inhibitory plasticity in adolescents while examining variables that may moderate plasticity (such as sex and environment.MethodsWe recruited 34 healthy adolescents (aged 13–19, 13 males, 21 females. To evaluate excitatory plasticity, we compared mean motor-evoked potentials (MEPs elicited by single-pulse transcranial magnetic stimulation (TMS before and after PAS at 0, 15, and 30 min. To evaluate inhibitory plasticity, we evaluated the cortical silent period (CSP elicited by single-pulse TMS in the contracted hand before and after PAS at 0, 15, and 30 min.ResultsAll participants completed PAS procedures. No adverse events occurred. PAS was well tolerated. PAS-induced significant increases in the ratio of post-PAS MEP to pre-PAS MEP amplitudes (p < 0.01 at all post-PAS intervals. Neither socioeconomic status nor sex was associated with post-PAS MEP changes. PAS induced significant CSP lengthening in males but not females.ConclusionPAS is a feasible, safe, and well-tolerated index of adolescent motor cortical plasticity. Gender may influence PAS-induced changes in cortical inhibition. PAS is safe and well tolerated by healthy adolescents and may be a novel tool with which to study adolescent neuroplasticity.

  4. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  5. Social media use and impact on plastic surgery practice.

    Science.gov (United States)

    Vardanian, Andrew J; Kusnezov, Nicholas; Im, Daniel D; Lee, James C; Jarrahy, Reza

    2013-05-01

    Social media platforms have revolutionized the way human beings communicate, yet there is little evidence describing how the plastic surgery community has adopted social media. In this article, the authors evaluate current trends in social media use by practicing plastic surgeons. An anonymous survey on the use of social media was distributed to members of the American Society of Plastic Surgeons. Prevalent patterns of social media implementation were elucidated. One-half of respondents were regular social media users. Reasons for using social media included the beliefs that incorporation of social media into medical practice is inevitable (56.7 percent), that they are an effective marketing tool (52.1 percent), and that they provide a forum for patient education (49 percent). Surgeons with a primarily aesthetic surgery practice were more likely to use social media. Most respondents (64.6 percent) stated that social media had no effect on their practice, whereas 33.8 percent reported a positive impact and 1.5 percent reported a negative impact. This study depicts current patterns of social media use by plastic surgeons, including motivations driving its implementation and impressions on its impact. Many feel that social media are an effective marketing tool that generates increased exposure and referrals. A small number of surgeons have experienced negative repercussions from social media involvement. Our study reveals the presence of a void. There is a definite interest among those surveyed in developing best practice standards and oversight to ensure ethical use of social media platforms throughout the plastic surgery community. Continuing discussion regarding these matters should be ongoing as our experience with social media in plastic surgery evolves.

  6. Construction loads experienced by plastic composite ties.

    Science.gov (United States)

    2014-07-01

    Damage to plastic composite ties during handling and track installation has been reported by a number of railroads. Results from : a survey conducted to identify specific handling issues were used to develop field and laboratory tests to measure the ...

  7. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    Science.gov (United States)

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Utility of Outcome Studies in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Hani Sinno, MD, MEng

    2014-07-01

    Full Text Available Summary: Outcome studies help provide the evidence-based science rationalizing treatment end results that factor the experience of patients and the impact on society. They improve the recognition of the shortcoming in clinical practice and provide the foundation for the development of gold standard care. With such evidence, health care practitioners can develop evidence-based justification for treatments and offer patients with superior informed consent for their treatment options. Furthermore, health care and insurance agencies can recognize improved cost-benefit options in the purpose of disease prevention and alleviation of its impact on the patient and society. Health care outcomes are ultimately measured by the treatment of disease, the reduction of symptoms, the normalization of laboratory results and physical measures, saving a life, and patient satisfaction. In this review, we outline the tools available to measure outcomes in plastic surgery and subsequently allow the objective measurements of plastic surgical conditions. Six major outcome categories are discussed: (1 functional measures; (2 preference-based measures and utility outcome scores; (3 patient satisfaction; (4 health outcomes and time; (5 other tools: patient-reported outcome measurement information system, BREAST-Q, and Tracking Operations and Outcomes for Plastic Surgeons; and (6 cost-effectiveness analysis. We use breast hypertrophy requiring breast reduction as an example throughout this review as a representative plastic surgical condition with multiple treatments available.

  9. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  10. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  11. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  12. Increased use-dependent plasticity in chronic insomnia.

    Science.gov (United States)

    Salas, Rachel E; Galea, Joseph M; Gamaldo, Alyssa A; Gamaldo, Charlene E; Allen, Richard P; Smith, Michael T; Cantarero, Gabriela; Lam, Barbara D; Celnik, Pablo A

    2014-03-01

    During normal sleep several neuroplasticity changes occur, some of which are considered to be fundamental to strengthen memories. Given the evidence linking sleep to neuroplasticity, it is conceivable that individuals with chronic sleep disruption, such as patients with chronic insomnia (CI), would experience abnormalities in neuroplastic processes during daytime. Protocols testing use-dependent plasticity (UDP), one of the mechanisms underlying formation of motor memories traces, provide a sensitive measure to assess neuroplasticity in the context of motor training. A well-established transcranial magnetic stimulation (TMS) paradigm was used to evaluate the ability of patients with CI and age-matched good sleeper controls to undergo UDP. We also investigated the effect of insomnia on intracortical motor excitability measures reflecting GABAergic and glutamatergic mechanisms. Human Brain Physiology Laboratory, Johns Hopkins Medical Institutions. We found that patients with CI experienced increased UDP changes relative to controls. This effect was not due to differences in motor training. In addition, patients with CI showed enhanced intracortical facilitation relative to controls, in the absence of changes in intracortical inhibitory measures. This study provides the first evidence that patients with chronic insomnia have an increased plasticity response to physical exercise, possibly due to larger activation of glutamatergic mechanisms. This suggests a heightened state of neuroplasticity, which may reflect a form of maladaptive plasticity, similar to what has been described in dystonia patients and chronic phantom pain after amputation. These results could lead to development of novel treatments for chronic insomnia.

  13. Effect of plastic mulch on growth and yield of chilli (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    M Ashrafuzzaman

    2011-04-01

    Full Text Available In this work a field study was conducted to evaluate the effect of coloured plastic mulch on growth and yield of chilli from October 2005 to April 2006. The plastic mulches were transparent, blue, and black and bare soil was the control. Different mulches generated higher soil temperature and soil moisture under mulch over the control. Transparent and blue plastic mulches encouraged weed population which were suppressed under black plastic. Plant height, number of primary branches, stem base diameter, number of leaves and yield were better for the plants on plastic. At the mature green stage, fruits had the highest vitamin-C content on the black plastic. Mulching produced the fruits with the highest chlorophyll-a, chlorophyll-b and total chlorophyll contents and also increased the number of fruits per plant and yield. However, mulching did not affect the length and diameter of the fruits and number of seeds per fruit. Plants on black plastic mulch had the maximum number of fruits and highest yield. Thus, mulching appears to be a viable tool to increase the chilli production under tropical conditions.

  14. Outcrops of plastic material on the surface of Venus

    Science.gov (United States)

    Ksanfomality, L. V.

    2015-05-01

    The archive data of the television experiment performed by the Venera-14 spacecraft on the surface of the planet Venus in March, 1982, were reprocessed, which significantly improved the image definition quality. An unusual geologic object located relatively near the camera was found, which allowed its details to be analyzed. The object is a low long bank in shape; it is formed by a relatively thin, jagged, almost vertical stratum. The bank contours the oval formation 1.5-2 m across that stands out against the layered surface. The location of the bank suggests that its material is extruded from under the layered plates surrounding the oval formation. A segment of the bank resembling a falling wave is inclined and partly covers the surface by forming the beddings. The object is likely formed by the rocks that remain semisoftened (plastic), when they appear on the surface at the temperature characteristic for the Venusian surface (about 740 K). It is suggested that, from the data on the physical and chemical conditions and the composition of the Venusian surface, the nature of the observed plastic medium can be hypothesized, and it can be even modeled under laboratory conditions.

  15. Effect of Plasticizers on Physicochemical and Mechanical Properties of Chitosan-Gelatin Films

    Science.gov (United States)

    Manshor, N. Mohammed; Rezali, M. I.; Jai, J.; Yahya, A.

    2018-05-01

    Composite chitosan-gelatin films were produced to investigate the effect of plasticizer and composition of chitosan and gelatin on physicochemical and mechanical properties of the films. The films were prepared according to ratio of chitosan: gelatin of 1:1, 1:2 and 2:1. For each film, glycerol, sorbitol and sucrose were added as plasticizer. The film forming solution was poured on a glass plate and dried for 12 hours in an oven at 60°C. The highest tensile strength was 4.04 MPa for films of ratio 2:1 plasticized with glycerol compared to sorbitol and sucrose which were 3.94 MPa and 3.84 MPa, respectively. However, films plasticized with sorbitol at ratio of 1:2 had the highest percent elongation which was 68.20%, followed by glycerol and sucrose which were 26.51% and 24.08%, respectively.

  16. Academic plastic surgery: a study of current issues and future challenges.

    Science.gov (United States)

    Zetrenne, Eleonore; Kosins, Aaron M; Wirth, Garrett A; Bui, Albert; Evans, Gregory R D; Wells, James H

    2008-06-01

    The objectives of this study were (1) to evaluate the role of a full-time academic plastic surgeon, (2) to define the indicators predictive of a successful career in academic plastic surgery, and (3) to understand the current issues that will affect future trends in the practice of academic plastic surgery. A questionnaire was developed to evaluate the role of current full-time academic plastic surgeons and to understand the current issues and future challenges facing academic plastic surgery. Each plastic surgery program director in the United States was sent the survey for distribution among all full-time academic plastic surgeons. Over a 6-week period, responses from 143 full-time academic plastic surgeons (approximately 31%) were returned. Fifty-three percent of respondents had been academic plastic surgeons for longer than 10 years. Seventy-three percent of respondents defined academic plastic surgeons as clinicians who are teachers and researchers. However, 53% of respondents believed that academic plastic surgeons were not required to teach or practice within university hospitals/academic centers. The 3 factors reported most frequently as indicative of a successful career in academic plastic surgery were peer recognition, personal satisfaction, and program reputation. Dedication and motivation were the personal characteristics rated most likely to contribute to academic success. Forty-four percent of respondents were unable to identify future academic plastic surgeons from plastic surgery residency applicants, and 27% were not sure. Most (93%) of the respondents believed that academic surgery as practiced today will change. The overall job description of a full-time academic plastic surgeon remains unchanged (teacher and researcher). Whereas peer recognition, personal satisfaction, and program reputation were most frequently cited as indicative of a successful plastic surgery career, financial success was rated the least indicative. Similarly, whereas the

  17. Deformation properties of highly plastic fissured Palaeogene clay - Lack of stress memory?

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Hededal, Ole; Foged, Niels Nielsen

    2012-01-01

    are evaluated based on the degree of debonding caused by natural processes insitu as compared to processes induced during severe loading and unloading in laboratory. A long term oedometer test on Lillebælt Clay with a series of loading and unloading cycles was carried out. The test results are used to evaluate......The geological preconsolidation of the Palaeogene clays in Denmark is estimated to 5-8 MPa or more, whereas laboratory and field experiences indicate values between 100 and 3000 kPa. Presumably, the high plasticity clay loses its memory of earlier preloads due to swelling, or as an effect...

  18. Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics

    Directory of Open Access Journals (Sweden)

    P. Lorenzo Bozzelli

    2018-01-01

    Full Text Available The perineuronal net (PNN represents a lattice-like structure that is prominently expressed along the soma and proximal dendrites of parvalbumin- (PV- positive interneurons in varied brain regions including the cortex and hippocampus. It is thus apposed to sites at which PV neurons receive synaptic input. Emerging evidence suggests that changes in PNN integrity may affect glutamatergic input to PV interneurons, a population that is critical for the expression of synchronous neuronal population discharges that occur with gamma oscillations and sharp-wave ripples. The present review is focused on the composition of PNNs, posttranslation modulation of PNN components by sulfation and proteolysis, PNN alterations in disease, and potential effects of PNN remodeling on neuronal plasticity at the single-cell and population level.

  19. Evaluation of three oil spill laboratory dispersant effectiveness tests

    International Nuclear Information System (INIS)

    Sullivan, D.; Farlow, J.; Sahatjian, K.A.

    1993-01-01

    Chemical dispersants can be used to reduce the interfacial tension of floating oil slicks so that the oils disperse more rapidly into the water column and thus pose less of a threat to shorelines, birds, and marine mammals. The laboratory test currently specified in federal regulations to measure dispersant effectiveness is not especially easy or inexpensive, and generates a rather large quantity of oily waste water. This paper describes the results of an effort by the EPA to identify a more suitable laboratory dispersant effectiveness test. EPA evaluated three laboratory methods: the Revised Standard Dispersant Effectiveness Test currently used (and required by regulation) in the United States, the swirling flask test (developed by Environment Canada), and the IFP-dilution test (used in france and other European countries). Six test oils and three dispersants were evaluated; dispersants were applied to the oil at an average 1:10 ratio (dispersant to oil) for each of the three laboratory methods. Screening efforts were used to focus on the most appropriate oil/dispersant combination for detailed study. A screening criterion was established that required a combination that gave at least 20% effectiveness results. The selected combination turned out to be Prudhoe Bay crude oil and the dispersant Corexit 9527. This combination was also most likely to be encountered in US coastal waters. The EPA evaluation concluded that the three tests gave similar precision results, but that the swirling flask test was fastest, cheapest, simplest, and required least operator skill. Further, EPA is considering conducting the dispersant effectiveness test itself, rather than having data submitted by a dispersant manufacturer, and establishing an acceptability criterion (45% efficiency) which would have to be met before a dispersant could be placed on the Product Schedule of the National Contingency Plan (NCP)

  20. Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources

    Directory of Open Access Journals (Sweden)

    Songyan Yin

    2018-01-01

    Full Text Available In recent years, the research regarding waste conversion to resources technology has attracted growing attention with the continued increase of waste accumulation issues and rapid depletion of natural resources. However, the study, with respect to utilizing plastics waste as carbon resources in the metals industry, is still limited. In this work, an environmentally friendly approach to utilize snack packaging plastic waste as a valuable carbon resources for steel carburization is investigated. At high temperature, plastic waste could be subject to pyrolytic gasification and decompose into small molecular hydrocarbon gaseous products which have the potential to be used as carburization agents for steel. When heating some snack packaging plastic waste and a steel sample together at the carburization temperature, a considerable amount of carbon-rich reducing gases, like methane, could be liberated from the plastic waste and absorbed by the steel sample as a carbon precursor for carburization. The resulting carburization effect on steel was investigated by optical microscopy, scanning electron microscopy, electron probe microanalyzer, and X-ray photoelectron spectrometer techniques. These investigation results all showed that snack packaging plastic waste could work effectively as a valuable carbon resource for steel carburization leading to a significant increase of surface carbon content and the corresponding microstructure evolution in steel.

  1. Assessment of effect of reinforcement on plastic limit load of branch junction

    International Nuclear Information System (INIS)

    Myung, Man Sik; Kim, Yun Jae; Yoon, Ki Bong

    2009-01-01

    The present work provides effects of reinforcement shape and area on plastic limit loads of branch junctions, based on detailed three-dimensional finite element limit analysis and small strain FE limit analyses assuming elastic-perfectly plastic material behavior. Three types of loading are considered; internal pressure, in-plane bending on the branch pipe and in-plane bending on the run pipe. It is found that reinforcement is the most effective in the case when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective, compared to the case when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  2. Effect of boron compounds on the thermal and combustion properties of wood-plastic composites

    OpenAIRE

    Altuntaş, Ertuğrul; Karaoğul, Eyyup; Alma, Mehmet Hakkı

    2017-01-01

    In this study, the thermal properties and fire resistancesof the wood plastic composites produced with waste lignocellulosic materialswere investigated. For this purpose, lignocellulosic waste, high densitypolyethylene, (HDPE) sodium borate (borax) and boric acid was used to producethe wood-plastic composites. A twin-screw extruder was used during theproduction of the wood plastic composites. The produced composite granule waspressed at 175 °C hot press. The effects of boric acid and borax ad...

  3. The future of A-150 TE plastic

    International Nuclear Information System (INIS)

    Goodman, L.J.

    1985-01-01

    For the past 26 years a large number of laboratories have constructed or purchased ionization chambers, proportional counters, and phantoms made of A-150 tissue-equivalent plastic, and they have amassed a considerable amount of data and experience in its properties and uses. The United States National Bureau of Standards is now considering the desirability of supplying A-150 plastic as a research material with a certified homogeneity. We are, however, faced with a problem since the nylon used in A-150 has been discontinued by the manufacturer and the current stock of A-150 has been estimated to be adequate to supply the demand for only the next 2 or 3 years. Thus, it will be necessary to reformulate the plastic mixture we will be using in the future. This situation offers us the opportunity to change the composition of tissue-equivalent plastic to better conform to present-day requirements. To elucidate just what these requirements are, we have conducted a postal survey of the opinions of neutron dosimetrists and the results are presented and discussed. It is concluded that the present A-150 plastic and a future tissue-equivalent plastic formulation should be made research materials, and that a future tissue-equivalent plastic should be made to conform as closely as possible to the soft tissue composition given in ICRU Report 33

  4. Non-local plasticity effects on the tensile properties of a metal matrix composite

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2001-01-01

    For a metal reinforced by aligned short fibres the effect of a material length scale characterising the inelastic deformations of the metal is studied. The elastic-plastic constitutive relations used here to represent the nonlocal effects are formulated so that the instantaneous hardening moduli...... depend on the gradient of the effective plastic strain. Numerical cell-model analyses are used to obtain a parametric understanding of the influence of different combinations of the main material parameters. The analyses show a strong dependence on the fibre diameter for given values of all other...

  5. Effect of soil solarization using plastic mulch in controlling root-knot ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... effect of soil solarization using plastic mulch in controlling root-knot nematode infestation and yield of ... addition to their increased toxic effects in the soil over the .... thereby promoting conducive environment for the utiliza- ...

  6. Effect of HDPE plastic waste towards batako properties

    Science.gov (United States)

    Nursyamsi, N.; Indrawan, I.; Theresa, V.

    2018-02-01

    Indonesia is the world’s second largest producer of plastic waste to the sea, after China. Most of the plastic waste is polyethylene. Polyethylene is a polymer consisting of long chains of ethylene monomers. Moreover, polyethylene is plastic that has characteristics such as; thermoplastic, elastic, non-translucent, odorless, slightly opaque and transparent, resistant to impact and has a resistance of up to 135 degrees Celsius. The type of HDPE plastic (high-density polyethylene), which has been cleaned and chopped as a substitute of fine aggregate, is used in the brick’s making process. HDPE has a stronger, harder, smoother and more resistant to high-temperature properties. In this study, a weight variation of 0%, 10%, and 20% of HDPE plastic wastes was used from the total weight of sand as a substitution. Furthermore, the tensile and compressive strength were tested on day 7. Based on the research, the quality of the specimen achieved was categorized in quality III according to SNI 03-0349-1989.

  7. Psychedelics Promote Structural and Functional Neural Plasticity

    Directory of Open Access Journals (Sweden)

    Calvin Ly

    2018-06-01

    Full Text Available Summary: Atrophy of neurons in the prefrontal cortex (PFC plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders. : Ly et al. demonstrate that psychedelic compounds such as LSD, DMT, and DOI increase dendritic arbor complexity, promote dendritic spine growth, and stimulate synapse formation. These cellular effects are similar to those produced by the fast-acting antidepressant ketamine and highlight the potential of psychedelics for treating depression and related disorders. Keywords: neural plasticity, psychedelic, spinogenesis, synaptogenesis, depression, LSD, DMT, ketamine, noribogaine, MDMA

  8. Effect of temperature change exerted on plastic deformation of SUS 304

    International Nuclear Information System (INIS)

    Niitsu, Yasushi; Ikegami, Kozo

    1985-01-01

    Under the condition of mechanical load, on which the thermal stress due to temperature change is superposed, the deformation behavior of structural materials is affected by not only loading history but also temperature history. Also at the time of working materials, the case that the relation between plastic deformation and temperature change becomes a problem is not few, such as cold working after hot rolling. In this study, the effect of temperature change exerted on the plastic deformation of SUS 304 stainless steel was examined, as this material has been frequently used as a high temperature structural material. That is, the plastic deformation behavior at a certain temperature after prestrain was applied at a different temperature was experimentally determined under various temperature and load conditions. Moreover, the quantitative evaluation of the results obtained was attempted by using the concept of an equal plastic strain curved surface. The test pieces and the experimental method, the behavior in uniaxial loading and the behavior in combined loading are reported. (Kako, I.)

  9. Consumer exposure to Bisphenol A from plastic bottles

    Science.gov (United States)

    Bidabadi, Fatemeh

    Bisphenol A (BPA) is a plastic monomer and plasticizer and is a chemical that has one of the highest volume production worldwide, with more than six billion pounds each year. Its' primary use is the production of polycarbonate plastics, epoxy resins used to line metal cans in a host of plastic consumer products such as toys, water pipes, drinking containers, eyeglass lenses, sports safety equipment as well as consumer electronics. Studies have shown that BPA is leached from lacquer coated cans and baby feeding bottles due to hydrolysis of the Polymer during thermal treatment. Studies have also shown that even under normal use BPA may leach from food and beverage containers. For many years Bisphenol A was treated as neutral to human health. The detection of BPA in drinking water and food products has raised the interest of many researches since 1990. Thousands of studies have examined the impact of BPA to determine its effects in laboratory animals. Numerous toxicological and biochemical studies have supported that BPA has estrogenic properties. The effects of exposure to BPA can be harmful to fetus, infants and young children. BPA is used in products where traces of it can be found in every human at higher levels of concentration than that which causes problems in animals. The National Institute for Environmental Health Sciences (NIEHS) has defined "low dose" of endocrine disrupting chemicals as doses below no observable adverse effect (NOAE) for specific chemicals. In BPA, this dose is 50 mg/kg of body weight per day. Today there are more than 150 published results describing how low doses of BPA effects animals. A recent study reported that adult female mice, monkeys, and humans metabolized BPA at almost identical rates. Since the level of BPA and other endocrine chemicals appears to be increasing throughout the World, especially where plastics are prevalent, it is extremely important to study the effects of this chemical on man and wildlife. This research effort

  10. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    Science.gov (United States)

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  11. CEGB research on the effects of fouling of plastic packings on natural draught cooling tower performance

    International Nuclear Information System (INIS)

    Winter, R.J.

    1989-01-01

    Plastic film packings were first used in CEGB natural draught cooling towers in 1985. Since then, cooling towers at seven power stations have been repacked using various commercial designs of plastic packing, with generally satisfactory results in economic terms. However, fouling of all the packings has occurred to some extent, ranging from very thin films on the surface of the sheets, which actually enhances performance, to heavy and voluminous formations which severely constrict the inter-sheet passages, causing performance loss and threatening the structural integrity of the whole fill. At CERL, methods have been developed to relate the degree of fouling to the thermal performance loss. This information is enabling accurate calculations to be made of the economics of repacking. Samples of fouled packing from operation towers are tested using the Experimental Cooling Tower at the Central Electricity Research Laboratories at Leatherhead. A systematic investigation is also underway of the changes in pressure drop and mass transfer coefficients which take place as fouling develops, using progressively-fouled packing samples from a purpose-built Packing Fouling Facility located at one of the power stations. The performance data obtained is fed-back into models by which the effect of high fouling loadings on various packings is calculated, enabling packing economic life to be predicted

  12. Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity.

    Science.gov (United States)

    Mahati, K; Bhagya, V; Christofer, T; Sneha, A; Shankaranarayana Rao, B S

    2016-10-01

    Severe depression compromises structural and functional integrity of the brain and results in impaired learning and memory, maladaptive synaptic plasticity as well as degenerative changes in the hippocampus and amygdala. The precise mechanisms underlying cognitive dysfunctions in depression remain largely unknown. On the other hand, enriched environment (EE) offers beneficial effects on cognitive functions, synaptic plasticity in the hippocampus. However, the effect of EE on endogenous depression associated cognitive dysfunction has not been explored. Accordingly, we have attempted to address this issue by investigating behavioural, structural and synaptic plasticity mechanisms in an animal model of endogenous depression after exposure to enriched environment. Our results demonstrate that depression is associated with impaired spatial learning and enhanced anxiety-like behaviour which is correlated with hypotrophy of the dentate gyrus and amygdalar hypertrophy. We also observed a gross reduction in the hippocampal long-term potentiation (LTP). We report a complete behavioural recovery with reduced indices of anhedonia and behavioural despair, reduced anxiety-like behaviour and improved spatial learning along with a complete restoration of dentate gyrus and amygdalar volumes in depressive rats subjected to EE. Enrichment also facilitated CA3-Schaffer collateral LTP. Our study convincingly proves that depression-induces learning deficits and impairs hippocampal synaptic plasticity. It also highlights the role of environmental stimuli in restoring depression-induced cognitive deficits which might prove vital in outlining more effective strategies to treat major depressive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  14. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer

    Science.gov (United States)

    Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.

    2018-01-01

    A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).

  15. Effect of waste plastic as modifier on thermal stability and degradation kinetics of bitumen/waste plastics blend

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, M. [Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Chaki, T.K., E-mail: tapan@rtc.iitkgp.ernet.in [Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Reddy, K.S. [Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India)

    2010-09-20

    Different modified bituminous binders are used in pavement construction for improved durability and for enhanced performance in resisting cracking and permanent deformation of bituminous layers. Waste plastics, whose disposal is a matter of concern, have been used successfully for modifying bitumen. This paper reports the thermogravimetric studies conducted on waste plastic modified bituminous binders. Modified bituminous binders prepared using different plastic contents (0-7 wt% by weight of bitumen) were investigated. The activation energies were determined from thermogravimetric analysis (TGA) data using Kissinger and the Flynn-Wall-Ozawa methods, which do not require knowledge of the reaction mechanism. Modified bitumen (WPMB5) with 5 wt% plastic was found to have the highest thermal stability compared to other binders investigated. Differential scanning calorimetry (DSC) studies were carried out to find crystalline melting temperature and fusion enthalpy. Rheological parameters of modified binders prepared with different plastic contents also suggest that the 5 wt% plastic content is expected to yield optimal performance.

  16. Effect of waste plastic as modifier on thermal stability and degradation kinetics of bitumen/waste plastics blend

    International Nuclear Information System (INIS)

    Naskar, M.; Chaki, T.K.; Reddy, K.S.

    2010-01-01

    Different modified bituminous binders are used in pavement construction for improved durability and for enhanced performance in resisting cracking and permanent deformation of bituminous layers. Waste plastics, whose disposal is a matter of concern, have been used successfully for modifying bitumen. This paper reports the thermogravimetric studies conducted on waste plastic modified bituminous binders. Modified bituminous binders prepared using different plastic contents (0-7 wt% by weight of bitumen) were investigated. The activation energies were determined from thermogravimetric analysis (TGA) data using Kissinger and the Flynn-Wall-Ozawa methods, which do not require knowledge of the reaction mechanism. Modified bitumen (WPMB5) with 5 wt% plastic was found to have the highest thermal stability compared to other binders investigated. Differential scanning calorimetry (DSC) studies were carried out to find crystalline melting temperature and fusion enthalpy. Rheological parameters of modified binders prepared with different plastic contents also suggest that the 5 wt% plastic content is expected to yield optimal performance.

  17. ECT: its brain enabling effects. A review of electroconvulsive therapy-induced structural brain plasticity

    NARCIS (Netherlands)

    Bouckaert, F.; Sienaert, P.; Obbels, J.; Dols, A.; Vandenbulcke, M.; Stek, M.L.; Bolwig, T.

    2014-01-01

    BACKGROUND: Since the past 2 decades, new evidence for brain plasticity has caused a shift in both preclinical and clinical ECT research from falsifying the "brain damage hypothesis" toward exploring ECT's enabling brain (neuro)plasticity effects. METHODS: By reviewing the available animal and human

  18. Plastic waste associated with disease on coral reefs.

    Science.gov (United States)

    Lamb, Joleah B; Willis, Bette L; Fiorenza, Evan A; Couch, Courtney S; Howard, Robert; Rader, Douglas N; True, James D; Kelly, Lisa A; Ahmad, Awaludinnoer; Jompa, Jamaluddin; Harvell, C Drew

    2018-01-26

    Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Antidepressant-like effects of erythropoietin: a focus on behavioural and hippocampal processes.

    Science.gov (United States)

    Osborn, Meagan; Rustom, Nazneen; Clarke, Melanie; Litteljohn, Darcy; Rudyk, Chris; Anisman, Hymie; Hayley, Shawn

    2013-01-01

    Depression is a chronic and debilitating condition with a significant degree of relapse and treatment resistance that could stem, at least in part, from disturbances of neuroplasticity. This has led to an increased focus on treatment strategies that target brain derived neurotrophic factor (BDNF), synaptic plasticity and adult neurogenesis. In the current study we aimed to assess whether erythropoietin (EPO) would have antidepressant-like effects given its already established pro-trophic actions. In particular, we assessed whether EPO would diminish the deleterious effects of a social stressor in mice. Indeed, EPO induced anxiolytic and antidepressant-like responses in a forced swim test, open field, elevated-plus maze, and a novelty test, and appeared to blunt some of the negative behavioural effects of a social stressor. Furthermore, EPO promoted adult hippocampal neurogenesis, an important feature of effective antidepressants. Finally, a separate study using the mTOR inhibitor rapamycin revealed that antagonizing this pathway prevented the impact of EPO upon forced swim performance. These data are consistent with previous findings showing that the mTOR pathway and its neurogenic and synaptogenic effects might mediate the behavioral consequences of antidepressant agents. Our findings further highlight EPO as a possible adjunct treatment for affective disorders, as well as other stressor associated disorders of impaired neuroplasticity.

  20. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFNγ+ Th1/Tregs.

    Science.gov (United States)

    Butcher, Matthew J; Filipowicz, Adam R; Waseem, Tayab C; McGary, Christopher M; Crow, Kevin J; Magilnick, Nathaniel; Boldin, Mark; Lundberg, Patric S; Galkina, Elena V

    2016-11-11

    Forkhead box P3 + T regulatory cells (Tregs) are key players in maintaining immune homeostasis. Evidence suggests that Tregs respond to environmental cues to permit or suppress inflammation. In atherosclerosis, Th1-driven inflammation affects Treg homeostasis, but the mechanisms governing this phenomenon are unclear. Here, we address whether atherosclerosis impacts Treg plasticity and functionality in Apoe - /- mice, and what effect Treg plasticity might have on the pathology of atherosclerosis. We demonstrate that atherosclerosis promotes Treg plasticity, resulting in the reduction of CXCR3 + Tregs and the accumulation of an intermediate Th1-like interferon (IFN)-γ + CCR5 + Treg subset (Th1/Tregs) within the aorta. Importantly, Th1/Tregs arise in atherosclerosis from bona fide Tregs, rather than from T-effector cells. We show that Th1/Tregs recovered from atherosclerotic mice are dysfunctional in suppression assays. Using an adoptive transfer system and plasticity-prone Mir146a -/- Tregs, we demonstrate that elevated IFNγ + Mir146a -/- Th1/Tregs are unable to adequately reduce atherosclerosis, arterial Th1, or macrophage content within Apoe -/- mice, in comparison to Mir146a +/+ Tregs. Finally, via single-cell RNA-sequencing and real-time -polymerase chain reaction, we show that Th1/Tregs possess a unique transcriptional phenotype characterized by coexpression of Treg and Th1 lineage genes and a downregulation of Treg-related genes, including Ikzf2, Ikzf4, Tigit, Lilrb4, and Il10. In addition, an ingenuity pathway analysis further implicates IFNγ, IFNα, interleukin-2, interleukin-7, CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), T-cell receptor, and Csnk2b-related pathways in regulating Treg plasticity. Atherosclerosis drives Treg plasticity, resulting in the accumulation of dysfunctional IFNγ + Th1/Tregs that may permit further arterial inflammation and atherogenesis. © 2016 American Heart Association, Inc.

  1. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  2. Micro-Structural Evolution and Size-Effects in Plastically Deformed Single Crystals: Strain Gradient Continuum Modeling

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah

    the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct......An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... strain. It is clear that many challenges are associated with modeling dislocation structures, within a framework based on continuum fields, however, since the strain gradient effects are attributed to the dislocation micro-structure, it is a natural step, in the further development of gradient theories...

  3. Consequences of life history switch point plasticity for juvenile morphology and locomotion in the Túngara frog

    Directory of Open Access Journals (Sweden)

    Julie F. Charbonnier

    2015-09-01

    Full Text Available Many animals with complex life cycles can cope with environmental uncertainty by altering the timing of life history switch points through plasticity. Pond hydroperiod has important consequences for the fitness of aquatic organisms and many taxa alter the timing of life history switch points in response to habitat desiccation. For example, larval amphibians can metamorphose early to escape drying ponds. Such plasticity may induce variation in size and morphology of juveniles which can result in carry-over effects on jumping performance. To investigate the carry-over effects of metamorphic plasticity to pond drying, we studied the Túngara frog, Physalaemus pustulosus, a tropical anuran that breeds in highly ephemeral habitats. We conducted an outdoor field mesocosm experiment in which we manipulated water depth and desiccation and measured time and size at metamorphosis, tibiofibula length and jumping performance. We also conducted a complimentary laboratory experiment in which we manipulated resources, water depth and desiccation. In the field experiment, metamorphs from dry-down treatments emerged earlier, but at a similar size to metamorphs from constant depth treatments. In the laboratory experiment, metamorphs from the low depth and dry-down treatments emerged earlier and smaller. In both experiments, frogs from dry-down treatments had relatively shorter legs, which negatively impacted their absolute jumping performance. In contrast, reductions in resources delayed and reduced size at metamorphosis, but had no negative effect on jumping performance. To place these results in a broader context, we review past studies on carry-over effects of the larval environment on jumping performance. Reductions in mass and limb length generally resulted in lower jumping performance across juvenile anurans tested to date. Understanding the consequences of plasticity on size, morphology and performance can elucidate the linkages between life stages.

  4. Combined toxicity of mercury and plastic wastes to crustacean and gastropod inhabiting the waters in Kuwait.

    Science.gov (United States)

    Bu-Olayan, A H; Thomas, B V

    2015-11-01

    The present study determined total mercury (T-Hg) in crustacean Portunus pelagicus (blue crab) and mollusc Tapes sulcarius (Furrowed Venus: Cockle) following suspected rise in beach plastic wastes and their effect on marine organisms. Live samples were collected from beaches representing six Kuwait Governorate areas and exposed to toxicity (96hr) and bio accumulation tests for 180 d with inclusion of plastic wastes and environmental conditions simulated in laboratory. Results revealed high T-Hg concentrations in T sulcarius (1.44ng l(-1)) compared to P. pelagicus (1.03ng l(-1)) during winter than summer, with bio accumulation factor (BAF) > 1 labelled these species as hyper-accumulators. Significantly, combination of T-Hg concentrations from plastic wastes and in seawater validated the possibilities of detrimental effects of other marine lives besides deteriorating the aesthetic values of scenic beaches and likelihood of invasive species in such coastal areas.

  5. EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS

    Science.gov (United States)

    This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). This evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory...

  6. Differential pharmacological effects on brain reactivity and plasticity in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Anna-Katharine eBrem

    2013-10-01

    Full Text Available Acetylcholinesterase inhibitors (AChEI are the most commonly prescribed monotherapeutic medications for Alzheimer’s disease (AD. However, their underlying neurophysiological effects remain largely unknown.We investigated the effects of monotherapy (AChEI and combination therapy (AChEI and memantine on brain reactivity and plasticity. Patients treated with monotherapy (AChEI (N=7 were compared to patients receiving combination therapy (COM (N=9 and a group of age-matched, healthy controls (HC (N=13. Cortical reactivity and plasticity of the motor cortex (MC were examined using transcranial magnetic stimulation (TMS. Cognitive functions were assessed with the cognitive subscale of the Alzheimer Disease Assessment Scale (ADAS-Cog, activities of daily living with the ADCS-ADL. In addition we assessed the degree of brain atrophy by measuring brain-scalp distances in seven different brain areas.Patient groups differed in resting motor threshold and brain atrophy, with COM showing a lower motor threshold but less atrophy than AChEI. COM showed similar plasticity effects as the HC group, while plasticity was reduced in AChEI. Long-interval intracortical inhibition (LICI was impaired in both patient groups when compared to HC. ADAS-Cog scores were positively correlated with LICI measures and with brain atrophy, specifically in the left IPL.AD patients treated with mono- or combination therapy show distinct neurophysiological patterns. Further studies should investigate whether these measures might serve as biomarkers of treatment response and whether they could guide other therapeutic interventions.

  7. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.

    Science.gov (United States)

    Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S

    2017-08-01

    Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Effects of plasticizers on sorption and optical properties of gum cordia based edible film.

    Science.gov (United States)

    Haq, Muhammad Abdul; Jafri, Feroz Alam; Hasnain, Abid

    2016-06-01

    The present study aimed to characterize a biodegradable film produced from the polysaccharide of an indigenous plant Cordia myxa. Effect of plasticizer type (Glycerol, Sorbitol, PEG200 and PEG 400) and concentration (0-30 %) was studied on sorption and optical properties of the casted film. Increase in plasticizer concentration resulted in increase in equilibrium moisture content of the film and was supported by GAB model of sorption indicating that isotherms were of Type II. The monolayer value increased with the increase in plasticizer concentration with a peak of 0.93 g.g-1 for glycerol. Addition of plasticizers improved the total color (ΔE) with glycerol showing the highest effects. All films showed resistance to UV light in the range of 280-200 nm. The polysaccharide of the fruit of C.myxa can be used to prepare an edible film with improved properties as compared to other available edible coatings.

  9. Excitability decreasing central motor plasticity is retained in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Zeller Daniel

    2012-09-01

    Full Text Available Abstract Background Compensation of brain injury in multiple sclerosis (MS may in part work through mechanisms involving neuronal plasticity on local and interregional scales. Mechanisms limiting excessive neuronal activity may have special significance for retention and (re-acquisition of lost motor skills in brain injury. However, previous neurophysiological studies of plasticity in MS have investigated only excitability enhancing plasticity and results from neuroimaging are ambiguous. Thus, the aim of this study was to probe long-term depression-like central motor plasticity utilizing continuous theta-burst stimulation (cTBS, a non-invasive brain stimulation protocol. Because cTBS also may trigger behavioral effects through local interference with neuronal circuits, this approach also permitted investigating the functional role of the primary motor cortex (M1 in force control in patients with MS. Methods We used cTBS and force recordings to examine long-term depression-like central motor plasticity and behavioral consequences of a M1 lesion in 14 patients with stable mild-to-moderate MS (median EDSS 1.5, range 0 to 3.5 and 14 age-matched healthy controls. cTBS consisted of bursts (50 Hz of three subthreshold biphasic magnetic stimuli repeated at 5 Hz for 40 s over the hand area of the left M1. Corticospinal excitability was probed via motor-evoked potentials (MEP in the abductor pollicis brevis muscle over M1 before and after cTBS. Force production performance was assessed in an isometric right thumb abduction task by recording the number of hits into a predefined force window. Results cTBS reduced MEP amplitudes in the contralateral abductor pollicis brevis muscle to a comparable extent in control subjects (69 ± 22% of baseline amplitude, p  Conclusions Long-term depression-like plasticity remains largely intact in mild-to-moderate MS. Increasing brain injury may render the neuronal networks less responsive toward lesion

  10. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  11. Investigation on neutron/gamma discrimination phenomena in plastic scintillators

    International Nuclear Information System (INIS)

    Blanc, Pauline

    2014-01-01

    This PhD topic was born from misunderstandings and incomplete knowledge of the mechanism and relative effectiveness of neutron and gamma-ray (n/γ) discrimination between plastic scintillators compared to liquid scintillators. The shape of the light pulse these materials generate following interaction with an ionizing particle (predominantly recoil protons in the case of neutrons and electrons in the case of gamma-rays) is different in time in a way that depends on the detected particle (nature and energy). It is this fact that enables separation (PSD). The behavior in liquid scintillators has been extensively studied experimentally for practical applications. Only recently has it been shown that a weak separation can also be achieved using specially prepared plastics. The study of this system presents an open field and the understanding of both liquids and plastics with respect to their PSD properties is far from complete. This work is dedicated to exploring the fundamental photophysical phenomena at play in the generation of luminescence emission, following the interaction of ionizing radiation with organic scintillators. For this purpose, firstly a detailed literature review of the state-of-the-art has been conducted extending from 1960 to the present day. Secondly a complete characterization of the main scintillating materials has been conducted to define their fluorescence properties and the characteristics of their scintillation under irradiation. Thirdly a proton beam has been used to simulate recoil protons to quantify under controlled laboratory conditions their specific energy deposition in a plastic scintillator with PSD properties. The fourth part of this thesis is devoted to the study of PSD efficiency of scintillators as a function of their molecular structure. This investigation has led to a plastic scintillator prepared in our laboratory with good PSD properties and a patent submission. Finally, photophysical experiments were performed using a

  12. Bisphenol A in dental sealants and its estrogen like effect

    Directory of Open Access Journals (Sweden)

    Manu Rathee

    2012-01-01

    Full Text Available Bisphenol A or BPA-based epoxy resins are widely used in the manufacture of commercial products, including dental resins, polycarbonate plastics, and the inner coating of food cans. BPA is a precursor to the resin monomer Bis-GMA. During the manufacturing process of Bis-GMA dental sealants, Bisphenol A (BPA might be present as an impurity or as a degradation product of Bis-DMA through esterases present in saliva. Leaching of these monomers from resins can occur during the initial setting period and in conjunction with fluid sorption and desorption over time and this chemical leach from dental sealants may be bioactive. Researchers found an estrogenic effect with BPA, Bis-DMA, and Bis-GMA because BPA lacks structural specificity as a natural ligand to the estrogen receptor. It generated considerable concern regarding the safety of dental resin materials. This review focuses on the BPA in dental sealants and its estrogen-like effect.

  13. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    Science.gov (United States)

    Huie, J. Russell

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996

  14. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Sandra M. Garraway

    2016-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions.

  15. Development of plastic scintillator based food radioactivity contamination monitoring system

    International Nuclear Information System (INIS)

    Parihar, A.; Sahani, R.M.; Mahala, V.K.; Vaijapurkar, S.G.

    2016-01-01

    Radioactivity is naturally present in soil, water and food stuffs. Food can be contaminated after discharge of radioactivity into the environment from industries that concentrate natural radionuclide and from civil or military nuclear operations. The contamination can be in three ways; by direct deposition, through the food chain and induced radioactivity due to exposure of high neutron flux. The health effects on human depend on the type of radionuclide and the length of time people are exposed to it. The studies of fission product behaviour in the food chain have revealed radionuclide Strontium-90, Caesium 137 and Iodine-131 are of major concern. Plastic scintillator is already developed indigenously at Defence Laboratory, Jodhpur. Efforts has been made to develop a portable field instrument using plastic scintillator for assessment of beta ( 90 Sr) and gamma ( 137 Cs and 131 I) radioactivity in food

  16. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap

    Directory of Open Access Journals (Sweden)

    Tytus Murphy

    2014-01-01

    Full Text Available Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake, intermittent fasting (IF, every-other-day feeding, and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer’s disease—with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function.

  17. Elastic-plastic transition on rotating spherical shells in dependence of compressibility

    Directory of Open Access Journals (Sweden)

    Thakur Pankaj

    2017-01-01

    Full Text Available The purpose of this paper is to establish the mathematical model on the elastic-plastic transitions occurring in the rotating spherical shells based on compressibility of materials. The paper investigates the elastic-plastic stresses and angular speed required to start yielding in rotating shells for compressible and incompressible materials. The paper is based on the non-linear transition theory of elastic-plastic shells given by B.R. Seth. The elastic-plastic transition obtained is treated as an asymptotic phenomenon at critical points & the solution obtained at these points generates stresses. The solution obtained does not require the use of semi-empirical yield condition like Tresca or Von Mises or other certain laws. Results are obtained numerically and depicted graphically. It has been observed that Rotating shells made of the incompressible material are on the safer side of the design as compared to rotating shells made of compressible material. The effect of density variation has been discussed numerically on the stresses. With the effect of density variation parameter, rotating spherical shells start yielding at the internal surface with the lower values of the angular speed for incompressible/compressible materials.

  18. Effect of Waste Plastic as Bitumen Modified in Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Ezree

    2017-01-01

    Full Text Available The objectives of this study are to investigate the engineering properties of the asphalt mixtures containing waste plastic at different percentages i.e. 4%, 6%, 8%, and 10% by weight of bitumen. The experimental tests performed in the study were stability, tensile strength, resilient modulus and dynamic creep test. Results showed that the mixture with 4% plastic has the highest stability (184kN. However, the stability slightly decreases with the increase of plastic additive. On the other hand, the highest tensile strength among the modified asphaltic concrete is 1049kPa (8% plastic added. The modified asphalt mixture with 8% plastic has the highest resilient modulus, which is 3422 MPa (25°C and 494Mpa (40°C. Where the highest creep modulus recorded is 73.30Mpa at 8% plastic added. It can be concluded that the addition of 8% plastic gave the highest value properties of asphalt mixture. Finally, it can be said that 8% plastic is the optimum value adding.

  19. The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release

    Science.gov (United States)

    Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.

    2017-06-01

    The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event.

    Science.gov (United States)

    Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J

    2012-08-01

    This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a

  1. Side effect experiences of South Korean women in their twenties and thirties after facial plastic surgery

    Directory of Open Access Journals (Sweden)

    Kim YA

    2018-06-01

    Full Text Available Young A Kim,1 Hyang-In Cho Chung2 1Department of Nursing, Jeju National University College of Nursing, Jeju-si, Republic of Korea; 2Department of Nursing, Chonnam National University College of Nursing, Gwangju, Republic of Korea Background: Rates of plastic surgery procedures have increased dramatically over the past several decades, especially for the women in South Korea.Purpose: The purpose of this study was to explore the subjective experience of South Korean women in their twenties and thirties with facial plastic surgery (FPS side effects.Participants and methods: Seven women who have suffered from FPS side effects participated in this study. Data were collected from July to September 2015 through individual in-depth interviews using open-ended questions and analyzed using Colaizzi’s method, which is a Husserlian phenomenological approach.Results: Six themes, and 25 subthemes, were found. Major themes were “choosing FPS to gain a new self”, “facing an unintended self”, “trying to accept a changed self”, “making efforts to overcome the situation”, “coming to know a new world”, and “pursuing a new lifestyle”.Conclusion: This study raises social awareness on the risk of plastic surgery side effects, which could prevent unnecessary plastic surgery. It also suggests the need for a deeper understanding of women’s biopsychosocial suffering from plastic surgery side effects. Keywords: cosmetic surgery, aesthetic plastic surgery, qualitative research, interview 

  2. A new hyperspectral imaging based device for quality control in plastic recycling

    Science.gov (United States)

    Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.

    2013-05-01

    The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.

  3. Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers.

    Science.gov (United States)

    Djordjevic, Jelena; Djordjevic, Ana; Adzic, Miroslav; Radojcic, Marija B

    2012-01-01

    Chronic stress is a contributing risk factor in the development of psychiatric illnesses, including depressive disorders. The mechanisms of their psychopathology are multifaceted and include, besides others, alterations in the brain plasticity. Previously, we investigated the effects of chronic social stress in the limbic brain structures of Wistar rats (hippocampus, HIPPO, and prefrontal cortex, PFC) and found multiple characteristics that resembled alterations described in some clinical studies of depression. We extended our investigations and followed the behavior of stressed animals by the open field test (OFT) and forced swimming test (FST), and the expression and polysialylation of synaptic plasticity markers, neural cell adhesion molecule (NCAM) and L1, in the HIPPO and PFC. We also determined the adrenal gland mass and plasma corticosterone (CORT) as a terminal part of the hypothalamic-pituitary-adrenal axis activity. Our data indicated that stressed animals avoided the central zone in the OFT and displayed decreased swimming, but prolonged immobility in the FST. The animals exhibited marked hypertrophy of the adrenal gland cortex, in spite of decreased serum CORT. Simultaneously, the stressed animals exhibited an increase in NCAM mRNA expression in the HIPPO, but not in the PFC. The synaptosomal NCAM of the HIPPO was markedly polysialylated, while cortical PSA-NCAM was significantly decreased. The results showed that chronic social isolation of Wistar rats causes both anxiety-like and depression-like behavior. These alterations are parallel with molecular changes in the limbic brain, including diminished NCAM sialylation in the PFC. Together with our previous results, the current observations suggest that a chronic social isolation model may potentially be used to study molecular mechanisms that underlie depressive symptomatology. Copyright © 2012 S. Karger AG, Basel.

  4. Effect of plastic deformation and strain history on X-ray elastic constants

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Foecke, Tim

    2005-01-01

    The use of X-ray diffraction to measure residual stress in a crystalline material is well known. This method is currently being reapplied to the surface measurement of in situ stresses during biaxial straining of sheet metal specimens. This leads to questions of precision and calibration of the method through plastic deformation. Little is known of the change, with plastic work, in the X-ray elastic constants (XECs) that are required by the technique for stress measurement. Experiments to determine the formability of various materials using this stress measurement technique in conjunction with a typical Marciniak test (with the Raghavan variation of specimen shapes) have been performed assuming a constant value for XECs. New results of calibration experiments are presented which admit the possibility of variation of the XECs with plastic strain history and initial texture of the material. Adjustment of the data from the previously performed formability experiments is shown. Additionally, various phenomena are captured including initial yielding, change of XECs with plastic strain level (both with uniaxial and biaxial strain histories), and some of the effects of texture on the technique. This technique has potential application in verification of the assumptions made during other standard testing methods (in-plane biaxial specimen geometries and bulge testing), verifying stress predictions from finite element analyses (i.e. benchmarking experiments such as BM3), analysis of stress states in localized deformation (yield point effects), and tracking of the effect of prestraining on material formability through the process of multistage forming

  5. Semantic modeling of plastic deformation of polycrystalline rock

    Science.gov (United States)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  6. Characteristics of grasping movements in a laboratory and in an everyday-like context.

    Science.gov (United States)

    Bock, Otmar; Züll, Anne

    2013-02-01

    To understand the principles of motor control, it is useful to know whether movements with the same physical constraints can be governed by different rules depending on the behavioral context. We therefore have recently introduced a paradigm in which subjects grasp from the same starting position to the same final object, once as a typical laboratory task and once as part of everyday-like behavior. In the laboratory context, grasping was repetitive, externally triggered and purposeless; in the everyday-like context, it was embedded in a complex activity, intentionally initiated, and served a purpose. Here we present a comprehensive analysis of data from that paradigm. Among 38 response parameters that reflected hand transport, grip shaping and object manipulation, 20 differed significantly between groups. Factor analysis further reduced them to four orthogonal factors: response speed, finger-object contact, response variability, and hand path curvature. This shows, for the first time, that behavioral context influences the execution of grasping movements in four independent ways, possibly reflecting four distinct functional modules in the motor system. This fits well with the view - derived from neurological data - that grasping is controlled by a set of interconnected brain areas which are differentially recruited to achieve different behavioral goals. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effects of Toxic Leachate from Commercial Plastics on Larval Survival and Settlement of the Barnacle Amphibalanus amphitrite.

    Science.gov (United States)

    Li, Heng-Xiang; Getzinger, Gordon J; Ferguson, P Lee; Orihuela, Beatriz; Zhu, Mei; Rittschof, Daniel

    2016-01-19

    Plastic pollution represents a major and growing global problem. It is well-known that plastics are a source of chemical contaminants to the aquatic environment and provide novel habitats for marine organisms. The present study quantified the impacts of plastic leachates from the seven categories of recyclable plastics on larval survival and settlement of barnacle Amphibalanus (=Balanus) amphitrite. Leachates from plastics significantly increased barnacle nauplii mortality at the highest tested concentrations (0.10 and 0.50 m(2)/L). Hydrophobicity (measured as surface energy) was positively correlated with mortality indicating that plastic surface chemistry may be an important factor in the effects of plastics on sessile organisms. Plastic leachates significantly inhibited barnacle cyprids settlement on glass at all tested concentrations. Settlement on plastic surfaces was significantly inhibited after 24 and 48 h, but settlement was not significantly inhibited compared to the controls for some plastics after 72-96 h. In 24 h exposure to seawater, we found larval toxicity and inhibition of settlement with all seven categories of recyclable commercial plastics. Chemical analysis revealed a complex mixture of substances released in plastic leachates. Leaching of toxic compounds from all plastics should be considered when assessing the risks of plastic pollution.

  8. Preparation of plastic scintillation detectors and characterization of physico-chemical parameters

    International Nuclear Information System (INIS)

    Hamada, M.M.; Mesquita, C.H. de

    1988-01-01

    The development of plastic scintillators for using in the nuclear radiation detection is described. The detectors were fabricated by the polymerization of styrene with organic fluors. The organic fluors used were PPO (1,4 difenil-oxazol) and POPOP 1,4-di-2-(5-fenil-oxazolil) benzene in proportions of 0,5 and 0,05% respectively. Physical-chemistry parameters related to the quality of this detector are investigated at this laboratory. The evaluation of its fluorescency characteristics, density, melting softening, refractive index, molecular weight, gama and alfa espectrometry characteristics and finally the comparative pulse height analysis indicate that the plastic scintillator produced at this laboratory is comparable with others already described. (author) [pt

  9. Effect of plastic mulching and nitrapyrin on N2O concentration and emissions in China under climate change

    Science.gov (United States)

    Zhao, C.; Zhu, C.

    2017-12-01

    Fertilized agricultural soils are the main source of atmospheric nitrous oxide (N2O). In this study, both soil N2O concentration in the profile and N2O emission were measured to quantify the effect of plastic mulching and nitrapyrin on N2O dynamic in an oasis cotton field. During the observation period, both N2O concentration and N2O emissions rapidly increased following fertigation, and soil temperature, moisture and mineral N content were the main factors influencing N2O. Temporal variation in N2O emission coincided with changes in N2O content in all soil layers, indicating that the accumulation of N2O likely drives the release of N2O into the atmosphere. The crop yields, N2O content (the sum of aqueous and gaseous phases) in the soil and N2O emissions increased linearly as the application of N fertilizer increased from 80 to 400 kg N ha-1. Plastic mulching increased the crop yields by 16-21%, increased the N2O contents by 88-99%, and reduced the cumulative N2O emissions by 19-28%, indicating that the application of plastic film reduced N2O emission probably through restricted the N2O diffusion process, and limited the N2O production through enhanced the N uptake of cotton. The addition of nitrapyrin to the N fertilizer significantly reduced the levels of N2O without influencing crop yield, with N2O content in the soil profile and cumulative N2O emissions decreasing by 25-32% and 23-42%, respectively. Overall, our result suggested the combined use of plastic film and nitrapyrin could be an efficient practice to reduce N2O emission in the oasis cotton field. Keywords: N2O emissions; plastic film mulching; nitrapyrin; climate change

  10. EFFECT OF PLASTICIZERS ON MECHANICAL PROPERTIES OF EDIBLE FILM FROM JANENG STARCH – CHITOSAN

    Directory of Open Access Journals (Sweden)

    Narlis Juandi

    2016-10-01

    Full Text Available The interest in the development of edible and biodegradable films has increased because it is every day more evident that non degradable are doing much damage to the environment. In this research, edible films were based on blends of janeng starch in different proportions, added of palm oil or glycerol, which were used as plasticizers. The objective was to study the effect of two different plasticizers, palm oil and glycerol of edible film from janeng starch–chitosan on the mechanical properties and FTIR spectra. Increasing concentration of glycerol as plasticizer resulted tend to increased tensile strength and elongation at break. The tensile strength and elongation at break values for palm oil is higher than glycerol as plasticizer at the same concentration. FTIR spectra show the process of making edible film from janeng starch–chitosan with palm oil or glycerol as plasticizers are physically mixing in the presence of hydrogen interactions between chains.

  11. Plastic and Non-plastic Debris Ingestion in Three Gull Species Feeding in an Urban Landfill Environment.

    Science.gov (United States)

    Seif, S; Provencher, J F; Avery-Gomm, S; Daoust, P-Y; Mallory, M L; Smith, P A

    2018-04-01

    Plastic debris is recognized as a widespread, common and problematic environmental pollutant. An important consequence of this pollution is the ingestion of plastic debris by wildlife. Assessing the degree to which different species ingest plastics, and the potential effects of these plastics on their health are important research needs for understanding the impacts of plastic pollution. We examined debris (plastic and other types) ingestion in three sympatric overwintering gull species (Herring gulls Larus smithsonianus, Great Black-backed Gulls Larus marinus, and Iceland Gulls Larus glaucoides) to understand how debris ingestion differs among species, age classes and sexes in gulls. We also assessed how plastic burdens were associated with body condition to investigate how gulls may be affected by debris ingestion. There were no differences among the species, age classes or sexes in the incidence of debris ingestion (plastic or otherwise), the mass or number of debris pieces ingested. We found no correlation between ingested plastics burdens and individual condition. Gulls ingested plastic debris, but also showed high levels of other debris types as well, including metal, glass and building materials, including a metal piece of debris found within an abscess in the stomach. Thus, when the health effects of debris ingestion on gulls, and other species that ingest debris, is of interest, either from a physical or chemical perspective, it may be necessary to consider all debris types and not just plastic burdens as is often currently done for seabirds.

  12. Factors Affecting the Discharge of Micro-Plastic Fibers from Household Laundry

    Science.gov (United States)

    Lange, N.

    2017-12-01

    Every day millions of loads of laundry are done in in the United States alone. Many, if not most, include synthetic fibers. During washing, micro-plastic fibers are released from the fabric, and discharged into the wastewater. These fibers have been detected in fresh water throughout the world and all of the oceans. These micro-plastic fibers are an emerging environmental contaminant that can adversely affect wildlife and are highly bio-accumulated in aquatic food-chains. Additionally, like other plastics, micro-fibers are not readily biodegraded and persist in the environment for a long time. In this research, I explored the effect of the way we wash clothes on the amount of micro-plastic fibers that are shed by common clothing materials containing man-made fibers. I collected discharge samples from wash and rinse cycles of a washing machine. I collected samples from a control wash using no detergent and then repeated five times. Next, I repeated the experiment five times using four different types of detergent. Large amounts of micro-plastic fibers were released during all wash cycles. However, the numbers decreased during the later rinse cycles. The use of laundry detergent increased the number of micro-plastic fibers released into the wash-water. Deep cleaning detergents produced over ten times more fibers than the no-detergent control. The gentlest detergent only released two times more fibers than the control. Therefore, it would be possible to affect the number of fibers released into the wastewater simply by selection of detergent. The ultimate goal of my research is to develop an optimized detergent that minimizes the number of micro-plastic fibers generated by washing and still effectively clean clothes.

  13. Silicon nanowire-based tunneling field-effect transistors on flexible plastic substrates.

    Science.gov (United States)

    Lee, Myeongwon; Koo, Jamin; Chung, Eun-Ae; Jeong, Dong-Young; Koo, Yong-Seo; Kim, Sangsig

    2009-11-11

    A technique to implement silicon nanowire (SiNW)-based tunneling field-effect transistors (TFETs) on flexible plastic substrates is developed for the first time. The p-i-n configured Si NWs are obtained from an Si wafer using a conventional top-down CMOS-compatible technology, and they are then transferred onto the plastic substrate. Based on gate-controlled band-to-band tunneling (BTBT) as their working principle, the SiNW-based TFETs show normal p-channel switching behavior with a threshold voltage of -1.86 V and a subthreshold swing of 827 mV/dec. In addition, ambipolar conduction is observed due to the presence of the BTBT between the heavily doped p+ drain and n+ channel regions, indicating that our TFETs can operate in the n-channel mode as well. Furthermore, the BTBT generation rates for both the p-channel and n-channel operating modes are nearly independent of the bending state (strain = 0.8%) of the plastic substrate.

  14. Silicon nanowire-based tunneling field-effect transistors on flexible plastic substrates

    International Nuclear Information System (INIS)

    Lee, Myeongwon; Koo, Jamin; Chung, Eun-Ae; Jeong, Dong-Young; Kim, Sangsig; Koo, Yong-Seo

    2009-01-01

    A technique to implement silicon nanowire (SiNW)-based tunneling field-effect transistors (TFETs) on flexible plastic substrates is developed for the first time. The p-i-n configured Si NWs are obtained from an Si wafer using a conventional top-down CMOS-compatible technology, and they are then transferred onto the plastic substrate. Based on gate-controlled band-to-band tunneling (BTBT) as their working principle, the SiNW-based TFETs show normal p-channel switching behavior with a threshold voltage of -1.86 V and a subthreshold swing of 827 mV/dec. In addition, ambipolar conduction is observed due to the presence of the BTBT between the heavily doped p + drain and n + channel regions, indicating that our TFETs can operate in the n-channel mode as well. Furthermore, the BTBT generation rates for both the p-channel and n-channel operating modes are nearly independent of the bending state (strain = 0.8%) of the plastic substrate.

  15. Silicon nanowire-based tunneling field-effect transistors on flexible plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeongwon; Koo, Jamin; Chung, Eun-Ae; Jeong, Dong-Young; Kim, Sangsig [Department of Electrical Engineering and Institute for Nano Science, Korea University, 5-1, Anam-Dong, Seongbuk-Gu, Seoul 136-701 (Korea, Republic of); Koo, Yong-Seo, E-mail: sangsig@korea.ac.k [Department of Electrical Engineering, Seokyeong University, 16-1, Jungneung-dong, Seongbuk-gu, Seoul 136-704 (Korea, Republic of)

    2009-11-11

    A technique to implement silicon nanowire (SiNW)-based tunneling field-effect transistors (TFETs) on flexible plastic substrates is developed for the first time. The p-i-n configured Si NWs are obtained from an Si wafer using a conventional top-down CMOS-compatible technology, and they are then transferred onto the plastic substrate. Based on gate-controlled band-to-band tunneling (BTBT) as their working principle, the SiNW-based TFETs show normal p-channel switching behavior with a threshold voltage of -1.86 V and a subthreshold swing of 827 mV/dec. In addition, ambipolar conduction is observed due to the presence of the BTBT between the heavily doped p{sup +} drain and n{sup +} channel regions, indicating that our TFETs can operate in the n-channel mode as well. Furthermore, the BTBT generation rates for both the p-channel and n-channel operating modes are nearly independent of the bending state (strain = 0.8%) of the plastic substrate.

  16. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  17. Plastic pollutants in water environment

    OpenAIRE

    Mrowiec Bożena

    2017-01-01

    Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm). Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment....

  18. Creating Methane from Plastic: Recycling at a Lunar Outpost

    Science.gov (United States)

    Santiago-Maldonado, Edgardo; Captain, Janine; Devor, Robert; Gleaton, Jeremy

    2010-01-01

    The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste into fuel. This process thermally degrades plastic in the presence of oxygen producing CO2 and CO. The CO2 and CO are then reacted with hydrogen over catalyst (Sabatier reaction) producing methane. An end-to-end laboratory-scale system has been designed and built to produce methane from plastic, in this case polyethylene. This first generation system yields 12-16% CH4 by weight of plastic used.

  19. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    International Nuclear Information System (INIS)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-01-01

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT 'dark current' background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or 'Back' detector, to both (1) minimize Compton background in the low-energy portion of the 'Front' scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as implemented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors

  20. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  1. Plastics, the environment and human health: current consensus and future trends

    OpenAIRE

    Thompson, Richard C.; Moore, Charles J.; vom Saal, Frederick S.; Swan, Shanna H.

    2009-01-01

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However...

  2. Effect of preliminary plastic deformation on low temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Gur'ev, A.V.; Alkhimenkov, T.B.

    1979-01-01

    Considered is the effect of preliminary plastic deformation on the following low-temperature strength (at -196 deg C) of structural carbon steels at the room temperature. The study of regularities of microheterogenetic deformations by alloy structure elements at room and low temperatures shows that the transition on low -temperature loading is built on the base of inheritance of the general mechanism of plastic deformation, which took place at preliminary deformation; in this effect the ''memory'' of metal to the history of loading is shown. It is established that physical strengthening (cold hardening), received by the metal during preliminary loading at the room temperature is put over the strengthening connected only with decrease of test temperature

  3. Plastic litter in sediments from a marine area likely to become protected (Aeolian Archipelago's islands, Tyrrhenian sea).

    Science.gov (United States)

    Fastelli, Paolo; Blašković, Andrea; Bernardi, Giulia; Romeo, Teresa; Čižmek, Hrvoje; Andaloro, Franco; Russo, Giovanni F; Guerranti, Cristiana; Renzi, Monia

    2016-12-15

    This research aims to define for the first time levels and patterns of different litter groups (macro, meso and microplastics) in sediments from a marine area designed for the institution of a new marine protected area (Aeolian Archipelago, Italy). Microplastics resulted the principal group and found in all samples analyzed, with shape and colours variable between different sampling sites. MPs levels measured in this study are similar to values recorded in harbour sites and lower than reported in Adriatic Sea, while macroplastics levels are notably lower than in harbor sites. Sediment grain-size and island extent resulted not significant in determining levels and distribution of plastic debris among islands. In the future, following the establishment of the MPA in the study area, these basic data will be useful to check for potential protective effects on the levels and distribution of plastic debris. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Psychedelics Promote Structural and Functional Neural Plasticity.

    Science.gov (United States)

    Ly, Calvin; Greb, Alexandra C; Cameron, Lindsay P; Wong, Jonathan M; Barragan, Eden V; Wilson, Paige C; Burbach, Kyle F; Soltanzadeh Zarandi, Sina; Sood, Alexander; Paddy, Michael R; Duim, Whitney C; Dennis, Megan Y; McAllister, A Kimberley; Ori-McKenney, Kassandra M; Gray, John A; Olson, David E

    2018-06-12

    Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Fouling assemblage of benthic plastic debris collected from Mersin Bay, NE Levantine coast of Turkey.

    Science.gov (United States)

    Gündoğdu, Sedat; Çevik, Cem; Karaca, Serkan

    2017-11-15

    The Mediterranean is an ecosystem that faces more and more microplastic pollution every day. This causes the whole of the Mediterranean to face the negative effects of plastic pollution. This study examines the state of plastic debris and fouling organisms found on it in one of the areas most affected by plastic pollution, Mersin Bay. As a result, a total of 3.88kg plastic (mean=0,97kg; n=120; 2670item/km 2 ; 86,3kg/km 2 ) was collected and based on the ATR-FTIR analysis, it was determined that this total contained 9 types of plastics. 17 different fouling species belonging to 6 phylum (Annelida, Arthropoda, Bryozoa, Chordata, Cnidaria, Mollusca) 7 class and 11 order were discovered on plastics. Spirobranchus triqueter, Hydroides sp. and Neopycnodonte cochlear were the most abundant species. In the end, the example of Mersin Bay shows that plastic debris as a substrate can contain a very high diversity of life just like natural substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inducing a long-term potentiation in the dentate gyrus is sufficient to produce rapid antidepressant-like effects.

    Science.gov (United States)

    Kanzari, A; Bourcier-Lucas, C; Freyssin, A; Abrous, D N; Haddjeri, N; Lucas, G

    2018-03-01

    Recent hypotheses propose that one prerequisite to obtain a rapid antidepressant (AD) effect would reside in processes of synaptic reinforcement occurring within the dentate gyrus (DG) of the hippocampus independently from neurogenesis. However, to date no relationship has been established between an increased DG synaptic plasticity, and rapid AD-like action. To the best of our knowledge, this study shows for the first time that inducing a long-term potentiation (LTP) within the DG by stimulating the perforant pathway (PP) is sufficient to induce such effects. Thus, Sprague-Dawley rats having undergone a successful LTP displayed a significant reduction of immobility when passed acutely 3 days thereafter in the forced swimming test (FST). Further, in a longitudinal paradigm using the pseudo-depressed Wistar-Kyoto rat strain, LTP elicited a decrease of FST immobility after only 2 days, whereas the AD desipramine was not effective before 16 days. In both models, the influence of LTP was transient, as it was no more observed after 8-9 days. No effects were observed on the locomotor activity or on anxiety-related behavior. Theta-burst stimulation of a brain region anatomically adjacent to the PP remained ineffective in the FST. Immunoreactivity of DG cells for phosphorylated histone H3 and doublecortin were not modified three days after LTP, indicating a lack of effect on both cell proliferation and neurogenesis. Finally, depleting brain serotonin contents reduced the success rate of LTP but did not affect its subsequent AD-like effects. These results confirm the 'plastic DG' theory of rapid AD efficacy. Beyond, they point out stimulations of the entorhinal cortex, from which the PP originates, as putative new approaches in AD research.

  7. Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma

    NARCIS (Netherlands)

    Pardali, E.; Schaft, van der D.W.J.; Wiercinska, E.; Gorter, A.; Hogendoorn, P.C.W.; Griffioen, A.W.; Dijke, ten P.

    2011-01-01

    Tumor cell plasticity enables certain types of highly malignant tumor cells to dedifferentiate and engage a plastic multipotent embryonic-like phenotype, which enables them to ‘adapt’ during tumor progression and escape conventional therapeutic strategies. This plastic phenotype of aggressive cancer

  8. Sub-keV x-ray calibration of plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Day, R.H.; Lier, D.W.; Elsberry, T.L.

    1976-01-01

    Several types of x-ray detectors have found widespread use for plasma diagnostic applications in the energy range below a few keV. Silicon diodes, photoelectric diodes, and plastic scintillators have been used to obtain diagnostic information in this region. Sub-keV calibration data for plastic scintillator detectors are reported, and the advantages and limitations of these three detectors in diagnostic measurements are compared. In a previous paper calibration data for plastic scintillators from 1.5 to 20 keV were given. In this paper the data are extended to the C-K/sub α/ line (277 eV). These data represent one application of a new sub-keV x-ray calibration facility at the Los Alamos Scientific Laboratory

  9. Energy recycling of plastic and rubber wastes

    International Nuclear Information System (INIS)

    Hussain, R.

    2003-01-01

    Major areas for applications of plastics and rubbers are building and construction, packaging, transportation, automobiles, furniture, house wares, appliances, electrical and electronics. Approximately 20% of all the plastics produced are utilized by the building and construction industry/sup (1-3)/. Categories of polymers mostly used in the above industries include poly (vinyl chloride), polypropylene, polyethylene, polystyrene phenolics, acrylics and urethanes. Tyres and tubes are almost exclusively made up of rubbers. One third of total consumption of plastics finds applications, like films, bottles and packaging, in food-products that have a maximum life-span of two years, after which these find way to waste dumps. As the polymer industry in Pakistan is set to grow very rapidly in the near future the increase in utilization of plastic products in synchronous with the advent of computers and information technology. About 0.60 Kg per capita of waste generated daily in Lahore /(7.14)/ contains considerable quantity of plastics. (AB)

  10. Effect of the conditions of prepreg preparation on the strength of structural plastics

    Science.gov (United States)

    Zaborskaya, L. V.; Yurkevich, O. R.

    1995-05-01

    A study is made of the effect of the temperature and duration of heat treatment of polymer composite prepregs on their strength. It is established that heat treatment under conditions ensuring close to maximal adhesive interaction between the components of the prepreg and subsequent shaping makes it possible to more than double the strength of the plastic (Table 1), A new approach is proposed to optimizing the conditions of formation of structural plastics.

  11. Behavioral Response to Plastic Bag Legislation in Botswana

    OpenAIRE

    Dikgang, Johane; Visser, Martine

    2010-01-01

    This paper investigates the use of charges and standards in dealing with a common externality, plastic litter from shopping bags in Botswana. The country passed a plastic bag tax (effective 2007) to curb the plastic bag demand. Interestingly, the legislation did not force retailers to charge for plastic bags, which they did voluntarily at different prices. We assessed the environmental effectiveness and efficiency of the plastic bag legislation by analyzing consumers’ sensitivity to the impro...

  12. Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xuetao Shi

    2015-01-01

    Full Text Available The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid (PDLA acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young’s modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization.

  13. Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan

    Directory of Open Access Journals (Sweden)

    Thawien Bourtoom

    2008-04-01

    Full Text Available The properties of biodegradable blend film from rice starch-chitosan with different plasticizers were determined. Three plasticizers comprising sorbitol (SOR, glycerol (GLY and polyethylene glycol (PEG were studied over a range of concentration from 20 to 60%. Increasing concentration of these plasticizers resulted in decreased tensile strength (TS concomitant with an increase in elongation at break (E, water vapor permeability (WVP and film solubility (FS. SOR plasticized films were the most brittle, with the highest tensile strength (TS, 26.06 MPa. However, its effect on WVP was low (5.45 g.mm/m2.day.kPa. In contrast, GLY and PEG plasticized films had a flexible structure contradictory to a low TS (14.31MPa and 16.14MPa, respectively providing a high WVP (14.52 g.mm/m2.day.kPa and 14.69 g.mm/m2.day.kPa, respectively. SOR plasticized films, demonstrated little higher FS compared to PEG and GLY plasticized films but not significant different (p<0.05. The color of biodegradable blend film from rice starch-chitosan was more affected by the concentration of the plasticizer used than by its type. Nine moisture sorption models were applied to experimental data. Moisture content of the film increased at elevated water activity. The time to reach equilibrium moisture content (EMC was about 20-24 days at lower humidity and 13-16 days at higher humidities. The EMC of glycerol and sorbitol rice starchchitosan biodegradable blend films showed a logarithmic increase at above 0.59 aw and reached the highest moisture content of 51.46% and 42.97 % at 0.95 aw, whereas PEG rice starch-chitosan biodegradable blend films did not show much increase in moisture content.

  14. Investigations of surface coatings to reduce memory effect in plastic scintillator detectors used for radioxenon detection

    Science.gov (United States)

    Bläckberg, L.; Fay, A.; Jõgi, I.; Biegalski, S.; Boman, M.; Elmgren, K.; Fritioff, T.; Johansson, A.; Mårtensson, L.; Nielsen, F.; Ringbom, A.; Rooth, M.; Sjöstrand, H.; Klintenberg, M.

    2011-11-01

    In this work Al2O3 and SiO2 coatings are tested as Xe diffusion barriers on plastic scintillator substrates. The motivation is improved beta-gamma coincidence detection systems, used to measure atmospheric radioxenon within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty. One major drawback with the current setup of these systems is that the radioxenon tends to diffuse into the plastic scintillator material responsible for the beta detection, resulting in an unwanted memory effect. Here, coatings with thicknesses between 20 and 900 nm have been deposited onto plastic scintillators, and investigated using two different experimental techniques. The results show that all tested coatings reduce the Xe diffusion into the plastic. The reduction is observed to increase with coating thickness for both coating materials. The 425 nm Al2O3 coating is the most successful one, presenting a diffusion reduction of a factor 100, compared to uncoated plastic. In terms of memory effect reduction this coating is thus a viable solution to the problem in question.

  15. Investigations of surface coatings to reduce memory effect in plastic scintillator detectors used for radioxenon detection

    International Nuclear Information System (INIS)

    Blaeckberg, L.; Fay, A.; Jogi, I.; Biegalski, S.; Boman, M.; Elmgren, K.; Fritioff, T.; Johansson, A.; Martensson, L.; Nielsen, F.; Ringbom, A.; Rooth, M.; Sjoestrand, H.; Klintenberg, M.

    2011-01-01

    In this work Al 2 O 3 and SiO 2 coatings are tested as Xe diffusion barriers on plastic scintillator substrates. The motivation is improved beta-gamma coincidence detection systems, used to measure atmospheric radioxenon within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty. One major drawback with the current setup of these systems is that the radioxenon tends to diffuse into the plastic scintillator material responsible for the beta detection, resulting in an unwanted memory effect. Here, coatings with thicknesses between 20 and 900 nm have been deposited onto plastic scintillators, and investigated using two different experimental techniques. The results show that all tested coatings reduce the Xe diffusion into the plastic. The reduction is observed to increase with coating thickness for both coating materials. The 425 nm Al 2 O 3 coating is the most successful one, presenting a diffusion reduction of a factor 100, compared to uncoated plastic. In terms of memory effect reduction this coating is thus a viable solution to the problem in question.

  16. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata Starch

    Directory of Open Access Journals (Sweden)

    Muhammed L. Sanyang

    2015-06-01

    Full Text Available The use of starch based films as a potential alternative choice to petroleum derived plastics is imperative for environmental waste management. This study presents a new biopolymer (sugar palm starch for the preparation of biodegradable packaging films using a solution casting technique. The effect of different plasticizer types (glycerol (G, sorbitol (S and glycerol-sorbitol (GS combination with varying concentrations (0, 15, 30 and 45, w/w% on the tensile, thermal and barrier properties of sugar palm starch (SPS films was evaluated. Regardless of plasticizer types, the tensile strength of plasticized SPS films decreased, whereas their elongation at break (E% increased as the plasticizer concentrations were raised. However, the E% for G and GS-plasticized films significantly decreased at a higher plasticizer concentration (45% w/w due to the anti-plasticization effect of plasticizers. Change in plasticizer concentration showed an insignificant effect on the thermal properties of S-plasticized films. The glass transition temperature of SPS films slightly decreased as the plasticizer concentration increased from 15% to 45%. The plasticized films exhibited increased water vapor permeability values from 4.855 × 10−10 to 8.70 × 10−10 g·m−1·s−1·Pa−1, irrespective of plasticizer types. Overall, the current study manifested that plasticized sugar palm starch can be regarded as a promising biopolymer for biodegradable films.

  17. Parameter studies on the effect of pulse shape on the dynamic plastic deformation of a hexagon

    International Nuclear Information System (INIS)

    Youngdahl, C.K.

    1973-10-01

    Results of a parameter study on the dynamic plastic response of a hexagonal subassembly duct subjected to an internal pressure pulse of arbitrary shape are presented. Plastic distortion of the cross section and large-deformation geometric effects that result in redistribution of the internal forces between bending and membrane stresses in the hexagon wall are included in the analytical model. Correlation procedures are established for relating permanent plastic deformation to simple properties of the pressure pulse, for both the small- and large-deformation ranges. Characteristic response times are determined, and the dynamic load factor for large-deformation plastic response is computed

  18. The effect of superconducting transition on macroscopic characteristics of metal and alloy plasticity: fundamental and application aspects

    International Nuclear Information System (INIS)

    Pustovalov, V.V.; Fomenko, V.S.

    2006-01-01

    The results of the papers concerning detection and investigation of the new effect - the changes of macroscopic properties of plastic deformation of metals and alloys at the superconducting transition - are presented. Those papers were the first to demonstrate the efficiency of electron drag of dislocations at low temperature deformation. The review is concerned with the main experimental regularities of the effect - the dependence of plasticity characteristics at the superconducting transition on stress, strain, temperature, strain rate, and doping element concentration in a superconductor. The results suggest the correlation between the effect characteristics and the superconducting properties. The experiments aimed at elucidating the mechanism of the effect are discussed. The theoretical studies into electron retardation of dislocations in metals in normal and superconducting states and the influence of superconducting transition on plasticity are briefly reported. Comparison between theoretical and experimental data is made. The review presents some examples of how the effect can be used as a new method of investigating physical mechanisms of low temperature plastic deformation. Application aspects of the phenomenon are also discussed

  19. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  20. Effect of tensile properties on time-dependent C(t) and J(t) integrals in elastic-plastic-creep FE analysis

    International Nuclear Information System (INIS)

    Lee, So-Dam; Lee, Han-Sang; Kim, Yun-Jae; Ainsworth, Robert A.; Dean, David W.

    2016-01-01

    This technical note presents the effect of elastic-plastic properties on calculated time-dependent C(t) and J(t) values. This is investigated via systematic elastic-plastic-creep finite element (FE) analysis. Three different stress-strain curves are used, having essentially the same plastic properties at large strains but different tensile data near the 0.2% proof (yield) strength. It is found that the plastic property in stress-strain curve affects the FE C(t) values only at short times (within approximately 20% of the redistribution time). The plastic property affects the initial J values at time t = 0 but not the rate of change of J(t) with time. - Highlights: • The effect of elastic-plastic properties on calculated time-dependent C(t) and J(t) values is presented via FE analysis. • The plastic property affects the FE C(t) values only at short times up to ∼20% of the redistribution time. • The plastic property affects the initial J values at time t = 0 but not the rate of change of J(t) with time.

  1. Gaseous emissions and toxic hazards associated with plastics in fire situations: A literature review

    Science.gov (United States)

    Junod, T. L.

    1976-01-01

    The hazards of plastics in fire situations, the gases emitted, the factors influencing the nature of these emissions, the characteristics of toxic gases, and the results of laboratory studies, are discussed. The literature pertaining to the pyrolysis and oxidation of plastics was reviewed. An effort was made to define the state of the art for determining the toxic gases emitted by plastics under fire conditions. Recommendations are made and research needs defined as a result of this review.

  2. Antidepressant-like effect of Butea superba in mice exposed to chronic mild stress and its possible mechanism of action.

    Science.gov (United States)

    Mizuki, Daishu; Matsumoto, Kinzo; Tanaka, Ken; Thi Le, Xoan; Fujiwara, Hironori; Ishikawa, Tsutomu; Higuchi, Yoshihiro

    2014-10-28

    Butea superba (BS) is a Thai medicinal plant that has been used as a folk medicine to improve physical and mental conditions and to prevent impaired sexual performance in middle-aged or elderly males. We have previously reported that this plant extract could improve cognitive deficits and depression-like behavior in olfactory bulbectomized mice, an animal model of dementia and depression. In this study we examined the effect of BS on depression-like behavior in mice subjected to unpredictable chronic mild stress (UCMS) to clarify the antidepressant-like activity of BS and the molecular mechanism underlying this effect. UCMS mice were administered BS daily (300 mg of dried herb weight/kg, p.o.) or a reference drug, imipramine (IMP, 10 mg/kg, i.p.), 1 week after starting the UCMS procedure. We employed the sucrose preference test and the tail suspension test to analyze anhedonia and depression-like behavior of mice, respectively. Serum and brain tissues of mice were used for neurochemical and immunohistochemical studies. The UCMS procedure induced anhedonia and depression-like behavior, and BS treatment, as well as IMP treatment, attenuated these symptoms. UCMS caused an elevation of serum corticosterone level, an index of hyper-activation of the hypothalamic-pituitary-adrenal (HPA) axis, in a manner attenuated by BS and IMP treatment. BS treatment also attenuated UCMS-induced decrease in the expression levels of brain-derived neurotrophic factor (BDNF) mRNA, cyclic AMP-responsive element binding protein (CREB) and a phosphorylated form of N-methyl-d-aspartate receptor subunit NR1, synaptic plasticity-related signaling proteins. Moreover, the UCMS procedure reduced doublecortin-positive cells in the dentate gyrus region of the hippocampus. BS administration reversed these UCMS-induced neurochemical and histological abnormalities. These results suggest that BS can ameliorate chronic stress-induced depression-like symptoms and that the effects of BS are mediated by

  3. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy-Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson, Robert W. Emerick, Alfred B. England, James P. Flanders, Frank J. Loge, Katherine A. Wiedeman, Michael P. Wolcott

    2010-04-08

    -derived plastics in WFRTCs. Using this strategy, we could greatly reduce the cost of producing and utilizing these renewable plastics in WFRTCs. This was a collaborative project among the Idaho National Laboratory, Washington State University, the University of California-Davis, Glatfelter Corporation, Strandex Corporation, and ECO:LOGIC Engineering, Inc. The project was comprised of five tasks. The first four tasks addressed PHA production, extrusion, and composite properties. Feedstock performance and compositional properties were determined in the laboratory by WSU. Both pure commercial PHAs (Task 1) and unpurified effluentderived PHAs (Task 4) were used. Results were used to define appropriate effluent feedstocks (Task 2) and optimize supplements (Task 3) to produce biosolids for the preferred composite formulations. Task 5 included a pilot-scale extrusion of wood-PHA-biosolids composites.

  4. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.

    Science.gov (United States)

    Ro, Kyoung S; Hunt, Patrick G; Jackson, Michael A; Compton, David L; Yates, Scott R; Cantrell, Keri; Chang, SeChin

    2014-08-01

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25%m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the (1)H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations. Published by Elsevier Ltd.

  5. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability

    Energy Technology Data Exchange (ETDEWEB)

    Seiji Nomura; Merrick Mahoney; Koichi Fukuda; Kenji Kato; Anthony Le Bas; Sid McGuire [Nippon Steel Corporation, Chiba (Japan). Environment and Process Technology Center

    2010-07-15

    One of the most important aspects of the cokemaking process is to control and restrain the coking pressure since excessive coking pressure tends to lead to operational problems and oven wall damage. Therefore, in order to understand the mechanism of coking pressure generation, the permeability of the plastic coal layer and the coking pressure for the same single coal and the same blended coal were measured and the relationship between them was investigated. Then the 'inert' (pressure modifier) effect of organic additives such as high volatile matter coking coal, semi-anthracite and coke breeze was studied. The coking pressure peak for box charging with more uniform bulk density distribution was higher than that for top charging. It was found that the coking pressure peaks measured at different institutions (NSC and BHPBilliton) by box charging are nearly the same. The addition of high volatile matter coking coal, semi-anthracite and coke breeze to a low volatile matter, high coking pressure coal greatly increased the plastic layer permeability in laboratory experiments and correspondingly decreased the coking pressure. It was found that, high volatile matter coking coal decreases the coking pressure more than semi-anthracite at the same plastic coal layer permeability, which indicates that the coking pressure depends not only on plastic coal layer permeability but also on other factors. Coking pressure is also affected by the contraction behavior of the coke layer near the oven walls and a large contraction decreases the coal bulk density in the oven center and hence the internal gas pressure in the plastic layer. The effect of contraction on coking pressure needs to be investigated further. 33 refs., 18 figs., 5 tabs.

  6. Using In Vitro Electrophysiology to Screen Medications: Accumbal Plasticity as an Engram of Alcohol Dependence.

    Science.gov (United States)

    Renteria, R; Jeanes, Z M; Mangieri, R A; Maier, E Y; Kircher, D M; Buske, T R; Morrisett, R A

    2016-01-01

    The nucleus accumbens (NAc) is a central component of the mesocorticolimbic reward system. Increasing evidence strongly implicates long-term synaptic neuroadaptations in glutamatergic excitatory activity of the NAc shell and/or core medium spiny neurons in response to chronic drug and alcohol exposure. Such neuroadaptations likely play a critical role in the development and expression of drug-seeking behaviors. We have observed unique cell-type-specific bidirectional changes in NAc synaptic plasticity (metaplasticity) following acute and chronic intermittent ethanol exposure. Other investigators have also previously observed similar metaplasticity in the NAc following exposure to psychostimulants, opiates, and amazingly, even following an anhedonia-inducing experience. Considering that the proteome of the postsynaptic density likely contains hundreds of biochemicals, proteins and other components and regulators, we believe that there is a large number of potential molecular sites through which accumbal metaplasticity may be involved in chronic alcohol abuse. Many of our companion laboratories are now engaged in identifying and screening medications targeting candidate genes and its products previously linked to maladaptive alcohol phenotypes. We hypothesize that if manipulation of such target genes and their products change NAc plasticity, then that observation constitutes an important validation step for the development of novel therapeutics to treat alcohol dependence. © 2016 Elsevier Inc. All rights reserved.

  7. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  8. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  9. Effect of Plastic Deformation on the Corrosion Behavior of a Super-Duplex Stainless Steel

    Science.gov (United States)

    Renton, Neill C.; Elhoud, Abdu M.; Deans, William F.

    2011-04-01

    The role of plastic deformation on the corrosion behavior of a 25Cr-7Ni super-duplex stainless steel (SDSS) in a 3.5 wt.% sodium chloride solution at 90 °C was investigated. Different levels of plastic strain between 4 and 16% were applied to solution annealed tensile specimens and the effect on the pitting potential measured using potentiodynamic electrochemical techniques. A nonlinear relationship between the pitting potential and the plastic strain was recorded, with 8 and 16% causing a significant reduction in average E p, but 4 and 12% causing no significant change when compared with the solution-annealed specimens. The corrosion morphology revealed galvanic interaction between the anodic ferrite and the cathodic austenite causing preferential dissolution of the ferrite. Mixed potential theory and the changing surface areas of the two phases caused by the plastic deformation structures explain the reductions in pitting potential at certain critical plastic strain levels. End-users and manufacturers should evaluate the corrosion behavior of specific cold-worked duplex and SDSSs using their as-produced surface finishes assessing in-service corrosion performance.

  10. PTA-1 computer program for treating pressure transients in hydraulic networks including the effect of pipe plasticity

    International Nuclear Information System (INIS)

    Youngdahl, C.K.; Kot, C.A.

    1977-01-01

    Pressure pulses in the intermediate sodium system of a liquid-metal-cooled fast breeder reactor, such as may originate from a sodium/water reaction in a steam generator, are propagated through the complex sodium piping network to system components such as the pump and intermediate heat exchanger. To assess the effects of such pulses on continued reliable operation of these components and to contribute to system designs which result in the mitigation of these effects, Pressure Transient Analysis (PTA) computer codes are being developed for accurately computing the transmission of pressure pulses through a complicated fluid transport system, consisting of piping, fittings and junctions, and components. PTA-1 provides an extension of the well-accepted and verified fluid hammer formulation for computing hydraulic transients in elastic or rigid piping systems to include plastic deformation effects. The accuracy of the modeling of pipe plasticity effects on transient propagation has been validated using results from two sets of Stanford Research Institute experiments. Validation of PTA-1 using the latter set of experiments is described briefly. The comparisons of PTA-1 computations with experiments show that (1) elastic-plastic deformation of LMFBR-type piping can have a significant qualitative and quantitative effect on pressure pulse propagation, even in simple systems; (2) classical fluid-hammer theory gives erroneous results when applied to situations where piping deforms plastically; and (3) the computational model incorporated in PTA-1 for predicting plastic deformation and its effect on transient propagation is accurate

  11. MEASUREMENT OF PHTHALATE LEVELS IN HUMAN MILK: CONTRIBUTION FROM PLASTICS IN BREAST PUMPS, STORAGE BOTTLES AND BAGS

    Science.gov (United States)

    Phthalates are plasticizers used to impart flexibility in products widely used by the general population, including polyvinyl chloride, plastic toys, and medical devices. Some phthalates act as anti-androgens, and prenatal or perinatal exposure to phthalates in laboratory animals...

  12. Investigating Coccolithophorid Biology in the Sedimentary Laboratory

    Science.gov (United States)

    McClelland, H. L. O.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Rickaby, R. E. M.

    2014-12-01

    Coccolithophores are the ocean's dominant calcifying phytoplankton; they play an important, but poorly understood, role in long-term biogeochemical climatic feedbacks. Calcite producing marine organisms are likely to calcify less in a future world where higher carbon dioxide concentrations will lead to ocean acidification (OA), but coccolithophores may be the exception. In coccolithophores calcification occurs in an intracellular vesicle, where the site of calcite precipitation is buffered from the external environment and is subject to a uniquely high degree of biological control. Culture manipulation experiments mimicking the effects of OA in the laboratory have yielded empirical evidence for phenotypic plasticity, competition and evolutionary adaptation in asexual populations. However, the extent to which these results are representative of natural populations, and of the response over timescales of greater than a few hundred generations, is unclear. Here we describe a new sediment-based proxy for the PIC:POC (particulate inorganic to particulate organic carbon ratio) of coccolithophore biomass, which is equivalent to the fractional energy contribution to calcification at constant pH, and a biologically meaningful measure of the organism's tendency to calcify. Employing the geological record as a laboratory, we apply this proxy to sedimentary material from the southern Pacific Ocean to investigate the integrated response of real ancient coccolithophore populations to environmental change over many thousands of years. Our results provide a new perspective on phenotypic change in real populations of coccolithophorid algae over long timescales.

  13. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics.

    Science.gov (United States)

    Goddijn-Murphy, Lonneke; Peters, Steef; van Sebille, Erik; James, Neil A; Gibb, Stuart

    2018-01-01

    There is growing global concern over the chemical, biological and ecological impact of plastics in the ocean. Remote sensing has the potential to provide long-term, global monitoring but for marine plastics it is still in its early stages. Some progress has been made in hyperspectral remote sensing of marine macroplastics in the visible (VIS) to short wave infrared (SWIR) spectrum. We present a reflectance model of sunlight interacting with a sea surface littered with macro plastics, based on geometrical optics and the spectral signatures of plastic and seawater. This is a first step towards the development of a remote sensing algorithm for marine plastic using light reflectance measurements in air. Our model takes the colour, transparency, reflectivity and shape of plastic litter into account. This concept model can aid the design of laboratory, field and Earth observation measurements in the VIS-SWIR spectrum and explain the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Frictionless Demonstration Using Fine Plastic Beads For Teaching Mechanics

    International Nuclear Information System (INIS)

    Ishii, K.; Kagawa, K.; Khumaeni, A.; Kurniawan, K. H.

    2010-01-01

    New equipment for demonstrating laws of mechanics have successfully been constructed utilizing fine sphere plastic beads (0.3 mm in diameter). Fine plastic beads function as ball bearings to reduce the friction between the object and the plate surface. By this method, a quantitative measurement of energy conservation law has successfully been carried out with a small error of less 3%. The strong advantage of this frictionless method is that we can always use the same objects like Petri dishes for demonstrating many kinds of mechanics laws, such as the first, second, and the third laws of motion, momentum conservation law, and energy conservation law. This demonstration method surely has a beneficial effect for students, who can then understand mechanics laws systematically with a unified concept and no confusion.

  15. The Effect of Gentle Handling on Depressive-Like Behavior in Adult Male Mice: Considerations for Human and Rodent Interactions in the Laboratory.

    Science.gov (United States)

    Neely, Caroline; Lane, Christina; Torres, Julio; Flinn, Jane

    2018-01-01

    Environmental factors play a significant role in well-being of laboratory animals. Regulations and guidelines recommend, if not require, that stressors such as bright lighting, smells, and noises are eliminated or reduced to maximize animal well-being. A factor that is often overlooked is handling and how researchers interact with their animals. Researchers, lab assistants, and husbandry staff in animal facilities may use inconsistent handling methods when interacting with rodents, but humans should be considered a part of the animal's social environment. This study examined the effects of different handling techniques on depressive-like behavior, measured by the Porsolt forced swim test, in adult C57BL/6J male mice. The same two researchers handled the mice in a gentle, aggressive, or minimal (control) fashion over approximately two weeks prior to testing. The results demonstrated a beneficial effect of gentle handling: gentle handling reduced swimming immobility in the forced swim test compared to mice that were aggressively or minimally handled. We argue that gentle handling, rather than methodical handling, can foster a better relationship between the handlers and rodents. Although handling is not standardized across labs, consistent gentle handling allows for less challenging behavioral testing, better data collection, and overall improved animal welfare.

  16. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats

    Science.gov (United States)

    Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin

    2015-01-01

    Background: Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Methods: Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray’s Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats’ depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. Results: The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. Conclusion: These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats’ depressive behaviors, suggesting a therapeutic target for further exploration. PMID:25899067

  17. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    Science.gov (United States)

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  18. Data-driven in computational plasticity

    Science.gov (United States)

    Ibáñez, R.; Abisset-Chavanne, E.; Cueto, E.; Chinesta, F.

    2018-05-01

    Computational mechanics is taking an enormous importance in industry nowadays. On one hand, numerical simulations can be seen as a tool that allows the industry to perform fewer experiments, reducing costs. On the other hand, the physical processes that are intended to be simulated are becoming more complex, requiring new constitutive relationships to capture such behaviors. Therefore, when a new material is intended to be classified, an open question still remains: which constitutive equation should be calibrated. In the present work, the use of model order reduction techniques are exploited to identify the plastic behavior of a material, opening an alternative route with respect to traditional calibration methods. Indeed, the main objective is to provide a plastic yield function such that the mismatch between experiments and simulations is minimized. Therefore, once the experimental results just like the parameterization of the plastic yield function are provided, finding the optimal plastic yield function can be seen either as a traditional optimization or interpolation problem. It is important to highlight that the dimensionality of the problem is equal to the number of dimensions related to the parameterization of the yield function. Thus, the use of sparse interpolation techniques seems almost compulsory.

  19. Effect of plastic prestrain on the crack tip constraint of pipeline steels

    International Nuclear Information System (INIS)

    Eikrem, P.A.; Zhang, Z.L.; Nyhus, B.

    2007-01-01

    Before and during operation, pipelines may suffer from plastic pre-deformation due to accidental loading, cold bending and ground movement. Plastic prestrain not only modifies steel's yield and flow properties but also influences its fracture performance. This paper focuses on the effect of prestrain history on crack driving force and crack tip constraint. A single-edge notched tension specimen has been selected for the study and the crack is assumed to exist before a prestrain history was applied. The results show that prestrain history has a strong effect on the crack tip stress field. A new parameter has been proposed to characterize the prestrain-induced crack tip constraint. For the same crack tip opening displacement level, prestrain history will elevate the crack tip stress field. The prestrain-induced constraint decreases with the increase of loading

  20. Boron content effect on the high-temperature plasticity of corrosion resistant low-carbon austenite type steels

    International Nuclear Information System (INIS)

    Gol'dshtejn, Ya.E.; Shmatko, M.N.; Chuvatina, S.N.

    1976-01-01

    With the concept that the state of grain and subgrain boundaries influences the hot plasticity of corrosion resistant steel as a starting point, the study was undertaken of the effect of boron microalloying up on the intergranular strength and of the action boron exerts upon the distribution (redistribution) of other phases present in austenitic 03Kh16N14M3 steels. An electron microscope study of the composition of redundant phases and that of the fine structure of steel have shown the effect of small additions of boron upon the hot plasticity of steel to be linked directly to its influence upon austenite disintegration and the precipitation along the boundaries of crystals of redundant phases in the course of hot plastic deformation. The action of boron upon the process plasticity of steel depends on the temperature and the rate of deformation which govern the kinetics of the precipitation of the redundant phases

  1. Local Plasticity of Al Thin Films as Revealed by X-Ray Microdiffraction

    Science.gov (United States)

    Spolenak, R.; Brown, W. L.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2003-03-01

    Grain-to-grain interactions dominate the plasticity of Al thin films and establish effective length scales smaller than the grain size. We have measured large strain distributions and their changes under plastic strain in 1.5-μm-thick Al0.5%Cu films using a 0.8-μm-diameter white x-ray probe at the Advanced Light Source. Strain distributions arise not only from the distribution of grain sizes and orientation, but also from the differences in grain shape and from stress environment. Multiple active glide plane domains have been found within single grains. Large grains behave like multiple smaller grains even before a dislocation substructure can evolve.

  2. Cannabinoids modulate hippocampal memory and plasticity.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2010-10-01

    Considerable evidence demonstrates that cannabinoid agonists impair whereas cannabinoid antagonists improve memory and plasticity. However, recent studies suggest that the effects of cannabinoids on learning do not necessarily follow these simple patterns, particularly when emotional memory processes are involved. We investigated the involvement of the cannabinoid system in hippocampal learning and plasticity using the fear-related inhibitory avoidance (IA) and the non-fear-related spatial learning paradigms, and cellular models of learning and memory, i.e., long-term potentiation (LTP) and long-term depression (LTD). We found that microinjection into the CA1 of the CB1/CB2 receptor agonist WIN55,212-2 (5 μg/side) and an inhibitor of endocannabinoid reuptake and breakdown AM404 (200 ng/side) facilitated the extinction of IA, while the CB1 receptor antagonist AM251 (6 ng/side) impaired it. WIN55,212-2 and AM251 did not affect IA conditioning, while AM404 enhanced it, probably due to a drug-induced increase in pain sensitivity. However, in the water maze, systemic or local CA1 injections of AM251, WIN55,212-2, and AM404 all impaired spatial learning. We also found that i.p. administration of WIN55,212-2 (0.5 mg/kg), AM404 (10 mg/kg), and AM251 (2 mg/kg) impaired LTP in the Schaffer collateral-CA1 projection, whereas AM404 facilitated LTD. Our findings suggest diverse effects of the cannabinoid system on CA1 memory and plasticity that cannot be categorized simply into an impairing or an enhancing effect of cannabinoid activation and deactivation, respectively. Moreover, they provide preclinical support for the suggestion that targeting the endocannabinoid system may aid in the treatment of disorders associated with impaired extinction-like processes, such as post-traumatic stress disorder. © 2009 Wiley-Liss, Inc.

  3. Plastic nuclear track detectors as high x-ray and gamma dosimeters

    International Nuclear Information System (INIS)

    Chong Chon Sing

    1995-01-01

    A brief review of recent studies on the effects of high doses of x-ray and gamma ray on the track registration properties of several plastic track detectors is presented. The bulk etching rates and the etched track sizes have been found to increase with the dose in the range up to 100 Mrad. These results suggest that the changes in track registration characteristics can be employed as an index of the radiation dose in the megarad region. In particular, recent results on the effect of X-ray irradiation on two types of cellulose nitrate track detectors obtained in our laboratory are reported in this paper. (author)

  4. The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input.

    Directory of Open Access Journals (Sweden)

    Peter A Appleby

    Full Text Available Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus

  5. Ovarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype

    Directory of Open Access Journals (Sweden)

    Berry Nicholas B

    2008-11-01

    Full Text Available Abstract Aggressive epithelial ovarian cancer (EOC is genetically and epigenetically distinct from normal ovarian surface epithelial cells (OSE and early neoplasia. Co-expression of epithelial and mesenchymal markers in EOC suggests an involvement of epithelial-mesenchymal transition (EMT in cancer initiation and progression. This phenomenon is often associated with acquisition of a stem cell-like phenotype and chemoresistance that correlate with the specific gene expression patterns accompanying transformation, revealing a plasticity of the ovarian cancer cell genome during disease progression. Differential gene expressions between normal and transformed cells reflect the varying mechanisms of regulation including genetic changes like rearrangements within the genome, as well as epigenetic changes such as global genomic hypomethylation with localized promoter CpG island hypermethylation. The similarity of gene expression between ovarian cancer cells and the stem-like ovarian cancer initiating cells (OCIC are surprisingly also correlated with epigenetic mechanisms of gene regulation in normal stem cells. Both normal and cancer stem cells maintain genetic flexibility by co-placement of activating and/or repressive epigenetic modifications on histone H3. The co-occupancy of such opposing histone marks is believed to maintain gene flexibility and such bivalent histones have been described as being poised for transcriptional activation or epigenetic silencing. The involvement of both-microRNA (miRNA mediated epigenetic regulation, as well as epigenetic-induced changes in miRNA expression further highlight an additional complexity in cancer stem cell epigenomics. Recent advances in array-based whole-genome/epigenome analyses will continue to further unravel the genomes and epigenomes of cancer and cancer stem cells. In order to illuminate phenotypic signatures that delineate ovarian cancer from their associated cancer stem cells, a priority must lie

  6. Endocannabinoid System and Synaptic Plasticity: Implications for Emotional Responses

    Directory of Open Access Journals (Sweden)

    María-Paz Viveros

    2007-01-01

    Full Text Available The endocannabinoid system has been involved in the regulation of anxiety, and proposed as an inhibitory modulator of neuronal, behavioral and adrenocortical responses to stressful stimuli. Brain regions such as the amygdala, hippocampus and cortex, which are directly involved in the regulation of emotional behavior, contain high densities of cannabinoid CB1 receptors. Mutant mice lacking CB1 receptors show anxiogenic and depressive-like behaviors as well as an altered hypothalamus pituitary adrenal axis activity, whereas enhancement of endocannabinoid signaling produces anxiolytic and antidepressant-like effects. Genetic and pharmacological approaches also support an involvement of endocannabinoids in extinction of aversive memories. Thus, the endocannabinoid system appears to play a pivotal role in the regulation of emotional states. Endocannabinoids have emerged as mediators of short- and long- term synaptic plasticity in diverse brain structures. Despite the fact that most of the studies on this field have been performed using in vitro models, endocannabinoid-mediated plasticity might be considered as a plausible candidate underlying some of the diverse physiological functions of the endogenous cannabinoid system, including developmental, affective and cognitive processes. In this paper, we will focus on the functional relevance of endocannabinoid-mediated plasticity within the framework of emotional responses. Alterations of the endocannabinoid system may constitute an important factor in the aetiology of certain neuropsychiatric disorders, and, in turn, enhancers of endocannabinoid signaling could represent a potential therapeutical tool in the treatment of both anxiety and depressive symptoms.

  7. Natural convection in Bingham plastic fluids from an isothermal spheroid: Effects of fluid yield stress, viscous dissipation and temperature-dependent viscosity

    Science.gov (United States)

    Gupta, Anoop Kumar; Gupta, Sanjay; Chhabra, Rajendra Prasad

    2017-08-01

    In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 102 ≤ Ra ≤ 106; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 103, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number ( Bn max) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number ( Ra) and aspect ratio ( e). In addition to this, oblate shapes ( e 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter Bn• Gr-1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.

  8. Motor cortical plasticity in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Kaviraja eUdupa

    2013-09-01

    Full Text Available In Parkinson’s disease (PD, there are alterations of the basal ganglia (BG thalamo-cortical networks, primarily due to degeneration of nigrostrial dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1, which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of L-dopa-induced dyskinesias (LID, the plasticity protocol used, medication and stimulation status in patients treated with deep brain stimulation (DBS. The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g. brain derived neurotropic factor and other neurotransmitters or receptors polymorphism, emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  9. Neural Plastic Effects of Cognitive Training on Aging Brain

    Directory of Open Access Journals (Sweden)

    Natalie T. Y. Leung

    2015-01-01

    Full Text Available Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n=109 and the Active Control Group (n=100. Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age.

  10. Neural Plastic Effects of Cognitive Training on Aging Brain.

    Science.gov (United States)

    Leung, Natalie T Y; Tam, Helena M K; Chu, Leung W; Kwok, Timothy C Y; Chan, Felix; Lam, Linda C W; Woo, Jean; Lee, Tatia M C

    2015-01-01

    Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age.

  11. Effect of steel fibers on plastic shrinkage cracking of normal and high strength concretes

    Directory of Open Access Journals (Sweden)

    Özgür Eren

    2010-06-01

    Full Text Available Naturally concrete shrinks when it is subjected to a drying environment. If this shrinkage is restrained, tensile stresses develop and concrete may crack. Plastic shrinkage cracks are especially harmful on slabs. One of the methods to reduce the adverse effects of shrinkage cracking of concrete is by reinforcing concrete with short randomly distributed fibers. The main objective of this study was to investigate the effect of fiber volume and aspect ratio of hooked steel fibers on plastic shrinkage cracking behavior together with some other properties of concrete. In this research two different compressive strength levels namely 56 and 73 MPa were studied. Concretes were produced by adding steel fibers of 3 different volumes of 3 different aspect ratios. From this research study, it is observed that steel fibers can significantly reduce plastic shrinkage cracking behavior of concretes. On the other hand, it was observed that these steel fibers can adversely affect some other properties of concrete during fresh and hardened states.

  12. Effect of soil solarization using plastic mulch in controlling root-knot ...

    African Journals Online (AJOL)

    A field experiment was conducted from February to May, 2004 and 2005 planting seasons at the Vegetable Evaluation and Research Station Farm located at Anse Boileau, Seychelles to evaluate the effect of soil solarization using plastic mulch in controlling root-knot nematode infestation and yield of lettuce.

  13. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  14. Plastics and environment

    International Nuclear Information System (INIS)

    Avenas, P.

    1996-01-01

    Synthetic organic polymers, such as plastics, PVC, polyamides etc are considered less ecological than natural materials such as wood. Other artificial materials such as metals, glass or biodegradable plastics have also a better image than petroleum products. This short paper demonstrates that the manufacturing or the transport of every material uses energy and that the complete energy balance sheet of a plastic bottle, for instance, is more favourable than the one of a glass bottle. Plastic materials are also easily valorized and recycled and part of the energy spent during manufacturing can be recovered during incineration for district heating. During the life-cycle of such a synthetic material, the same petroleum quantity can be used twice which leads to less negative effects on the environment. Finally, the paper focusses on the problem of biodegradable materials which are not degradable when buried under several meters of wastes and which are a nuisance to recycling. (J.S.)

  15. The plastic-associated microorganisms of the North Pacific Gyre.

    Science.gov (United States)

    Carson, Henry S; Nerheim, Magnus S; Carroll, Katherine A; Eriksen, Marcus

    2013-10-15

    Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm(-2)) and pennate diatoms (1097 ± 154 mm(-2)) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Seabirds, gyres and global trends in plastic pollution

    International Nuclear Information System (INIS)

    Franeker, Jan A. van; Law, Kara Lavender

    2015-01-01

    Fulmars are effective biological indicators of the abundance of floating plastic marine debris. Long-term data reveal high plastic abundance in the southern North Sea, gradually decreasing to the north at increasing distance from population centres, with lowest levels in high-arctic waters. Since the 1980s, pre-production plastic pellets in North Sea fulmars have decreased by ∼75%, while user plastics varied without a strong overall change. Similar trends were found in net-collected floating plastic debris in the North Atlantic subtropical gyre, with a ∼75% decrease in plastic pellets and no obvious trend in user plastic. The decreases in pellets suggest that changes in litter input are rapidly visible in the environment not only close to presumed sources, but also far from land. Floating plastic debris is rapidly “lost” from the ocean surface to other as-yet undetermined sinks in the marine environment. - Highlights: • Seabirds are effective biological monitors of floating plastic marine debris. • Plastics in fulmar stomachs and in the North Atlantic gyre show similar trends. • Pre-production plastic pellets show strong decreases in fulmars and in the gyre. • These data show that floating plastics rapidly disappear from the ocean surface. - Long term studies give evidence that reduced input of plastic debris into the ocean becomes rapidly visible. Floating plastics disappear to as-yet undetermined sinks

  17. Influence of preliminary plastic deformation on plasticity characteristics and structure of armco-iron

    International Nuclear Information System (INIS)

    Vergazov, A.N.; Rybin, V.V.; Meshkov, Yu.Ya.; Moskvina, V.A.; Serditova, T.N.

    1990-01-01

    Effect of preliminary plastic deformation (PPD) by drawing on the maximum plasticity characteristics (critical rupture strain) ε c , general δ and uniform δ p relative elongation and on the structure of armco-iron in a wide range of PPD degree change (e=0-4.6) is studied. It is ascertained that with e growth the metal plastic properties at T test =77 and 293 K change in a different way. In particular, the critical strain ε c increases monotonously at 77 K and reduces at 293 K. It is shown that all changes of mechanical characteristics observed with e increase are conditioned by the development of fragmentation process in armco-iron. The data obtained are discussed from the veiwpoint of the developed plastic deformation physics concepts

  18. Differential Effects of HRAS Mutation on LTP-Like Activity Induced by Different Protocols of Repetitive Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Dileone, Michele; Ranieri, Federico; Florio, Lucia; Capone, Fioravante; Musumeci, Gabriella; Leoni, Chiara; Mordillo-Mateos, Laura; Tartaglia, Marco; Zampino, Giuseppe; Di Lazzaro, Vincenzo

    2016-01-01

    Costello syndrome (CS) is a rare congenital disorder due to a G12S amino acid substitution in HRAS protoncogene. Previous studies have shown that Paired Associative Stimulation (PAS), a repetitive brain stimulation protocol inducing motor cortex plasticity by coupling peripheral nerve stimulation with brain stimulation, leads to an extremely pronounced motor cortex excitability increase in CS patients. Intermittent Theta Burst Stimulation (iTBS) represents a protocol able to induce motor cortex plasticity by trains of stimuli at 50 Hz. In healthy subjects PAS and iTBS produce similar after-effects in motor cortex excitability. Experimental models showed that HRAS-dependent signalling pathways differently affect LTP induced by different patterns of repetitive synaptic stimulation. We aimed to compare iTBS-induced after-effects on motor cortex excitability with those produced by PAS in CS patients and to observe whether HRAS mutation differentially affects two different forms of neuromodulation protocols. We evaluated in vivo after-effects induced by PAS and iTBS applied over the right motor cortex in 4 CS patients and in 21 healthy age-matched controls. Our findings confirmed HRAS-dependent extremely pronounced PAS-induced after-effects and showed for the first time that iTBS induces no change in MEP amplitude in CS patients whereas both protocols lead to an increase of about 50% in controls. CS patients are characterized by an impairment of iTBS-related LTP-like phenomena besides enhanced PAS-induced after-effects, suggesting that HRAS-dependent signalling pathways have a differential influence on PAS- and iTBS-induced plasticity in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Effect of Chemistry Laboratory Activities on Students' Chemistry Perception and Laboratory Anxiety Levels

    Science.gov (United States)

    Aydogdu, Cemil

    2017-01-01

    Chemistry lesson should be supported with experiments to understand the lecture effectively. For safety laboratory environment and to prevent laboratory accidents; chemical substances' properties, working principles for chemical substances' usage should be learnt. Aim of the present study was to analyze the effect of experiments which depend on…

  20. A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity.

    Directory of Open Access Journals (Sweden)

    Quan Wang

    2017-08-01

    Full Text Available The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP and synaptic normalization (SN. When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that

  1. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  2. Saturation of plastic deformation by swift heavy ion irradiation: Ion hammering vs. surface effects

    Energy Technology Data Exchange (ETDEWEB)

    Ferhati, Redi; Dautel, Knut; Bolse, Wolfgang [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart (Germany); Fritzsche, Monika [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2012-07-01

    Swift heavy ion (SHI) induced plastic deformation is a subject of current research and scientific discussion. This *Ion Hammering* phenomenon was first observed 30 years ago in amorphous materials like metallic glasses. About 10 years ago, Feyh et al. have shown that stress generation and *Ion Hammering* result in self-organization of thin NiO-films on Si-wafers into a sub-micron lamellae-like structure under grazing angle irradiation. The growth of the lamellae was found to saturate as soon as they have reached a thickness of a few hundreds of nm. Here we show our latest results on the restructuring of pre-patterned thin oxide films by SHI under various irradiation conditions. The experiments were performed by employing (in-situ) scanning electron microscopy, and were complemented by (in-situ) energy dispersive x-ray analysis and atomic force microscopy. As we will show, the saturation behavior can be understood as a competition of *Ion Hammering* and surface energy effects, while the unexpected fact, that the initially crystalline films undergo *Ion Hammering* can possibly be attributed to oxygen loss and thus amorphization during irradiation.

  3. Experimental manipulation of melanism demonstrates the plasticity of preferred temperature in an agricultural pest (Phaulacridium vittatum).

    Science.gov (United States)

    Harris, Rebecca M B; McQuillan, Peter; Hughes, Lesley

    2013-01-01

    Phenotypic plasticity is a key trait of successful pest species, and may increase the ability to cope with higher, more variable temperatures under climate change. We investigate the plasticity of preferred temperature in a widespread agricultural pest, the wingless grasshopper (Phaulacridium vittatum). Preferred temperature is a measure of thermoregulatory behaviour through habitat selection. It is influenced by melanism, which affects body temperature by determining the amount of radiation absorbed by the body. First we demonstrate that body temperature and preferred temperature in P. vittatum is influenced by melanism, by comparing the preferred temperature of the colour morphs in laboratory thermal gradients and field body temperatures in natural populations. We then test whether preferred temperature changes in response to changes in body temperature, by determining preferred temperature before and after manipulation of melanism by painting. When melanism was manipulated experimentally in live grasshoppers, preferred temperature changed to reflect the thermal qualities of the new colour. The preferred temperature of light grasshoppers increased after they were painted black, and decreased after being painted white. Similarly, dark individuals that were painted white behaved like a light individual, maintaining a lower body temperature. Preferred temperature in P.vittatum is a plastic thermoregulatory response to ambient temperature, mediated by the influence of melanism on body temperature.

  4. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    OpenAIRE

    Mangal Gogte

    2009-01-01

    This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  5. Measurement of cosmic ray flux in the China Jinping underground laboratory

    International Nuclear Information System (INIS)

    Wu Yucheng; Hao Xiqing; Yue Qian

    2013-01-01

    The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10 -10 /(cm 2 ·s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL. (authors)

  6. Plastic-bag radon gas monitor and survey results

    International Nuclear Information System (INIS)

    Torri, G.

    1990-01-01

    The Plastic-bag radon monitor used in the Italian National Survey is described. The choice of this radon gas sampler has been determined by the peculiarity of the italian environmental monitoring program, which is carried out by several different regional laboratories. Results obtained in the past using this radon monitoring device are also reported. (author). 8 refs, 7 figs

  7. Effect of radiation on the electrical properties of plastic detector CR-39

    International Nuclear Information System (INIS)

    Mahmoud, S.A.; Hamed, A.E.; Abou El-Kier, A.A.; Mousse, M.G.; Kassem, M.E.; El-Shafey, E.M.

    1994-01-01

    The effect of high alpha-particle fluence on plastic detector CR-39 was studied by measuring the electrical properties of the detector as a function of irradiation dose and frequency using an impedance meter in the frequency range 0.005-500 kHz. When the plastic detector CR-39 is exposed to high irradiation doses, it loses its advantage as a track detector, because of the overlapping of the tracks occurring in the detector at high irradiation fluence. Through the present measurements of dielectric permittivity and conductivity at different frequencies and temperatures, CR-39 could be used as a dosimeter for high irradiation doses

  8. Effect of radiation on the electrical properties of plastic detector CR-39

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, S.A.; Hamed, A.E.; Abou El-Kier, A.A.; Mousse, M.G.; Kassem, M.E.; El-Shafey, E.M. (Physics Department Faculty of Science, Alexandria University, Alexandria (Egypt))

    1994-10-15

    The effect of high alpha-particle fluence on plastic detector CR-39 was studied by measuring the electrical properties of the detector as a function of irradiation dose and frequency using an impedance meter in the frequency range 0.005-500 kHz. When the plastic detector CR-39 is exposed to high irradiation doses, it loses its advantage as a track detector, because of the overlapping of the tracks occurring in the detector at high irradiation fluence. Through the present measurements of dielectric permittivity and conductivity at different frequencies and temperatures, CR-39 could be used as a dosimeter for high irradiation doses.

  9. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Barannikova, Svetlana A., E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Zuev, Lev B., E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  10. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  11. The plastic-associated microorganisms of the North Pacific Gyre

    International Nuclear Information System (INIS)

    Carson, Henry S.; Nerheim, Magnus S.; Carroll, Katherine A.; Eriksen, Marcus

    2013-01-01

    Highlights: • Microorganisms mediate processes affecting the fate and impacts of marine plastic. • North Pacific Gyre (NPG) plastics were examined with scanning-electron microscopy. • Bacillus bacteria and pennate diatoms dominated the NPG plastic fouling community. • Bacterial abundance was patchily distributed but increased on foamed polystyrene. • Diatom abundance increased on rough surfaces and at sites with high plastic density. -- Abstract: Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm −2 ) and pennate diatoms (1097 ± 154 mm −2 ) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution

  12. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  13. Short-term ionic plasticity at GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2012-10-01

    Full Text Available Fast synaptic inhibition in the brain is mediated by the pre-synaptic release of the neurotransmitter γ-Aminobutyric acid (GABA and the post-synaptic activation of GABA-sensitive ionotropic receptors. As with excitatory synapses, it is being increasinly appreciated that a variety of plastic processes occur at inhibitory synapses, which operate over a range of timescales. Here we examine a form of activity-dependent plasticity that is somewhat unique to GABAergic transmission. This involves short-lasting changes to the ionic driving force for the postsynaptic receptors, a process referred to as short-term ionic plasticity. These changes are directly related to the history of activity at inhibitory synapses and are influenced by a variety of factors including the location of the synapse and the post-synaptic cell’s ion regulation mechanisms. We explore the processes underlying this form of plasticity, when and where it can occur, and how it is likely to impact network activity.

  14. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  15. Assessing the effectiveness of technology transfer from U.S. government R&D laboratories: impact of market orientation

    Science.gov (United States)

    Bozeman, Barry; Coker, Karen

    1992-05-01

    This study, based on a national survey of U.S. government laboratories, assesses the degree of success laboratories have had in transferring technology to industry, taking into account the laboratories' differing receptivity to market influences. Three success criteria are considered here, two based on self-evaluations and a third based on the number of technology licenses issued from the laboratory. The two self-evaluations are rooted in different types of effectiveness, `getting technology out the door,' in one case, and, in the other, having a demonstrable commercial impact. A core hypothesis of the study is that the two types of effectiveness will be responsive to different factors and, in particular, the laboratories with a clearer market orientation will have a higher degree of success on the commercial impact and technology license criteria. Overall, the results seem to suggest that multifaceted, multimission laboratories are likely to enjoy the most success in technology transfer, especially if they have relatively low levels of bureaucratization and either ties to industry (particularly direct financial ties) or a commercial orientation in the selection of projects.

  16. Pathways for degradation of plastic polymers floating in the marine environment.

    Science.gov (United States)

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

  17. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    Directory of Open Access Journals (Sweden)

    Mangal Gogte

    2009-12-01

    Full Text Available This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  18. Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression

    Science.gov (United States)

    Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.

    2018-04-01

    [100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.

  19. Creative use of plastics in cars

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    The increasing use being made of plastics in vehicle construction is due to the concerted efforts made to apply the results of research and development work on raw materials and use these for large-scale production. This is important, since material costs account for more than 50% of production costs. In new and important areas however, car developers are lagging behind or are proposing solutions hardly likely to effect a real breakthrough. People should get out of this rut. What we need is innovation and creativity - and this is also the slogan of the 1984 Annual Conference on April 4 and 5 at Mannheim.

  20. Wood plastic composites from modified wood. Part 3. Durability of WPCs with bioderived matrix

    NARCIS (Netherlands)

    Westin, M.; Larsson-Brelid, P.; Segerholm, B.K.; Oever, van den M.J.A.

    2008-01-01

    The decay resistance of fully bio-derived wood plastic composites, WPCs, was tested in both laboratory and field tests. The laboratory tests were performed according to modified versions of AWPA E10 (soil-block test) and ENV 807 (tests in three un-sterile soils) and the field tests according to EN

  1. Low temperature irradiation effects on plastic deformation in BCC metals

    International Nuclear Information System (INIS)

    Aono, Yasuhisa

    1984-01-01

    Low temperature electron beam experiment was carried out on high purity iron and molybdenum single crystals, and its effect on the plastic deformation was examined. As the characteristics of the irradiated iron below 77 K, remarkable softening occurred in all orientations. This phenomenon is based on the interaction of self interstitial atoms and screw dislocations, and the other features such as the absorption of interstitial atoms into screw dislocations and the slip on maximum shearing stress planes were shown. On the other hand, the aggregate of interstitial atoms formed by annealing showed the different plastic characteristics from those of interstitial atoms, and gave the results corresponding to respective stages of the electric resistance recovery curves. Regarding molybdenum, the transfer of its self interstitial atoms is near 40 K, therefore at 77 K, cluster is formed, and it largely affects abnormal slip, which is one of the features of the plasticity of molybdenum. The peculiar dependence of the yield stress on the crystalline orientation was shown. The property of the interaction of the aggregate of interstitial atoms formed and grown by the annealing from 77 K to 500 K with dislocations corresponded to the information of defects obtained by the X-ray research of Maeta, and the similarity to the aggregate of iron was observed. (Kako, I.)

  2. Effects of ionizing radiation on plastic food packaging materials: a review. 1. Chemical and physical changes

    International Nuclear Information System (INIS)

    Buchalla, R.; Schuttler, C.; Bögl, K.W.

    1993-01-01

    Irradiation of prepackaged food causes chemical and physical changes in plastic packaging materials. The effects of ionizing radiation on these materials have been studied for almost 40 years; the respective literature is reviewed to provide the basis for a safety evaluation of plastics for use in food irradiation. Permeability of plastic films is generally not affected; deterioration of mechanical properties, that may occur with certain polymers, can usually be controlled with adequate stabilizers; and changes in infrared and UV/VIS spectra are slight at food irradiation doses. Gaseous radiolysis products include hydrogen, methane, CO 2 , CO, hydrocarbons, and for chlorine-containing polymers, hydrogen chloride. A range of volatile products, mainly hydrocarbons, alcohols, aldehydes, ketones, and carboxylic acids, has been characterized for low density polyethylene and polypropylene, other important materials, e.g., polystyrene and poly(vinyl chloride), are less well-investigated. Comparatively little is known on the effect of irradiation on multilayer structures. Radiation-induced changes are shown to depend on the chemical structure of the polymer, on the composition (additives) and processing history of the plastic, and on the irradiation conditions

  3. Plastic debris in great skua (Stercorarius skua) pellets corresponds to seabird prey species.

    Science.gov (United States)

    Hammer, S; Nager, R G; Johnson, P C D; Furness, R W; Provencher, J F

    2016-02-15

    Plastic is a common item in marine environments. Studies assessing seabird ingestion of plastics have focused on species that ingest plastics mistaken for prey items. Few studies have examined a scavenger and predatory species that are likely to ingest plastics indirectly through their prey items, such as the great skua (Stercorarius skua). We examined 1034 regurgitated pellets from a great skua colony in the Faroe Islands for plastics and found approximately 6% contained plastics. Pellets containing remains of Northern fulmars (Fulmarus glacialis) had the highest prevalence of plastic. Our findings support previous work showing that Northern fulmars have higher loads of plastics than other sympatric species. This study demonstrates that marine plastic debris is transferred from surface feeding seabird species to predatory great skuas. Examination of plastic ingestion in species that do not ingest plastics directly can provide insights into how plastic particles transfer vertically within the food web. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Investigation of Bauschinger effect in thermo-plastic polymers for biodegradable stents

    Directory of Open Access Journals (Sweden)

    Schümann Kerstin

    2017-09-01

    Full Text Available The Bauschinger effect is a phenomenon metals show as a result of plastic deformation. After a primary plastic deformation the yield strength in the opposite loading direction decreases. The aim of this study is to investigate if there is a phenomenon similar to Bauschinger effect in thermoplastic polymers for stent application that would influence the mechanical properties of these biodegradable implants. Combined uniaxial tensile with subsequent compression tests as well as conventional compression tests without prior tensile loading were performed using biodegradable polymers for stent application (PLLA and a PLLA based blend. Comparing the results of compression tests with prior tensile loading to the compression-only tests a decrease in compressive strength can be observed for both of the tested materials. The conclusion of the performed experiments is that there is a phenomenon similar to Bauschinger effect not only in metallic materials but also in the examined thermoplastic polymers. The observed reduction of compressive strength as a consequence of prior tensile loading can influence the mechanical behaviour, e.g. the radial strength, of polymeric stents after sustaining a complex load history due to crimping and expansion.

  5. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing

    International Nuclear Information System (INIS)

    Uchic, Michael D.; Dimiduk, Dennis M.

    2005-01-01

    A methodology for performing uniaxial compression tests on samples having micron-size dimensions is presented. Sample fabrication is accomplished using focused ion beam milling to create cylindrical samples of uniform cross-section that remain attached to the bulk substrate at one end. Once fabricated, samples are tested in uniaxial compression using a nanoindentation device outfitted with a flat tip, and a stress-strain curve is obtained. The methodology can be used to examine the plastic response of samples of different sizes that are from the same bulk material. In this manner, dimensional size effects at the micron scale can be explored for single crystals, using a readily interpretable test that minimizes imposed stretch and bending gradients. The methodology was applied to a single-crystal Ni superalloy and a transition from bulk-like to size-affected behavior was observed for samples 5 μm in diameter and smaller

  6. Do studies on cortical plasticity provide a rationale for using non invasive brain stimulation as a treatment for Parkinson’s disease patients?

    Directory of Open Access Journals (Sweden)

    Giacomo eKoch

    2013-11-01

    Full Text Available Animal models of Parkinson’s disease (PD have shown that key mechanisms of cortical plasticity such as long-term potentiation (LTP and long-term depression (LTD can be impaired by the PD pathology. In humans protocols of non-invasive brain stimulation, such as paired associative stimulation (PAS and theta burst stimulation (TBS, can be used to investigate cortical plasticity of the primary motor cortex. Through the amplitude of the motor evoked potential (MEP these transcranial magnetic stimulation methods allow to measure both LTP-like and LTD-like mechanisms of cortical plasticity. So far these protocols have reported some controversial findings when tested in PD patients. While various studies described evidence for reduced LTP- and LTD-like plasticity, others showed different results, demonstrating increased LTP-like and normal LTD-like plasticity. Recent evidence provided support to the hypothesis that these different patterns of cortical plasticity likely depend on the stage of the disease and on the concomitant administration of levo-dopa. However, it still unclear how and if these altered mechanisms of cortical plasticity can be taken as a reliable model to build appropriate protocols aimed at treating PD symptoms b

  7. Ways of Viewing Pictorial Plasticity

    Directory of Open Access Journals (Sweden)

    Maarten W. A. Wijntjes

    2017-03-01

    Full Text Available The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter. By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  8. Ways of Viewing Pictorial Plasticity.

    Science.gov (United States)

    Wijntjes, Maarten W A

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter). By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  9. The effects of adding waste plastic fibers on some properties of roller compacted concrete

    Directory of Open Access Journals (Sweden)

    Abed Adil

    2018-01-01

    Full Text Available An attempt to produce of roller compacted concrete (RCC improved by adding waste plastic fibers (WPFs resulting from cutting the PET beverage bottles was recorded in this study. The method which is used for production of RCC is an approved design method for ACI committee (5R-207,1980[1]. WPF was added by volumetric percentages ranging between (0.5 to 2 % and reference concrete mix was produced for comparison reason. Many tests were conducted on the models produced by rolling compacted concrete like compressive strength, flexural strength, modulus of elasticity, dry density, water absorption and ultrasonic pulse velocity. The analysis of the results showed that the use of plastic waste fibers (1% had led to improvement in the properties of each of the compressive strength and flexural strength compared with reference concrete. Results also showed that the addition of these, fibers increase water absorption and reduce the speed of Ultrasonic pulse velocity.

  10. THE EVOLUTIONARY GENETICS OF AN ADAPTIVE MATERNAL EFFECT: EGG SIZE PLASTICITY IN A SEED BEETLE.

    Science.gov (United States)

    Fox, Charles W; Czesak, Mary Ellen; Mousseau, Timothy A; Roff, Derek A

    1999-04-01

    In many organisms, a female's environment provides a reliable indicator of the environmental conditions that her progeny will encounter. In such cases, maternal effects may evolve as mechanisms for transgenerational phenotypic plasticity whereby, in response to a predictive environmental cue, a mother can change the type of eggs that she makes or can program a developmental switch in her offspring, which produces offspring prepared for the environmental conditions predicted by the cue. One potentially common mechanism by which females manipulate the phenotype of their progeny is egg size plasticity, in which females vary egg size in response to environmental cues. We describe an experiment in which we quantify genetic variation in egg size and egg size plasticity in a seed beetle, Stator limbatus, and measure the genetic constraints on the evolution of egg size plasticity, quantified as the genetic correlation between the size of eggs laid across host plants. We found that genetic variation is present within populations for the size of eggs laid on seeds of two host plants (Acacia greggii and Cercidium floridum; h 2 ranged between 0.217 and 0.908), and that the heritability of egg size differed between populations and hosts (higher on A. greggii than on C. floridum). We also found that the evolution of egg size plasticity (the maternal effect) is in part constrained by a high genetic correlation across host plants (r G > 0.6). However, the cross-environment genetic correlation is less than 1.0, which indicates that the size of eggs laid on these two hosts can diverge in response to natural selection and that egg size plasticity is thus capable of evolving in response to natural selection. © 1999 The Society for the Study of Evolution.

  11. Antidepressant-Like Effects of Central BDNF Administration in Mice of Antidepressant Sensitive Catalepsy (ASC) Strain.

    Science.gov (United States)

    Tikhonova, Maria; Kulikov, Alexander V

    2012-08-31

    Although numerous data evidence the implication of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression, the potential for BDNF to correct genetically defined depressive-like states is poorly studied. This study was aimed to reveal antidepressant-like effects of BDNF (300 ng, 2×, i.c.v.) on behavior and mRNA expression of genes associated with depression-like state in the brain in mice of antidepressant sensitive catalepsy (ASC) strain characterized by high hereditary predisposition to catalepsy and depressive-like features. Behavioral tests were held on the 7th-16th days after the first (4th-13th after the second) BDNF injection. Results showed that BDNF normalized impaired sexual motivation in the ASC males, and this BDNF effect differed, with advantageous effects, from that of widely used antidepressants. The anticataleptic effect of two BDNF injections was enhanced compared with a single administration. A tendency to decrease the immobility duration in tail-suspension test was observed in BDNF-treated ASC mice. The effects on catalepsy and sexual motivation were specific since BDNF did not alter locomotor and exploratory activity or social interest in the ASC mice. Along with behavioral antidepressant-like effects on the ASC mice, BDNF increased hippocampal mRNA levels of Bdnf and Creb1 (cAMP response element-binding protein gene). BDNF also augmented mRNA levels of Arc gene encoding Arc (Activity-regulated cytoskeleton-associated) protein involved in BDNF-induced processes of neuronal and synaptic plasticity in hippocampus and prefrontal cortex. The data suggest that: [1] BDNF is effective in the treatment of some genetically defined behavioral disturbances; [2] BDNF influences sexually-motivated behavior; [3] Arc mRNA levels may serve as a molecular marker of BDNF physiological activity associated with its long-lasting behavioral effects; [4] ASC mouse strain can be used as a suitable model to study mechanisms of BDNF effects on

  12. Laboratory measures of methylphenidate effects in cocaine-dependent patients receiving treatment.

    Science.gov (United States)

    Roache, J D; Grabowski, J; Schmitz, J M; Creson, D L; Rhoades, H M

    2000-02-01

    Two experiments examined the effects of methylphenidate in male and female patients enrolled in an outpatient treatment program for primary cocaine dependence. The first study was a component of a double-blind efficacy trial wherein 57 patients were first tested in a human laboratory for their initial responsiveness to medication. Patients were randomly assigned to receive either placebo or methylphenidate treatment and received their first dose in the human laboratory environment before continuing in outpatient treatment. Methylphenidate was given as a 20-mg sustained-release dose (twice daily) plus an additional 5-mg immediate-release dose combined with the morning dose. Methylphenidate increased heart rate and subjective ratings; however, the subjective effects were primarily of a "dysphoric" nature, and significant effects were limited to increases in anxiety, depression, and anger on the Profile of Mood States; shaky/jittery ratings on a visual analog scale; and dysphoria on the lysergic acid diethylamide (LSD) scale of the Addiction Research Center Inventory. Methylphenidate did not increase cocaine craving nor ratings suggesting abuse potential (i.e., Morphine-Benzedrine Group or drug-liking scores, etc.). None of the drug effects observed in the human laboratory was of clinical concern, and no subject was precluded from continuing in the outpatient study. After outpatient treatment completion, 12 patients were brought back into a second double-blind human laboratory study in which three doses (15, 30, and 60 mg) of immediate-release methylphenidate were administered in an ascending series preceded and followed by placebo. Methylphenidate produced dose-related increases in heart rate, subjective ratings of shaky/jittery, and LSD/dysphoria without significantly altering cocaine craving or stimulant euphoria ratings. These results suggest that stimulant substitution-type approaches to the treatment of cocaine dependence are not necessarily contraindicated

  13. Mechanisms of Neuroplasticity and Ethanol’s Effects on Plasticity in the Striatum and Bed Nucleus of the Stria Terminalis

    Science.gov (United States)

    Lovinger, David M.; Kash, Thomas L.

    2015-01-01

    Long-lasting changes in synaptic function (i.e., synaptic plasticity) have long been thought to contribute to information storage in the nervous system. Although synaptic plasticity mainly has adaptive functions that allow the organism to function in complex environments, it is now clear that certain events or exposure to various substances can produce plasticity that has negative consequences for organisms. Exposure to drugs of abuse, in particular ethanol, is a life experience that can activate or alter synaptic plasticity, often resulting in increased drug seeking and taking and in many cases addiction. Two brain regions subject to alcohol’s effects on synaptic plasticity are the striatum and bed nucleus of the stria terminalis (BNST), both of which have key roles in alcohol’s actions and control of intake. The specific effects depend on both the brain region analyzed (e.g., specific subregions of the striatum and BNST) and the duration of ethanol exposure (i.e., acute vs. chronic). Plastic changes in synaptic transmission in these two brain regions following prolonged ethanol exposure are thought to contribute to excessive alcohol drinking and relapse to drinking. Understanding the mechanisms underlying this plasticity may lead to new therapies for treatment of these and other aspects of alcohol use disorder. PMID:26259092

  14. Effect of plastic deformation on the magnetic properties of selected austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Tatiana Oršulová

    2017-04-01

    Full Text Available Austenitic stainless steels are materials, that are widely used in various fields of industry, architecture and biomedicine. Their specific composition of alloying elements has got influence on their deformation behavior. The main goal of this study was evaluation of magnetic properties of selected steels, caused by plastic deformation. The samples were heat treated in different intervals of temperature before measuring. Then the magnetic properties were measured on device designed for measuring of magnetism. From tested specimens, only AISI 304 confirmed effect of plastic deformation on the magnetic properties. Magnetic properties changed with increasing temperature.

  15. What Effect Does Self-Citation Have on Bibliometric Measures in Academic Plastic Surgery?

    Science.gov (United States)

    Swanson, Edward W; Miller, Devin T; Susarla, Srinivas M; Lopez, Joseph; Lough, Denver M; May, James W; Redett, Richard J

    2016-09-01

    Research productivity plays a significant role in academic promotions. Currently, various bibliometric measures utilizing citation counts are used to judge an author's work. With increasing numbers of journals, numbers of open access publications, ease of online submission, and expedited indexing of accepted manuscripts, it is plausible that an author could influence his/her own bibliometric measures through self-citation. The purpose of this study was to determine the impact of self-citation in academic plastic surgery. A cohort of full-time academic plastic surgeons was identified from 9 U.S. plastic surgery training programs. For all included faculty, academic rank was retrieved from department/division websites, and bibliometric measures were assessed using a subscription bibliographic citation database (Scopus, Reed Elsevier, London, UK). Bibliometric measures included the Hirsch index (h-index, the number of publications h which are cited ≥ h times), total number of publications, and total number of citations. The h-index and total number of citations were collected with and without self-citations. Percent changes in the h-index and total citations were calculated after removal of self-citations and compared across academic ranks and levels of research productivity (total publications, h-index, and total citations). The study cohort consisted of 169 full-time academic plastic surgeons. The h-index and total citations experienced decreases of 2.8 ± 5.0% (P citation. More than half of the cohort (n = 113, 67%) did not experience a change in the h-index after removal of self-citations. These decreases did not vary across academic rank. Surgeons who self-cited at rates greater than 5% were 9.8 times more likely (95% confidence interval, 4.5-21.9; P citation (after adjusting for academic rank). There were weak correlations between percent decreases in the h-index and total citations and various biblimoteric measures (total publications, h-index, total citations

  16. Computation of the effect of pipe plasticity on pressure-pulse propagation in a fluid system

    International Nuclear Information System (INIS)

    Youngdahl, C.K.; Kot, C.A.

    1975-04-01

    A simple computational model is developed for incorporating the effect of elastic-plastic deformation of piping on pressure-transient propagation in a fluid system. A computer program (PLWV) is described that incorporates this structural interaction model into a one-dimensional method-of-characteristics procedure for fluid-hammer analysis. Computed results are shown to be in good agreement with available experimental data. The most significant effect of plastic deformation is to limit the peak pressure of a pulse leaving a pipe to approximately the yield pressure of the pipe, if the pipe is sufficiently long. 7 references. (U.S.)

  17. Personality-matching habitat choice, rather than behavioural plasticity, is a likely driver of a phenotype-environment covariance.

    Science.gov (United States)

    Holtmann, Benedikt; Santos, Eduardo S A; Lara, Carlos E; Nakagawa, Shinichi

    2017-10-11

    An emerging hypothesis of animal personality posits that animals choose the habitat that best fits their personality, and that the match between habitat and personality can facilitate population differentiation, and eventually speciation. However, behavioural plasticity and the adjustment of behaviours to new environments have been a classical explanation for such matching patterns. Using a population of dunnocks ( Prunella modularis ), we empirically tested whether personality or behavioural plasticity is responsible for the non-random distribution of shy and bold individuals in a heterogeneous environment. We found evidence for bold individuals settling in areas with high human disturbance, but also that birds became bolder with increasing age. Importantly, personality primarily determines the distribution of individuals, and behavioural adjustment over time contributes very little to the observed patterns. We cannot, however, exclude a possibility of very early behavioural plasticity (a type of developmental plasticity) shaping what we refer to as 'personality'. Nonetheless, our findings highlight the role personality plays in shaping population structure, lending support to the theory of personality-mediated speciation. Moreover, personality-matching habitat choice has important implications for population management and conservation. © 2017 The Author(s).

  18. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.

    2013-04-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  19. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.; Gerya, T. V.; Dalguer, L. A.; Corbi, F.; Funiciello, F.; Mai, Paul Martin

    2013-01-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  20. Effect of confinement on forced convection from a heated sphere in Bingham plastic fluids

    Science.gov (United States)

    Das, Pradipta K.; Gupta, Anoop K.; Nirmalkar, Neelkanth; Chhabra, Raj P.

    2015-05-01

    In this work, the momentum and heat transfer characteristics of a heated sphere in tubes filled with Bingham plastic fluids have been studied. The governing differential equations (continuity, momentum and thermal energy) have been solved numerically over wide ranges of conditions as: Reynolds number, 1 ≤ Re ≤ 100; Prandtl number, 1 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 100 and blockage ratio,0 ≤ λ ≤ 0.5 where λ is defined as the ratio of the sphere to tube diameter. Over this range of conditions, the flow is expected to be axisymmetric and steady. The detailed flow and temperature fields in the vicinity of the surface of the sphere are examined in terms of the streamline and isotherm contours respectively. Further insights are developed in terms of the distribution of the local Nusselt number along the surface of the sphere together with their average values in terms of mean Nusselt number. Finally, the wall effects on drag are present only when the fluid-like region intersects with the boundary wall. However, heat transfer is always influenced by the wall effects. Also, the flow domain is mapped in terms of the yielded- (fluid-like) and unyielded (solid-like) sub-regions. The fluid inertia tends to promote yielding whereas the yield stress counters it. Furthermore, the introduction of even a small degree of yield stress imparts stability to the flow and therefore, the flow remains attached to the surface of the sphere up to much higher values of the Reynolds number than that in Newtonian fluids. The paper is concluded by developing predictive correlations for drag and Nusselt number.

  1. Knowledge, attitude, and practices on usage, disposal, and effect of plastic bags on sheep and goats.

    Science.gov (United States)

    Otsyina, H R; Nguhiu-Mwangi, J; Mogoa, E G M; Mbuthia, P G; Ogara, W O

    2018-02-08

    The objective of this study was to evaluate knowledge, attitudes, and practices of people in the Nairobi and Kajiado Counties, Kenya, on the usage, disposal, and effect of plastic waste on sheep and goats (shoats). A semi-structured questionnaire was used to collect data from 384 respondents in four communities in the two counties. Most of the people irrespective of their age, occupation, and educational status used plastic bags of some type on a daily basis. A high proportion of the respondents (37.0%, 142) used plastic bags because of the low cost. Approximately, 79.1% (304) disposed used plastic bags in open dumps. A total of 147 (38.3%) households kept shoats. Out of these, 38.1% (56) purchased feed and also allowed their animals to roam. Most of them (45.3%, 174) thought that lack of feed for the animals was the main reason why shoats roam and scavenge at refuse dump sites and road sides. A large proportion of the respondents (44.5%, 143) mentioned death of animals as the ultimate consequence of ingestion of waste plastic bags. Though, the respondents were aware that indiscriminate disposal of used plastic bags could result in death of the animals from which they derive their livelihoods, they nevertheless continued with the practice. There is a need for a paradigm shift in the way and manner plastic bags are used and disposed.

  2. Crystal plasticity assisted prediction on the yield locus evolution and forming limit curves

    Science.gov (United States)

    Lian, Junhe; Liu, Wenqi; Shen, Fuhui; Münstermann, Sebastian

    2017-10-01

    The aim of this study is to predict the plastic anisotropy evolution and its associated forming limit curves of bcc steels purely based on their microstructural features by establishing an integrated multiscale modelling approach. Crystal plasticity models are employed to describe the micro deformation mechanism and correlate the microstructure with mechanical behaviour on micro and mesoscale. Virtual laboratory is performed considering the statistical information of the microstructure, which serves as the input for the phenomenological plasticity model on the macroscale. For both scales, the microstructure evolution induced evolving features, such as the anisotropic hardening, r-value and yield locus evolution are seamlessly integrated. The predicted plasticity behaviour by the numerical simulations are compared with experiments. These evolutionary features of the material deformation behaviour are eventually considered for the prediction of formability.

  3. Effects of irrigation and plastic mulch on soil properties on semi-arid abandoned fields

    OpenAIRE

    van der Meulen, E.S.; Nol, L.; Cammeraat, L.H.

    2006-01-01

    The Guadalentín Basin in Spain is one of the driest areas of Europe and has problems with high evaporation rates, and high risks of desertification exist including soil quality loss and soil erosion. Farmers in this semi-arid region use polyethylene covers on their irrigated croplands to reduce evaporation in order to enhance crop yield. When farmers abandon the acres, they leave the plastic covers on the fields. Up to now research has been concentrating on the effects of plastic covers on cr...

  4. Elastic-plastic-creep analysis of shells

    International Nuclear Information System (INIS)

    Pai, D.H.

    1979-01-01

    This paper presents the recent experience of a designer/fabricator of nuclear heat transport components in the area of elastic-plastic-creep analysis of shell-like structures. A brief historical perspective is first given to highlight the evolution leading to the present industry practice. The ASME elevated temperature design criteria will be discussed followed by examples of actual computations performed to support the design/analysis and fabrication of a breeder reactor component in which a substantial amount of elastic-plastic-creep analysis was performed. Mathematical challenges encountered by the design analyst in these problems will be highlighted. Developmental needs and future trends will then be given

  5. Plastic freezer bags: a cost-effective method to protect extraction sites in laparoscopic colorectal procedures?

    Science.gov (United States)

    Huynh, Hai P; Musselman, Reilly P; Trottier, Daniel C; Soto, Claudia M; Poulin, Eric C; Mamazza, Joseph; Boushey, Robin P; Auer, Rebecca C; Moloo, Husein

    2013-10-01

    To review surgical-site infection (SSI) and retrieval-site tumor recurrence rates in laparoscopic colorectal procedures when using a plastic freezer bag as a wound protector. Laparoscopic colorectal procedures where a plastic freezer bag used as a wound protector at the extraction site were reviewed between 1991 and 2008 from a prospectively collected database. χ test was used to compare SSI and tumor recurrence rates between groups. Costing data were obtained from the operating room supplies department. A total of 936 cases with 51 (5.45%) surgical-site infections were identified. SSI rates did not differ when comparing groups based on demographic factors, diagnosis, or location of procedure. Retrieval-site tumor recurrence rate was 0.21% (1/474). Cost of plastic freezer bags including sterilization ranged from $0.25 to $3. Plastic freezer bags as wound protectors in laparoscopic colorectal procedures are cost effective and have SSI and retrieval-site tumor recurrence rates that compare favorably to published data.

  6. Suitability for 3D Printed Parts for Laboratory Use

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, Andrew P. [PPPL; Bloom, Josh [PPPL; Albertson, Robert [PPPL; Gershman, Sophia [PPPL

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  7. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history.

    Science.gov (United States)

    Marshall, Dustin J

    2008-02-01

    Maternal effects can have dramatic influences on the phenotype of offspring. Maternal effects can act as a conduit by which the maternal environment negatively affects offspring fitness, but they can also buffer offspring from environmental change by altering the phenotype of offspring according to local environmental conditions and as such, are a form of transgenerational plasticity. The benefits of maternal effects can be highly context dependent, increasing performance in one life-history stage but reducing it in another. While maternal effects are increasingly well understood in terrestrial systems, studies in the marine environment are typically restricted to a single, early life-history stage. Here, I examine the role of maternal effects across the life history of the bryozoan Bugula neritina. I exposed maternal colonies to a common pollution stress (copper) in the laboratory and then placed them in the field for one week to brood offspring. I then examined the resistance of offspring to copper from toxicant-exposed and toxicant-naïve mothers and found that offspring from toxicant-exposed mothers were larger, more dispersive, and more resistant to copper stress than offspring from naïve mothers. However, maternal exposure history had pervasive, negative effects on the post-metamorphic performance (particularly survival) of offspring: offspring from toxicant-exposed mothers had poorer performance after six weeks in the field, especially when facing high levels of intraspecific competition. Maternal experience can have complex effects on offspring phenotype, enhancing performance in one life-history stage while decreasing performance in another. The context-dependent costs and benefits associated with maternally derived pollution resistance may account for why such resistance is induced rather than continually expressed: mothers must balance the benefits of producing pollution-resistant larvae with the costs of producing poorer performing adults (in the

  8. Effects of plasticization and shear stress on phase structure development and properties of soy protein blends.

    Science.gov (United States)

    Chen, Feng; Zhang, Jinwen

    2010-11-01

    In this study, soy protein concentrate (SPC) was used as a plastic component to blend with poly(butylene adipate-co-terephthalate) (PBAT). Effects of SPC plasticization and blend composition on its deformation during mixing were studied in detail. Influence of using water as the major plasticizer and glycerol as the co-plasticizer on the deformation of the SPC phase during mixing was explored. The effect of shear stress, as affected by SPC loading level, on the phase structure of SPC in the blends was also investigated. Quantitative analysis of the aspect ratio of SPC particles was conducted by using ImageJ software, and an empirical model predicting the formation of percolated structure was applied. The experimental results and the model prediction showed a fairly good agreement. The experimental results and statistic analysis suggest that both SPC loading level and its water content prior to compounding had significant influences on development of the SPC phase structure and were correlated in determining the morphological structures of the resulting blends. Consequently, physical and mechanical properties of the blends greatly depended on the phase morphology and PBAT/SPC ratio of the blends.

  9. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster

    DEFF Research Database (Denmark)

    Bubliy, Oleg A; Kristensen, Torsten Nygård; Kellermann, Vanessa

    2012-01-01

    such as reduction of metabolic rate and accumulation of energy reserves might be involved. 6. The lack of cross-resistance induced by acclimation ⁄ hardening treatments suggests that in an environment with multiple stresses, evolution of shared protective systems associated with plastic responses may be constrained.......1. Acclimation or hardening to one stress in arthropods can lead to a plastic response, which confers increased resistance to other stresses. Such cross-resistance may indicate shared physiological resistance mechanisms and a possibility of joint evolution for resistance traits. 2. In this study...

  10. Effect of cyclic plastic pre-strain on low cycle fatigue life

    International Nuclear Information System (INIS)

    Kanno, Satoshi; Nakane, Motoki; Yorikawa, Morio; Takagi, Yoshio

    2010-01-01

    In order to evaluate structural integrity of nuclear components subjected large seismic load which produce locally plastic strain, low cycle fatigue life was examined using cyclic plastic pre-strained materials of austenitic steel (SUS316, SUS316L, SUS304TP: JIS (Japanese Industrial Standards)) and ferritic steel (SFVQ1A, STS480, STPT410, SFVC2B, SS400: JIS). It was not found that cyclic plastic pre-strain up to range of 16%, 2.5 times affected on low cycle fatigue life. The validity of existing procedure of fatigue life estimation based on usage factor was confirmed when large seismic load brought nuclear materials cyclic plastic strain. (author)

  11. Synaptic plasticity in drug reward circuitry.

    Science.gov (United States)

    Winder, Danny G; Egli, Regula E; Schramm, Nicole L; Matthews, Robert T

    2002-11-01

    Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.

  12. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  13. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.; Masuzawa, T.

    2011-01-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO 2 ) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO 2 films and DLC/TiO 2 /DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO 2 -coated and the DLC/TiO 2 /DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO 2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO 2 /DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO 2 /DLC film had a photocatalytic effect even though the TiO 2 film was covered with the DLC film.

  14. Ice sheets on plastically-yielding beds

    Science.gov (United States)

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  15. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    Science.gov (United States)

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  16. Prefabricated light-polymerizing plastic pattern for partial denture framework

    Directory of Open Access Journals (Sweden)

    Atsushi Takaichi

    2011-01-01

    Full Text Available Our aim is to report an application of a prefabricated light-polymerizing plastic pattern to construction of removable partial denture framework without the use of a refractory cast. A plastic pattern for the lingual bar was adapted on the master cast of a mandibular Kennedy class I partially edentulous patient. The pattern was polymerized in a light chamber. Cobalt-chromium wires were employed to minimize the potential distortion of the plastic framework. The framework was carefully removed from the master cast and invested with phosphate-bonded investment for the subsequent casting procedures. A retentive clasp was constructed using 19-gauge wrought wire and was welded to the framework by means of laser welding machine. An excellent fit of the framework in the patient′s mouth was observed in the try-in and the insertion of the denture. The result suggests that this method minimizes laboratory cost and time for partial denture construction.

  17. Development of Bake Hardening Effect by Plastic Deformation and Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Kvačkaj, T.

    2006-01-01

    Full Text Available The paper deals with the classification of steel sheets for automotives industry on the basis of strength and structural characteristics. Experimental works were aimed to obtain the best possible strengthening parameters as well as work hardening and solid solution ferrite hardening, which are the result of thermal activation of interstitial carbon atoms during paint-baking of auto body. Hardening process coming from interstitial atoms is realized as two-step process. The first step is BH (bake hardening effect achieved by interaction of interstitial atoms with dislocations. The Cottrels atmosphere is obtained. The second step of BH effect is to produced the hardening from precipitation of the carbon atoms in e-carbides, or formation of Fe32C4 carbides. WH (work hardening effect is obtained as dislocation hardening from plastic deformations during sheet deep drawing. Experimental works were aimed at as to achieve such plastic material properties after cold rolling, annealing and skin-pass rolling, which would be able to classify the material ZStE220BH into the drawing categories at the level of DQ – DDQ. As resulting from the experimental results, the optimal treatment conditions for the maximal sum (WH+BH = 86 MPa are as follows: total cold rolling deformation ecold = 65 %, annealing temperature Tanneal. = 700 °C.

  18. NPY gene transfer in the hippocampus attenuates synaptic plasticity and learning

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Kanter-Schlifke, Irene; Carli, Mirjana

    2008-01-01

    -mediated mechanisms. In addition, transgene NPY seems to be released during high frequency neuronal activity, leading to decreased glutamate release in excitatory synapses. Importantly, memory consolidation appears to be affected by the treatment. We found that long-term potentiation (LTP) in the CA1 area...... processing. Here we show, by electrophysiological recordings in CA1 of the hippocampal formation of rats, that hippocampal NPY gene transfer into the intact brain does not affect basal synaptic transmission, but slightly alters short-term synaptic plasticity, most likely via NPY Y2 receptor....... Future clinical progress, however, requires more detailed evaluation of possible side effects of this treatment. Until now it has been unknown whether rAAV vector-based NPY overexpression in the hippocampus alters normal synaptic transmission and plasticity, which could disturb learning and memory...

  19. Ablation of kappa-opioid receptors from brain dopamine neurons has anxiolytic-like effects and enhances cocaine-induced plasticity.

    Science.gov (United States)

    Van't Veer, Ashlee; Bechtholt, Anita J; Onvani, Sara; Potter, David; Wang, Yujun; Liu-Chen, Lee-Yuan; Schütz, Günther; Chartoff, Elena H; Rudolph, Uwe; Cohen, Bruce M; Carlezon, William A

    2013-07-01

    Brain kappa-opioid receptors (KORs) are implicated in states of motivation and emotion. Activation of KORs negatively regulates mesolimbic dopamine (DA) neurons, and KOR agonists produce depressive-like behavioral effects. To further evaluate how KOR function affects behavior, we developed mutant mice in which exon 3 of the KOR gene (Oprk1) was flanked with Cre-lox recombination (loxP) sites. By breeding these mice with lines that express Cre-recombinase (Cre) in early embryogenesis (EIIa-Cre) or only in DA neurons (dopamine transporter (DAT)-Cre), we developed constitutive KOR knockouts (KOR(-/-)) and conditional knockouts that lack KORs in DA-containing neurons (DAT-KOR(lox/lox)). Autoradiography demonstrated complete ablation of KOR binding in the KOR(-/-) mutants, and reduced binding in the DAT-KOR(lox/lox) mutants. Quantitative reverse transcription PCR (qPCR) studies confirmed that KOR mRNA is undetectable in the constitutive mutants and reduced in the midbrain DA systems of the conditional mutants. Behavioral characterization demonstrated that these mutant lines do not differ from controls in metrics, including hearing, vision, weight, and locomotor activity. Whereas KOR(-/-) mice appeared normal in the open field and light/dark box tests, DAT-KOR(lox/lox) mice showed reduced anxiety-like behavior, an effect that is broadly consistent with previously reported effects of KOR antagonists. Sensitization to the locomotor-stimulating effects of cocaine appeared normal in KOR(-/-) mutants, but was exaggerated in DAT-KOR(lox/lox) mutants. Increased sensitivity to cocaine in the DAT-KOR(lox/lox) mutants is consistent with a role for KORs in negative regulation of DA function, whereas the lack of differences in the KOR(-/-) mutants suggests compensatory adaptations after constitutive receptor ablation. These mouse lines may be useful in future studies of KOR function.

  20. Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.

    Science.gov (United States)

    Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo

    2012-03-01

    No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.

  1. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations

    Directory of Open Access Journals (Sweden)

    Jacob J. Herman

    2011-12-01

    Full Text Available Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

  2. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations.

    Science.gov (United States)

    Herman, Jacob J; Sultan, Sonia E

    2011-01-01

    Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

  3. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks

    Directory of Open Access Journals (Sweden)

    Claudia eCasellato

    2015-02-01

    Full Text Available The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.

  4. Effect of Microstructure Evolution on the Overall Response of Porous-Plastic Solids

    Directory of Open Access Journals (Sweden)

    Stefano Mariani

    2010-02-01

    Full Text Available Ductile fracture is the macroscopic result of a micromechanical process consisting in void nucleation and growth to coalescence. While growing in size, voids also evolve in shape because of the non-uniform deformation field in the surrounding material; this shape evolution is either disregarded or approximately accounted for by constitutive laws for porous-plastic solids. To assess the effect of void distortion on the overall properties of a porous-plastic material prior to any coalescence-dominated event, we here present a micromechanical study in which the void-containing material is treated as a two-phase (matrix and inclusion composite. A cylindrical representative volume element (RVE, featuring elliptic cross-section and containing a coaxial and confocal elliptic cylindrical cavity, is considered. In case of a matrix obeying J2 flow theory of plasticity, the overall yield domain and the evolution laws for the volume fraction and aspect ratio of the void are obtained. Under assigned strain histories, these theoretical findings are then compared to finite element unit-cell simulations, in order to assess the capability of the proposed results to track microstructure evolution. The improvements with respect to the customarily adopted Gurson’s model are also discussed.

  5. Mesocycles in conserving plastics

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2016-01-01

    driven by the need to balance the requirements for reversibility in conservation practices with the artist’s intent and significance. Developments within each of the three mesocycles from the 1990s to date are discussed in this article. Environmental science and toxicology of waste plastics offer a novel...... source of information about real time degradation in terrestrial and marine microenvironments that seems likely to contribute to the conservation of similar materials in contemporary artworks....

  6. The size effects upon shock plastic compression of nanocrystals

    Science.gov (United States)

    Malygin, G. A.; Klyavin, O. V.

    2017-10-01

    For the first time a theoretical analysis of scale effects upon the shock plastic compression of nanocrystals is implemented in the context of a dislocation kinetic approach based on the equations and relationships of dislocation kinetics. The yield point of crystals τy is established as a quantitative function of their cross-section size D and the rate of shock deformation as τy ɛ2/3 D. This dependence is valid in the case of elastic stress relaxation on account of emission of dislocations from single-pole Frank-Read sources near the crystal surface.

  7. Plasticity analysis of nano-grain-sized NiAl alloy in an atomic scale

    International Nuclear Information System (INIS)

    Wang Jingyang; Wang Xiaowei; Rifkin, J.; Li Douxing

    2001-12-01

    The molecular dynamics method is used to simulate a uniaxial tensile deformation of 3.8nm nano-NiAl alloy with curved amorphous-like interfaces at 0K. Plastic deformation behaviour is studied by examining the strain-stress relationship and the microstructural evolution characteristic. Atomic level analysis showed that the micro-strain is essentially heterogeneous in simulated nano-phase samples. The plastic deformation is not only attributed to the plasticity of interfaces, but also accompanied with the plastic shear strain mechanism inside lattice distortion regions and grains. (author)

  8. Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type

    Science.gov (United States)

    Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.

    2017-07-01

    In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.

  9. Reliability of Elasto-Plastic Structural Systems

    DEFF Research Database (Denmark)

    Delmar, M. V.; Sørensen, John Dalsgaard

    1990-01-01

    This paper proposes a method for generating safety margins and failure mode equations for elasto-plastic structures where interaction of load effects is taken into account. Structural failure is defined by large nodal displacements or plastic collapse. A branch-and-bound technique is used...

  10. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    Directory of Open Access Journals (Sweden)

    Lindsay Miller

    2014-08-01

    Full Text Available Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  11. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    Science.gov (United States)

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-01-01

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products. PMID:28788167

  12. Synaptic plasticity and the warburg effect

    KAUST Repository

    Magistretti, Pierre J.

    2014-01-01

    Functional brain imaging studies show that in certain brain regions glucose utilization exceeds oxygen consumption, indicating the predominance of aerobic glycolysis. In this issue, Goyal et al. (2014) report that this metabolic profile is associated with an enrichment in the expression of genes involved in synaptic plasticity and remodeling processes. © 2014 Elsevier Inc.

  13. SSPM based radiation sensing: Preliminary laboratory and clinical results

    International Nuclear Information System (INIS)

    Konnoff, Daniel C.; Plant, Thomas K.; Shiner, Elizabeth

    2011-01-01

    Recent Solid State Photomultiplier (SSPM) technology has matured, reaching a performance level that is suitable for replacement of the ubiquitous photomultiplier tube in selected applications for environmental radiation monitoring, clinical dosimetry, and medical imaging purposes. The objective of this work is low signal level laboratory and high signal level clinical testing of the Hamamatsu MPPC (S10362-11-050C), Photonique SSPM (0810G1), and Voxtel SiPM (SQBF-EKAA/SQBF-EIOA) SSPMs coupled to different inorganic scintillator crystals (Prelude 420, BGO), inorganic doped glass scintillator material SiO 2 :Cu 2+ and organic BCF-12 plastic scintillating fibers, used as detector elements. Plastic Optical Fibers (POFs) and Glass Optical Fibers (GOFs) are used as signal conduits for laboratory and clinical testing. Further, reduction of electron-beam-generated Cerenkov light in optical fibers is facilitated by the inclusion of metalized air-core capillary tubing between the BCF-12 plastic scintillating fiber and the POF. In a clinical setting dose linearity, percent depth dose, and angular measurements for 6 MV/18 MV photon beams and 9 MeV electron beams are compared with and without the use of the air-core capillary tubing for BCF-12 plastic scintillating fiber. These same measurements are repeated for SiO 2 :Cu 2+ scintillator material without air-core capillary tubing.

  14. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  15. Investigation of plastic zones near SCC tips in a pipeline after hydrostatic testing

    International Nuclear Information System (INIS)

    Li Jian; Elboujdaini, M.; Gao, M.; Revie, R.W.

    2008-01-01

    Stress corrosion cracking (SCC) is an important failure mechanism for oil and gas pipelines. In the past, hydrostatic testing has been frequently used to assess and mitigate stress corrosion cracking. It is commonly agreed that an effective hydrostatic test not only eliminates critical crack-like flaws, but also blunts the sub-critical crack tip thereby suppressing further SCC propagation. However, little study has been done on the plastic deformation that results from the high stress intensity at the crack tip due to hydrostatic testing pressure and its possible role in subsequent SCC propagation. In this study, microstructural details were examined of an API 5L X52 SCC-containing pipe removed from field service. Plastic deformation generated by the hydrostatic testing pressure was revealed by using high-resolution imaging of a focused ion beam (FIB) microscope. The existence of the microscopic plastic zones around some crack tips suggests that caution should be taken when setting up pipeline hydrostatic tests

  16. Investigation of plastic zones near SCC tips in a pipeline after hydrostatic testing

    Energy Technology Data Exchange (ETDEWEB)

    Li Jian [Materials Technology Laboratory, Natural Resources Canada, 568 Booth Street, Ottawa, Ont., K1A 0G1 (Canada)], E-mail: jili@nrcan.gc.ca; Elboujdaini, M [Materials Technology Laboratory, Natural Resources Canada, 568 Booth Street, Ottawa, Ont., K1A 0G1 (Canada); Gao, M [Blade Energy Partners, 16225 Park Ten Place, Suite 450, Houston, TX 77084 (United States); Revie, R W [Materials Technology Laboratory, Natural Resources Canada, 568 Booth Street, Ottawa, Ont., K1A 0G1 (Canada)

    2008-07-15

    Stress corrosion cracking (SCC) is an important failure mechanism for oil and gas pipelines. In the past, hydrostatic testing has been frequently used to assess and mitigate stress corrosion cracking. It is commonly agreed that an effective hydrostatic test not only eliminates critical crack-like flaws, but also blunts the sub-critical crack tip thereby suppressing further SCC propagation. However, little study has been done on the plastic deformation that results from the high stress intensity at the crack tip due to hydrostatic testing pressure and its possible role in subsequent SCC propagation. In this study, microstructural details were examined of an API 5L X52 SCC-containing pipe removed from field service. Plastic deformation generated by the hydrostatic testing pressure was revealed by using high-resolution imaging of a focused ion beam (FIB) microscope. The existence of the microscopic plastic zones around some crack tips suggests that caution should be taken when setting up pipeline hydrostatic tests.

  17. Are consumers concerned about plastic water bottles environmental impact?

    OpenAIRE

    Caroline Orset; Nicolas Barret; Aurélien Lemaire

    2015-01-01

    Although plastic induces environmental damages, almost all water bottles are made from plastic. However, these damages are more or less significant according to the plastic used. This study evaluates the consumers' willingness to pay (WTP) for different plastics used for water packaging. Successive messages emphasizing the characteristics of plastic are delivered to participants allowing explaining information influence on the consumers' WTP. We find that information has a significant effect ...

  18. Plastic Surgery

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Plastic Surgery KidsHealth / For Teens / Plastic Surgery What's in ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  19. The Role of Neuromodulators in Cortical Plasticity. A Computational Perspective

    Science.gov (United States)

    Pedrosa, Victor; Clopath, Claudia

    2017-01-01

    Neuromodulators play a ubiquitous role across the brain in regulating plasticity. With recent advances in experimental techniques, it is possible to study the effects of diverse neuromodulatory states in specific brain regions. Neuromodulators are thought to impact plasticity predominantly through two mechanisms: the gating of plasticity and the upregulation of neuronal activity. However, the consequences of these mechanisms are poorly understood and there is a need for both experimental and theoretical exploration. Here we illustrate how neuromodulatory state affects cortical plasticity through these two mechanisms. First, we explore the ability of neuromodulators to gate plasticity by reshaping the learning window for spike-timing-dependent plasticity. Using a simple computational model, we implement four different learning rules and demonstrate their effects on receptive field plasticity. We then compare the neuromodulatory effects of upregulating learning rate versus the effects of upregulating neuronal activity. We find that these seemingly similar mechanisms do not yield the same outcome: upregulating neuronal activity can lead to either a broadening or a sharpening of receptive field tuning, whereas upregulating learning rate only intensifies the sharpening of receptive field tuning. This simple model demonstrates the need for further exploration of the rich landscape of neuromodulator-mediated plasticity. Future experiments, coupled with biologically detailed computational models, will elucidate the diversity of mechanisms by which neuromodulatory state regulates cortical plasticity. PMID:28119596

  20. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  1. Neuroplasticity-related mechanisms underlying the antidepressant-like effects of traditional herbal medicines.

    Science.gov (United States)

    Hirshler, Yafit; Doron, Ravid

    2017-10-01

    Traditional herbal medicine can offer efficacious and safe alternative pharmacotherapies for depression. The ability of an herbal medicine to produce neuroadaptive processes, that enhance neuroplasticity and cellular resilience in response to chronic stress, may point to its antidepressant potential. We suggest that among many investigated herbal medicines, those that can enhance neuroplasticity may have stronger therapeutic potential. The current article presents a summary of traditional herbal medicines, which are thought to exert antidepressant-like effects in chronic stress models via neuroplasticity enhancement. Brain-derived neurotrophic factor (BDNF) is a biomarker for neuroplasticity-related mechanisms compromised in depression and recovered by conventional antidepressants, including synaptic plasticity, cell survival, neurogenesis and spine formation. We therefore presumed that if an herbal medicine up-regulates BDNF in the hippocampus and/or prefrontal cortex (PFC), its antidepressant-like effect is mediated, at least partially, via neuroplasticity-related mechanisms. Literature search was performed using the general terms depression, stress, neuroplasticity and herbal medicines. Screening of retrieved preclinical studies revealed 30 traditional herbal medicines: 8 single herbs, 15 bioactive constituents, and 7 herbal formulas. The antidepressant-like effects of these medicines were associated with reversal of chronic stress-induced impairment in neuroplasticity, most notably by BDNF up-regulation, activation of BDNF downstream signaling pathways and increase in neurogenesis in the hippocampus and/or PFC/frontal cortex. In light of the ability of these medicines to enhance neuroplasticity, we suggest that they may be suitable candidates for clinical investigation in depressed individuals. Once their efficacy, tolerability and safety will be substantiated, they may serve as natural alternatives to conventional antidepressants. Copyright © 2017 Elsevier B

  2. Effect of Lime on characteristics of consolidation, strength, swelling and plasticity of fine grained soil

    Science.gov (United States)

    Estabragh, A. R.; Bordbar, A. T.; Parsaee, B.; Eskandari, Gh.

    2009-04-01

    Using Lime as an additive material to clayey soil is one of the best effective technique in building the soil structures to get some purposes such as soil stabilization, soil reinforcement and decreasing soil swelling. In this research the effect of Lime on geotechnical characteristics of a clayey soil was investigated. Soil specimen types used in this study were consisted of clayey soil as the control treatment and clay mixed with different weight fractions of lime, 4, 6, 8 & 10 percent. Some experiments such as CBR, atterburg limits, compaction, consolidation and swelling was conducted on specimens. Results revealed that adding lime to soil would change its physical and mechanical properties. Adding lime increase the compression strength and consolidation coefficient and decrease swelling potential and maximum dry density. According to the results, Atterburg experiments show that presence of lime in soil increase the liquid limit of low plasticity soil and decrease the liquid limit of high plasticity soil, but totally it decreases the plasticity index of soils. Key words: soil stabilization, lime, compression strength, swelling, atterburg limits, compaction

  3. Plastic collapse moment for pipe repaired with weld overlay

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Shibuya, Akira; Deardorff, Arthur

    2009-01-01

    The Weld Overlay has been used in several countries as an effective method to repair the stress corrosion cracks in nuclear power plant piping. However, the method to evaluate the plastic collapse stress for the pipe repaired with Weld Overlay has not been proposed and the limit load criterion for single uniform material has been used to design its structure by now. In this paper, the equations to evaluate the plastic collapse moment for the pipe repaired with Weld Overlay have been derived considering two layer materials. Moreover, several numerical examples are given to show the validity of Weld Overlay. The equations given in this paper are simple to use like the limit load criterion showed in present standards such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI, and they can not only be used to evaluate the fracture of the pipe, but also be applied to design the weld structure. (author)

  4. On the rheology of dilative granular media: Bridging solid- and fluid-like behavior

    Science.gov (United States)

    Andrade, José E.; Chen, Qiushi; Le, Phong H.; Avila, Carlos F.; Matthew Evans, T.

    2012-06-01

    A new rate-dependent plasticity model for dilative granular media is presented, aiming to bridge the seemingly disparate solid- and fluid-like behavioral regimes. Up to date, solid-like behavior is typically tackled with rate-independent plasticity models emanating from Mohr-Coulomb and Critical State plasticity theory. On the other hand, the fluid-like behavior of granular media is typically treated using constitutive theories amenable to viscous flow, e.g., Bingham fluid. In our proposed model, the material strength is composed of a dilation part and a rate-dependent residual strength. The dilatancy strength plays a key role during solid-like behavior but vanishes in the fluid-like regime. The residual strength, which in a classical plasticity model is considered constant and rate-independent, is postulated to evolve with strain rate. The main appeal of the model is its simplicity and its ability to reconcile the classic plasticity and rheology camps. The applicability and capability of the model are demonstrated by numerical simulation of granular flow problems, as well as a classical shear banding problem, where the performance of the continuum model is compared to discrete particle simulations and physical experiment. These results shed much-needed light onto the mechanics and physics of granular media at various shear rates.

  5. Effect of different plasticizers on poly(N-vinyl-2-pyrrolidone) hydrogels cross-linked by radiation

    International Nuclear Information System (INIS)

    Alcantara, Mara Tania S.; Giannini, Danielle R.; Brant, Antonio J.C.; Riella, Humberto G.; Lugao, Ademar B.

    2011-01-01

    The use of hydrogel membranes usually demands polymers capable of forming films with high elastic and flexible properties besides having high water absorption. In terms of improvements of polymer plasticity, addition of special plasticizers to polymers can do it with promising results, although within limits of concentrations. The objective of this study was to evaluate the different effects of poly(enthylene glycol) (PEG) and glycerol as plasticizers on hydrogel membranes synthesized from poly(N-vinyl-2-pyrrolidone) (PVP) as the main polymer in aqueous polymeric solutions. For that, hydrogels of PVP/agar/PEG, PVP/agar/glycerol and without agar or plasticizer were simultaneously synthesized and sterilized by irradiation of mixtures of such products in aqueous solutions, using gamma-rays from 60 Co source at a dose of 25 kGy. The results based on gel fraction, swelling in water, and some mechanical tests suggest that the degree of PVP cross-linking prevailed over the greater hydrophilicity of glycerol compared to that of PEG with regard to the degree of swelling of the hydrogels. (author)

  6. A molecular dynamics approach for predicting the glass transition temperature and plasticization effect in amorphous pharmaceuticals.

    Science.gov (United States)

    Gupta, Jasmine; Nunes, Cletus; Jonnalagadda, Sriramakamal

    2013-11-04

    The objectives of this study were as follows: (i) To develop an in silico technique, based on molecular dynamics (MD) simulations, to predict glass transition temperatures (Tg) of amorphous pharmaceuticals. (ii) To computationally study the effect of plasticizer on Tg. (iii) To investigate the intermolecular interactions using radial distribution function (RDF). Amorphous sucrose and water were selected as the model compound and plasticizer, respectively. MD simulations were performed using COMPASS force field and isothermal-isobaric ensembles. The specific volumes of amorphous cells were computed in the temperature range of 440-265 K. The characteristic "kink" observed in volume-temperature curves, in conjunction with regression analysis, defined the Tg. The MD computed Tg values were 367 K, 352 K and 343 K for amorphous sucrose containing 0%, 3% and 5% w/w water, respectively. The MD technique thus effectively simulated the plasticization effect of water; and the corresponding Tg values were in reasonable agreement with theoretical models and literature reports. The RDF measurements revealed strong hydrogen bond interactions between sucrose hydroxyl oxygens and water oxygen. Steric effects led to weak interactions between sucrose acetal oxygens and water oxygen. MD is thus a powerful predictive tool for probing temperature and water effects on the stability of amorphous systems during drug development.

  7. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  8. Catalytic Pyrolysis of Waste Plastic Mixture

    Science.gov (United States)

    Sembiring, Ferdianta; Wahyu Purnomo, Chandra; Purwono, Suryo

    2018-03-01

    Inorganic waste especially plastics still become a major problem in many places. Low biodegradability of this materials causes the effort in recycling become very difficult. Most of the municipal solid waste (MSW) recycling facilities in developing country only use composting method to recover the organic fraction of the waste, while the inorganic fraction is still untreated. By pyrolysis, plastic waste can be treated to produce liquid fuels, flammable gas and chars. Reduction in volume and utilization of the liquid and gas as fuel are the major benefits of the process. By heat integration actually this process can become a self-sufficient system in terms of energy demand. However, the drawback of this process is usually due to the diverse type of plastic in the MSW creating low grade of liquid fuel and harmful gases. In this study, the mixture of plastics i.e. polypropylene (PP) and polyethylene terephthalate (PET) is treated using pyrolysis with catalyst in several operating temperature. PET is problematic to be treated using pyrolysis due to wax-like byproduct in liquid which may cause pipe clogging. The catalyst is the mixture of natural zeolite and bentonite which is able to handle PP and PET mixture feed to produce high grade liquid fuels in terms of calorific value and other fuel properties.

  9. On the bending of structural materials with plastic anisotropic effect

    Science.gov (United States)

    Lachugin, D. V.; Pavilaynen, G. V.

    2018-05-01

    The study of a deformation features of metal alloys which are sensitive to tension or compression loading is an important technical challenge in the design and creation of a new shipbuilding and aircraft constructions. We use a mathematical model for the elastic-plastic bending of such material where SD(strength-different) parameter is taken into account. The problem is solved analytically and numerically. As an example of the material with the SD-effect the steel alloy is considered.

  10. Gender differences in the professional and private lives of plastic surgeons.

    Science.gov (United States)

    Halperin, Terri J; Werler, Martha M; Mulliken, John B

    2010-06-01

    There are over 700 female members in the American Society of Plastic Surgeons. The purpose of this study was to assess possible differences between female and male plastic surgeons with respect to their practice characteristics, duration of practice, and some aspects of their private lives. We designed a 41 question survey to compare the practice features and personal demographics of female and male members of the American Society of Plastic Surgeons. A total of 1498 questionnaires were sent via e-mail to all female members (n = 687) and a random cohort of male members (n = 811). The respondents were age stratified by decade and their responses were compared by gender using chi tests. The overall response rate was 36.3%: 337 females (49%) and 207 males (25.5%) (P women had no children, as compared to 11.5% of men (P Men also tended to have more children than their female counterparts, across all age groups. The majority of women (58.8%) delayed child-rearing until after residency, as compared to only 25.7% of men (P earn an income greater than $400,000 per year (P < 0.001). Of 39 respondents who stated that they were no longer practicing, 21 (54%) were male and 18 (46%) were female (P = NS). Female plastic surgeons are significantly more likely to be unmarried, to postpone having children or be childless, as compared to their male counterparts. Furthermore, female plastic surgeons have a lower income than their male colleagues despite similar hours and practice profile. Nevertheless, female plastic surgeons appear to have similar career satisfaction and are no more likely to retire earlier or more frequently than male plastic surgeons.

  11. Effect of plastic spacer handling on salbutamol lung deposition in asthmatic children

    DEFF Research Database (Denmark)

    Lipworth, Brian J; Lee, Daniel K C; Anhøj, Jacob

    2002-01-01

    AIMS: To study the effects of electrostatics in a plastic spacer on the lung deposition of salbutamol in asthmatic children. METHODS: Twenty-five children (5-12 years) with mild asthma were given salbutamol hydrofluoroalkane pressurized metered dose inhaler 400 micro g via a 750 ml plastic spacer...... on separate days. Blood samples were taken for plasma salbutamol at 5, 10, 15 and 20 min after inhalation to measure lung bioavailability as a surrogate for relative lung dose. With immediate inhalation following actuation, a new rinsed spacer (NewRinsed ) was compared with a used spacer after repeated daily...... log transformed and expressed as geometric mean fold difference for the average plasma salbutamol concentration (Cav) over 20 min. RESULTS: There were significant differences (P NewRinsed 1.92 fold (95% CI 1.15, 3...

  12. Effects of irradiation on degradation and migration of food packaging plastics

    International Nuclear Information System (INIS)

    Li Xifeng; Cai Zhongli

    1997-01-01

    The author summarizes the research achievements on the following aspects: detection and identification of low molecular radiolysis products of food packaging polymers and degradation products of plastic additives, influences of irradiation atmosphere, dose, dose rate, additives and food simulant on the formation of products, and effects of irradiation on global and specific migration of packaging materials. Some items are suggested to be further studied

  13. The effect of coverings, including plastic bags and wraps, on mortality and morbidity in preterm and full-term neonates.

    Science.gov (United States)

    Oatley, H K; Blencowe, H; Lawn, J E

    2016-05-01

    Neonatal hypothermia is an important risk factor for mortality and morbidity, and is common even in temperate climates. We conducted a systematic review to determine whether plastic coverings, used immediately following delivery, were effective in reducing the incidence of mortality, hypothermia and morbidity. A total of 26 studies (2271 preterm and 1003 term neonates) were included. Meta-analyses were conducted as appropriate. Plastic wraps were associated with a reduction in hypothermia in preterm (⩽29 weeks; risk ratio (RR)=0.57; 95% confidence interval (CI) 0.46 to 0.71) and term neonates (RR=0.76; 95% CI 0.60 to 0.96). No significant reduction in neonatal mortality or morbidity was found; however, the studies were underpowered for these outcomes. For neonates, especially preterm, plastic wraps combined with other environmental heat sources are effective in reducing hypothermia during stabilization and transfer within hospital. Further research is needed to quantify the effects on mortality or morbidity, and investigate the use of plastic coverings outside hospital settings or without additional heat sources.

  14. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    International Nuclear Information System (INIS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2016-01-01

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT

  15. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  16. Modeling plasticity by non-continuous deformation

    Science.gov (United States)

    Ben-Shmuel, Yaron; Altus, Eli

    2017-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  17. A comparative study of the accuracy between plastic and metal impression transfer copings for implant restorations.

    Science.gov (United States)

    Fernandez, Monica A; Paez de Mendoza, Carmen Y; Platt, Jeffrey A; Levon, John A; Hovijitra, Suteera T; Nimmo, Arthur

    2013-07-01

    A precise transfer of the position and orientation of the antirotational mechanism of an implant to the working cast is particularly important to achieve optimal fit of the final restoration. This study evaluated and compared the accuracy of metal and plastic impression copings for use in a full-arch mandibular edentulous simulation with four implants. Metal and plastic impression transfer copings for two implant systems, Nobel Biocare™ Replace and Straumann SynOcta®, were assessed on a laboratory model to simulate clinical practice. The accuracy of producing stone casts using these plastic and metal impression transfer copings was measured against a standard prosthetic framework consisting of a cast gold bar. A total of 20 casts from the four combinations were obtained. The fit of the framework on the cast was tested by a noncontact surface profilometer, the Proscan 3D 2000 A, using the one-screw test. The effects of implant/system and impression/coping material on gap measurements were analyzed using repeated measures ANOVA. The findings of this in vitro study were as follows: plastic copings demonstrated significantly larger average gaps than metal for Straumann (p = 0.001). Plastic and metal copings were not significantly different for Nobel (p = 0.302). Nobel had significantly larger average gaps than Straumann for metal copings (p = 0.003). Nobel had marginally smaller average gaps than Straumann (p = 0.096) for plastic copings. The system-by-screw location interaction was significant as well (p impression copings were more accurate than plastic copings when using the Straumann system, and there was no difference between metal and plastic copings for the Nobel Replace system. The system-by-screw location was not conclusive, showing no correlation within each system. © 2013 by the American College of Prosthodontists.

  18. Laboratory Rearing of the Legume Pod Borer, Maruca vitrata Fabricius

    African Journals Online (AJOL)

    user1

    Maruca vitrata is a major pest of mung bean (Vigna mungo) (Zahid et al.,. 2008) which is locally ... eggs were placed in a plastic container for hatching to provide the first laboratory ... (10.1 + 0.2). A sex ratio (M: F) of 1:1 was observed in both diets. .... because the success in rearing of M. vitrata in laboratory relies heavily on.

  19. Short-term and long-term plasticity interaction in human primary motor cortex.

    Science.gov (United States)

    Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Li Voti, Pietro; Bologna, Matteo; Berardelli, Alfredo

    2011-05-01

    Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short- and long-term forms of synaptic plasticity, resembling short-term potentiation (STP) and long-term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5-Hz rTMS interferes with LTP/LTD-like plasticity induced by intermittent and continuous theta-burst stimulation (iTBS and cTBS). The effects induced by 5-Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5-Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5-Hz rTMS. Interactions between 5-Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5-Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5-Hz rTMS and TBS, and delivering one and ten 5-Hz rTMS trains. We also investigated whether 5-Hz rTMS induces changes in intracortical excitability tested with paired-pulse transcranial magnetic stimulation. When given alone, 5-Hz rTMS induced short-lasting and iTBS/cTBS induced long-lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5-Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS-induced after-effects disappeared. The 5-Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5-Hz rTMS abolishes iTBS/cTBS-induced LTP/LTD-like plasticity through non-homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short-term and long-term rTMS-induced plasticity in human M1. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Experimental study of Electro-Plastic Effect on Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Liu, Xun; Lan, Shuhuai; Ni, Jun

    2013-01-01

    Application of Advanced High Strength Steels (AHSS) into vehicle structures calls for innovative manufacturing processes. In terms of reducing deformation resistance through external energy, Electro-Plastic Effect (EPE) provides a potential alternative to traditional thermal softening phenomenon. In this work, effectiveness of EPE on one group of AHSS, Transformation Induced Plasticity (TRIP) Steel, was evaluated. It was found that EPE cannot be effectively initiated until the current density reaches a threshold value between 7.4 A/mm 2 and 11.4 A/mm 2 . Besides, the softening phenomenon is more distinct at larger strains. Underlying mechanisms are explained from perspectives of dislocation multiplication, gliding and mechanical twinning. The inevitable Joule heating phenomenon associated with current was suppressed with forced air cooling and the temperature distribution inside the tensile specimen was numerically calculated with a coupled Finite Element Model. Effectiveness of EPE rather than thermal softening or expansion was further proved with the larger flow stress reduction under higher current density and shorter pulses at same temperature increase. Hollomon equation was adopted to model the observed stress strain relationships. Since material properties of TRIP steels are directly related to the phase transformation from retained austenite into martensite, volume fraction of retained austenite was quantitatively measured by X-ray Diffraction (XRD). It was found that the applied current retarded martensitic transformation process. Metallographic analysis was further performed and phenomena of change of grain structures and phase distribution were hardly observable

  1. Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2009-01-01

    The finite deformation version of the higher-order gradient crystal plasticity model proposed by the authors is applied to solve plane strain boundary value problems, in order to obtain an understanding of the effect of the higher-order boundary conditions. Numerical solutions are carried out...

  2. True stress control asymmetric cyclic plastic behavior in SA333 C-Mn steel

    International Nuclear Information System (INIS)

    Paul, Surajit Kumar; Sivaprasad, S.; Dhar, S.; Tarafder, S.

    2010-01-01

    Asymmetric cyclic loading in the plastic region can leads to progressive accumulation of permanent strain. True stress controlled uniaxial asymmetric cycling on SA333 steel is conducted at various combinations of mean stress and stress amplitude in laboratory environment. It is investigated that fatigue life increases in the presence of mean stress. Plastic strain amplitude and hysteresis loop area are found to decrease with increasing mean stress. A huge difference of life and ratcheting strain accumulation is found in engineering and true stress controlled tests.

  3. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  4. A rod-like plastic scintillation detector for use in gamma-ray dosimetry and attempts to attain uniform response

    International Nuclear Information System (INIS)

    Yamashita, Mikio; Kawada, Yasushi; Avundukluoglu, M.A.

    1989-01-01

    The paper describes experiments made in an effort to develop scintillation dosimeters with emphasis on some attempts to attain a uniform response over the whole length of scintillators. A new method is proposed for measuring absorbed dose rate in plastic scintillators, using the photon-counting technique for measuring the total amount of luminescence from the scintillator exposed to gamma-rays. If a rod plastic scintillator and lucite light guides with well-polished and non-coated surfaces are surrounded by non-reflective material with a definite air gap between them, the scintillation light is transmitted to the PMTs only by the inner total reflection from the surface; a good uniformity of response could be expected if it were not for light attenuation in the transmission through the medium. With a diffusion reflector in non-optical contact with the scintillator surface, the scintillation light which otherwise would escape from the surface is partly reflected back into the scintillator. This effect is examined quantitatively. Measurements show that the presence of the diffusion reflector permits the uniformity of response to be improved considerably; a uniformity within 20 % is obtained. (N.K.)

  5. Laboratory Course on Drift Chambers

    International Nuclear Information System (INIS)

    Garcia-Ferreira, Ix-B.; Garcia-Herrera, J.; Villasenor, L.

    2006-01-01

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas

  6. From resilience to vulnerability: mechanistic insights into the effects of stress on transitions in critical period plasticity.

    Science.gov (United States)

    Callaghan, Bridget L; Graham, Bronwyn M; Li, Stella; Richardson, Rick

    2013-01-01

    While early experiences are proposed to be important for the emergence of anxiety and other mental health problems, there is little empirical research examining the impact of such experiences on the development of emotional learning. Of the research that has been performed in this area, however, a complex picture has emerged in which the maturation of emotion circuits is influenced by the early experiences of the animal. For example, under typical laboratory rearing conditions infant rats rapidly forget learned fear associations (infantile amnesia) and express a form of extinction learning which is relapse-resistant (i.e., extinction in infant rats may be due to fear erasure). In contrast, adult rats exhibit very long-lasting memories of past learned fear associations, and express a form of extinction learning that is relapse-prone (i.e., the fear returns in a number of situations). However, when rats are reared under stressful conditions then they exhibit adult-like fear retention and extinction behaviors at an earlier stage of development (i.e., good retention of learned fear and relapse-prone extinction learning). In other words, under typical rearing conditions infant rats appear to be protected from exhibiting anxiety whereas after adverse rearing fear learning appears to make those infants more vulnerable to the later development of anxiety. While the effects of different experiences on infant rats' fear retention and extinction are becoming better documented, the mechanisms which mediate the early transition seen following stress remain unclear. Here we suggest that rearing stress may lead to an early maturation of the molecular and cellular signals shown to be involved in the closure of critical period plasticity in sensory modalities (e.g., maturation of GABAergic neurons, development of perineuronal nets), and speculate that these signals could be manipulated in adulthood to reopen infant forms of emotional learning (i.e., those that favor resilience).

  7. From resilience to vulnerability: Mechanistic insights into the effects of stress on transitions in critical period plasticity

    Directory of Open Access Journals (Sweden)

    Bridget Laura Callaghan

    2013-08-01

    Full Text Available While early experiences are proposed to be important for the emergence of anxiety and other mental health problems, there is little empirical research examining the impact of such experiences on the development of emotional learning. Of the research that has been performed in this area, however, a complex picture has emerged in which the maturation of emotion circuits is influenced by the early experiences of the animal. For example, under typical laboratory rearing conditions infant rats rapidly forget learned fear associations (infantile amnesia and express a form of extinction learning which is relapse-resistant (i.e., extinction in infant rats may be due to fear erasure. In contrast, adult rats exhibit very long-lasting memories of past learned fear associations, and express a form of extinction learning that is relapse-prone (i.e., the fear returns in a number of situations. However, when rats are reared under stressful conditions then they exhibit adult-like fear retention and extinction behaviours at an earlier stage of development (i.e., good retention of learned fear and relapse-prone extinction learning. In other words, under typical rearing conditions infant rats appear to be protected from exhibiting anxiety whereas after adverse rearing fear learning appears to make those infants more vulnerable to the later development of anxiety. While the effects of different experiences on infant rats’ fear retention and extinction are becoming better documented, the mechanisms which mediate the early transition seen following stress remain unclear. Here we suggest that rearing stress may lead to an early maturation of the molecular and cellular signals shown to be involved in the closure of critical period plasticity in sensory modalities (e.g., maturation of GABAergic neurons, development of perineuronal nets, and speculate that these signals could be manipulated in adulthood to re-open infant forms of emotional learning (i.e., those that

  8. Impact of Microenvironment and Stem-Like Plasticity in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Raggi, Chiara; Invernizzi, Pietro; Andersen, Jesper Bøje

    2014-01-01

    or tumor microenvironment (TME) likely promotes initiation and progression of this malignancy contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA....

  9. Plasticity and regeneration of gonads in the annelid Pristina leidyi

    Directory of Open Access Journals (Sweden)

    B. Duygu Özpolat

    2016-10-01

    Full Text Available Abstract Background Gonads are specialized gamete-producing structures that, despite their functional importance, are generated by diverse mechanisms across groups of animals and can be among the most plastic organs of the body. Annelids, the segmented worms, are a group in which gonads have been documented to be plastic and to be able to regenerate, but little is known about what factors influence gonad development or how these structures regenerate. In this study, we aimed to identify factors that influence the presence and size of gonads and to investigate gonad regeneration in the small asexually reproducing annelid, Pristina leidyi. Results We found that gonad presence and size in asexual adult P. leidyi are highly variable across individuals and identified several factors that influence these structures. An extrinsic factor, food availability, and two intrinsic factors, individual age and parental age, strongly influence the presence and size of gonads in P. leidyi. We also found that following head amputation in this species, gonads can develop by morphallactic regeneration in previously non-gonadal segments. We also identified a sexually mature individual from our laboratory culture that demonstrates that, although our laboratory strain reproduces only asexually, it retains the potential to become fully sexual. Conclusions Our findings demonstrate that gonads in P. leidyi display high phenotypic plasticity and flexibility with respect to their presence, their size, and the segments in which they can form. Considering our findings along with relevant data from other species, we find that, as a group, clitellate annelids can form gonads in at least four different contexts: post-starvation refeeding, fission, morphallactic regeneration, and epimorphic regeneration. This group is thus particularly useful for investigating the mechanisms involved in gonad formation and the evolution of post-embryonic phenotypic plasticity.

  10. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  11. Phenotypic plasticity in Drosophila cactophilic species: the effect of competition, density, and breeding sites.

    Science.gov (United States)

    Fanara, Juan Jose; Werenkraut, Victoria

    2017-08-01

    Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size-related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  12. Modelling of elasto-plastic material behaviour

    International Nuclear Information System (INIS)

    Halleux, J.P.

    1981-01-01

    The present report describes time-independent elasto-plastic material behaviour modelling techniques useful for implementation in fast structural dynamics computer programs. Elasto-plastic behaviour is characteristic for metallic materials such as steel and is thus of particular importance in the study of reactor safety-related problems. The classical time-independent elasto-plastic flow theory is recalled and the fundamental incremental stress-strain relationships are established for strain rate independent material behaviour. Some particular expressions useful in practice and including reversed loading are derived and suitable computational schemes are shwon. Modelling of strain rate effects is then taken into account, according to experimental data obtained from uniaxial tension tests. Finally qualitative strain rate history effects are considered. Applications are presented and illustrate both static and dynamic material behaviour

  13. Plastic solar cells : understanding the special additive

    NARCIS (Netherlands)

    van Franeker, H.; Janssen, R.A.J.

    2015-01-01

    Solar cells use freely available sunlight to make electricity. At the present time, solar electricity does not come cheap, because solar panels are rather expensive. Now imagine that we could reduce costs by printing solar panels like we print newspapers! We can do just that with plastic solar

  14. Plasticizing of YBa2Cu3Ox powders with some organic additions and their effect on superconducting properties of sintered ceramics

    International Nuclear Information System (INIS)

    Pitov, V.A.; Mozhaev, A.P.; Ludra, M.M.

    1992-01-01

    Characteristics of compactibility of YBa 2 Cu 3 O x powders of various granulometric compositions with and without plasticizer additions are studied. As plasticizers paraffin and polyvinyl alcohol are used. Pressed pellet density dependence on compacting pressure logarithm is described by the first-order equation. Effect of granulometric composition and plasticizers on equation coefficients is analysed, attain high-quality plasticizing of all powders, but decreases their sintering ability. Use of plasticizers doesn't decrease the initial temperature of transition into superconducting state of sintered samples, but in a number of cases leads to increase of its width, as well as decrease of oxygen index value. These drawbacks may be completely avoided by careful distillation of plasticizers from pressed samples with subsequent sintering

  15. Do estrogenic compounds in drinking water migrating from plastic pipe distribution system pose adverse effects to human? An analysis of scientific literature.

    Science.gov (United States)

    Liu, Ze-Hua; Yin, Hua; Dang, Zhi

    2017-01-01

    With the widespread application of plastic pipes in drinking water distribution system, the effects of various leachable organic chemicals have been investigated and their occurrence in drinking water supplies is monitored. Most studies focus on the odor problems these substances may cause. This study investigates the potential endocrine disrupting effects of the migrating compound 2,4-di-tert-butylphenol (2,4-d-t-BP). The summarized results show that the migration of 2,4-d-t-BP from plastic pipes could result in chronic exposure and the migration levels varied greatly among different plastic pipe materials and manufacturing brands. Based on estrogen equivalent (EEQ), the migrating levels of the leachable compound 2,4-d-t-BP in most plastic pipes were relative low. However, the EEQ levels in drinking water migrating from four out of 15 pipes may pose significant adverse effects. With the increasingly strict requirements on regulation of drinking water quality, these results indicate that some drinking water transported with plastic pipes may not be safe for human consumption due to the occurrence of 2,4-d-t-BP. Moreover, 2,4-d-t-BP is not the only plastic pipe-migrating estrogenic compound, other compounds such as 2-tert-butylphenol (2-t-BP), 4-tert-butylphenol (4-t-BP), and others may also be leachable from plastic pipes.

  16. Effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, R.G. (Massachusetts Inst. of Tech., Cambridge (USA)); Lucas, G.E. (California Univ., Santa Barbara (USA)); Pelloux, R.M. (Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering)

    1984-09-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios (R) were measured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operating of the principal tensile twinning systems, (10anti 12), .

  17. Influence of anisotropy effect and internal stresses upon the superconductive critical temperature of plastically deformed tin

    International Nuclear Information System (INIS)

    Wagner, D.; Stangler, F.

    1976-01-01

    The influence of plastic deformation on the superconductive critical temperature of tin single crystals has been investigated experimentally. It was shown by measurements that the lattice defects produced by plastic deformation lead to an anisotropy effect (according to the theory of Markowitz and Kadanoff), as do impurities in alloyed material. The decrease in T/sub c/ due to this effect can be measured, however, only with samples of certain special orientations. Samples with other orientations show an increase in T/sub c/, which can be explained by the assumption of internal stresses from dislocation pileups. A model is discussed which accounts for the measured rise in T/sub c/

  18. The Prosocial Effects of 3,4-methylenedioxymethamphetamine (MDMA): Controlled Studies in Humans and Laboratory Animals

    Science.gov (United States)

    Kamilar-Britt, Philip; Bedi, Gillinder

    2015-01-01

    Users of ±3,4-Methylenedioxymethamphetamine (MDMA; ‘ecstasy’) report prosocial effects such as sociability and empathy. Supporting these apparently unique social effects, data from controlled laboratory studies indicate that MDMA alters social feelings, information processing, and behavior in humans, and social behavior in rodents. Here, we review this growing body of evidence. In rodents, MDMA increases passive prosocial behavior (adjacent lying) and social reward while decreasing aggression, effects that may involve serotonin 1A receptor mediated oxytocin release interacting with vasopressin receptor 1A. In humans, MDMA increases plasma oxytocin and produces feelings of social affiliation. It decreases identification of negative facial expressions (cognitive empathy) and blunts responses to social rejection, while enhancing responses to others’ positive emotions (emotional empathy) and increasing social approach. Thus, consistent with drug folklore, laboratory administration of MDMA robustly alters social processing in humans and increases social approach in humans and animals. Effects are consistent with increased sociability, with mixed evidence about enhanced empathy. These neurobiologically-complex prosocial effects likely motivate recreational ecstasy use. PMID:26408071

  19. Useful effectiveness of plastic pipes for gas pipelines operating at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zayutsev, K I

    1976-06-01

    Because a significant portion of the feeder lines in the Soviet union operate at relatively low pressures up to 75 to 150 psi, it is economically feasible to replace the conventional pipeline material (steel) with plastic. Cost savings result from lower material costs and ease of laying plastic pipe. Because of stiffness and corrosion requirements, the steel pipe used for these low-pressure pipelines is much thicker than needed to withstand the pressure used. Data are tabulated on the comparative costs and manpower requirements for the construction of 1 km of steel, polyvinyl chloride, and polyethylene gas pipelines ranging in diameter from 3 to 14 in. Generally, the plastic pipelines required 15 to 30% less man-days and were 20 to 35% lower in cost to build. The plastic pipelines can operate at 150 to 175 psi pressure and at temperatures up to 100 to 140/sup 0/F. In research conducted at VNIIST (All-Union Research Institute for the Construction of Trunk Pipelines) on plastic pipelines, a 2.5-mile test section has been operating successfully for 2 years, and new techniques and equipment for joining plastic pipe up to 25-in. diameter are being developed.

  20. A Small Modular Laboratory Hall Effect Thruster

    Science.gov (United States)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  1. Survival time of bacteria on different plastics by application of ultraviolet rays and desinfectants

    International Nuclear Information System (INIS)

    Glueck, S.

    1975-01-01

    The survival times of four sorts of germs were studied (Staph. albus, Staph. aureus, E.coli and Clebsiella) on 28 different plastic surfaces under different ambient conditions, (darkness, daylight, UV-radiation) and after preceding disinfection of the surfaces. For these studies, a formaldehydecontaining, phenolic, and a surface-active preparation were used. No essential differences in the survival times of the 4 types of germs tested were found. Besides the chemical basic structure additional substances were found to play a substantial role for the autobactericides. The dark values which could help to obtain findings about auto-bactericides did not show significant correspondence within the groups of the plastics. Only for a few materials a safe auto-bactericide could be found (alkyd lake, phenol resin). In the case of some other substances (some preparations made of PVC, polystyrene, polyacetal) an effect on the germs could be seen which was, at least totally seen, unfavourable, if all test conditions (darkness, daylight, UV-radiation) are viewed as a total. As comparative values on glass had shown a lower lethal rate of the germs, a certain auto-bactericide is likely to exist in all plastics tested. A considerable antibacterial effect of daylight was found, even with low daylight quotients and clased windows. UV-rays also diminished the number of germs on the plastic surfaces considerably, even with only indirect irradiation. Delayed effects of desinfecting agents partially depend on the surface material. Thus the phenolic agent showed strong delayed effects on the acryl glas, polyethylene, phenol resin, polycarbonate, but less on PVC. Phormaldehyde showed a good long-term effect only on phenol resin. (orig.) [de

  2. Non-local crystal plasticity model with intrinsic SSD and GND effects

    NARCIS (Netherlands)

    Evers, L.P.; Brekelmans, W.A.M.; Geers, M.G.D.

    2004-01-01

    A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically

  3. Laboratory Equipment Type Fiber Optic Refractometer

    Directory of Open Access Journals (Sweden)

    E. F. Carome

    2002-09-01

    Full Text Available Using fiber optics and micro optics technologies we designed aninnovative fiber optic index of refraction transducer that has uniqueproperties. On the base of this transducer a laboratory equipment typefiber optic refractometer was developed for liquid index of refractionmeasurements. Such refractometer may be used for medical,pharmaceutical, industrial fluid, petrochemical, plastic, food, andbeverage industry applications. For example, it may be used formeasuring the concentrations of aqueous solutions: as the concentrationor density of a solute increase, the refractive index increasesproportionately. The paper describes development work related to designof laboratory type fiber optic refractometer and describes experimentsto evaluation of its basic properties.

  4. Development of mobile radiological assessment laboratory

    International Nuclear Information System (INIS)

    Pujari, R.N.; Saindane, Shashank S.; Jain, Amit; Parmar, Jayesh; Narsaiah, M.V.R.; Pote, M.B.; Murali, S.; Chaudhury, Probal

    2018-01-01

    During any emergency situations real-time radiation measurements and the fast analysis of the measured radiological data are of crucial importance. The newly developed mobile vehicle based laboratory known as 'Radiological Assessment Laboratory' (RAL) can be used for real time measurements in different radiation emergency scenarios, such as the release of radioactive materials from a radiological/nuclear incident, during search of an orphan source or during radioisotope transportation. RAL is equipped with several high sensitive detectors/systems such as NaI(Tl) gamma spectrometers, large size plastic scintillators and air-sampler, along with GPS and data transfer capability through GSM modem

  5. Cancer Stem Cell Plasticity Drives Therapeutic Resistance

    Directory of Open Access Journals (Sweden)

    Mary R. Doherty

    2016-01-01

    Full Text Available The connection between epithelial-mesenchymal (E-M plasticity and cancer stem cell (CSC properties has been paradigm-shifting, linking tumor cell invasion and metastasis with therapeutic recurrence. However, despite their importance, the molecular pathways involved in generating invasive, metastatic, and therapy-resistant CSCs remain poorly understood. The enrichment of cells with a mesenchymal/CSC phenotype following therapy has been interpreted in two different ways. The original interpretation posited that therapy kills non-CSCs while sparing pre-existing CSCs. However, evidence is emerging that suggests non-CSCs can be induced into a transient, drug-tolerant, CSC-like state by chemotherapy. The ability to transition between distinct cell states may be as critical for the survival of tumor cells following therapy as it is for metastatic progression. Therefore, inhibition of the pathways that promote E-M and CSC plasticity may suppress tumor recurrence following chemotherapy. Here, we review the emerging appreciation for how plasticity confers therapeutic resistance and tumor recurrence.

  6. [Cost-effectiveness trial of self-expandable metal stents and plastic biliary stents in malignant biliary obstruction].

    Science.gov (United States)

    Daróczi, Tímea; Bor, Renáta; Fábián, Anna; Szabó, Ella; Farkas, Klaudia; Bálint, Anita; Czakó, László; Rutka, Mariann; Szűcs, Mónika; Milassin, Ágnes; Molnár, Tamás; Szepes, Zoltán

    2016-02-14

    Self-expandable metal and plastic stents can be applied in the palliative endoscopic treatment of patients with unresectable malignant biliary obstruction. The use of metal stentsis recommended if the patient's life expectancy is more than four months. To compare the therapeutic efficacy and cost-effectiveness of metal and plastic stents in the treatment of malignant biliary obstruction. The authors retrospectively enrolled patients who received metal (37 patients) or plastic stent (37 patients). The complication rate, stent patency and cumulative cost of treatment were assessed in the two groups. The complication rate of metal stents was lower (37.84% vs. 56.76%), but the stent patency was higher compared with plastic stents (19.11 vs. 8.29 weeks; p = 0.0041). In the plastic stent group the frequency of hospitalization of patients in context with stent complications (1.18 vs. 2.32; p = 0.05) and the necessity of reintervention for stent dysfunction (17 vs. 27; p = 0.033) were substantially higher. In this group multiple stent implantation raised the stent patency from 7.68 to 10.75 weeks. There was no difference in the total cost of treatment of malignant biliary obstruction between the two groups (p = 0.848). Considering the cost of treatment and the burden of patients the authors recommend self-expandable metal sten timplantation if the life expectancy of patients is more than two months. In short survival cases multiple plastic stent implantation is recommended.

  7. Separation of mixed waste plastics via magnetic levitation.

    Science.gov (United States)

    Zhao, Peng; Xie, Jun; Gu, Fu; Sharmin, Nusrat; Hall, Philip; Fu, Jianzhong

    2018-06-01

    Separation becomes a bottleneck of dealing with the enormous stream of waste plastics, as most of the extant methods can only handle binary mixtures. In this paper, a novel method that based on magnetic levitation was proposed for separating multiple mixed plastics. Six types of plastics, i.e., polypropylene (PP), acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6), polycarbonate (PC), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE), were used to simulate the mixed waste plastics. The samples were mixed and immersed into paramagnetic medium that placed into a magnetic levitation configuration with two identical NdFeB magnets with like-poles facing each other, and Fourier transform infrared (FTIR) spectroscopy was employed to verify the separation outputs. Unlike any conventional separation methods such as froth flotation and hydrocyclone, this method is not limited by particle sizes, as mixtures of different size fractions reached their respective equilibrium positions in the initial tests. The two-stage separation tests demonstrated that the plastics can be completely separated with purities reached 100%. The method has the potential to be industrialised into an economically-viable and environmentally-friendly mass production procedure, since quantitative correlations are determined, and the paramagnetic medium can be reused indefinitely. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan [Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Tröger, Josephine [Department of Psychology, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Interdisciplinary Research Group on Environmental Issues, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Muñoz, Katherine [Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Interdisciplinary Research Group on Environmental Issues, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Frör, Oliver [Institute for Environmental Sciences, Group of Environmental Economics, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Schaumann, Gabriele Ellen, E-mail: schaumann@uni-landau.de [Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany)

    2016-04-15

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers

  9. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    International Nuclear Information System (INIS)

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan; Tröger, Josephine; Muñoz, Katherine; Frör, Oliver; Schaumann, Gabriele Ellen

    2016-01-01

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers

  10. Seabirds, gyres and global trends in plastic pollution.

    Science.gov (United States)

    van Franeker, Jan A; Law, Kara Lavender

    2015-08-01

    Fulmars are effective biological indicators of the abundance of floating plastic marine debris. Long-term data reveal high plastic abundance in the southern North Sea, gradually decreasing to the north at increasing distance from population centres, with lowest levels in high-arctic waters. Since the 1980s, pre-production plastic pellets in North Sea fulmars have decreased by ∼75%, while user plastics varied without a strong overall change. Similar trends were found in net-collected floating plastic debris in the North Atlantic subtropical gyre, with a ∼75% decrease in plastic pellets and no obvious trend in user plastic. The decreases in pellets suggest that changes in litter input are rapidly visible in the environment not only close to presumed sources, but also far from land. Floating plastic debris is rapidly "lost" from the ocean surface to other as-yet undetermined sinks in the marine environment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Hippocampal effects of neuronostatin on memory, anxiety-like behavior and food intake in rats.

    Science.gov (United States)

    Carlini, V P; Ghersi, M; Gabach, L; Schiöth, H B; Pérez, M F; Ramirez, O A; Fiol de Cuneo, M; de Barioglio, S R

    2011-12-01

    A 13-amino acid peptide named neuronostatin (NST) encoded in the somatostatin pro-hormone has been recently reported. It is produced throughout the body, particularly in brain areas that have significant actions over the metabolic and autonomic regulation. The present study was performed in order to elucidate the functional role of NST on memory, anxiety-like behavior and food intake and the hippocampal participation in these effects. When the peptide was intra-hippocampally administered at 3.0 nmol/μl, it impaired memory retention in both, object recognition and step-down test. Also, this dose blocked the hippocampal long-term potentiation (LTP) generation. When NST was intra-hippocampally administered at 0.3 nmol/μl and 3.0 nmol/μl, anxiolytic effects were observed. Also, the administration in the third ventricle at the higher dose (3.0 nmol/μl) induced similar effects, and both doses reduced food intake. The main result of the present study is the relevance of the hippocampal formation in the behavioral effects induced by NST, and these effects could be associated to a reduced hippocampal synaptic plasticity. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Discrete Dislocation Plasticity Analysis of Cracks and Fracture

    NARCIS (Netherlands)

    Giessen, Erik van der; Pippan, R; Gumbsch, P

    2010-01-01

    Fracture in plastically deforming crystals involves several length scales for cleavage-like crack growth. The relevant length scales range from that of the macroscale object to the atomic scale, including the various microstructural length scales in between that are associated with, for example,

  13. Application of flexible scope in large testing laboratories

    Directory of Open Access Journals (Sweden)

    Carina Di Candia

    2011-04-01

    Full Text Available According as the international definition of Flexible Scope, a laboratory must demonstrate face with the accreditation body that it has the knowledge, experience and competence to work within the full range of its flexible scope, as well as possessing suitable laboratory environments and equipment. The laboratory must also demonstrate that it has a management system in place that can control its proposed approach while continuing to comply with the requirements of ISO 17025:2005. In case of UKAS (Unites Kingdom Accreditation Service, prior to offering accreditation for flexible scope they must have a high degree of confidence that the staff are technically competent and that the management system controlling certain key processes as development, review, validation and authorization.LATU apply these requirements since 2004 as "Unified Tests". Until this date, LATU was doing the same type of tests in different materials departments using different equipment, personal, and testing quality control. In order to that were defined cross disciplinary groups to analyze this topic approaching in personal competence and quality control tests improvement, and resource's decrease. For example, LATU has the Unified Test Tensile Strength accredited by UKAS in: corrugated and solid fiberboard, paper board, linerboard, cork plugs, plastic bags, plastic sheeting, paper, woven fabrics, plastic woven bags and woven plastic. As a result of the Unified Tests was generated a general unified manage procedure with unified criteria's, responsibilities and actions. Was written a unique testing procedure not only with the actual flexible scope and the flexibilities limits but also the compliance requirements of ISO 17025 and the accreditations body methodology. We could decrease the amount of documentation to control. Was defined the methodology and implemented periodicaly internal inter comparisons between departments in order to valid the unified tests and has a unique

  14. Application of fluidization to separate packaging waste plastics.

    Science.gov (United States)

    Carvalho, M Teresa; Ferreira, Célia; Portela, Antía; Santos, João Tiago

    2009-03-01

    The objective of the experimental work described in this paper is the study of the separation of PS (polystyrene) from PET (polyethylene terephthalate) and PVC (polyvinyl chloride) from drop-off points using a fluidized bed separator. This is a low-cost process commonly used in the hydro-classification of mineral ores. Firstly, experimental tests were carried out with artificial granulated samples with different grain sizes, types and sources of plastic ("separability tests"). The particle settling velocities were determined under different operating conditions. Then, based on the results, the laboratory tests continued with real mixtures of waste plastics ("separation tests") and the efficiency of the process was evaluated. From a PET-rich mixture, a concentrate of PS with a 75% grade in PS was produced while the underflow was quite clear from PS (grade less than 0.5% in PS).

  15. A molecular dynamics analysis of internal friction effects on the plasticity of Zr65Cu35 metallic glass

    International Nuclear Information System (INIS)

    Feng, Shidong; Qi, Li; Zhao, Fengli; Pan, Shaopeng; Li, Gong; Ma, Mingzhen; Liu, Riping

    2015-01-01

    Highlights: • Effects of internal friction on plasticity is investigated at the atomic level. • The simulations allow reproduction of images of internal friction evolution. • The simulation results are in good agreement with experiments and theories. • This simulation can predict the deformation mode with different internal friction. - Abstract: The effects of internal friction (IF) on Zr 65 Cu 35 metallic glass plasticity are investigated through molecular dynamics simulations. Results show that the Voronoi polyhedron 〈0, 3, 6, 3〉 increases as IF increases, thereby effectively inhibiting localized deformation and improving metallic glass plasticity. The simulations allow reproduction of images of IF evolution in metallic glasses subjected to isothermal annealing at 730 K and 850 K respectively, which can help explain the experimental observations. IF could be adjusted by selecting suitable annealing temperatures and cooling rates. The results of this work provide a strong foundation for future metallic glass designs

  16. Leaching of plastic polymers by plastic vials used for storing homoeopathic medicines: A preliminary study

    Directory of Open Access Journals (Sweden)

    Neeraj Gupta

    2014-01-01

    Full Text Available Background: In Homoeopathy, plastic containers/vials are used for the storing/dispensing of ethanol-based medicines instead of glass. Various studies have suggested that plastic components that leach out in stored substances tend to cause contamination and may produce adverse effects in living systems. The present study was aimed to find out chemical composition and leaching behaviour of commonly used plastic vials (PVs if any during the storage of ethanol-based homoeopathic medicines in optimal environment. Material and Methods: The experiments were conducted on two sample sets of PVs. Chemical properties of PV were assessed by Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR spectroscopy. PV were cut separately [sample-1 (S-1 and sample-2 (S-2] and immersed in Homoeopathic Grade Ethanol (HGE in conical flask and stored for 7 days at ambient temperature (25° ± 5C with constant rotary shaking. After 7 days, S-1 and S-2 of PV in Homoeopathic Grade Ethanol (HGE were decanted and filtered. Aliquots (A1 and A2 were analysed by proton nuclear magnetic resonance spectroscopy (H 1 NMR. The spectral graph obtained by FTIR-ATR spectroscopy for PV compositions and spectral graph obtained by H 1 NMR spectroscopy for PV ethanol aliquots were examined for PVs material and PV leaching effect in HGE. Results: FTIR-ATR spectra showed that PV are made up of two types of polyolefin′s compounds i.e. Low Density Polyethylene (LDPE and Linear Low Density Polyethylene (LLDPE. Aliquots of PV in HGE showed the presence benzophenone and its methyl derivative, heat and light stabiliser (2, 2, 6, 6-tetramethylpiperidine and amino derivative, antioxidant (4, 4′- thiobis and 2-tertbutyl-5-methylphenol and plasticizer bis 2-Diethylhexyl phthalate (DEHP or Dioctyl phthalate (DOP. Results of study suggest that PVs leach out plastic polymers in HGE. Conclusion: This preliminary experiment suggests that it is not safe to use LDPE/LLDPE plastic for storing

  17. Application of failure mode and effects analysis in a clinical chemistry laboratory.

    Science.gov (United States)

    Jiang, Yuanyuan; Jiang, Hongmin; Ding, Siyi; Liu, Qin

    2015-08-25

    Timely delivery of correct results has long been considered as the goal of quality management in clinical laboratory. With increasing workload as well as complexities of laboratory testing and patient care, the traditional technical adopted like internal quality control (IQC) and external quality assessment (EQA) may not enough to cope with quality management problems for clinical laboratories. We applied failure mode and effects analysis (FMEA), a proactive tool, to reduce errors associated with the process beginning with sample collection and ending with a test report in a clinical chemistry laboratory. Our main objection was to investigate the feasibility of FMEA in a real-world situation, namely the working environment of hospital. A team of 8 people (3 laboratory workers, 2 couriers, 2 nurses, and 1 physician) from different departments who were involved in the testing process were recruited and trained. Their main responsibility was to analyze and score all possible clinical chemistry laboratory failures based on three aspects: the severity of the outcome (S), the likeliness of occurrence (O), and the probability of being detected (D). These three parameters were multiplied to calculate risk priority numbers (RPNs), which were used to prioritize remedial measures. Failure modes with RPN≥200 were deemed as high risk, meaning that they needed immediate corrective action. After modifications that were put, we compared the resulting RPN with the previous one. A total of 33 failure modes were identified. Many of the failure modes, including the one with the highest RPN (specimen hemolysis) appeared in the pre-analytic phase, whereas no high-risk failure modes (RPN≥200) were found during the analytic phase. High-priority risks were "sample hemolysis" (RPN, 336), "sample delivery delay" (RPN, 225), "sample volume error" (RPN, 210), "failure to release results in a timely manner" (RPN, 210), and "failure to identify or report critical results" (RPN, 200). The

  18. Effect of a Virtual Chemistry Laboratory on Students' Achievement

    Science.gov (United States)

    Tatli, Zeynep; Ayas, Alipasa

    2013-01-01

    It is well known that laboratory applications are of significant importance in chemistry education. However, laboratory applications have generally been neglected in recent educational environments for a variety of reasons. In order to address this gap, this study examined the effect of a virtual chemistry laboratory (VCL) on student achievement…

  19. Effect of addition of butyl benzyl phthalate plasticizer and zinc oxide nanoparticles on mechanical properties of cellulose acetate butyrate/organoclay biocomposite

    Science.gov (United States)

    Putra, B. A. P.; Juwono, A. L.; Rochman, N. T.

    2017-07-01

    Plastics as packaging materials and coatings undergo increasing demands globally each year. This pose a serious problem to the environment due to its difficulty to degrade. One solution to addressing the problem of plastic wastes is the use of bioplastics. According to the European Organization Bioplastic, one of the biodegradable plastics is derivative of cellulose. To improve mechanical properties of bioplastic, biocomposites are made with the addition of certain additives and fillers. The aim of this study is to investigate the effect of butyl benzyl phthalate plasticizer (BBP) and ZnO nanoparticles addition on mechanical properties of cellulose acetate butyrate (CAB) / organoclay biocomposite. ZnO nanoparticles synthesized from commercial ZnO precursor by using sol-gel size reduction method. ZnO was dissolved in a solution of citric acid in the ratio 1:1 to 1:5 to form zinc citrate. Zinc citrate then decomposed by calcination at temperature of 600oC. ZnO nanoparticles with an average size of 44.4 nm is obtained at a ratio of 1: 2. The addition of ZnO nanoparticles and BBP plasticizer was varied to determine the effect on the mechanical properties of biocomposite. The addition of 10 - 15 %wt ZnO nanoparticles and 30 - 40 %wt BBP plasticizer was studied to determine the effect on the tensile strength, elongation, and modulus elasticity of the biocomposites. Biocomposite films were made by using solution casting method with acetone as solvent. The addition of plasticizer BBP and ZnO nanoparticles by 30% and 10% made biocomposite has a tensile strength of 2.223 MPa.

  20. Degradation of plastic carrier bags in the marine environment.

    Science.gov (United States)

    O'Brine, Tim; Thompson, Richard C

    2010-12-01

    There is considerable concern about the hazards that plastic debris presents to wildlife. Use of polymers that degrade more quickly than conventional plastics presents a possible solution to this problem. Here we investigate breakdown of two oxo-biodegradable plastics, compostable plastic and standard polyethylene in the marine environment. Tensile strength of all materials decreased during exposure, but at different rates. Compostable plastic disappeared from our test rig between 16 and 24 weeks whereas approximately 98% of the other plastics remained after 40 weeks. Some plastics require UV light to degrade. Transmittance of UV through oxo-biodegradable and standard polyethylene decreased as a consequence of fouling such that these materials received ∼ 90% less UV light after 40 weeks. Our data indicate that compostable plastics may degrade relatively quickly compared to oxo-biodegradable and conventional plastics. While degradable polymers offer waste management solutions, there are limitations to their effectiveness in reducing hazards associated with plastic debris. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The effect of wind mixing on the vertical distribution of buoyant plastic debris

    Science.gov (United States)

    Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D. W.; Law, K. L.

    2012-04-01

    Micro-plastic marine debris is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant. The fate and transport of plastic marine debris is governed by poorly understood geophysical processes, such as ocean mixing within the surface boundary layer. Based on profile observations and a one-dimensional column model, we demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing. These results suggest that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets. A geophysical approach must be taken in order to properly quantify and manage this form of marine pollution.

  2. Effect of Plasticizer Type on Tensile Property and In Vitro Indomethacin Release of Thin Films Based on Low-Methoxyl Pectin

    Directory of Open Access Journals (Sweden)

    Pensak Jantrawut

    2017-07-01

    Full Text Available This study developed the interests of low-methoxyl pectin (LMP together with plasticizers for the preparation of elastic thin films. The effect of different plasticizer types (glycerol: Gly; sorbitol: Sor; propylene glycol: PG; and polyethylene glycol 300: PEG 300 and concentrations (20–40% w/w on mechanical and thermal properties of LMP films as well as on in vitro release of indomethacin were evaluated. Without any plasticizer, a brittle LMP film with low tensile strength and % elongation at break was obtained. Addition of plasticizers from 20% to 40% caused reduction in the tensile strength and Young’s modulus values, whereas percent elongation was increased. Forty percent Gly-plasticized and PG-plasticized films were selected to deliver indomethacin in comparison with non-plasticized film. No significant difference in indomethacin release profiles was displayed between the films. The analysis of indomethacin release model indicated that more than one drug release mechanism from the film formulation was involved and possibly the combination of both diffusion and erosion. Even though indomethacin incorporated in non-plasticized film showed similar release profile, Gly or PG should be added to enhanced film flexibility and decrease film brittleness.

  3. The economics of plastic surgery practices: trends in income, procedure mix, and volume.

    Science.gov (United States)

    Krieger, Lloyd M; Lee, Gordon K

    2004-07-01

    Anecdotally, plastic surgeons have complained of working harder for the same or less income in recent years. They also complain of falling fees for reconstructive surgery and increasing competition for cosmetic surgery. This study examined these notions using the best available data. To gain a better understanding of the current plastic surgery market, plastic surgeon incomes, fees, volume, and relative mix of cosmetic and reconstructive surgery were analyzed between the years 1992 and 2002. To gain a broader perspective, plastic surgeon income trends were then compared with those of other medical specialties and of nonmedical professions. The data show that in real dollars, plastic surgeon incomes have remained essentially steady in recent years, despite plastic surgeons increasing their surgery load by an average of 41 percent over the past 10 years. The overall income trend is similar to that of members of other medical specialties and other nonmedical professionals. The average practice percentage of cosmetic surgery was calculated and found to have increased from 27 percent in 1992 to 58 percent in 2002. This most likely can be explained by the findings that real dollar fees collected for cosmetic surgery have decreased very slightly, whereas those for reconstructive procedures have experienced sharp declines. This study demonstrates that plastic surgeons have adjusted their practice profiles in recent years. They have increased their case loads and shifted their practices toward cosmetic surgery, most likely with the goal of maintaining their incomes. The strategy appears to have been successful in the short term. However, with increasing competition and falling prices for cosmetic surgery, it may represent a temporary bulwark for plastic surgeon incomes unless other steps are taken.

  4. [Minus]Plastic: Influencing Pro-Environmental Attitudes among Singaporean Youth

    Science.gov (United States)

    Chib, Arul; Chiew, Han Joo; Kumar, Chitraveni; Choon, Lim Geok; Ale, Komathi

    2009-01-01

    Plastics have much to offer as a modern convenience, but lack of responsible plastic waste management habits can lead to potentially harmful environmental effects. Past environmental initiatives revealed a lack of understanding about youth attitudes towards pro-environmental issues. [minus]plastic, an online public environmental promotional…

  5. Research of the biodegradability of degradable/biodegradable plastic material in various types of environments

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2017-04-01

    Full Text Available Research was carried out in order to assess biodegradability of degradable/biodegradable materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive or made of polyethylene (PE with the addition of pro-oxidant additive (d2w additive, advertised as 100% degradable or certifi ed as compostable within various types of environments. Research conditions were: (i controlled composting environment – laboratory-scale, (ii real composting conditions – domestic compost bin, (iii real composting conditions – industrial composting plant and (iv landfill conditions. The results demonstrate that the materials made of HDPE and mixed with totally degradable plastic additive (TDPA additive or made of polyethylene (PE with the addition of pro-oxidant additive (d2w additive or advertised as 100% degradable did not biodegrade in any of the above-described conditions and remained completely intact at the end of the tests. Biodegradation of the certified compostable plastic bags proceeded very well in laboratory-scale conditions and in real composting conditions – industrial composting plant, however, these materials did not biodegrade in real composting conditions – domestic compost bin and landfill conditions.

  6. Neural plasticity and its initiating conditions in tinnitus.

    Science.gov (United States)

    Roberts, L E

    2018-03-01

    Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing. Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis. Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients. The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.

  7. Effect of plasticity on cleavage crack growth resistance at an interface

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1999-01-01

    The mixed mode toughness of an interface joining an elastic-plastic metal to a solid which does not yield plastically is studied numerically for cases where fracture occurs by atomic separation. Thus, the length scale of the fracture process is typically much smaller than the dislocation spacing...... of a thin elastic strip of material along the metal side of the crack tip, while the metal outside the strip is described by continuum plasticity. Most of the computations use an infinitely long elastic strip to represent the elastic core region around the tip, but the approximation of using a long strip...

  8. Industrial plastics waste: Identification and segregation

    Science.gov (United States)

    Widener, Edward L.

    1990-01-01

    Throwaway plastic products, mainly packaging, are inundating our landfills and incinerators. Most are ethenic thermoplastics, which can be recycled as new products or fossil-fuels. Lab experiments are described, involving destructive and non-destructive tests for identifying and using plastics. The burn-test, with simple apparatus and familiar samples, is recommended as quick, cheap and effective.

  9. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    Science.gov (United States)

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  10. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    Directory of Open Access Journals (Sweden)

    Raafat P Fares

    Full Text Available Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage, which offers: (1 minimally stressful social interactions; (2 increased voluntary exercise; (3 multiple entertaining activities; (4 cognitive stimulation (maze exploration, and (5 novelty (maze configuration changed three times a week. The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  11. Richtmyer-Meshkov instability in elastic-plastic media

    Science.gov (United States)

    Piriz, Antonio R.; López Cela, Juan J.; Tahir, Naeem A.; Hoffmann, Dieter H. H.

    2008-04-01

    Hydrodynamic instabilities are of great importance in the LAPLAS (Laboratory of Planetary Sciences) experiment that is being designed for the study of high energy density states of matter in the framework of the FAIR projectDuring the implosion of the LAPLAS cylindrical target Richtmyer-Meshkov (RM) instability occurs when a shock is launched into a material pusher with elastic and plastic properties that determines the physics of the instability evolution. We have studied the evolution of the interface from which the shock is launched as a consequence of the RM instability. For this we have developed an analytical model and we have performed two-dimensional numerical simulations in order to validate the model. Model and simulations show the asymptotic stability state in which the interface oscillates elastically around a mean value higher than the initial perturbation amplitude. Such a mean value is determined by an initial plastic phase. Applications to the measurement of the yield strength of materials under extreme conditions are foreseen.

  12. Plastic ingestion by Flesh-footed Shearwaters (Puffinus carneipes): Implications for fledgling body condition and the accumulation of plastic-derived chemicals

    International Nuclear Information System (INIS)

    Lavers, Jennifer L.; Bond, Alexander L.; Hutton, Ian

    2014-01-01

    To provide much needed quantitative data on the lethal and sublethal effects of plastic pollution on marine wildlife, we sampled breast feathers and stomach contents from Flesh-footed Shearwater (Puffinus carneipes) fledglings in eastern Australia. Birds with high levels of ingested plastic exhibited reduced body condition and increased contaminant load (p < 0.05). More than 60% of fledglings exceed international targets for plastic ingestion by seabirds, with 16% of fledglings failing these targets after a single feeding (range: 0.13–3.21 g of plastic/feeding). As top predators, seabirds are considered sentinels of the marine environment. The amount of plastic ingested and corresponding damage to Flesh-footed Shearwater fledglings is the highest reported for any marine vertebrate, suggesting the condition of the Australian marine environment is poor. These findings help explain the ongoing decline of this species and are worrying in light of increasing levels of plastic pollution in our oceans. - Highlights: • Proportion of the shearwater population ingesting plastic increased over four years. • Shearwater body condition is negatively influenced by the amount of ingested plastic. • Shearwater contaminant load is positively related to the amount of ingested plastic. • Many chicks exceed international targets for ingested plastic after a single feeding. • Plastic ingestion in this study is the highest reported for any marine vertebrate. - Flesh-footed Shearwaters ingest large quantities of marine plastic, which is correlated with poor body condition and increased concentrations of trace metals such as chromium

  13. The Effects of plasticizers and palmitic acid toward the properties of the carrageenan Film

    Science.gov (United States)

    Heru Wibowo, Atmanto; Listiyawati, Oktaviana; Purnawan, Candra

    2016-02-01

    Varied plasticizers and palmitic acid additive have been added in the carrageenan film. The film was made by mixing of the carrageenan and plasticizers (glycerol, polyethylene glycol, polyvinyl alcohol) with composition of 92:3, 90:6, 87:9, 84:12, 81:15(%w/w) and in the presence of palmitic acid as additive with 1%, 2%, 3%, 4%, 5% of total weight. Casting method was used for the film molding and drying at 60oC with the oven for 12 hours. To investigate the effects of plasticizers and additive, some mechanical tests on film were performed. The test result concludes that plasticizers in the film decreased the tensile strength and increased the elongation break of the carrageenan film. The additive of palmitic acid decreased the tensile strength of the carrageenan film and also decreased the-the water absorbance of the film. The highest tensile strength of films made was with the formulation of carrageenan: PEG with composition of 92:3 (% w/w). The highest elongation break of the film was for carrageenan:PVA with the composition of 81: 15 (%w/w) and carrageenan:palmitic acid:PEG with the composition of 92: 3: 1 (%w/w). The lowest water absorption of the film was achieved for carrageenan:PVA:palmitic acid with the composition of 87: 3: 5 (%w/w).

  14. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    Science.gov (United States)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  15. Use of recycled plastic in concrete: a review.

    Science.gov (United States)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  16. Use of recycled plastic in concrete: A review

    International Nuclear Information System (INIS)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper

  17. Use of Plastic Capillaries for Macromolecular Crystallization

    Science.gov (United States)

    Potter, Rachel R.; Hong, Young-Soo; Ciszak, Ewa M.

    2003-01-01

    Methods of crystallization of biomolecules in plastic capillaries (Nalgene 870 PFA tubing) are presented. These crystallization methods used batch, free-interface liquid- liquid diffusion alone, or a combination with vapor diffusion. Results demonstrated growth of crystals of test proteins such as thaumatin and glucose isomerase, as well as protein studied in our laboratory such dihydrolipoamide dehydrogenase. Once the solutions were loaded in capillaries, they were stored in the tubes in frozen state at cryogenic temperatures until the desired time of activation of crystallization experiments.

  18. Micro-structural evolution in plastically deformed crystalline materials

    DEFF Research Database (Denmark)

    Nellemann, Christopher

    predictions for the two models to be obtained. Application of the two models to the pure shear boundary value problem is used to characterize plastic behavior, which also allows for the identification of inherent properties through closed form expressions. Single crystal Monazite containing a void is studied......Two rate-independent strain gradient crystal plasticity models are developed and applied in numerical studies designed to identify the properties inherent to model predictions of plastic deformation. The two models incorporate gradients of slip into the framework of conventional crystal plasticity...... in order to model size-dependent plasticity effects. This gradient dependence is achieved by relating a slip measure which combines both slip and their gradients to a shear hardening curve, as commonly done in conventional plasticity theories. Finite element codes are implemented which allow for numerical...

  19. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  20. Adjusting phenotypes via within- and across-generational plasticity.

    Science.gov (United States)

    Auge, Gabriela A; Leverett, Lindsay D; Edwards, Brianne R; Donohue, Kathleen

    2017-10-01

    Contents 343 I. 343 II. 343 III. 347 IV. 348 348 References 348 SUMMARY: There is renewed interest in how transgenerational environmental effects, including epigenetic inheritance, contribute to adaptive evolution. The contribution of across-generation plasticity to adaptation, however, needs to be evaluated within the context of within-generation plasticity, which is often proposed to contribute more efficiently to adaptation because of the potentially greater accuracy of progeny than parental cues to predict progeny selective environments. We highlight recent empirical studies of transgenerational plasticity, and find that they do not consistently support predictions based on the higher predictive ability of progeny environmental cues. We discuss these findings within the context of the relative predictive ability of maternal and progeny cues, costs and constraints of plasticity in parental and progeny generations, and the dynamic nature of the adaptive value of within- and across-generation plasticity that varies with the process of adaptation itself. Such contingent and dynamically variable selection could account for the diversity of patterns of within- and across-generation plasticity observed in nature, and can influence the adaptive value of the persistence of environmental effects across generations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.