WorldWideScience

Sample records for plastic reactor facility

  1. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  2. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  3. Reactor Sharing at Rensselaer Critical Facility

    International Nuclear Information System (INIS)

    D. Steiner, D. Harris, T. Trumbull

    2006-01-01

    This final report summarizes the reactor sharing activities at the Rensselaer Critical Facility. An example of a typical tour is also included. Reactor sharing at the RCF brings outside groups into the facility for a tour, an explanation of reactor matters, and a reactor measurement. It has involved groups ranging from high school classes to advanced college groups and in size from a few to about 50 visitors. The RCF differs from other university reactors in that its fuel is like that of large power reactors, and its research and curriculum are dedicated to power reactor matters

  4. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  5. Embedding of reactor wastes in plastic resins

    International Nuclear Information System (INIS)

    1979-01-01

    STEAG Kernenergie GmbH is so far the only firm commercially to condition radioactive bead ion exchange resins by embedding in polystyrene resins. The objective of the work reported here was to study and develop methods for immobilization of other reactor wastes in plastic resins. Comparison studies on high quality cement however showed favourable results for cement with respect to process safety and economy. For this reason STEAG interrupted its work in the field of resin embedding after about one year. The work carried out during this period is surveyed in this report, which includes a comprehensive literature study on reactor wastes and their solidification in plastic resins as well as on regulations with regard to radioactive waste disposal in the member states of the European Communities

  6. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  7. Emergency reactor core cooling facility

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka.

    1996-01-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  8. Emergency reactor core cooling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka

    1996-11-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  9. Elastic-plastic dynamic analysis of a reactor building

    International Nuclear Information System (INIS)

    Umemura, Hajime; Tanaka, Hiroshi.

    1976-01-01

    The basic characteristics of the dynamic response of a reactor building to severe earthquake ground motion are very important for the evaluation of the safety of nuclear plant systems. A computer program for elastic-plastic dynamic analysis of reactor buildings using lumped mass models is developed. The box and cylindrical walls of boiling water reactor buildings are treated as vertical beams. The nonlinear moment-rotation and shear force-shear deformation relationships of walls are based in part upon the experiments of prototype structures. The geometrical non-linearity of the soil rocking spring due to foundation separation is also considered. The nonlinear equation of motion is expressed in incremental form using tangent stiffness matrices, following the algorithm developed by E.L. Wilson et al. The damping matrix in the equation is formulated as the combination of the energy evaluation method and Penzien-Wilson's approach to accomodate the different characteristics of soil and building damping. The analysis examples and the comparison of elastic and elastic-plastic analysis results are presented. (auth.)

  10. STARFIRE remote maintenance and reactor facility concept

    International Nuclear Information System (INIS)

    Graumann, D.W.; Field, R.E.; Lutz, G.R.; Trachsel, C.A.

    1981-01-01

    A total remote maintenance facility has been designed for all equipment located within the reactor building and hot cell, although operational flexibility has been provided by design of the reactor shielding such that personnel access into the reactor building within 24 hours after reactor shutdown is possible. The reactor design permits removal and replacement of all components if necessary, however, the vacuum pumps, isolation valves and blanket require scheduled, routine maintenance. Reactor scheduled maintenance does not dominate annual plant downtime, therefore, several scheduled operations can be added without affecting reactor availability. The maintenance facilities consist of the reactor building, the hot cell, the reactor service area and the remote maintenance control room. The reactor building contains the reactor, selected support system modules, and required maintenance equipment. The reactor and the support systems are maintained with (1) equipment that is mounted on a monorail system; (2) overhead cranes; and (3) bridge-mounted electromechanical manipulators. The hot cell is located outside of the reactor building to localize contamination products and permit independent operation. An equipment air lock connects the reactor building to the hot cell

  11. On exposure of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The Law for Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1988 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the exposure of workers was below the permissible exposure dose in 1988 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of Japan Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  12. On exposure management of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Law of Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1993 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the the exposure of workers was below the permissible exposure dose in 1993 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of JAERI and PNC. (J.P.N.)

  13. Facilities of fuel transfer for nuclear reactors

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    This invention relates to sodium cooled fast breeder reactors. It particularly concerns facilities for the transfer of fuel assemblies between the reactor core and a fuel transfer area. The installation is simple in construction and enables a relatively small vessel to be used. In greater detail, the invention includes a vessel with a head, fuel assemblies housed in this vessel, and an inlet and outlet for the coolant covering these fuel assemblies. The reactor has a fuel transfer area in communication with this vessel and gear inside the vessel for the transfer of these fuel assemblies. These facilities are borne by the vessel head and serve to transfer the fuel assemblies from the vessel to the transfer area; whilst leaving the fuel assemblies completely immersed in a continuous mass of coolant. A passageway is provided between the vessel and this transfer area for the fuel assemblies. Facilities are provided for closing off this passageway so that the inside of the reactor vessel may be isolated as desired from this fuel transfer area whilst the reactor is operating [fr

  14. Investigation of the failure of a reactor pressure vessel by plastic instability

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1994-01-01

    A possible consequence of a core meltdown accident in a pressurized water reactor is the failure of the reactor pressure vessel under high internal pressure. With the aid of the finite element program ABAQUS and using a material model of the thermo-plasticity for large deformation, the failure of the reactor pressure vessel due to plastic instability was examined. It was apparent from the finite element calculations that solely due to reduction in strength of the material, even for internal wall temperatures clearly below the core melt; of about 2000 C, the critical internal pressure can fall to values which are lower than the working pressure. With the aid of simplified geometry, a lower limit for the pressure at failure of the reactor pressure vessel can be calculated. (orig./HP) [de

  15. Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method

    OpenAIRE

    Oguri, S.; Kuroda, Y.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2014-01-01

    We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside the reactor building, we measured the difference in reactor antineutrino flux above the ground when the reactor was active and inactive.

  16. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay

    International Nuclear Information System (INIS)

    Dhami, P.S; Yadav, J.S; Agarwal, K.

    2017-01-01

    Exploitation of the abundant thorium resources to meet sustained energy demand forms the basis of the Indian nuclear energy programme. To gain reprocessing experience in thorium fuel cycle, thoria was irradiated in research reactor CIRUS in early sixties. Later in eighties, thoria bundles were used for initial flux flattening in some of the pressurized heavy water reactors (PHWRs). The research reactor irradiated thoria contained small content (∼ 2-3ppm) of "2"3"2U in "2"3"3U product, which did not pose any significant radiological problems during processing in Uranium Thorium Separation Facility (UTSF), Trombay. Thoria irradiated in PHWRs on discharge contained (∼ 0.5-1.5% "2"3"3U with significant "2"3"2U content (100-500 ppm) requiring special radiological attention. Based on the experience from UTSF, a new facility viz. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay was built which was hot commissioned in the year 2015

  17. Reactor facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Murase, Michio; Yokomizo, Osamu.

    1997-01-01

    The present invention provides a BWR type reactor facility capable of suppressing the amount of steams generated by the mutual effect of a failed reactor core and coolants upon occurrence of an imaginal accident, and not requiring spacial countermeasures for enhancing the pressure resistance of the container vessel. Namely, a means for supplying cooling water at a temperature not lower by 30degC than the saturated temperature corresponding to the inner pressure of the containing vessel upon occurrence of an accident is disposed to a lower dry well below the pressure vessel. As a result, upon occurrence of such an accident that the reactor core should be melted and flown downward of the pressure vessel, when cooling water at a temperature not lower than the saturated temperature, for example, cooling water at 100degC or higher is supplied to the lower dry well, abrupt generation of steams by the mutual effect of the failed reactor core and cooling water is scarcely caused compared with a case of supplying cooling water at a temperature lower than the saturation temperature by 30degC or more. Accordingly, the amount of steams to be generated can be suppressed, and special countermeasure is no more necessary for enhancing the pressure resistance of the container vessel is no more necessary. (I.S.)

  18. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Salazar, M.; Elder, J.

    1992-08-01

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program

  19. Present status of decommissioning in the Musashi Reactor Facility (4)

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Tanzawa, Tomio; Mitsuhashi, Ishi; Morishima, Kayoko; Matsumoto, Tetsuo

    2012-01-01

    The decommissioning of the Musashi reactor was decided in 2003. Permanent shutdown of the reactor and stopping the operational functions were conducted in 2004. Transportation of the spent fuels was finished in 2006. After 2007, the system and equipment stopping the functions were stored as installed in the reactor facility as radioactive wastes. After separating nonradioactive wastes such as concretes from radioactive wastes with a contamination test, stopping the functions of liquid waste management facility was performed with newly installed drainage facility for radioisotope use in 2010. Solid waste management facility was also dismantled and removed in the same way as liquid waste management facility in 2011. Radioactive wastes packed in containers were moved and stored in the reactor facility. (T. Tanaka)

  20. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  1. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  2. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  3. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  4. Design requirements for new nuclear reactor facilities in Canada

    International Nuclear Information System (INIS)

    Shim, S.; Ohn, M.; Harwood, C.

    2012-01-01

    The Canadian Nuclear Safety Commission (CNSC) has been establishing the regulatory framework for the efficient and effective licensing of new nuclear reactor facilities. This regulatory framework includes the documentation of the requirements for the design and safety analysis of new nuclear reactor facilities, regardless of size. For this purpose, the CNSC has published the design and safety analysis requirements in the following two sets of regulatory documents: 1. RD-337, Design of New Nuclear Power Plants and RD-310, Safety Analysis for Nuclear Power Plants; and 2. RD-367, Design of Small Reactor Facilities and RD-308, Deterministic Safety Analysis for Small Reactor Facilities. These regulatory documents have been modernized to document past practices and experience and to be consistent with national and international standards. These regulatory documents provide the requirements for the design and safety analysis at a high level presented in a hierarchical structure. These documents were developed in a technology neutral approach so that they can be applicable for a wide variety of water cooled reactor facilities. This paper highlights two particular aspects of these regulatory documents: The use of a graded approach to make the documents applicable for a wide variety of nuclear reactor facilities including nuclear power plants (NPPs) and small reactor facilities; and, Design requirements that are new and different from past Canadian practices. Finally, this paper presents some of the proposed changes in RD-337 to implement specific details of the recommendations of the CNSC Fukushima Task Force Report. Major changes were not needed as the 2008 version of RD-337 already contained requirements to address most of the lessons learned from the Fukushima event of March 2011. (author)

  5. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  6. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  7. Risk management activities at the DOE Class A reactor facilities

    International Nuclear Information System (INIS)

    Sharp, D.A.; Hill, D.J.; Linn, M.A.; Atkinson, S.A.; Hu, J.P.

    1993-01-01

    The probabilistic risk assessment (PRA) and risk management group of the Association for Excellence in Reactor Operation (AERO) develops risk management initiatives and standards to improve operation and increase safety of the DOE Class A reactor facilities. Principal risk management applications that have been implemented at each facility are reviewed. The status of a program to develop guidelines for risk management programs at reactor facilities is presented

  8. Manufacture and installation of reactor auxiliary facilities for advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Matsushita, Tadashi

    1977-01-01

    The facilities of reactor auxiliary systems for the advanced thermal prtotype reactor ''Fugen'' were manufactured in factories since 1972, and the installation at the site began in November, 1974. It was almost completed in March, 1977, except a part of the tests and inspections, therefore the outline of the works is reported. The ATR ''Fugen'' is a heavy water-moderated, boiling light water reactor, and its reactor auxiliary systems comprise mainly the facilities for handling heavy water, such as heavy water cooling system, heavy water cleaning system, poison supplying system, helium circulating system, helium cleaning system, and carbon dioxide system. The poison supplying system supplies liquid poison to the heavy water cooling system to absorb excess reactivity in the initial reactor core. The helium circulating system covers heavy water surface with helium to prevent the deterioration of heavy water and maintains heavy water level by pressure difference. The carbon dioxide system flows highly pure CO 2 gas in the space of pressure tubes and carandria tubes, and provides thermal shielding. The design, manufacture and installation of the facilities of reactor auxiliary systems, and the helium leak test, synthetic pressure test and total cleaning are explained. (Kako, I.)

  9. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  10. Concerning control of radiation exposure to workers in nuclear reactor facilities for testing and nuclear reactor facilities in research and development phase (fiscal 1987)

    International Nuclear Information System (INIS)

    1988-01-01

    A nuclear reactor operator is required by the Nuclear Reactor Control Law to ensure that the radiation dose to workers engaged in the operations of his nuclear reactor is controlled below the permissible exposure doses that are specified in notifications issued based on the Law. The present note briefly summarizes the data given in the Reports on Radiation Control, which have been submitted according to the Nuclear Reactor Control Law by the operators of nuclear reactor facilities for testing and those in the research and development phase, and the Reports on Control of Radiation Exposure to Workers submitted in accordance with the applicable administrative notices. According to these reports, the measured exposure to workers in 1987 were below the above-mentioned permissible exposure doses in all these nuclear facilities. The 1986 and 1987 measurements of radiation exposure dose to workers in nuclear reactor facilities for testing are tabulated. The measurements cover dose distribution among the facilities' personnel and workers of contractors. They also cover the total exposure dose for all workers in each of four plants operated under the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  11. Sharing of Rensselaer Polytechnic Institute Reactor Critical Facility (RCF)

    International Nuclear Information System (INIS)

    1995-01-01

    The RPI Reactor Critical Facility (RCF) operated successfully over the period fall 1994 - fall 1995. During this period, the RCF was used for Critical Reactor Laboratory spring 1995 (12 students); Reactor Operations Training fall 1994 (3 students); Reactor Operations Training spring 1995 (3 students); and Reactor Operations Training fall 1995 (3 students). Thirty-two Instrumentation and Measurement students used the RCF for one class for hands-on experiments with nuclear instruments. In addition, a total of nine credits of PhD thesis work were carried out at the RCF. This document constitutes the 1995 Report of the Rensselaer Polytechnic Institute's Reactor Critical Facility (RCF) to the USNRC, to the USDOE, and to RPI management

  12. Magnox Electric Littlebrook reactor inspection and repair rehearsal facility

    International Nuclear Information System (INIS)

    Barnes, S.A.; Clayton, R.; Gaydon, B.G.; Ramsey, B.H.

    1996-01-01

    Magnox reactors, although designed to be maintenance free during their operational life, have nevertheless highlighted the need for test rig facilities to train operators in the methods and techniques of reactor inspection and repair. The history of the facility for reactor engineering development (FRED) is described and its present role as a repair rehearsal facility noted. Advances in computer graphics may, in future, mean that such operator training will be virtual reality rather than analog reality based; however the need for such rigs to commission techniques and equipment and to establish performance and reliability is likely to continue. (UK)

  13. Microdosimetric measurements in the thermal neutron irradiation facility of LENA reactor

    International Nuclear Information System (INIS)

    Colautti, P.; Moro, D.; Chiriotti, S.; Conte, V.; Evangelista, L.; Altieri, S.; Bortolussi, S.; Protti, N.; Postuma, I.

    2014-01-01

    A twin TEPC with electric-field guard tubes has been constructed to be used to characterize the BNCT field of the irradiation facility of LENA reactor. One of the two mini TEPC was doped with 50 ppm of 10 B in order to simulate the BNC events occurring in BNCT. By properly processing the two microdosimetric spectra, the gamma, neutron and BNC spectral components can be derived with good precision (∼6%). However, direct measurements of 10 B in some doped plastic samples, which were used for constructing the cathode walls, point out the scarce accuracy of the nominal 10 B concentration value. The influence of the Boral ® door, which closes the irradiation channel, has been measured. The gamma dose increases significantly (+51%) when the Boral ® door is closed. The crypt-cell-regeneration weighting function has been used to measure the quality, namely the RBE µ value, of the radiation field in different conditions. The measured RBE µ values are only partially consistent with the RBE values of other BNCT facilities. - Highlights: • A counter with two mini TEPCs, both equipped with electrical-field guard tubes, has been constructed. • The microdosimetric spectrum of the LENA-reactor irradiation vane has been studied. • The radiation-field quality (RBE) assessment confirms that the D n /D tot ratio is not an accurate parameter to characterize the BNCT radiation field

  14. Plastic reactor suitable for high pressure and supercritical fluid electrochemistry

    DEFF Research Database (Denmark)

    Branch, Jack; Alibouri, Mehrdad; Cook, David A.

    2017-01-01

    The paper describes a reactor suitable for high pressure, particularly supercritical fluid, electrochemistry and electrodeposition at pressures up to 30 MPa at 115◦C. The reactor incorporates two key, new design concepts; a plastic reactor vessel and the use of o-ring sealed brittle electrodes...... by the deposition of Bi. The application of the reactor to the production of nanostructures is demonstrated by the electrodeposition of ∼80 nm diameter Te nanowires into an anodic alumina on silicon template. Key advantages of the new reactor design include reduction of the number of wetted materials, particularly...... glues used for insulating electrodes, compatability with reagents incompatible with steel, compatability with microfabricated planar multiple electrodes, small volume which brings safety advantages and reduced reagent useage, and a significant reduction in experimental time....

  15. Standard irradiation facilities for use in TRIGA reactors

    International Nuclear Information System (INIS)

    Kolbasov, B.N.; Luse, R.A.

    1972-01-01

    The standard neutron irradiation facility (SNIP) was developed under IAEA and FAO co-ordinated research program for the standardization of neutron irradiation facilities for radiobiological research, resulting in the possibility to use fast neutrons from pool-type reactors for radiobiological studies. The studies include irradiation of seeds for crop improvement, of Drosophila for genetic studies, and of microorganisms for developing industrially useful mutants, as well as fundamental studies in radiation biology. The facilities, located in the six pool-type reactors (in Austria, Bulgaria, India, Philippines, Thailand and Taiwan), have been calibrated and utilized to compare the response to fast neutrons of barley seeds (variety Himalaya CI 000620) which were selected as a standard biological monitor by which to estimate neutron fluxes in different reactors. These comparative irradiation studies showed excellent agreement and reproducibility

  16. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  17. Development of thermo-plastic heating and compaction facility

    International Nuclear Information System (INIS)

    Ko, Dae Hak; Lim, Suk Nam

    1998-01-01

    Low- and intermediate-level radioactive wastes consist of spent resin, spent filter, concentrated waste and dry active waste(DAW) and they are solidified or packaged into drums or high integrated containers(HICs). DAWs occupy 50 percent of all low- and intermediate-level radioactive wastes generated from nuclear power plants in Korea. Incinerable wastes in the DAWs are about 60 percent. Therefore, it is very important for us to reduce the volume of incinerable wastes in DAWs. Experience of supercompaction turned out that thermo-plastic wastes have a swelling effect after supercompaction process due to their repulsive power. And the thermo-plastic heating and compaction facility has been developed by KEPCO. In conclusion, heating and compaction facility can reduce the volume of DAWs as well as upgrade the quality of treated wastes, because the swelling effect by repulsive power after compaction is removed, final wastes form the shape of block and they have no free-standing water in the wastes. Plan for practical use is that this facility will be installed in other nuclear power plants in Korea in 1999. (Cho, G. S.). 1 tab., 2 figs

  18. The selection of probabilistic safety assessment techniques for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    Vail, J.

    1992-01-01

    Historically, the probabilistic safety assessment (PSA) methodology of choice is the well known event tree/fault tree inductive technique. For reactor facilities is has stood the test of time. Some non-reactor nuclear facilities have found inductive methodologies difficult to apply. The stand-alone fault tree deductive technique has been used effectively to analyze risk in nuclear chemical processing facilities and waste handling facilities. The selection between the two choices suggest benefits from use of the deductive method for non-reactor facilities

  19. An analysis of decommissioning costs for the AFRRI TRIGA reactor facility

    International Nuclear Information System (INIS)

    Forsbacka, Matt

    1990-01-01

    A decommissioning cost analysis for the AFRRI TRIGA Reactor Facility was made. AFRRI is not at this time suggesting that the AFRRI TRIGA Reactor Facility be decommissioned. This report was prepared to be in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations which requires the assurance of availability of future decommissioning funding. The planned method of decommissioning is the immediate decontamination of the AFRRI TRIGA Reactor site to allow for restoration of the site to full public access - this is called DECON. The cost of DECON for the AFRRI TRIGA Reactor Facility in 1990 dollars is estimated to be $3,200,000. The anticipated ancillary costs of facility site demobilization and spent fuel shipment is an additional $600,000. Thus the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for this cost estimate is a study of the decommissioning costs of a similar reactor facility that was performed by Battelle Pacific Northwest Laboratory (PNL) as provided in USNRC publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA. (author)

  20. Feasibility study to develop BNCT facility at the Indonesian research reactor

    International Nuclear Information System (INIS)

    Hastowo, H.

    2001-01-01

    A survey on the Indonesian research reactors and its supporting facilities has been done in order to check the possibility to install BNCT facility. Oncologists from several hospitals have been informing about the BNCT treatment for tumours and they give a positive response to support utilisation of the BNCT facility. Several aspects required to support the BNCT treatment have also been identified and related activities on that matter soon will be initiated. The interim result in our survey indicated that utilisation of the 30 MW Multipurpose reactor would not be possible from the technical point of view. Further study will be concentrated on the TRIGA reactor and an epithermal neutron beam facility at the thermal column of this reactor will be designed for further work. (author)

  1. Discussion of the use of the Dragon reactor as a facility for integral reactor physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gutmann, H

    1972-06-05

    The purpose and use of the Dragon Reactor Experiment (DRE) has changed considerably during the years of its operation. The original purpose was to show that the principle of a High Temperature Reactor is sound and demonstrate its operation. After this achievement, the purpose of the Dragon reactor changed to the use as a fuel testing facility. During recent years, a new use of the DRE has been added to its use as a fuel testing facility, namely Fuel Element Design Testing. The current report covers reactor physics experiments aspects.

  2. Sea water take-up facility for cooling reactor auxiliary

    International Nuclear Information System (INIS)

    Numata, Noriko; Mizutani, Akira; Hirako, Shizuka; Uchiyama, Yuichi; Oda, Atsushi.

    1997-01-01

    The present invention provides an improvement of a cooling sea water take-up facility for cooling auxiliary equipments of nuclear power plant. Namely, an existent sea water take-up facility for cooling reactor auxiliary equipments has at least two circulation water systems and three independent sea water systems for cooling reactor auxiliary equipments. In this case, a communication water channel is disposed, which connects the three independent sea water systems for cooling reactor auxiliary equipments mutually by an opening/closing operation of a flow channel partitioning device. With such a constitution, even when any combination of two systems among the three circulation water systems is in inspection at the same time, one system for cooling the reactor auxiliary equipments can be kept operated, and one system is kept in a stand-by state by the communication water channel upon periodical inspection of water take-up facility for cooling the auxiliary equipments. As a result, the sea water take-up facility for cooling auxiliary equipments of the present invention have operation efficiency higher than that of a conventional case while keeping the function and safety at the same level as in the conventional case. (I.S.)

  3. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  4. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  5. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  6. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  7. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  8. Emergency reactor container cooling facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Matsumoto, Tomoyuki.

    1992-01-01

    The present invention concerns an emergency cooling facility for a nuclear reactor container having a pressure suppression chamber, in which water in the suppression chamber is effectively used for cooling the reactor container. That is, the lower portion of a water pool in the pressure suppression chamber and the inside of the reactor container are connected by a pipeline. The lower end of the pipeline and a pressurized incombustible gas tank disposed to the outside of the reactor container are connected by a pipeline by way of valves. Then, when the temperature of the lower end of the pressure vessel exceeds a predetermined value, the valves are opened. If the valves are opened, the incombustible gas flows into the lower end of the pipeline connecting the lower portion of the water pool in the pressure suppression chamber and the inside of the reactor container. Since the inside of the pipeline is a two phase flow comprising a mixture of a gas phase and a liquid phase, the average density is decreased. Therefore, the water level of the two phase flow is risen by the level difference between the inside and the outside of the pipeline and, finally, the two phase mixture is released into the reactor container. As a result, the reactor container can be cooled by water in the suppression chamber by a static means without requiring pumps. (I.S.)

  9. The 'MELUSINE' reactor at Grenoble, France, and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the MELUSINE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities and specialized irradiation devices (loops and capsules). The information is presented in the form of six information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities

  10. Emergency facility control device for nuclear reactor

    International Nuclear Information System (INIS)

    Ikehara, Morihiko.

    1981-01-01

    Purpose: To increase the reliability of a nuclear reactor by allowing an emergency facility to be manually started and stopped to make its operation more convenient and eliminate the possibility of erroneous operation in an emergency. Constitution: There are provided a first water level detector for detecting a level lower than the first low water level in a reactor container and a second water level detector for detecting a level lower than the second low water level lower than the first low water level, and an emergency facility can be started and stopped manually only when the level is higher than the second low water level, but the facility will be started regardless of the state of the manual operation when the level is lower than the second low water level. Thus, the emergency facility can be started by manual operation, but will be automatically started so as to secure the necessary minimum operation if the level becomes lower than the second low water level and the stopping operation thereafter is forgotten. (Kamimura, M.)

  11. Influence of various stresses on diametral and axial plastic deformations of the Phenix reactor fuel cans

    International Nuclear Information System (INIS)

    Guerin, Y.; Boutard, J.L.

    1983-04-01

    Dimensions of fuel cans are modified during irradiation in fast reactors: diameter increase is produced by steel swelling and irradiation creep under the pressure of fission gases and length increase integrates swelling. Diameter and density measured on fuel cans in SS 316, irradiated in the Phenix reactor, show that interaction spacer-can and interaction between pins produce plastic deformations. The interaction spacer-can leads not only to a helical deflection of the pin but also a slight axial plastic compression associated to a diametral plastic deformation. There is also a leveling of elongation in these strained pins because of friction with neighbouring pins [fr

  12. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Kourachenkov, A.V.

    1998-01-01

    The general issues regarding NHR and desalination facility joint operation for potable water production are briefly considered. AST-500 reactor plant and DOU GTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. Similarity of NHR operation for a heating grid and a desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author)

  13. Study of fast reactor safety test facilities. Preliminary report

    International Nuclear Information System (INIS)

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods

  14. The 'SILOE' reactor at Grenoble, France and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the SILOE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  15. The 'OSIRIS' reactor at Saclay, France and available hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the OSIRIS reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  16. Nuclear reactor facility

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    In order to improve the performance of manitenance and inspections it is proposed for a nuclear reactor facility with a primary circuit containing liquid metal to provide a thermally insulated chamber, within which are placed a number of components of the primary circuit, as e.g. valves, recirculation pump, heat exchangers. The isolated placement permit controlled preheating on one hand, but prevents undesirable heating of adjacent load-bearing elements on the other. The chamber is provided with heating devices and, on the outside, with cooling devices; it is of advantage to fill it with an inert gas. (UWI) 891 HP [de

  17. Environmental assessment for the deactivation of the N Reactor facilities. Revision 1

    International Nuclear Information System (INIS)

    1994-11-01

    This environmental assessment (EA) provides information for the US Department of Energy (DOE) to decide whether the Proposed Action for the N Reactor facilities warrants a Finding of No Significant Impact or requires the preparation of an environmental impact statement (EIS). The EA describes current conditions at the N Reactor facilities, the need to take action at the facilities, the elements of the Proposed Action and alternatives, and the potential environmental impacts. The N Reactor facilities are currently in a surveillance and maintenance program, and will eventually be decontaminated and decommissioned (D and D). Operation and maintenance of the facilities resulted in conditions that could adversely impact human health or the environment if left as is until final D and D. The Proposed Action would deactivate the facilities to remove the conditions that present a potential threat to human health and the environment and to reduce surveillance and maintenance requirements. The action would include surveillance and maintenance after deactivation. Deactivation would take about three years and would involve about 80 facilities. Surveillance and maintenance would continue until final D and D, which is expected to be complete for all facilities except the N Reactor itself by the year 2018

  18. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  19. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Gureyeva, L.V.; Egorov, V.V.; Podberezniy, V.L.

    1997-01-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab

  20. Coupling of AST-500 heating reactors with desalination facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gureyeva, L V; Egorov, V V [OKBM, Nizhny Novgorod (Russian Federation); Podberezniy, V L [Scientific Research Inst. of Machine Building, Ekaterinburg (Russian Federation)

    1997-09-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab.

  1. Effluent releases at the TRIGA reactor facility

    Energy Technology Data Exchange (ETDEWEB)

    Whittemore, W L [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    The principal effluent from the operating TRIGA reactors in our facility is argon-41. As monitored by a recording gas and particulate stack monitor, the values shown in the table, the Mark III operating 24 hours per day for very long periods produced the largest amount of radioactive argon. The quantity of 23.7 Ci A-41 when diluted by the normal reactor room ventilation system corresponded to 1.45 x 10{sup -6} {mu}Ci/cc. As diluted in the roof stack stream and the reactor building wake, the concentration immediately outside the reactor building was 25% MPC for an unrestricted area. The continued dilution of this effluent resulted in a concentration of a few percent MPC at the site boundary (unrestricted area) 350 meters from the reactor. (author)

  2. Training and research reactor facility longevity extension program

    International Nuclear Information System (INIS)

    Carriveau, G.W.

    1991-01-01

    Since 1943, over 550 training and research reactors have been in operation. According to statistics from the International Atomic Energy Agency, ∼325 training and research reactors are currently in service. This total includes a wide variety of designs covering a range of power and research capabilities located virtually around the world. A program has been established at General Atomics (GA) that is dedicated to the support of extended longevity of training and research reactor facilities. Aspects of this program include the following: (1) new instrumentation and control systems; (2) improved and upgraded nuclear monitoring and control channels; (3) facility testing, repair and upgrade services that include (a) pool or tank integrity, (b) cooling system, and (c) water purification system; (4) fuel element testing procedures and replacement; (5) control rod drive rebuilding and upgrades; (6) control and monitoring system calibration and repair service; (7) training services, including reactor operations, maintenance, instrumentation calibration, and repair; and (8) expanded or new uses such as neutron radiography and autoradiography, isotope production, nuclear medicine, activation analysis, and material properties modification

  3. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Krecanova, E.; Di Gabriele, F.; Berka, J.; Zychova, M.; Macak, J.; Vojacek, A.

    2013-06-01

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  4. Intense neutron irradiation facility for fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio; Kato, Yoshio; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Technical R and D of d-Li stripping type neutron irradiation facilities for development of fusion reactor materials was carried out in Fusion Materials Irradiation Test Facility (FMIT) project and Energy Selective Neutron Irradiation Test Facility (ESNIT) program. Conceptual design activity (CDA) of International Fusion Materials Irradiation Facility (IFMIF), of which concept is an advanced version of FMIT and ESNIT concepts, are being performed. Progress of users` requirements and characteristics of irradiation fields in such neutron irradiation facilities, and outline of baseline conceptual design of IFMIF were described. (author)

  5. General considerations for neutron capture therapy at a reactor facility

    International Nuclear Information System (INIS)

    Binney, S.E.

    2001-01-01

    In addition to neutron beam intensity and quality, there are also a number of other significant criteria related to a nuclear reactor that contribute to a successful neutron capture therapy (NCT) facility. These criteria are classified into four main categories: Nuclear design factors, facility management and operations factors, facility resources, and non-technical factors. Important factors to consider are given for each of these categories. In addition to an adequate neutron beam intensity and quality, key requirements for a successful neutron capture therapy facility include necessary finances to construct or convert a facility for NCT, a capable medical staff to perform the NCT, and the administrative support for the facility. The absence of any one of these four factors seriously jeopardizes the overall probability of success of the facility. Thus nuclear reactor facility management considering becoming involved in neutron capture therapy, should it be proven clinically successful, should take all these factors into consideration. (author)

  6. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Science.gov (United States)

    2010-07-01

    ... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of Environment...: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in §§ 63.5800 and...

  7. State of the art of nuclear facilities with organic cooled reactors

    International Nuclear Information System (INIS)

    Brede, O.

    1984-01-01

    USA, Canadian, and USSR activities aimed at developing nuclear facilities with organic cooled reactors are summarized. The facilities OMRE, PNPF, WR-1, and ARBUS are described, discussing in particular the problems of the chemistry of organic coolants. Finally, problems of further development and prospects of the application of organic cooled reactors are briefly outlined. (author)

  8. The DIDO-reactor at Harwell, U.K. and ancillary hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DIDO reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  9. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste

    International Nuclear Information System (INIS)

    Adrados, A.; Marco, I. de; Caballero, B.M.; López, A.; Laresgoiti, M.F.; Torres, A.

    2012-01-01

    Highlights: ► Pyrolysis of plastic waste. ► Comparison of different samples: real waste, simulated and real waste + catalyst. ► Study of the effects of inorganic components in the pyrolysis products. - Abstract: Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  10. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Benson, Jeff; Thelen, Mary Catherine

    2011-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  11. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  12. Low temperature irradiation facility at Kyoto University Reactor (KUR)

    International Nuclear Information System (INIS)

    Atobe, Kozo; Okada, Moritami; Yoshida, Hiroyuki; Kodaka, Hisao; Miyata, Kiyomi.

    1977-01-01

    A new refrigeration system has been substituted to the low temperature irradiation facility at KUR instead of the previous one, since April in 1975. The model 1204 CTi He liquifier was designed to be modified for the refrigerator with the capacity of 30 watts at 10 K. The refrigeration capacity of 38 watts at 10 K was defined using a special cryostat and transfer-tubes, and the lowest temperature of about 18 K was measured using the irradiation loop without reactor operation. The reconstructed facility enables us to hold the many specimens simultaneously in the sample chamber of the irradiation loop at about 25 K during reactor operation of 5 MW. The irradiation dose has been reached about 6.6 x 10 16 n sub(f)/cm 2 and 6.1 x 10 17 n sub(th)/cm 2 with the normal reactor operation cycle of up to 77 hours. The stable operation condition of the machine and the special safety system for the refrigeration system enable us to maintain easily the facility with a constant operation condition for such a long time irradiation. Many kinds of low temperature neutron irradiation experiments are carried out using the facility, which techniques are partially reported. (auth.)

  13. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2014-01-01

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  14. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  15. Operation and utilization of low power research reactor critical facility for Advanced Heavy Water Reactor (AHWR)

    International Nuclear Information System (INIS)

    De, S.K.; Karhadkar, C.G.

    2017-01-01

    An Advanced Heavy Water Reactor (AHWR) has been designed and developed for maximum power generation from thorium considering large reserves of thorium. The design envisages using 54 pin MOX cluster with different enrichment of "2"3"3U and Pu in Thoria fuel pins. Theoretical models developed to neutron transport and the geometrical details of the reactor including all reactivity devices involve approximations in modelling, resulting in uncertainties. With a view to minimize these uncertainties, a low power research reactor Critical Facility was built in which cold clean fuel can be arranged in a desired and precise geometry. Different experiments conducted in this facility greatly contribute to understand and validate the physics design parameters

  16. Engineering evaluation/cost analysis for the 105-DR and 105-F Reactor facilities and ancillary facilities

    International Nuclear Information System (INIS)

    Coenenberg, E.T.

    1998-01-01

    This document presents the results of an engineering evaluation/cost analysis (EE/CA) that was conducted to evaluate alternatives to address final disposition of the 105-DR and 105-F Reactor Buildings (subsequently referred to as facilities), including the fuel storage basins (FSB) and below-grade portions of the reactors, excluding the reactor blocks. The reactor blocks will remain in a safe storage mode for up to 75 years as identified in the Record the Decision (ROD) (58 FR 48509) for the Environmental Impact Statement (EIS), Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington (DOE 1992a). This EE/CA also addresses final disposition of four ancillary facilities: 116-D and 116-DR Exhaust Air Stacks, 117-DR Exhaust Filter Building, and 119-DR Exhaust Air Sample Building. The 105-DR and 105-F facilities are located in the 100-D and 100-F Areas of the Hanford Site. In November 1989, the 100 Area of the Hanford Site was placed on the U.S. Environmental Protection Agency's (EPA) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The 100 Area NPL includes the 100-D Area (which includes the 100-DR site) and the 100-F Area, which are in various stages of the remediation process. It has been determined by DOE that hazardous substances in the 105-DR, 105-F, and the four ancillary facilities may present a potential threat to human health or the environment, and that a non-time critical removal action at these facilities is warranted. To help determine the most appropriate action, DOE, in cooperation with the Washington State Department of Ecology (Ecology) and the EPA, has prepared this EE/CA. The scope of the evaluation includes the 105-DR and 105-F facilities and the four ancillary facilities. The 116-DR and 117-DR facilities are located within the boundaries of the 105-DR Large Sodium Fire Facility Treatment, Storage, and Disposal (TSD) unit, which is

  17. Design Guide for Category I reactors critical facilities

    International Nuclear Information System (INIS)

    Brynda, W.J.; Powell, R.W.

    1978-08-01

    The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned critical facilities be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission

  18. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits

  19. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits.

  20. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    International Nuclear Information System (INIS)

    Bissani, M; O'Kelly, D S

    2006-01-01

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  1. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bissani, M; O' Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to

  2. Implementation of safeguards and security for fissile materials disposition reactor alternative facilities

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1995-01-01

    A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material

  3. Reactor feedwater facility

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashi; Kinoshita, Shoichiro; Akatsu, Jun-ichi

    1996-04-30

    In a reactor feedwater facility in which one stand-by system and at least three ordinary systems are disposed in parallel, each of the feedwater pumps is driven by an electromotor, and has substantially the same capacity. At least two systems among the ordinary systems have a pump rotation number variable means. Since the volume of each of the feedwater pump of each system is determined substantially equal, standardization is enabled to facilitate the production. While the number of electromotors is increased, since they are driven by electromotors, turbines, steam pipelines and valves for driving feed water pumps can be eliminated. Therefore, the feedwater pumps can be disposed to a region of low radiation dose being separated from a main turbine and a main condensator, to improve the degree of freedom in view of the installation. In addition, accessibility to equipments during operation is improved to improve the maintenance of feed water facilities. The number of parts for equipments can be reduced compared with that in a turbine-driving system thereby capable of reducing the operation amount for the maintenance and inspection. (N.H.)

  4. The DR 3 reactor at Risoe, Denmark and its associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DR 2 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of seven information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  5. A complete fuel development facility utilizing a dual core TRIGA reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, A; Law, G C [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    A TRIGA Dual Core Reactor System has been chosen by the Romanian Government as the heart of a new fuel development facility which will be operated by the Romanian Institute for Nuclear Technologies. The Facility, which will be operational in 1976, is an integral part of the Romanian National Program for Power Reactor Development, with particular emphasis being placed on fuel development. The unique combination of a new 14 MW steady state TRIGA reactor, and the well-proven TRIGA Annular Core Pulsing Reactor (ACPR) in one below-ground reactor pool resulted in a substantial construction cost savings and gives the facility remarkable experimental flexibility. The inherent safety of the TRIGA fuel elements in both reactor cores means that a secondary containment building is not necessary, resulting in further construction cost savings. The 14 MW steady state reactor gives acceptably high neutron fluxes for long- term testing of various prototype fuel-cladding-coolant combinations; and the TRIGA ACPR high pulse capability allows transient testing of fuel specimens, which is so important for accurate prediction of the performance of power reactor fuel elements under postulated failure conditions. The 14 MW steady state reactor has one large and three small in-core irradiation loop positions, two large irradiation loop positions adjacent to the core face, and twenty small holes in the beryllium reflector for small capsule irradiation. The power level of 14 MW will yield peak unperturbed thermal neutron fluxes in the central experiment position approaching 3.0 x 10{sup 14} n/cm{sup 2}-sec. The ACPR has one large dry central experimental cavity which can be loaded at pool level through a shielded offset loading tube; a small diameter in-core flux trap; and an in-core pneumatically-operated capsule irradiation position. A peak pulse of 15,000 MW will yield a peak fast neutron flux in the central experimental cavity of about 1.5 x 10{sup 17} n/cm{sup 2}-sec. The pulse width at

  6. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Benson, J.B.; Foster, J.A.; Marshall, F.M.; Meyer, M.K.; Thelen, M.C.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  8. The advanced neutron source - A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    The advanced neutron source (ANS) is a new facility being designed at the Oak Ridge National Laboratory that is based on a heavy-water-moderated reactor and extensive experiment and user-support facilities. The primary purpose of the ANS is to provide world-class facilities for neutron scattering research, isotope production, and materials irradiation in the United States. The neutrons provided by the reactor will be thermalized to produce sources of hot, thermal, cold, very cold, and ultracold neutrons usable at the experiment stations. Beams of cold neutrons will be directed into a large guide hall using neutron guide technology, greatly enhancing the number of research stations possible in the project. Fundamental and nuclear physics, materials analysis, and other research pro- grams will share the neutron beam facilities. Sufficient laboratory and office space will be provided to create an effective user-oriented environment

  9. A midsize reactor facility - A regional resource for research and education

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1991-01-01

    The mission of the University of Florida Training Reactor (UFTR) is to serve the regional needs of Florida and the Southeast for access to quality reactor usage. Well-advertised capabilities of the facility support diversified usages that include education, training, research, service, and public information programs to address the needs of a broad spectrum of users ranging from high school students and teachers, to university researchers, and even the occasional service user. Despite the midsize power of the facility, the UFTR's status as the only nonpower reactor within 350 miles in one of our largest states means that it is uniquely situated to contribute in these various areas in ways usually reserved for larger facilities. Nine state universities and a well-developed community college system in addition to private schools and a growing complement of progressive high schools assure a broad-based user community. The key to accomplishing mission objectives is to continue diversification and improvement of both the reactor and associated experimental capabilities to meet the needs of this user community

  10. Environmental assessment for the deactivation of the N Reactor facilities

    International Nuclear Information System (INIS)

    1995-05-01

    This environmental assessment (EA) provides information for the US Department of Energy (DOE) to decide whether the Proposed Action for the N Reactor facilities warrants a Finding of No Significant Impact or requires the preparation of an environmental impact statement (EIS). The EA describes current conditions at the N Reactor facilities, the need to take action at the facilities, the elements of the Proposed Action and alternatives, and the potential environmental impacts. As required by the National Environmental Policy Act of 1969 (NEPA), this EA complies with Title 40, Code of Federal Regulations (CFR), parts 1500--1508, ''Regulations for Implementing the Procedural Provisions of NEPA. '' It also implements the ''National Environmental Policy Act; Implementing Procedures and Guidelines'' (10 CFR 1021)

  11. Flash Cracking Reactor for Waste Plastic Processing

    Science.gov (United States)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  12. Use of Cementitious Materials for SRS Reactor Facility In-Situ Decommissioning

    International Nuclear Information System (INIS)

    Langton, C.A.; Stefanko, D.B.; Serrato, M.G.; Blankenship, J.K.; Griffin, W.G.; Long, J.T.

    2013-01-01

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD project requires approximately 250000 cubic yards of cementitious materials to fill the below-grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Funding is being provided under the American Recovery and Reinvestment Act (ARRA). Cementitious materials were designed for the following applications: (A) Below-grade massive voids / rooms: Portland cement-based structural flowable fills for: (A.1) Bulk filling; (A.2) Restricted placement and (A.3) Underwater placement. (B) Special below-grade applications for reduced load bearing capacity needs: (B.1) Cellular portland cement lightweight fill. (C) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels (C.1) Blended calcium aluminate - calcium sulfate based flowable fill; (C.2) Magnesium potassium phosphate flowable fill. (D) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: (D.1) Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured

  13. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.; Ott, K.O.; Terry, W.K.

    1987-01-01

    A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented

  14. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  15. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    International Nuclear Information System (INIS)

    Park, Jaekwan; Suh, Yongsuk

    2014-01-01

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  16. Self-sustainability of a research reactor facility with neutron activation analysis

    International Nuclear Information System (INIS)

    Chilian, C.; Kennedy, G.

    2010-01-01

    Long-term self-sustainability of a small reactor facility is possible because there is a large demand for non-destructive chemical analysis of bulk materials that can only be achieved with neutron activation analysis (NAA). The Ecole Polytechnique Montreal SLOWPOKE Reactor Facility has achieved self-sustainability for over twenty years, benefiting from the extreme reliability, ease of use and stable neutron flux of the SLOWPOKE reactor. The industrial clientele developed slowly over the years, mainly because of research users of the facility. A reliable NAA service with flexibility, high accuracy and fast turn-around time was achieved by developing an efficient NAA system, using a combination of the relative and k0 standardisation methods. The techniques were optimized to meet the specific needs of the client, such as low detection limit or high accuracy at high concentration. New marketing strategies are presented, which aim at a more rapid expansion. (author)

  17. TIT reactor laboratory course using JAERI and PNC large experimental facilities

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Obara, Toru; Ohtani, Nobuo.

    1995-01-01

    This report is presented on a reactor laboratory course for graduate students using large facilities in national laboratories in Japan. A reactor laboratory course is offered every summer since 1990 for all graduate students in the Nuclear Engineering Course in Tokyo Institute of Technology (TIT), where the students can choose one of the experiments prepared at Japan Atomic Energy Research Institute (JAERI), Power Reactor and Nuclear Fuel Development Corporation (PNC) and Research Reactor Institute, Kyoto University (KUR). Both JAERI and PNC belong to Science and Technology Agency (STA). This is the first university curriculum of nuclear engineering using the facilities owned by the STA laboratories. This type of collaboration is promoted in the new Long-Term Program for Research, Development and Utilization of Nuclear Energy adopted by Atomic Energy Commission. Most students taking this course reported that they could learn so much about reactor physics and engineering in this course and the experiment done in large laboratory was a very good experience for them. (author)

  18. WWER type reactor primary loop imitation on large test loop facility in MARIA reactor

    International Nuclear Information System (INIS)

    Moldysh, A.; Strupchevski, A.; Kmetek, Eh.; Spasskov, V.P.; Shumskij, A.M.

    1982-01-01

    At present in Poland in cooperation with USSR a nuclear water loop test facility (WL) in 'MARIA' reactor in Sverke is under construction. The program objective is to investigate processes occuring in WWER reactor under emergency conditions, first of all after the break of the mainprimary loop circulation pipe-line. WL with the power of about 600 kW consists of three major parts: 1) an active loop, imitating the undamaged loops of the WWER reactor; 2) a passive loop assignedfor modelling the broken loop of the WWER reactor; 3) the emergency core cooling system imitating the corresponding full-scale system. The fuel rod bundle consists of 18 1 m long rods. They were fabricated according to the standard WWER fuel technology. In the report some general principles of WWERbehaviour imitation under emergency conditions are given. They are based on the operation experience obtained from 'SEMISCALE' and 'LOFT' test facilities in the USA. A description of separate modelling factors and criteria effects on the development of 'LOCA'-type accident is presented (the break cross-section to the primary loop volume ratio, the pressure differential between inlet and outlet reactor chambers, the pressure drop rate in the loop, the coolant flow rate throuh the core etc.). As an example a comparison of calculated flow rate variations for the WWER-1000 reactor and the model during the loss-of-coolant accident with the main pipe-line break at the core inlet is given. Calculations have been carried out with the use of TECH'-M code [ru

  19. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Science.gov (United States)

    2010-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a new...

  20. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst.

    Science.gov (United States)

    Tripathi, Pranav K; Durbach, Shane; Coville, Neil J

    2017-09-22

    The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.

  1. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst

    Directory of Open Access Journals (Sweden)

    Pranav K. Tripathi

    2017-09-01

    Full Text Available The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316 metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys, which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48. The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD furnace did not require the use of an added catalyst.

  2. Conceptual design of a mirror reactor for a fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Batzer, T.H.; Burleigh, R.C.; Carlson, G.A.; Dexter, W.L.; Hamilton, G.W.; Harvey, A.R.; Hickman, R.G.; Hoffman, M.A.; Hooper, E.B. Jr.; Moir, R.W.; Nelson, R.L.; Pittenger, L.C.; Smith, B.H.; Taylor, C.E.; Werner, R.W.; Wilcox, T.P.

    1975-01-01

    A conceptual design is presented for a small mirror fusion reactor for a Fusion Engineering Research Facility (FERF). The reactor produces 3.4 MW of fusion power and a useful neutron flux of about 10 14 n.cm -2 .s -1 . Superconducting ''yin-yang'' coils are used, and the plasma is sustained by injection of energetic neutral D 0 and T 0 . Conceptual layouts are given for the reactor, its major components, and supporting facilities. (author)

  3. Experimental Facilities for Performance Evaluation of Fast Reactor Components

    International Nuclear Information System (INIS)

    Chandramouli, S.; Kumar, V.A. Suresh; Shanmugavel, M.; Vijayakumar, G.; Vinod, V.; Noushad, I.B.; Babu, B.; Kumar, G. Padma; Nashine, B.K.; Rajan, K.K.

    2013-01-01

    Brief details about various experimental facilities catering to the testing and performance evaluation requirements of fast reactor components have been brought out. These facilities have been found to be immensely useful to continue research and development activities in the areas of component development and testing, sodium technology, thermal hydraulics and sodium instrumentation for the SFR’s. In addition new facilities which have been planned will be of great importance for the developmental activities related to future SFR’s

  4. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70(degree)C)

    DEFF Research Database (Denmark)

    Zheng, H.; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70°C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extremethermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed...

  5. Procedures for conducting probabilistic safety assessment for non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    A well performed and adequately documented safety assessment of a nuclear facility will serve as a basis to determine whether the facility complies with the safety objectives, principles and criteria as stipulated by the national regulatory body of the country where the facility is in operation. International experience shows that the practices and methodologies used to perform safety assessments and periodic safety re-assessment for non-reactor nuclear facilities differ significantly from county to country. Most developing countries do not have methods and guidance for safety assessment that are prescribed by the regulatory body. Typically the safety evaluation for the facility is based on a case by case assessment. Whilst conservative deterministic analyses are predominantly used as a licensing basis in many countries, recently probabilistic safety assessment (PSA) techniques have been applied as a useful complementary tool to support safety decision making. The main benefit of PSA is to provide insights into the safety aspects of facility design and operation. PSA points up the potential environmental impacts of postulated accidents, including the dominant risk contributors, and enables safety analysts to compare options for reducing risk. In order to advise on how to apply PSA methodology for the safety assessment of non-reactor nuclear facilities, the IAEA organized several consultants meetings, which led to the preparation of this TECDOC. This document is intended as guidance for the conduct of PSA in non-nuclear facilities. The main emphasis here is on the general procedural steps of a PSA that is specific for a non-reactor nuclear facility, rather than the details of the specific methods. The report is directed at technical staff managing or performing such probabilistic assessments and to promote a standardized framework, terminology and form of documentation for these PSAs. It is understood that the level of detail implied in the tasks presented in this

  6. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  7. Dalhousie SLOWPOKE-2 reactor: A nuclear analytical chemistry facility

    International Nuclear Information System (INIS)

    Chatt, A.; Holzbecher, J.

    1990-01-01

    SLOWPOKE is an acronym for Safe Low POwer Kritical Experiment. The SOWPOKE-2 is a compact, inherently safe, swimming-pool-type reactor designed by the Atomic Energy of Canada Limited for neutron activation analysis (NAA) and isotope production. The Dalhousie University SLOWPOKE-2 reactor (DUSR) has been operating since 1976; a large beryllium reflector was added in 1986 to extend its lifetime by another 8 to 10 yr. The DUSR is generally operated at half-power with a maximum thermal flux of 1.1 x 10 12 n/cm 2 ·s in the inner pneumatic sites and that of 5.4 x 10 11 n/cm 2 ·s in the outer sites. Despite this comparatively low flux, SLOWPOKE-2 reactors have many beneficial features that are continuously being exploited at the DUSR facility for developing nuclear analytical methods for fundamental as well as applied studies. Although NAA is a well-established analytical technique, much of the activation analysis being performed in most facilities has been limited to methods using fairly long-lived nuclides. The approach at the DUSR facility has been to utilize the highly homogeneous, stable, and reproducible neutron flux to develop NAA methods based on short-lived nuclides. SLOWPOKE reactors have a fairly high epithermal neutron flux, which is being advantageously used for determining several trace elements in complex matrices. Radiochemical NAA (RNAA) methods using coprecipitation, distillation, and ion-exchange separations have been used for the determination of very low levels of several elements in biological materials

  8. Education and training at the Rensselaer Polytechnic Institute reactor critical facility

    International Nuclear Information System (INIS)

    Harris, D.R.

    1989-01-01

    The Rensselaer Polytechnic Institute (RPI) Reactor Critical Facility (RCF) has provided hands-on education and training for RPI and other students for almost a quarter of a century. The RCF was built in the 1950s by the American Locomotive Company (ALCO) as a critical facility in which to carry out experiments in support of the Army Package power Reactor (APPR) program. A number of APPRs were built and operated. In the middle 1960s, ALCO went out of business and provided the facility to RPI. Since that time, RPI has operated the RCF primarily in a teaching mode in the nuclear engineering department, although limited amounts of reactor research, activation analysis, and reactivity assays have been carried out as well. Recently, a U.S. Department of Energy (DOE) upgrade program supported refueling the RCF with 4.81 wt% enriched UO 2 high-density pellets clad in stainless steel rods. The use of these SPERT (F1) fuel rods in the RCF provided a cost-effective approach to conversion from high-enrichment bombgrade fuel to low-enrichment fuel. More important, however, is the fact that the new fuel is of current interest for light water power reactors with extended lifetime fuel. Thus, not only are critical reactor experiments being carried out on the fuel but, more importantly, the quality of the education and training has been enhanced

  9. Liquid Metal Fast Breeder Reactor Program: Argonne facilities

    International Nuclear Information System (INIS)

    Stephens, S.V.

    1976-09-01

    The objective of the document is to present in one volume an overview of the Argonne National Laboratory test facilities involved in the conduct of the national LMFBR research and development program. Existing facilities and those under construction or authorized as of September 1976 are described. Each profile presents brief descriptions of the overall facility and its test area and data relating to its experimental and testing capability. The volume is divided into two sections: Argonne-East and Argonne-West. Introductory material for each section includes site and facility maps. The profiles are arranged alphabetically by title according to their respective locations at Argonne-East or Argonne-West. A glossary of acronyms and letter designations in common usage to describe organizations, reactor and test facilities, components, etc., involved in the LMFBR program is appended

  10. A description of the Canadian irradiation-research facility proposed to replace the NRU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A G; Lidstone, R F; Bishop, W E; Talbot, E F; McIlwain, H [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    To replace the aging NRU reactor, AECL has developed the concept for a dual-purpose national Irradiation Research Facility (IRF) that tests fuel and materials for CANDU (CANada Deuterium Uranium) reactors and performs materials research using extracted neutron beams. The IRF includes a MAPLE reactor in a containment building, experimental facilities, and support facilities. At a nominal reactor power of 40 MW{sub t}, the IRF will generate powers up to 1 MW in natural-uranium CANDU bundles, fast-neutron fluxes up to 1.4 x 10{sup 18} n{center_dot}m{sup -2}{center_dot}s{sup -1} in Zr-alloy specimens, and thermal-neutron fluxes matching those available to the NRU beam tubes. (author). 9 refs., 5 tabs., 2 figs.

  11. Jordan Research and Training Reactor (JRTR) Utilization Facilities

    International Nuclear Information System (INIS)

    Xoubi, N.

    2013-01-01

    Jordan Research and Training Reactor (JRTR) is a 5 MW light water open pool multipurpose reactor that serves as the focal point for Jordan National Nuclear Centre, and is designed to be utilized in three main areas: Education and training, nuclear research, and radioisotopes production and other commercial and industrial services. The reactor core is composed of 18 fuel assemblies, MTR plate type 19.75% enriched uranium silicide (U 3 Si 2 ) in aluminium matrix, and is reflected on all sides by beryllium and graphite. The reactor power is upgradable to 10 MW with a maximum thermal flux of 1.45×10 14 cm -2 s -1 , and is controlled by a Hafnium control absorber rod and B 4 C shutdown rod. The reactor is designed to include laboratories and classrooms that will support the establishment of a nuclear reactor school for educating and training students in disciplines like nuclear engineering, reactor physics, radiochemistry, nuclear technology, radiation protection, and other related scientific fields where classroom instruction and laboratory experiments will be related in a very practical and realistic manner to the actual operation of the reactor. JRTR is designed to support advanced nuclear research as well as commercial and industrial services, which can be preformed utilizing any of its 35 experimental facilities. (author)

  12. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  13. The application of SQUG to non-reactor facilities

    International Nuclear Information System (INIS)

    Hoskins, R.S.

    1993-01-01

    DOE Order 6430.1A mandates that facilities be designed and constructed to withstand Natural Phenomena Hazards in accordance with their hazard level. DOE has a program in progress to evaluate and then upgrade many of their existing medium and high hazard facilities where release of hazardous materials to the environment is a concern. This paper addresses a useful methodology which has been applied by SRS to evaluate and qualify equipment to withstand the ravenousness of earthquakes. The Seismic Qualification Utility Group was formed by a group of Electric Power Utilities whose Nuclear Power Plants predated the 10CFR50 Environmental design requirements to develop a methodology to evaluate and upgrade their operating plants against seismic events in answer to NRC generic letter USI-A46. SRS participated in this organization, since it operated reactors designed and constructed in the 1950's, and the application of the SQUG methodology was obvious. Nuclear Material Processing and Handling (NMPH) facilities utilize equipment similar to the nuclear industry, in fact, to industry in general. Consequently, it made sense to apply SQUG methodology to evaluate and qualify equipment in NMPH facilities against earthquakes. In order to utilize SQUG methodology, some changes are required since the goal of safe shutdown of a NMPH facility differs from a nuclear reactor, consequently, the generation of a Safe Shutdown Equipment List is modified by the requirements of each particular facility. Once the Safety Class Equipment List is developed denoting the qualification requirement for each piece of equipment, the SQUG walk downs can be performed as they are in commercial nuclear plants. SQUG methodology offers a cost effective approach for the seismic qualification of equipment at existing DOE NMPH facilities. SQUG cannot be applied to new or unique equipment since the experience database doesn't contain the needed information

  14. The FR 2 reactor at Karlsruhe, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FR 2 reactor and associated hot cell facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  15. The advanced test reactor national scientific user facility advancing nuclear technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Thelen, M.C.; Meyer, M.K.; Marshall, F.M.; Foster, J.; Benson, J.B.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  16. Radiation facilities for fusion-reactor first-wall and blanket structural-materials development

    International Nuclear Information System (INIS)

    Klueh, R.L.; Bloom, E.E.

    1981-12-01

    Present and future irradiation facilities for the study of fusion reactor irradiation damage are reviewed. Present studies are centered on irradiation in accelerator-based neutron sources, fast- and mixed-spectrum fission reactors, and ion accelerators. The accelerator-based neutron sources are used to demonstrate damage equivalence between high-energy neutrons and fission reactor neutrons. Once equivalence is demonstrated, the large volume of test space available in fission reactors can be used to study displacement damage, and in some instances, the effects of high-helium concentrations and the interaction of displacement damage and helium on properties. Ion bombardment can be used to study the mechanisms of damage evolution and the interaction of displacement damage and helium. These techniques are reviewed, and typical results obtained from such studies are examined. Finally, future techniques and facilities for developing damage levels that more closely approach those expected in an operating fusion reactor are discussed

  17. Description of the RA-3 research reactor as a model facility

    International Nuclear Information System (INIS)

    Vicens, Hugo E.; Quintana, Jorge A.

    2001-01-01

    The Argentine RA-3 reactor is described as a model facility for the information to be provided to the IAEA in accordance with the requirements of the Model Additional Protocol. RA-3 reactor was designed as a 5 MW swimming pool reactor, moderated and cooled with light water. Its fuel was 90% enriched uranium. The reactor started its operation in 1967, has been modified and improved in many components, including the core, that now is fueled with moderately enriched uranium

  18. 1996 environmental monitoring report for the Naval Reactors Facility

    International Nuclear Information System (INIS)

    1996-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 1996 at the Naval Reactors Facility (NRF) are presented in this report. The NRF is located on the Idaho National Engineering and Environmental Laboratory and contains three naval reactor prototypes and the Expended Core Facility, which examines developmental nuclear fuel material samples, spent naval fuel, and irradiated reactor plant components/materials. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE)

  19. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  20. Construction of the neutron beam facility at Australia's OPAL research reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2006-01-01

    Australia's new research reactor, OPAL, has been designed principally for neutron beam science and radioisotope production. It has a capacity for 18 neutron beam instruments, located at the reactor face and in a neutron guide hall. The neutron beam facility features a 20 l liquid deuterium cold neutron source and cold and thermal supermirror neutron guides. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, when criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. This paper will outline the key features of the OPAL reactor, and will describe the neutron beam facility in particular. The status of the construction and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed

  1. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  2. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  3. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    International Nuclear Information System (INIS)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-01-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  4. The FRJ 1 reactor (MERLIN) at Juelich, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FRJ 1 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  5. E-SCAPE: A scale facility for liquid-metal, pool-type reactor thermal hydraulic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Van Tichelen, Katrien, E-mail: kvtichel@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Mirelli, Fabio, E-mail: fmirelli@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Greco, Matteo, E-mail: mgreco@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Viviani, Giorgia, E-mail: giorgiaviviani@gmail.com [University of Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy)

    2015-08-15

    Highlights: • The E-SCAPE facility is a thermal hydraulic scale model of the MYRRHA fast reactor. • The focus is on mixing and stratification in liquid-metal pool-type reactors. • Forced convection, natural convection and the transition are investigated. • Extensive instrumentation allows validation of computational models. • System thermal hydraulic and CFD models have been used for facility design. - Abstract: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a flexible fast-spectrum research reactor under design at SCK·CEN. MYRRHA is a pool-type reactor with lead bismuth eutectic (LBE) as primary coolant. The proper understanding of the thermal hydraulic phenomena occurring in the reactor pool is an important issue in the design and licensing of the MYRRHA system and liquid-metal cooled reactors by extension. Model experiments are necessary for understanding the physics, for validating experimental tools and to qualify the design for the licensing. The E-SCAPE (European SCAled Pool Experiment) facility at SCK·CEN is a thermal hydraulic 1/6-scale model of the MYRRHA reactor, with an electrical core simulator, cooled by LBE. It provides experimental feedback to the designers on the forced and natural circulation flow patterns. Moreover, it enables to validate the computational methods for their use with LBE. The paper will elaborate on the design of the E-SCAPE facility and its main parameters. Also the experimental matrix and the pre-test analysis using computational fluid dynamics (CFD) and system thermal hydraulics codes will be described.

  6. Ohmically heated toroidal experiment (OHTE) mobile ignition test reactor facility concept study

    International Nuclear Information System (INIS)

    Masson, L.S.; Watts, K.D.; Piscitella, R.R.; Sekot, J.P.; Drexler, R.L.

    1983-02-01

    This report presents the results of a study to evaluate the use of an existing nuclear test complex at the Idaho National Engineering Laboratory (INEL) for the assembly, testing, and remote maintenance of the ohmically heated toroidal experiment (OHTE) compact reactor. The portable reactor concept is described and its application to OHTE testing and maintenance requirements is developed. Pertinent INEL facilities are described and several test system configurations that apply to these facilities are developed and evaluated

  7. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  8. Use Of Cementitious Materials For SRS Reactor Facility In-Situ Decommissioning - 11620

    International Nuclear Information System (INIS)

    Langton, C.; Stefanko, D.; Serrato, M.; Blankenship, J.; Griffin, W.; Waymer, J.; Matheny, D.; Singh, D.

    2010-01-01

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD requires about 250,000 cubic yards of grout to fill the below grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Cementitious materials were designed for the following applications: (1) Below grade massive voids/rooms: Portland cement-based structural flowable fills for - Bulk filling, Restricted placement and Underwater placement. (2) Special below grade applications for reduced load bearing capacity needs: Cellular portland cement lightweight fill (3) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels: Calcium sulfoaluminate flowable fill, and Magnesium potassium phosphate flowable fill. (4) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured properties. The 105-P and 105-R ISD projects are currently in progress and are expected to be complete in 2012. The focus of this paper is to describe the (1) grout mixes

  9. USE OF CEMENTITIOUS MATERIALS FOR SRS REACTOR FACILITY IN-SITU DECOMMISSIONING - 11620

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.; Serrato, M.; Blankenship, J.; Griffin, W.; Waymer, J.; Matheny, D.; Singh, D.

    2010-12-07

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD requires about 250,000 cubic yards of grout to fill the below grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Cementitious materials were designed for the following applications: (1) Below grade massive voids/rooms: Portland cement-based structural flowable fills for - Bulk filling, Restricted placement and Underwater placement. (2) Special below grade applications for reduced load bearing capacity needs: Cellular portland cement lightweight fill (3) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels: Calcium sulfoaluminate flowable fill, and Magnesium potassium phosphate flowable fill. (4) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured properties. The 105-P and 105-R ISD projects are currently in progress and are expected to be complete in 2012. The focus of this paper is to describe the (1) grout mixes

  10. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-01-01

    Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/797

  11. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily 41 Ar) were well within regulatory limits

  12. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily {sup 41}Ar) were well within regulatory limits.

  13. GERDA test facility for pressurized water reactors with straight tube steam generators

    International Nuclear Information System (INIS)

    Ahrens, G.; Haury, G.; Lahner, K.; Schatz, A.

    1983-01-01

    A number of large-scale experimental facilities have been constructed and operate in order to experiment on the thermodynamic and thermohydraulic behaviour of nuclear facilities in case of LOCA. Most of them were designed for ''large leak'' accidents, but as ''small leak'' accidents became the focus of interest, such experiments were also carried out. Experiments carried out with this arrangement for PWR-type reactors with straight-tube steam generators are only partially evaluable. BBR and B and W therefore cooperated in the construction of the test facility GERDA, designed for testing reactors of BBR design. It supplied relevant experimental results for the nuclear power plant at Muelheim-Kaerlich. (orig.) [de

  14. Proposal for a seismic facility for reactor safety research

    International Nuclear Information System (INIS)

    Anderson, C.A.; Dove, R.C.; Rhorer, R.L.

    1976-07-01

    Certain problem areas in the seismic analysis and design of nuclear reactors are enumerated and the way in which an experimental program might contribute to each area is examined. The use of seismic simulation testing receives particular attention, especially with regard to the verification of structural response analysis. The importance of scale modeling used in conjunction with seismic simulation is also stressed. The capabilities of existing seismic simulators are summarized, and a proposed facility is described which would considerably extend the ability to conduct, with confidence, confirmatory experiments on the behavior of reactor components when subjected to seismic excitation. Particular applications to gas-cooled and other reactor types are described

  15. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG ampersand G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options

  16. Reed Reactor Facility annual report, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: (1) The number of new licensed student operators more than replaced the number of graduating seniors. Seven Reed College seniors used the reactor as part of their thesis projects. (2) The facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources. Battelle (Pacific Northwest Laboratory) has been generous in lending valuable equipment to the college. (3) The facility is developing more paid work. Income in the past academic year was much greater than the previous year, and next year should increase by even more. Additionally, the US Department of Energy's Reactor-Use Sharing grant increased significantly this year. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Assistant Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below one percent of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily 41 Ar) were well within regulatory limits. No radioactive waste was shipped from the facility during this period

  17. Reed Reactor Facility annual report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: (1) The number of new licensed student operators more than replaced the number of graduating seniors. Seven Reed College seniors used the reactor as part of their thesis projects. (2) The facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources. Battelle (Pacific Northwest Laboratory) has been generous in lending valuable equipment to the college. (3) The facility is developing more paid work. Income in the past academic year was much greater than the previous year, and next year should increase by even more. Additionally, the US Department of Energy`s Reactor-Use Sharing grant increased significantly this year. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Assistant Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below one percent of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily {sup 41}Ar) were well within regulatory limits. No radioactive waste was shipped from the facility during this period.

  18. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  19. The Advanced Test Reactor Irradiation Facilities and Capabilities

    International Nuclear Information System (INIS)

    S. Blaine Grover; Raymond V. Furstenau

    2007-01-01

    The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments

  20. Very high temperature gas-cooled reactor critical facility for Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Ishihara, Noriyuki

    1985-01-01

    The outline of the critical facility, its construction, the results of the basic studies and experiments on the graphite material, and the results obtained from the test conducted on the overall functions of the critical facility were reported. With the completion of the critical facility, it has been made possible to demonstrate the establishment of the manufacturing techniques and product-quality guarantee for extremely pure isotropic graphite in addition to the reliability of the structural design and analytical techniques for the main unit of the critical facility. It is expected that the present facility will prove instrumental in the verification of the nuclear safety of the very high temperature gas-cooled nuclear reactor and in the acquisition of experimental data on the reactor physics pertaining to the improvement of the reactor characteristics. The tasks which remain to be accomplished hereafter are the improvements of the performance and quality features with regard to the oxidization of graphite, the heat-resisting structural materials, and the welded structures. (Kubozono, M.)

  1. Diamond Ordinance Radiation Facility (DORF) reactor operating experiences

    International Nuclear Information System (INIS)

    Gieseler, Walter

    1970-01-01

    The Diamond Ordnance Radiation Facility Mark F Reactor is described and some of the problems encountered with its operation are discussed. In a period from reactor startup in September 1961 to June 1964, when the aluminum-clad core was changed to a stainless-steel clad core, a total of 30 fuel elements were removed from reactor service because of excessive growth. One leaking fuel element was detected during the lifetime of the aluminum- clad core. In June 1964, the core was changed to the stainless-steel-clad high hydride fuel elements. Since the installation of the stainless-steel-clad fuel element core, there has been a gradual decline of excess reactivity. Various theories were discussed as the cause but the investigations have resulted in no definitive conclusion that could account for the total reactivity loss

  2. Cold neutron PGAA facility developments at university research reactors in the USA

    International Nuclear Information System (INIS)

    Uenlue, K.; Rios-Martinez, C.

    2005-01-01

    The PGAA applications can be enhanced by using subthermal neutrons, cold neutrons at university research reactors. Only two cold neutron beam facilities were developed at the U.S. university research reactors, namely at Cornell University and the University of Texas at Austin. Both facilities used mesitylene moderator. The mesitylene moderator in the Cornell Cold Neutron Beam Facility (CNBF) was cooled by a helium cryorefrigerator via copper cold fingers to maintain the moderator below 30 K at full power reactor operation. Texas Cold Neutron Source (TCNS) also uses mesitylene moderator that is cooled by a cryorefrigerator via a neon thermosiphon. The operation of the TCNS is based on a helium cryorefrigerator, which liquefies neon gas in a 3-m long thermosiphon. The thermosiphon cools and maintains mesitylene moderator at about 30 K in a chamber. Neutrons streaming through the mesitylene chamber are moderated and thus reduce their energy to produce a cold neutron distribution. (author)

  3. Situation of the radioactive waste management and the employee radiation exposure in commercial power generation reactor facilities in fiscal 1980

    International Nuclear Information System (INIS)

    1981-01-01

    (1) Situation of the radioactive waste management in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the target dose around the sites by law in the radioactive waste management. The release of radioactive gaseous and liquid wastes and the storage of radioactive solid wastes in respective reactor facilities in fiscal 1980 are presented in tables (for the former, the data since 1971 are also given). The release control values were satisfied in all the facilities. (2) Situation of employe radiation exposure in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the permissible exposure doses by law. The Employe exposure doses in respective reactor facilities in fiscal 1980 are given in tables. All exposure doses were below the permissible levels. (J.P.N.)

  4. A neutron radiography facility on the IRT-2000 reactor

    International Nuclear Information System (INIS)

    Khadduri, I.Y.

    1976-01-01

    A neutron radiography facility has been constructed on the thermal neutron channel of the IRT-2000 reactor. A collimated thermal neutron beam exposure area of 10 cm diameter is obtained with an L/D ratio of 48.8. The film used is cellulose nitrate coated with lithium tetraborate which is insensitive to gamma and beta radiation. Some pictures with good contrast and resolution have been obtained. Pictures of parts of an IRT-2000 reactor fuel pin have also been recorded. (orig) [de

  5. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges - 15066

    International Nuclear Information System (INIS)

    Sabharwall, P.; O'Brien, J.E.; Yoon, S.J.; Sun, X.

    2015-01-01

    A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic, materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The 3 loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuits heat exchangers (PCHEs) at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integrated System Test (ARTIST) facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 C. degrees), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF 4 ) flow loop operating at low pressure (0.2 MPa), at a temperature of ∼ 450 C. degrees. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift) in measuring operational data for extended periods of times, as data collected will be

  6. Analysis of Opportunity to Create Self-Regulating Reactor Facility of Extra-Low Power

    International Nuclear Information System (INIS)

    Kazansky, Y.A.; Levtchenko, V.A.; Yuriev, Y.S.

    2002-01-01

    This paper deals with fundamental possibilities (economy, safety, self-regulation) of creating an extra-low power reactor facility for heat supply. It contains the results of calculations for thermal and fast neutron reactors. The concept of this type of a reactor had been developed by the contributors earlier

  7. Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA.

    Science.gov (United States)

    Subedi, Bikram; Sullivan, Kenneth D; Dhungana, Birendra

    2017-11-01

    The quality of indoor environment has received considerable attention owing to the declining outdoor human activities and the associated public health issues. The prolonged exposure of children in childcare facilities or the occupational exposure of adults to indoor environmental triggers can be a culprit of the pathophysiology of several commonly observed idiopathic syndromes. In this study, concentrations of potentially toxic plasticizers (phthalates as well as non-phthalates) were investigated in 28 dust samples collected from three different indoor environments across the USA. The mean concentrations of non-phthalate plasticizers [acetyl tri-n-butyl citrate (ATBC), di-(2-ethylhexyl) adipate (DEHA), and di-isobutyl adipate (DIBA)] were found at 0.51-880 μg/g for the first time in indoor dust samples from childcare facilities, homes, and salons across the USA. The observed concentrations of these replacement non-phthalate plasticizer were as high as di-(2-ethylhexyl) phthalate, the most frequently detected phthalate plasticizer at highest concentration worldwide, in most of indoor dust samples. The estimated daily intakes of total phthalates (n = 7) by children and toddlers through indoor dust in childcare facilities were 1.6 times higher than the non-phthalate plasticizers (n = 3), whereas estimated daily intake of total non-phthalates for all age groups at homes were 1.9 times higher than the phthalate plasticizers. This study reveals, for the first time, a more elevated (∼3 folds) occupational intake of phthalate and non-phthalate plasticizers through the indoor dust at salons (214 and 285 ng/kg-bw/day, respectively) than at homes in the USA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An independent safety assessment of Department of Energy nuclear reactor facilities: Procedures, operations and maintenance

    International Nuclear Information System (INIS)

    Toto, G.; Lindgren, A.J.

    1981-02-01

    The 1979 accident at the Three Mile Island commercial nuclear power plant has led to a number of studies of nuclear reactors, in both the public and private sectors. One of these is that of the Department of Energy's (DOE) Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, which has outlined tasks for assessment of 13 reactors owned by DOE and operated by contractors. This report covers one of the tasks, the assessment of procedures, operations, and maintenance at the DOE reactor facilities, based on a review of actual documents used at the reactor sites

  9. Physics design of fast reactor safety test facilities for in-pile experiments

    International Nuclear Information System (INIS)

    Travelli, A.; Matos, J.E.; Snelgrove, J.L.; Shaftman, D.H.; Tzanos, C.P.; Lam, S.K.; Pennington, E.M.; Woodruff, W.L.

    1976-01-01

    A determined effort to identify and resolve current Fast Breeder Reactor safety testing needs has recently resulted in a number of conceptual designs for FBR safety test facilities which are very complex and diverse both in their features and in their purpose. The paper discusses the physics foundations common to most fast reactor safety test facilities and the constraints which they impose on the design. The logical evolution, features, and capabilities of several major conceptual designs are discussed on the basis of this common background

  10. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Jeff B; Marshall, Frances M [Idaho National Laboratory, Idaho Falls, ID (United States); Allen, Todd R [Univ. of Wisconsin, Madison, WI (United States)

    2012-03-15

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  11. THE WHITE SANDS MISSILE RANGE PULSED REACTOR FACILITY, MAY 1963

    Energy Technology Data Exchange (ETDEWEB)

    Long, Robert L.; Boor, R. A.; Cole, W. M.; Elder, G. E.

    1963-05-15

    A brief statement of the mission of the White Sands Missile Range Nuclear Effects Laboratory is given. The new Nuclear Effects Laboratory Facility is described. This facility consists of two buildings-a laboratory and a reactor building. The White Sands Missile Range bare critical assembly, designated as the MoLLY-G, is described. The MoLLY-G, an unreflected, unmoderated right circular cylinder of uranium-molybdenum alloy designed for pulsed operation, will have a maximum burst capability of approximately 2 x 10/sup 17/ fissions with a burst width of 50 microseconds. The reactor construction and operating procedures are described. As designed, the MoLLY-G will provide an intense source of pulsed neutron and gamma radiation for a great variety of experimental and test arrangements. (auth)

  12. Safety report content and development for test loop facility on MARIA reactor

    International Nuclear Information System (INIS)

    Konechko, A.; Shumskij, A.M.; Mikul'ahin, V.E.

    1982-01-01

    A 600 kW test loop facility for investigatin.o safety problems is realized on MARIA reactor in Poland together with USSR organizations. Safety reports have been developed in two steps at the designstage. The 1st report being essentially a preliminary safety analysis was developed within the scope of the feasibility study. At the engineering design stage the preliminary test loop facility safety report had been prepared considering measures excluding the possibility of the MARIA reactor damage. The test loop facility safety report is fulfilled for normal, transient and emergency operation regimes. Separate safety basing for each group of experiments will be prepared. The report presents the test loop facility safety criteria coordinated by the nuclear safety comission. They contains the preliminary reports on the test loop facility safety. At the final stage of construction and at thecommitioning stage the start-up safety report will be developed which after required correction and adding up the putting into operation data will turn into operation safety report [ru

  13. A review of experiments and results from the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    Deitrich, L. W.

    1998-01-01

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  14. State of exposure control for workers engaging in radiation works and state of radioactive waste management in nuclear reactor facilities for test and research and nuclear reactor facilities at research and development stage, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This is the summary of the reports submitted in fiscal year 1995 by the installers of the nuclear reactor facilities for test and research or at research and development stage, conforming to the related law. The individual dose equivalent of the workers engaging in radiation works in fiscal year 1995 was sufficiently lower than the prescribed limit in all reactor facilities. As for the released quantities of gaseous and liquid wastes, the radioactive substances in the air and water outside the monitor zones never exceeded the prescribed concentration limit in all reactor facilities. In the reactor facilities, for which the target values of release control have been determined, the values were less than the targets in all cases. The increase of stored radioactive solid waste decreased as the dismantling works of the reactor auxiliary system of the nuclear powered ship 'Mutsu' were finished in fiscal year 1994. As the amount of stored radioactive solid waste approaches the installed capacity, the preservation capacity of the existing waste preservation building was increased. (K.I.)

  15. Operating manual for the High Flux Isotope Reactor. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1965-06-01

    This report contains a comprehensive description of the High Flux Isotope Reactor facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procedures are presented in another report.

  16. Russian Federation: Passive Safety Components for Lead-Cooled Reactor Facilities

    International Nuclear Information System (INIS)

    Sarkulov, M.K.

    2015-01-01

    There is a specific range of engineered features used traditionally in nuclear technology. As a rule, main reactivity control systems use conventional active actuators with solid-body control members and/or liquid systems with active injection of liquid absorber. Other operation principles are normally chosen for additional systems. Currently, the traditional approach to improving the reliability of a reactor facility suggests an increase in the number of safety components and systems which provide for mutual assurance or assist each other. There is a great variety of additional reactivity control members designed for the reactor facility control and shutdown, including hydrodynamic members in the form of rods (acting from the coolant flow); floating-type members (absorbers and displacers); storage-type and liquid members (used in separate channels); bulk members (pebble absorber); gas-based members (with a gas absorber); shape-memory members and others. Hydrodynamic systems were introduced at Beloyarsk NPP Units 1 and 2 and proposed for use in other facility designs, Gases and bulk materials have not been commonly accepted: the former because of the high cost of high-efficiency gaseous absorbers, and the latter because of the complecated monitoring of the bulk material position. It is rather difficult and not always necessary to use the same engineering approaches in new lead-cooled reactor facilities as in traditional ones. Similarly to the development of traditional safety systems, passive safety components (devices) shall be designed according to the essential requirements of the nuclear regulations of the Russian Federation

  17. Research reactor facilities, recent developments at Imperial College, London

    International Nuclear Information System (INIS)

    Franklin, S.J.; Goddard, A.J.H.; O Connell, J.

    1998-01-01

    The 100 kW CONSORT pool-type reactor is now the only Research Reactor in the UK. Because of its strategic importance, Imperial College is continuing and accelerating a programme of refurbishment of the control system, and planning for a further fuel charge. These plans are described and the progress to date discussed. To this end, a description of the enhanced Safety Case being written is provided here and refueling plans discussed. The current range of facilities available is described, and future plans highlighted. (author)

  18. NRX and NRU reactor research facilities and irradiation and examination charges

    International Nuclear Information System (INIS)

    1960-08-01

    This report details the irradiation and examination charges on the NRX and NRU reactors at the Chalk River Nuclear Labs. It describes the NRX and NRU research facilities available to external users. It describes the various experimental holes and loops available for research. It also outlines the method used to calculate the facilities charges and the procedure for applying to use the facilities as well as the billing procedures.

  19. The regulation and licensing of research reactors and associated facilities in the United Kingdom

    International Nuclear Information System (INIS)

    Weightman, M.W.; Willby, C.R.

    1990-01-01

    In the United Kingdom, the Nuclear Installations Inspectorate (NII) licenses nuclear facilities, including research reactors, on behalf of the Health and Safety Executive (HSE). The legislation, the regulatory organizations and the methods of operation that have been developed over the last 30 years result in a largely non-prescriptive form of control that is well suited to research reactors. The most important part of the regulatory system is the license and the attachment of conditions which it permits. These conditions require the licensee to prepare arrangements to control the safety of the facility. In doing so the licensee is encouraged to develop a 'safety culture' within its organization. This is particularly important for research reactors which may have limited staff resources and where the ability, and at times the need, to have access to the core is much greater than for nuclear power plants. Present day issues such as the ageing of nuclear facilities, public access to the rationale behind regulatory decisions, and the emergence of more stringent safety requirements, which include a need for quantified safety criteria, have been addressed by the NII. This paper explores the relevance of such issues to the regulation of research reactors. In particular, it discusses some of the factors associated with research reactors that should be considered in developing criteria for the tolerability of risk from these nuclear facilities. From a consideration of these factors, it is the authors' view that the range of tolerable risk to the public from the operation of new research reactors may be expected to be more stringent than similar criteria for new nuclear power plants, whereas the criteria for tolerable risk for research reactor workers are expected to be about the same as those for power reactor workers

  20. An independent safety assessment of Department of Energy nuclear reactor facilities: Safety overview and management function

    International Nuclear Information System (INIS)

    Booth, M.; Brodsky, R.S.; Frankhouser, W.L.

    1981-02-01

    The Under Secretary of Energy established the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee in October, 1979, in the aftermath of the Three Mile Island (TMI) nuclear accident, to assess the adequacy of training of personnel at DOE nuclear facilities. Subsequently, in February, 1980, the charge to this Committee was modified to assess all implications of the Kemeny Commission report on TMI with regard to DOE nuclear reactors, excluding those in the Division of Naval Reactors. The modified charge was also limited, for the time being, to reactor facilities instead of all nuclear facilities. This report describes the portion of the revised assessment activities that was assigned to the Assessment Support Team

  1. Description of the PIE facility for research reactors irradiated fuels in CNEA

    International Nuclear Information System (INIS)

    Bisca, A.; Coronel, R.; Homberger, V.; Quinteros, A.; Ratner, M.

    2002-01-01

    The PIE Facility (LAPEP), located at the Ezeiza Atomic Center (CAE), was designed to carry out destructive and non-destructive post-irradiation examinations (PIE) on research and power reactor spent fuels, reactor internals and other irradiated materials, and to perform studies related with: Station lifetime extension; Fuel performance; Development of new fuels; and Failures and determination of their causes. LAPEP is a relevant facility where research and development can be carried out. It is worth mentioning that in this facility the PIE corresponding to the Surveillance Program for the Atucha I Nuclear Power Plant (CNA-1) were successfully performed. Materials testing during the CNA-1 repair and the study of failures in fuel element plugs of the Embalse Nuclear Power Plant (CNE) were also performed. (author)

  2. Safety Research Experiment Facility Project. Conceptual design report. Volume VII. Reactor cooling

    International Nuclear Information System (INIS)

    1975-12-01

    The Reactor Cooling System (RCS) will provide the required cooling during test operations of the Safety Research Experiment Facility (SAREF) reactor. The RCS transfers the reactor energy generated in the core to a closed-loop water storage system located completely inside the reactor containment building. After the reactor core has cooled to a safe level, the stored heat is rejected through intermediate heat exchangers to a common forced-draft evaporative cooling tower. The RCS is comprised of three independent cooling loops of which any two can remove sufficient heat from the core to prevent structural damage to the system components

  3. Abnormal Events for Reactor System and Facilities in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Young; Lee, B. H.; Lee, M.; Kang, I. H.; Lee, U. G.; Sin, H. C.; Park, C. Y.; Song, B. S.; Lee, S. H.; Han, J. S

    2006-12-15

    This report gathers abnormal events related to reactor system and facilities of HANARO that happened during its operation over 10 years since the first criticality on February 1995. The collected examples will be utilized to the HANARO's operators as a useful guide.

  4. Review on conformance of JMTR reactor facility to safety design examination guides for water-cooled reactors for test and research

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Naka, Michihiro; Sakuta, Yoshiyuki; Hori, Naohiko; Matsui, Yoshinori; Miyazawa, Masataka

    2009-03-01

    The safety design examination guides for water-cooled reactors for test and research are formulated as fundamental judgements on the basic design validity for licensing from a viewpoint of the safety. Taking the refurbishment opportunity of the JMTR, the conformance of the JMTR reactor facility to current safety design examination guides was reviewed with licensing documents, annexes and related documents. As a result, it was found that licensing documents fully satisfied the requirements of the current guides. Moreover, it was found that the JMTR reactor facility itself also satisfied the guides requirements as well as the safety performance, since the facility with safety function such as structure, systems, devices had been installed based on the licensing documents under the permission by the regulation authority. Important devices for safety have been produced under authorization of regulating authority. Therefore, it was confirmed that the licensing was conformed to guides, and that the JMTR has enough performance. (author)

  5. Fast-neutron dosimetry in the seed-irradiation facility, ASTRA reactor, Seibersdorf

    International Nuclear Information System (INIS)

    Ahnstroem, G.; Burtscher, A.; Casta, J.

    1967-01-01

    An important part of the co-ordinated programme on the neutron irradiation of seeds has been the construction of a fast-neutron irradiation facility for swimming-pool reactors. This facility was installed around 70 cm from the core in the ASTRA reactor swimming-pool at the end of December, 1966. Also, for this programme a pair of constant potential ionization chambers have been constructed at the Institute of Biochemistry, Stockholm University. These chambes are of the type described in the technical annex and are the same size as the seed-irradiation vials to be used in the seed-irradiation container (diam. =15 mm, length = 60 mm). Some preliminary dosimetry experiments were undertaken to test the irradiation facility and the ionization chambers, and to investigate the usefulness of the dosimetry instructions in the Technical Annex. The results of these experiments are discussed in this paper. 3 refs, 6 figs, 7 tabs

  6. The reactor and cold neutron research facility at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Prask, H J; Rowe, J M [Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-07-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D{sub 2}O/H{sub 2}O ice cold source. (author)

  7. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    Prask, H.J.; Rowe, J.M.

    1992-01-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D 2 O/H 2 O ice cold source. (author)

  8. Classification of Reactor Facility Operational State Using SPRT Methods with Radiation Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Aviles, Camila A. [ORNL; Rao, Nageswara S. [ORNL

    2018-01-01

    We consider the problem of inferring the operational state of a reactor facility by using measurements from a radiation sensor network, which is deployed around the facility’s ventilation stack. The radiation emissions from the stack decay with distance, and the corresponding measurements are inherently random with parameters determined by radiation intensity levels at the sensor locations. We fuse measurements from network sensors to estimate the intensity at the stack, and use this estimate in a one-sided Sequential Probability Ratio Test (SPRT) to infer the on/off state of the reactor facility. We demonstrate the superior performance of this method over conventional majority vote fusers and individual sensors using (i) test measurements from a network of NaI sensors, and (ii) emulated measurements using radioactive effluents collected at a reactor facility stack. We analytically quantify the performance improvements of individual sensors and their networks with adaptive thresholds over those with fixed ones, by using the packing number of the radiation intensity space.

  9. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities

    Directory of Open Access Journals (Sweden)

    Kristýna Černá

    2017-02-01

    Full Text Available Background: In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Material and Methods: Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Results: Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103–9.0×105 colony-forming units (CFU/m3, while the lowest ones in winter (2.7×103–2.9×105 CFU/m3. The concentration increased from the beginning of the work shift and reached a plateau after 6–7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Conclusions: Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1:1–9

  10. Thermal hydraulic modelling of the Mo and Iridium irradiation facilities of the RA10 reactor

    International Nuclear Information System (INIS)

    Gramajo, M.; García, J.; Marcel, C.P.

    2013-01-01

    The RA-10 reactor is a multipurpose, open pool research reactor. The core consists of a rectangular array of MTR type fuel. The produced thermal power is 30 MW which is extracted by the refrigeration system via an ascendant flow through the core. The core reflector is D 2 O contained in a watertight tank. The design of the reactor includes a number of out-core facilities which are meant to be used for industrial, medical and research purposes. Among all the facilities, the most important ones are the Molybdenum and Iridium ones which we modeled in this work. During the normal operation of the reactor, the manipulation and the on-line extraction of the irradiation facilities is foreseen. Therefore the study of the head loss during the normal operation as well as during the extraction maneuvers plays a relevant role in the design and safety analysis. In this work a CFD commercial code is use dto perform the calculations needed to guarantee the design requirements.In addition, a full detailed geometric model for both, the Molybdenum and Iridium facilities,is used to perform the required simulations. The obtained results allow to evaluating the thermal-hydraulic performance of the proposed facilities designs. (author)

  11. Progress on ANSTO'S OPAL reactor project and its future importance as the centrepiece of ANSTO'S facilities

    International Nuclear Information System (INIS)

    Smith, I.O.

    2006-01-01

    Full text: After an intensive process of analysis, the Australian government approved the construction of a multi-purpose research reactor in 1997. Following the conduct of a comprehensive tender evaluation process in 1998-2000, INVAP was contracted to construct a 20 MW open pool research reactor and associated neutron beam facilities. The construction of the reactor is now almost complete, and we have commenced cold commissioning. ANSTO has applied for an operating licence, and we hope for a decision on that application in June, following the consideration by the regulator of the results of cold commissioning. The OPAL reactor will provide neutrons to a world-class neutron beam facility, in which a number of the instruments will have the best performance available in the world to date. We intend to establish the Bragg Institute as a regional centre of excellence on neutron beam science, with a significant number of international scientists using the facility to produce cutting edge science in the fields of biology, materials science, food science and other area. The reactor also has extensive irradiation facilities within the reflector vessel. These facilities will be used to produce medical isotopes - ANSTO supplies the bulk of the Australian market and also exports into this region - and for the transmutation doping of silicon ingots for semiconductor manufacture. There are also a number of pneumatically loaded radiation facilities allowing for short term irradiation of samples for such activities as neutron activation analysis

  12. An automatic device for sample insertion and extraction to/from reactor irradiation facilities

    International Nuclear Information System (INIS)

    Alloni, L.; Venturelli, A.; Meloni, S.

    1990-01-01

    At the previous European Triga Users Conference in Vienna,a paper was given describing a new handling tool for irradiated samples at the L.E.N.A plant. This tool was the first part of an automatic device for the management of samples to be irradiated in the TRIGA MARK ii reactor and successively extracted and stored. So far sample insertion and extraction to/from irradiation facilities available on reactor top (central thimble,rotatory specimen rack and channel f),has been carried out manually by reactor and health-physics operators using the ''traditional'' fishing pole provided by General Atomic, thus exposing reactor personnel to ''unjustified'' radiation doses. The present paper describes the design and the operation of a new device, a ''robot''type machine,which, remotely operated, takes care of sample insertion into the different irradiation facilities,sample extraction after irradiation and connection to the storage pits already described. The extraction of irradiated sample does not require the presence of reactor personnel on the reactor top and,therefore,radiation doses are strongly reduced. All work from design to construction has been carried out by the personnel of the electronic group of the L.E.N.A plant. (orig.)

  13. Modernization of the facilities of the TRIGA Mark III reactor of ININ

    International Nuclear Information System (INIS)

    Mendez T, D.; Flores C, J.

    2016-09-01

    The TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) has been in operation since 1968 under strict maintenance and component replacement programs, which has allowed its safe operation during this time. Under this scheme, the reactor was operating under suitable conditions, taking into account the different requests for operation that were received for the samples irradiation for the radioisotopes production such as the Sm-153, personnel training, basic research, archaeology and environmental studies and nuclear chemistry of the elements. However, a modernization program of its components and laboratories was required, in order to improve safety in the operation of the same and to increase its use in the analysis of samples by neutron activation and in the training of personnel. This program known as Modernization Program of the Reactor Facilities, was proposed alongside the project to replace high-enrichment fuels with low-enrichment fuels at the end of 2011 and early 2012. The central aspects of this program are described in this work, grouped into generic topics that include instrumentation and control, the radiological monitoring system of the area, the cooling system, the ventilation system, the neutron activation analysis laboratory, the manufacture of graphite elements, inspection submersible system of the pool, temporary storage system for irradiated fuels, traveling crane, Reactor support laboratories and technical meetings, courses and seminars for reactor personnel and associated groups. It also describes some of the most relevant components required for each system and the progress that is made in each one of them. As a fundamental result of the implementation of this Modernization Program of the Reactor Facilities, there has been a substantial improvement in the performance of the systems and components of its facilities, in the reliability of its operation and in the safety of the same. (Author)

  14. Education and research at the VR-1 Vrabec training reactor facility

    International Nuclear Information System (INIS)

    Matejka, K.

    1993-01-01

    The results of 12 years' efforts devoted to the construction of the VR-1 ''Vrabec'' training reactor at the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague and to establishing the training reactor department, as well as the contribution of the training reactor facility to the teaching and scientific activities of the Faculty are presented in a comprehensive manner. The thesis is divided into 2 parts: (i) preconditions, reactor construction and commissioning, and constituting the reactor department, and (ii) basic and comprehensive information concerning the current utilization of the reactor for the benefit of students from various university level institutions. The prospects of scientific activities of the department are also outlined. Attention is paid to selected nuclear safety aspects of the reactor during operation and teaching of students, as well as to its innovated digital control system whose implementation is planned. The results achieved are compared with the initial goals and with similar experience abroad. (P.A.)

  15. Material accountancy and control practice at a research reactor facility

    International Nuclear Information System (INIS)

    Bouchard, J.; Maurel, J.J.; Tromeur, Y.

    1982-01-01

    This session surveys the regulations, organization, and accountancy practice that compose the French State System of Accountancy and Control. Practical examples are discussed showing how inventories are verified at a critical assembly facility and at a materials testing reactor

  16. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the meeting were: • To identify the main issues and technical features that affect capital and energy production costs of fast reactors and related fuel cycle facilities; • To present fast reactor concepts and designs with enhanced economic characteristics, as well as innovative technical solutions (components, subsystems, etc.) that have the potential to reduce the capital costs of fast reactors and related fuel cycle facilities; • To present energy models and advanced tools for the cost assessment of innovative fast reactors and associated nuclear fuel cycles; • To discuss the results of studies and ongoing R&D activities that address cost reduction and the future economic competitiveness of fast reactors; • To identify research and technology development needs in the field, also in view of new IAEA initiatives to help and support Member States in improving the economic competitiveness of fast reactors and associated nuclear fuel cycles

  17. Lining facility for FBR type reactor

    International Nuclear Information System (INIS)

    Shimano, Kunio.

    1991-01-01

    In a lining facility for protecting structural material concretes for concrete buildings in an FBR type power plant, sodium-resistant and heat-resistant first and second coating layers are lined at the surface of concretes, and steam releasing materials are disposed between the first and the second coating layers for releasing water contents evaporated from the concretes to the outside. With such a constitution, since there is no structures for welding steel plates to each other as in the prior art, the fabrication is made easy. Further, since cracks of coating materials can be suppressed, reactor safety is improved. (T.M.)

  18. Decontamination and decommissioning of the Organic Moderated Reactor Experiment facility (OMRE)

    International Nuclear Information System (INIS)

    Hine, R.E.

    1980-09-01

    This report describes the decontamination and decommissioning (D and D) of the Organic Moderated Reactor Experiment (OMRE) facility performed from October 1977 through September 1979. This D and D project included removal of all the facilities and as much contaminated soil and rock as practical. Removal of the reactor pressure vessel was an unusually difficult problem, and an extraordinary, unexpected amount of activated rock and soil was removed. After removal of all significantly contaminated material, the site consisted of a 20-ft deep excavation surrounded by backfill material. Before this excavation was backfilled, it and the backfill material were radiologically surveyed and detailed records made of these surveys. After the excavation was backfilled and graded, the site surface was surveyed again and found to be essentially uncontaminated

  19. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities

  20. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    International Nuclear Information System (INIS)

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  1. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities.

    Science.gov (United States)

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2017-02-28

    In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  2. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  3. Construction of the Neutron Beam Facility at Australia's OPAL Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, J.S.

    2005-01-01

    Full text: Australia's new research reactor, OPAL, has been designed for high quality neutron beam science and radioisotope production. It has a capacity for eighteen neutron beam instruments to be located at the reactor face and in a neutron guide hall. The new neutron beam facility features a 20 litre liquid deuterium cold neutron source and supermirror neutron reflecting guides for intense cold and thermal neutron beams. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, where criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. The lecture will outline Australia's aspirations for neutron science at the OPAL reactor, and describe the neutron beam facility under construction. The status of this project and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed. This project is the culmination of almost a decade of effort. We now eagerly anticipate catapulting Australia's neutron beam science capability to meet the best in the world today. (author)

  4. Emergency planning and response: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Knuth, D.; Boyd, R.

    1981-02-01

    The Department of Energy (DOE) has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the recommendations contained in the President's Commission Report on the Three Mile Island (TMI) Accident (the Kemeny Commission report) that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors have been reviewed. The assessments of the 13 facilities are based on information provided by the individual operator organizations and/or cognizant DOE Field Offices. Additional clarifying information was supplied in some, but not all, instances. This report indicates how these 13 reactor facilities measure up in light of the Kemeny and other TMI-related studies and recommendations, particularly those that have resulted in upgraded Nuclear Regulatory Commission (NRC) requirements in the area of emergency planning and response

  5. A conceptual design of neutron tumor therapy reactor facility with a YAYOI based fast neutron source reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki; An, Shigehiro.

    1983-01-01

    Fast neutron is known as one of useful radiations for radiation therapy of tumors. Boron neutron capture therapy (BNCT) of tumors which makes use of 10 B(n, α) 7 Li reaction of 10 B compounds selectively attached to tumor cells with thermal and intermediate neutrons is another way of neutron based radiation therapy which is, above all, attractive enough to kill tumor cells selectively sparing normal tissue. In Japan, BNCT has already been applied and leaned to be effective. After more than a decade operational experiences and the specific experiments designed for therapeutical purposes, in this paper, a conceptual design of a special neutron therapy reactor facility based on YAYOI - fast neutron source reactor of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo - modified to provide an upward beam of fast and intermediate neutrons is presented. Emphasis is placed on the in-house nature of facility and on the coordinating capability of biological and physical researches as well as maintenances of the facility. (author)

  6. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  7. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces

  8. Technical feasibility of an Integral Fast Reactor (IFR) as a future option for fast reactor cycles. Integrate a small metal-fueled fast reactor and pyroprocessing facilities

    International Nuclear Information System (INIS)

    Tanaka, Nobuo

    2017-01-01

    Integral Fast Reactor that integrated fast reactor and pyrorocessing facilities developed by Argonne National Laboratory in the U.S. is an excellent nuclear fuel cycle system for passive safety, nuclear non-proliferation, and reduction in radioactive waste. In addition, this system can be considered as a technology applicable to the treatment of the fuel debris caused by the Fukushima Daiichi Nuclear Power Station accident. This study assessed the time required for debris processing, safety of the facilities, and construction cost when using this technology, and examined technological possibility including future technological issues. In a small metal-fueled reactor, it is important to design the core that achieves both of reduction in combustion reactivity and reduction in coolant reactivity. In system design, calorimetric analysis, structure soundness assessment, seismic feasibility establishment study, etc. are important. Regarding safety, research and testing are necessary on the capabilities of passive reactor shutdown and reactor core cooling as well as measures for avoiding re-criticality, even when emergency stop has failed. In dry reprocessing system, studies on electrolytic reduction and electrolytic refining process for treating the debris with compositions different from those of normal fuel are necessary. (A.O.)

  9. Aktau Plastics Plant Explosives Material Report

    Energy Technology Data Exchange (ETDEWEB)

    CASE JR.,ROGER S.

    1999-12-01

    The U.S. Department of Energy (DOE) has been cooperating with the Republic of Kazakhstanin Combined Threat Reduction (CTR) activities at the BN350 reactor located at the Mangyshlak Atomic Energy Complex (MAEC) in the city of Aktau, Kazakhstan since 1994. DOE contract personnel have been stationed at this facility for the last two years and DOE representatives regularly visit this location to oversee the continuing cooperative activities. Continued future cooperation is planned. A Russian news report in September 1999 indicated that 75 metric tons of organic peroxides stored at the Plastics Plant near Aktau were in danger of exploding and killing or injuring nearby residents. To ensure the health and safety of the personnel at the BN350 site, the DOE conducted a study to investigate the potential danger to the BN350 site posed by these materials at the Plastics Plant. The study conclusion was that while the organic peroxides do have hazards associated with them, the BN350 site is a safe distance from the Plastics Plant. Further, because the Plastics Plant and MAEC have cooperative fire-fighting agreements,and the Plastics Plant had exhausted its reserve of fire-fighting foam, there was the possibility of the Plastics Plant depleting the store of fire-fighting foam at the BN350 site. Subsequently, the DOE decided to purchase fire-fighting foam for the Plastics Plant to ensure the availability of free-fighting foam at the BN350 site.

  10. UCN-VCN facility and experiments in Kyoto University Reactor

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Okumura, Kiyoshi; Utsuro, Masahiko

    1993-01-01

    An ultracold and very cold neutron facility was installed in Kyoto University Reactor (KUR). The facility consists of a very cold neutron (VCN) guide tube, a VCN bender, a supermirror neutron turbine and experimental equipments with ultracold neutrons (UCN). The properties of each equipments are presented. UCN is generated by a supermirror neutron turbine combined with the cold neutron source operated with liquid deuterium, and the UCN output spectrum was measured by the time-of-flight method. A gravity analyzer for high resolution spectroscopy and a neutron bottle for decay experiments are now developing as the UCN research in KUR. (author)

  11. Pilot-scale reactor activation facility at SRL

    International Nuclear Information System (INIS)

    Bowman, W.W.

    1976-01-01

    The Hydrogeocemical and Stream Sediment Reconnaissance portion of the National Uranium Resource Evaluation program requires an analytical technique for uranium and other elements. Based on an automated absolute activation analysis technique using 252 Cf, a pilt-scale facility installed in a production reactor has provided analyses for 2800 samples. Key features include: an automated sample transport system, a delayed neutron detector, two GeLi detectors, a loader, and an unloader, with all components controlled by a microprocessor; a dedicated PDP-9 computer and pulse height analyzer; and correlation and reduction of acquired data by a series of programs using an IBM 360/195 computer. The facility was calibrated with elemental and isotopic standards. Results of analyses of standard reference materials and operational detection limits for typical sediment samples are presented. Plans to increase sample throughput are discussed briefly

  12. Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities

    International Nuclear Information System (INIS)

    1994-10-01

    The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition

  13. Development programs on decommissioning technology for reactors and fuel cycle facilities in Japan

    International Nuclear Information System (INIS)

    Fujiki, K.

    1992-01-01

    The Science and Technology Agency (STA) of Japan is promoting technology development for decommissioning of nuclear facilities by entrusting various research programs to concerned research organisations: JAERI, PNC and RANDEC, including first full scale reactor decommissioning of JPDR. According to the results of these programs, significant improvement on dismantling techniques, decontamination, measurement etc. has been achieved. Further development of advanced decommissioning technology has been started in order to achieve reduction of duration of decommissioning work and occupational exposures in consideration of the decommissioning of reactors and fuel cycle facilities. (author) 5 refs.; 7 figs.; 1 tab

  14. Shadow corrosion testing in the INCA facility in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Nystrand, A.C.; Lassing, A.

    1999-01-01

    Shadow corrosion is a phenomenon which occurs when zirconium alloys are in contact with or in proximity to other metallic objects in a boiling water reactor environment (BWR, RBMK, SGHWR etc.). An enhanced corrosion occurs on the zirconium alloy with the appearance of a 'shadow' of the metallic object. The magnitude of the shadow corrosion can be significant, and is potentially limiting for the lifetime of certain zirconium alloy components in BWRs and other reactors with a similar water chemistry. In order to evaluate the suitability of the In-Core Autoclave (INCA) in the Studsvik R2 materials testing reactor as an experimental facility for studying shadow corrosion, a demonstration test has been performed. A number of test specimens consisting of Zircaloy-2 tubing in contact with Inconel were exposed in an oxidising water chemistry. Some of the specimens were placed within the reactor core and some above the core. The conclusion of this experiment after post irradiation examination is that it is possible to use the INCA facility in the Studsvik R2 reactor to develop a significant level of shadow corrosion after only 800 hours of irradiation. (author)

  15. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    Science.gov (United States)

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap -1 . In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap -1  a -1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  16. Reactor containing facility

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1992-01-01

    A cooling space having a predetermined capacity is formed between a reactor container and concrete walls. A circulation loop disposed to the outside of the concrete walls is connected to the top and the bottom of the cooling space. The circulation loop has a circulation pump and a heat exchanger, and a cooling water supply pipe is connected to the upstream of the circulation pump for introducing cooling water from the outside. Upon occurrence of loss of coolant accident, cooling water is introduced from the cooling water supply pipe to the cooling space between the reactor container and the concrete walls after shut-down of the reactor operation. Then, cooling water is circulated while being cooled by the heat exchanger, to cool the reactor container by cooling water flown in the cooling space. This can cool the reactor container in a short period of time upon occurrence of the loss of coolant accident. Accordingly, a repairing operation for a ruptured portion can be conducted rapidly. (I.N.)

  17. Mathematical modelling and quality indices optimization of automatic control systems of reactor facility

    International Nuclear Information System (INIS)

    Severin, V.P.

    2007-01-01

    The mathematical modeling of automatic control systems of reactor facility WWER-1000 with various regulator types is considered. The linear and nonlinear models of neutron power control systems of nuclear reactor WWER-1000 with various group numbers of delayed neutrons are designed. The results of optimization of direct quality indexes of neutron power control systems of nuclear reactor WWER-1000 are designed. The identification and optimization of level control systems with various regulator types of steam generator are executed

  18. Design-development and operation of the Experimental Boiling-Water Reactor (EBWR) facility, 1955--1967

    International Nuclear Information System (INIS)

    Boing, L.E.; Wimunc, E.A.; Whittington, G.A.

    1990-11-01

    The Experimental Boiling-Water Reactor (EBWR) was designed, built, and operated to provide experience and engineering data that would demonstrate the feasibility of the direct-cycle, boiling-water reactor and be applicable to improved, larger nuclear power stations; and was based on information obtained in the first test boiling-water reactors, the BORAX series. EBWR initially produced 20 MW(t), 5 MW(e); later modified and upgraded, as described and illustrated, it was operated at up to 100 MW(t). The facility fulfilled its primary mission -- demonstrating the practicality of the direct-boiling concept -- and, in fact, was the prototype of some of the first commercial plants and of reactor programs in some other countries. After successful completion of the Water-Cooled Reactor Program, EBWR was utilized in the joint Argonne-Hanford Plutonium Recycle Program to develop data for the utilization of plutonium as a fuel in light- water thermal systems. Final shutdown of the EBWR facility followed the termination of the latter program. 13 refs., 12 figs

  19. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the meeting were: - To identify the main issues and technical features that affect capital and energy production costs of fast reactors and related fuel cycle facilities; - To present fast reactor concepts and designs with enhanced economic characteristics, as well as innovative technical solutions (components, subsystems, etc.) that have the potential to reduce the capital costs of fast reactors and related fuel cycle facilities; - To present energy models and advanced tools for the cost assessment of innovative fast reactors and associated nuclear fuel cycles; - To discuss the results of studies and on-going R&D activities that address cost reduction and the future economic competitiveness of fast reactors; and - To identify research and technology development needs in the field, also in view of new IAEA initiatives to help and support Member States in improving the economic competitiveness of fast reactors and associated nuclear fuel cycles

  20. Measurement of the tissue to A-150 tissue equivalent plastic kerma ratio at two p(66)Be neutron therapy facilities

    International Nuclear Information System (INIS)

    Langen, K M; Binns, P J; Schreuder, A N; Lennox, A J; Deluca, P M Jr.

    2003-01-01

    The ICRU tissue to A-150 tissue equivalent plastic kerma ratio is needed for neutron therapy dosimetry. The current ICRU protocol for neutron dosimetry recommends using a common conversion factor of 0.95 at all high-energy neutron therapy facilities. In an effort to determine facility specific ICRU tissue to A-150 plastic kerma ratios, an experimental approach was pursued. Four low pressure proportional counters that differed in wall materials (i.e. A-150, carbon, zirconium and zirconium-oxide) were used as dosimeters and integral kerma ratios were determined directly in the clinical beam. Measurements were performed at two p(66)Be facilities: iThemba LABS near Cape Town and Fermilab near Chicago. At the iThemba facility the clinical neutron beam is routinely filtered by a flattening and hardening filter combination. The influence of beam filtration on the kerma ratio was evaluated. Using two recent gas-to-wall dose conversion factor (r m,g value) evaluations a mean ICRU tissue to A-150 plastic kerma ratio of 0.93 ± 0.05 was determined for the clinical beam at iThemba LABS. The respective value for the Fermilab beam is 0.95 ± 0.05. The experimentally determined ICRU tissue to A-150 plastic kerma ratios for the two clinical beams are in agreement with theoretical evaluations. Beam filtration reduces the kerma ratio by 3 ± 2%

  1. Reports and operational engineering: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Rochman, A.; Washburn, B.W.

    1981-02-01

    The Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, established via an October 24, 1979 memorandum from the Department of Energy (DOE) Under Secretary, was instructed to review the ''Kemeny Commission'' recommendations and to identify possible implications for DOE's nuclear facilities. As a result of this review, the Committee recommended that DOE carry out assessments in seven categories. The assessments would address specific topics identified for each category as delineated in the NFPQT ''Guidelines for Assessing the Safe Operation of DOE-Owned Reactors,'' dated May 7, 1980. The Committee recognized that similar assessments had been ongoing in the DOE program and safety overview organizations since the Three Mile Island nuclear accident and it was the Committee's intent to use the results of those ongoing assessments as an input to their evaluations. This information would be supplemented by additional studies consisting of the subject-related documents used at each reactor facility studied, and an on-site review of these reactor facilities by professional personnel within the Department of Energy, its operating contractors and independent consultants. 1 tab

  2. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.

  3. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    International Nuclear Information System (INIS)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report

  4. Sandia Pulsed Reactor Facility (SPRF) calculator-assisted pulse analysis and display system

    International Nuclear Information System (INIS)

    Estes, B.F.; Berry, D.T.

    1980-02-01

    Two solid-metal fast burst type reactors (SPR II and SPR III) are operated at the Sandia Pulsed Reactor Facility. Since startup of the reactors, oscilloscope traces have been used to record (by camera) the pulse (power) shape while log N systems have measured initial reactor period. Virtually no other pulse information is available. A decision was made to build a system that could collect the basic input data available from the reactor - fission chambers, photodiodes, and thermocouples - condition the signals and output the various parameters such as power, energy, temperature, period and lifetime on hard copy that would provide a record for operations personnel as well as the experimenter. Because the reactors operate in short time frames - pulse operation - it is convenient to utilize the classical Nordheim-Fuchs approximation of the diffusion equation to describe reactor behavior. This report describes the work performed to date in developing the calculator system and analytical models for computing the desired parameters

  5. Gas cooled fast reactor background, facilities, industries and programmes

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1980-05-01

    This report was prepared at the request of the OECD-NEA Coordinating Group on Gas Cooled Fast Reactor Development and it represents a contribution (Vol.II) to the jointly sponsored Vol.I (GCFR Status Report). After a chapter on background with a brief description of the early studies and the activities in the various countries involved in the collaborative programme (Austria, Belgium, France, Germany, Japan, Sweden, Switzerland, United Kingdom and United States), the report describes the facilities available in those countries and at the Gas Breeder Reactor Association and the industrial capabilities relevant to the GCFR. Finally the programmes are described briefly with programme charts, conclusions and recommendations are given. (orig.) [de

  6. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han

    2013-01-01

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility

  7. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility.

  8. Accidents and failures in reactor facilities for test and research and reactor facilities in the stage of research and development in fiscal year 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The number of accidents and failures reported in fiscal year 1987 in conformity with the law on the regulation of nuclear reactors and others was three. One case occurred during operation, and two cases occurred in shutdown state. One case was caused by improper construction management, and two cases were due to improper maintenance management. The effect of radioactivity to the surrounding environment of reactor facilities due to these accidents and failures did not arise. These occurred in the NSRR of Japan Atomic Energy Research Institute (Tokai), the experimental FBR Joyo and the ATR Fugen Power Station of Power Reactor and Nuclear Fuel Development Corp. In addition to these, the light troubles reported on the basis of the notice from the director of Science and Technology Agency dated September 1, 1981, were three cases. (K.I.)

  9. Good Practices for Water Quality Management in Research Reactors and Spent Fuel Storage Facilities

    International Nuclear Information System (INIS)

    2011-01-01

    Water is the most common fluid used to remove the heat produced in a research reactor (RR). It is also the most common media used to store spent fuel elements after being removed from the reactor core. Spent fuel is stored either in the at-reactor pool or in away-from-reactor wet facilities, where the fuel elements are maintained until submission to final disposal, or until the decay heat is low enough to allow migration to a dry storage facility. Maintaining high quality water is the most important factor in preventing degradation of aluminium clad fuel elements, and other structural components in water cooled research reactors. Excellent water quality in spent fuel wet storage facilities is essential to achieve optimum storage performance. Experience shows the remarkable success of many research reactors where the water chemistry has been well controlled. In these cases, aluminium clad fuel elements and aluminium pool liners show few, if any, signs of either localized or general corrosion, even after more than 30 years of exposure to research reactor water. In contrast, when water quality was allowed to degrade, the fuel clad and the structural parts of the reactor have been seriously corroded. The driving force to prepare this publication was the recognition that, even though a great deal of information on research reactor water quality is available in the open literature, no comprehensive report addressing the rationale of water quality management in research reactors has been published to date. This report is designed to provide a comprehensive catalogue of good practices for the management of water quality in research reactors. It also presents a brief description of the corrosion process that affects the components of a research reactor. Further, the report provides a basic understanding of water chemistry and its influence on the corrosion process; specifies requirements and operational limits for water purification systems of RRs; describes good practices

  10. A description of the demonstration Integral Fast Reactor fuel cycle facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Carnes, M.D.; Dwight, C.C.; Forrester, R.J.

    1991-01-01

    A fuel examination facility at the Idaho National Engineering Laboratory is being converted into a facility that will electrochemically process spent fuel. This is an important step in the demonstration of the Integral Fast Reactor concept being developed by Argonne National Laboratory. Renovations are designed to bring the facility up to current health and safety and environmental standards and to support its new mission. Improvements include the addition of high-reliability earthquake hardened off-gas and electrical power systems, the upgrading of radiological instrumentation, and the incorporation of advances in contamination control. A major task is the construction of a new equipment repair and decontamination facility in the basement of the building to support operations

  11. Proposed power upgrade of the hot fuel examination facility's neutron radiography reactor

    International Nuclear Information System (INIS)

    Pruett, D.P.; Richards, W.J.; Heidel, C.C.

    1984-01-01

    The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both non-destructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the non-destructive examination techniques utilized at HFEF is neutron radiography. When the NRAD facility was designed and constructed, an operating power level of 250 kw was considered to be adequate for obtaining radiographs of the type of specimens envisaged at that time. Since that time, several things have occurred that have tended to increase radiography exposure times to as much as 90 minutes each. In order to decrease exposure times, the reactor power level is to be increased from 250 kW to 1 MW. This increase in power will necessitate several engineering and design changes. The proposed upgrade of the NRAD facility will increase the neutron flux available in the beam tubes appreciably. The increased flux will enable NRAD to continue to meet its operational commitments in a timely manner and to develop state-of-the-art techniques in the future as it has in the past

  12. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  13. Startup transient simulation for natural circulation boiling water reactors in PUMA facility

    International Nuclear Information System (INIS)

    Kuran, S.; Xu, Y.; Sun, X.; Cheng, L.; Yoon, H.J.; Revankar, S.T.; Ishii, M.; Wang, W.

    2006-01-01

    In view of the importance of instabilities that may occur at low-pressure and -flow conditions during the startup of natural circulation boiling water reactors, startup simulation experiments were performed in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. The simulations used pressure scaling and followed the startup procedure of a typical natural circulation boiling water reactor. Two simulation experiments were performed for the reactor dome pressures ranging from 55 kPa to 1 MPa, where the instabilities may occur. The experimental results show the signature of condensation-induced oscillations during the single-phase-to-two-phase natural circulation transition. The results also suggest that a rational startup procedure is needed to overcome the startup instabilities in natural circulation boiling water reactor designs

  14. Radiation protection planning for decommissioning of research reactor facilities

    International Nuclear Information System (INIS)

    Jackson, Roger; Harman, Neil; Craig, David; Fecitt, Lorna; Lobach, Yuri; Gorlinskij, Juri; Kolyadin, Vyacheslav; Pavlenko, Vytali

    2008-01-01

    The MR reactor at the Russian Research Centre Kurchatov Institute (RRCKI), Moscow was a 50 MW multipurpose material testing and research reactor equipped with nine experimental loop facilities to test prototype fuel for various nuclear power reactors being developed. The reactor was shut down in 1993 and de-fuelled. The experimental loops are located in basement rooms around the reactor. The nature of the research into the characteristics of fuel design and coolant chemistry resulted in fission products and activation products in the test loop equipment. Decommissioning of the loops therefore presents a number of challenges. In addition the city of Moscow has expanded such that the RRC KI is now surrounded by housing which had to be taken into account in the radiological protection planning. This paper describes the techniques proposed to undertake the dismantling operations in order to minimise the radiation exposure to workers and members of the public. Estimates have been made of the worker doses which could be incurred during the dismantling process and the environmental impacts which could occur. These are demonstrated to be as low as reasonably achievable. The work was funded by the UK Department of Business Enterprise and Regulatory Reform (DBERR) (formerly the Department of Trade and Industry) under the Nuclear Safety Programme (NSP) set up to address nuclear safety issues in the Former Soviet Union. (author)

  15. Waste from decommissioning of research reactors and other small nuclear facilities

    International Nuclear Information System (INIS)

    Massaut, V.

    2001-01-01

    Full text: Small nuclear facilities were often built for research or pilot purposes. It includes the research reactors of various types and various aims (physics research, nuclear research, nuclear weapons development, materials testing reactor, isotope production, pilot plant, etc.) as well as laboratories, hot cells and accelerators used for a broad spectrum of research or production purposes. These installations are characterized not only by their size (reduced footprint) but also, and even mostly, by the very diversified type of materials, products and isotopes handled within these facilities. This large variety can sometimes enhance the difficulties encountered for the dismantling of such facilities. The presence of materials like beryllium, graphite, lead, PCBs, sodium, sometimes in relatively large quantities, are also challenges to be faced by the dismantlers of such facilities, because these types of waste are either toxic or no solutions are readily available for their conditioning or long term disposal. The paper will review what is currently done in different small nuclear facilities, and what are the remaining problems and challenges for future dismantling and waste management. The question of whether Research and Development for waste handling methods and processes is needed is still pending. Even for the dismantling operation itself, important improvements can be brought in the fields of characterization, decontamination, remote handling, etc. by further developments and innovative systems. The way of funding such facilities decommissioning will be reviewed as well as the very difficult cost estimation for such facilities, often one-of-a-kind. The aspects of radioprotection optimization (ALARA principle) and classical operators safety will also be highlighted, as well as the potential solutions or improvements. In fact, small nuclear facilities encounter often, when dismantling, the same problems as the large nuclear power plants, but have in

  16. Experimental facilities for PEC reactor design central channel test loop: CPC-1 - thermal shocks loop: CEDI

    International Nuclear Information System (INIS)

    Calvaresi, C.; Moreschi, L.F.

    1983-01-01

    PEC (Prova Elementi di Combustibile: Fuel Elements Test) is an experimental fast sodium-cooled reactor with a power of 120 MWt. This reactor aims at studying the behaviour of fuel elements under thermal and neutron conditions comparable with those existing in fast power nuclear facilities. Given the particular structure of the core, the complex operations to be performed in the transfer cell and the strict operating conditions of the central channel, two experimental facilities, CPC-1 and CEDI, have been designed as a support to the construction of the reactor. CPC-1 is a 1:1 scale model of the channel, transfer-cell and loop unit of the channel, whereas CEDI is a sodium-cooled loop which enables to carry out tests of isothermal endurance and thermal shocks on the group of seven forced elements, by simulating the thermo-hydraulic and mechanical conditions existing in the reactor. In this paper some experimental test are briefy discussed and some facilities are listed, both for the CPC-1 and for the CEDI. (Auth.)

  17. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  18. The BNCT facility at the HFR Petten: Quality assurance for reactor facilities in clinical trials

    International Nuclear Information System (INIS)

    Moss, R.; Watkins, P.; Vroegindeweij, C.; Stecher-Rasmussen, F.; Huiskamp, R.; Ravensberg, K.; Appelman, K.; Sauerwein, W.; Hideghety, K.; Gabel, D.

    2001-01-01

    The first clinical trial in Europe of Boron Neutron Capture Therapy (BNCT) for the treatment of glioblastoma was opened in July 1997. The trial is a Phase I study with the principal aim to establish the maximum tolerated radiation dose and the dose limiting toxicity under defined conditions. It is the first time that a clinical application could be realised on a completely multi-national scale. The treatment takes place at the High Flux Reactor (HFR) in Petten, the Netherlands, is operated by an international team of experts under the leadership of a German radiotherapist, and treats patients coming from different European countries. It has therefore been necessary to create a very specialised organisation and contractual structure with the support of administrations from different countries, who had to find and adapt solutions within existing laws that had never foreseen such a situation. Furthermore, the treatment does not take place in an hospital environment and even more so, the facility is at a nuclear research reactor. Hence, special efforts were made on quality assurance, in order that the set-up at the facility and the personnel involved complied, as closely as possible, with similar practices in conventional radiotherapy departments. (author)

  19. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  20. Detailed description of an SSAC at the facility level for on-load refueled power reactor facilities

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-11-01

    The purpose of this document is to provide a detailed description of a system for the accounting for and control of nuclear material in an on-load refueled power reactor facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following SSAC elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  1. Personal neutron dosimetry at a research reactor facility

    International Nuclear Information System (INIS)

    Kamenopoulou, V.; Carinou, E.; Stamatelatos, I.E.

    2001-01-01

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve. (author)

  2. Facility for in-reactor creep testing of fuel cladding

    International Nuclear Information System (INIS)

    Kohn, E.; Wright, M.G.

    1976-11-01

    A biaxial stress creep test facility has been designed and developed for operation in the WR-1 reactor. This report outlines the rationale for its design and describes its construction and the operating experience with it. The equipment is optimized for the determination of creep data on CANDU fuel cladding. Typical results from Zr-2.5 wt% Nb fuel cladding are used to illustrate the accuracy and reliability obtained. (author)

  3. The small-angle neutron scattering facility at the SAFARI-1 reactor

    International Nuclear Information System (INIS)

    Hofmeyr, C.; Mayer, R.M.; Tillwick, D.L.

    1979-01-01

    A long-wavelength neutron scattering facility at the SAFARI-1 reactor is described. Neutrons of wavelength between 5 and 15 A can be selected. Features of the facility are the use of microwave guides as neutron conductors, flexible guide-pipe configuration and automatic sequential sample changing. Examples are given of measurements on radiation-induced voids in copper, aluminium, Al-0.4%Si and Al-0.1%In after neutron irradiation and magnetic scattering in US and in 80US-10UC-10UC 2 . (Auth.)

  4. Concerning modification of plan for installation of reactors (addition of No.4 reactor and modification of No.1, No.2 and No.3 reactor facilities) at Hamaoka nuclear power plant of Chubu Electric Power Co., Ltd. (reply to inquiry)

    International Nuclear Information System (INIS)

    1988-01-01

    The Nuclear Safety Commission on Oct. 22, 1987 directed the Nuclear Reactor Safety Expert Group to carry out a study on it, made deliberations after receiving a report from the Group on Jun. 28, and submitted the findings to the Minister of International Trade and Industry on Jul. 14. The study and deliberations were intended to determine the conformity of the modifications to the applicable laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The investigation on the location covered the site conditions, geology, seismic environment, meteorology, hydrology, and social environment. The investigations on the safety design of the reactor facilities addressed the design of the overall reactor facilities, anti-earthquake design, and design of other equipment including reactor core, fuel equipment, monitors, reactivity controllers, safety protection equipment, and emergency core cooler. Other investigations included exposure evaluation and accident analysis. It was concluded that the modifications would not have adverse effects on the safety of the reactor facilities. (Nogami, K.)

  5. University Reactor Instrumentation Program. Final report, September 30, 1993--March 31, 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The University of Massachusetts Lowell Research Reactor has received a total of $115,723.00 from the Department of Energy (DOE) Instrumentation Program (DOE Grant No. DE-FG02-91ID13083) and $40,000 in matching funds from the University of Massachusetts Lowell administration. The University of Massachusetts Lowell Research Reactor has been serving the University and surrounding communities since it first achieved criticality in May 1974. The principle purpose of the facility is to provide a multidisciplinary research and training center for the University of Massachusetts Lowell and other New England academic institutions. The facility promotes student and industrial research, in addition to providing education and training for nuclear scientists, technicians, and engineers. The 1 MW thermal reactor contains a variety of experimental facilities which, along with a 0.4 megacurie cobalt source, effectively supports the research and educational programs of many university departments including Biology, Chemistry, Nuclear and Plastics Engineering, Radiological Sciences, Physics, and other campuses of the University of Massachusetts system. Although the main focus of the facility is on intra-university research, use by those outside the university is fully welcomed and highly encouraged

  6. Refueling the RPI reactor facility with low-enrichment fuel

    International Nuclear Information System (INIS)

    Harris, D.R.; Rodriguez-Vera, F.; Wicks, F.E.

    1985-01-01

    The RPI Critical Facility has operated since 1963 with a core of thin, highly enriched fuel plates in twenty-five fuel assembly boxes. A program is underway to refuel the reactor with 4.81 w/o enriched SPERT (F-1) fuel rods. Use of these fuel rods will upgrade the capabilities of the reactor and will eliminate a security risk. Adequate quantities of SPERT (F-1) fuel rods are available, and their use will result in a great cost saving relative to manufacturing new low-enrichment fuel plates. The SPERT fuel rods are 19 inches longer than are the present fuel plates, so a modified core support structure is required. It is planned to support and position the SPERT fuel pins by upper and lower lattice plates, thus avoiding the considerable cost of new fuel assembly boxes. The lattice plates will be secured to the existing top and bottom plates. The design permits the fabrication and use of other lattice plates for critical experiment research programs in support of long-lived full development for power reactors. (author)

  7. Closed Loop In-Reactor Assembly (CLIRA): a fast flux test facility test vehicle

    International Nuclear Information System (INIS)

    Oakley, D.J.

    1978-01-01

    The Closed Loop In-Reactor Assembly (CLIRA) is a test vehicle for in-core material and fuel experiments in the Fast Flux Test Facility (FFTF). The FFTF is a fast flux nuclear test reactor operated for the Department of Energy (DOE) by Westinghouse Hanford Company in Richland, Washington. The CLIRA is a removable/replaceable part of the Closed Loop System (CLS) which is a sodium coolant system providing flow and temperature control independent of the reactor coolant system. The primary purpose of the CLIRA is to provide a test vehicle which will permit testing of nuclear fuels and materials at conditions more severe than exist in the FTR core, and to isolate these materials from the reactor core

  8. Finite element elasto-plastic analysis of thin walled structures of reinforced concrete as applied to reactor facilities

    International Nuclear Information System (INIS)

    Fujita, F.; Tsuboi, Y.

    1981-01-01

    The authors developed a new program of elasto-plastic analysis of reinforced concrete shells, in which the simplest model of shell element and an orthotropic constitutive relation are adopted, and verified its validity with reference to the results of model experiments of containers and box-wall structures with various loading conditions. For the two-dimensional stress-strain relationship of concrete, an orthotropic nonlinear formula proposed by one of the authors was adopted. For concrete, the octahedral shear failure and tension cut-off criteria were also imposed. The Kirchhoff-Love's assumptions were assumed to be valid for the whole range of the analysis and the layered approach of elasto-plastic stiffness evaluation. Derivation of the shell element is outlined with examination of its accuracy in elastic range and the assumption of elasto-plastic material property and the procedure of nonlinear analysis are described. As examples, the method is applied to the analysis of a cylindrical container and a box-wall structure. Comparison of the computed results with the corresponding experimental data indicates the applicability of the proposed method. (orig./HP)

  9. Post 9-11 Security Issues for Non-Power Reactor Facilities

    International Nuclear Information System (INIS)

    Zaffuts, P. J.

    2003-01-01

    This paper addresses the legal and practical issues arising out of the design and implementation of a security-enhancement program for non power reactor nuclear facilities. The security enhancements discussed are derived from the commercial nuclear power industry's approach to security. The nuclear power industry's long and successful experience with protecting highly sensitive assets provides a wealth of information and lessons that should be examined by other industries contemplating security improvements, including, but not limited to facilities using or disposing of nuclear materials. This paper describes the nuclear industry's approach to security, the advantages and disadvantages of its constituent elements, and the legal issues that facilities will need to address when adopting some or all of these elements in the absence of statutory or regulatory requirements to do so

  10. Post 9-11 Security Issues for Non-Power Reactor Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Zaffuts, P. J.

    2003-02-25

    This paper addresses the legal and practical issues arising out of the design and implementation of a security-enhancement program for non power reactor nuclear facilities. The security enhancements discussed are derived from the commercial nuclear power industry's approach to security. The nuclear power industry's long and successful experience with protecting highly sensitive assets provides a wealth of information and lessons that should be examined by other industries contemplating security improvements, including, but not limited to facilities using or disposing of nuclear materials. This paper describes the nuclear industry's approach to security, the advantages and disadvantages of its constituent elements, and the legal issues that facilities will need to address when adopting some or all of these elements in the absence of statutory or regulatory requirements to do so.

  11. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  12. Applicability of base-isolation R and D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1989-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. This paper reviews the research and development (R and D) programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R and D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R and D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant

  13. Reference equilibrium core with central flux irradiation facility for Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Israr, M.; Shami, Qamar-ud-din; Pervez, S.

    1997-11-01

    In order to assess various core parameters a reference equilibrium core with Low Enriched Uranium (LEU) fuel for Pakistan Research Reactor (PARR-1) was assembled. Due to increased volume of reference core, the average neutron flux reduced as compared to the first higher power operation. To get a higher neutron flux an irradiation facility was created in centre of the reference equilibrium core where the advantage of the neutron flux peaking was taken. Various low power experiments were performed in order to evaluate control rods worth and neutron flux mapping inside the core. The neutron flux inside the central irradiation facility almost doubled. With this arrangement reactor operation time was cut down from 72 hours to 48 hours for the production of the required specific radioactivity. (author)

  14. Gamma exposure rate estimation in irradiation facilities of nuclear research reactors

    International Nuclear Information System (INIS)

    Daoud, Adrian

    2009-01-01

    There are experimental situations in the nuclear field, in which dose estimations due to energy-dependent radiation fields are required. Nuclear research reactors provide such fields under normal operation or due to radioactive disintegration of fission products and structural materials activation. In such situations, it is necessary to know the exposure rate of gamma radiation the different materials under experimentation are subject to. Detectors of delayed reading are usually used for this purpose. Direct evaluation methods using portable monitors are not always possible, because in some facilities the entrance with such devices is often impracticable and also unsafe. Besides, these devices only provide information of the place where the measurement was performed, but not of temporal and spatial fluctuations the radiation fields could have. In this work a direct evaluation method was developed for the 'in-situ' gamma exposure rate for the irradiation facilities of the RA-1 reactor. This method is also applicable in any similar installation, and may be complemented by delayed evaluations without problem. On the other hand, it is well known that the residual effect of radiation modifies some properties of the organic materials used in reactors, such as density, colour, viscosity, oxidation level, among others. In such cases, a correct dosimetric evaluation enables in service estimation of material duration with preserved properties. This evaluation is for instance useful when applied to lubricating oils for the primary circuit pumps in nuclear power plants, thus minimizing waste generation. In this work the necessary elements required to estimate in-situ time and space integrated dose are also established for a gamma irradiated sample in an irradiation channel of a nuclear facility with zero neutron flux. (author)

  15. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT-Hatanaka memorial lecture

    International Nuclear Information System (INIS)

    Harling, Otto K.

    2009-01-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  16. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  17. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    International Nuclear Information System (INIS)

    Salazar, M.D.

    1998-01-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel

  18. Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.D.

    1998-12-01

    Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

  19. Present state of inspection robot technology in nuclear power facilities. Case of fast breeder reactors

    International Nuclear Information System (INIS)

    Ara, Kuniaki

    1995-01-01

    In the maintenance works in nuclear power facilities such as checkup, inspection and repair, for the main purpose of radiation protection, remote operation technology was introduced since relatively early stage, and at present, the robots that carry out the inspection works for confirming the soundness of main equipment have been developed and put to practical use. At the time of introducing these technologies, in addition to the research and development of robots proper, the coordination with the design of plant machinery and equipment facilities as the premise of introducing robots is an important requirement. In this report, the present state of the development of remote inspection technology for fast breeder reactors is introduced, and the matters to which attention is paid in the plant design for introducing robots are explained. First, fast breeder reactors are described. The needs of robotizing and adopting remote operation in nuclear power facilities are explained, using the examples of the inspection system for a reactor vessel and the inspection system for steam generator heat transfer tubes. (K.I.)

  20. The LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2002-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada has been extracted from reactor targets employing highly enriched uranium (HEU). A reliable supply of HEU metal from the United States used in the manufacture of targets for the NRU research reactor has been a key factor to enable MDS Nordion to develop a secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets provides predictable, consistent yields for our high-volume molybdenum production process. Each link of the isotope supply chain, from isotope production to ultimate use by the physician, has been established using this proven and established method of HEU target irradiation and processing to extract molybdenum-99. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the construction of two MAPLE reactors and a New Processing Facility. The design of the MAPLE facilities was based on an established process developed by Atomic Energy of Canada Ltd. (AECL) - extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a three phase LEU Target Development and Conversion Program for the MAPLE facilities. Phase 1, the Initial Feasibility Study, which identified the technical issues to convert the MAPLE reactor targets from HEU to LEU for large scale commercial production was reported on at the RERTR- 2000 conference. The second phase of the LEU Target Development and Conversion Program was developed with extensive consultation and involvement of experts knowledgeable in target development, process system design, enriched uranium conversion chemistry and commercial scale reactor operations and molybdenum production. This paper will provide an overview of the Phase 2 Conversion Development Program, report on progress to date, and further

  1. Handling of multiassembly sealed baskets between reactor storage and a remote handling facility

    International Nuclear Information System (INIS)

    Massey, J.V.; Kessler, J.H.; McSherry, A.J.

    1989-06-01

    The storage of multiple fuel assemblies in sealed (welded) dry storage baskets is gaining increasing use to augment at-reactor fuel storage capacity. Since this increasing use will place a significant number of such baskets on reactor sites, some initial downstream planning for their future handling scenarios for retrieving multi-assembly sealed baskets (MSBs) from onsite storage and transferring and shipping the fuel (and/or the baskets) to a federally operated remote handling facility (RHF). Numerous options or at-reactor and away-from-reactor handling were investigated. Materials handling flowsheets were developed along with conceptual designs for the equipment and tools required to handle and open the MSBs. The handling options were evaluated and compared to a reference case, fuel handling sequence (i.e., fuel assemblies are taken from the fuel pool, shipped to a receiving and handling facility and placed into interim storage). The main parameters analyzed are throughout, radiation dose burden and cost. In addition to evaluating the handling of MSBs, this work also evaluated handling consolidated fuel canisters (CFCs). In summary, the handling of MSBs and CFCs in the store, ship and bury fuel cycle was found to be feasible and, under some conditions, to offer significant benefits in terms of throughput, cost and safety. 14 refs., 20 figs., 24 tabs

  2. Independent Confirmatory Survey Summary and Results for the Plum Brook Reactor Facility Sandusky OH

    International Nuclear Information System (INIS)

    Bailey, E.N.

    2008-01-01

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics (later known as the National Aeronautics and Space Administration or NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities. After successfully completing the objective of landing humans on the Moon and returning them safely to Earth, NASA was faced with budget reductions from Congress in 1973. These budgetary constraints caused NASA to cease operations at several research facilities across the country, including those at Plum Brook Station. The major test facilities at Plum Brook were maintained in a standby mode, capable of being reactivated for future use. The Plum Brook Reactor Facility (PBRF) was shut down January 5, 1973 and all of the nuclear fuel was eventually removed and shipped off site to a U.S. Department of Energy facility in Idaho for disposal or reuse. Decommissioning activities are currently underway at the PBRF (NASA 1999). The objectives of the confirmatory survey activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the Nuclear Regulatory Commission (NRC) in evaluating the adequacy and accuracy of the licensee's procedures and final status survey (FSS) results

  3. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  4. Summary of estimated doses and risks resulting from routine radionuclide releases from fast breeder reactor fuel cycle facilities

    International Nuclear Information System (INIS)

    Miller, C.W.; Meyer, H.R.

    1985-01-01

    A project is underway at Oak Ridge National Laboratory to assess the human health and environment effects associated with operation of Liquid Metal Fast Breeder Reactor fuel cycle. In this first phase of the work, emphasis was focused on routine radionuclide releases from reactor and reprocessing facilities. For this study, sites for fifty 1-GW(e) capacity reactors and three reprocessing plants were selected to develop scenarios representative of US power requirements. For both the reactor and reprocessing facility siting schemes selected, relatively small impacts were calculated for locality-specific populations residing within 100 km. Also, the results of these analyses are being used in the identification of research priorities. 13 refs., 2 figs., 3 tabs

  5. The upgrading of the cyclic neutron activation analysis facility at the Dalat research reactor

    International Nuclear Information System (INIS)

    Van Doanh Ho; Manh Dung Ho; Quang Thien Tran; Dong Vu Cao; Thanh Viet Ha

    2018-01-01

    The cyclic neutron activation analysis (CNAA) facility based on a pneumatic transfer system for short irradiation and rapid counting has recently been upgraded at the Dalat research reactor. The original facility was only designed for single irradiation. Therefore, this work has aimed to upgrade both hardware and software for the cyclic irradiation. In this paper, the upgrading of the facility for CNAA was described. Irradiation time of the facility were calibrated, thereby reducing irradiation time to seconds with precision. The accuracy and sensitivity of CNAA based-on the upgraded facility were assessed by determination of some short-lived nuclides. (author)

  6. Modernization of the facilities of the TRIGA Mark III reactor of ININ; Modernizacion de las instalaciones del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Mendez T, D.; Flores C, J., E-mail: dario.mendez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    The TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) has been in operation since 1968 under strict maintenance and component replacement programs, which has allowed its safe operation during this time. Under this scheme, the reactor was operating under suitable conditions, taking into account the different requests for operation that were received for the samples irradiation for the radioisotopes production such as the Sm-153, personnel training, basic research, archaeology and environmental studies and nuclear chemistry of the elements. However, a modernization program of its components and laboratories was required, in order to improve safety in the operation of the same and to increase its use in the analysis of samples by neutron activation and in the training of personnel. This program known as Modernization Program of the Reactor Facilities, was proposed alongside the project to replace high-enrichment fuels with low-enrichment fuels at the end of 2011 and early 2012. The central aspects of this program are described in this work, grouped into generic topics that include instrumentation and control, the radiological monitoring system of the area, the cooling system, the ventilation system, the neutron activation analysis laboratory, the manufacture of graphite elements, inspection submersible system of the pool, temporary storage system for irradiated fuels, traveling crane, Reactor support laboratories and technical meetings, courses and seminars for reactor personnel and associated groups. It also describes some of the most relevant components required for each system and the progress that is made in each one of them. As a fundamental result of the implementation of this Modernization Program of the Reactor Facilities, there has been a substantial improvement in the performance of the systems and components of its facilities, in the reliability of its operation and in the safety of the same. (Author)

  7. 77 FR 68155 - The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R-84

    Science.gov (United States)

    2012-11-15

    ... Research Institute TRIGA Reactor: Facility Operating License No. R-84 AGENCY: Nuclear Regulatory Commission... considering an application for the renewal of Facility Operating License No. R-84 (Application), which... the renewal of Facility Operating License No. R-84, which currently authorizes the licensee to operate...

  8. Opinions of the well-informed persons about the nuclear reactor facility periodical inspection

    International Nuclear Information System (INIS)

    Aeba, Yoichi; Ishikawa, Michio; Enomoto, Toshiaki; Oomori, Katsuyoshi

    2005-01-01

    Falsifications of self-inspection records in the shrouds and of leakage rates for containment vessels at TEPCO nuclear power plants destroyed public trust in nuclear safety. The Nuclear Reactor Regulation Law and Electric Utility Law were amended to enhance the nuclear safety regulation system. The major improvements are that operators are legally required to conduct inspection (periodical operator inspection) and recording and keeping inspection results. The operator performs 'periodical operator inspection' regularly, and Nuclear and Industrial Safety Agency (NISA) performs periodical inspection' about particularly important facilities/function in safety. Sixteen opinions of well-informed persons about the nuclear reactor facility periodical inspection were presented in this special number. Interval of periodical inspection less than thirteen months was disputed. Maintenance activities should be more rationalized based on risk information. (T. Tanaka)

  9. Reactor container facility

    International Nuclear Information System (INIS)

    Saito, Takashi; Nagasaka, Hideo.

    1990-01-01

    A dry-well pool for spontaneously circulating stored pool water and a suppression pool for flooding a pressure vessel by feeding water, when required, to a flooding gap by means of spontaneous falling upto the flooding position, thereby flooding the pressure vessel are contained at the inside of a reactor container. Thus, when loss of coolant accidents such as caused by main pipe rupture accidents should happen, pool water in the suppression pool is supplied to the flooding gap by spontaneously falling. Further, if the flooding water uprises exceeding a predetermined level, the flooding gap is in communication with the dry-well pool at the upper and the lower portions respectively. Accordingly, flooding water at high temperature heated by the after-heat of the reactor core is returned again into the flooding gap to cool the reactor core repeatedly. (T.M.)

  10. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  11. Decommissioning and decontamination of licensed reactor facilities and demonstration nuclear power plants

    International Nuclear Information System (INIS)

    Lear, G.; Erickson, P.B.

    1975-01-01

    Decommissioning of licensed reactors and demonstration nuclear power plants has been accomplished by mothballing (protective storage), entombment, and dismantling or a combination of these three. The alternative selected by a licensee seems to be primarily based on cost. A licensee must, however, show that the decommissioning process provides adequate protection of the health and safety of the public and no adverse impact on the environment. To date the NRC has approved each of the alternatives in the decommissioning of different facilities. The decommissioning of small research reactors has been accomplished primarily by dismantling. Licensed nuclear power plants, however, have been decommissioned primarily by being placed in a mothballed state in which they continue to retain a reactor license and the associated licensee responsibilities

  12. New Materials Developed To Meet Regulatory And Technical Requirements Associated With In-Situ Decommissioning Of Nuclear Reactors And Associated Facilities

    International Nuclear Information System (INIS)

    Blankenship, J.; Langton, C.; Musall, J.; Griffin, W.

    2012-01-01

    For the 2010 ANS Embedded Topical Meeting on Decommissioning, Decontamination and Reutilization and Technology, Savannah River National Laboratory's Mike Serrato reported initial information on the newly developed specialty grout materials necessary to satisfy all requirements associated with in-situ decommissioning of P-Reactor and R-Reactor at the U.S. Department of Energy's Savannah River Site. Since that report, both projects have been successfully completed and extensive test data on both fresh properties and cured properties has been gathered and analyzed for a total of almost 191,150 m 3 (250,000 yd 3 ) of new materials placed. The focus of this paper is to describe the (1) special grout mix for filling the P-Reactor vessel (RV) and (2) the new flowable structural fill materials used to fill the below grade portions of the facilities. With a wealth of data now in hand, this paper also captures the test results and reports on the performance of these new materials. Both reactors were constructed and entered service in the early 1950s, producing weapons grade materials for the nation's defense nuclear program. R-Reactor was shut down in 1964 and the P-Reactor in 1991. In-situ decommissioning (ISD) was selected for both facilities and performed as Comprehensive Environmental Response, Compensations and Liability Act actions (an early action for P-Reactor and a removal action for R-Reactor), beginning in October 2009. The U.S. Department of Energy concept for ISD is to physically stabilize and isolate intact, structurally robust facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities), or storing radioactive materials. Funding for accelerated decommissioning was provided under the American Recovery and Reinvestment Act. Decommissioning of both facilities was completed in September 2011. ISD objectives for these CERCLA actions included: (1) Prevent industrial worker exposure to

  13. Public's right to information: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Stokely, E.

    1981-02-01

    The events at TMI prompted the Under Secretary of the Department of Energy (DOE) to establish the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. This Committee was assigned the task of assessing the adequacy of nuclear facility personnel qualification and training at DOE-owned reactors in light of the Three Mile Island accident. The Committee was also asked to review recommendations and identify possible implications for DOE's nuclear facilities

  14. Elastic-plastic stress analysis and ASME code evaluation of a bottomhead penetration in a reactor pressure vessel

    International Nuclear Information System (INIS)

    Ranganath, S.

    1979-01-01

    Nuclear pressure vessel components are designed to meet the requirements of Section III of the ASME Boiler and Pressure Vessel Code. Specifically, the design must satisfy the limits on stress range and fatigue usage prescribed in NB-3200, Section III ASME Code for the various design and operating conditions for the component. The Code requirements assure that the component does not experience gross yielding and that in general, elastic shakedown occurs following cyclic loading. When elastic stress analysis is performed this can be shown by meeting the limits in the Code on Primary and Primary plus Secondary (P+Q) stress intensities. However, when the P+Q limits cannot be met and elastic Shakedown cannot be demonstrated, plastic analysis may be performed to meet the requirements of the Code. This paper describes the elastic-plastic stress analysis of a Boiling Water Reactor Vessel bottom head in-core penetration and illustrates how plastic analysis can be used in ASME Code evaluations to show Code compliance. Details of the thermal analysis, elastic-plastic stress analysis and fatigue evaluation are presented and it is shown that the in-core penetration satisfies the code requirements. 6 refs

  15. Design of neutron radiography facility in pool for the reactor RA-10

    International Nuclear Information System (INIS)

    Peirone, M.; Coleff, A.; Sanchez, F.; Chiaraviglio, N.

    2013-01-01

    RA-10 project consists in the design and construction of a multipurpose reactor for multiple applications, including radioisotopes production, material testing and an in pool facility for neutron imaging. Neutron imaging is a powerful tool for studies of materials and offer several advantages among other attenuation-based techniques. In this study mechanical and neutronic requirements for the RA-10 in pool neutron imaging facility are described. The MCNP neutronic model and the mechanical design satisfying these requirements in a first engineering stage are described. (author)

  16. Modular head assembly and method of retrofitting existing nuclear reactor facilities

    International Nuclear Information System (INIS)

    Malandra, L.J.; Ledue, R.J.; Hankinson, M.F.; Kowalski, E.F.

    1987-01-01

    A method is described of retrofitting existing nuclear reactor facilities so as to form a modular closure head assembly for a nuclear reactor pressure vessel, where the existing nuclear reactor facilities comprise control rod drive mechanism cooling systems which include vertically extending elbow air ducts inter-connecting vertically spaced upper and lower air manifolds. The elbow air ducts extend radially beyond the peripheral envelope of the closure head, comprising the steps of: removing the upper air manifold; removing the vertically extending elbow air ducts; capping the air ports of the lower air manifold which ports were previously fluidically connecting the lower air manifold to the vertically extending elbow air ducts; disposing vertically upwardly extending air exhaust ducts above the lower air manifold in such an manner that the air exhaust ducts are disposed within the peripheral envelope of the closure head; fluidically connecting exhaust fans to the upper regions of the air exhaust ducts; fluidically connecting the lower regions of the air exhaust ducts the lower air manifold; permanently securing lift rods to the closure head at positions disposed radially outwardly of the lower air manifold; attaching a seismic support platform to the lift rods; proving fluidic passage of the vertically extending air exhaust ducts through the seismic support platform; attaching a missile shield plate to the lift rods; and proving fluidic passage of the vertically extending air exhaust ducts through the missile shield plate

  17. Development of a Test Facility to Simulate the Reactor Flow Distribution of APR+

    International Nuclear Information System (INIS)

    Euh, D. J.; Cho, S.; Youn, Y. J.; Kim, J. T.; Kang, H. S.; Kwon, T. S.

    2011-01-01

    Recently a design of new reactor, APR+, is being developed, as an advanced type of APR1400. In order to analyze the thermal margin and hydraulic characteristics of APR+, quantification tests for flow and pressure distribution with a conservation of flow geometry are necessary. Hetsroni (1967) proposed four principal parameters for a hydraulic model representing a nuclear reactor prototype: geometry, relative roughness, Reynolds number, and Euler number. He concluded that the Euler number should be similar in the prototype and model under the preservation of the aspect ratio on the flow path. The effect of the Reynolds number at its higher values on the Euler number is rather small, since the dependency of the form and frictional loss coefficients on the Reynolds number is seen to be small. ABB-CE has carried out several reactor flow model test programs, mostly for its prototype reactors. A series of tests were conducted using a 3/16 scale reactor model. (see Lee et al., 2001). Lee et al (1991) performed experimental studies using a 1/5.03 scale reactor flow model of Yonggwang nuclear units 3 and 4. They showed that the measured data met the acceptance criteria and were suitable for their intended use in terms of performance and safety analyses. The design of current test facility was based on the conservation of Euler number which is a ratio of pressure drop to dynamic pressure with a sufficiently turbulent region having a high Reynolds number. By referring to the previous study, the APR+ design is linearly reduced to 1/5 ratio with a 1/2 of the velocity scale, which yields a 1/39.7 of Reynolds number scaling ratio. In the present study, the design feature of the facilities, named 'ACOP', in order to investigate flow and pressure distribution are described

  18. Remote maintenance in TOR fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Eymery, R.; Constant, M.; Malterre, G.

    1986-11-01

    The TOR facility which is undergoing commissioning tests has a capacity of 5 T. HM/year which is enough for reprocessing all the Phenix fuel, with an excess capacity which is to be used for other fast reactors fuels. It is the result of enlargement and renovation of the old Marcoule pilot facility. A good load factor is expected through the use of equipment with increased reliability and easy maintenance. TOR will also be used to test new equipment developed for the large breeder fuel reprocessing plant presently in the design stage. The latter objective is specifically important for the parts of the plant involving mechanical equipment which are located in a new building: TOR 1. High reliability and flexibility will be obtained in this building thanks to the attention given to the integrated remote handling system [fr

  19. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K. [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Karen M. [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non

  20. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    International Nuclear Information System (INIS)

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K.; Adams, Karen M.

    2013-01-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal

  1. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.

    1986-01-01

    A new conceptual design of a fusion reactor blanket simulation facility was developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBR), because experiments conducted in it have resulted in the discovery of deficiencies in neutronics prediction methods. With this design, discrepancies between calculation and experimental data can be fully attributed to calculation methods because design deficiencies that could affect results are insignificant. Inelastic scattering cross sections are identified as a major source of these discrepancies. The conceptual design of this FBBR analog, the fusion reactor blanket facility (FRBF), is presented. Essential features are a cylindrical geometry and a distributed, cosine-shaped line source of 14-MeV neutrons. This source can be created by sweeping a deuteron beam over an elongated titanium-tritide target. To demonstrate that the design of the FRBF will not contribute significant deviations in experimental results, neutronics analyses were performed: results of comparisons of 2-dimensional to 1-dimensional predictions are reported for two blanket compositions. Expected deviations from 1-D predictions which are due to source anisotropy and blanket asymmetry are minimal. Thus, design of the FRBF allows simple and straightforward interpretation of the experimental results, without a need for coarse 3-D calculations

  2. University of Virginia open-quotes virtualclose quotes reactor facility tours

    International Nuclear Information System (INIS)

    Krause, D.R.; Mulder, R.U.

    1995-01-01

    An electronic information and tour book has been constructed for the University of Virginia reactor (UVAR) facility. Utilizing the global Internet, the document resides on the University of Virginia World Wide Web (WWW or W) server within the UVAR Homepage at http://www.virginia. edu/∼reactor/. It is quickly accessible wherever an Internet connection exists. The UVAR Homepage files are accessed with the hypertext transfer protocol (http) prefix. The files are written in hypertext markup language (HTML), a very simple method of preparing ASCII text for W3 presentation. The HTML allows use of various hierarchies of headers, indentation, fonts, and the linking of words and/or pictures to other addresses-uniform resource locators. The linking of texts, pictures, sounds, and server addresses is known as hypermedia

  3. Detailed description of an SSAC at the facility level for research reactors

    International Nuclear Information System (INIS)

    Jones, R.J.

    1984-09-01

    The purpose of this document is to provide a detailed description of a system for the accounting for and control of nuclear material in a research reactor facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following SSAC elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  4. Facility Effluent Monitoring Plan for the N Reactor

    International Nuclear Information System (INIS)

    Watson, D.J.; Brendel, D.F.; Shields, K.D.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The primary purpose of the N Reactor Facility Effluent Monitoring Plan (FEMP), during standby, is to ensure that the radioactive effluents are properly monitored and evaluated for compliance with the applicable DOE orders and regulatory agencies at the federal, state, and local levels. A secondary purpose of the FEMP is to ensure that hazardous wastes are not released, in liquid effluents, to the environment even though the potential to do so is extremely low. The FEMP is to provide a monitoring system that collects representative samples in accordance with industry standards, performs analyses within stringent quality control (QC) requirements, and evaluates the data through the use of comparative analysis with the standards and acceptable environmental models

  5. The proposed cold neutron irradiation facility at the Breazeale reactor

    International Nuclear Information System (INIS)

    Dimeo, R. M.; Sokol, P. E.; Carpenter, J. M.

    1997-01-01

    We discuss the design considerations of a Cold Neutron Irradiation Facility (CNIF) originally to have been installed at the Penn State Breazeale Reactor (PSBR). The goal of this project was to study the effects of radiation-induced damage to cryogenic moderators and, in particular, solid methane. This work evolved through the design stage undergoing a full safety analysis and received tentative approval from the PSBR Safeguards Committee but was discontinued due to budgetary constraints. (auth)

  6. Scaled Facility Design Approach for Pool-Type Lead-Bismuth Eutectic Cooled Small Modular Reactor Utilizing Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangrok; Shin, Yong-Hoon; Lee, Jueun; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    In low carbon era, nuclear energy is the most prominent energy source of electricity. For steady ecofriendly nuclear energy supply, Generation IV reactors which are future nuclear reactor require safety, sustainability, economics and non-proliferation as four criteria. Lead cooled fast reactor (LFR) is one of these reactor type and Generation IV international forum (GIF) adapted three reference LFR systems which are a small and movable systems with long life without refueling, intermediate size and huge electricity generation system for power grid. NUTRECK (Nuclear Transmutation Energy Center of Korea) has been designed reactor called URANUS (Ubiquitous, Rugged, Accident-forgiving, Non-proliferating, and Ultra-lasting Sustainer) which is small modular reactor and using lead-bismuth eutectic coolant. To prove natural circulation capability of URANUS and analyze design based accidents, scaling mock-up experiment facility will be constructed. In this paper, simple specifications of URANUS will be presented. Then based on this feature, scaling law and scaled facility design results are presented. To validate safety feature and thermodynamics characteristic of URANUS, scaled mockup facility of URANUS is designed based on the scaling law. This mockup adapts two area scale factors, core and lower parts of mock-up are scaled for 3D flow experiment. Upper parts are scaled different size to reduce electricity power and LBE tonnage. This hybrid scaling method could distort some thermal-hydraulic parameters, however, key parameters for experiment will be matched for up-scaling. Detailed design of mock-up will be determined through iteration for design optimization.

  7. Fuels and materials research under the high neutron fluence using a fast reactor Joyo and post-irradiation examination facilities

    International Nuclear Information System (INIS)

    Soga, Tomonori; Ito, Chikara; Aoyama, Takafumi; Suzuki, Soju

    2009-01-01

    The experimental fast reactor Joyo at Oarai Research and Development Center (ORDC) of Japan Atomic Energy Agency (JAEA) is Japan's sodium-cooled fast reactor (FR). In 2003, this reactor's upgrade to the 140MWt MK-III core was completed to increase the irradiation testing capability. The MK-III core provides the fast neutron flux of 4.0x10 15 n/cm 2 s as an irradiation test bed for improving the fuels and material of FR in Japan. Three post-irradiation examination (PIE) facilities named FMF, MMF and AGF related to Joyo are in ORDC. Irradiated subassemblies and core components are carried into the FMF (Fuel Monitoring Facility) and conducted nondestructive examinations. Each subassembly is disassembled to conduct some destructive examinations and to prepare the fuel and material samples for further detailed examinations. Fuel samples are sent to the AGF (Alpha-Gamma Facility), and material samples are sent to the MMF (Materials Monitoring Facility). These overall and elaborate data provided by PIE contribute to investigate the irradiation effect and behavior of fuels and materials. This facility complex is indispensable to promote the R and D of FR in Japan. And, the function and technology of irradiation test and PIE enable to contribute to the R and D of innovative fission or fusion reactor material which will be required to use under the high neutron exposure. (author)

  8. Flow-induced plastic collapse of stacked fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D C; Scarton, H A

    1985-03-01

    Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.

  9. Experimental facility of innovative types as the laboratory analog of research reactor experimental device

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Zabud'ko, A.N.; Kremenetskij, A.K.; Nikolaev, A.N.; Trykov, L.A.

    1991-01-01

    The paper analyses capability of creating laboratory analogs of complex experimental facilities at research reactors utilizing power radionuclide neutron sources fabricated in industrial conditions. Some experimental and calculational investigations of neutron-physical characteristics are presented, which have been attained at the RIZ research reactor laboratory analog. Experimental results are supplemented by calculational investigations, fulfilled by means of the BRAND three-dimensional computational complex and the ROZ-6 one-dimensional program. 4 refs.; 3 figs

  10. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion

    International Nuclear Information System (INIS)

    Marques, J.G.; Sousa, M.; Santos, J.P.; Fernandes, A.C.

    2011-01-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1 MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard.

  11. Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

    International Nuclear Information System (INIS)

    Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.; Slezak, S.E.; Simpson, R.B.

    1994-01-01

    The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ''flooded cavity'', is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array can deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications

  12. Large-Scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

    International Nuclear Information System (INIS)

    Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.; Slezak, S.E.; Simpson, R.B.

    1994-01-01

    The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the open-quotes flooded cavityclose quotes, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array can deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications

  13. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.

    1982-09-01

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

  14. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    International Nuclear Information System (INIS)

    Schneider, K.J.

    1982-09-01

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation

  15. Characterization and adjustment of the neutron radiography facility of the RP-10 nuclear reactor

    International Nuclear Information System (INIS)

    Ravello R, Y.R.

    2001-01-01

    The main aim of this work was to characterize and adjust the neutron radiography facility of the RP-10 nuclear reactor, and therefore be able to offer with this technique services to the industry and research centers in general. This technique will be complemented with others such as x-rays and gamma radiography. First, the shielding capacity of the facility was analyzed, proving that it complies with the radiological safety requirements established by the radiological safety code. Then gamma filtration tests were conducted in order to implement the direct method for image formation, optical density curves were built according to the thickness of the gamma filter, the type of film and the type of irradiation. Also, the indirect method for image formation was implemented for two types of converters: indium and dysprosium. Growth curves for optical density were also made according to contact time between converter-film, for different types of films. The resolution of the facility was also analyzed using two methods: Klasens (1946) and Harms (1986). Harms method came closer to the resolution of the human eye when compared to the Klasens method. Finally, the application fields of neutron radiography are presented, including those conducted at the neutron radiography facility of the RP-10 nuclear reactor. With this work, the RP-10 neutron radiography facility is ready to offer inspection and research services

  16. Nuclear Security Management for Research Reactors and Related Facilities

    International Nuclear Information System (INIS)

    2016-03-01

    This publication provides a single source guidance to assist those responsible for the implementation of nuclear security measures at research reactors and associated facilities in developing and maintaining an effective and comprehensive programme covering all aspects of nuclear security on the site. It is based on national experience and practices as well as on publications in the field of nuclear management and security. The scope includes security operations, security processes, and security forces and their relationship with the State’s nuclear security regime. The guidance is provided for consideration by States, competent authorities and operators

  17. The LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2003-01-01

    The availability of isotope grade, Highly Enriched Uranium (HEU), from the United States for use in the manufacture of targets for molybdenum-99 production in AECL's NRU research reactor has been a key factor to enable MDS Nordion to develop a reliable, secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets is a proven and established method that has reliably produced medical isotopes for several decades. The HEU process provides predictable, consistent yields for our high-volume, molybdenum-99 production. Other medical isotopes such as I-131 and Xe-133, which play an important role in nuclear medicine applications, are also produced from irradiated HEU targets as a by-product of the molybdenum-99 process. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the commissioning of two MAPLE reactors and an associated isotope processing facility (the New Processing Facility). The new MAPLE facilities, which will be dedicated exclusively to medical isotope production, will provide an essential contribution to a secure, robust global healthcare system. Design and construction of these facilities has been based on a life cycle management philosophy for the isotope production process. This includes target irradiation, isotope extraction and waste management. The MAPLE reactors will operate with Low Enriched Uranium (LEU) fuel, a significant contribution to the objectives of the RERTR program. The design of the isotope production process in the MAPLE facilities is based on an established process - extraction of isotopes from HEU target material. This is a proven technology that has been demonstrated over more than three decades of operation. However, in support of the RERTR program and in compliance with U.S. legislation, MDS Nordion has undertaken a LEU Target Development and Conversion Program for the MAPLE facilities. This paper will provide an

  18. Irradiation facilities for the production of radioisotopes for medical purposes and for industry at the Rossendorf Research Reactor

    International Nuclear Information System (INIS)

    Hieronymus, W.

    2007-01-01

    In 1955, the Government of the German Democratic Republic initiated radioisotope production. With that decision, the following plants received their go ahead: - Research reactor with its user facilities; - Cyclotron with its specific facilities; - Institute for radiochemistry; - Library, lecture hall, workshops and administration buildings supporting the necessary scientific and administrative environment. The Zentralinstitut fuer Kerntechnik (ZfK), also known as the Central Institute for Nuclear Technology, was founded at Rossendorf near Dresden, Germany, to house all those plants. The Rossendorf Research Reactor (RFR) was constructed in 1956-1957. That endeavour was enabled by the technological support of the former USSR under a bilateral agreement which included the delivery of a 2 MW research reactor of the WWR-S design

  19. Planning and management for the decommissioning of research reactors and other small nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    Many research reactors and other small nuclear facilities throughout the world date from the original nuclear research programmes in the Member States. Consequently, a large number of these plants have either been retired from service or will soon reach the end of their useful lives and are likely to become significant decommissioning tasks for those Members States. In recognition of this situation and in response to considerable interest shown by Member States, the IAEA has produced this document on planning and management for the decommissioning of research reactors and other small nuclear facilities. While not directed specifically at large nuclear installations, it is likely that much of the information presented will also be of interest to those involved in the decommissioning of such facilities. Current views, information and experience on the planning and management of decommissioning projects in Member States were collected and assessed during a Technical Committee Meeting held by the IAEA in Vienna from 29 July to 2 August 1991. It was attended by 22 participants from 14 Member States and one international organization. 28 refs, 2 figs, 3 tabs

  20. The U.S. DOE new production reactor/heavy water reactor facility pollution prevention/waste minimization program

    International Nuclear Information System (INIS)

    Kaczmarsky, Myron M.; Tsang, Irving; Stepien, Walter P.

    1992-01-01

    A Pollution Prevention/Waste Minimization Program was established during the early design phase of the U.S. DOE's New Production Reactor/Heavy Water Reactor Facility (NPR/HWRF) to encompass design, construction, operation and decommissioning. The primary emphasis of the program was given to waste elimination, source reduction and/or recycling to minimize the quantity and toxicity of material before it enters the waste stream for treatment or disposal. The paper discusses the regulatory and programmatic background as it applies to the NPR/HWRF and the waste assessment program developed as a phased approach to pollution prevention/waste minimization for the NPR/HWRF. Implementation of the program will be based on various factors including life cycle cost analysis, which will include costs associated with personnel, record keeping, transportation, pollution control equipment, treatment, storage, disposal, liability, compliance and oversight. (author)

  1. Study of In-Pile test facility for fast reactor safety research: performance requirements and design features

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, N.; Kawatta, N.; Niwa, H.; Kondo, S.; Maeda, K

    1996-12-31

    This paper describes a program and the main design features of a new in-pile safety facility SERAPH planned for future fast reactor safety research. The current status of R and D on technical developments in relation to the research objectives and performance requirements to the facility design is given.

  2. Safety Research Experiment Facility Project. Conceptual design report. Volume V. Reactor vessel and closure

    International Nuclear Information System (INIS)

    1975-12-01

    The Prestressed Concrete Reactor Vessel (PCRV) will serve as the primary pressure retaining structure for the Safety Research Experiment Facility (SAREF) reactor. The reactor core, control rod drive room, primary heat exchangers, and gas circulators will be located in cavities within the PCRV. The orientation of these cavities, except for the control rod drive room, will be similar to the high-temperature gas-cooled reactor (HTGR) designs that are currently proposed or under design. Due to the nature of this type of structure, all biological and radiological shielding requirements are incorporated into the basic vessel design. At the midcore plane there are three radially oriented slots that will extend from the outside surface of the PCRV to the reactor core liner. These slots will accommodate each of the fuel motion monitoring systems which will be part of the observation apparatus used with the loop experiments

  3. An update on the LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Eng, B.Sc; Eng, P.

    2002-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada, has been extracted from reactor targets employing highly enriched uranium (HEU). A reliable supply of HEU metal from the United States used in the manufacture of targets for the NRU research reactor has been a key factor to enable MDS Nordion to develop a secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets provides predictable, consistent yields for our high-volume molybdenum production process. Each link of the isotope supply chain, from isotope production to ultimate use by the physician, has been established using this proven and established method of HEU target irradiation and processing to extract molybdenum-99. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the construction of two MAPLE reactors and a New Processing Facility. The design of the MAPLE facilities was based on an established process developed by Atomic Energy of Canada Ltd. (AECL)-extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a three phase LEU Target Development and Conversion Program for the MAPLE facilities. Phase 1, the Initial Feasibility Study, which identified the technical issues to convert the MAPLE reactor targets from HEU to LEU for large scale commercial production was reported on at the RERTR-2000 conference. The second phase of the LEU Target Development and Conversion Program was developed with extensive consultation and involvement of experts knowledgeable in target development, process system design, enriched uranium conversion chemistry and commercial scale reactor operations and molybdenum production. This paper will provide an overview of the Phase 2 Conversion Development Program, report on progress to date, and further

  4. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Science.gov (United States)

    2012-02-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-264; NRC-2012-0026] Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108 AGENCY: Nuclear Regulatory Commission... Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company...

  5. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  6. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  7. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  8. Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments

    International Nuclear Information System (INIS)

    Tomberlin, T.A.

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to ''major modifications'' and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed

  9. PANDA a multi-purpose thermal-hydraulics facility devoted to nuclear reactor containment safety analysis

    International Nuclear Information System (INIS)

    Paladino, Domenico

    2014-01-01

    This paper presents the multi purpose facility PANDA devised for the safety analysis of nuclear reactor containment. The passive safety systems for LWRs have been explained with details about the PAssive Nachzerfallswärmeabfuhr und Druck-Abbau Testanlage (PANDA)

  10. An experimental test facility to support development of the fluoride-salt-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Yoder, Graydon L.; Aaron, Adam; Cunningham, Burns; Fugate, David; Holcomb, David; Kisner, Roger; Peretz, Fred; Robb, Kevin; Wilgen, John; Wilson, Dane

    2014-01-01

    Highlights: • • A forced convection test loop using FLiNaK salt was constructed to support development of the FHR. • The loop is built of alloy 600, and operating conditions are prototypic of expected FHR operation. • The initial test article is designed to study pebble bed heat transfer cooled by FLiNaK salt. • The test facility includes silicon carbide test components as salt boundaries. • Salt testing with silicon carbide and alloy 600 confirmed acceptable loop component lifetime. - Abstract: The need for high-temperature (greater than 600 °C) energy transport systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The fluoride-salt-cooled high-temperature reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the fluoride-salt-cooled high-temperature reactor concept. The facility is capable of operating at up to 700 °C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system, a trace heating system, and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride-salt heat transfer inside a heated pebble bed

  11. Preliminary studi on neutronic aspect of a conceptual design of the Kartini reactor base ADS facility

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2012-01-01

    A preliminary study on neutronic aspect of a conceptual design of ADS facility with the basis of Kartini Reaktor, has been performed. The study was intended to see the feasibility from neutronic point of view of Kartini reactor, to be used as a small scale of NPP’s waste transmutation experimental facility. A SRAC code was used as the basis of calculations. The results indicate that the presence of minor actinides (MA) will give a positive reactivity, which tends to increase with the increase of MA concentrations. Based on the defined criteria of subcriticality and by considering the core power distributions and the level of reactivity contribution of MA element, it is concluded that Kartini reactor is potential enough to be used as an ADS experimental facility, mainly for MA concentration between 30 to 50 % of the assumed mixture of C-MA matrix. (author)

  12. Guide to the safety design examination about light water reactor facilities for power generation

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This guide was compiled to evaluate the validity of the design policy when the safety design is examined at the time of the application for approval of the installation of nuclear reactors. About 7 years has elapsed since the existing guide was established, and the more appropriate guide to evaluate the safety should be made on the basis of the knowledge and experience accumulated thereafter. The range of application of this guide is limited to the above described evaluation, and it is not intended as the general standard for the design of nuclear reactors. First, the definition of the words used in this guide is given. Then, the guide to the safety examination is described about the general matters of reactor facilities, nuclear reactors and the measuring and controlling system, reactor-stopping system, reactivity-controlling system and safety protection system, reactor-cooling system, reactor containment vessels, fuel handling and waste treatment system. Several matters which require attention in the application of this guide or the clarification of the significance and interpretation of the guide itself were found, therefore the explanation about them was added at the end of this guide. (Kako, I.)

  13. The neutron radiography facility at Tehran Research Reactor (TRR)

    International Nuclear Information System (INIS)

    Ali Pazirandeh

    2009-01-01

    Full text: Non-destructive testing in many fields of industry including detection of explosives, at the airports, testing for micro-cracks on airplane wings and turbine blades cracks is badly needed. Thermal neutron beam is one of preferable method to detect the micro-cracks, reveals the internal structure of components and explosives. The purpose of this paper is to present the neutron radiography facility at Tehran Research Reactor (TRR), Science and Technology Research Institute, and in particular to emphasize the industrial applications in wood industry, automobile engine inspection, minerals composition identification, turbine blade cracks detection. (author)

  14. Mark I 1/5-scale boiling water reactor pressure suppression experiment facility report

    International Nuclear Information System (INIS)

    Altes, R.G.; Pitts, J.H.; Ingraham, R.F.; Collins, E.K.; McCauley, E.W.

    1977-01-01

    An accurate Mark I 1 / 5 -scale, boiling water reactor (BWR), pressure suppression facility was designed and constructed at Lawrence Livermore Laboratory (LLL) in 11 months. Twenty-seven air tests using the facility are described. Cost was minimized by utilizing equipment borrowed from other LLL programs. The total value of borrowed equipment exceeded the program's budget of $2,020,000. Substantial flexibility in the facility was used to permit independent variation in the drywell pressure-time history, initial pressure in the drywell and toroidal wetwells, initial toroidal wetwell water level and downcomer length, vent line flow resistance, and vent line flow asymmetry. The two- and three-dimensional sectors of the toroidal wetwell provided significant data

  15. Calculational framework for safety analyses of non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    Coleman, J.R.

    1994-01-01

    A calculational framework for the consequences analysis of non-reactor nuclear facilities is presented. The analysis framework starts with accident scenarios which are developed through a traditional hazard analysis and continues with a probabilistic framework for the consequences analysis. The framework encourages the use of response continua derived from engineering judgment and traditional deterministic engineering analyses. The general approach consists of dividing the overall problem into a series of interrelated analysis cells and then devising Markov chain like probability transition matrices for each of the cells. An advantage of this division of the problem is that intermediate output (as probability state vectors) are generated at each calculational interface. The series of analyses when combined yield risk analysis output. The analysis approach is illustrated through application to two non-reactor nuclear analyses: the Ulysses Space Mission, and a hydrogen burn in the Hanford waste storage tanks

  16. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  17. Seismic qualification of safety class components in non-reactor nuclear facilities at Hanford site

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1989-01-01

    This paper presents the methods used during the walkdowns to compile as-built structural information to seismically qualify or verify the seismic adequacy of safety class components in the Plutonium Finishing Plant complex. The Plutonium finishing Plant is a non-reactor nuclear facility built during the 1950's and was designed to the Uniform Building Code criteria for both seismic and wind events. This facility is located at the US Department of Energy Hanford Site near Richland, Washington

  18. Design of an Experimental Facility for Passive Heat Removal in Advanced Nuclear Reactors

    Science.gov (United States)

    Bersano, Andrea

    With reference to innovative heat exchangers to be used in passive safety system of Gen- eration IV nuclear reactors and Small Modular Reactors it is necessary to study the natural circulation and the efficiency of heat removal systems. Especially in safety systems, as the decay heat removal system of many reactors, it is increasing the use of passive components in order to improve their availability and reliability during possible accidental scenarios, reducing the need of human intervention. Many of these systems are based on natural circulation, so they require an intense analysis due to the possible instability of the related phenomena. The aim of this thesis work is to build a scaled facility which can reproduce, in a simplified way, the decay heat removal system (DHR2) of the lead-cooled fast reactor ALFRED and, in particular, the bayonet heat exchanger, which transfers heat from lead to water. Given the thermal power to be removed, the natural circulation flow rate and the pressure drops will be studied both experimentally and numerically using the code RELAP5 3D. The first phase of preliminary analysis and project includes: the calculations to design the heat source and heat sink, the choice of materials and components and CAD drawings of the facility. After that, the numerical study is performed using the thermal-hydraulic code RELAP5 3D in order to simulate the behavior of the system. The purpose is to run pretest simulations of the facility to optimize the dimensioning setting the operative parameters (temperature, pressure, etc.) and to chose the most adequate measurement devices. The model of the system is continually developed to better simulate the system studied. High attention is dedicated to the control logic of the system to obtain acceptable results. The initial experimental tests phase consists in cold zero power tests of the facility in order to characterize and to calibrate the pressure drops. In future works the experimental results will be

  19. On fire risk/methodology for the next generation of reactors and nuclear facilities

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Alesso, H.P.; Altenbach, T.J.

    1992-01-01

    Methodologies for including fire in probabilistic risk assessments (PRAs) have been evolving during the last ten years. Many of these studies show that fire risk constitutes a significant percentage of external events, as well as the total core damage frequency. This paper summarizes the methodologies used in the fire risk analysis of the next generation of reactors and existing DOE nuclear facilities. Methodologies used in other industries, as well as existing nuclear power plants, are also discussed. Results of fire risk studies for various nuclear plants and facilities are shown and compared

  20. Radiation exposure doses of employees in reactor facilities for test and research and under research and development stages, and in facilities for nuclear fuel refining, fabrication, reprocessing and usage

    International Nuclear Information System (INIS)

    1980-01-01

    (1) Radiation exposure doses in reactor facilities. The owners of reactor facilities are obliged by law to control the radiation exposure doses of the employees below the permissible levels. The data based on the reports made in this connection are given in tables for the fiscal year 1978 (from April 1978 to March 1979). It was revealed that the radiation exposure doses of the employees were far below the permissible levels. The distributions of exposure doses in Japan Atomic Energy Research Institute, Power Reactor and Nuclear Fuel Development Corporation and so on are presented for the whole year and the respective quarters. (2) Radiation exposure doses in facilities for nuclear fuel. The owners are similarly obliged to control radiation exposure. The data in this connection are given, and the doses were far below the permissible levels. The distributions in the private enterprises and so on are presented for the whole year. (J.P.N.)

  1. Comparison of HEU and LEU neutron spectra in irradiation facilities at the Oregon State TRIGA® Reactor

    International Nuclear Information System (INIS)

    Schickler, R.A.; Marcum, W.R.; Reese, S.R.

    2013-01-01

    Highlights: • The Oregon State TRIGA ® Reactor neutron spectra is characterized herein. • Neutron spectra between highly enriched uranium and low enriched uranium cores are compared. • Discussion is given as to differences between HEU and LEU core spectra results and impact on experiments. -- Abstract: In 2008, the Oregon State TRIGA ® Reactor (OSTR) was converted from highly enriched uranium (HEU) fuel lifetime improvement plan (FLIP) fuel to low-enriched uranium (LEU) fuel. This effort was driven and supported by the Department of Energy's (DoE's) Reduced Enrichment for Research and Test Reactors (RERTR) program. The basis behind the RERTR program's ongoing conversion effort is to reduce the nuclear proliferation risk of civilian research and test reactors. The original intent of the HEU FLIP fuel was to provide fuel to research reactors that could be utilized for many years before a necessary refueling cycle. As a research reactor, the OSTR provides irradiation facilities for a variety of applications, such as activation analysis, fission-track dating, commercial isotope production, neutron radiography, prompt gamma characterization, and many others. In order to accurately perform these research functions, several studies had been conducted on the HEU FLIP fuel core to characterize the neutron spectra in various experimental facilities of the OSTR (Tiyapun, 1997; Ashbaker, 2005). As useful as these analyses were, they are no longer valid due to the change in fuel composition and the resulting alteration of core performance characteristics. Additionally, the core configuration (fuel reconfiguration) was altered between the HEU and LEU cores. This study characterizes the neutron spectra in various experimental facilities within and around the current LEU core. It also compares the spectra to that which was yielded in the HEU core through use of Monte Carlo n-Particle 5 (MCNP5) and experimental adjustment via a least-squares technique. The quantification of

  2. Status and future program of reactor physics experiments in JAERI Critical facilities, FCA and TCA

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Osugi, Toshitaka; Nakajima, Ken; Suzaki, Takenori; Miyoshi, Yoshinori

    1999-01-01

    The critical facilities in JAERI, FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly), have been used to provide integral data for evaluation of nuclear data as well as for development of various types of reactor since they went critical in 1960's. In this paper a review is presented on the experimental programs in both facilities. And the experimental programs in next 5 years are also shown. (author)

  3. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor.

    Science.gov (United States)

    Cheng, Kuan-Chen; Demirci, Ali; Catchmark, Jeffrey M

    2010-04-01

    Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as alpha-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.

  4. Sharing of the RPI Reactor Critical Facility (RCF). Final summary report, January 1988--September 1995

    International Nuclear Information System (INIS)

    Harris, D.R.

    1995-01-01

    Rensselaer Polytechnic Institute (RPI) has participated for a number of years in Sharing of the Reactor Critical Facility (RCF) under the U.S. Department of Energy University Reactor Sharing Program. In September of each year a Sharing invitation is sent to 92 public and private high schools and to 74 colleges and universities within about a 3 hour drive to the RCF (Appendix B). Each year about 10 such educational institutions send groups to share the RCF

  5. Advantages of co-located spent fuel reprocessing, repository and underground reactor facilities

    International Nuclear Information System (INIS)

    Mahar, James M.; Kunze, Jay F.; Wes Myers, Carl; Loveland, Ryan

    2007-01-01

    The purpose of this work is to extend the discussion of potential advantages of the underground nuclear park (UNP) concept by making specific concept design and cost estimate comparisons for both present Generation III types of reactors and for some of the modular Gen IV or the GNEP modular concept. For the present Gen III types, we propose co-locating reprocessing and (re)fabrication facilities along with disposal facilities in the underground park. The goal is to determine the site costs and facility construction costs of such a complex which incorporates the advantages of a closed fuel cycle, nuclear waste repository, and ultimate decommissioning activities all within the UNP. Modular power generation units are also well-suited for placement underground and have the added advantage of construction using current and future tunnel boring machine technology. (authors)

  6. The structural-phenomenological description of plastic anisotropy of H-1 and H-2.5 alloys, subjected to reactors irradiation

    International Nuclear Information System (INIS)

    Yamshchikov, N.V.; Prasolov, P.F.; Lebedinskij, K.B.

    1990-01-01

    The structural-phenomenological model of anisotropic single hpc textured polycrystals is described. The formulation of the present model is assumed that the polycrystal is continuous three-dimensional collection of transversal crystallites, the plastic properties which Hill's yield criteria are described. This model is allowed to determine six parameters in the Hill's yield criteria for ortho tropic materials based on only of uniaxial tension test in three directions and crystallographic texture. Yield surfaces of zircaloy alloys at 293 K and 623 K, subjected to irradiation in the reactor with total exposition dose 10 20 n/cm 2 are determined. Strongly influence of irradiation on the plastic behaviour of H-1 and H-2,5 alloys is observed. 2 refs.; 3 figs.; 2 tables. (author)

  7. Descriptions of selected accidents that have occurred at nuclear reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, H.W.

    1980-04-01

    This report was prepared at the request of the President's Commission on the Accident at Three Mile Island to provide the members of the Commission with some insight into the nature and significance of accidents that have occurred at nuclear reactor facilities in the past. Toward that end, this report presents a brief description of 44 accidents which have occurred throughout the world and which meet at least one of the severity criteria that were established.

  8. Descriptions of selected accidents that have occurred at nuclear reactor facilities

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1980-04-01

    This report was prepared at the request of the President's Commission on the Accident at Three Mile Island to provide the members of the Commission with some insight into the nature and significance of accidents that have occurred at nuclear reactor facilities in the past. Toward that end, this report presents a brief description of 44 accidents which have occurred throughout the world and which meet at least one of the severity criteria that were established

  9. A Bayesian approach to unanticipated events frequency estimation in the decision making context of a nuclear research reactor facility

    International Nuclear Information System (INIS)

    Chatzidakis, S.; Staras, A.

    2013-01-01

    Highlights: • The Bayes’ theorem is employed to support the decision making process in a research reactor. • The intention is to calculate parameters related to unanticipated occurrence of events. • Frequency, posterior distribution and confidence limits are calculated. • The approach is demonstrated using two real-world numerical examples. • The approach can be used even if no failures have been observed. - Abstract: Research reactors are considered as multi-tasking environments having the multiple roles of commercial, research and training facilities. Yet, reactor managers have to make decisions, frequently with high economic impact, based on little available knowledge. A systematic approach employing the Bayes’ theorem is proposed to support the decision making process in a research reactor environment. This approach is characterized by low level complexity, appropriate for research reactor facilities. The methodology is demonstrated through the study of two characteristic events that lead to unanticipated system shutdown, namely the de-energization of the control rod magnet and the flapper valve opening. The results obtained demonstrate the suitability of the Bayesian approach in the decision making context when unanticipated events are considered

  10. Scram and nonlinear reactor system seismic analysis for the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Morrone, A.

    1975-01-01

    A description is given of the analysis and results for the Fast Flux Test Facility (FFTF) reactor system which was analyzed for both scram times and seismic responses such as bending moments and impact forces. The reactor system was represented with a one-dimensional nonlinear mathematical model with two degrees of freedom per node. The results give time history plots of various seismic responses and plots of scram times as a function of control rod travel distance for the most critical scram initiation times. The total scram time considering the effects of the earthquake was still acceptable but about 4 times longer than that calculated without the earthquake. (U.S.)

  11. An independent safety assessment of Department of Energy nuclear reactor facilities: Training of operating personnel and personnel selection

    International Nuclear Information System (INIS)

    Drain, J.F.

    1981-02-01

    This study has been prepared for the Department of Energy's Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. Its purpose is to provide the Committee with background information on, and assessment of, the selection, training, and qualification of nuclear reactor operating personnel at DOE-owned facilities

  12. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2011-01-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  13. Use of EBR-II as a principal fast breeder reactor irradiation test facility in the U.S

    International Nuclear Information System (INIS)

    Staker, R.G.; Seim, O.S.; Beck, W.N.; Golden, G.H.; Walters, L.C.

    1975-01-01

    The EBR-II as originally designed and operated by the Argonne National Laboratory was successful in demonstrating the operation of a sodium-cooled fast breeder power plant with a closed fuel reprocessing cycle. Subsequent operation has been as an experimental facility where thousands of irradiation tests have been performed. Conversion to this application entailed the design and fabrication of special irradiation subassemblies for in-core irradiations, additions to existing facilities for out-of-core irradiations, and additions to existing facilities for out-of-core experiments. Experimental subassemblies now constitute about one third of the core, and changes in the core configuration occur about monthly, requiring neutronic and thermal-hydraulics analyses and monitoring of the reactor dynamic behavior. The surveillance programs provided a wealth of information on irradiation induced swelling and creep, in-reactor fracture behavior, and the compatibility of materials with liquid sodium. (U.S.)

  14. Radiological controls and worker and public health and safety: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Tew, J.L.; Miles, M.E.; Knuth, D.; Boyd, R.

    1981-02-01

    DOE has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the Report of the President's Commission on the Accident at Three Mile Island that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors were reviewed by the Committee. This report was prepared to provide a measure of how the radiological control and environmental practices at the 13 individual DOE reactor facilities measure up to (1) the recommendations contained in the Report of the President's Commission on the Accident at Three Mile Island, (2) the requirements and guidelines contained, and (3) the requirements of the applicable Title and Part of the Code of Federal Regulations

  15. Model experiments on simulation of the WWER water-chemical conditions at loop facilities of the MIR reactor

    International Nuclear Information System (INIS)

    Benderskaya, O.S.; Zotov, E.A.; Kuprienko, V.A.; Ovchinnikov, V.A.

    1999-01-01

    The experiments on simulation of the WWER type reactors water-chemical conditions have been started at the State Scientific Center RIAR. These experiments are being conducted at the multi-loop research MIR reactor at the PVK-2 loop facility. The dosage stand was created. It allows introduction of boric acid, potassium and lithium hydroxides, ammonia solutions and gaseous hydrogen. Corrosion tests of the Russian E-635 and E-110 alloys are being conducted at the PVK-2 loop under the WWER water-chemical conditions. If necessary, fuel elements are periodically extracted from the reactor to perform visual examination, to measure their length, diameter, to remove the deposits from the claddings, to measure the burnup and to distribute the fission products over the fuel element by gamma-spectrometry. The chemical analytical 'on line' equipment produced by the ORBISPHERE Laboratory (Switzerland) will be commissioned in the nearest future to measure concentration of the dissolved hydrogen and oxygen as well as pH and specific conductivity. The objective of the report is to familiarize the participants of the IAEA Technical Committee with the capabilities of performing the model water-chemical experiments under the MIR reactor loop facility conditions. (author)

  16. Characterization of the irradiation facilities SINCA and SIRCA of the TRIGA Mark III reactor using the code MCNPX

    International Nuclear Information System (INIS)

    Delfin L, A.; Garcia M, T.; Lucatero, M. A.; Cruz G, H. S.; Gonzalez, J. A.; Vargas E, S.

    2011-11-01

    The commitment of changing fuels of high enrichment for fuels of low enrichment in the TRIGA Mark III reactor of the Nuclear Center of Mexico generates the necessity to know the distribution of the spectrum of the neutrons flux in the irradiation facilities like they are: the Pneumatic System of Capsules Irradiation and the Rotational System of Capsules Irradiation. Is very important for the experiments design as well as for the reactor safety to know the profiles of the neutrons flux and the spectrum that these maintain with the mixed core with which operates, to effect of conserving the same characteristics when the reactor core will be operated with fuel of low enrichment totally. Also, knowing the profiles of the neutrons flux, the reactor operators can optimize the irradiation conditions of the processed samples and likewise the users can select the irradiation positions more adaptable to their necessities. This work present the characterization of the neutron flux in the irradiation facilities SINCA and SIFCA, calculated with the code MCNPX. (Author)

  17. Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In recent years, engineering oriented work, rather than basic research and development (R&D), has led to significant progress in improving the economics of innovative fast reactors and associated fuel cycle facilities, while maintaining and even enhancing the safety features of these systems. Optimization of plant size and layout, more compact designs, reduction of the amount of plant materials and the building volumes, higher operating temperatures to attain higher generating efficiencies, improvement of load factor, extended core lifetimes, high fuel burnup, etc. are good examples of achievements to date that have improved the economics of fast neutron systems. The IAEA, through its Technical Working Group on Fast Reactors (TWG-FR) and Technical Working Group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), devotes many of its initiatives to encouraging technical cooperation and promoting common research and technology development projects among Member States with fast reactor and advanced fuel cycle development programmes, with the general aim of catalysing and accelerating technology advances in these fields. In particular the theme of fast reactor deployment, scenarios and economics has been largely debated during the recent IAEA International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios, held in Paris in March 2013. Several papers presented at this conference discussed the economics of fast reactors from different national and regional perspectives, including business cases, investment scenarios, funding mechanisms and design options that offer significant capital and energy production cost reductions. This Technical Meeting on Fast Reactors and Related Fuel Cycle Facilities with Improved Economic Characteristics addresses Member States’ expressed need for information exchange in the field, with the aim of identifying the main open issues and launching possible initiatives to help and

  18. Materials for advanced reactor facilities: development and application. Materials of School-Conference for young scientists and specialists

    International Nuclear Information System (INIS)

    2012-01-01

    In the collection of works there are the texts, summaries and presentations of lectures delivered by the leading specialists of the branch as well as the abstracts of the students of school-conference for young scientists and specialists Materials for advanced reactor facilities: development and application, which took place on October, 29 - November, 2, 2012 in Zvenigorod. In the materials presented different aspects of development and application of materials of reactor cores and vessels of advanced reactors, computerized simulation of properties of radiation-resistant materials and simulation investigations of material radiation hardness are considered [ru

  19. Design of small-animal thermal neutron irradiation facility at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Liu, H.B.

    1996-01-01

    The broad beam facility (BBF) at the Brookhaven Medical Research Reactor (BMRR) can provide a thermal neutron beam with flux intensity and quality comparable to the beam currently used for research on neutron capture therapy using cell-culture and small-animal irradiations. Monte Carlo computations were made, first, to compare with the dosimetric measurements at the existing BBF and, second, to calculate the neutron and gamma fluxes and doses expected at the proposed BBF. Multiple cell cultures or small animals could be irradiated simultaneously at the so-modified BBF under conditions similar to or better than those individual animals irradiated at the existing thermal neutron irradiation Facility (TNIF) of the BMRR. The flux intensity of the collimated thermal neutron beam at the proposed BBF would be 1.7 x 10 10 n/cm 2 ·s at 3-MW reactor power, the same as at the TNIF. However, the proposed collimated beam would have much lower gamma (0.89 x 10 -11 cGy·cm 2 /n th ) and fast neutron (0.58 x 10 -11 cGy·cm 2 /n th ) contaminations, 64 and 19% of those at the TNIF, respectively. The feasibility of remodeling the facility is discussed

  20. An overview of FFTF [Fast Flux Test Facility] contributions to Liquid Metal Reactor Safety

    International Nuclear Information System (INIS)

    Waltar, A.E.; Padilla, A. Jr.

    1990-11-01

    The Fast Flux Test Facility has provided a very useful framework for testing the advances in Liquid Metal Reactor Safety Technology. During the licensing phase, the switch from a nonmechanistic bounding technique to the mechanistic approach was developed and implemented. During the operational phase, the consideration of new tests and core configurations led to use of the anticipated-transients-without-scram approach for beyond design basis events and the move towards passive safety. The future role of the Fast Flux Test Facility may involve additional passive safety and waste transmutation tests. 26 refs

  1. IRPhE/STEK, Reactor Physics Experiments from Fast-Thermal Coupled Facility

    International Nuclear Information System (INIS)

    Dietze, Klaus; Klippel, Henk Th.; Koning, Arjan; Jacqmin, Robert

    2003-01-01

    1 - Description: The STEK-experiments have been performed to check neutron data of the most important reactor materials, especially of fission product nuclides, fuel isotopes and structural materials. The measured central reactivity worths (CRW) of small samples were compared with calculated values. These C/E-ratios have been used then for data corrections or in adjustment procedures. The reactors STEK (ECN Petten/ Netherlands) was a fast-thermal coupled facility of zero power. The annular thermal drivers were filled by fuel assemblies and moderated by water. The inner insertion lattices were loaded with pellets of fuel and other materials producing the fast neutron flux. The characteristics of the neutron and adjoint spectra were obtained by special arrangements of these pellets in unit cells. In this way, a hard or soft neutron spectrum or a special energy behavior of the adjoint function could be reached. The samples were moved by means of tubes to the central position (pile-oscillation technique). The original information about the facility and measurements is compiled in RCN-209, ECN-10 The 5 STEK configurations cover a broad energy range due to their increasing softness. The experiments are very valuable because of the extensive program of sample reactivity measurements with many fission product nuclides important in reactor burn-up calculations. At first, analyses of the experiments have been performed in Petten. Newer analyses were done later in Cadarache / CEA France using the European scheme for reactor calculation JEF-2.2 / ECCO / ERANOS (see Note Techniques and JEF/DOC-746). Furthermore, re-analyses were performed in O-arai / JNC Japan with the JNC standard route JENDL-3.2 / SLAROM / CITATION / PERKY. Results obtained with both code systems and different data evaluations (JEF-2.2 and JENDL-3.2) are compared in JEF/DOC-861. It contains the following documents: 31 Reports, 2 publications, 5 JEF documents, 4 conferences. 2 - Related or auxiliary programs

  2. TRIGA reactor main systems

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the main systems of low power (<2 MW) and higher power (≥2 MW) TRIGA reactors. The most significant difference between the two is that forced reactor cooling and an emergency core cooling system are generally required for the higher power TRIGA reactors. However, those TRIGA reactors that are designed to be operated above 3 MW also use a TRIGA fuel that is specifically designed for those higher power outputs (3 to 14 MW). Typical values are given for the respective systems although each TRIGA facility will have unique characteristics that may only be determined by the experienced facility operators. Due to the inherent wide scope of these research reactor facilities construction and missions, this training module covers those systems found at most operating TRIGA reactor facilities but may also discuss non-standard equipment that was found to be operationally useful although not necessarily required. (author)

  3. Method of safely operating nuclear reactor

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro.

    1976-01-01

    Purpose: To provide a method of safely operating an nuclear reactor, comprising supporting a load applied to a reactor container partly with secondary container facilities thereby reducing the load borne by the reactor container when water is injected into the core to submerge the core in an emergency. Method: In a reactor emergency, water is injected into the reactor core thereby to submerge the core. Further, water is injected into a gap between the reactor container and the secondary container facilities. By the injection of water into the gap between the reactor container and the secondary container facilities a large apparent mass is applied to the reactor container, as a result of which the reactor container undergoes the same vibration as that of the secondary container facilities. Therefore, the load borne by the reactor container itself is reduced and stress at the bottom part of the reactor container is released. This permits the reactor to be operated more safely. (Moriyama, K.)

  4. Test and application of thermal neutron radiography facility at Xi'an pulsed reactor

    CERN Document Server

    Yang Jun; Zhao Xiang Feng; Wang Dao Hua

    2002-01-01

    A thermal neutron radiography facility at Xi'an Pulsed Reactor is described as well as its characteristics and application. The experiment results show the inherent unsharpness of BAS ND is 0.15 mm. The efficient thermal neutron n/gamma ratio is lower in not only steady state configuration but also pulsing state configuration and it is improved using Pb filter

  5. Analyses in support of the Laboratory Microfusion Facility and ICF commercial reactor designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Monsler, M.J.

    1988-01-01

    Our work on this contract was divided into two major categories; two thirds of the total effort was in support of the Laboratory Microfusion Facility (LMF), and one third of the effort was in support of Inertial Confinement Fusion (ICF) commercial reactors. This final report includes copies of the formal reports, memoranda, and viewgraph presentations that were completed under this contract

  6. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  7. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  8. Facility at CIRUS reactor for thermal neutron induced prompt γ-ray spectroscopic studies

    International Nuclear Information System (INIS)

    Biswas, D.C.; Danu, L.S.; Mukhopadhyay, S.; Kinage, L.A.; Prashanth, P.N.; Goswami, A.; Sahu, A.K.; Shaikh, A.M.; Chatterjee, A.; Choudhury, R.K.; Kailas, S.

    2013-01-01

    A facility for prompt γ-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt γ rays. For the first time, the prompt γ–γ coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235 U(n th , f). Using this facility, experiments have also been carried out for on-line γ-ray spectroscopic studies in 113 Cd(n th , γ) reaction

  9. Applied research and service activities at the University of Missouri Research Reactor Facility (MURR)

    International Nuclear Information System (INIS)

    Alger, D.M.

    1987-01-01

    The University Of Missouri operates MURR to provide an intense source of neutron and gamma radiation for research and applications by experimenters from its four campuses and by experimenters from other universities, government and industry. The 10 MW reactor, which has been operating an average of 155 hours per week for the past eight years, produces thermal neutron fluxes up to 6-7x10 14 n/cm 2 -s in the central flux trap and beamport source fluxes of up to 1.2x10 14 n/cm 2 -s. The mission of the reactor facility, to promote research, education and service, is the same as the overall mission of the university and therefore, applied research and service supported by industrial firms have been welcomed. The university recognized after a few years of reactor operation that in order to build utilization, it would be necessary to develop in-house research programs including people, equipment and activity so that potential users could more easily and quickly obtain the results needed. Nine research areas have been developed to create a broadly based program to support the level of activity needed to justify the cost of operating the facility. Applied research and service generate financial support for about one-half of the annual budget. The applied and service programs provide strong motivation for university/industry association in addition to the income generated. (author)

  10. Coolant cleaning facility for nuclear reactor

    International Nuclear Information System (INIS)

    Kuboniwa, Takao; Konno, Yasuhiro; Kumaya, Shin; Osumi, Katsumi.

    1982-01-01

    Purpose: To remove cation of radioactive cobalt 60 produced in a reactor water during the ordinary operation of the reactor and chlorine when sea water is leaked in a condenser as well as to suppress an increase in iron clad containing radioactive cobalt 60 in the reactor water when the reactor is stopped. Constitution: A large flow rate high temperature cleaning system having an electromagnetic filter capable of removing radioactive substance in a reactor water, a low temperature cleaning system having a desalting unit using ion exchanger resin, a turbidity meter for measuring the turbidity of the reactor water and a conductivity meter for measuring the conductivity are provided. Further, flow rate control means are provided in the high and low temperature cleaning systems. The flow rate control means of the high temperature cleaning system is controlled by a measured signal of the turbidity meter, and the flow rete control means of the low temperature cleaning system is controlled by the measured signal of the conductivity meter. (Aizawa, K.)

  11. SANS facility at the Pitesti 14 MW Triga reactor

    International Nuclear Information System (INIS)

    Ionita, I.; Anghel, E.; Mincu, M.; Datcu, A.; Grabcev, B.; Todireanu, S.; Constantin, F.; Shvetsov, V.; Popescu, G.

    2006-01-01

    Full text of publication follows: At the present time, an important not yet fully exploited potentiality is represented by the SANS instruments existent at lower power reactors and reactors in developing countries even if they are, generally, endowed with a simpler equipment and are characterized by the lack of infrastructure to maintain and repair high technology accessories. The application of SANS at lower power reactors and in developing countries nevertheless is possible in well selected topics where only a restricted Q range is required, when scattering power is expected to be sufficiently high or when the sample size can be increased at the expense of resolution. Examples of this type of applications are: 1) Phase separation and precipitates in material science, 2) Ultrafine grained materials (nano-crystals, ceramics), 3) Porous materials such as concretes and filter materials, 4) Conformation and entanglements of polymer-chains, 5) Aggregates of micelles in microemulsions, gels and colloids, 6) Radiation damage in steels and alloys. The need for the installation of a new SANS facility at the Triga Reactor of the Institute of Nuclear Researches in Pitesti, Romania become actual especially after the shutting down of the VVRS Reactor from Bucharest. A monochromatic neutron beam with 1.5 Angstrom ≤ λ ≤ 5 Angstrom is produced by a mechanical velocity selector with helical slots.The distance between sample and detectors plane is (5.2 m ). The sample width may be fixed between 10 mm and 20 mm. The minimum value of the scattering vector is Q min = 0.005 Angstrom -1 while the maximal value is Q max = 0.5 Angstrom -1 . The relative error is ΔQ/Q min = 0.5. The cooperation partnership between advanced research centers and the smaller ones from developing countries could be fruitful. The formers act as mentors in solving specific problems. Such a partnership was established between INR Pitesti, Romania and JINR Dubna, Russia. The first step in this cooperation

  12. Applicability of base-isolation R ampersand D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.; Chang, Y.W.

    1990-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. The question, therefore, is to what extent can research and development (R ampersand D) for non-nuclear use be used to provide technological data needed for seismic isolation of a nuclear power plant. This question, of course is not unique to seismic isolation. Virtually every structural component, system, or piece of equipment used in nuclear power plants is also used in non- nuclear facilities. Experience shows that considerable effort is needed to adapt conventional technology into a nuclear power plant. Usually, more thorough analysis is required, material and fabrication quality-control requirements are more stringent as are controls on field installation. In addition, increased emphasis on maintainability and inservice inspection throughout the life of the plant is generally required to gain acceptance in nuclear power plant application. This paper reviews the R ampersand D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R ampersand D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R ampersand D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. 2 refs

  13. Physics constraints on the design of fast reactor safety test facilities

    International Nuclear Information System (INIS)

    Travelli, A.; Meneghetti, D.; Matos, J.; Snelgrove, J.; Shaftman, D.H.; Tzanos, C.; Lam, S.K.; Pennington, E.M.; Woodruff, W.L.

    1976-01-01

    This paper discusses the physics foundations common to all fast reactor safety test facilities and the constraints which they impose on the design. While detailed design discussions are confined to the experience with six ANL designs, available data from other designs are used to confirm the validity of the considerations and to broaden the scope of the discussion. This helps to view the various designs as a unified effort, to define their potential capabilities, and to assess how they could best complement each other

  14. High efficiency algorithm for 3D transient thermo-elasto-plastic contact problem in reactor pressure vessel sealing system

    International Nuclear Information System (INIS)

    Xu Mingyu; Lin Tengjiao; Li Runfang; Du Xuesong; Li Shuian; Yang Yu

    2005-01-01

    There are some complex operating cases such as high temperature and high pressure during the operating process of nuclear reactor pressure vessel. It is necessary to carry out mechanical analysis and experimental investigation for its sealing ability. On the basis of the self-developed program for 3-D transient sealing analysis for nuclear reactor pressure vessel, some specific measures are presented to enhance the calculation efficiency in several aspects such as the non-linear solution of elasto-plastic problem, the mixed solution algorithm for contact problem as well as contract heat transfer problem and linear equation set solver. The 3-D transient sealing analysis program is amended and complemented, with which the sealing analysis result of the pressure vessel model can be obtained. The calculation results have good regularity and the calculation efficiency is twice more than before. (authors)

  15. Change in plan for installation of nuclear reactor in Genkai Nuclear Power Plant of Kyushu Electric Power Co., Inc. (change in plan for No.3 and No.4 nuclear reactor facilities) (report)

    International Nuclear Information System (INIS)

    1987-01-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Minister of International Trade and Industry, deals with studies on a proposed change in the plan for the installation of nuclear reactors in the Genkai Nuclear Power Plant of Kyushu Electric Power Co., Inc. (change in the plan for the No.3 and No.4 nuclear reactor facilities). The conclusions of and principles for the examination and evaluation are described first. The studies carried out are focused on the safety of the facilities, and it is concluded that part of the proposed change is appropriate with respect to the required technical capability and that part of the change will not have adverse effects on the safety design of the facilities. The examination of the safety design of the reactor facilities cover the reactivity control, new material for the steam generator, design of chemical and volume control systems, design of liquid waste treatment facilities, integration of all confinement vessel spray rings, and design of the diesel power generator. It is confirmed that all of them can meet the safety requirements. Studies and analyses are also made of the emission of radiations to the surrounding environment, abnormal transient changes during operations, and possible accidents. (Nogami, K.)

  16. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  17. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  18. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  19. CIRCUS and DESIRE: Experimental facilities for research on natural-circulation-cooled boiling water reactors

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Haden, T.H.J.J. van der; Zboray, R.; Manera, A.; Mudde, R.F.

    2002-01-01

    At the Delft University of Technology two thermohydraulic test facilities are being used to study the characteristics of Boiling Water Reactors (BWRs) with natural circulation core cooling. The focus of the research is on the stability characteristics of the system. DESIRE is a test facility with freon-12 as scaling fluid in which one fuel bundle of a natural-circulation BWR is simulated. The neutronic feedback can be simulated artificially. DESIRE is used to study the stability of the system at nominal and beyond nominal conditions. CIRCUS is a full-height facility with water, consisting of four parallel fuel channels and four parallel bypass channels with a common riser or with parallel riser sections. It is used to study the start-up characteristics of a natural-circulation BWR at low pressures and low power. In this paper a description of both facilities is given and the research items are presented. (author)

  20. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24

  1. Radiological considerations of the reactor cover gas processing system at the FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Prevo, P.R.

    1986-09-01

    Radiological and environmental protection experience associated with the reactor cover gas processing system at the Fast Flux Test Facility (FFTF) has been excellent. Personnel radiation exposures received from operating and maintaining the reactor cover gas processing system have been very low, the system has remained free of radioactive particulate contamination through the first seven operating cycles (cesium contamination was detected at the end of Cycle 8A), and releases of radioactivity to the environment have been very low, well below environmental standards. This report discusses these three aspects of fast reactor cover gas purification over the first eight operating cycles of the FFTF (a duration of a little more than four years, from April 1982 through July 1986)

  2. Improvements at the biological shielding of BNCT research facility in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Souza, Gregorio Soares de

    2011-01-01

    The technique of neutron capture in boron is a promising technique in cancer treatment, it uses the high LET particles from the reaction 10 B (n, α) 7 Li to destroy cancer cells.The development of this technique began in the mid-'50s and even today it is the object of study and research in various centers around the world, Brazil has built a facility that aims to conduct research in BNCT, this facility is located next to irradiation channel number three at the research nuclear reactor IEA-R1 and has a biological shielding designed to meet the radiation protection standards. This biological shielding was developed to allow them to conduct experiments with the reactor at maximum power, so it is not necessary to turn on and off the reactor to irradiate samples. However, when the channel is opened for experiments the background radiation in the experiments salon increases and this background variation makes it impossible to perform measurements in a neutron diffraction research that utilizes the irradiation channel number six. This study aims to further improve the shielding in order to minimize the variation of background making it possible to perform the research facility in BNCT without interfering with the action of the research group of the irradiation channel number six. To reach this purpose, the code MCNP5, dosimeters and activation detectors were used to plan improvements in the biological shielding. It was calculated with the help of the code an improvement that can reduce the average heat flow in 71.2% ± 13 and verified experimentally a mean reduce of 70 ± 9% in dose due to thermal neutrons. (author)

  3. Comparison of HEU and LEU neutron spectra in irradiation facilities at the Oregon State TRIGA{sup ®} Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schickler, R.A., E-mail: robert.schickler@oregonstate.edu; Marcum, W.R., E-mail: wade.marcum@oregonstate.edu; Reese, S.R.

    2013-09-15

    Highlights: • The Oregon State TRIGA{sup ®} Reactor neutron spectra is characterized herein. • Neutron spectra between highly enriched uranium and low enriched uranium cores are compared. • Discussion is given as to differences between HEU and LEU core spectra results and impact on experiments. -- Abstract: In 2008, the Oregon State TRIGA{sup ®} Reactor (OSTR) was converted from highly enriched uranium (HEU) fuel lifetime improvement plan (FLIP) fuel to low-enriched uranium (LEU) fuel. This effort was driven and supported by the Department of Energy's (DoE's) Reduced Enrichment for Research and Test Reactors (RERTR) program. The basis behind the RERTR program's ongoing conversion effort is to reduce the nuclear proliferation risk of civilian research and test reactors. The original intent of the HEU FLIP fuel was to provide fuel to research reactors that could be utilized for many years before a necessary refueling cycle. As a research reactor, the OSTR provides irradiation facilities for a variety of applications, such as activation analysis, fission-track dating, commercial isotope production, neutron radiography, prompt gamma characterization, and many others. In order to accurately perform these research functions, several studies had been conducted on the HEU FLIP fuel core to characterize the neutron spectra in various experimental facilities of the OSTR (Tiyapun, 1997; Ashbaker, 2005). As useful as these analyses were, they are no longer valid due to the change in fuel composition and the resulting alteration of core performance characteristics. Additionally, the core configuration (fuel reconfiguration) was altered between the HEU and LEU cores. This study characterizes the neutron spectra in various experimental facilities within and around the current LEU core. It also compares the spectra to that which was yielded in the HEU core through use of Monte Carlo n-Particle 5 (MCNP5) and experimental adjustment via a least

  4. Plastic strain accumulation during asymmetric cyclic loading of Zircaloy-2 at room temperature

    International Nuclear Information System (INIS)

    Rajpurohit, R.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2016-01-01

    Asymmetric cyclic loading leads to accumulation of cyclic plastic strain and reduces the fatigue life of components. This phenomenon is known as ratcheting fatigue. Zircaloy-2 is a important structural material in nuclear reactors and used as pressure tubes and fuel cladding in pressurized light and heavy water nuclear reactors. Due to power fluctuations, these components experience plastic strain cycles in the reactor and their life is reduced due to strain cycles. Power fluctuations also cause asymmetric straining of the material and leads to accumulation of plastic strain. The present investigation deals with the effect of the magnitude of mean stress, stress amplitude and stress rate on hardening/softening behavior of Zircaloy-2 under asymmetric cyclic loading, at room temperature. It was observed that plastic strain accumulation increased with mean stress and stress amplitude; however, it decreased with stress rate. (author)

  5. Utilization and facility of neutron activation analysis in HANARO research reactor

    International Nuclear Information System (INIS)

    Chung, Y.S.; Chung, Y.J.; Moon, J.H.

    1998-01-01

    The facilities of neutron activation analysis within a multi-purpose research reactor (HANARO) are described and the main applications of Neutron activation analysis (NAA) in Korea are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system, are installed at three irradiation holes. One irradiation hole is lined with a cadmium tube for epithermal-nal NAA. The performance of the NAA facility was examined to identify the characteristics of tube transfer system, irradiation sites and polyethylene irradiation capsule. The available thermal neutron flux with each irradiation site are in the range of 3.9x10 13 -1.6x10 14 n/cm 2 ·s and cadmium ratios are 15-250. Neutron activation analysis has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials and various polymers for research and development. Analytical services and the latest analytical results are summarized. (author)

  6. Natural circulation in a VVER reactor geometry: Experiments with the PACTEL facility and Cathare simulations

    Energy Technology Data Exchange (ETDEWEB)

    Raussi, P.; Kainulainen, S. [Lappeenranta Univ. of Technology, Lappeenranta (Finland); Kouhia, J. [VTT Energy, Lappeenranta (Finland)

    1995-09-01

    There are some 40 reactors based on the VVER design in use. Database available for computer code assessment for VVER reactors is rather limited. Experiments were conducted to study natural circulation behaviour in the PACTEL facility, a medium-scale integral test loop patterned after VVER pressurized water reactors. Flow behaviour over a range of coolant inventories was studied with a small-break experiment. In the small-break experiments, flow stagnation and system repressurization were observed when the water level in the upper plenum fell below the entrances to the hot legs. The cause was attributed to the hot leg loop seals, which are a unique feature of the VVER geometry. At low primary inventories, core cooling was achieved through the boiler-condenser mode. The experiment was simulated using French thermalhydraulic system code CATHARE.

  7. Preparations for decontamination and disposition of the Sodium Reactor Experiment (SRE) and other ERDA facilities at AI

    International Nuclear Information System (INIS)

    Heine, W.F.; Graves, A.W.

    1975-01-01

    The program plan for the decontamination and disposition of facilities at the Sodium Reactor Experiment and other ERDA-owned, AI-operated, radioactive facilities is described. The program objective along with a description of each of the subject facilities is presented. A description of the organizational structure within supporting the program is given. The elements of planning required to prepare for the task are detailed, including the requirements for cost and schedule control. Progress to date and the future plans are presented. The available technology utilized in the program is described

  8. Auditable Safety Analysis and Final Hazard Classification for the 105-N Reactor Zone and 109-N Steam Generator Zone Facility

    International Nuclear Information System (INIS)

    Kloster, G.L.

    1998-07-01

    This document is a graded auditable safety analysis (ASA) and final hazard classification (FHC) for the Reactor/Steam Generator Zone Segment. The Reactor/Steam Generator Zone Segment, part of the N Reactor Complex, that is also known as the Reactor Building and Steam Generator Cells. The installation of the modifications described within to support surveillance and maintenance activities are to be completed by July 1, 1999. The surveillance and maintenance activities addressed within are assumed to continue for the next 15- 20 years, until the initiation of facility D ampersand D (i.e., Interim Safe Storage). The graded ASA in this document is in accordance with EDPI-4.30-01, Rev. 1, Safety Analysis Documentation, (BHI-DE-1) and is consistent with guidance provided by the U.S. Department of Energy. This ASA describes the hazards within the facility and evaluates the adequacy of the measures taken to reduce, control, or mitigate the identified hazards. This document also serves as the FHC for the Reactor/Steam Generator Zone Segment. This FHC is developed through the use of bounding accident analyses that envelope the potential exposures to personnel

  9. JRR-3 neutron radiography facility

    International Nuclear Information System (INIS)

    Matsubayashi, M.; Tsuruno, A.

    1992-01-01

    JRR-3 neutron radiography facility consists of thermal neutron radiography facility (TNRF) and cold neutron radiography facility (CNRF). TNRF is installed in JRR-3 reactor building. CNRF is installed in the experimental beam hall adjacent to the reactor building. (author)

  10. Physico-chemical modifications of plastics by ionization

    International Nuclear Information System (INIS)

    Rouif, S.

    2002-01-01

    The industrial use of ionizing radiations (beta and gamma), initially for the sterilization of medico-surgical instruments and for the preservation of food products, has led to the development of the chemistry of polymers under radiations. Ionizing radiations can initiate chemical reactions (chain cutting, poly-additions, polymerization etc..) thanks to the formation of free radicals. The main applications concerns the degradation of plastics, the reticulation of plastics and of woods impregnated with resin, and the grafting of polymers. The processing of plastic materials was initially performed with low energy electron accelerators (0.1 to 3 MeV), allowing only surface treatments, while recent high energy accelerators (10 MeV) and gamma facilities allow the treatment in depth of materials (from few cm to 1 m). This article describes the industrial treatments performed with such high energy facilities: 1 - action of ionizing radiations on plastic materials: different types of ionizing radiations, action of beta and gamma radiations, chemical changes induced by beta and gamma radiations; 2 - reticulation of plastic materials submitted to beta and gamma radiations: radio-'reticulable' polymers and reticulation co-agents, modification of the properties of reticulated plastic materials under beta and gamma radiations; 3 - industrial aspects of reticulation under beta and gamma radiation: industrial irradiation facilities, dosimetry and radio-reticulation control, applications; 4 - conclusion. (J.S.)

  11. A study on the direct use of spent PWR fuel in CANDU reactors. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Jae Sul; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This report summarizes the second year progress of phase II of DUPIC program which aims to verify experimentally the feasibility of direct use of spent PWR fuel in CANDU reactors. The project is to provide the experimental facilities and technologies that are required to perform the DUPIC experiment. As an early part of the project, engineering analysis of those facilities and construction of mock-up facility are described. Another scope of the project is to assess the DUPIC fuel cycle system and facilitate international cooperation. The progresses in this scope of work made during the fiscal year are also summarized in the report. 38 figs, 44 tabs, 8 refs. (Author).

  12. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  13. Power Burst Reactor Facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.

    1986-01-01

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, additional shielding, and penetration of the present concrete shield with a collimating (and optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam exiting from the collimator port is predicted to be of sufficient intensity (approx.10 10 neutrons/cm 2 -s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 refs., 11 figs., 3 tabs

  14. Prompt gamma neutron activation analysis facility at the RA-6 research reactor

    International Nuclear Information System (INIS)

    Sanchez, F. A.; Calzetta, O

    2004-01-01

    A prompt gamma neutron activation activation analysis facility was developed at the 500 kw thermal power RA-6 research reactor of the Bariloche Atomic Center, Argentina.This facility consist of a radial beam port with external positioning of the sample.The gamma radiation is reduced by a bismuth filter placed inside the extraction tube and the beam diameter is limited by a set of two collimators up to 5 cm.The neutron flux at the sample position is 7 10 6 n/cm 2 s with a Cadmium ratio of 20/1.The gamma detector is a 50 % efficiency type p HPGe rounded by a NaI(Tl) for Compton suppressioning.The gamma spectra is measured through 0 to 8.5 MeV.The background have counting rate of 350 cps without sample. In this work is shown the efficiency curve, the calculed sensibilities and the lower detection limits for B, Cd, Sm, Gd, H, Cl, Hg, Eu, Ti, Ag, Au, Mo. The RA-6's PGNAA facility is fully working, although the analytic capacity is under improvement [es

  15. Opportunities for reactor scale experimental physics

    International Nuclear Information System (INIS)

    1999-01-01

    A reactor scale tokamak plasma will exhibit three areas of physics phenomenology not accessible by contemporary experimental facilities. These are: (1) instabilities generated by energetic alpha particles; (2) self-heating phenomena; and (3) reactor scale physics, which includes integration of diverse physics phenomena, each with its own scaling properties. In each area, selected examples are presented that demonstrate the importance and uniqueness of physics results from reactor scale facilities for both inductive and steady state reactor options. It is concluded that the physics learned in such investigations will be original physics not attainable with contemporary facilities. In principle, a reactor scale facility could have a good measure of flexibility to optimize the tokamak approach to magnetic fusion energy. (author)

  16. The Budapest research reactor as an advanced research facility for the early 21st century

    International Nuclear Information System (INIS)

    Vidovszky, I.

    2001-01-01

    The Budapest Research Reactor, Hungary's first nuclear facility was originally put into operation in 1959. The reactor serves for: basic and applied research, technological and commercial applications, education and training. The main goal of the reactor is to serve neutron research. This unique research possibility is used by a broad user community of Europe. Eight instruments for neutron scattering, radiography and activation analyses are already used, others (e.g. time of flight spectrometer, neutron reflectometer) are being installed. The majority of these instruments will get a much improved utilization when the cold neutron source is put into operation. In 1999 the Budapest Research Reactor was operated for 3129 full power hours in 14 periods. The normal operation period took 234 hours (starting Monday noon and finishing Thursday morning). The entire production for the year 1999 was 1302 MW days. This is a slightly reduced value, due to the installation of the cold neutron source. For the year 2000 a somewhat longer operation is foreseen (near to 4000 hours), as the cold neutron source will be operational. The operation of the reactor is foreseen at least up to the end of the first decade of the 21 st century. (author)

  17. Plastic toys as a source of exposure to bisphenol-A and phthalates at childcare facilities.

    Science.gov (United States)

    Andaluri, Gangadhar; Manickavachagam, Muruganandham; Suri, Rominder

    2018-01-06

    Infants and toddlers are constantly exposed to toys at childcare facilities. Toys are made of a variety of plastics that often use endocrine-disrupting chemicals such as bisphenol-A (BPA) and phthalates as their building blocks. The goal of this study was to assess the non-dietary exposure of infants and toddlers to BPA and phthalates via leaching. We have successfully developed wipe tests to evaluate the leachability of BPA and phthalates from toys used at several day care facilities in Philadelphia. Our studies have shown an average leaching of 13-280 ng/cm 2 of BPA and phthalates. An estimate of total exposure of infants to BPA and phthalates is reported. The leaching of the chemicals was observed to be dependent on the washing procedures and the location of the day care facilities. Using bleach/water mixture two or more times a week to clean the toys seems to reduce the leaching of chemicals from the toys. There is a huge data gap in the estimated intake amounts and reported urinary concentrations; this is the first study that provides valuable information to address these data gaps in the existing literature.

  18. Study on external dose around the Reactor TRIGA PUSPATI (RTP) Facility: A proposal

    International Nuclear Information System (INIS)

    Hairul Nizam Idris

    2012-01-01

    In order to meet the requirement of the recent regulation (AELB-BSRP 2010), it is absolutely necessary to re-execute the in-situ and accumulated external dose assessment at the surrounding area of the Reactor TRIGA PUSPATI (RTP) facility. A number of strategic locations will be identified for the points of the dose mapping. Selection of these measurement points will be base on certain factor such as physical shielding thickness, occupancy of the workers, and others. Then, several survey meters and dosimeter will be chosen base on measuring method, reactor radiation spectra energy, type of radiation and etc. The result obtained will be compared with action values or limits given by AELB- BSRP 2010 and also can be used as baseline data or report for future reference. (author)

  19. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  20. Utilization and facility of neutron activation analysis in HANARO research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y S; Chung, Y J; Moon, J H [Korea Atomic Energy Research Institute, P.O.Box 105 Yusong, 305-600, Taejon (Korea, Republic of)

    1998-07-01

    The facilities of neutron activation analysis within a multi-purpose research reactor (HANARO) are described and the main applications of Neutron activation analysis (NAA) in Korea are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system, are installed at three irradiation holes. One irradiation hole is lined with a cadmium tube for epithermal-nal NAA. The performance of the NAA facility was examined to identify the characteristics of tube transfer system, irradiation sites and polyethylene irradiation capsule. The available thermal neutron flux with each irradiation site are in the range of 3.9x10{sup 13}-1.6x10{sup 14} n/cm{sup 2}{center_dot}s and cadmium ratios are 15-250. Neutron activation analysis has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials and various polymers for research and development. Analytical services and the latest analytical results are summarized. (author)

  1. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  2. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    International Nuclear Information System (INIS)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy's (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher's workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead

  3. Naval Reactors Facility environmental monitoring report, calendar year 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 2001 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U. S. Environmental Protection Agency and the U. S. Department of Energy

  4. 1997 environmental monitoring report for the Naval Reactors Facility

    International Nuclear Information System (INIS)

    1997-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 1997 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE)

  5. Naval Reactors Facility Environmental Monitoring Report, Calendar Year 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 2003 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency and the U.S. Department of Energy

  6. Naval Reactors Facility environmental monitoring report, calendar year 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 1999 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE)

  7. 1993 environmental monitoring report for the naval reactors facility

    International Nuclear Information System (INIS)

    1994-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 1993 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE)

  8. Nuclear blenders: blended learning from Rensselaer's Reactor Critical Facility

    International Nuclear Information System (INIS)

    Haley, T.C.

    2011-01-01

    Rensselaer's senior level undergraduate nuclear engineering course 'Critical Reactor Laboratory' is highly regarded and much loved. If you can get in, that is. But now it's a required course, nuclear engineering enrollment is up, and others are knocking on our door to get in. How might one offer such a unique course to the masses, without losing the whole point of a laboratory experience? This presentation looks at the costs and benefits of the transition to a 'blended learning' mode -- the merging of traditional, face-to-face instruction and web-based instruction as a solution. As part of the presentation, the course and the facility will be highlighted by short excepts from the 50 minute movie 'Everything You Always Wanted to Know about Neutron Chain Reactions (but were afraid to ask)'.

  9. 1991 environmental monitoring report for the Naval Reactors Facility

    International Nuclear Information System (INIS)

    1991-01-01

    The results of the radiological and non-radiological environmental monitoring programs for 1991 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were within the guidelines established by state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or heath and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the EnVironmental Protection Agency (EPA) and the Department of Energy (DOE)

  10. Naval Reactors Facility environmental monitoring report, calendar year 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The results of the radiological and nonradiological environmental monitoring programs for 2000 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE)

  11. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1989

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1992-04-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC 1 licensees during the years 1969 through 1989. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC 1 licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1989 annual reports submitted by about 448 licensees indicated that approximately 216,294 individuals were monitored 111,000 of whom were monitored by nuclear power facilities. They incurred an average individual does of 0.18 rem (cSv) and an average measurable dose of 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,535 individuals completed their employment with one or more of the 448 covered licensees during 1989. Some 76,561 of these individuals terminated from power reactor facilities, and about 10, 344 of them were considered to be transient workers who received an average dose of 0.64 rem (cSv)

  12. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1988

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1991-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1988. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1988 annual reports submitted by about 429 licensees indicated that approximately 220,048 individuals were monitored, 113,00 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.20 rem (cSv) and an average measurable dose of 0.41 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,072 individuals completed their employment with one or more of the 429 covered licensees during 1988. Some 80,211 of these individuals terminated from power reactor facilities, and about 8,760 of them were considered to be transient workers who received an average dose of 0.27 rem (cSv). 17 refs., 11 figs., 29 tabs

  13. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1991

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1991. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1991 annual reports submitted by about 436 licensees indicated that approximately 206,732 individuals were monitored, 182,334 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.15 rem (cSv) and an average measurable dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 96,231 individuals completed their employment with one or more of the 436 covered licensees during 1991. Some 68,115 of these individuals terminated from power reactor facilities, and about 7,763 of them were considered to be transient workers who received an average dose of 0.52 rem (cSv)

  14. Cladding failure by local plastic instability

    International Nuclear Information System (INIS)

    Kramer, J.M.; Deitrich, L.W.

    1977-01-01

    Cladding failure is one of the major considerations in analysis of fast-reactor fuel pin behavior during hypothetical accident transients since time, location and nature of failure govern the early post-failure material motion and reactivity feedback. Out-of-Pile transient burst tests of both irradiated and unirradiated fast-reactor cladding show that local plastic instability, or bulging, often precedes rupture. To investigate the details of cladding bulging, a perturbation analysis of the equations governing the large deformation of a cylindrical shell has been developed. The overall deformation history is assumed to consist of a small perturbation epsilon of the radial displacement superimposed on large axisymmetric displacements. Computations have been carried out using high temperature properties of stainless steel in conjunction with various constitutive theories, including a generalization of the Endochronic Theory of Plasticity in which both time-independent and time-dependent plastic strains are modeled. Although the results of the calculations are all qualitatively similar, it appears that modeling of both time-independent and time-dependent plastic strains is necessary to interpret the transient burst test results. Sources for bulge formation that have been considered include initial geometric imperfections and thermal perturbations due to either eccentric fuel pellets or non-symmetric cooling. (Auth.)

  15. Reactor cover gas monitoring at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bechtold, R.A.; Holt, F.E.; Meadows, G.E.; Schenter, R.E.

    1986-09-01

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the US Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100-day operating cycle began in April 1982 and the eighth operating cycle was completed in July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification

  16. Measurements of reactor-relevant electromagnetic effects with the FELIX facility

    International Nuclear Information System (INIS)

    Turner, L.R.; Hua, T.Q.; Knott, M.J.; Lee, S.Y.; McGhee, D.G.; Wehrle, R.B.

    1986-01-01

    In predicting the electromagnetic consequences of a plasma disruption in a tokamak reactor design, a two-dimensional electromagnetic model of the first wall, blanket, and shield (FWBS) system is typically used. The response to a decaying plasma current is then found to be dominated by a single eddy-current mode, with a single L/R time. Recent experiments with the Fusion ELectromagnetic Induction eXperiment (FELIX) facility at Argonne National Laboratory suggest that such modeling can be used to design against electromagnetic forces and torques, but only if a range of values is used for both tau, the plasma decay time, and tau 0 , the L/R time of the FWBS system

  17. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  18. Reactor cover gas monitoring at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, R A; Holt, F E; Meadows, G E; Schenter, R E [Westinghouse Hanford Company, Richland, WA (United States)

    1987-07-01

    The Fast Flux Test Facility (FFTF) is a 400 megawatt (thermal) sodium cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the U. S. Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100 day operating cycle began in April 1982 and the eighth operating cycle was completed In July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification. A liquid argon Dewar system provides the large volume of inert gas required for operation of the FFTF. The gas is used as received and is not recycled. Low concentrations of krypton and xenon in the argon supply are essential to preclude interference with the gas tag system. Gas chromatography has been valuable for detection of inadvertent air in leakage during refueling operations. A temporary system is installed over the reactor during outages to prevent oxide formation in the sodium vapor traps upstream from the on line gas chromatograph. On line gas monitoring by gamma spectrometry and grab sampling with GTSTs has been successful for the identification of numerous radioactive gas releases from creep capsule experiments as well as 9 fuel pin ruptures. A redundant fission gas monitoring system has been installed to insure constant surveillance of the reactor cover gas.

  19. Performance of plastic- and sponge-based trickling filters treating effluents from an UASB reactor.

    Science.gov (United States)

    Almeida, P G S; Marcus, A K; Rittmann, B E; Chernicharo, C A L

    2013-01-01

    The paper compares the performance of two trickling filters (TFs) filled with plastic- or sponge-based packing media treating the effluent from an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated with an organic loading rate (OLR) of 1.2 kgCOD m(-3) d(-1), and the OLR applied to the TFs was 0.30-0.65 kgCOD m(-3) d(-1) (COD: chemical oxygen demand). The sponge-based packing medium (Rotosponge) gave substantially better performance for ammonia, total-N, and organic matter removal. The superior TF-Rotosponge performance for NH(4)(+)-N removal (80-95%) can be attributed to its longer biomass and hydraulic retention times (SRT and HRT), as well as enhancements in oxygen mass transfer by dispersion and advection inside the sponges. Nitrogen removals were significant (15 mgN L(-1)) in TF-Rotosponge when the OLRs were close to 0.75 kgCOD m(-3) d(-1), due to denitrification that was related to solids hydrolysis in the sponge interstices. For biochemical oxygen demand removal, higher HRT and SRT were especially important because the UASB removed most of the readily biodegradable organic matter. The new configuration of the sponge-based packing medium called Rotosponge can enhance the feasibility of scaling-up the UASB/TF treatment, including when retrofitting is necessary.

  20. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    International Nuclear Information System (INIS)

    Zhang, C; Man, B Y; Yang, C; Jiang, S Z; Liu, M; Chen, C S; Xu, S C; Sun, Z C; Gao, X G; Chen, X J

    2013-01-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene. (paper)

  1. Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.C.; Donahue, D.A.; Pushis, D.O.; Savoie, F.E.; Holland, J.W.; Wright, A.E.; August, C.; Bailey, J.L.; Patterson, D.R.

    1990-05-01

    The whole-pin furnace system is a new in-cell experimental facility constructed to investigate how irradiated fuel pins may fail under potential reactor accident conditions. Extensive checkouts have demonstrated excellent performance in remote operation, temperature control, pin breach detection, and fission gas handling. The system is currently being used in testing of EBIR-II-irradiated Integral Fast Reactor (IFR) metal fuel pins; future testing will include EBR-II-irradiated mixed-oxide fuel pins. 7 refs., 4 figs

  2. Selection of away-from-reactor facilities for spent fuel storage. A guidebook

    International Nuclear Information System (INIS)

    2007-09-01

    This publication aims to provide information on the approaches and criteria that would have to be considered for the selection of away-from-reactor (AFR) type spent fuel storage facilities, needs for which have been growing in an increasing number of Member States producing nuclear power. The AFR facilities can be defined as a storage system functionally independent of the reactor operation providing the role of storage until a further destination such as a disposal) becomes available. Initially developed to provide additional storage space for spent fuel, some AFR storage options are now providing additional spaces for extended storage of spent fuel with a prospect for long term storage, which is becoming a progressive reality in an increasing number of Member States due to the continuing debate on issues associated with the endpoints for spent fuel management and consequent delays in the implementation of final steps, such as disposal. The importance of AFR facilities for storage of spent fuel has been recognized for several decades and addressed in various IAEA publications in the area of spent fuel management. The Guidebook on Spent Fuel Storage (Technical Reports Series No. 240 published in 1984 and revised in 1991) discusses factors to be considered in the evaluation of spent fuel storage options. A technical committee meeting (TCM) on Selection of Dry Spent Fuel Storage Technologies held in Tokyo in 1995 also deliberated on this issue. However, there has not been any stand-alone publication focusing on the topic of selection of AFR storage facilities. The selection of AFR storage facilities is in fact a critical step for the successful implementation of spent fuel management programmes, due to the long operational periods required for storage and fuel handling involved with the additional implication of subsequent penalties in reversing decisions or changing the option mid-stream especially after the construction of the facility. In such a context, the long

  3. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2008-01-01

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room. Reactor

  4. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  5. Structural evaluation method for class 1 vessels by using elastic-plastic finite element analysis in code case of JSME rules on design and construction

    International Nuclear Information System (INIS)

    Asada, Seiji; Hirano, Takashi; Nagata, Tetsuya; Kasahara, Naoto

    2008-01-01

    A structural evaluation method by using elastic-plastic finite element analysis has been developed and published as a code case of Rules on Design and Construction for Nuclear Power Plants (The First Part: Light Water Reactor Structural Design Standard) in the JSME Codes for Nuclear Power Generation Facilities. Its title is 'Alternative Structural Evaluation Criteria for Class 1 Vessels Based on Elastic-Plastic Finite Element Analysis' (NC-CC-005). This code case applies elastic-plastic analysis to evaluation of such failure modes as plastic collapse, thermal ratchet, fatigue and so on. Advantage of this evaluation method is free from stress classification, consistently use of Mises stress and applicability to complex 3-dimensional structures which are hard to be treated by the conventional stress classification method. The evaluation method for plastic collapse has such variation as the Lower Bound Approach Method, Twice-Elastic-Slope Method and Elastic Compensation Method. Cyclic Yield Area (CYA) based on elastic analysis is applied to screening evaluation of thermal ratchet instead of secondary stress evaluation, and elastic-plastic analysis is performed when the CYA screening criteria is not satisfied. Strain concentration factors can be directly calculated based on elastic-plastic analysis. (author)

  6. On present situation of radioactive waste management and exposure of workers in nuclear reactor facilities for commercial power generation in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The article summarizes the contents of some reports including the Report on Radiation Management in 1988 that were submitted by the operators of nuclear reactor facilities for commercial power generation according to the requirements specified in the Law Concerning Regulation on Nuclear Material, Nuclear Fuel and Nuclear Reactor. According to these reports, the annual radiation release in all nuclear power generation plants was well below the radiation release limits set up in the report 'On Guidelines for Target Dose in Areas around Light Water Reactor Facilities for Power Generation'. Data submitted also show that there are no significant problems with the management of radioactive solid waste. In all nuclear generation plants, the personal exposure of workers is below the permissible exposure dose specified in law. The Agency of Natural Resources and Energy is planned to further promote the development of advanced techniques for automatization and remote control of light water reactors and to provide effective guidance to electrical contractors for positive radiation management. (N.K.)

  7. TREAT neutron-radiography facility

    International Nuclear Information System (INIS)

    Harrison, L.J.

    1981-01-01

    The TREAT reactor was built as a transient irradiation test reactor. By taking advantage of built-in system features, it was possible to add a neutron-radiography facility. This facility has been used over the years to radiograph a wide variety and large number of preirradiated fuel pins in many different configurations. Eight different specimen handling casks weighing up to 54.4 t (60 T) can be accommodated. Thermal, epithermal, and track-etch radiographs have been taken. Neutron-radiography service can be provided for specimens from other reactor facilities, and the capacity for storing preirradiated specimens also exists

  8. Decommissioning and re-utilization of the Musashi Reactor

    International Nuclear Information System (INIS)

    Tomio Tanzawa; Nobukazu Iijima; Norikazu Horiuchi; Tadashi Yoshida; Tetsuo Matsumoto; Naoto Hagura; Ryouhei Kamiya

    2008-01-01

    The Musashi Institute of Technology Research Reactor (the Musashi Reactor) is a TRIGA-? with maximum thermal power of 100 kW. The decommissioning was decided in May, 2003. The reactor facility is now under decommissioning. The phased decommissioning was selected. Phase 1 consists of permanent shutdown of the reactor and stopping the operational functions, and transportation of the spent nuclear fuels. After completion of the transportation, the reactor facility is characterized as the storage of low level radioactive materials. This is phase 2. Activities of phase 1 were completed and the facility is now under phase 2. Activities of phase 3 consist of dismantling the reactor tank and the shielding, and delivering the radioactive waste to a waste disposal facility. The phase 3 will be started on condition that the undertaking of the waste disposal for research reactors will be established. On the other hand, re-utilization of the facility has being studied, and 'realistic' reactor simulator was turned out by utilizing the reactor installations such as control rod drive and operation console. (authors)

  9. The DRAGON aerosol research facility to study aerosol behaviour for reactor safety applications

    International Nuclear Information System (INIS)

    Suckow, Detlef; Guentay, Salih

    2008-01-01

    During a severe accident in a nuclear power plant fission products are expected to be released in form of aerosol particles and droplets. To study the behaviour of safety relevant reactor components under aerosol loads and prototypical severe accident conditions the multi-purpose aerosol generation facility DRAGON is used since 1994 for several projects. DRAGON can generate aerosol particles by the evaporation-condensation technique using a plasma torch system, fluidized bed and atomization of particles suspended in a liquid. Soluble, hygroscopic aerosol (i.e. CsOH) and insoluble aerosol particles (i.e. SnO 2 , TiO 2 ) or mixtures of them can be used. DRAGON uses state-of-the-art thermal-hydraulic, data acquisition and aerosol measurement techniques and is mainly composed of a mixing chamber, the plasma torch system, a steam generator, nitrogen gas and compressed air delivery systems, several aerosol delivery piping, gas heaters and several auxiliary systems to provide vacuum, coolant and off-gas treatment. The facility can be operated at system pressure of 5 bars, temperatures of 300 deg. C, flow rates of non-condensable gas of 900 kg/h and steam of 270 kg/h, respectively. A test section under investigation is attached to DRAGON. The paper summarizes and demonstrates with the help of two project examples the capabilities of DRAGON for reactor safety studies. (authors)

  10. Studies and research concerning BNFP: life of project operating expenses for away-from-reactor (AFR) spent fuel storage facility. Final report

    International Nuclear Information System (INIS)

    Shallo, F.A.

    1979-09-01

    Life of Project operating expenses for a licensed Away-From-Reactor (AFR) Spent Fuel Storage Facility are developed in this report. A comprehensive business management structure is established and the functions and responsibilities for the facility organization are described. Contractual provisions for spent fuel storage services are evaluated

  11. Optimization of a neutron guide facility for the ET-RR-1 reactor. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Maayouf, R M.A.; El-Kady, A S [Reactor and Nutron Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    This work deals with the optimization calculations carried out for a neutron guide facility at the ET-RR-1 reactor. The facility is intended for delivering slow neutrons, emitted from one of the ET-RR-1 reactor horizontal channels, to a Fourier RTOF diffractometer. Accordingly, wavelength-dependent neutron reflectivity calculations were carried out for Cu, Ge, natural Ni, and {sup 58} Ni; materials which are usually used as reflecting surfaces of the neutron guide mirror channel walls. The results of calculations were in favour of {sup 58} Ni as the best coating of the neutron guide mirror channel walls. {sup 58} Ni gives a characteristic wavelength {lambda}{sup *}=1.36 A degree of the neutron guide. This also leads to a value of the neutron flux, at the neutron guide output, 1.4 times more than that one resulting from coating the mirror channel walls with natural nickel. The optimized neutron guide, for effective luminosity value 2.4 x 10{sup 6}, was found to be 22 m in length with mirror channel walls coated with {sup 58} Ni. Such optimization of the neutron guide length, along which a curvature 3345 m in radius, leads to a strong suppression of the background of gamma quanta and fast neutrons. Besides, the neutron wavelength range, 1.O{Alpha} degree -4.O{Alpha} degree, produced by the optimized neutron guide facility allows for neutron diffraction measurements at D values between 0.71{Alpha} degree -2.33 {Alpha} degree. 5 figs., 1 tab.

  12. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10{sup -3}) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the

  13. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    International Nuclear Information System (INIS)

    2013-01-01

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10 -3 ) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the Proceedings of

  14. Program for studying fundamental interactions at the PIK reactor facilities

    International Nuclear Information System (INIS)

    Serebrov, A. P.; Vassiljev, A. V.; Varlamov, V. E.; Geltenbort, P.; Gridnev, K. A.; Dmitriev, S. P.; Dovator, N. A.; Egorov, A. I.; Ezhov, V. F.; Zherebtsov, O. M.; Zinoviev, V. G.; Ivochkin, V. G.; Ivanov, S. N.; Ivanov, S. A.; Kolomensky, E. A.; Konoplev, K. A.; Krasnoschekova, I. A.; Lasakov, M. S.; Lyamkin, V. A.; Martemyanov, V. P.

    2016-01-01

    A research program aimed at studying fundamental interactions by means of ultracold and polarized cold neutrons at the GEK-4-4′ channel of the PIK reactor is presented. The apparatus to be used includes a source of cold neutrons in the heavy-water reflector of the reactor, a source of ultracold neutrons based on superfluid helium and installed in a cold-neutron beam extracted from the GEK-4 channel, and a number of experimental facilities in neutron beams. An experiment devoted to searches for the neutron electric dipole moment and an experiment aimed at a measurement the neutron lifetime with the aid of a large gravitational trap are planned to be performed in a beam of ultracold neutrons. An experiment devoted to measuring neutron-decay asymmetries with the aid of a superconducting solenoid is planned in a beam of cold polarized neutrons from the GEK-4′ channel. The second ultracold-neutron source and an experiment aimed at measuring the neutron lifetime with the aid of a magnetic trap are planned in the neutron-guide system of the GEK-3 channel. In the realms of neutrino physics, an experiment intended for sterile-neutrino searches is designed. The state of affairs around the preparation of the experimental equipment for this program is discussed.

  15. Program for studying fundamental interactions at the PIK reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Vassiljev, A. V.; Varlamov, V. E. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Geltenbort, P. [Institut Laue-Langevin (France); Gridnev, K. A. [St. Petersburg State University (Russian Federation); Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Egorov, A. I.; Ezhov, V. F.; Zherebtsov, O. M.; Zinoviev, V. G.; Ivochkin, V. G.; Ivanov, S. N.; Ivanov, S. A.; Kolomensky, E. A.; Konoplev, K. A.; Krasnoschekova, I. A.; Lasakov, M. S.; Lyamkin, V. A. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Martemyanov, V. P. [National Research Center Kurchatov Institute (Russian Federation); and others

    2016-05-15

    A research program aimed at studying fundamental interactions by means of ultracold and polarized cold neutrons at the GEK-4-4′ channel of the PIK reactor is presented. The apparatus to be used includes a source of cold neutrons in the heavy-water reflector of the reactor, a source of ultracold neutrons based on superfluid helium and installed in a cold-neutron beam extracted from the GEK-4 channel, and a number of experimental facilities in neutron beams. An experiment devoted to searches for the neutron electric dipole moment and an experiment aimed at a measurement the neutron lifetime with the aid of a large gravitational trap are planned to be performed in a beam of ultracold neutrons. An experiment devoted to measuring neutron-decay asymmetries with the aid of a superconducting solenoid is planned in a beam of cold polarized neutrons from the GEK-4′ channel. The second ultracold-neutron source and an experiment aimed at measuring the neutron lifetime with the aid of a magnetic trap are planned in the neutron-guide system of the GEK-3 channel. In the realms of neutrino physics, an experiment intended for sterile-neutrino searches is designed. The state of affairs around the preparation of the experimental equipment for this program is discussed.

  16. FFTF [Fast Flux Test Facility] reactor shutdown system reliability reevaluation

    International Nuclear Information System (INIS)

    Pierce, B.F.

    1986-07-01

    The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations

  17. Description of the blowdown test facility COG program on in-reactor fission product release, transport, and deposition under severe accident conditions

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.; Wood, J.C.

    1987-06-01

    Loss-of-coolant accidents with additional impairment of emergency cooling would probably result in high fuel temperatures leading to severe fuel damage (SFD) and significant fission product activity would then be transported along the PHTS to the break where a fraction of it would be released and transport under such conditions, there are many interacting and sometimes competing phenomena to consider. Laboratory simulations are being used to provide data on these individual phenomena, such as UO 2 oxidation and Zr-UO 2 interaction, from which mathematical models can be constructed. These are then combined into computer codes to include the interaction effects and assess the overall releases. In addition, in-reactor tests are the only source of data on release and transport of short-lived fission product nuclides, which are important in the consequence analysis of CANDU reactor accidents. Post-test decontamination of an in-reactor test facility also provides a unique opportunity to demonstrate techniques and obtain decontamination data relevant to post-accident rehabilitation of CANDU power reactors. Specialized facilities are required for in-reactor testing because of the extensive release of radioactive fission products and the high temperatures involved (up to 2500 degrees Celsius). To meet this need for the Canadian program, the Blowdown Test Facility (BTF) has been built in the NRU reactor at Chalk River. Between completion of construction in mid-1987 and the first Zircaloy-sheathed fuel test in fiscal year 1987/88, several commissioning tests are being performed. Similarly, extensive development work has been completed to permit application of instrumentation to irradiated fuel elements, and in support of post-test fuel assembly examination. A program of decontamination studies has also been developed to generate information relevant to post-accident decontamination of power reactors. The BTF shared cost test program funded by the COG High Temperature

  18. Development of the test facilities for the measurement of core flow and pressure distribution of SMART reactor

    International Nuclear Information System (INIS)

    Ko, Y.J.; Euh, D.J.; Youn, Y.J.; Chu, I.C.; Kwon, T.S.

    2011-01-01

    A design of SMART reactor has been developed, of which the primary system is composed of four internal circulation pumps, a core of 57 fuel assemblies, eight cassettes of steam generators, flow mixing head assemblies, and other internal structures. Since primary design features are very different from conventional reactors, the characteristics of flow and pressure distribution are expected to be different accordingly. In order to analyze the thermal margin and hydraulic design characteristics of SMART reactor, design quantification tests for flow and pressure distribution with a preservation of flow geometry are necessary. In the present study, the design feature of the test facility in order to investigate flow and pressure distribution, named “SCOP” is described. In order to preserve the flow distribution characteristics, the SCOP is linearly reduced with a scaling ratio of 1/5. The core flow rate of each fuel assembly is measured by a venturi meter attached in the lower part of the core simulator having a similarity of pressure drop for nominally scaled flow conditions. All the 57 core simulators and 8 S/G simulators are precisely calibrated in advance of assembling in test facilities. The major parameters in tests are pressures, differential pressures, and core flow distribution. (author)

  19. Catalogue and classification of technical safety standards, rules and regulations for nuclear power reactors and nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Fichtner, N.; Becker, K.; Bashir, M.

    1977-01-01

    The present report is an up-dated version of the report 'Catalogue and Classification of Technical Safety Rules for Light-water Reactors and Reprocessing Plants' edited under code No EUR 5362e, August 1975. Like the first version of the report, it constitutes a catalogue and classification of standards, rules and regulations on land-based nuclear power reactors and fuel cycle facilities. The reasons for the classification system used are given and discussed

  20. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  1. Final-Independent Confirmatory Survey Report For The Reactor Building, Hot Laboratory, Primary Pump House, And Land Areas At The Plum Brook Reactor Facility, Sandusky, Ohio DCN:2036-SR-01-10

    International Nuclear Information System (INIS)

    Bailey, Erika N.

    2011-01-01

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

  2. Evaluating the Effects of Air Pollution from a Plastic Recycling Facility on the Health of Nearby Residents.

    Science.gov (United States)

    Xin, Zhao; Tsuda, Toshihide; Doi, Hiroyuki

    2017-06-01

    We evaluated how exposure to airborne volatile organic compounds emitted from a plastic recycling facility affected nearby residents, in a cross-sectional study. Individuals>10 years old were randomly sampled from 50 households at five sites and given questionnaires to complete. We categorized the subjects by distance from the recycling facility and used this as a proxy measure for pollutant exposure. We sought to improve on a preceding study by generating new findings, improving methods for questionnaire distribution and collection, and refining site selection. We calculated the odds of residents living 500 or 900 m away from the facility reporting mucocutaneous and respiratory symptoms using a reference group of residents 2,800 m away. Self-reported nasal congestion (odds ratio=3.0, 95% confidence interval=1.02-8.8), eczema (5.1, 1.1-22.9), and sore throat (3.9, 1.1-14.1) were significantly higher among residents 500 m from the facility. Those 900 m away were also considerably more likely to report experiencing eczema (4.6, 1.4-14.9). Air pollution was found responsible for significantly increased reports of mucocutaneous and respiratory symptoms among nearby residents. Our findings confirm the effects of pollutants emitted from recycling facilities on residents' health and clarify that study design differences did not affect the results.

  3. Characterization and adjustment of the neutron radiography facility of the RP-10 nuclear reactor; Caracterizacion y puesta a punto de la facilidad de neutrografia del reactor nuclear RP-10

    Energy Technology Data Exchange (ETDEWEB)

    Ravello R, Y R

    2001-07-01

    The main aim of this work was to characterize and adjust the neutron radiography facility of the RP-10 nuclear reactor, and therefore be able to offer with this technique services to the industry and research centers in general. This technique will be complemented with others such as x-rays and gamma radiography. First, the shielding capacity of the facility was analyzed, proving that it complies with the radiological safety requirements established by the radiological safety code. Then gamma filtration tests were conducted in order to implement the direct method for image formation, optical density curves were built according to the thickness of the gamma filter, the type of film and the type of irradiation. Also, the indirect method for image formation was implemented for two types of converters: indium and dysprosium. Growth curves for optical density were also made according to contact time between converter-film, for different types of films. The resolution of the facility was also analyzed using two methods: Klasens (1946) and Harms (1986). Harms method came closer to the resolution of the human eye when compared to the Klasens method. Finally, the application fields of neutron radiography are presented, including those conducted at the neutron radiography facility of the RP-10 nuclear reactor. With this work, the RP-10 neutron radiography facility is ready to offer inspection and research services.

  4. Emission factors of polybrominated diphenyl ethers (PBDEs) from plastics processing and recycling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Shin-ichi; Hirai, Yasuhiro [National Institute for Environmental Studies, Tsukuba (Japan); Ota, Shizuko; Sudo, Kinichi [Ministry of Environment (Japan)

    2004-09-15

    With regard to polybrominated diphenyl ether (PBDE), there is few scientific knowledge on the emission patterns into the environment and exposure pathways to humans, and basic information is insufficient to consider what measures effective are. For the purpose of promoting risk reduction of target substances more effectively and efficiently, it is desirable to comprehend accurately the causal chain from the target substances utilization to the risk intake, and to evaluate the measures covering the whole applications of target substances. As the existing researches on the PBDE emission inventory, there are EU risk assessment report (European Chemical Bureau 2000, 2002, 2003), Danish EPA (1999), Palm et al.(2002) and Alcock et al. (2003). In addition, emissions of DecaBDE are published in TRI (Toxic Release Inventory) of US EPA. However, the primary information of the previous inventories is often the same and estimations based on the measured values are few. In light of the situation, PBDE emission concentrations from processing facilities of flame retardant plastics and recycling facilities of home electric appliances are measured in practice to presume material flow of PBDE and to estimate emission factors and inventories from each phase of life cycles. The validities of emission factors are examined in comparison to measured values of atmospheric depositions surroundings, which are close to sources.

  5. Upgrade of the experimental facilities of the ORPHEE reactor

    International Nuclear Information System (INIS)

    Farnoux, B.; Breant, P.

    1993-01-01

    At the time of the design, the ORPHEE reactor has been equipped with a set of up-to-date experimental facilities such as nine tangential and horizontal beam holes, one hot source, two hydrogen cold sources and six neutron guides. After more than ten years of operations, all the neutron beams are now used by about twenty five spectrometers. A modernisation program is under progress with a two fold aim: upgrade of the existing facilities and creation of new beams. Some details of the six following points will be described: 1) replacement of the flat cold source cell by an hollow cylinder in order first to increase the cold neutron flux and secondly to facilitate the extraction of new cold neutron beams. 2) replacement of the old neutron guide elements coated with natural nickel by new elements with isotopic nickel or super mirror coating. 3) modification of the curvature of some existing neutron guides in order to increase the wavelength band transmission. 4) creation of new cold neutron beams by installation of benders on the existing neutron guides. 5) design of new cold neutron guides and a new guide hall. 6) design of a thermal neutron guide. The two last points will made extensive use of super mirrors allowed by new technical developments done at the Laboratoire LEON BRILLOUIN in connection with industry. (author)

  6. The Text of the Agreement for the Application of Agency Safeguards to United States Reactor Facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-08-14

    The text of the Agreement between the Agency and the Government of the United States of America for the application of Agency safeguards to United States reactor facilities, which was signed on 15 June 1964 and entered into force on 1 August 1964, is reproduced in this document for the information of all Members.

  7. Device for treating plastic counting vials containing radioactive liquids

    International Nuclear Information System (INIS)

    Neidhart, B.; Brindoepke, H.W.; Flocke, W.; Kringe, K.P.; Lippmann, C.H.

    1985-01-01

    The treatment consists of separating the radioactive contents of the counting vial from its plastic components. The apparatus consists of a device for continuously supplying the counting vials to be treated, a means for crushing the vials into chips of plastic and a facility by means of which the radioactive contents of the counting vial and the separated plastic chips are collected separately from one another. A stirring assembly with a motor-driven stirrer and an alignment device are also provided. The radioactive substances pass through a sieve while the plastic chips slide down the sieve chute and into another container. All the metal parts of the facility are of stainless steel. The plastic chips collected in the sieve holder are washed and, after drying, are removed as negligibly radioactive solids. The weakly radioactive wash liquid is separated and collected. (orig./PW)

  8. Alternative water injection device to reactor equipment facility

    International Nuclear Information System (INIS)

    Yamashita, Masahiro.

    1995-01-01

    The device of the present invention injects water to the reactor and the reactor container continuously for a long period of time for preventing occurrence of a severe accident in a BWR type reactor and maintaining the integrity of the reactor container even if the accident should occur. Namely, diesel-driven pumps disposed near heat exchangers of a reactor after-heat removing system (RHR) are operated before the reactor is damaged by the after heat to cause reactor melting. A sucking valve disposed to a pump sucking pipeline connecting a secondary pipeline of the RHR heat exchanger and the diesel driving pump is opened. A discharge valve disposed to a pump discharge pipeline connecting a primary pipeline of the RHR heat exchanger and the diesel driving pump is opened. With such procedures, sea water is introduced from a sea water taking port through the top end of the secondary pipeline of the RHR heat exchanger and water is injected into the inside of the pressure vessel or the reactor container by way of the primary pipeline of the RHR heat exchanger. As a result, the reactor core is prevented from melting even upon occurrence of a severe accident. (I.S.)

  9. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  10. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs

  11. Low temperature conversion of plastic waste into light hydrocarbons

    International Nuclear Information System (INIS)

    Shah, Sajid Hussain; Khan, Zahid Mahmood; Raja, Iftikhar Ahmad; Mahmood, Qaisar; Bhatti, Zulfiqar Ahmad; Khan, Jamil; Farooq, Ather; Rashid, Naim; Wu, Donglei

    2010-01-01

    Advance recycling through pyrolytic technology has the potential of being applied to the management of plastic waste (PW). For this purpose 1 l volume, energy efficient batch reactor was manufactured locally and tested for pyrolysis of waste plastic. The feedstock for reactor was 50 g waste polyethylene. The average yield of the pyrolytic oil, wax, pyrogas and char from pyrolysis of PW were 48.6, 40.7, 10.1 and 0.6%, respectively, at 275 deg. C with non-catalytic process. Using catalyst the average yields of pyrolytic oil, pyrogas, wax and residue (char) of 50 g of PW was 47.98, 35.43, 16.09 and 0.50%, respectively, at operating temperature of 250 deg. C. The designed reactor could work at low temperature in the absence of a catalyst to obtain similar products as for a catalytic process.

  12. An improved air-supplied plastic suit for protection against tritium

    International Nuclear Information System (INIS)

    Wiernicki, C.

    1987-01-01

    A newly developed Saran/CPE plastic suit material is described which offers significantly better protection against HTO penetration and permeation than the 12-mil PVC currently used at SRP and most other DOE and commercial sites where tritium and HTO are exposure hazards. Tritium breakthrough time is an important parameter when evaluating the applicability of protective clothing; previously published tritium permeation tests did not measure this parameter. Future studies should quantify steady-state permeation rate and breakthrough time to more fully evaluate potential tritium protective clothing. Saran/CPE has successfully been fabricated into a plastic suit because, in addition to its superior tritium resistance, it has all the characteristics required to construct a rugged, dependable, and comfortable suit. The use of the Saran/CPE suit at SRP reactor and tritium production facilities should be a major contribution to the site As Low As Reasonably Achievable program. Both Saran/CPE have demonstrated excellent resistance to a wide range of chemical contaminants; therefore, this suit material may have applications in the general chemical industry and hazardous waste site cleanup operations. 4 refs., 3 figs., 1 tab

  13. Effects of cryogenic reactor irradiation on organic insulators

    International Nuclear Information System (INIS)

    Kato, Teruo

    1995-01-01

    Insulators for the superconducting magnets of fusion reactor are classified as electrical and thermal insulators for which tough organic materials will be used. When the magnet is exposed by fast neutrons and gamma-rays from plasma in a fusion reactor, the fusion reactor systems will cause fatal damage by the degradation of insulators. Therefore, it is necessary to select materials resistant irradiation damage for use as insulators. Electrical and mechanical tests were carried out at 4.2 K without warmup after the reactor irradiation at 5 K. The effects of reactor irradiation at the dose of 10 7 Gy on epoxy resins (bisphenol-A), G-10 CR, VL-E 200 and G-11 CR caused large decreases in mechanical strength. Polyetheretherketone (PEEK), polyimide and phenol novolac resins, which were used to laminate reinforced plastics with glass-cloth against irradiation, showed good resistance. Effects of cryogenic reactor irradiation on several organic materials and epoxy laminate-reinforced plastics with glass-cloth and Kevlar-cloth were also discussed. (author)

  14. Detailed description of an SSAC at the facility level for light water moderated (off-load refueled) power reactor facilities

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-03-01

    This report is intended to provide the technical details of an effective State Systems of Accounting for and Control of Nuclear Material (SSAC) which Member States may use, if they wish, to establish and maintain their SSACs. It is expected that systems designed along the lines described would be effective in meeting the objectives of both national and international systems for nuclear material accounting and control. This document accordingly provides a detailed description of a system for the accounting for and control of nuclear material in an off-load refueled light water moderated power reactor facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  15. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  16. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor-borne

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor-borne domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor-borne and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  17. Plastic solidification system at Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Okajima, Hiroyuki; Iokibe, Hiroyuki; Tsukiyama, Shigeru; Suzuki, Michio; Yamaguchi, Masato

    1987-01-01

    In Unit 1 and 2 of the Hamaoka Nuclear Power Station, radioactive waste was previously solidified in cement. By this method, the quantity of waste thus treated is relatively small, resulting in large number of the solidified drums. In order to solve this problem, the solidification facility using a thermosetting resin was employed, which is in operation since January 1986 for Unit 1, 2 and 3. As compared with the cement solidification, the solidified volume of concentrated liquid is about 1/12 and of spent-resin slurry is about 1/4 in plastic solidification. The following are described: course leading to the employment, the plastic solidification facility, features of the facility, operation results so far with the facility, etc. (Mori, K.)

  18. Nuclear reactor building

    International Nuclear Information System (INIS)

    Oshima, Nobuaki.

    1991-01-01

    The secondary container in a nuclear reactor building is made of a transparent structure having a shielding performance such as lead glass, by which the inside of the secondary container can be seen without undergoing radiation exposure. In addition, an operator transportation facility capable of carrying about 5 to 10 operators at one time is disposed, and the side of the facility on the secondary container is constituted with a transparent material such as glass, to provide a structure capable of observing the inside of the secondary container. The ventilation and air conditioning in the operator's transportation facility is in communication with the atmosphere of a not-controlled area. Accordingly, operators at the outside of the reactor building can reach the operator's transportation facility without taking and procedures for entering the controlled area and without undergoing radiation exposure. The inside of the secondary container in the reactor building can be seen from various directions through the transparent structure having the shielding performance. (N.H.)

  19. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru

    1998-01-01

    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)

  20. Regulation for installation and operation of marine reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The regulation is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the provisions of the order for execution of the law. The regulation is applied to marine reactors and reactors installed in foreign nuclear ships. Basic concepts and terms are explained, such as: radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area and employee. The application for permission of installation of reactors shall list maximum continuous thermal power, location and general structure of reactor facilities, structure and equipment of reactors and treatment and storage facilities of nuclear fuel materials, etc. The application for permission of reactors installed in foreign ships shall describe specified matters according to the provisions for domestic reactors. The operation program of reactors for three years shall be filed to the Minister of Transportation for each reactor every fiscal year from that year when the operation is expected to start. Records shall be made for each reactor and kept for particular periods on inspection of reactor facilities, operation, fuel assembly, control of radiation, maintenance and others. Exposure doses, inspection and check up of reactor facilities, operation of reactors, transport and storage of nuclear fuel materials, etc. are designated in detail. (Okada, K.)

  1. Design and construction of γ-rays irradiation facility for remote-handling parts and components of fusion reactor

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Morita, Yousuke; Seguchi, Tadao

    1995-03-01

    For the evaluation of radiation resistance of remote-handling system for International Thermonuclear Experimental Reactor(ITER), 'high dose-rate and high temperature (upper 350degC) γ-rays irradiation facility' was designed and constructed. In this facility, the parts and components of remote-handling system such as sensing devices, motors, optical glasses, wires and cables, etc., are tested by irradiation with 2x10 6 Roentgen/h Co-60 γ-rays at a temperature up to 350degC under various atmospheres (dry nitrogen gas, argon gas, dry air and vacuum). (author)

  2. STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Anthony L. Alberti; Todd S. Palmer; Javier Ortensi; Mark D. DeHart

    2016-05-01

    With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.

  3. A new materials irradiation facility at the Kyoto university reactor

    International Nuclear Information System (INIS)

    Yoshiie, T.; Hayashi, Y.; Yanagita, S.; Xu, Q.; Satoh, Y.; Tsujimoto, H.; Kozuka, T.; Kamae, K.; Mishima, K.; Shiroya, S.; Kobayashi, K.; Utsuro, M.; Fujita, Y.

    2003-01-01

    A new materials irradiation facility with improved control capabilities has been installed at the Kyoto University Reactor (KUR). Several deficiencies of conventional fission neutron material irradiation systems have been corrected. The specimen temperature is controlled both by an electric heater and by the helium pressure in the irradiation tube without exposure to neutrons at temperatures different from the design test conditions. The neutron spectrum is varied by the irradiation position. Irradiation dose is changed by pulling the irradiation capsule up and down during irradiation. Several characteristics of the irradiation field were measured. The typical irradiation intensity is 9.4x10 12 n/cm 2 s (>0.1 MeV) and the irradiation temperature of specimens is controllable from 363 to 773 K with a precision of ±2 K

  4. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

    1997-11-30

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

  5. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    International Nuclear Information System (INIS)

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R.; Carson, S.D.; Peterson, P.K.

    1997-01-01

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term

  6. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    International Nuclear Information System (INIS)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young

    2016-01-01

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation

  7. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation.

  8. Establishment of the Neutron Beam Research Facility at the OPAL Reactor

    International Nuclear Information System (INIS)

    Kennedy, S.J.; Robinson, R.A.

    2012-01-01

    Full text: Australia's first research reactor, HIFAR, reached criticality in January 1958. At that time Australia's main agenda was establishment of a nuclear power program. HIFAR operated for nearly 50 years, providing a firm foundation for the establishment of Australia's second generation research Reactor OPAL, which reached criticality in August 006. In HIFAR's early years a neutron beam facility was established for materials characterization, partly in aid of the nuclear energy agenda and partly in response to interest from Australia's scientific community. By the time Australia's nuclear energy program ceased (in the 1970s), radioisotope production and research had also been established at Lucas Heights. Also, by this time the neutron beam facility for scientific research had evolved into a major utilization programme, warranting establishment of an independent body to facilitate scientific access (the Australian Institute for Nuclear Science and Engineering). In HIFAR's lifetime, ANSTO established a radiopharmaceuticals service for the Australian medical community and NDT silicon production was also established and grew to maturity. So when time came to determine the strategy for nuclear research in Australia into the 21st century, it was clear that the replacement for HIFAR should be multipurpose, with major emphases on scientific applications of neutron beams and medical isotope production. With this strategy in mind, ANSTO set about to design and build OPAL with a world-class neutron beam facility, capable of supporting a large and diverse scientific research community. The establishment of the neutron beam facility became the mission of the Bragg Institute management team. This journey began in 1997 with establishment of a working budget, and reached its first major objective when OPAL reached 20 MW thermal power nearly one decade later (in 2006). The first neutron beam instruments began operation soon after (in 2007), and quickly proved themselves to be

  9. High flux materials testing reactor HFR Petten. Characteristics of facilities and standard irradiation devices

    International Nuclear Information System (INIS)

    Roettger, H.; Hardt, P. von der; Tas, A.; Voorbraak, W.P.

    1981-01-01

    For the materials testing reactor HFR some characteristic information is presented. Besides the nuclear data for the experiment positions short descriptions are given of the most important standard facilities for material irradiation and radionuclide production. One paragraph deals with the experimental set-ups for solid state and nuclear structure investigations. The information in this report refers to a core type, which is operational since March 1977. The numerical data compiled have been up-dated to January 1981

  10. Experimental facilities and simulation means

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2009-01-01

    This paper and its associated series of slides review the experimental facilities and the simulation means used for the development of nuclear reactors in France. These experimental facilities include installations used for the measurement and qualification of nuclear data (mainly cross-sections) like EOLE reactor and Minerve zero power reactor, installations like material testing reactors, installations dedicated to reactor safety experiments like Cabri reactor, and other installations like accelerators (Jannus accelerator, GANIL for instance) that are complementary to neutron irradiations in experimental reactors. The simulation means rely on a series of advanced computer codes: Tripoli-Apollo for neutron transport, Numodis for irradiation impact on materials, Neptune and Cathare for 2-phase fluid dynamics, Europlexus for mechanical structures, and Pleiades (with Alcyone) for nuclear fuels. (A.C.)

  11. Participation in the US Department of Energy Reactor Sharing Program

    International Nuclear Information System (INIS)

    1997-03-01

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would not be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed further in the report

  12. An estimate of radiation fields in a gamma irradiation facility using fuel elements from a swimming pool reactor

    International Nuclear Information System (INIS)

    Narain, Rajendra

    2002-01-01

    A simple gamma irradiation facility set up using a few irradiated or partially irradiated swimming pool elements can be assembled to provide a convenient facility for irradiation of small and medium sized samples for research. The paper presents results of radiation levels with an arrangement using four elements from a reactor core operating at a power of 20 MW. A maximum gamma field of higher than 1 KGy/h at locations adjacent to fuel elements with negligible neutron contamination can be achieved. (author)

  13. Characterisation of the epithermal neutron irradiation facility at the Portuguese research reactor using MCNP.

    Science.gov (United States)

    Beasley, D G; Fernandes, A C; Santos, J P; Ramos, A R; Marques, J G; King, A

    2015-05-01

    The radiation field at the epithermal beamline and irradiation chamber installed at the Portuguese Research Reactor (RPI) at the Campus Tecnológico e Nuclear of Instituto Superior Técnico was characterised in the context of Prompt Gamma Neutron Activation Analysis (PGNAA) applications. Radiographic films, activation foils and thermoluminescence dosimeters were used to measure the neutron fluence and photon dose rates in the irradiation chamber. A fixed-source MCNPX model of the beamline and chamber was developed and compared to measurements in the first step towards planning a new irradiation chamber. The high photon background from the reactor results in the saturation of the detector and the current facility configuration yields an intrinsic insensitivity to various elements of interest for PGNAA. These will be addressed in future developments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparative study on various attenuation theories usually used for aseismatic design of reactor facilities

    International Nuclear Information System (INIS)

    Muto, Kiyoshi; Kobayashi, Toshio.

    1977-01-01

    In the vibration analysis for the aseismatic design of reactor facilities, various attenuation theories have been used case by case. In this study, three attenuation theories of internal viscosity type, strain energy type and kinetic energy type were applied to the vibration analysis for a BWR type reactor building, and the respective results were compared. The three theories are explained briefly. Different damping factors were taken for the RC building, steel internal equipments and ground. The reactor building for a BWR of Mark 1 type was studied, and the mathematic vibration model involving those for the building, shield wall, primary containment vessel, gamma shield wall, reactor pressure vessel and foundation is shown. Natural frequency analysis, frequency response analysis and earthquake response analysis were carried out. Regarding the response of the building, the internal viscosity type and the strain energy type gave almost same values, but the kinetic energy type gave the value 1.2 times as large as the former values. In the response of the building, the first mode element is predominant, and the damping factors to the first mode caused these results. Regarding the maximum response acceleration and floor response spectra of internal equipments, the strain energy type and the kinetic energy type gave similar results, and the internal viscosity type gave smaller values. (Kako, I.)

  15. Introduction to the modified TROI test facility for fuel coolant interaction under a submerged reactor vessel

    International Nuclear Information System (INIS)

    Na, Young Su; Hong, Seong-Wan; Song, Jin Ho; Hong, Seong-Ho

    2014-01-01

    The molten Fuel-Coolant Interaction (FCI) can threaten the integrity of the reactor cavity under a severe accident. A steam explosion can be occurred by the rapid energy transfer in the high-temperature corium melt jet penetrating into water, which makes the dynamic load applying to the surrounding structure. Before a steam explosion, the corium melt jet breaks into small-sized particles, and the steam is generated continuously by the film boiling on the hot surface of the melt contacting with water. The premixing phase consisting of the corium melt, water, and steam can determine the intensity of the steam explosion. Unfortunately, the previous experimental studies on the FCI phenomena have carried out under a free fall of the corium melt jet in a gas phase before interacting with water. The previous TROI (Test for Real cOrium Interaction with water) test facility, that is a well-known test facility for the FCI phenomena in the world, has observed a steam explosion under a free fall of a corium melt jet in a gas phase before contacting a coolant since 2000, which is changing to simulate the FCI phenomena under a submerged reactor vessel. This study introduces the modified TROI test facility as shown in Fig. 1 and the considerations for the experiment with success. The previous TROI test facility, that has observed the molten Fuel-Coolant Interaction (FCI) with a free fall of the prototypic corium melt in a gas phase before contacting a coolant, was modified to simulate the FCI phenomena under a submerged reactor vessel for the assessment of the In-Vessel Retention (IVR) concept, i.e., without a free-fall distance of the corium melt before contacting water. The superheated prototypic corium melt created by the cold crucible melting method moves on a releasing valve newly installed just above the water level in the interaction vessel. The corium melt will stay on a releasing valve in less than 0.2 seconds to reduce heat loss for preventing the solidification, and

  16. Facility with a nuclear district heating reactor

    International Nuclear Information System (INIS)

    Straub, H.

    1988-01-01

    The district heating reactor has a pressure vessel which contains the reactor core and at least one coolant conducting primary heat carrier surrounded by a heat sink. The pressure vessel has two walls with a space between them. This space is connected with a container which contains air as heat isolating medium and water as heat conducting medium. During the normal reactor operation the space is filled by air from the container with the aid of a blower, whereas in the case of a break-down of the cooling system it is filled by water which flows out of the container by gravity after the blower has been switched off. The after-heat, generated in the reactor core during cooling break-down, is removed into the heat sink surrounding the pressure vessel in a safe and simple way. 6 figs

  17. Computer simulation of radiation processes in reactor facilities

    International Nuclear Information System (INIS)

    Gann, V.V.; Abdulaev, A.M.; Zhukov, A.I.; Marekhin, S.V.; Soldatov, S.A.

    2009-01-01

    The paper describes experience of the code system ALPHA-H/PHOENIX-H/ANC-H (APA) and the code MCNP usage for fuel assembly neutronic calculations and modeling of VVER-1000 reactor core. Using Monte Carlo code MCNP, calculations of neutron field and pin-by-pin energy deposition distributions are provided for different type of assemblies in reactor core. An MCNP model for unit 3 Zaporozhye NPP reactor core was designed. Calculations for pin-by-pin energy deposition in the reactor core were performed using the code system APA and the code MCNP. Comparison of these calculations shows rather high precision of APA calculation for energy deposition in the fuel rods and assemblies operated in the reactor core

  18. Neutronic analysis for conversion of the Ghana Research Reactor-1 facility using Monte Carlo methods and UO{sub 2} LEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Anim-Sampong, S.; Akaho, E.H.K.; Maakuu, B.T.; Gbadago, J.K. [Ghana Research Reactor-1 Centre, Dept. of Nuclear Engineering and Materials Science, National Nuclear Research Institute, Ghana Atomic Energy Commission, Legon, Accra (Ghana); Andam, A. [Kwame Nkrumah Univ. of Science and Technology, Dept. of Physics (Ghana); Liaw, J.J.R.; Matos, J.E. [Argonne National Lab., RERTR Programme, Div. of Nuclear Engineering (United States)

    2007-07-01

    Monte Carlo particle transport methods and software (MCNP) have been applied to the modelling, simulation and neutronic analysis for the conversion of the HEU-fuelled (high enrichment uranium) core of the Ghana Research Reactor-1 (GHARR-1) facility. The results show that the MCNP model of the GHARR-1 facility, which is a commercial version of the Miniature Neutron Source Reactor (MNSR) is good as the simulated neutronic and other reactor physics parameters agree with very well with experimental and zero power results. Three UO{sub 2} LEU (low enrichment uranium) fuels with different enrichments (12.6% and 19.75%), core configurations, core loadings were utilized in the conversion studies. The nuclear criticality and kinetic parameters obtained from the Monte Carlo simulation and neutronic analysis using three UO{sub 2} LEU fuels are in close agreement with results obtained for the reference 90.2% U-Al HEU core. The neutron flux variation in the core, fission chamber and irradiation channels for the LEU UO{sub 2} fuels show the same trend as the HEU core as presented in the paper. The Monte Carlo model confirms a reduction (8% max) in the peak neutron fluxes simulated in the irradiation channels which are utilized for experimental and commercial activities. However, the reductions or 'losses' in the flux levels neither affects the criticality safety, reactor operations and safety nor utilization of the reactor. Employing careful core loading optimization techniques and fuel loadings and enrichment, it is possible to eliminate the apparent reductions or 'losses' in the neutron fluxes as suggested in this paper. Concerning neutronics, it can be concluded that all the 3 LEU fuels qualify as LEU candidates for core conversion of the GHARR-1 facility.

  19. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  20. Extruded plastic scintillator for MINERvA

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alan D.; FermilabRykalin, Victor V.; Wood, Brian M.; NICADD, DeKalb

    2005-01-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here

  1. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I. [Instituto de Física, Universidad Nacional Autónoma de México Circuito de la Investigación Científica, Ciudad Universitaria. México, DF (Mexico); Raya-Arredondo, R.; Cruz-Galindo, S. [Instituto Nacional de Investigaciones Nucleares (Mexico); Sajo-Bohus, L. [Universidad Simón Bolivar, Laboratorio de Física Nuclear, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.

  2. Preliminary reactor physics calculations for Exxon LWR fuel testing in the power burst facility

    International Nuclear Information System (INIS)

    Olson, W.O.; Nigg, D.W.

    1981-05-01

    The PFB reactor is being considered as an irradiation facility to test LWR fuel rods for Exxon Nuclear Company. Requested test conditions are 18 kW/ft axial peak steady state power in 2.5% initial enrichment, 20,000 MWd/Tu exposed rods. Multigroup transport theory calculations (S/sub n/ and Monte Carlo) showed that this was unattainable in the standard PBF test loop. Thus, a flux multiplier was developed in the form of a Zr-2-clad 0.15-inch thick cylindrical shell of 35% enriched, 88% T.D. UO 2 replacing the flow divider, surrounding the rod within the in-pile tube in PFB. With this flux multiplier installed and assuming an average water density of 0.86 g/cm 3 within the test loop, a Figure of Merit (FOM) for a single-rod test assembly of 0.86 kW/ft-MW +- 5% (at 95% confidence level) was calculated. This FOM is the axial peak linear test rod power per megawatt of reactor power. A reactor power of about 21 megawatts will therefore be required to supply the requested linear test rod axial peak heating rate of 18 kW/ft

  3. Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to the PBMR-400, PBMM, GT-MHR, HTR-10 and the ASTRA Critical Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The IAEA has facilitated an extensive programme that addresses the technical development of advanced gas cooled reactor technology. Included in this programme is the coordinated research project (CRP) on Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance, which is the focus of this TECDOC. This CRP was established to foster the sharing of research and associated technical information among participating Member States in the ongoing development of the HTGR as a future source of nuclear energy. Within it, computer codes and models were verified through actual test results from operating reactor facilities. The work carried out in the CRP involved both computational and experimental analysis at various facilities in IAEA Member States with a view to verifying computer codes and methods in particular, and to evaluating the performance of HTGRs in general. The IAEA is grateful to China, the Russian Federation and South Africa for providing their facilities and benchmark programmes in support of this CRP.

  4. Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to the PBMR-400, PBMM, GT-MHR, HTR-10 and the ASTRA Critical Facility

    International Nuclear Information System (INIS)

    2013-04-01

    The IAEA has facilitated an extensive programme that addresses the technical development of advanced gas cooled reactor technology. Included in this programme is the coordinated research project (CRP) on Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance, which is the focus of this TECDOC. This CRP was established to foster the sharing of research and associated technical information among participating Member States in the ongoing development of the HTGR as a future source of nuclear energy. Within it, computer codes and models were verified through actual test results from operating reactor facilities. The work carried out in the CRP involved both computational and experimental analysis at various facilities in IAEA Member States with a view to verifying computer codes and methods in particular, and to evaluating the performance of HTGRs in general. The IAEA is grateful to China, the Russian Federation and South Africa for providing their facilities and benchmark programmes in support of this CRP.

  5. Current status of irradiation facilities in JRR-3 and JRR-4

    International Nuclear Information System (INIS)

    Hori, Naohiko; Wada, Shigeru; Sasajima, Fumio; Kusunoki, Tsuyoshi

    2006-01-01

    The Department of Research Reactor has operated two research reactors, JRR-3 and JRR-4. These reactors were constructed in the Tokai Research Establishment. Many researchers and engineers use these joint-use facilities. JRR-3 is a light water moderated and cooled, pool type research reactor using low-enriched silicide fuel. JRR-3's maximum thermal power is 20MW. JRR-3 has nine vertical irradiation holes for RI production, nuclear fuels and materials irradiation at reactor core area. JRR-3 has many kinds of irradiation holes in a heavy water tank around the reactor core. These are two hydraulic rabbit irradiation facilities, two pneumatic rabbit irradiation facilities, one activation analysis irradiation facilities, one uniform irradiation facility, one rotating irradiation facility and one capsule irradiation facility. JRR-3 has nine horizontal experimental holes, that are used by many kinds of neutron beam experimental facilities using these holes. JRR-4 is a light water moderated and cooled, swimming pool type research reactor using low-enriched silicide fuel. JRR-4's maximum thermal power is 3.5MW. JRR-4 has five vertical irradiation tubes at reactor core area, three capsule irradiation facilities, one hydraulic rabbit irradiation facility, and one pneumatic rabbit irradiation facility. JRR-4 has a neutron beam hole, and it has used neutron beam experiments, irradiations for activation analysis and medical neutron irradiations. (author)

  6. Physical security at research reactors

    International Nuclear Information System (INIS)

    Clark, R.A.

    1977-01-01

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  7. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  8. The U.S. Geological Survey's TRIGA® reactor

    Science.gov (United States)

    DeBey, Timothy M.; Roy, Brycen R.; Brady, Sally R.

    2012-01-01

    The U.S. Geological Survey (USGS) operates a low-enriched uranium-fueled, pool-type reactor located at the Federal Center in Denver, Colorado. The mission of the Geological Survey TRIGA® Reactor (GSTR) is to support USGS science by providing information on geologic, plant, and animal specimens to advance methods and techniques unique to nuclear reactors. The reactor facility is supported by programs across the USGS and is organizationally under the Associate Director for Energy and Minerals, and Environmental Health. The GSTR is the only facility in the United States capable of performing automated delayed neutron analyses for detecting fissile and fissionable isotopes. Samples from around the world are submitted to the USGS for analysis using the reactor facility. Qualitative and quantitative elemental analyses, spatial elemental analyses, and geochronology are performed. Few research reactor facilities in the United States are equipped to handle the large number of samples processed at the GSTR. Historically, more than 450,000 sample irradiations have been performed at the USGS facility. Providing impartial scientific information to resource managers, planners, and other interested parties throughout the world is an integral part of the research effort of the USGS.

  9. Country report: utilization of MINT's research reactor

    International Nuclear Information System (INIS)

    Ab Khalic b Hj Wood; Adnan b Bukhari; Wee Boon Siong

    2004-01-01

    MINT has only one research reactor, i.e. TRIGA MKII reactor, equipped with various neutron irradiation facilities such as rotary rack and rabbit system. Apart from counting facilities for NAA work, other facilities available for the respective studies include facilities for neutron radiography and SANS. At Present most of reactor operation time has been utilized for samples irradiation related to the NAA application. Majority of the samples are from MINT analytical chemistry laboratory where the present authors work, and the rest of the samples are from local universities. They provide analytical chemistry services for other government departments as well as private companies. In order to improve the reactor utilization, the management of MINT has formed Reactor Interest Group (RIG) at the national level in 2002, which embraces members from various institutions in this country. To support the RIG activities, MINT provides seed funding to finance various activities for the reactor utilization, which include financing project to make use of SANS, neutron radiography and radioisotopes production (mainly for tracer studies carried out by MINT's tracer group) facilities, and funding for basic study in BNCT. (author)

  10. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  11. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    International Nuclear Information System (INIS)

    Lewis, M.R.

    2000-01-01

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork

  12. Canada-India Reactor (CIR)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1960-12-15

    Design information on the Canada-India Reactor is presented. Data are given on reactor physics, the core, fuel elements, core heat transfer, control, reactor vessel, fluid flow, reflector and shielding, containment, cost estimates, and research facilities. Drawings of vertical and horizontal sections of the reactor and fluid flow are included. (M.C.G.)

  13. A study concerning tritium concentration evolution in the moderator of a CANDU reactor connected on-line to a detritiation facility

    International Nuclear Information System (INIS)

    Bidica, Nicolae; Bornea, Anisia

    2005-01-01

    The present work is a theoretical study on the tritium concentration evolution in the CANDU reactor moderator connected on-line with a detritiation facility. This study is based on a calculation model which takes into account the evolution curve of the tritium concentration in the absence of detritiation process in both the moderator and SPTC of the Unit 1 CANDU reactor at Cernavoda NPP. This study leads to determination of the tritium concentration evolution in the moderator in the presence of the detritiation process for both a range of intake flows and initial concentration. Also, the intake flow change will be analyzed for a detritiation facility as a function of tritium initial concentration existing in the moderator in the case of a survey of the detritiation over a given period of time. The conclusions of this study were the following: - an optimum of the detritiation factor can be determined; - detritiation starts at a lower value for the tritium concentration in moderator which reduces the strain upon the detritiation facility and therefore the costs of its building, maintenance and operation. (authors)

  14. A microprocessor based monitoring system for a small nuclear reactor facility

    International Nuclear Information System (INIS)

    Miller, G.E.; DeKeyser, C.F.

    1980-01-01

    An inexpensive microprocessor based system has been designed and constructed for our 250 kilowatt TRIGA reactor facility. The system, which is beginning operational testing, can monitor on a continuous basis the status of up to 54 devices and maintain a record of events. These devices include fixed radiation monitors, pool water level trips, security alarms and an access control unit. In the latter case, the unit permits selection of different levels of access permission based on the time of day. The system can alert security and other personnel in the event of abnormalities. Because of the inclusion of this in the security system, special reliability and failure mode operation. The unit must also be simple to install, program and operate. (author)

  15. Modelling of elasto-plastic material behaviour

    International Nuclear Information System (INIS)

    Halleux, J.P.

    1981-01-01

    The present report describes time-independent elasto-plastic material behaviour modelling techniques useful for implementation in fast structural dynamics computer programs. Elasto-plastic behaviour is characteristic for metallic materials such as steel and is thus of particular importance in the study of reactor safety-related problems. The classical time-independent elasto-plastic flow theory is recalled and the fundamental incremental stress-strain relationships are established for strain rate independent material behaviour. Some particular expressions useful in practice and including reversed loading are derived and suitable computational schemes are shwon. Modelling of strain rate effects is then taken into account, according to experimental data obtained from uniaxial tension tests. Finally qualitative strain rate history effects are considered. Applications are presented and illustrate both static and dynamic material behaviour

  16. Role of irradiation reactor mock-ups

    International Nuclear Information System (INIS)

    Casali, F.; Cerles, J.M.; Debrue, J.

    1977-01-01

    A survey is given of the utilization of low power facilities in support to irradiation reactor experiments. The BRO2, ISIS and RB3 facilities are described as neutronic mock-ups of the BR2, OSIRIS and ESSOR reactors respectively

  17. The Text of the Agreement for the Application of Agency Safeguards to Four United States Reactor Facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-05-24

    The text of the Agreement between the Agency and the United States of America for the application of Agency safeguards to four United States reactor facilities, which was signed on 30 March 1962 and will enter into force on 1 June 1962, is reproduced in this document for the information of all Members of the Agency.

  18. Real time simulator for material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Ishitsuka, Tatsuo; Tamura, Kazuo [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-03-15

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  19. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide; Ishitsuka, Tatsuo; Tamura, Kazuo

    2012-01-01

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  20. Siting of research reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this document is to develop criteria for siting and the site-related design basis for research reactors. The concepts presented in this document are intended as recommendations for new reactors and are not suggested for backfitting purposes for facilities already in existence. In siting research reactors serious consideration is given to minimizing the effects of the site on the reactor and the reactor on the site and the potential impact of the reactor on the environment. In this document guidance is first provided on the evaluation of the radiological impact of the installation under normal reactor operation and accident conditions. A classification of research reactors in groups is then proposed, together with a different approach for each group, to take into account the relevant safety problems associated with facilities of different characteristics. Guidance is also provided for both extreme natural events and for man-induced external events which could affect the safe operation of the reactor. Extreme natural events include earthquakes, flooding for river or coastal sites and extreme meteorological phenomena. The feasibility of emergency planning is finally considered for each group of reactors

  1. Large-scale Samples Irradiation Facility at the IBR-2 Reactor in Dubna

    CERN Document Server

    Cheplakov, A P; Golubyh, S M; Kaskanov, G Ya; Kulagin, E N; Kukhtin, V V; Luschikov, V I; Shabalin, E P; León-Florián, E; Leroy, C

    1998-01-01

    The irradiation facility at the beam line no.3 of the IBR-2 reactor of the Frank Laboratory for Neutron Physics is described. The facility is aimed at irradiation studies of various objects with area up to 800 cm$^2$ both at cryogenic and ambient temperatures. The energy spectra of neutrons are reconstructed by the method of threshold detector activation. The neutron fluence and $\\gamma$ dose rates are measured by means of alanine and thermoluminescent dosimeters. The boron carbide and lead filters or $(n/\\gamma)$ converter provide beams of different ratio of doses induced by neutrons and photons. For the lead filter, the flux of fast neutrons with energy more than 0.1 MeV is $1.4 \\cdot 10^{10}$ \\fln and the neutron dose is about 96\\% of the total radiation dose. For the $(n/\\gamma)$ converter, the $\\gamma$ dose rate is $\\sim$500 Gy h$^{-1}$ which is about 85\\% of the total dose. The radiation hardness tests of GaAs electronics and materials for the ATLAS detector to be put into operation at the Large Hadron ...

  2. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  3. Probabilistic safety assessment for food irradiation facility

    International Nuclear Information System (INIS)

    Solanki, R.B.; Prasad, M.; Sonawane, A.U.; Gupta, S.K.

    2012-01-01

    Highlights: ► Different considerations are required in PSA for Non-Reactor Nuclear Facilities. ► We carried out PSA for food irradiation facility as a part of safety evaluation. ► The results indicate that the fatal exposure risk is below the ‘acceptable risk’. ► Adequate operator training and observing good safety culture would reduce the risk. - Abstract: Probabilistic safety assessment (PSA) is widely used for safety evaluation of Nuclear Power Plants (NPPs) worldwide. The approaches and methodologies are matured and general consensus exists on using these approaches in PSA applications. However, PSA applications for safety evaluation for non-reactor facilities are limited. Due to differences in the processes in nuclear reactor facilities and non-reactor facilities, the considerations are different in application of PSA to these facilities. The food irradiation facilities utilize gamma irradiation sources, X-ray machines and electron accelerators for the purpose of radiation processing of variety of food items. This is categorized as Non-Reactor Nuclear Facility. In this paper, the application of PSA to safety evaluation of food irradiation facility is presented considering the ‘fatality due to radiation overexposure’ as a risk measure. The results indicate that the frequency of the fatal exposure is below the numerical acceptance guidance for the risk to the individual. Further, it is found that the overall risk to the over exposure can be reduced by providing the adequate operator training and observing good safety culture.

  4. Techno-economic evaluation of high temperature pyrolysis processes for mixed plastic waste.

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Westerhout, R.W.J.; van Koningsbruggen, M.P.; van der Ham, Aloysius G.J.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1998-01-01

    Three pyrolysis processes for Mixed Plastic Waste (MPW) with different reactors (Bubbling Fluidized Bed, Circulating Fluidized Bed and Rotating Cone Reactor, respectively BFB, CFB and RCR) were designed and evaluated. The estimated fixed capital investment for a 50 kton/year MPW pyrolysis plant

  5. Relevance of passive safety testing at the fast flux test facility to advanced liquid metal reactors - 5127

    International Nuclear Information System (INIS)

    Wootan, D.W.; Omberg, R.P.

    2015-01-01

    Significant cost and safety improvements can be realized in advanced liquid metal reactor (LMR) designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. Testing at the Rapsodie and EBR-II reactors had demonstrated the beneficial effect of reactivity feedback caused by changes in fuel temperature and core geometry mechanisms in a liquid metal fast reactor in a holistic sense. The FFTF passive safety testing program was developed to examine how specific design elements influenced dynamic reactivity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results from smaller cores like Rapsodie and EBR-II to reactor cores that were more prototypic in scale to reactors of current interest. The U.S. Department of Energy, Office of Nuclear Energy Advanced Reactor Technology program is in the process of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs. (authors)

  6. Operational experiences in radiation protection in fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Santhanam, R.; Baskar, S.; Madhusoodanan, U.; Chandrasekaran, S.; Balasundar, S.; Suresh, K.; Ajoy, K.C.; Dhanasekaran, A.; Akila, R.; Indira, R.

    2008-01-01

    The Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL), situated at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is a pilot plant to reprocess the mixed carbide fuel, for the first time in the world. Reprocessing of fuel with varying burn-ups up to 155 G Wd/t, irradiated at Fast Breeder Test Reactor (FBTR), has been successfully carried out at CORAL. Providing radiological surveillance in a fuel reprocessing facility itself is a challenging task, considering the dynamic status of the sources and the proximity of the operator with the radioactive material and it is more so in a fast reactor fuel reprocessing facility due to handling of higher burn-up fuels associated with radiation fields and elevated levels of fissile material content from the point of view of criticality hazard. A very detailed radiation protection program is in place at CORAL. This includes, among others, monitoring the release of 85 Kr and other fission products and actinides, if any, through stack on a continuous basis to comply with the regulatory limits and management of disposal of different types of radioactive wastes. Providing radiological surveillance during the operations such as fuel transport, chopping and dissolution and extraction cycle was without any major difficulty, as these were carried out in well-shielded and high integrity lead cells. Enforcement of exposure control assumes more importance during the analysis of process samples and re-conversion operations due to the presence of fission product impurities and also since the operations were done in glove boxes and fume hoods. Although the radiation fields encountered in process area were marginally higher, due to the enforcement of strict administrative controls, the annual exposure to the radiation workers was well within the regulatory limit. As the facility is being used as test bed for validation of prototype equipment, periodic inspection and maintenance of components such as centrifuge

  7. Development and Operation of Experiment Course using Research Reactor and Associated Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, B. C.; Hwang, I. A.; Won, J. Y.; Ju, Y. C.; Nam, J. S.; Seo, K. W.; Kim, H. N.

    2013-05-15

    The purpose of present research is to offer a specialized educational opportunity by developing specific curriculum for potential users, mainly university students majoring in related with nuclear engineering and radiation field, on site at KAERI, exploiting the diverse offering of HANARO and ancillary facilities. The specific items of this research accomplished are: First, Development of various curricula for specific research using HANARO and continuous operation of the developed curricula to provided university students with opportunities to use HANARO. Second, Continuous operation of research reactor related experimental training programs for university students in nuclear field to make contribution to cultivating specialists. Third, through the site experimental training for new coming nuclear engineering students, support future potential users to the nuclear research fields, as well as enlarge or broaden the base. Finally, it is hoped that these experiments broadens public awareness and acceptance of the present and potential future contribution of the reactor technology, there by bring positive impacts to policy making. As a whole, 108 students offered and 88 students from 6 universities have completed the course of the programs developed by this project. Also, 1 textbook and 1 teaching aid, a questionnaire have been developed to support the program.

  8. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  9. A computer control system for a research reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.; Sandquist, G.M.

    1987-01-01

    Most reactor applications until now, have not required computer control of core output. Commercial reactors are generally operated at a constant power output to provide baseline power. However, if commercial reactor cores are to become load following over a wide range, then centralized digital computer control is required to make the entire facility respond as a single unit to continual changes in power demand. Navy and research reactors are much smaller and simpler and are operated at constant power levels as required, without concern for the number of operators required to operate the facility. For navy reactors, centralized digital computer control may provide space savings and reduced personnel requirements. Computer control offers research reactors versatility to efficiently change a system to develop new ideas. The operation of any reactor facility would be enhanced by a controller that does not panic and is continually monitoring all facility parameters. Eventually very sophisticated computer control systems may be developed which will sense operational problems, diagnose the problem, and depending on the severity of the problem, immediately activate safety systems or consult with operators before taking action

  10. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  11. Ministry of ordinance determining the technical standard concerning atomic energy facilities for power generation

    International Nuclear Information System (INIS)

    1985-01-01

    The ministerial ordinance provides for the technical standards for the power generation of nuclear facilities; i.e., electric power facilities generating electricity with nuclear energy for motive power, according to the Electricity Enterprises Act. The contents are as follows: protection against fires, aseismatic design, radiation protective barriers, structural protection for sitings, reactor installation, safety measures, materials and structures, safety valves, pressure resistance tests, reactor core, radiation shields, reactor cooling, emergency core cooling system, facility equipment, alarm system, reactor control system, reactor control room, fuel storage facility, fuel handling facility, ventilation equipment, radioactive contamination prevention, radioactive waste management facility, reactor containment facility, and so on. (Kubozono, M.)

  12. Alteration of installation of reactors (alteration of No.1 and No.2 reactor facilities) in Oi Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Safety Commission reported to the Minister of International Trade and Industry on October 27, 1983, that the technical capability was recognized to be adequate, and the safety after the alteration of the installation of reactors was judged to be ensured. At the time of deliberation, the guidelines for examining the safety design and safety evaluation of LWR facilities for power generation were used. Regarding the change of the degree of enrichment of replacement fuel from 3.2 to 3.4 wt.%, the limiting conditions are satisfied in the replacement core, and the nuclear design is appropriate. Eight test fuel assemblies using UO 2 pellets containing gadolinia are charged in the core of No.2 reactor, and the irradiation of two cycles is carried out. As the result of the safety examination regarding this test, the propriety of the nuclear design and mechanical design of the test fuel assemblies was confirmed. This alteration does not exert influence on the result of safety analysis made so far. This report was decided by the Committee on Examination of Reactor Safety based on the conclusion of No.26 subcommittee. (Kako, I.)

  13. Research reactors in Argentina

    International Nuclear Information System (INIS)

    Carlos Ruben Calabrese

    1999-01-01

    Argentine Nuclear Development started in early fifties. In 1957, it was decided to built the first a research reactor. RA-1 reactor (120 kw, today licensed to work at 40 kW) started operation in January 1958. Originally RA-1 was an Argonaut (American design) reactor. In early sixties, the RA-1 core was changed. Fuel rods (20% enrichment) was introduced instead the old Argonaut core design. For that reason, a critical facility named RA-0 was built. After that, the RA-3 project started, to build a multipurpose 5 MW nuclear reactor MTR pool type, to produce radioisotopes and research. For that reason and to define the characteristics of the RA-3 core, another critical facility was built, RA-2. Initially RA-3 was a 90 % enriched fuel reactor, and started operation in 1967. When Atucha I NPP project started, a German design Power Reactor, a small homogeneous reactor was donated by the German Government to Argentina (1969). This was RA-4 reactor (20% enrichment, 1W). In 1982, RA-6 pool reactor achieved criticality. This is a 500 kW reactor with 90% enriched MTR fuel elements. In 1990, RA-3 started to operate fueled by 20% enriched fuel. In 1997, the RA-8 (multipurpose critical facility located at Pilcaniyeu) started to operate. RA-3 reactor is the most important CNEA reactor for Argentine Research Reactors development. It is the first in a succession of Argentine MTR reactors built by CNEA (and INVAP SE ) in Argentina and other countries: RA-6 (500 kW, Bariloche-Argentina), RP-10 (10MW, Peru), NUR (500 kW, Algeria), MPR (22 MW, Egypt). The experience of Argentinian industry permits to compete with foreign developed countries as supplier of research reactors. Today, CNEA has six research reactors whose activities have a range from education and promotion of nuclear activity, to radioisotope production. For more than forty years, Argentine Research Reactors are working. The experience of Argentine is important, and argentine firms are able to compete in the design and

  14. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  15. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  16. Methodology for plastic fracture - a progress report

    International Nuclear Information System (INIS)

    Wilkinson, J.P.D.; Smith, R.E.E.

    1977-01-01

    This paper describes the progress of a study to develop a methodology for plastic fracture. Such a fracture mechanics methodology, having application in the plastic region, is required to assess the margin of safety inherent in nuclear reactor pressure vessels. The initiation and growth of flaws in pressure vessels under overload conditions is distinguished by a number of unique features, such as large scale yielding, three-dimensional structural and flaw configurations, and failure instabilities that may be controlled by either toughness or plastic flow. In order to develop a broadly applicable methodology of plastic fracture, these features require the following analytical and experimental studies: development of criteria for crack initiation and growth under large scale yielding; the use of the finite element method to describe elastic-plastic behaviour of both the structure and the crack tip region; and extensive experimental studies on laboratory scale and large scale specimens, which attempt to reproduce the pertinent plastic flow and crack growth phenomena. This discussion centers on progress to date on the selection, through analysis and laboratory experiments, of viable criteria for crack initiation and growth during plastic fracture. (Auth.)

  17. Current status of JAERI Tokai hot cell facilities

    International Nuclear Information System (INIS)

    Itami, Hiroharu; Morozumi, Minoru; Yamahara, Takeshi

    1992-01-01

    JAERI has 4 hot cell facilities in order to examine high radioactive materials. Three of them, the Research Hot Laboratory, the Reactor Fuel Examination Facility and the Waste Safety Testing Facility are located in the JAERI Tokai site, and the rest is the JMTR Hot Laboratory in the Oarai site. The Research Hot Laboratory (RHL) was constructed for post-irradiation examination (PIE), especially nuclear related basic research experiment, such as metallurgical, chemical and mechanical examination on fuels and materials irradiated in research and test reactors. This facility has 10 large dimension concrete and 38 lead cells. At present the RHL is used for various kinds of examinations of high radioactive samples such as fuels of research and test reactors, power reactors and high temperature testing reactor (HTTR), and structural materials. The Reactor Fuel Examination Facility (RFEF) was designed and constructed for carrying out PIE of irradiated full-size fuel assemblies of light water reactors (LWRs). This facility has a storage pool, 8 concrete and 5 lead cells. They are currently used for safety evaluation on high burnup and advanced lWR fuels as part of the national program. The Waste Safety Testing Facility (WASTEF) was designed and constructed for safety research on long-term storage and disposal of high level radioactive wastes, generated by fuel reprocessing. The WASTEF has 5 concrete cells and 1 lead cell. Examinations on the behavior of various long-lived fission products in a glass form and in a canister and, releasing behavior of them out of a canister are carrying out under the condition at storage. (author)

  18. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  19. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  20. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  1. Replacement research reactor for Australia

    International Nuclear Information System (INIS)

    Miller, Ross

    1998-01-01

    In 1992, the Australian Government commissioned a review into the need for a replacement research reactor. That review concluded that in about years, if certain conditions were met, the Government could make a decision in favour of a replacement reactor. A major milestone was achieved when, on 3 September 1997, the Australian Government announced the construction of a replacement research reactor at the site of Australia's existing research reactor HIFAR, subject to the satisfactory outcome of an environmental assessment process. The reactor will be have the dual purpose of providing a first class facility for neutron beam research as well as providing irradiation facilities for both medical isotope production and commercial irradiations. The project is scheduled for completion before the end of 2005. (author)

  2. NCSU Reactor Sharing Program

    International Nuclear Information System (INIS)

    Perez, P.B.

    1993-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities

  3. Regulation for installation and operation of experimental-research reactor

    International Nuclear Information System (INIS)

    1979-01-01

    The ordinance is stipulated under the Law for regulation of nuclear raw materials, nuclear fuel materials and reactors and the provisions for installation and operation of reactor in the order for execution of the law. Basic concepts and terms are defined, such as, radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; preserved area; inspected surrounding area and employee. An application for permission of installation of reactor shall list such matters as: the maximum continuous thermal output of reactor; location and general construction of reactor facilities; construction and equipment of the main reactor and other facilities for nuclear fuel materials; cooling and controlling system and radioactive waste, etc. An operation plan of reactor for three years shall be filed till January 31 of the fiscal year preceding that one the operation begins. Records shall be made and kept for specified periods respectively on inspection of reactor facilities, operation, fuel assembly, radiation control, maintenance, accidents of reactor equipment and weather. Detailed rules are settled for entrance limitation to controlled area, exposure dose, inspection, check up and regular independent examination of reactor facilities, operation of reactor, transportation of substances contaminated by nuclear fuel materials within the works and storage, etc. (Okada, K.)

  4. New research reactor for Australia

    International Nuclear Information System (INIS)

    Miller, R.

    1992-01-01

    HIFAR, Australia's major research reactor was commissioned in 1958 to test materials for an envisaged indigenous nuclear power industry. HIFAR is a Dido type reactor which is operated at 10 MW. With the decision in the early 1970's not to proceed to nuclear power, HIFAR was adapted to other uses and has served Australia well as a base for national nuclear competence; as a national facility for neutron scattering/beam research; as a source of radioisotopes for medical diagnosis and treatment; and as a source of export revenue from the neutron transmutation doping of silicon for the semiconductor industry. However, all of HIFAR's capabilities are becoming less than optimum by world and regional standards. Neutron beam facilities have been overtaken on the world scene by research reactors with increased neutron fluxes, cold sources, and improved beams and neutron guides. Radioisotope production capabilities, while adequate to meet Australia's needs, cannot be easily expanded to tap the growing world market in radiopharmaceuticals. Similarly, neutron transmutation doped silicon production, and export income from it, is limited at a time when the world market for this material is expanding. ANSTO has therefore embarked on a program to replace HIFAR with a new multi-purpose national facility for nuclear research and technology in the form of a reactor: a) for neutron beam research, - with a peak thermal flux of the order of three times higher than that from HIFAR, - with a cold neutron source, guides and beam hall, b) that has radioisotope production facilities that are as good as, or better than, those in HIFAR, c) that maximizes the potential for commercial irradiations to offset facility operating costs, d) that maximizes flexibility to accommodate variations in user requirements during the life of the facility. ANSTO's case for the new research reactor received significant support earlier this month with the tabling in Parliament of a report by the Australian Science

  5. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  6. Seismic response analyses for reactor facilities at Savannah River

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Xu, J.

    1991-01-01

    The reactor facilities at the Savannah River Plant (SRP) were designed during the 1950's. The original seismic criteria defining the input ground motion was 0.1 G with UBC [uniform building code] provisions used to evaluate structural seismic loads. Later ground motion criteria have defined the free field seismic motion with a 0.2 G ZPA [free field acceleration] and various spectral shapes. The spectral shapes have included the Housner spectra, a site specific spectra, and the US NRC [Nuclear Regulatory Commission] Reg. Guide 1.60 shape. The development of these free field seismic criteria are discussed in the paper. The more recent seismic analyses have been of the following type: fixed base response spectra, frequency independent lumped parameter soil/structure interaction (SSI), frequency dependent lumped parameter SSI, and current state of the art analyses using computer codes such as SASSI. The results from these computations consist of structural loads and floor response spectra (used for piping and equipment qualification). These results are compared in the paper and the methods used to validate the results are discussed. 14 refs., 11 figs

  7. Decommissioning of nuclear facilities. Feasibility, needs and costs

    International Nuclear Information System (INIS)

    1986-01-01

    Reactor decommissioning activities generally are considered to begin after operations have ceased and the fuel has been removed from the reactor, although in some countries the activities may be started while the fuel is still at the reactor site. The three principal alternatives for decommissioning are described. The factors to be considered in selecting the decommissioning strategy, i.e. a stage or a combination of stages that comprise the total decommissioning programme, are reviewed. One presents a discussion of the feasibility of decommissioning techniques available for use on the larger reactors and fuel cycle facilities. The numbers and types of facilities to be decommissioned and the resultant waste volumes generated for disposal will then be projected. Finally, the costs of decommissioning these facilities, the effect of these costs on electricity generating costs, and alternative methods of financing decommissioning are discussed. The discussion of decommissioning draws on various countries' studies and experience in this area. Specific details about current activities and policies in NEA Member Countries are given in the short country specific Annexes. The nuclear facilities that are addressed in this study include reactors, fuel fabrication facilities, reprocessing facilities, associated radioactive waste storage facilities, enrichment facilities and other directly related fuel cycle support facilities. The present study focuses on the technical feasibility, needs, and costs of decommissioning the larger commercial facilities in the OECD member countries that are coming into service up to the year 2000. It is intended to inform the public and to assist in planning for the decommissioning of these facilities

  8. New stainless steels of ferrite-martensite grade and perspectives of their application in thermonuclear facilities and fast reactors

    International Nuclear Information System (INIS)

    Ajtkhozhin, Eh.S.; Maksimkin, O.P.

    2007-01-01

    Review of scientific literature for last 5 years in which results on study of radiation effect on ferrite-martensite steels - construction materials of fast reactors and most probable candidates for first wall and blanket of the thermonuclear facilities ITER and Demo - are presented. Alongside with this a prior experimental data on study of microstructure changing and physical- mechanical properties of ferrite-martensite steel EhP-450 - the material of hexahedral case of spent assembly of BN-350 fast reactor- are cited. Principal attention was paid to considering of radiation effects of structural components content changing and ferrite-martensite steel swelling irradiated at comparatively low values of radiation damage climb rate

  9. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soltes, Jaroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague, (Czech Republic); Viererbl, Ladislav; Lahodova, Zdena; Koleska, Michal; Vins, Miroslav [Research Centre Rez Ltd., Husinec - Rez 130, 250 68 Rez, (Czech Republic)

    2015-07-01

    In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which has a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated values

  10. Status of Dalat research reactor and progress of new reactor plan in Vietnam

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi; Vien, Luong Ba

    2005-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500-kW pool-type reactor loaded with the Soviet WWR-M2 Fuel Assemblies (FA), moderated and cooled by light water. The reactor was reconstructed from the USA 250-kW TRIGA Mark-II reactor built in early 1960s. The first criticality of the renovated reactor was achieved on 1 st November 1983, and then on 20 March 1984 the reactor was officially inaugurated and its activities restarted. During the last twenty years, the DNRR has played an important role as a large national research facility to implement researches and applications, and its utilization has been broadened in various fields of human life. However, due to the limitation of the neutron flux and power level, the out-of date design of the experimental facilities and the ageing of the reactor facilities, it cannot meet the increasing user's demands even in the existing utilization areas. In addition, the utilization demands of the Research Reactor (RR) will be increased along with the development of the nation's economy growth. In this aspect, it is necessary to have in Vietnam a new high performance multipurpose RR with a sufficient neutron flux and power level. According to the last draft of a national strategy for atomic energy development submitted to the Government for consideration and approval, it is expected that a new high power RR would be put into operation before 2020. The operation and utilization status of the DNRR is presented and some preliminary results of the national research project on new reactor plan for Vietnam are discussed in this paper

  11. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  12. IRPhE/RRR-SEG, Reactor Physics Experiments from Fast-Thermal Coupled Facility

    International Nuclear Information System (INIS)

    Weiss, Frank-Peter; Dietze, Klaus; Jacqmin, Robert; Ishikawa, Makoto

    2003-01-01

    1 - Description: The RRR-SEG-experiments have been performed to check neutron data of the most important reactor materials, especially of fission product nuclides, fuel isotopes and structural materials. The measured central reactivity worths (CRW) of small samples were compared with calculated values. These C/E-ratios have been used then for data corrections or in adjustment procedures. The reactor RRG-SEG (at RC Rossendorf / Germany) was a fast-thermal coupled facility of zero power. The annular thermal drivers were filled by fuel assemblies and moderated by water. The inner insertion lattices were loaded with pellets of fuel and other materials producing the fast neutron flux. The characteristics of the neutron and adjoint spectra were obtained by special arrangements of these pellets in unit cells. In this way, a hard or soft neutron spectrum or a special energy behavior of the adjoint function could be reached. The samples were moved by means of tubes to the central position (pile-oscillation technique). The original information about the facility and measurements is compiled in Note Technique SPRC/LEPh/93-230 (SEG) The SEG experiments are considered 'clean' integral experiments, simple and clear in geometry and well suited for calculation. In all SEG configurations only a few materials were used, most of these were standards. Due to the designed adjoint function (energy-independent or monotonously rising), the capture or scattering effect was dominant, convenient to check separately capture or scattering data. At first, analyses of the experiments have been performed in Rossendorf. Newer analyses were done later in Cadarache / CEA France using the European scheme for reactor calculation JEF-2.2 / ECCO / ERANOS (see Note Techniques and JEF/DOC-746). Furthermore, re-analyses were performed in O-arai / JNC Japan with the JNC standard route JENDL-3.2 / SLAROM / CITATION / PERKY. Results obtained with both code systems and different data evaluations (JEF-2.2 and

  13. Conceptual design report for the away from reactor spent fuel storage facility, Savannah River Plant

    International Nuclear Information System (INIS)

    1978-12-01

    The Department of Energy (DOE) requested that Du Pont prepare a conceptual design and appraisal of cost for Federal budget planning for an away from reactor spent fuel storage facility that could be ready to store fuel by December 1982. This report describes the basis of the appraisal of cost in the amount of $270,000,000 for all facilities. The proposed action is to provide a facility at the Savannah River Plant. The facility will have an initial storage capacity of 5000 metric tons of spent fuel and will be capable of receiving 1000 metric tons per year. The spent fuel will be stored in water-filled concrete basins that are lined with stainless steel. The modular construction of the facility will allow future expansion of the storage basins and auxiliary services in a cost-effective manner. The facility will be designed to receive, handle, decontaminate and reship spent fuel casks; to remove irradiated fuel from casks; to place the fuel in a storage basin; and to cool and control the quality of the water. The facility will also be designed to remove spent fuel from storage basins, load the spent fuel into shipping casks, decontaminated loaded casks and ship spent fuel. The facility requires a license by the Nuclear Regulatory Commission (NRC). Features of the design, construction and operations that may affect the health and safety of the workforce and the public will conform with NRC requirements. The facility would be ready to store fuel by January 1983, based on normal Du Pont design and construction practices for DOE. The schedule does not include the effect of licensing by the NRC. To maintain this option, preparation of the documents and investigation of a site at the Savannah River Plant, as required for licensing, were started in FY '78

  14. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  15. CSNI collective statement on support facilities for existing and advanced reactors. The function of OECD/Nea joint projects Nea committee on the safety of nuclear installations (CSNI)

    International Nuclear Information System (INIS)

    2008-01-01

    The NEA Committee on the Safety of Nuclear Installations (CSNI) has recently completed a study on the availability and utilisation of facilities supporting safety studies for current and advanced nuclear power reactors. The study showed that significant steps had been undertaken in the past several years in support of safety test facilities, mainly by conducting multinational joint projects centered on the capability of unique test facilities worldwide. Given the positive experience of the safety research projects, it has been recommended that efforts be made to prioritize technical issues associated with advanced (Generation IV) reactor designs and to develop options on how to efficiently obtain the necessary data through internationally co-ordinated research, preparing a gradual extension of safety research beyond the needs set by currently operating reactors. This statement constitutes a reference for future CSNI activities and for safety authorities, R and D centres and industry for internationally co-ordinated research initiatives in the nuclear safety research area. (author)

  16. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  17. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  18. Evaluation of thermal ratcheting of reactor vessel wall near the sodium surface

    International Nuclear Information System (INIS)

    Take, Kohji; Fujioka, Terutaka; Yano, Kazutaka

    1989-01-01

    Plastic ratcheting of reactor vessels may occur by an axially moving thermal gradient without primary stress. So there is a need to establish a proper prediction method for the plastic ratcheting. In this study, inelastic FEM analyses of reactor vessel model by using an advanced constitutive equation were carried out in order to comprehend plastic ratcheting behaviour of cylinder which subject to an axially moving thermal gradient. As a result of analyses, a basic mechanism of this ratcheting was found. And it also indicated that cyclic hardening behaviour will became important for development of evaluation method. (author)

  19. Progress towards a new Canadian irradiation-research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.

    1993-01-01

    As reported at the second meeting of the International Group on Research Reactors, Atomic Energy of Canada Limited (AECL) is evaluating its options for future irradiation facilities. During the past year significant progress has been made towards achieving consensus on the irradiation requirements for AECL's major research programs and interpreting those requirements in terms of desirable characteristics for experimental facilities in a research reactor. The next stage of the study involves identifying near-term and long-term options for irradiation-research facilities to meet the requirements. The near-term options include assessing the availability of the NRU reactor and the capabilities of existing research reactors. The long-term options include developing a new irradiation-research facility by adapting the technology base for the MAPLE-X10 reactor design. Because materials testing in support of CANDU power reactors dominates AECL's irradiation requirements, the new reactor concept is called the MAPLE Materials Testing Reactor (MAPLE-MTR). Parametric physics and engineering studies are in progress on alternative MAPLE-MTR configurations to assess the capabilities for the following types of test facilities: - fast-neutron sites, that accommodate materials-irradiation assemblies, - small-diameter vertical fuel test loops that accommodate multielement assemblies, - large-diameter vertical fuel test loops, each able to hold one or more CANDU fuel bundles, - horizontal test loops, each able to hold full-size CANDU fuel bundles or small-diameter multi-element assemblies, and - horizontal beam tubes

  20. The Text of the Agreement Between the Agency and Argentina for the Application of Safeguards to the Embalse Power Reactor Facility

    International Nuclear Information System (INIS)

    1975-01-01

    The text of the Agreement between the Agency and the Government of the Republic of Argentina for the Application of Safeguards to the Embalse Power Reactor Facility is reproduced in this document for the information of all Members