WorldWideScience

Sample records for plastic products industry

  1. GROWTH PERFORMANCE AND PRODUCTIVITY OF RUBBER & PLASTIC PRODUCTS INDUSTRY IN PUNJAB

    Directory of Open Access Journals (Sweden)

    GULSHAN KUMAR

    2010-01-01

    Full Text Available Present study is an endeavour to investigate growth pattern and productivity trends in small scale rubber and plastic products industry of Punjab. The growth of industry has been gauged in terms of variables - number of units, fixed investment, employment and production. Yearly growth rates have been computed to catch year- to- year fluctuations in growth and compound annual growth rates (CAGRs have been worked out to ascertain the impact of the policies of liberalized regime on growth of this industry. Productivity trends have been sketched in terms of partial factor productivities of labour and capital. In order to understand the strengths and weaknesses of the industry, SWOT analysis has been conducted. The study revealed that the liberalisation has promoted the use of capital intensive and labour saving techniques of production leading to a dismal growth of employment and sluggish growth of number of units.

  2. Plastic Technology (Production). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    Science.gov (United States)

    Claus, Robert; And Others

    This course guide for a plastic technology course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  3. Radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Saunders, C.B.

    1988-01-01

    The interaction of ionizing radiation with organic substrates to produce useful physical and chemical changes is the basis of the radiation processing industry for plastics. Electron beam (EB) accelerators dominate the industry; however, there are a few small applications that use gamma radiation. The five general product categories that account for over 95% of the worldwide EB capacity used for plastics production are the following: wire and cable insulation; heat-shrinkable film, tubes and pipes; radiation-curable coatings; rubber products; and polyolefin foam. A total of 6.1% of the yearly production of these products in the United States is EB treated. The United States accounts for 59% of the total worldwide EB capacity of 20.5 MW (1984), followed by Europe (16%) and Japan (15%). There are 469 to 479 individual EB units worldwide used for the production of plastics and rubber. The average annual rate of growth (AARG) for the EB processing of plastics in Japan, from 1977 to 1987, was 13.3%. The AARG for Japan has decreased from 20% for 1977 to 198, to 6.4% for 1984 to 1987. Radiation cross-linking, of power cable insulation (cable rating ≥75 kV), thick polyolefin and rubber sheet (≥15 mm), and thick-walled tubing is one fo the potential applications for a 5- to 10-MeV EB system. Other products such as coatings, films and wire insulation may be economically EB-treated using a 5 to 10 MeV accelerator, if several layers of the product could be irradiated simultaneously. Two general product categories that require more study to determine the potential of high-energy EB processing are moulded plastics and composite materials. 32 refs

  4. Bio-based and biodegradable plastics for use in crop production.

    Science.gov (United States)

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  5. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    Science.gov (United States)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  6. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Identifying Sources of Funding That Contribute to Scholastic Productivity in Academic Plastic Surgeons.

    Science.gov (United States)

    Ruan, Qing Zhao; Cohen, Justin B; Baek, Yoonji; Chen, Austin D; Doval, Andres F; Singhal, Dhruv; Fukudome, Eugene Y; Lin, Samuel J; Lee, Bernard T

    2018-04-01

    Scholastic productivity has previously been shown to be positively associated with National Institute of Health (NIH) grants and industry funding. This study examines whether society, industry, or federal funding contributes toward academic productivity as measured by scholastic output of academic plastic surgeons. Institution Web sites were used to acquire academic attributes of full-time academic plastic surgeons. The Center for Medicare and Medicaid Services Open Payment database, NIH reporter, the Plastic Surgery Foundation (PSF), and American Association of Plastic Surgeons (AAPS) Web sites were accessed for funding and endowment details. Bibliometric data of each surgeon were then collected via Scopus to ascertain strengths of association with each source. Multiple linear regression analysis was used to identify significant contributors to high scholastic output. We identified 935 academic plastic surgeons with 94 (10.1%), 24 (2.6%), 724 (77.4%), and 62 (6.6%) receiving funding from PSF, AAPS, industry, and NIH, respectively. There were positive correlations in receiving NIH, PSF, and/or AAPS funding (P funding was found to negatively associate with PSF (r = -0.75, P = 0.022) grants. The NIH R award was consistently found to be the most predictive of academic output across bibliometrics, followed by the AAPS academic scholarship award. Conventional measures of academic seniority remained predictive across all measures used. Our study demonstrates for the first time interactions between industry, federal, and association funding. The NIH R award was the strongest determinant of high scholastic productivity. Recognition through AAPS academic scholarships seemed to associate with subsequent success in NIH funding.

  8. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.

    Science.gov (United States)

    Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip

    2017-12-01

    Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B

  9. A survey of economic indices of plastic wastes recycling industry

    Directory of Open Access Journals (Sweden)

    Malek Hassanpour

    2015-11-01

    Full Text Available Numerous small recycling units of plastic wastes have been currently constructed heedless to study of economic indices in Iran. Pay attention to the prominent performance of the industrial sector for economic development and its priority for fortifying other sectors to implement job opportunities, survey of the economic indices beckon the stakeholders and industries owners. The main objective of this study was a survey of economic indices in small recycling unit of plastic wastes. Therefore, the practice of computing the economic indices was performed using empirical equations, professional experiences and observations in site of the industry in terms of sustainability performance. Current study had shown the indices values such as value-added percent, profit, annual income, breakeven point, value-added, output value, data value, variable cost of good unit and production costs were found 62%, $ 366558, $ 364292.6, $ 100.34, $ 423451.25, $ 255335.75, $ 678787, $ 389.65 and $ 314494.4 respectively. The breakeven point about 15.93%, the time of return on investment about 1.12 (13.7 months were represented that this industry slightly needs long time to afford the employed capital and starts making a profit.

  10. Implementation of TiAIN and CrN coatings and ion implantation in the modern plastics moulding industry

    International Nuclear Information System (INIS)

    Bienk, E.J.; Mikkelsen, N.J.

    1997-01-01

    Two methods of surface improvement widely used in the modern plastics industry are compared, with a view to improving productivity and product quality. Ion implantation of plastics and physical vapour deposition coatings both offer surface engineering advantages. Each method is described and evaluated with reference to plastics moulding. TiAIN coatings are used to protect hard bulk materials, subjected to evenly distributed loads. The more ductile CrN coatings are used for softer materials which give less support to the coatings. (UK)

  11. Industrial plastics waste: Identification and segregation

    Science.gov (United States)

    Widener, Edward L.

    1990-01-01

    Throwaway plastic products, mainly packaging, are inundating our landfills and incinerators. Most are ethenic thermoplastics, which can be recycled as new products or fossil-fuels. Lab experiments are described, involving destructive and non-destructive tests for identifying and using plastics. The burn-test, with simple apparatus and familiar samples, is recommended as quick, cheap and effective.

  12. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups ...

  13. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  14. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    Science.gov (United States)

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Increased incidence of infertility treatment among women working in the plastics industry

    DEFF Research Database (Denmark)

    Hougaard, K.S.; Hannerz, H.; Feveile, H.

    2009-01-01

    Several plastic chemicals adversely affect reproductive ability. This study examined the possible association between employment in the plastics industry and infertility. Dynamic cohorts of economically active women and men were followed for hospital contacts due to infertility in the Danish Occu...... in female plastics workers motivates more specific studies of reproductive occupational health in the plastics industry. (C) 2009 Elsevier Inc. All rights reserved Udgivelsesdato: 2009/4...

  16. Industrial Production of Food Plastic Packaging and the Use of Irradiation for Modifying Some Film Properties. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A. V.; Moura, E. A.B., [Nuclear and Energy Research Institute - IPEN - São Paulo (Brazil); Nuclear and Energy National Commission – CNEN, Rio de Janeiro (Brazil)

    2014-07-15

    The four main industrial processes needed to produce a plastic packaging structure are: cast extrusion, blown extrusion, injection moulding, and blown moulding. Since one polymer may not offer all the protection and marketing properties required for a specific food product, multilayer films can be produced. Each layer will be composed of a different polymer and additives to meet all the requirements. Ionizing radiation plays an important role in the packaging industry, especially in the heat shrinkable barrier film production process. In this process, irradiating the film structure is aimed mostly at the crosslinking of the polyolefin. Cross-linked polyolefin-based films can withstand higher stretching rates, be better stabilized, and will both have a high degree of shrinkage and higher shrinking forces. This leads to very thin structures with very well balanced cost-benefit ratios and better final packaging presentation. The use of ionizing radiation for cross-linking polymers is one of the most successful cases of irradiation used by the industry. Besides cross-linking, scission may also occur in the polymeric structure, and it may liberate toxic or unwanted substances that can be transferred to the food. Therefore, irradiated food packaging materials should be thoroughly assessed according to active legislation to guarantee that it will not harm the consumer’s health either in the short or the long term. (author)

  17. Determinants of recycling common types of plastic product waste in environmental horticulture industry: The case of Georgia.

    Science.gov (United States)

    Meng, Ting; Klepacka, Anna M; Florkowski, Wojciech J; Braman, Kristine

    2016-02-01

    Environmental horticulture firms provide a variety of commercial/residential landscape products and services encompassing ornamental plant production, design, installation, and maintenance. The companies generate tons of waste including plastic containers, trays, and greenhouse/field covers, creating the need to reduce and utilize plastic waste. Based on survey data collected in Georgia in 2013, this paper investigates determinants of the environmental horticulture firms' recycling decision (plastic containers, flats, and greenhouse poly). Our findings indicate that the decision to discard vs. recycle plastic containers, flats, and greenhouse poly is significantly influenced by firm scope, size, location, and partnership with recycling providers, as well as whether recycling providers offer additional waste pickup services. Insights from this study are of use to local governments and environmental organizations interested in increasing horticultural firm participation in recycling programs and lowering the volume of plastic destined for landfills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large...... recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...

  19. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...... product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications...

  20. The U.S. Chemical Industry, the Products It Makes

    Science.gov (United States)

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry presents data on these areas of chemical production: growth rates, man-made fibers; the 50 largest volume chemicals, major inorganics and organics, plastics, drugs, magnesium, and paint. Includes production figures for 1961, 1969, 1970, 1971 and percent change for 1970-71 and for 1961-71.…

  1. The machines maintenance conditions assessment in the plastic industry

    Directory of Open Access Journals (Sweden)

    Stanisław Borkowski

    2015-12-01

    Full Text Available The purpose, methodology, main findings, the originality of the subject area (research, way of using. The main research analysis purpose is a presentation, an assessment and an interpretation of the research findings on the machines maintenance conditions in the plastic industry. The research analysis was carried out with applying Technology ABC method and TPM coefficients calculations connected with Techno pak machine components maintenance. The research was carried out in the chosen manufacturing enterprise of the plastic industry. Research findings interpretation results have been introduced in the analyzed enterprise in the form of the manufacturing processes improvement.

  2. Reduce, reuse, recycle: Acceptance of CO_2-utilization for plastic products

    International Nuclear Information System (INIS)

    Heek, Julia van; Arning, Katrin; Ziefle, Martina

    2017-01-01

    Global warming is a central threat for today's society caused by greenhouse gas emissions, mostly carbon dioxide emissions. Carbon dioxide capture and utilization (CCU) is a promising approach to reduce emissions and the use of expensive and limited fossil resources. Applying CCU, carbon dioxide (CO_2) can be incorporated as raw material during the manufacture of plastic products. While most of the studies address technical feasibilities, hardly any systematic research on public perception and acceptance of those specific products exists so far. This study empirically investigates the acceptance of CCU plastic products (mattress as example). First, interviews with experts and lay people revealed critical acceptance factors (CO_2 proportion, saving of fossil resources, disposal conditions, perceived health complaints). Their relative importance was detailed in two consecutive conjoint studies. Study 1 revealed disposal conditions and saving of fossil resources as essential for product selection, while the products’ CO_2 proportion was less important. In study 2, potential health complaints were integrated as well as individual levels of domain knowledge and risk perception, which significantly affected acceptance of CCU products. Recommendations concerning communication strategies for policy and industry were derived. - Highlights: • Study provides insights into the acceptance of specific CCU products. • Disposal conditions and savings of fossil resource are main drivers of acceptance. • Concerns about potential health effects act as major barrier especially for laypeople. • Perceived knowledge and risk perception affect CCU product acceptance. • Communication strategy recommendations for policy and industry are derived.

  3. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    Science.gov (United States)

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Plastics - the sustainable way to use Oil and Gas

    Energy Technology Data Exchange (ETDEWEB)

    Siebourg, Wolfgang

    2009-07-01

    Conclusions (drawn by the author): Plastics are a sustainable use of oil and gas - Plastic products enable significant savings of energy and GHG emissions particularly in the use phase; - Plastic products help use resources in the most efficient way. Restricting plastics relative growth would result in increased energy consumption. Diversion from landfill would increase resource efficiency. Waste-to-Energy is an additional resource and is complementary to mechanical recycling. Plastics producers and the Oil and Gas industry should cooperate to produce reliable consumption data. Oil and Gas industry should develop and maintain European (world) eco-profiles (cradle to gate) for their respective industry. (author)

  5. Biocide Usage in Plastic Products

    OpenAIRE

    Kavak, Nergizhan; Çakır, Ayşegül; Koltuk, Fatmagül; Uzun, Utku

    2015-01-01

    People’s demand of improving their life quality caused to the term of hygiene become popular and increased the tendency to use more reliable and healthy products. This tendency makes the continuous developments in the properties of the materials used in manufactured goods compulsory. It is possible to create anti-bacterial plastic products by adding biocidal additives to plastic materials which have a wide-range of application in the areas such as health (medicine), food and many other indust...

  6. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, B. van; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  7. Evaluating Exposures to Complex Mixtures of Chemicals During a New Production Process in the Plastics Industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, van B.; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  8. Delivery outcome among women employed in the plastics industry in Sweden and Norway.

    Science.gov (United States)

    Ahlborg, G; Bjerkedal, T; Egenaes, J

    1987-01-01

    In Sweden and Norway separate case-control studies of pregnancy outcome for the period 1973-1981 among female workers in the plastics industry were carried out with similar design. Employment records were obtained from companies producing and/or processing plastics and these were matched with the national medical birth and malformation registers. Within the cohorts of pregnancies during which the mother held employment in a plastics industry (1.397 in the Swedish and 288 in the Norwegian study), cases of stillbirths or infant deaths, selected malformations, or low birthweight (less than 2,000 g) were identified. For each case two controls from the same source were individually matched with regard to date of birth, age of mother, and parity. Exposure data concerning the 44 Swedish and ten Norwegian triplets were obtained from the employers. An increased odds ratio was found for processing of polyvinylchloride (PVC) plastics (95% CI Sweden 1.0-5.1; total material 1.1-4.5). However, processing of cold plastics yielded a higher odds ratio than processing of heated plastics. No increased odds ratio was found for processing of styrene or polyurethane plastics. Since not all of the plastics industries in the two countries participated in the studies and the number of cases was small, the result must be interpreted with caution.

  9. 29 CFR 1910.216 - Mills and calenders in the rubber and plastics industries.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Mills and calenders in the rubber and plastics industries... Guarding § 1910.216 Mills and calenders in the rubber and plastics industries. (a) General requirements— (1... installed in accordance with this section and Subpart S of this part. (4) Mill roll heights. All new mill...

  10. 21 CFR 310.509 - Parenteral drug products in plastic containers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Parenteral drug products in plastic containers... Parenteral drug products in plastic containers. (a) Any parenteral drug product packaged in a plastic... parenteral drug product for intravenous use in humans that is packaged in a plastic immediate container on or...

  11. New polyvinylchloride plasticizers

    Directory of Open Access Journals (Sweden)

    MAZITOVA Aliya Karamovna

    2017-11-01

    Full Text Available One of the main large-capacity polymers of modern chemical industry is polyvinylchloride (PVC. Polyvinylchloride is characterized by many useful engineering properties – chemical firmness in different environments, good electric properties, etc. It explains immensely various use of materials on the basis of PVC in different engineering industries. It is cable, building, light industries, mechanical engineering and automotive industry where PVC is widely applied. One of the reasons why PVC production is dramatically growing is that there is no yet other polymer which could be subjected to such various modifying as it is done with PVC. However under normal temperature this polymer is fragile and isn't elastic that limits the field of its application. Rapid growth of production of polyvinylchloride is explained by its ability to modify properties, due to introduction of special additives when processing. Introduction of plasticizers – mostlly esters of organic and inorganic acids – into PVC allows significant changing properties of polymer. Plasticizers facilitate process of receiving polymeric composition, increase flexibility and elasticity of the final polymeric product due to internal modification of polymeric molecule.

  12. Use of Plastic Mulch for Vegetable Production

    OpenAIRE

    Maughan, Tiffany; Drost, Dan

    2016-01-01

    Plastic mulches are used commercially for both vegetables and small fruit crops. Vegetable crops well suited for production with plastic mulch are typically high value row crops. This fact sheet describes the advantages, disadvantages, installation, and planting considerations. It includes sources for plastic and equipment.

  13. Energy recycling of plastic and rubber wastes

    International Nuclear Information System (INIS)

    Hussain, R.

    2003-01-01

    Major areas for applications of plastics and rubbers are building and construction, packaging, transportation, automobiles, furniture, house wares, appliances, electrical and electronics. Approximately 20% of all the plastics produced are utilized by the building and construction industry/sup (1-3)/. Categories of polymers mostly used in the above industries include poly (vinyl chloride), polypropylene, polyethylene, polystyrene phenolics, acrylics and urethanes. Tyres and tubes are almost exclusively made up of rubbers. One third of total consumption of plastics finds applications, like films, bottles and packaging, in food-products that have a maximum life-span of two years, after which these find way to waste dumps. As the polymer industry in Pakistan is set to grow very rapidly in the near future the increase in utilization of plastic products in synchronous with the advent of computers and information technology. About 0.60 Kg per capita of waste generated daily in Lahore /(7.14)/ contains considerable quantity of plastics. (AB)

  14. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    Science.gov (United States)

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  16. Industry Financial Relationships in Plastic Surgery: Analysis of the Sunshine Act Open Payments Database.

    Science.gov (United States)

    Chao, Albert H; Gangopadhyay, Noopur

    2016-08-01

    Limited data exist regarding industry financial relationships in plastic surgery. The Sunshine Act Open Payments Database currently represents the largest repository of these data, but is limited primarily to queries of individual providers. The purpose of this study was to analyze these data and present them in a manner that better delineates these relationships, and to compare plastic surgery with other surgical subspecialties. A review of the Open Payments Database was performed for the period from January 1, 2014, to December 31, 2014. These data were analyzed with respect to types of payments, characteristics of plastic surgeons and companies, and comparison with other surgical subspecialties. A total of 49,053 payments from 274 companies were identified that were made to 4812 plastic surgeons (475 academic and 4337 private practice). The total value of payments was $17,091,077. Food and beverage represented the most common type of payment (82.2 percent). Royalties and licensing represented the highest valued type of payment (35.7 percent), but were received by only a minority of plastic surgeons (0.5 percent). No significant differences were identified between academic and private practice plastic surgeons in the value or quantity of payments. Plastic surgery (54.5 percent) exhibited the lowest prevalence of industry financial relationships compared with otolaryngology (57.9 percent), orthopedics (62.4 percent), neurosurgery (87.8 percent), and urology (63.1 percent) (p < 0.001). Approximately half of all plastic surgeons have industry financial relationships. The prevalence of these relationships is comparatively less than in other surgical subspecialties.

  17. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  18. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  19. Quality Tools and TRIZ Based Quality Improvement Case Study at PT ‘X’ A Plastic Moulding Manufacturing Industry

    Science.gov (United States)

    Wirawan, Christina; Chandra, Fory

    2016-02-01

    Theory of Inventive Problem Solving (TRIZ) is a creative encouraging problem solving method. TRIZ is prepared by Altshuller for product design. Altshuller prepared contradiction matrix and suggestion to solve contradictions usually occur in product design. This paper try to combine TRIZ with quality tools such as Pareto and Fault Tree Analysis (FTA) to solve contradiction in quality improvement problem, neither than product design problem. Pareto used to identify defect priority, FTA used to analysis and identify root cause of defect. When there is contradiction in solving defect causes, TRIZ used to find creative problem solving. As a case study, PT ’X’, a plastic molding manufacturing industry was taken. PT ‘X’ using traditional press machine to produce plastic thread cone. There are 5 defect types that might occur in plastic thread cone production, incomplete form, dirty, mottle, excessive form, rugged. Research about quality improvement effort using DMAIC at PT ‘X’ have been done by Fory Candra. From this research, defect types, priority, root cause from FTA, recommendation from FMEA. In this research, from FTA reviewed, contradictions found among causes troublesome quality improvement efforts. TRIZ used to solve the contradictions and quality improvement effort can be made effectively.

  20. Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor

    International Nuclear Information System (INIS)

    Arena, Umberto; Di Gregorio, Fabrizio

    2014-01-01

    Two plastic wastes obtained as co-products from an industrial process were fed in a pilot-scale bubbling fluidized bed gasifier, having an internal diameter of 0.38 m and a maximum thermal output of about 400 kW. The experimental runs were carried out by reaching a condition of thermal and chemical steady state under values of equivalence ratio ranging from 0.2 to 0.3. Olivine, a neo-silicate of Fe and Mg, already tested as a good catalyst for tar removal during gasification of polyolefin plastic wastes, was used as bed material. The results provide the complete composition of the syngas, including the tar, particulate and acid/basic gas contents as well as the chemical and physical characterization of the bed material and entrained fines. The gasification process appears technically feasible, yielding a producer gas of valuable quality for energy applications in an appropriate plant configuration. On the other hand, under the experimental conditions tested, olivine particles show a strongly reduced catalytic activity in all the runs. The differences in the gasification behaviour of the two industrial plastics are explained on the basis of the structure and composition of the wastes, taking also into account the results of a combined material and substance flow analysis. - Highlights: • Pilot-scale investigation of fluidized bed gasification of two industrial plastic wastes. • Tests under conditions of thermal/chemical steady state at various equivalence ratios. • Complete composition of the producer gas, including tar, particulate and acid/basic gases. • Differences in the gasification behaviour of plastic wastes. • Material, substance, and feedstock energy flow analysis for different gasification tests

  1. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Industrial applications of refrigeration. Utilizing industries; Applications industrielles du froid. Industries utilisatrices

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, Ch. [Ecole Centrale de Lyon, 69 - Ecully (France); Groupement pour la Recherche sur les Echangeurs Thermiques, GRETh (France)

    2001-10-01

    Refrigeration is used in most of the industrial domains: food industry (conservation of the organoleptic properties and sanitary quality of products, control of fermentation, of juice concentration and of the dehydration of products), transformation industries (plastic industry, rubber industry, mechanical industry (fretting, hardening and surface treatment of materials, dehumidification of compressed air), liquefaction and purification of industrial gases and hydrocarbons, processing of wastes (removal of VOCs, purification of liquid effluents etc..), civil engineering (consolidation of soils, cooling of big concrete structures), leisure (skating rink, artificial snow). (J.S.)

  3. Modification of plastic by ionizing radiation

    International Nuclear Information System (INIS)

    Dalager, P.

    1974-01-01

    Very few of the modifications of plastic materials have got industrial status. Nearly all of the succesful industrial irradiations processes are performed with polyethylene. Irradiated polyethylene has been used in industries and products such as wire, cables, foams and heat shrinkable products, i.e. films, tubings and molded parts. Also the irradiation of finished products, i.e. improvement on a thermoplastic material into thermosetting material, has been developed in this field. (M.S.)

  4. Literature Mapping: Critical Factors in Industrialized BuildingSystem Plastic Formwork Application

    OpenAIRE

    Ghazali, Muhammad Azuan Anif; Bahardin, Nur Fadhilah; Zaidi, Mohd Azian; Baharuddin, Mohd Nurfaisal; Yusof, Mohd Reeza

    2016-01-01

    Industrialised Building System (IBS) in Malaysia has been practiced for decades. The development of its formal practice parallels with the improvement of the built environment in the nation. One of the applications is on formwork. IBS plastic formwork has been promoted by Construction Industry Development Board Malaysia (CIDB) as an alternative to replace the conventional formwork system but the involvement from the public and private sectors in applying the IBS plastic formwork is seen reluc...

  5. Measures for recycling plastic wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Cossais, J C [Ministere de l' Industrie et de la Recherche, 75 - Paris (France). Delegation aux Economies de Matieres Premieres

    1978-05-01

    Raw materials crisis and environmental awareness have lead to the question of intensively dealing with the recycling of plastics. Although plastic wastes (residues) industrially occuring have been recycled for a long time, this is certainly not always the case in the subsequent stages. One must particularly give thought to the considerable quantities of agricultural and municipal wastes. Besides the problem of collecting the waste which can only be satisfactorily solved by separate collection or setting up sorting places, it is necessary for the recycling plastic wastes on a large scale to find or develop sellable products. The product for sale is limited by economical aspects and prejudices against recycled materials. The public have taken to a series of measures in France to simplify recycling plastic wastes. Private industry is also beginning to take interest in this new sources of raw materials.

  6. Study of mortars with industrial residual plastic scales

    OpenAIRE

    Magariños, O. E.; Alderete, C. E.; Arias, L. E.; Lucca, M. E.

    1998-01-01

    This work proposes the utilization of industrial residues of PET (Polyethylene Terephtalate) as a partial substitute of arids (sand) in mortar making for construction components. Therefore, the environmental impact of large volumes of plastic of urban residues could be decreased. When PET scales were added to mortars in partial replacement of sand, lower unitary weight, acceptable absorption and resistances according to international specifications were achieved. Mortars with 66% of sand...

  7. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    Science.gov (United States)

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  8. Production of Methane and Water from Crew Plastic Waste

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  9. Managing plastic waste in East Africa: Niche innovations in plastic production and solid waste

    NARCIS (Netherlands)

    Ombis, L.O.; Vliet, van B.J.M.; Mol, A.P.J.

    2015-01-01

    This paper assesses the uptake of environmental innovation practices to cope with plastic waste in Kenyan urban centres at the interface of solid waste management and plastic production systems. The Multi Level Perspective on Technological Transitions is used to evaluate 7 innovation pathways of

  10. Conversion of hazardous plastic wastes into useful chemical products.

    Science.gov (United States)

    Siddiqui, Mohammad Nahid

    2009-08-15

    Azoisobutylnitrile (AIBN) initiator was used in the treatment of most widely used domestic plastics in lieu of catalysts. The pyrolysis of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), poly-ethylene terephthalate (PET) and polystyrene (PS) plastics with azoisobutylnitrile was carried out individually under nitrogen atmosphere. A series of single (plastic/AIBN) and binary (mixed plastics/AIBN) reactions were carried out in a 25-cm(3) micro-autoclave reactor. The optimum conditions selected for this study were: 5% AIBN by weight of total plastics, 60 min, 650 psi and 420 degrees C. It was found that HDPE, LDPE, PP underwent to a maximum cracking and produced highest amounts of liquid and gaseous products. Pyrolysis of PET and PS plastics with AIBN afforded comparatively significant amount of insoluble organic materials. In other reactions, fixed ratios of mixed plastics were pyrolyzed with AIBN that afforded excellent yields of liquid hydrocarbons. This result shows a very significant increase in the liquid portions of the products on using AIBN in the pyrolysis of plastics. The use of AIBN in the pyrolysis of plastics is seems to be feasible and an environmental friendly alternative to catalytic process for maximizing the liquid fuels or chemical feed stocks in higher amounts.

  11. Conversion of hazardous plastic wastes into useful chemical products

    International Nuclear Information System (INIS)

    Siddiqui, Mohammad Nahid

    2009-01-01

    Azoisobutylnitrile (AIBN) initiator was used in the treatment of most widely used domestic plastics in lieu of catalysts. The pyrolysis of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), poly-ethylene terephthalate (PET) and polystyrene (PS) plastics with azoisobutylnitrile was carried out individually under nitrogen atmosphere. A series of single (plastic/AIBN) and binary (mixed plastics/AIBN) reactions were carried out in a 25-cm 3 micro-autoclave reactor. The optimum conditions selected for this study were: 5% AIBN by weight of total plastics, 60 min, 650 psi and 420 o C. It was found that HDPE, LDPE, PP underwent to a maximum cracking and produced highest amounts of liquid and gaseous products. Pyrolysis of PET and PS plastics with AIBN afforded comparatively significant amount of insoluble organic materials. In other reactions, fixed ratios of mixed plastics were pyrolyzed with AIBN that afforded excellent yields of liquid hydrocarbons. This result shows a very significant increase in the liquid portions of the products on using AIBN in the pyrolysis of plastics. The use of AIBN in the pyrolysis of plastics is seems to be feasible and an environmental friendly alternative to catalytic process for maximizing the liquid fuels or chemical feed stocks in higher amounts.

  12. Production, use, and fate of all plastics ever made.

    Science.gov (United States)

    Geyer, Roland; Jambeck, Jenna R; Law, Kara Lavender

    2017-07-01

    Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.

  13. Use of recycled plastic in concrete: a review.

    Science.gov (United States)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  14. Use of recycled plastic in concrete: A review

    International Nuclear Information System (INIS)

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper

  15. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    International Nuclear Information System (INIS)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L 9 (3 4 ) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics

  16. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chong-Qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, You-Nian

    2015-01-15

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.

  17. Sustainable fibre materials for replacing plastics in 3D-forming applications

    OpenAIRE

    Jacobsen, Eirik Ulsaker

    2017-01-01

    Plastic is a very broad family of materials that may provide a wide array of mechanical properties depending on the plastic or production method in question. This is why many industries have chosen plastic as their material of choice for the production of anything from plastic bags to underground piping. There is, however, a prominent issue concerning the heavy environmental impact of plastic. This is both due to the processing of crude oil and lack of biodegradability which in turn impact na...

  18. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Højlund-Nielsen, Emil; Christiansen, Alexander Bruun

    2014-01-01

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large-area struc......We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large......-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum....

  19. Development of a new approach based on midwave infrared spectroscopy for post-consumer black plastic waste sorting in the recycling industry.

    Science.gov (United States)

    Rozenstein, Offer; Puckrin, Eldon; Adamowski, Jan

    2017-10-01

    Waste sorting is key to the process of waste recycling. Exact identification of plastic resin and wood products using Near Infrared (NIR, 1-1.7µm) sensing is currently in use. Yet, dark targets characterized by low reflectance, such as black plastics, are hard to identify by this method. Following the recent success of Midwave Infrared (MWIR, 3-12µm) measurements to identify coloured plastic polymers, the aim of this study was to assess whether this technique is applicable to sorting black plastic polymers and wood products. We performed infrared reflectance contact measurements of 234 plastic samples and 29 samples of wood and paper products. Plastic samples included black, coloured and transparent Polyethylene Terephthalate (PET), Polyethylene (PE), Polyvinyl Chloride (PVC), Polypropylene (PP), Polylactic acid (PLA) and Polystyrene (PS). The spectral signatures of the black and coloured plastic samples were compared with clear plastic samples and signatures documented in the literature to identify the polymer spectral features in the presence of coloured material. This information was used to determine the spectral bands that best suit the sorting of black plastic polymers. The main NIR-MWIR absorption features of wood, cardboard and paper were identified as well according to the spectral measurements. Good agreement was found between our measurements and the absorption features documented in the literature. The new approach using MWIR spectral features appears to be useful for black plastics as it overcomes some of the limitations in the NIR region to identify them. The main limitation of this technique for industrial applications is the trade-off between the signal-to-noise ratio of the sensor operating in standoff mode and the speed at which waste is moved under the sensor. This limitation can be resolved by reducing the system's spectral resolution to 16cm -1 , which allows for faster spectra acquisition while maintaining a reasonable signal-to-noise ratio

  20. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  1. Physico-chemical modifications of plastics by ionization

    International Nuclear Information System (INIS)

    Rouif, S.

    2002-01-01

    The industrial use of ionizing radiations (beta and gamma), initially for the sterilization of medico-surgical instruments and for the preservation of food products, has led to the development of the chemistry of polymers under radiations. Ionizing radiations can initiate chemical reactions (chain cutting, poly-additions, polymerization etc..) thanks to the formation of free radicals. The main applications concerns the degradation of plastics, the reticulation of plastics and of woods impregnated with resin, and the grafting of polymers. The processing of plastic materials was initially performed with low energy electron accelerators (0.1 to 3 MeV), allowing only surface treatments, while recent high energy accelerators (10 MeV) and gamma facilities allow the treatment in depth of materials (from few cm to 1 m). This article describes the industrial treatments performed with such high energy facilities: 1 - action of ionizing radiations on plastic materials: different types of ionizing radiations, action of beta and gamma radiations, chemical changes induced by beta and gamma radiations; 2 - reticulation of plastic materials submitted to beta and gamma radiations: radio-'reticulable' polymers and reticulation co-agents, modification of the properties of reticulated plastic materials under beta and gamma radiations; 3 - industrial aspects of reticulation under beta and gamma radiation: industrial irradiation facilities, dosimetry and radio-reticulation control, applications; 4 - conclusion. (J.S.)

  2. Process combinations for the manufacturing of metal-plastic hybrid parts

    International Nuclear Information System (INIS)

    Drossel, W-G; Lies, C; Albert, A; Haase, R; Müller, R; Scholz, P

    2016-01-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts. (paper)

  3. The second green revolution? Production of plant-based biodegradable plastics.

    Science.gov (United States)

    Mooney, Brian P

    2009-03-01

    Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.

  4. Supporting the development process for building products by the use of research portfolio analysis: A case study for wood plastics composite materials

    OpenAIRE

    Friedrich, Daniel; Luible, Andreas

    2016-01-01

    Today’s plastics are increasingly compounded using renewable fibres. Such composites raised the interest of the massively bulk-plastics consuming building industry. However, “green” products are still rare and their development constitutes a challenge particularly for small companies. Our study evaluated European scientific projects in composites from which we derived a Research Portfolio serving as future matrix for ideation. It was found that research databanks can serve as basis for str...

  5. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    International Nuclear Information System (INIS)

    Wäger, Patrick A.; Hischier, Roland

    2015-01-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses

  6. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant

    Energy Technology Data Exchange (ETDEWEB)

    Wäger, Patrick A., E-mail: patrick.waeger@empa.ch; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6–10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. - Highlights: • LCA of plastics production from plastics-rich WEEE treatment residues • Multiple stakeholder perspectives addressed via different research questions • Plastics production from WEEE treatment residues clearly superior to alternatives • Robust results as demonstrated by extensive sensitivity analyses.

  7. Energy analysis of 108 industrial processes. Phase 1, industrial applications study

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, B. B.; Brown, H. L.

    1979-06-01

    Extensive data are compiled for energy balances in 108 industrial processes. Specific information on unit operation, material, temperature, unrecoverable losses, along with the process flow diagram is given for each of the industries. The following industries are included: meak packing; milk; canned fruits and vegetables; baked goods; sugar refining; soybean; textiles; wood products; building materials; alkalies and chlorine; inorganic gases; pigments, chemicals; plastic materials and resins; synthetic rubbers; organic fibers; pharmaceutical preparations; organic chemicals; petroleum products; fertilizers; rubber products; glass; blast furnaces and steel mills; metals; farm machinery; motor vehicles; and photographic materials. The SIC's for each industry are identified.

  8. HYBRID COOLING SYSTEM FOR INDUSTRIAL APPLICATION

    African Journals Online (AJOL)

    ES Obe

    1980-03-01

    Mar 1, 1980 ... and plastic-ware production. ... molds in glass and plastic forming processes. ... increased more than five times over that achieved by using the gas (air) ... industrial manufacture. 2. .... commercial forming machine with the.

  9. IBA for the plastics industry. a brief investigation

    International Nuclear Information System (INIS)

    Vickridge, I.C.; Whineray, S.

    1994-01-01

    As part of an NSOF programme, GNS has developed a small capability for Ion Beam Analysis of polymers, and has investigated the possibilities applying these analytic tools to polymer problems in New Zealand. In the first part of the report, the basis of the IBA method is described, together with experimental measurements of polymer mixing made with the 3 MV KN Van de Graaff accelerator of the Institute. In the second part, reports on a series of visits to industrial plants and other organisations involved in plastics manufacturing and recycling are given. Finally, we draw the conclusion that Ion Beam Analysis should play an important role in future polymer research in New Zealand, but that Industry funding for such research seems unlikely at present. In the meantime, it is proposed that GNS should make a strategic investment by maintaining a small polymer project as a framework within which to maintain contact with New Zealand's polymer research community. (authors) 9 refs., 4 figs

  10. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  11. Research productivity and gender disparities: a look at academic plastic surgery.

    Science.gov (United States)

    Paik, Angie M; Mady, Leila J; Villanueva, Nathaniel L; Goljo, Erden; Svider, Peter F; Ciminello, Frank; Eloy, Jean Anderson

    2014-01-01

    The h-index has utility in examining the contributions of faculty members by quantifying both the amount and the quality of research output and as such is a metric in approximating academic productivity. The objectives of this study were (1) to evaluate the relationship between h-index and academic rank in plastic surgery and (2) to describe the current gender representation in academic plastic surgery to assess whether there are any gender disparities in academic productivity. The h-index was used to evaluate the research contributions of plastic surgeons from academic departments in the United States. There were 426 (84%) men and 79 (16%) women in our sample. Those in higher academic ranks had higher h-index scores (p productivity between men and women in assistant and associate professor positions (6.4 vs 5.1, respectively; p = 0.04). The h-index is able to objectively and reliably quantify academic productivity in plastic surgery. We found that h-indices increased with higher academic rank, and men had overall higher scores than their female colleagues. Adoption of this metric as an adjunct to other objective and subjective measures by promotions committees may provide a more reliable measure of research relevance and academic productivity in academic plastic surgery. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  12. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  13. A study on compound contents for plastic injection molding products of metallic resin pigment

    International Nuclear Information System (INIS)

    Park, Young Whan; Kwak, Jae Seob; Lee, Gyu Sang

    2016-01-01

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated

  14. A study on compound contents for plastic injection molding products of metallic resin pigment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  15. Exploitation of Food Industry Waste for High-Value Products.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Recycling of plastics

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, W; Menzel, J; Sinn, H

    1976-01-01

    Considering the shortage of raw materials and environmental pollution, the recycling of plastic waste is a very important topic. Pilot plants for research in Funabashi Japan, Franklin (Ohio) U.S.A., and the R 80-process of Krauss Maffei, W. Germany, have demonstrated the possibility of reclaiming plastics from refuse. Old tires and waste from the plastic producing and manufacturing industries are readily available. The pyrolysis of plastic yields gaseous and liquid products, and the exploitation of this cracking reaction has been demonstrated by pilot plants in Japan and Great Britain. Further laboratory scale experiments are taking place in W. Germany. In continuous fluidized beds and in molten salts, polyethylene, polypropylene, polyvinylchloride, polystyrene and rubber are pyrolysed and better than 98 percent conversion is obtained. Up to 40 percent of the feed can be obtained as aromatic compounds, and a pilot plant is under construction. As a first step PVC-containing material can be almost quantitatively dehydrochlorinated.

  17. A new hyperspectral imaging based device for quality control in plastic recycling

    Science.gov (United States)

    Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.

    2013-05-01

    The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.

  18. Color metasurfaces in industrial perspective

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Kristensen, Anders

    This doctoral thesis describes the utilization of color metasurfaces in an industrial perspective, where nano-scale textures and contingent post processing replace inks, dyes and pigments in plastic production. The concept of colors by structure arguably reduces the number of raw materials......, exemplified in silicon. However, only corresponding faint colors appear in polymeric materials. The concept of all-polymer pigment-free coloration seems somewhat restricted in relation to widespread industrial employment. Finally, a novel plasmon color technology for structural coloration in plastics......, and it is shown that the dependence on polarization can be controlled. In collaboration with industry, polymer-based colored metasurfaces of square-centimeter size are demonstrated by embossing, injection molding, roll-to-roll printing, and film insert molding with full compatibility. Furthermore, post production...

  19. Energy consumption in France's industry. Conjuncture note

    International Nuclear Information System (INIS)

    2015-04-01

    Energy consumption in the industry represents today 1/5 of France's end-use energy consumption. Gas and electricity are the most consumed and represent 2/3 of the overall. The 5 most energy consuming industries are the following: paper and cardboard industry, food industry, rubber, plastic and other non-metallic mineral products industry, metallurgy and chemical industry. The reduction of the industry's energy consumption is explained by the decline of production, but above all by the energy efficiency improvement of the sector. Technological innovations in production means have indeed led to reduce energy consumption

  20. Biodegradation of plastics: current scenario and future prospects for environmental safety.

    Science.gov (United States)

    Ahmed, Temoor; Shahid, Muhammad; Azeem, Farrukh; Rasul, Ijaz; Shah, Asad Ali; Noman, Muhammad; Hameed, Amir; Manzoor, Natasha; Manzoor, Irfan; Muhammad, Sher

    2018-03-01

    Plastic is a general term used for a wide range of high molecular weight organic polymers obtained mostly from the various hydrocarbon and petroleum derivatives. There is an ever-increasing trend towards the production and consumption of plastics due to their extensive industrial and domestic applications. However, a wide spectrum of these polymers is non-biodegradable with few exceptions. The extensive use of plastics, lack of waste management, and casual community behavior towards their proper disposal pose a significant threat to the environment. This has raised growing concerns among various stakeholders to devise policies and innovative strategies for plastic waste management, use of biodegradable polymers especially in packaging, and educating people for their proper disposal. Current polymer degradation strategies rely on chemical, thermal, photo, and biological procedures. In the presence of proper waste management strategies coupled with industrially controlled biodegradation facilities, the use of biodegradable plastics for some applications such as packaging or health industry is a promising and attractive option for economic, environmental, and health benefits. This review highlights the classification of plastics with special emphasis on biodegradable plastics and their rational use, the identified mechanisms of plastic biodegradation, the microorganisms involved in biodegradation, and the current insights into the research on biodegradable plastics. The review has also identified the research gaps in plastic biodegradation followed by future research directions.

  1. Conditions for industrial production

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Brauer, H.

    1996-01-01

    The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated.......The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated....

  2. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  3. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.

    Science.gov (United States)

    Wäger, Patrick A; Hischier, Roland

    2015-10-01

    Plastics play an increasingly important role in reaching the recovery and recycling rates defined in the European WEEE Directive. In a recent study we have determined the life cycle environmental impacts of post-consumer plastics production from mixed, plastics-rich WEEE treatment residues in the Central European plant of a market-leading plastics recycler, both from the perspective of the customers delivering the residues and the customers buying the obtained post-consumer recycled plastics. The results of our life cycle assessments, which were extensively tested with sensitivity analyses, show that from both perspectives plastics recycling is clearly superior to the alternatives considered in this study (i.e. municipal solid waste incineration (MSWI) and virgin plastics production). For the three ReCiPe endpoint damage categories, incineration in an MSWI plant results in an impact exceeding that of the examined plastics recycling facility each by about a factor of 4, and the production of virgin plastics has an impact exceeding that of the post-consumer recycled (PCR) plastics production each by a factor of 6-10. On a midpoint indicator level the picture is more differentiated, showing that the environmental impacts of the recycling options are lower by 50% and more for almost all impact factors. While this provides the necessary evidence for the environmental benefits of plastics recycling compared to existing alternatives, it can, however, not be taken as conclusive evidence. To be conclusive, future research will have to address the fate of hazardous substances in the outputs of such recycling systems in more detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets include and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.

  5. Recombinant organisms for production of industrial products

    Science.gov (United States)

    Adrio, Jose-Luis

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. PMID:21326937

  6. Recombinant organisms for production of industrial products.

    Science.gov (United States)

    Adrio, Jose-Luis; Demain, Arnold L

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. © 2010 Landes Bioscience

  7. Plastic photochromic eyewear: a status report

    Science.gov (United States)

    Crano, John C.; Elias, Richard C.

    1991-12-01

    An estimated 10 million pairs of photochromic prescription lenses were dispensed in the United States in 1989, essentially all based on a silver halide system suspended in an inorganic glass. A significant trend within the ophthalmic industry has been the growth of light-weight plastic lenses. In the United States market, the percentage of prescription eyewear made of plastic is now greater than 70%. With this increasing market penetration of plastic lenses, the desire for an acceptable plastic photochromic lens has also increased. As with any commercial product, in order to achieve consumer acceptance there exist several technical requirements for a plastic photochromic lens. These include the light transmission and color of the lens in both the unactivated and activated states, the speeds of darkening and fading, and the fatigue resistance or lifetime of the photochromic system. These requirements will be defined along with approaches to achieving them. The properties of the commercially available plastic photochromic lenses will be compared with the defined requirements.

  8. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change.

    Science.gov (United States)

    Aspinwall, Michael J; Loik, Michael E; Resco de Dios, Victor; Tjoelker, Mark G; Payton, Paxton R; Tissue, David T

    2015-09-01

    Climate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype-by-environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity-productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity-productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions. © 2014 John Wiley & Sons Ltd.

  9. Harmonic reduction by using single-tuned passive filter in plastic processing industry

    Science.gov (United States)

    Fahmi, M. I.; Baafai, U.; Hazmi, A.; Nasution, T. H.

    2018-02-01

    The using of non-linear loads generated by industrial machines may result inconsistent harmonics that do not reach the IEEE 519 - 1992 standards. This study discusses the use of single-tuned passive filters in reducing harmonics in the plastics processing industry. The system modeling using matlab / simulink simulation resulted in total harmonic distortion (THD) of 15.55%, can be reduced to 4.77% harmonics in accordance with IEEE 519 - 1992 standards. From the simulation results also seen that single-tuned passive filter can reduce the harmonics of the current 82.23% harmonic that wants to be reduced and also can reduce other orders harmonics between 7% to 8%.

  10. The conversion of waste plastics/petroleum residue mixtures to transportation fuels

    International Nuclear Information System (INIS)

    Ali, M.F.; Siddiqui, M.N.

    2005-01-01

    Plastics have become the material of choice in the modern world and its applications in the industrial field are continually increasing. Presently the plastics are manufactured for various uses such as: consumer packaging, wires, pipes, containers, bottles, appliances, electrical/electronic parts, computers and automotive parts. Most of he post consumer, plastic products are discarded and end up as mixed plastic municipal waste. The disposal of his waste has become a major social concern. Mixed plastic waste (MPW) recycling is still very much in its infancy. Approximately 20 million tons of plastic waste is generated in the United States of America, while about 15 million tons is generated throughout the Europe. With existing recycle efforts, only 7% of the MPW are recycled to produce low-grade plastic products such as plastic sacks, pipes, plastic fencing, and garden furniture. The current plastic reclamation technology options are generally grouped into the following four types: (i) Primary: The processing of plastic for use comparable to the original application. (ii) Secondary: The processing of plastics waste into new products with a lower quality level. (iii) Tertiary: The chemical or thermal processing of plastic waste to their basic hydrocarbon feedstock. The resulting raw materials are then reprocessed into plastic material or other products of the oil refining process. (iv) Quaternary: The incineration of plastics waste to recover energy. This paper deals exclusively with tertiary recycling by pyrolysis and catalytic cracking of plastics waste alone and by coprocessing with petroleum residue or heavy oils to fuels and petrochemical feedstock for further processing in existing refinery and petrochemical units. (author)

  11. Environmental sustainability: plastic's evolving role in the automotive life cycle

    International Nuclear Information System (INIS)

    Jekel, L.; Tam, E.K.L.

    2002-01-01

    One method of assessing the sustainability of manufactured products involves performing a life cycle analysis for a product and comparing it to alternative ones, or else examining if individual stages of the product can be modified. LCA applications are being used more extensively, especially in the automotive and related industries. Automotive plastics in particular are being scrutinized with much greater care. Plastic components have replaced metal ones in vehicle manufacturing to improve vehicle fuel efficiency and aesthetics. However, at the end of a vehicle's life, recycling rates for plastic are negligible when compared to those of steel. In order to gain the full environmental benefits of using plastic as a vehicle material, plastics must be recycled at the end of a vehicle's life, especially given their increasing use. While a variety of processes have been developed for the recycling of automotive plastics, the challenges of sorting, processing, and finally recycling a heterogeneous mixture of used plastics have yet to be effectively solved. A preliminary life cycle assessment of a plastic automotive fascia demonstrates the usefulness of this eco-balance technique in evaluating potential improvements to manufacturing and end-of-life processes. Improving the manufacturing process may reduce environmental burdens to a larger extent than just recycling the plastic. (author)

  12. Recycling of plastic: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H

    2009-11-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.

  13. Comparison of solute-binding properties of plastic materials used as pharmaceutical product containers.

    Science.gov (United States)

    Jenke, Dennis; Couch, Tom; Gillum, Amy

    2010-01-01

    Material/water equilibrium binding constants (E(b)) were determined for 11 organic solutes and 2 plastic materials commonly used in pharmaceutical product containers (plasticized polyvinyl chloride and polyolefin). In general, solute binding by the plasticized polyvinyl chloride material was greater, by nearly an order of magnitude, than the binding by the polyolefin (on an equal weight basis). The utilization of the binding constants to facilitate container compatibility assessments (e.g., drug loss by container binding) for drug-containing products is discussed.

  14. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  15. Use of glass-reinforced plastic vessels in petrochemical production plants

    International Nuclear Information System (INIS)

    Makarov, V.G.; Baikin, V.G.; Perlin, S.M.

    1984-01-01

    At present, petrochemical plant production equipment is made of scarce high-alloy steels and alloys or carbon steel with subsequent chemical protection. Traditional methods of protection frequently do not provide reliable and safe service of equipment for the length of the normal operating life. One of the effective methods of combatting corrosion is the use of glass-reinforced plastic equipment. Glass-reinforced equipment is not subject to electrochemical corrosion and has a high chemical resistance. Weight is approximately a third of similar vessels. The paper provides recommendations and precautions for the production, installation, use and maintenance of glass-reinforced plastic vessels

  16. Process combinations for the manufacturing of metal-plastic hybrid parts

    OpenAIRE

    Drossel, Welf-Guntram; Lies, Carsten; Albert, André; Haase, Rico; Müller, Roland; Scholz, Peter

    2016-01-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific s...

  17. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    Directory of Open Access Journals (Sweden)

    Lindsay Miller

    2014-08-01

    Full Text Available Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  18. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    Science.gov (United States)

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-01-01

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products. PMID:28788167

  19. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    Energy Technology Data Exchange (ETDEWEB)

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the

  20. Related regulation of quality control of industrial products

    International Nuclear Information System (INIS)

    1983-04-01

    This book introduce related regulation of quality control of industrial products, which includes regulations of industrial products quality control, enforcement ordinance of industrial products quality control, enforcement regulation of quality control of industrial products, designated items with industrial production quality indication, industrial production quality test, and industrial production quality test organization and management tips of factory quality by grade.

  1. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  2. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste

    International Nuclear Information System (INIS)

    Adrados, A.; Marco, I. de; Caballero, B.M.; López, A.; Laresgoiti, M.F.; Torres, A.

    2012-01-01

    Highlights: ► Pyrolysis of plastic waste. ► Comparison of different samples: real waste, simulated and real waste + catalyst. ► Study of the effects of inorganic components in the pyrolysis products. - Abstract: Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  3. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like...

  4. Plastic waste in the marine environment: A review of sources, occurrence and effects.

    Science.gov (United States)

    Li, W C; Tse, H F; Fok, L

    2016-10-01

    This review article summarises the sources, occurrence, fate and effects of plastic waste in the marine environment. Due to its resistance to degradation, most plastic debris will persist in the environment for centuries and may be transported far from its source, including great distances out to sea. Land- and ocean-based sources are the major sources of plastic entering the environment, with domestic, industrial and fishing activities being the most important contributors. Ocean gyres are particular hotspots of plastic waste accumulation. Both macroplastics and microplastics pose a risk to organisms in the natural environment, for example, through ingestion or entanglement in the plastic. Many studies have investigated the potential uptake of hydrophobic contaminants, which can then bioaccumulate in the food chain, from plastic waste by organisms. To address the issue of plastic pollution in the marine environment, governments should first play an active role in addressing the issue of plastic waste by introducing legislation to control the sources of plastic debris and the use of plastic additives. In addition, plastics industries should take responsibility for the end-of-life of their products by introducing plastic recycling or upgrading programmes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Plasmonic Structural Colors for Plastic Consumer Products

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2014-01-01

    Today colorants, such as pigments or dyes, are used to color plastic-based consumer products, either as base for solid colored bulk polymer or in inks for surface decoration. After usage, the products must be mechanically sorted by color before recycling, limiting any large-scale efficient...... can be avoided in the recycling state. Plasmon color technology based on aluminum has recently been firmly established as a route towards structural coloring of polymeric materials. We report on the fabrication of colors by localized surface plasmon resonances (LSPR) using roll-to-roll printing...

  6. Development of a System Model for Determining Optimal Personnel Interaction Strategy in a Production Industry

    Directory of Open Access Journals (Sweden)

    B. Kareem

    2017-03-01

    Full Text Available Manufacturing organizations have become more complex in recent time as a result of technological advances. Communication among production workers operating in an environment marked by increased organizational complexity may require planning for the economically appropriate selection of network channels/media with enhanced productivity. This paper examines traditional and modern communication channels (media and their comparative advantages over one another in their adoption in manufacturing organizations. In this framework, six media (human messengers, mobile-phones, intranet, fixed-internet, mobile-internet, and private branch exchange [PBX] phone systems were subjected to analyses using five identified network patterns (all-channel, chain, Y, wheel, and circle of interactions in manufacturing organizations. Costs, benefits, and the utility of the channels were integrated into the model and utilized to determine the most sustainable media that could enhance productivity in industry. The developed model was implemented using expert data/information collected from the plastic production industry. The results of an availability assessment showed that the enhancement of productivity could be fully achieved by utilizing mobile phones and internet networks, but when considering overall utility, only mobile phones could bring about the desired productivity with 0.59 probability. The findings suggest that the system developed is robust in revealing how productivity might be affected by means of communication among industrial workers.

  7. Determinants of Industrial Production in Turkey

    Directory of Open Access Journals (Sweden)

    MUSTAFA OZTURK

    2017-12-01

    Full Text Available The necessity of emphasizing the importance of industrial production for the sustainable growth and development of Turkey has been a topic of discussion in political and academia circles. The growth in industrial production (output depends on the investment in manufacturing sectors and the demand for the products. Along with internal demand, Turkey tries to support its manufacturing base with export (incentives. Manufacturing items occupy the greatest share of products in export sales. The development of manufacturing capabilities of the country is clearly based on the demand from inside and out. The effect of Turkey’s export on its industrial production throughout 2000’s has been analyzed. For this purpose we developed a VAR model where industrial production index was the dependent variable and export, investment, and interest rate were independent variables. All independent variables were found to be significantly explaining industrial production.

  8. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Physical and biological treatments of polyethylene-rice starch plastic films

    Energy Technology Data Exchange (ETDEWEB)

    El-Naggar, Manal M.A., E-mail: mmelnaggar@yahoo.com [Microbiology Lab., National Institute of Oceanography and Fisheries, Alexandria (Egypt); Farag, Magdy Gh. [Development Plastic Center, Victoria, Alexandria (Egypt)

    2010-04-15

    This study aimed to produce an industrial applicable thermo-stable {alpha}-amylase from marine Bacillus amyloliquefaciens which isolated and selected according to its significant enzyme production. The effect of different pH values and temperatures on the bacterial growth and the enzyme production was estimated using an experimental statistical design; maximum amylase production and bacterial growth was obtained at pH 7.0 and 50 deg. C. Some biodegradable polyethylene rice starch plastic films (PERS-P) were manufactured using 0, 2.5, 5, 7.5 and 10% starch concentrations. The biodegradability (reduction in the plastic elongation%) was tested using the exposure to UV radiation at {lambda}{sub 300-400nm} (intensity of about 1000 W/m{sup 2}) and the produced B. amyloliquefaciens thermo-stable {alpha}-amylase. A significant reduction in the elongation% of these biodegradable plastics was observed in both cases especially on testing the 10% PERS-P; they showed a reduction of 26% and 20%, respectively, compared to the untreated plastic films (180 {+-} 5).

  10. Physical and biological treatments of polyethylene-rice starch plastic films

    International Nuclear Information System (INIS)

    El-Naggar, Manal M.A.; Farag, Magdy Gh.

    2010-01-01

    This study aimed to produce an industrial applicable thermo-stable α-amylase from marine Bacillus amyloliquefaciens which isolated and selected according to its significant enzyme production. The effect of different pH values and temperatures on the bacterial growth and the enzyme production was estimated using an experimental statistical design; maximum amylase production and bacterial growth was obtained at pH 7.0 and 50 deg. C. Some biodegradable polyethylene rice starch plastic films (PERS-P) were manufactured using 0, 2.5, 5, 7.5 and 10% starch concentrations. The biodegradability (reduction in the plastic elongation%) was tested using the exposure to UV radiation at λ 300-400nm (intensity of about 1000 W/m 2 ) and the produced B. amyloliquefaciens thermo-stable α-amylase. A significant reduction in the elongation% of these biodegradable plastics was observed in both cases especially on testing the 10% PERS-P; they showed a reduction of 26% and 20%, respectively, compared to the untreated plastic films (180 ± 5).

  11. Recombinant organisms for production of industrial products

    OpenAIRE

    Adrio, Jose-Luis; Demain, Arnold L

    2009-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding...

  12. Combustion products of plastics as indicators for refuse burning in the atmosphere.

    Science.gov (United States)

    Simoneit, Bernd R T; Medeiros, Patricia M; Didyk, Borys M

    2005-09-15

    Despite all of the economic problems and environmental discussions on the dangers and hazards of plastic materials, plastic production worldwide is growing at a rate of about 5% per year. Increasing techniques for recycling polymeric materials have been developed during the last few years; however, a large fraction of plastics are still being discarded in landfills or subjected to intentional or incidental open-fire burning. To identify specific tracer compounds generated during such open-fire combustion, both smoke particles from burning and plastic materials from shopping bags, roadside trash, and landfill garbage were extracted for gas chromatography-mass spectrometry analyses. Samples were collected in Concón, Chile, an area frequently affected by wildfire incidents and garbage burning, and the United States for comparison. Atmospheric samples from various aerosol sampling programs are also presented as supportive data. The major components of plastic extracts were even-carbon-chain n-alkanes (C16-C40), the plasticizer di-2-ethylhexyl phthalate, and the antioxidants and lubricants/antiadhesives Irganox 1076, Irgafos 168, and its oxidation product tris(2,4-di-tertbutylphenyl) phosphate. Major compounds in smoke from burning plastics include the non-source-specific n-alkanes (mainly even predominance), terephthalic acid, phthalates, and 4-hydroxybenzoic acid, with minor amounts of polycyclic aromatic hydrocarbons (including triphenylbenzenes) and tris(2,4-di-tert-butylphenyl)phosphate. 1,3,5-Triphenylbenzene and tris(2,4-di-tert-butylphenyl)- phosphate were found in detectable amounts in atmospheric samples where plastics and refuse were burned in open fires, and thus we propose these two compounds as specific tracers for the open-burning of plastics.

  13. Analysis of Expectations of Forest Products Industry from Forest Industry Engineering Education

    OpenAIRE

    GEDİK, Tarık; ÇİL, Muhammet; SEVİM KORKUT, Derya; CEMİL AKYÜZ, Kadri; KOŞAR, Gökşen; BEKAR, İlter

    2016-01-01

    Forest industry engineers, representing the qualified labor within the forest products industry, choose their field of study either deliberately or by chance. This study explores the main skill sets of forest industry engineers required by forest products industry. As representatives of forest industry owner of forest products companies were surveyed about their views on the qualifications a forest industry engineer must have.This study covered total 7111 companies registered to TOBB as a for...

  14. Dimensional accuracy optimization of the micro-plastic injection molding process using the Taguchi design method

    Directory of Open Access Journals (Sweden)

    Chil-Chyuan KUO KUO

    2015-06-01

    Full Text Available Plastic injection molding is an important field in manufacturing industry because there are many plastic products that produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses on Taguchi design method for investigating the effect of injection parameters on the dimensional accuracy of Fresnel lens during plastic injection molding. It was found that the dominant factor affecting the microgroove depth of Fresnel lens is packing pressure. The optimum processing parameters are packing pressure of 80 MPa, melt temperature of 240 °C, mold temperature of 90 °C and injection speed of 50 m/s. The dimensional accuracy of Fresnel lens can be controlled within ±3 µm using the optimum level of process parameters through the confirmation test. The research results of this study have industrial application values because electro-optical industries are able to significantly reduce a new optical element development cycle time.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.5864

  15. Stability of color in Spanish-style green table olives pasteurized and stored in plastic containers.

    Science.gov (United States)

    Sánchez, Antonio Higinio; López-López, Antonio; Beato, Víctor Manuel; de Castro, Antonio; Montaño, Alfredo

    2017-08-01

    There is an increasing interest in the use of pasteurizable plastic packaging by the olive industry. In order to investigate the change from traditional glass or varnished can containers to plastic packaging, the proper plastic material that is compatible with fermented olives while maintaining color quality during pasteurization treatment and storage must be selected. This work is focused on color stability in two distinct pasteurizable plastic containers with different oxygen permeability. In PET + MDPE/EVOH (polyethylene terephthalate + medium-density polyethylene/ethylene vinyl alcohol) pouches, pasteurization provoked severe browning which drastically decreased their color shelf life ( 6.5 months). The plastic material had a significant effect on the retention of color of the pasteurized product. The use of AlOx-coated PET + MDPE pouches could be an alternative to traditional packaging for the pasteurization and storage of Spanish-style green olives from a color quality standpoint. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Banana peels based bio-plastic

    OpenAIRE

    Taodharos, Shady

    2018-01-01

    Every developed country depends on the industry as the main factor of its economy. Lack of exports, depression in both the general economy and the value of the currency are consequences of neglecting the industry. All countries work on increasing the efficiency of their industries by whether working on the input, the output, the cost or the time of the process. Plastic industry is considered one of the most important industries because plastic is an important factor in the making of many usef...

  17. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource

    Science.gov (United States)

    Sharuddin, S. D. A.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    The worldwide plastic generation expanded over years because of the variety applications of plastics in numerous sectors that caused the accumulation of plastic waste in the landfill. The growing of plastics demand definitely affected the petroleum resources availability as non-renewable fossil fuel since plastics were the petroleum-based material. A few options that have been considered for plastic waste management were recycling and energy recovery technique. Nevertheless, several obstacles of recycling technique such as the needs of sorting process that was labour intensive and water pollution that lessened the process sustainability. As a result, the plastic waste conversion into energy was developed through innovation advancement and extensive research. Since plastics were part of petroleum, the oil produced through the pyrolysis process was said to have high calorific value that could be used as an alternative fuel. This paper reviewed the thermal and catalytic degradation of plastics through pyrolysis process and the key factors that affected the final end product, for instance, oil, gaseous and char. Additionally, the liquid fuel properties and a discussion on several perspectives regarding the optimization of the liquid oil yield for every plastic were also included in this paper.

  18. Organizational Heritage and Entrepreneurship: Steven Klepper’s Theories Reflected in the Emergence and Growth of the Plastic Molds Industry in Portugal

    NARCIS (Netherlands)

    Costa, Carla

    2015-01-01

    This paper reviews the history of the emergence of the molds and plastics industries in Portugal, finding that this history fits nicely with the accounts—originally proposed in Steven Klepper’s various works—of new industries emerging from older, related industries, and regional clusters emerging

  19. Analysis of the influencing factors of PAEs volatilization from typical plastic products.

    Science.gov (United States)

    Chen, Weidong; Chi, Chenchen; Zhou, Chen; Xia, Meng; Ronda, Cees; Shen, Xueyou

    2018-04-01

    The primary emphasis of this research was to investigate the foundations of phthalate (PAEs) pollutant source researches and then firstly confirmed the concept of the coefficient of volatile strength, namely phthalate total content in per unit mass and unit surface area of pollutant sources. Through surveying and evaluating the coefficient of volatile strength of PAEs from typical plastic products, this research carried out reasonable classification of PAEs pollutant sources into three categories and then investigated the relationship amongst the coefficient of volatile strength as well as other environmental factors and the concentration level of total PAEs in indoor air measured in environment chambers. Research obtained phthalate concentration results under different temperature, humidity, the coefficient of volatile strength and the closed time through the chamber experiment. In addition, this study further explored the correlation and ratio of influencing factors that affect the concentration level of total PAEs in environment chambers, including environmental factors, the coefficient of volatile strengths of PAEs and contents of total PAEs in plastic products. The research created an improved database system of phthalate the coefficient of volatile strengths of each type of plastic goods, and tentatively revealed that the volatile patterns of PAEs from different typical plastic goods, finally confirmed that the coefficient of volatile strengths of PAEs is a major factor that affects the indoor air total PAEs concentration, which laid a solid foundation for further establishing the volatile equation of PAEs from plastic products. Copyright © 2017. Published by Elsevier B.V.

  20. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    Science.gov (United States)

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  1. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.

    Science.gov (United States)

    Breyer, Sacha; Mekhitarian, Loucine; Rimez, Bart; Haut, B

    2017-02-01

    This work is a preliminary study for the development of a co-pyrolysis process of plastic wastes excavated from a landfill and used lubrication oils, with the aim to produce an alternative liquid fuel for industrial use. First, thermogravimetric experiments were carried out with pure plastics (HDPE, LDPE, PP and PS) and oils (a motor oil and a mixture of used lubrication oils) in order to highlight the interactions occurring between a plastic and an oil during their co-pyrolysis. It appears that the main decomposition event of each component takes place at higher temperatures when the components are mixed than when they are alone, possibly because the two components stabilize each other during their co-pyrolysis. These interactions depend on the nature of the plastic and the oil. In addition, co-pyrolysis experiments were led in a lab-scale reactor using a mixture of excavated plastic wastes and used lubrication oils. On the one hand, the influence of some key operating parameters on the outcome of the process was analyzed. It was possible to produce an alternative fuel for industrial use whose viscosity is lower than 1Pas at 90°C, from a plastic/oil mixture with an initial plastic mass fraction between 40% and 60%, by proceeding at a maximum temperature included in the range 350-400°C. On the other hand, the amount of energy required to successfully co-pyrolyze, in lab conditions, 1kg of plastic/oil mixture with an initial plastic mass fraction of 60% was estimated at about 8MJ. That amount of energy is largely used for the thermal cracking of the molecules. It is also shown that, per kg of mixture introduced in the lab reactor, 29MJ can be recovered from the combustion of the liquid resulting from the co-pyrolysis. Hence, this co-pyrolysis process could be economically viable, provided heat losses are addressed carefully when designing an industrial reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  3. Environmental issues of polythylene bags waste and its reuse in construction industry

    International Nuclear Information System (INIS)

    Khan, S.A.; Kamal, M.A.

    2005-01-01

    The main aim of every development and progress is to provide comfort, convenience and prosperity to the mankind. Each development brings a product for the use of public which ends up as a waste after some time. Since the development of plastic in the last century, it has become a popular material used in a wide variety of ways. The problem appears when these items are no longer wanted and how these are disposed, particularly the throwaway plastic material used in wrapping or packaging. Because plastic does not decompose, the amount of plastic waste has increased to the alarming level. The waste problems multifolds, if no reuse option or recycle process has been developed. The plastic shopping bags are one of such products for which no reuse or recycle industry is yet available. Plastic waste problems being multidimensional have attracted world-wide recognition and multiple solutions to tackle the problems are under consideration. There exists a great potential for use of plastic waste in the construction Industry. This study is related to the fabrication of blocks of 'Compressed Plastic Waste (CPW)' and their use in the construction industry, e.g., access ramps for overhead bridges, highway embankments on soft soils, backfill behind retaining walls, foundation support on soft soil and bouancy mats on very soft soils, etc. This paper is dedicated to cost-benefit analysis for the above mentioned uses of the plastic waste blocks. (author)

  4. Efficiency and Import Penetrationon the Productivity of Textile Industry and Textile Products

    Directory of Open Access Journals (Sweden)

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the ave-rage level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  5. Smart film actuators using biomass plastic

    International Nuclear Information System (INIS)

    Yoneyama, Satoshi; Tanaka, Nobuo

    2011-01-01

    This paper presents a novel smart film actuator based on the use of a biomass plastic as a piezoelectric film. Conventional polymeric smart sensors and actuators have been based upon synthetic piezoelectric polymer films such as PVDF. Almost all synthetic polymers are made from nearly depleted oil resources. In addition combustion of their materials releases carbon dioxide, thereby contributing to global warming. Thus at least two important sustainability principles are violated when employing synthetic polymers: avoiding depletable resources and avoiding ecosystem destruction. To overcome such problems, industrial plastic products made from synthetic polymers were developed to replace oil-based plastics with biomass plastics. This paper applies a biomass plastic with piezoelectricity such as poly-L-lactic acid (PLLA). As a result, PLLA film becomes a distributed parameter actuator per se, hence an environmentally conscious smart film actuator is developed. Firstly, this paper overviews the fundamental properties of piezoelectric synthetic polymers and biopolymers. The concept of carbon neutrality using biopolymers is mentioned. Then a two-dimensional modal actuator for exciting a specific structural mode is proposed. Furthermore, a biomass plastic-based cantilever beam with the capability of modal actuation is developed, the validity of the proposed smart film actuator based upon a biomass plastic being analytically as well as experimentally verified

  6. Exploring the Disappearing Ocean Micro Plastic Mystery: New Insights from Dissolved Organic Carbon photo production

    Science.gov (United States)

    Zhu, L.; Zhao, S.; Li, D.; Stubbins, A.

    2017-12-01

    Emerging as a novel planetary threat, plastic waste, dominated by millimeter-sized plastic (microplastic), is omnipresent in the oceans, posing broad environmental threats. However, only 1% of the microplastic waste exported from the land is found in the ocean. Most of the lost fraction is in the form of microplastics. The fate of these buoyant plastic fragments is a fundamental gap in our understanding of the fate and impact of plastics in marine ecosystems. To date, an effective sink for the lost microplastics has not been found. In this study, dissolved organic carbon (DOC) photo-production from the three dominant forms of ocean microplastics was assessed. These plastics were: 1) Polyethylene (PE) both for postconsumer samples and pure standard samples; 2) polypropylene (PP); and, expanded polystyrene (EPS). In addition, a Neustonic microplastic samples from the North Pacific Gyre were irradiated. These real-world samples were dominated by PE ( 80%). All samples were placed in seawater, in quartz flasks, and irradiated in a solar simulator for 2 months. During irradiation, DOC photo-production from PP, EPS, and the PE standard was exponential, while DOC photo-production from postconsumer PE and the Neustonic samples was linear. Scanning electron microscopy indicated surface ablation and micro-fragmentation during the irradiation of the three plastics that showed exponential DOC production (PP, EPS and standard PE), suggesting the increase in photo-reactivity of these plastics was a result of an increase in their surface to volume ratios and therefore their per-unit mass light exposure. Based on DOC production, the half-life of the microplastics ranged from 0.26 years for EPS to 86 years for PE, suggesting sunlight is a major removal term for buoyant oceanic microplastics. With respect to the broader carbon cycle, we conservatively estimate that plastic photodegradation releases 6 to 17 thousand metric tons of radiocarbon dead DOC to the surface ocean each year.

  7. The use of plasticizing additives based on recycled raw materials in the petrochemical rubber mixtures

    Directory of Open Access Journals (Sweden)

    Z. S. Shashok

    2016-01-01

    Full Text Available At present, the development of alternative products for elastomers based on recycling petrochemical raw materials is a new trend of the rubber industry progress. Petrochemical raw materials include spent lubricants and motor oils are among such recycling products. In this context, the influence of the products of recycling waste engine oil (DVCH and RA in comparison with industrial oil (I-20 on the technological properties of filled elastomeric compositions was investigated. The elastomeric compositions were based on poly isoprene and divinyl rubbers. The plasticizing components were manufactured by IOOO “DVCH-Menedzhment”. They are mixture of hydro-carbons, C16–C20 and differ from each other in the content of linear and branched paraffin. Plastic-elastic properties of rubber compounds on the shear disk viscometer MV2000 in accordance with GOST 10722–76 was carried out. Kinetics of vulcanization on the rheometer ODR2000 according to GOST 12535–84 was defined. It is shown that the introduction of RA test plasticizing component provides a significant effect on Mooney viscosity, as compared to elastomeric compositions containing a plasticizer and I-20 and plasticizing additive DVCH. It revealed that the administration of all components in the studied plasticizing elastomer compositions based on a combination poly isoprene and divinyl rubbers has no significant effect on the rate of relaxation of stress of rubber compounds. It is found that elastomeric compositions containing as additives investigated processing waste oil products (DVCH and RA are characterized by a slightly smaller value of time to reach an optimal degree of vulcanization.

  8. A Review of Wood Plastic Composites effect on the Environment

    Directory of Open Access Journals (Sweden)

    Ahmed Taifor Azeez

    2017-05-01

    Full Text Available Wood Plastic Composites (WPCs are environmentally friend materials with a wide range of applications in the field of constructions, comprising high mechanical and physical properties with low cost raw materials as plastic wastes and different carpentry process wood reminder. The effects of wood, plastic waste and additives on various properties of the material such as mechanical (modulus of elasticity and modulus of rupture, physical (moisture absorption and fire retardancy have been investigated in order to push the output functions of the products to the limits of work conditions requirements. This study, overviews the importance of Wood Plastic Composites in conserving the environment by depletion post consume plastics from landfills, and the impact of these composites in developing the economic via opening new flourished markets for modern products. Both the ecological and economical requirements oblige the Iraqi government to replace the negatively healthy effects formaldehyde wood composites (medium density fiberboard MDF which are widely consumed in Iraqi markets with Wood Plastic Composites. a long-term strategy plan in which the researchers and the capitals meet under supervision of the government is very necessary and recommended in this paper to establish and develop WPCs industry in Iraq.

  9. Investigation Of HDPE Plastic Waste Aggregate On The Properties Of Concrete

    OpenAIRE

    A. M. Mustafa Al Bakri; S. Mohammad Tamizi; A. R. Rafiza; Y. Zarina

    2011-01-01

    Quantities of polymer wastes have increased in recent years due to increases in industrialization and the rapid improvement in the standard of living. In Malaysia, most polymer wastes are abandoned and not recycled, causing serious problems, such as the waste of natural resources and environmental pollution. Polymer products, such as synthetic fibers, plastics, and rubber, are made from petrochemical compounds, and they degrade extremely slowly in the natural environment. Plastic materials ar...

  10. Research cooperation project on the development of easy injection molding control technology for engineering plastics; Engineering plastic no seikei joken kan`i settei gijutsu ni kansuru kenkyu kyoryoku jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    In order to enhance the industries which supply assembly parts to Japan`s assembly industries in Thailand, research cooperation project on the plastic parts production technology has started. For the research cooperation, the mold design is effectively conducted using simulation technique of CAE (computer aided engineering), and an international easy injection molding control system is made using the molding support software for injection molding machines. In FY 1996, actual situations of plastic parts and assembly industries in Thailand have been investigated through the cooperation with the counterpart of Thailand. Demand and supply of engineering plastics, receive and inspection of parts, and current circumstances of molding processing makers in Thailand have been grasped. Based on the results of this investigation, proposal of basic plan, time schedule, and delivery plan of molding machines and testing equipment have been discussed, to make the basic plan. 18 refs., 4 figs., 23 tabs.

  11. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    Science.gov (United States)

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Wood-plastic composites as promising green-composites for automotive industries!

    Science.gov (United States)

    Ashori, Alireza

    2008-07-01

    Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.

  13. Production of steam cracking feedstocks by mild cracking of plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Angyal, Andras; Miskolczi, Norbert; Bartha, Laszlo; Tungler, Antal; Nagy, Lajos; Vida, Laszlo; Nagy, Gabor

    2010-11-15

    In this work the utility of new possible petrochemical feedstocks obtained by plastic waste cracking has been studied. The cracking process of polyethylene (PE), polyethylene-polypropylene (PEPP) and polyethylene-polystyrene (PEPS) has been carried out in a pilot scale tubular reactor. In this process mild reaction parameters has been applied, with the temperature of 530 C and the residence time of 15 min. The produced hydrocarbon fractions as light- and middle distillates were tested by using a laboratory steam cracking unit. It was concluded that the products of the mild cracking of plastic wastes could be applied as petrochemical feedstocks. Based on the analytical data it was determined that these liquid products contained in significant concentration (25-50 wt.%) of olefin hydrocarbons. Moreover the cracking of polystyrene containing raw material resulted in liquid products with significant amounts of aromatic hydrocarbons too. The steam cracking experiments proved that the products obtained by PE and PEPP cracking resulted in similar or better ethylene and propylene yields than the reference samples, however the aromatic content of PEPS products reduced the ethylene and propylene yields. (author)

  14. Study of technical, economic and environmental feasibility of industrial scale production of nanocellulose obtained from the agroindustrial wastes from pineapple peel (Ananas comosus)

    International Nuclear Information System (INIS)

    Camacho Elizondo, Melissa

    2013-01-01

    Technical, economic and environmental study is realized to determine the feasibility of the industrial production of nanocellulose, from agroindustrial wastes of pineapple (Ananas comosus) market oriented of plastic packaging. The market bibliographical studies (national and international) and real capacities of national institutions have determined the most adequate and competitive method for the production of nanocellulose. The conditions to produce nanocellulose are described from agroindustrial wastes of pineapple in an industrial scale, according with the predominant factors in the plastic market. The equilibrium point, cost and price of nanocellulose produced are analyzed for the national market of plastics. The producing unit implemented is evaluated within the general framework of national and international economy and market to contribute the conditions that may to affect the feasibility and profitability of the project. The technical study has demonstrated to count with the adequate technology for the project execution. The economic study of the project has indicated to be economically profitable, considering the results of the NPV ($ 110 031,73), IRR (46,42%) and MARR (19,19%). The SuperPro Designer program has been used as a tool to corroborate the results in the technical-economic study and these have shown that the project has been feasible [es

  15. Nuclear and radiation applications in industry: Tools for innovation

    International Nuclear Information System (INIS)

    Machi, S.; Iyer, R.

    1994-01-01

    Applications of nuclear and radiation technologies have been contributing to industrial efficiency, energy conservation, and environmental protection for many years. Some of these are: Manufacturing industries: Radiation processing technologies are playing increasing roles during manufacturing of such everyday products as wire and cable, automobile tires, plastic films and sheets, and surface materials. Production processes: Other techniques employing radioisotope gauges are indispensable for on-line thickness measurements during paper, plastic, and steel plate production. Processing and quality checks are made using nucleonic control systems that are common features of industrial production lines. Sterilization of medical products using electron beam accelerators or cobalt-60 radiation is better than the conventional methods. Industrial safety and product quality: Non-destructive examination or testing using gamma- or X-ray radiography is widely used for checking welds, casting, machinery, and ceramics to ensure quality and safety. Additionally, radiotracer techniques are unique tools for the optimization of chemical processes in reactors, leakage detection, and wear and corrosion studies, for example. Environmental protection: An innovative technology using electron beams to simultaneously remove sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) has been under development. The electron beam technology is very cost competitive and its byproduct can be used as agricultural fertilizer

  16. Challenges and opportunities of biodegradable plastics: A mini review.

    Science.gov (United States)

    Rujnić-Sokele, Maja; Pilipović, Ana

    2017-02-01

    The concept of materials coming from nature with environmental advantages of being biodegradable and/or biobased (often referred to as bioplastics) is very attractive to the industry and to the consumers. Bioplastics already play an important role in the fields of packaging, agriculture, gastronomy, consumer electronics and automotive, but still they have a very low share in the total production of plastics (currently about 1% of the about 300 million tonnes of plastic produced annually). Biodegradable plastics are often perceived as the possible solution for the waste problem, but biodegradability is just an additional feature of the material to be exploited at the end of its life in specific terms, in the specific disposal environment and in a specific time, which is often forgotten. They should be used as a favoured choice for the applications that demand a cheap way to dispose of the item after it has fulfilled its job (e.g. for food packaging, agriculture or medical products). The mini-review presents the opportunities and future challenges of biodegradable plastics, regarding processing, properties and waste management options.

  17. Forest Products Industry Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  18. Plastics, the environment and human health: current consensus and future trends.

    Science.gov (United States)

    Thompson, Richard C; Moore, Charles J; vom Saal, Frederick S; Swan, Shanna H

    2009-07-27

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the

  19. Plastics, the environment and human health: current consensus and future trends

    Science.gov (United States)

    Thompson, Richard C.; Moore, Charles J.; vom Saal, Frederick S.; Swan, Shanna H.

    2009-01-01

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the

  20. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    Science.gov (United States)

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  1. Radiation cross-linked plastics: a versatile material solution for packaging, automotive, Electrotechnic and Electronics

    International Nuclear Information System (INIS)

    Rouif, Sophie

    2004-01-01

    Used since the beginning of the 1970s for the production of halogen-free and heat-resistant cables and wires, for conditioning polyethylene hot-water pipes or for the manufacture of heat shrinkable tubes and of tyres, radiation cross-linking is developing fastly today on the scale of plastic-moulded parts, and not only by the mean of EB, but also under gamma rays. Indeed, it improves considerably the performances of a great number of plastics among thermoplastics, elastomers and thermoplastic elastomers (TPE). Radiation cross-linking reinforces the dimensional stability of polymers in chemically aggressive and high-temperature conditions. Radiation cross-linked-based engineering plastics offers OEM and end users in many branches of industry both technical and economical advantages in comparison with high-performances plastics. They constitute a technical and economical compromise between engineering plastics that failed and high-performances plastic, often over-tailored and expensive. This modern industrial technology gives way to new applications and perspectives in various sectors (packaging, automotive, electrotechnic and electronics, including connectors, surface-mounted devices, integrated circuits, 3D-MID, etc.) that are described in the paper

  2. Efficiency and Import Penetration on the Productivity of Textile Industry and Textile Products

    Directory of Open Access Journals (Sweden)

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the average level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  3. Is the holy grail plastic? Radiation identification from plastic scintillators

    International Nuclear Information System (INIS)

    Butchins, L. J. C.; Gosling, J. M.; Hogbin, M. R. W.; Jones, D. C.; Lacey, R. J.; Stearn, J. G.

    2009-01-01

    Thousands of shipping containers containing Naturally Occurring Radioactive Materials (NORM) made from ceramics, stoneware and other natural products are transported worldwide on a daily basis. Some of these NORM loads are sufficiently radioactive to trigger alarms from plastic scintillator detectors which have limited ability to also identify the radionuclides present thus necessitating secondary inspection which increases the operational overhead. Previous studies have been carried out to ascertain if radionuclide discrimination using plastic scintillators is possible with a variety of approaches including deconvolution and computer learning. In this paper, a two stage algorithm is described. An example implementation of the algorithm is presented, applied to operational data, and has been installed in real time operation on a polyvinyl-toluene (PVT) detector. The approach requires the collection of a large library of spectra using examples of the detectors to be deployed. In this study, data from both actual freight loads passing through a port and predefined freight containing various radionuclides were collected. The library represents freight loads that may contain industrial, medical, nuclear, and NORM radionuclides. The radionuclides in the predefined freight were placed in various orientations and in various amounts of shielding to mimic many different scenarios. Preliminary results on an initial subset of data containing industrial and NORM sources show the number of mis-classifications to be less than 1% of the total test data. Good initial results were obtained even for low energy radionuclides such as 241 Am. Where discrimination is not possible, and principle components overlap, this region or 'cloud' of the n-dimensional plot can be put aside. Those spectra that fall in the 'cloud' can be regarded as suspect and in these cases, some secondary screening will still be necessary. It is predicted that the algorithm will enable recognition of NORM loads

  4. Model for Environmental Assessment of Industrial Production Systems: A Case Study in a Plastic Manufacturing Firm

    Directory of Open Access Journals (Sweden)

    Francine Comunello

    2017-05-01

    Full Text Available The environmental issue has been discussed sharply in the organizational environment, as consumers, and society in general, have been increasingly concerned about the environment. In this sense, the companies, especially the factories, seek to minimize the environmental impact caused by its production processes through actions that combine the organization's economic interests with environmental concerns. Thus, this article aims to analyze how environmental management of the productive sector is being carried out at Industria Beta Chapecó/SC. Therefore, we developed a qualitative and descriptive research in order to apply the Model for Environmental Assessment of Industrial Production Systems (MAASPI in the production of Industria Beta sector. The results showed the main environmental interventions caused by the production process of the organization, particularly the interventions for the consumption of electricity, plant location and chip storage. As main proposals to minimize negative environmental impacts, we have the installation of translucent tiles in the production environment, a study on energy efficiency, construction of water and soil testing, construction of waste storage terminals and implementation of the pre-selection of the raw material. The realization of the suggested adjustments enables Industria Beta to foresee the legal environmental requirements, to aim for enviromental certifications and seals and to strengthen its image as environment-friendly with collaborators and society in general.

  5. Oregon's forest products industry: 1994.

    Science.gov (United States)

    Franklin R. Ward

    1997-01-01

    This report presents the findings of a survey of primary forest products industries in Oregon for 1994. The survey included the following sectors: lumber; veneer; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs consumed,...

  6. Productivity improvement through industrial engineering in the semiconductor industry

    Science.gov (United States)

    Meyersdorf, Doron

    1996-09-01

    Industrial Engineering is fairly new to the semiconductor industry, though the awareness to its importance has increased in recent years. The US semiconductor industry in particular has come to the realization that in order to remain competitive in the global market it must take the lead not only in product development but also in manufacturing. Industrial engineering techniques offer one ofthe most effective strategies for achieving manufacturing excellence. Industrial engineers play an important role in the success of the manufacturing facility. This paper defines the Industrial engineers role in the IC facility, set the visions of excellence in semiconductor manufacturing and highlights 10 roadblocks on the journey towards manufacturing excellence.

  7. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  8. A Perspective on the Prowaste Concept: Efficient Utilization of Plastic Waste through Product Design and Process Innovation.

    Science.gov (United States)

    Greco, Antonio; Frigione, Mariaenrica; Maffezzoli, Alfonso; Marseglia, Alessandro; Passaro, Alessandra

    2014-07-23

    This work is aimed to present an innovative technology for the reinforcement of beams for urban furniture, produced by in-mold extrusion of plastics from solid urban waste. This material, which is usually referred to as "recycled plastic lumber", is characterized by very poor mechanical properties, which results in high deflections under flexural loads, particularly under creep conditions. The Prowaste project, founded by the EACI (European Agency for Competitiveness and Innovation) in the framework of the Eco-Innovation measure, was finalized to develop an innovative technology for selective reinforcement of recycled plastic lumber. Selective reinforcement was carried out by the addition of pultruded glass rods in specific positions with respect to the cross section of the beam, which allowed optimizing the reinforcing efficiency. The reinforcement of the plastic lumber beams with pultruded rods was tested at industrial scale plant, at Solteco SL (Alfaro, Spain). The beams obtained, characterized by low cost and weight, were commercialized by the Spanish company. The present paper presents the most relevant results of the Prowaste project. Initially, an evaluation of the different materials candidates for the reinforcement of recycled plastic lumber is presented. Plastic lumber beams produced in the industrial plant were characterized in terms of flexural properties. The results obtained are interpreted by means of beam theory, which allows for extrapolation of the characteristic features of beams produced by different reinforcing elements. Finally, a theoretical comparison with other approaches which can be used for the reinforcement of plastic lumber is presented, highlighting that, among others, the Prowaste concept maximizes the stiffening efficiency, allowing to significantly reduce the weight of the components.

  9. Total Productivity Management in Small Industries

    OpenAIRE

    FARAJPOUR-KHANAPOSHTANI, Ghassem; HAYATI, Seyyed Iman

    2015-01-01

    Abstract. The importance of small businesses and SME's has been well established in the literature of the world economy. Thus, both industrialized and developing countries, development, support of small businesses as part and parcel of their productivity strategies have. Small industries are a major driver of employment, economic growth and productivity. About 80% of all companies in the world are less than 10 cases of human resources, so 95% of industries in the UK, Spain and Finland and 94 ...

  10. Production and technological plasticity of commercially pure Titanium in submicrocrystalline state

    International Nuclear Information System (INIS)

    Danilov, V. I.; Zuev, L. B.; Shlyahova, G. V.; Orlova, D. V; Sharkeev, Yu. P.

    2010-01-01

    Presented is the method for producing solid billets of commercially pure titanium having low dimensional nanostructure (structural elements < 100 nm). The method is based on multiple unidirectional pressing, with the direction of pressing being changed every other cycle, followed by cold rolling. The microstructure, mechanical characteristics and plastic deformation behavior of material produced by the above method was investigated. The results obtained are presented herein. The loading diagram of titanium alloy in nanostructure state shows a lengthy prefracture portion, which suggests that material undergoes practically no deformation hardening. The latter stage is also distinguished by the emergence of macroscopic nuclei of localized plastic flow, which differ in the level of accumulated deformation. The maximal-amplitude nucleus will remain stationary, pinpointing the place of future fracture. On the meso-scale level formation of meso-bands (folds) is observed, with the distribution and characteristic sizes of the meso-bands corresponding to the arrangement of localized plastic flow macro-nuclei. Characteristically, the local and global loss of plastic flow stability will occur simultaneously in titanium alloy in nanostructure state. On the base of experimental evidence certain modifications can be introduced into the pressing schedules employed by the production of materials in nanostructure state. Key words: titanium, nanostructure state, method of severe plastic deformation, deformation behavior, localized plastic flow, fracture

  11. Filling behaviour of wood plastic composites

    Science.gov (United States)

    Duretek, I.; Lucyshyn, T.; Holzer, C.

    2017-01-01

    Wood plastic composites (WPC) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth’s resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection moulding processes. This work presents the results of numerical simulation and experimental visualisation of the mould filling process in injection moulding of WPC. The 3D injection moulding simulations were done with the commercial software package Autodesk® Moldflow® Insight 2016 (AMI). The mould filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the moulded part, especially at high filler content.

  12. System analysis of industrial waste management: A case study of industrial plants located between Tehran and Karaj

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Karami

    2015-01-01

    Full Text Available Aims: In this study, management of industrial waste in industries located between Tehran and Karaj in 2009-2010 was examined. Materials and Methods: This is a cross-sectional study which was done by site survey (Iranian environmental protection organization questionnaire usage and results analysis. This questionnaire was consisted of 45 questions about industrial waste, quantity, quality, and management. A total number of industries with over 50 employees was 283, and Stratified sampling method was used. Sample of size 50 was selected from 283cases. Results: The major hazardous waste-generating industries include chemical and plastic. Private sectors disposed 45% of generated waste. Majority of wastes were buried (62%, and only 17% of industrial waste was recycled. Conclusion: For hazardous waste reduction in this zone and health and economic attractions, the opportunity for reuse and recovery for these wastes must maximize in short-term and burial of industrial waste must be minimized. Industries such as chemical-plastic and electronics which have higher hazardous waste, in long-term, must be replaced with other industries such as wood cellulose and paper that have lower hazardous waste production rate.

  13. Industrial waste utilization in the panels production for high buildings facade and socle facing

    Science.gov (United States)

    Vitkalova, Irina; Torlova, Anastasiya; Pikalov, Evgeniy; Selivanov, Oleg

    2018-03-01

    The research presents comprehensive utilization of such industrial waste as galvanic sludge, broken window glass as functional additives for producing ceramics for facade and socle paneling in high-rise construction. The basic charge component is low-plasticity clay, which does not allow producing high-quality products if used without any functional additives. The application of the mentioned above components broadens the resource base, reduces production cost and the mass of the products in comparison with the currently used facing ceramics. The decrease of product mass helps to reduce the load on the basement and to use ceramic material in high-rise construction more effectively. Additional advantage of the developed composition is the reducing of production energy intensity due to comparatively low pressing pressure and firing temperature thus reducing the overall production cost. The research demonstrates the experimental results of determining density, compressive strength, water absorption, porosity and frost resistance of the produced ceramic material. These characteristics prove that the material can be applied for high buildings outdoor paneling. Additional research results prove ecologic safety of the produced ceramic material.

  14. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna.

    Science.gov (United States)

    Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran

    2012-06-01

    The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.

  15. Conversion of food industrial wastes into bioplastics.

    Science.gov (United States)

    Yu, P H; Chua, H; Huang, A L; Lo, W; Chen, G Q

    1998-01-01

    The usage of plastics in packaging and disposable products, and the generation of plastic waste, have been increasing drastically. Broader usage of biodegradable plastics in packaging and disposable products as a solution to environmental problems would heavily depend on further reduction of costs and the discovery of novel biodegradable plastics with improved properties. In the authors' laboratories, various carbohydrates in the growth media, including sucrose, lactic acid, butyric acid, valeric acid, and various combinations of butyric and valeric acids, were utilized as the carbon (c) sources for the production of bioplastics by Alcaligenes eutrophus. As the first step in pursuit of eventual usage of industrial food wastewater as nutrients for microorganisms to synthesize bioplastics, the authors investigated the usage of malt wastes from a beer brewery plant as the C sources for the production of bioplastics by microorganisms. Specific polymer production yield by A. Latus DSM 1124 increased to 70% polymer/cell (g/g) and 32 g/L cell dry wt, using malt wastes as the C source. The results of these experiments indicated that, with the use of different types of food wastes as the C source, different polyhydroxyalkanoate copolymers could be produced with distinct polymer properties.

  16. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure.

    Science.gov (United States)

    Bekker, Cindy; Brouwer, Derk H; Tielemans, Erik; Pronk, Anjoeka

    2013-04-01

    In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the potential MNM exposure scenarios within relevant industrial sectors, applied exposure controls, and number of workers potentially exposed to MNM in Dutch industrial sectors producing and applying MNM-enabled end products in the Netherlands. A survey was conducted in three phases: (i) identification of MNM-enabled end products; (ii) identification of relevant industrial sectors; and (iii) a tiered telephone survey to estimate actual use of the products among 40 sector organizations/knowledge centres (Tier 1), 350 randomly selected companies (Tier 2), and 110 actively searched companies (Tier 3). The most dominant industrial sectors producing or applying MNM-enabled end products (market penetration >5%) are shoe repair shops, automotive, construction, paint, metal, and textile cleaning industry. In the majority of the companies (76%), potential risks related to working with MNM are not a specific point of interest. The total number of workers potentially exposed to MNM during the production or application of MNM-enabled end products was estimated at approximately 3000 workers in the Netherlands. The results of this study will serve as a basis for in-depth exposure and health surveys that are currently planned in the Netherlands. In addition, the results can be used to identify the most relevant sectors for policy makers and future studies focussing on evaluating the risks of occupational exposure to MNM.

  17. Explaining Spatial Convergence of China's Industrial Productivity

    DEFF Research Database (Denmark)

    Deng, Paul Duo; Jefferson, Gary H.

    2011-01-01

    This article investigates the conditions that may auger a reversal of China's increasingly unequal levels of regional industrial productivity during China's first two decades of economic reform. Using international and Chinese firm and industry data over the period 1995–2004, we estimate a produc...... movement towards reversing growth in spatial income inequality.......This article investigates the conditions that may auger a reversal of China's increasingly unequal levels of regional industrial productivity during China's first two decades of economic reform. Using international and Chinese firm and industry data over the period 1995–2004, we estimate...... a productivity growth–technology gap reaction function. We find that as China's coastal industry has closed the technology gap with the international frontier, labour productivity growth in the coastal region has begun to slow in relation to the interior. This may serve as an early indicator of China's initial...

  18. The highest global concentrations and increased abundance of oceanic plastic debris in the North Pacific: Evidence from seabirds

    Science.gov (United States)

    Robards, Martin D.; Gould, Patrick J.; Coe, James M.; Rogers, Donald B.

    1997-01-01

    Plastic pollution has risen dramatically with an increase in production of plastic resin during the past few decades. Plastic production in the United States increased from 2.9 million tons in I960 to 47.9 million tons in 1985 (Society of the Plastics Industry 1986). This has been paralleled by a significant increase in the concentration of plastic particles in oceanic surface waters of the North Pacific from the 1970s to the late 1980s (Day and Shaw 1987; Day et al. 1990a). Research during the past few decades has indicated two major interactions between marine life and oceanic plastic: entanglement and ingestion (Laist 1987). Studies in the last decade have documented the prevalence of plastic in the diets of many seabird species in the North Pacific and the need for further monitoring of those species and groups that ingest the most plastic (Day et al. 1985).

  19. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Science.gov (United States)

    2010-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a new...

  20. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  1. Plastic waste as a resource. Strategies for reduction and utilization of plastic waste

    OpenAIRE

    Pasqual i Camprubí, Gemma

    2010-01-01

    Plastic materials have experienced a spectacular rate of growth in recent decades, consequently, production of plastics, and likewise their consumption, has increased markedly since 1950. Moreover, they are lightweight and durable, as well as can be moulded into a variety of products that can be manufactured in many different types of plastic and in a wide range of applications. Inevitably, continually increasing amounts of used plastic are originating daily, resulting in a plastic waste prob...

  2. Product Life Cycle of the Manufactured Home Industry

    Directory of Open Access Journals (Sweden)

    Gavin Wherry

    2014-09-01

    Full Text Available Residential construction consumes an estimated 26 percent of the total U.S. wood harvest and thus plays an important role in the forest products value chain. While being a relatively small part of the U.S. residential construction market, the factory-built residential housing industry, originating from manufactured homes (e.g. mobile homes, is embracing emerging industry segments such as modular or panelized homes. Since indications exist that factory-built home production is slated to gain a more prominent role in the U.S. construction markets at the cost of traditional stick-built production, the factory-built home industry sub-segment is of considerable importance to the forest products industry. This research looks at manufactured home producers as a benchmark for analyzing the current economic state of the industry and discusses competitive strategies. The analysis concludes, through macroeconomic modeling, that manufactured homes are in the declining stage of their product life cycle due to changes to the U.S. residential construction sector and the factory-built home industry and by advancements of rival industry-segments. As market share continues to decline, firms operating in this industry-segment seek to either hedge their losses through product diversification strategies or remain focused on strategically repositioning the manufactured home segment.

  3. Montana's forest products industry and timber harvest, 2004

    Science.gov (United States)

    Timothy P. Spoelma; Todd A. Morgan; Thale Dillon; Alfred L. Chase; Charles E. Keegan; Larry T. DeBlander

    2008-01-01

    This report traces the flow of Montana's 2004 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Montana's primary forest products industry; and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production...

  4. An Evaluation of h-Index as a Measure of Research Productivity Among Canadian Academic Plastic Surgeons.

    Science.gov (United States)

    Hu, Jiayi; Gholami, Arian; Stone, Nicholas; Bartoszko, Justyna; Thoma, Achilleas

    2018-02-01

    Evaluation of research productivity among plastic surgeons can be complex. The Hirsch index (h-index) was recently introduced to evaluate both the quality and quantity of one's research activity. It has been proposed to be valuable in assessing promotions and grant funding within academic medicine, including plastic surgery. Our objective is to evaluate research productivity among Canadian academic plastic surgeons using the h-index. A list of Canadian academic plastic surgeons was obtained from websites of academic training programs. The h-index was retrieved using the Scopus database. Relevant demographic and academic factors were collected and their effects on the h-index were analyzed using the t test and Wilcoxon Mann-Whitney U test. Nominal and categorical variables were analyzed using χ 2 test and 1-way analysis of variance. Univariate and multivariate models were built a priori. All P values were 2 sided, and P h-index of 7.6. Over 80% of the surgeons were male. Both univariable and multivariable analysis showed that graduate degree ( P h-index. Limitations of the study include that the Scopus database and the websites of training programs were not always up-to-date. The h-index is a novel tool for evaluating research productivity in academic medicine, and this study shows that the h-index can also serve as a useful metric for measuring research productivity in the Canadian plastic surgery community. Plastic surgeons would be wise to familiarize themselves with the h-index concept and should consider using it as an adjunct to existing metrics such as total publication number.

  5. Our plastic age.

    Science.gov (United States)

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  6. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  7. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  8. Thermal Characteristics of Plastic Film Tension in Roll-to-Roll Gravure Printed Electronics

    Directory of Open Access Journals (Sweden)

    Kui He

    2018-02-01

    Full Text Available In the printing section of a roll-to-roll gravure printed electronics machine, the plastic film tension is directly associated with the product quality. The temperature distribution of the plastic film in the printing section is non-uniform, because of the higher drying temperature and the lower room temperature. Furthermore, the drying temperature and the room temperature are not constants in industrial production. As the plastic film is sensitive to temperature, the temperature of the plastic film will affects the web tension in the printing section. In this paper, the thermal characteristics of the plastic film tension in roll-to-roll gravure printed electronics are studied in order to help to improve the product quality. First, the tension model including the factor of temperature is derived based on the law of mass conservation. Then, some simulations and experiments are carried out in order to in-depth research the effects of the drying temperature and room temperature based on the relations between system inputs and outputs. The results show that the drying temperature and room temperature have significant influences on the web tension. The research on the thermal characteristics of plastic film tension would benefit the tension control accuracy for further study.

  9. Product Platform Development in Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer; Skold, Martin

    2011-01-01

    The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number o...... of platforms and product brands serve as the key dimensions when distinguishing the different strategies. Each strategy has its own challenges and raises various issues to deal with.......The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number...

  10. The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation.

    Science.gov (United States)

    Lechner, Aaron; Ramler, David

    2015-05-01

    Numerous studies have quantified the amount of plastic litter in aquatic ecosystems and tried to assess its impacts and threats. This reflects a rising awareness of plastic as an environmental problem. As a next logical step, identifying and regulating the sources must be in the focus of scientific efforts. We report on a spillage of industrial microplastic (IMP) from a production plant situated at an Austrian Danube tributary. This is the first identified point source of IMP litter in freshwater systems. However, due to generous thresholds established by the Austrian government substantial amounts of IMP are legally introduced into running waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Vegetative and reproductive evaluation of hot peppers under different plastic mulches in poly/plastic tunnel

    International Nuclear Information System (INIS)

    Iqbal, Q.; Amjad, M.; Ahmad, R.

    2009-01-01

    Since the beginning of civilization, the man has developed technologies to increase the efficiency of food production. The use of plastic mulch in commercial vegetable production is one of these traditional techniques that have been used for centuries. Studies were conducted to assess the efficacy of plastic mulch on growth and yield of two hot pepper hybrids, viz. Sky Red and Maha in poly/plastic tunnel. The treatments were black plastic mulch, clear plastic mulch and bare soil as control. Both hot pepper hybrids mulched with black plastic showed significantly better vegetative growth (plant height, leaf area etc) and fruit yield. Clear plastic mulch significantly increased soil temperature and reduced the number of days to first flower than black plastic mulch and bare soil. However, fruit yield was higher by 39.56 and 36.49% respectively in both hybrids when they were grown on black and clear plastic mulch as compared to bare soil. Overall results indicated that the use of plastic mulch is an ideal option to maximize hot pepper productivity as well as to extend their production season in poly/plastic tunnels. (author)

  12. Plastics and environmental health: the road ahead.

    Science.gov (United States)

    North, Emily J; Halden, Rolf U

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.

  13. Plastics and Environmental Health: The Road Ahead

    Science.gov (United States)

    North, Emily J.; Halden, Rolf U.

    2013-01-01

    Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including endocrine-disrupting properties and long-term pollution. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials – such as metal or glass – and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications, such as disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by widespread, unwanted human exposure to endocrine-disrupting bisphenol-A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of ever increasing mass-production of plastic consumer articles. By example of the healthcare sector, this review concentrates on benefits and downsides of plastics and identities opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the healthcare and food industry, and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process. PMID:23337043

  14. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    Science.gov (United States)

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  15. FY 2000 research cooperation project for the research cooperative follow-up on the technology to simply set molding conditions of engineering plastics; 2000 nendo kenkyu kyoryoku jigyo. Enjiniaringu plastic no seikei joken kan'i settei gijutsu ni kansuru kenkyu kyoryoku follow up

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of supporting improvement of the plastic molding industry which is the important industry supporting industries such as household electric appliances and automobiles, the joint research was made on the production of high quality/high precision engineering plastic formed products, and the FY 2000 results were reported. In this fiscal year, the domestic support committee, ' the engineering plastic molding technology research committee' was held twice, and the following were carried out: discussion about the research plan, study of a plan for Japanese researchers to be sent and the details of the joint research, comprehensive evaluation of the results of the joint research made on the site. In the joint research at Thailand's BSID (Bureau of Supporting Industries Development), 4 engineers of molding technology/testing technology were sent from Japan during the period from September 18, 2000 to January 24, 2001, and the following were carried out: theoretical study and practical guidance for comprehension of injection molding technology, establishment of optimum conditions for injection molding and practice of measures taken against bad molding, conduction of the round robin test/comparative study by both JCII (Japan Chemical Innovation Institute) and BSID, etc. (NEDO)

  16. Waste product profile: Plastic film and bags

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C. [Environmental Industry Associations, Washington, DC (United States)

    1996-10-01

    Plastic film is recycled by being pelletized following a granulation or densifying process. Manufacturing and converting plants are the major sources of plastic film for recycling because they can supply sufficient amounts of clean raw material of a known resin type. Post-consumer collection programs are more recent. They tend to focus on businesses such as grocery stores that are large generators of plastic bags. In this case, the recycling process is more complex, requiring sorting, washing, and removal of contaminants as a first step. Curbside collection of plastic bags is rare.

  17. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Development and Justification of a Risk Evaluation Matrix To Guide Chemical Testing Necessary To Select and Qualify Plastic Components Used in Production Systems for Pharmaceutical Products.

    Science.gov (United States)

    Jenke, Dennis

    2015-01-01

    An accelerating trend in the pharmaceutical industry is the use of plastic components in systems used to produce an active pharmaceutical ingredient or a finished drug product. If the active pharmaceutical ingredient, the finished drug product, or any solution used to generate them (for example, a process stream such as media, buffers, eluents, and the like) is contacted by a plastic component at any time during the production process, substances leached from the component may accumulate in the active pharmaceutical ingredient or finished drug product, affecting its safety and/or efficacy. In this article the author develops and justifies a semi-quantitative risk evaluation matrix that is used to determine the amount and rigor of component testing necessary and appropriate to establish that the component is chemically suitable for its intended use. By considering key properties of the component, the contact medium, the contact conditions, and the active pharmaceutical ingredient's or finished drug product's clinical conditions of use, use of the risk evaluation matrix produces a risk score whose magnitude reflects the accumulated risk that the component will interact with the contact solution to such an extent that component-related extractables will accumulate in the active pharmaceutical ingredient or finished drug product as leachables at levels sufficiently high to adversely affect user safety. The magnitude of the risk score establishes the amount and rigor of the testing that is required to select and qualify the component, and such testing is broadly grouped into three categories: baseline assessment, general testing, and full testing (extractables profiling). Production suites used to generate pharmaceuticals can include plastic components. It is possible that substances in the components could leach into manufacturing solutions and accumulate in the pharmaceutical product. In this article the author develops and justifies a semi-quantitative risk

  19. Electron beam technology as a new industrial processing tool in Malaysia

    International Nuclear Information System (INIS)

    Zaman, K.

    1996-01-01

    Electron beam cross-linked products such as heat resistant automobile and home appliance wires, heat shrinkable tubes, sleeves, end caps for power and electronic industries, plastic packaging and semiconductors are commercially available in Malaysia and most of them are imported products. However, recently there are three newly established in-house industrial electron beam accelerators, in operation in Malaysia for cross-linking of home appliance wires and plastic packaging. Another electron beam accelerator of 3.0 MV, 90 kW is stationed in MINT which is used for research as well as for irradiation services. Research on electron beam cross-linking of natural polymer is one of the main subjects of interest. (author)

  20. Are functional fillers improving environmental behavior of plastics? A review on LCA studies.

    Science.gov (United States)

    Civancik-Uslu, Didem; Ferrer, Laura; Puig, Rita; Fullana-I-Palmer, Pere

    2018-06-01

    The use of functional fillers can be advantageous in terms of cost reduction and improved properties in plastics. There are many types of fillers used in industry, organic and inorganic, with a wide application area. As a response to the growing concerns about environmental damage that plastics cause, recently fillers have started to be considered as a way to reduce it by decreasing the need for petrochemical resources. Life cycle assessment (LCA) is identified as a proper tool to evaluate potential environmental impacts of products or systems. Therefore, in this study, the literature regarding LCA of plastics with functional fillers was reviewed in order to see if the use of fillers in plastics could be environmentally helpful. It was interesting to find out that environmental impacts of functional fillers in plastics had not been studied too often, especially in the case of inorganic fillers. Therefore, a gap in the literature was identified for the future works. Results of the study showed that, although there were not many and some differences exist among the LCA studies, the use of fillers in plastics industry may help to reduce environmental emissions. In addition, how LCA methodology was applied to these materials was also investigated. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Export of electric power through industrial products

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de; David, J.M.S.; Campos, J.M.; Perecmanis, J.; Carneiro, N.S.

    1990-01-01

    We forecast the electrical energy incorporated to the exports of products of the industrial sectors of steel, aluminium, ferro-alloys, chlorine and caustic soda, pulp and paper and petrochemistry, accordingly to scenarios for these sectors consistent with a macro economic reference scenario, for the period 1990/2000. We also compare the electrical energy exported through those industrial products with the forecasted industrial and total markets of electrical energy. (author)

  2. Industry of petroleum and its by-products

    International Nuclear Information System (INIS)

    Haddad, Antoine

    1989-01-01

    A comprehensive study of petroleum industry and its by-products is presented. Petroleum, since its origin and all steps of its industry including its detection, production and transportation is described. A historical description of the production and formation of fuels under the ground strates through million of years, as well as its chemical composition are presented. A full description of refining petrol and all by-products derived is given. Pictures and tables enhance the explanation

  3. Utilization of oleo-chemical industry by-products for biosurfactant production

    Science.gov (United States)

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  4. Production of recyclates – compared with virgin Plastics – a LCA Study

    Directory of Open Access Journals (Sweden)

    Storm Birgit Kjærside

    2017-01-01

    Full Text Available Plastix A/S is a Danish cleantech company transforming discarded fishing trawls and nets into valuable green raw materials. Plastix– technology and processes solve a maritime waste problem and contribute to a more circular green economy and reduce landfilling, marine pollution, CO2 emissions and especially loss of valuable resources. Plastix– recycling technology enables recovery of discarded fishing trawls and nets via mechanical and thermal processes transforming the waste into valuable recycles which can be converted into plastic products replacing virgin raw materials. The performance has been proved through a Life Cycle Assessment (LCA study. The results from the LCA study are compared with the production of virgin materials. The results of the LCA show that especially the carbon footprint is remarkable better for Oceanix than for virgin plastics. Oceanix HDPE is 5 times better than virgin HDPE, when talking about the carbon foot print, and the results for Oceanix PP and Oceanix PA6 are 5 times and 20 times better compared with virgin PP and PA6. Also other environmental indicators are better for Oceanix compared with virgin plastics.

  5. Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues.

    Science.gov (United States)

    Dahman, Yaser; Ugwu, Charles U

    2014-08-01

    This work describes potential opportunities for utilization of agro-industrial residues to produce green biodegradable plastics of poly(3-hydroxybutyrate) (PHB). Wheat straws were examined with good efficacy of carbon substrates using Cupriavidus necator. Production was examined in separate hydrolysis and fermentation (SHF) in the presence and absence of WS hydrolysis enzymes, and in simultaneous saccharification and fermentation (SSF) with enzymes. Results showed that production of PHB in SSF was more efficient in terms of viable cell count, cell dry weight, and PHB production and yield compared to those of SHF and glucose-control cultures. While glucose control experiment produced 4.6 g/L PHB; SSF produced 10.0 g/L compared to 7.1 g/L in SHF when utilizing enzymes during WS hydrolysis. Results showed that most of sugars produced during the hydrolysis were consumed in SHF (~98 %) compared to 89.2 % in SSF. Results also demonstrated that a combination of glucose and xylose can compensate for the excess carbon required for enhancing PHB production by C. necator. However, higher concentration of sugars at the beginning of fermentation in SHF can lead to cell inhibition and consequently catabolite repressions. Accordingly, results demonstrated that the gradual release of sugars in SSF enhanced PHB production. Moreover, the presence of sugars other than glucose and xylose can eliminate PHB degradation in medium of low carbon substrate concentrations in SSF.

  6. COST-EFFECTIVE PRODUCTION OF THE BIO-PLASTIC POLY-β-HYDROXYBUTYRATE USING ACINETOBACTER BAUMANNII ISOLATE P39

    Directory of Open Access Journals (Sweden)

    Noha Salah Elsayed

    2016-06-01

    Full Text Available Being biodegradable and biocompatible natural polymer, poly-β-hydroxybutyrate (PHB drew the attention of scientists to substitute synthetic plastics in our daily lives. However, its industrial production is hampered by its high cost. In this study, an extensive screening program was done to isolate bacteria with high PHB productivity from agricultural fields and develop a cost-effective PHB production. A promising bacterial isolate Acinetobacter baumannii P39 was recovered and identified using 16S ribosomal gene sequencing. It produced 24% PHB per dry weight after 48 h. Several experiments were conducted to optimize the composition of the culture medium and environmental factors for the selected isolate. Results revealed that 60% aeration, 28°C incubation temperature and initial pH 7.5 showed the highest productivity. Besides, 0.7% corn oil and 0.1 g/L peptone were the best carbon and nitrogen sources, respectively. Substituting glucose with corn oil led to a 23% reduction in total input cost and an estimate price for 1kg PHB is 20.5 L.E. Strain improvement by UV mutation succeeded in improving PHB production by two fold in the selected mutant P39M2. Finally, this study valorizes usage of Acinetobacter isolate in PHB production in addition to solving the critical problem of high cost of production.

  7. Radiolytic gas production in the alpha particle degradation of plastics

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-01-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100 degree C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100 degree C

  8. Industrial applications of radiation chemistry

    International Nuclear Information System (INIS)

    Puig, Jean Rene

    1959-01-01

    The status of industrial applications of radiation chemistry as it stands 6 months after the second Geneva international conference is described. The main features of the interaction of ionizing radiations with matter are briefly stated and a review is made of the best studied and the more promising systems of radiation chemistry. The fields of organics, plastics, heterogeneous catalysis are emphasized. Economies of radiation production and utilization are discussed. Reprint of a paper published in Industries atomiques - no. 5-6, 1959

  9. Studies on the preparation of value-added products for industrial minerals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report consists of 2 subjects. 1) Studies on the preparation of value-added products for limestone: This study has investigated to raise to high grade by economical processes with low grade of domestic limestone. We investigated the status of application utilize and related industries with the domestic limestone, and then being consideration with condition selected the adequate sample from Andong, Jungsun and Kumsan area. Magnetic materials were involved in impurities of sample, so magnetic separation method was applied in elimination of the ferro- and para-magnetic materials, such as chlorite, muscovite, quartz, dolomite, magnetite, feldspar and so on. Investigation of flotation was undertaken to eliminate impurities from limestone crude ore and the tests were performed to get a optimum condition adding oleic acid as a promoter, sodium silicate and sodium carbonate as a conditioning agents and MIBC as a frother, while to float the sulfide minerals added amyl xanthate as a promoter, and sulfuric acid as a pH regulator. Selective crushing and classification methods were performed to eliminate impurities depends on the mineral properties and should be the selective crushing methods are very useful at the manufacturing factory of heavy calcium carbonate with the dry milling system. 2) A study on development of value added technology of pyrophyllite and dickite: Pyrophyllite and dickite have being utilized as refractories, ceramics, cement, fiber glass, paper, rubber, paints etc. However, there are not any domestic companies to produce fillers of pyrophyllite and dickite for plastic and rubber. Moreover, several kinds of fillers are imported every year with expensive price for plastic and rubber filler. This study has purpose to develop manufacturing technologies to produce fillers for plastic and rubber of pyrophyllite and dickite. The chemical and mineralogical properties of samples, the optimum grinding condition and device for producing plastic fillers and

  10. Eco-efficiency in industrial production

    NARCIS (Netherlands)

    von Raesfeld Meijer, Ariane M.; de Bakker, F.G.A.; Groen, Arend J.

    2001-01-01

    English AbstractThis report of the MATRIC project investigated 'Eco-efficiency in industrial production'. After a general introduction into the domain of eco-efficiency, the first part of this report further focusses on the organisation of Product-Oriented Environmental Management (POEM), which is

  11. Forest Products Industry of the Future

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos Technical Associates, Inc

    2002-05-01

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  12. Application of Specific Features of Industrial Products when Forming and Developing Brands of Industrial Enterprises

    Directory of Open Access Journals (Sweden)

    Yatsentiuk Stanislav V.

    2014-03-01

    Full Text Available The article analyses and structures approaches and principles of formulation of industrial products. It offers classification of goods and markets of industrial products by their characteristics and participants. It identifies main participants that make decisions at B2C and B2B markets and characterises their specific features and motivation when making decisions on purchase of products of industrial enterprises. It studies and analyses indicators of development of domestic markets of consumer goods and market of industrial products and dynamics of development of their relation in retrospective view.

  13. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  14. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  15. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  16. Impact of Subspecialty Fellowship Training on Research Productivity Among Academic Plastic Surgery Faculty in the United States.

    Science.gov (United States)

    Sood, Aditya; Therattil, Paul J; Chung, Stella; Lee, Edward S

    2015-01-01

    The impact of subspecialty fellowship training on research productivity among academic plastic surgeons is unknown. The authors' aim of this study was to (1) describe the current fellowship representation in academic plastic surgery and (2) evaluate the relationship between h-index and subspecialty fellowship training by experience and type. Academic plastic surgery faculty (N = 590) were identified through an Internet-based search of all ACGME-accredited integrated and combined residency programs. Research output was measured by h-index from the Scopus database as well as a number of peer-reviewed publications. The Kruskal-Wallis test, with a subsequent Mann-Whitney U test, was used for statistical analysis to determine correlations. In the United States, 72% (n = 426) of academic plastic surgeons had trained in 1 or more subspecialty fellowship program. Within this cohort, the largest group had completed multiple fellowships (28%), followed by hand (23%), craniofacial (22%), microsurgery (15%), research (8%), cosmetic (3%), burn (2%), and wound healing (0.5%). Higher h-indices correlated with a research fellowship (12.5; P productivity compared with their colleagues. Craniofacial-trained physicians also demonstrated a higher marker for academic productivity than multiple other specialties. In this study, we show that the type and number of fellowships influence the h-index and further identification of such variables may help improve academic mentorship and productivity within academic plastic surgery.

  17. Methodology for evaluation of industrial CHP production

    International Nuclear Information System (INIS)

    Pavlovic, Nenad V.; Studovic, Milovan

    2000-01-01

    At the end of the century industry switched from exclusive power consumer into power consumer-producer which is one of the players on the deregulated power market. Consequently, goals of industrial plant optimization have to be changed, making new challenges that industrial management has to be faced with. In the paper is reviewed own methodology for evaluation of industrial power production on deregulated power market. The methodology recognizes economic efficiency of industrial CHP facilities as a main criterion for evaluation. Energy and ecological efficiency are used as additional criteria, in which implicit could be found social goals. Also, methodology recognizes key and limit factors for CHP production in industry. It could be successful applied, by use of available commercial software for energy simulation in CHP plants and economic evaluation. (Authors)

  18. Alaska's timber harvest and forest products industry, 2005

    Science.gov (United States)

    Jeff M. Halbrook; Todd A. Morgan; Jason P. Brandt; Charles E. Keegan; Thale Dillon; Tara M. Barrett

    2009-01-01

    This report traces the flow of timber harvested in Alaska during calendar year 2005, describes the composition and operations of the state's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, and sales of primary wood products....

  19. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  20. The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation

    International Nuclear Information System (INIS)

    Lechner, Aaron; Ramler, David

    2015-01-01

    Numerous studies have quantified the amount of plastic litter in aquatic ecosystems and tried to assess its impacts and threats. This reflects a rising awareness of plastic as an environmental problem. As a next logical step, identifying and regulating the sources must be in the focus of scientific efforts. We report on a spillage of industrial microplastic (IMP) from a production plant situated at an Austrian Danube tributary. This is the first identified point source of IMP litter in freshwater systems. However, due to generous thresholds established by the Austrian government substantial amounts of IMP are legally introduced into running waters. - We report on the first documented case of microplastic spillage from a manufacturing site

  1. A randomized controlled trial of skin care protocols for facial resurfacing: lessons learned from the Plastic Surgery Educational Foundation's Skin Products Assessment Research study.

    Science.gov (United States)

    Pannucci, Christopher J; Reavey, Patrick L; Kaweski, Susan; Hamill, Jennifer B; Hume, Keith M; Wilkins, Edwin G; Pusic, Andrea L

    2011-03-01

    The Skin Products Assessment Research Committee was created by the Plastic Surgery Educational Foundation in 2006. The Skin Products Assessment Research study aims were to (1) develop an infrastructure for Plastic Surgery Educational Foundation-conducted, industry-sponsored research in facial aesthetic surgery and (2) test the research process by comparing outcomes of the Obagi Nu-Derm System versus conventional therapy as treatment adjuncts for facial resurfacing procedures. The Skin Products Assessment Research study was designed as a multicenter, double-blind, randomized, controlled trial. The study was conducted in women with Fitzpatrick type I to IV skin, moderate to severe facial photodamage, and periocular and/or perioral fine wrinkles. Patients underwent chemical peel or laser facial resurfacing and were randomized to the Obagi Nu-Derm System or a standard care regimen. The study endpoints were time to reepithelialization, erythema, and pigmentation changes. Fifty-six women were enrolled and 82 percent were followed beyond reepithelialization. There were no significant differences in mean time to reepithelialization between Obagi Nu-Derm System and control groups. The Obagi Nu-Derm System group had a significantly higher median erythema score on the day of surgery (after 4 weeks of product use) that did not persist after surgery. Test-retest photographic evaluations demonstrated that both interrater and intrarater reliability were adequate for primary study outcomes. The authors demonstrated no significant difference in time to reepithelialization between patients who used the Obagi Nu-Derm System or a standard care regimen as an adjunct to facial resurfacing procedures. The Skin Products Assessment Research team has also provided a discussion of future challenges for Plastic Surgery Educational Foundation-sponsored clinical research for readers of this article.

  2. Heavy metals, metalloids and other hazardous elements in marine plastic litter.

    Science.gov (United States)

    Turner, Andrew

    2016-10-15

    Plastics, foams and ropes collected from beaches in SW England have been analysed for As, Ba, Br, Cd, Cl, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn and Zn by field-portable-x-ray fluorescence spectrometry. High concentrations of Cl in foams that were not PVC-based were attributed to the presence of chlorinated flame retardants. Likewise, high concentrations of Br among both foams and plastics were attributed to the presence of brominated flame retardants. Regarding heavy metals and metalloids, Cd and Pb were of greatest concern from an environmental perspective. Lead was encountered in plastics, foams and ropes and up to concentrations of 17,500μgg(-1) due to its historical use in stabilisers, colourants and catalysts in the plastics industry. Detectable Cd was restricted to plastics, where its concentration often exceeded 1000μgg(-1); its occurrence is attributed to the use of both Cd-based stabilisers and colourants in a variety of products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Perspectives for the industrial enzymatic production of glycosides.

    Science.gov (United States)

    de Roode, B Mattheus; Franssen, Maurice C R; van der Padt, Albert; Boom, Remko M

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.

  4. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Pathak, T.S.; Srivastava, R.; Singh, A.C.

    2016-01-01

    Catalytic co-pyrolysis of biomass and plastics (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) has been performed in a fixed-bed reactor in presence of cobalt based alumina, ceria and ceria-alumina catalysts to analyze the product distribution and selectivity. Catalysts are synthesized using co-precipitation method and characterized by BET (Brunauer–Emmett–Teller) surface area and XRD analysis. The effect of catalytic co-pyrolysis at different temperature with product distribution has been evaluated. The results have clearly shown the synergistic effect between biomass and plastics, the liquid products gradually increases forming with rise in the plastic content in the blend. Gaseous products have yielded most during pyrolysis of blend having biomass/plastics ratio of 5:1 with the presence of 40% Co/30% CeO_2/30% Al_2O_3 catalyst with hydrogen gas production touched its peak of 47 vol%. Catalytic performance enhanced with increase with the cobalt loading, with best performance attributing to 40% Co/30% CeO_2/30% Al_2O_3 catalyst. - Highlights: • Catalytic co-pyrolysis of biomass and plastics (HDPE, PP & PET) blends in fixed-bed reactor. • Strong synergistic effect evident between biomass and plastics. • Solid residue diminished with application of catalysts. • Aromatics and olefins production increases with higher plastic content. • More hydrogen production with application of catalysts with higher cobalt content.

  5. Idaho's forest products industry and timber harvest, 2011

    Science.gov (United States)

    Eric A. Simmons; Steven W. Hayes; Todd A. Morgan; Charles E. Keegan; Chris Witt

    2014-01-01

    This report traces the flow of Idaho’s 2011 timber harvest through the primary industries; provides a description of the structure, capacity, and condition of Idaho’s industry; and quantifies volumes and uses of wood fiber. Historical wood products industry trends are discussed, as well as changes in harvest, production, employment, and sales.

  6. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  7. DMS cyclone separation processes for optimization of plastic wastes recycling and their implications.

    Science.gov (United States)

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana

    2011-06-01

    It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.

  8. Product modelling in the seafood industry

    DEFF Research Database (Denmark)

    Jonsdottir, Stella; Vesterager, Johan

    1997-01-01

    driven and proactive to comply with the increasing competition, in such a way that the fish processor issues new products covering both the current and especially latent future consumer demands. This implies a need for new systematic approaches in the NPD as procedures and tools, which integrate...... based integration obtained by the CE approach and tools. It is described how the knowledge and information of a seafood product can be modelled by using object oriented techniques.......The paper addresses the aspects of Concurrent Engineering (CE) as a means to obtain integrated product development in the seafood industry. It is assumed that the future New Product Development (NPD) in seafood industry companies will shift from being retailer driven and reactive to be more company...

  9. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  10. Biorefinery opportunities for the forest products industries

    Science.gov (United States)

    Alan W. Rudie

    2013-01-01

    Wood residues offer biorefinery opportunities for new products in our industries including fuel and chemicals. But industry must have two capabilities to succeed with biorefineries. Most forest products companies already have the first capability: knowing where the resource is, how to get it, and how much it will cost. They will need to integrate the acquisition of...

  11. Technical specifications for mechanical recycling of agricultural plastic waste

    International Nuclear Information System (INIS)

    Briassoulis, D.; Hiskakis, M.; Babou, E.

    2013-01-01

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities

  12. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  13. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling.

    Science.gov (United States)

    Hahladakis, John N; Velis, Costas A; Weber, Roland; Iacovidou, Eleni; Purnell, Phil

    2018-02-15

    Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. These characteristics have raised the demand for plastic materials that will continue to grow over the coming years. However, with increased plastic materials production, comes increased plastic material wastage creating a number of challenges, as well as opportunities to the waste management industry. The present overview highlights the waste management and pollution challenges, emphasising on the various chemical substances (known as "additives") contained in all plastic products for enhancing polymer properties and prolonging their life. Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented in literature and described herein. These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging. They can, also, be released from plastics during the various recycling and recovery processes and from the products produced from recyclates. Thus, sound recycling has to be performed in such a way as to ensure that emission of substances of high concern and contamination of recycled products is avoided, ensuring environmental and human health protection, at all times. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Biobased Packaging - Application in Meat Industry

    Directory of Open Access Journals (Sweden)

    S. Wilfred Ruban

    2009-04-01

    Full Text Available Because of growing problems of waste disposal and because petroleum is a nonrenewable resource with diminishing quantities, renewed interest in packaging research is underway to develop and promote the use of “bio-plastics.” In general, compared to conventional plastics derived from petroleum, bio-based polymers have more diverse stereochemistry and architecture of side chains which enable research scientists a greater number of opportunities to customize the properties of the final packaging material. The primary challenge facing the food (Meat industry in producing bio-plastic packaging, currently, is to match the durability of the packaging with product shelf-life. Notable advances in biopolymer production, consumer demand for more environmentally-friendly packaging, and technologies that allow packaging to do more than just encompass the food are driving new and novel research and developments in the area of packaging for muscle foods. [Vet. World 2009; 2(2.000: 79-82

  15. Environmental performance of bio-based and biodegradable plastics: the road ahead.

    Science.gov (United States)

    Lambert, Scott; Wagner, Martin

    2017-11-13

    Future plastic materials will be very different from those that are used today. The increasing importance of sustainability promotes the development of bio-based and biodegradable polymers, sometimes misleadingly referred to as 'bioplastics'. Because both terms imply "green" sources and "clean" removal, this paper aims at critically discussing the sometimes-conflicting terminology as well as renewable sources with a special focus on the degradation of these polymers in natural environments. With regard to the former we review innovations in feedstock development (e.g. microalgae and food wastes). In terms of the latter, we highlight the effects that polymer structure, additives, and environmental variables have on plastic biodegradability. We argue that the 'biodegradable' end-product does not necessarily degrade once emitted to the environment because chemical additives used to make them fit for purpose will increase the longevity. In the future, this trend may continue as the plastics industry also is expected to be a major user of nanocomposites. Overall, there is a need to assess the performance of polymer innovations in terms of their biodegradability especially under realistic waste management and environmental conditions, to avoid the unwanted release of plastic degradation products in receiving environments.

  16. Intensity of rivalry in Czech furniture production industry

    Directory of Open Access Journals (Sweden)

    Lucie Špačková

    2012-01-01

    Full Text Available The paper focuses on furniture production industry in the Czech Republic and evaluates the influence of competition forces within this industry. These forces have a direct impact on success of competitive strategies of the firms. Furniture production industry is a typical branch occupied by numerous small and medium-sized firms. Small firms aim on satisfying domestic (or rather local demand, medium-sized and big firms are much more aiming on exports. The methodical sources for evaluation of rivalry represent particular influences defined by Porter in his model of five competitive forces. Main influences identified by Porter, which are increasing the intensity of competition in the furniture production industry in the Czech Republic include low industry concentration, relatively low diversity of competitors, decline in sales, low (or none switching costs, and existing excessive capacity within the industry. Further development will be most significantly influenced by a growing concentration of the bigger Czech producers on domestic market and overall economic development.

  17. A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel

    Directory of Open Access Journals (Sweden)

    Hidayah Nurul

    2018-01-01

    Full Text Available Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.

  18. A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel

    Science.gov (United States)

    Hidayah, Nurul; Syafrudin

    2018-02-01

    Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.

  19. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies

    DEFF Research Database (Denmark)

    Ashley, Jon; Feng, Xiaotong; Halder, Arnab

    2018-01-01

    We describe a novel dispersive solid-phase imprinting technique for the production of nano-sized molecularly imprinted polymers (nanoMIPs) as plastic antibodies. The template was immobilized on in-house synthesized magnetic microspheres instead of conventional glass beads. As a result, high...

  20. Chemical products and industrial materials

    International Nuclear Information System (INIS)

    1995-12-01

    A compilation of all universities, industrial and governmental agencies in Quebec which are actively involved in research and development of chemical products and industrial materials derived from biomass products, was presented. Each entry presented in a standard format that included a description of the major research activities of the university or agency, the principal technologies used in the research, available research and analytical equipment, a description of the research personnel, names, and addresses of contact persons for the agency or university. Thirty entries were presented. These covered a wide diversity of activities including biotechnological research such as genetic manipulations, bioconversion, fermentation, enzymatic hydrolysis and physico-chemical applications such as bleaching, de-inking, purification and synthesis. tabs

  1. Antireflection coatings on plastics deposited by plasma ...

    Indian Academy of Sciences (India)

    In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses ... Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. ... Bulletin of Materials Science | News.

  2. Early age shrinkage pattern of concrete on replacement of fine aggregate with industrial by-product

    Directory of Open Access Journals (Sweden)

    R.K. Mishra

    2016-10-01

    Full Text Available This is an experimental work carried out to investigate early age shrinkage pattern of concrete, prepared, on 50% replacement of industrial by-product (like pond ash and granulated blast furnace slag as fine aggregate using OPC, PPC and PSC as a binder. This is to observe the effect of pond ash and slag as they are having some cementitious properties and effect of cement type is also discussed. All the mixes were prepared keeping in view of pumpable concrete without any super plasticizers. Higher shrinkage value indicates the presence of more bleed water or internal moisture. It is concluded that slag is the best option for fine aggregate replacement for concrete making and durable structure.

  3. Addressing production stops in the food industry

    DEFF Research Database (Denmark)

    Hansen, Zaza Nadja Lee; Herbert, Luke Thomas; Jacobsen, Peter

    2014-01-01

    This paper investigates the challenges in the food industry which causes the production lines to stop, illustrated by a case study of an SME size company in the baked goods sector in Denmark. The paper proposes key elements this sector needs to be aware of to effectively address production stops......, and gives examples of the unique challenges faced by the SME food industry....

  4. A Research Needs Assessment for waste plastics recycling: Volume 1, Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This first volume provides a summary of the entire project. The study utilized the talents of a large number of participants, including a significant number of peer reviewers from industrial companies, government agencies, and research institutes. in addition, an extensive analysis of relevant literature was carried out. In considering the attractiveness of recycling technologies that are alternatives to waste-to-energy combustion units, a systems approach was utilized. Collection of waste streams containing plastics, sortation, and reclamation of plastics and plastic mixtures, reprocessing or chemical conversion of the reclaimed polymers, and the applicability of the products to specific market segments have been analyzed in the study.

  5. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  6. An Explanatory Study of Lean Practices in Job Shop Production/ Special Job Production/ Discrete Production/ Batch Shop Production Industries

    OpenAIRE

    Lavlesh Kumar Sharma; Ravindra Mohan Saxena

    2014-01-01

    In this paper, the study explores the benefits and advantages of Lean Practices or Lean Thinking in Job shop production/ Special job production/ Discrete production/ Batch shop production industries. The Lean Practices have been applied more compatible in Job shop production than in the continuous/ mass production because of several barriers and hurdles in the industrial context that influence the whole processes again and again, this happens due to the lack of knowledge about...

  7. Conversion of Hazardous Motor Vehicle Used Tire and Polystyrene Waste Plastic Mixture into useful Chemical Products

    OpenAIRE

    Moinuddin Sarker; Mohammad Mamunor Rashid

    2014-01-01

    Motor vehicle used tire and polystyrene waste plastic mixture into fuel recovery using thermal degradation process in laboratory batch process. Motor vehicle used tire and polystyrene waste plastic was use 75 gm by weight. Motor vehicle tire was 25 gm and polystyrene waste plastic was 50 gm. In presence of oxygen experiment was performed under laboratory fume hood. Thermal degradation temperature range was 100 - 420 oC and experiment run time was 5 hours. Product fuel density is 0.84 gm/ml an...

  8. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  9. Accumulation of organic compounds leached from plastic materials used in biopharmaceutical process containers.

    Science.gov (United States)

    Jenke, Dennis R; Zietlow, David; Garber, Mary Jo; Sadain, Salma; Reiber, Duane; Terbush, William

    2007-01-01

    Plastic materials are widely used in medical items, such as solution containers, transfusion sets, transfer tubing, and devices. An emerging trend in the biotechnology industry is the utilization of plastic containers to prepare, transport, and store an assortment of solutions including buffers, media, and in-process and finished product. The direct contact of such containers with the product at one or more points in its lifetime raises the possibility that container leachables may accumulate in the finished product. The interaction between several commercially available container materials and numerous model test solutions (representative of buffers and media used in biopharmaceutical applications) was investigated. This paper summarizes the identification of leachables associated with the container materials and documents the levels to which targeted leachables accumulate in the test solutions under defined storage conditions.

  10. The impact of labour productivity on the Swedish construction industries

    OpenAIRE

    Forsberg, Azam

    2007-01-01

    There have been debates concerning what can be done about the current low labour productivity in the Swedish construction industries. High production cost in the construction industries has been a burning issue for a long time. On the other hand, process industries and organisations have taken the advantage of labour productivity measurement to reduce their production cost and eliminate non value-added activities. The purpose of this paper is to examine, why and how the process industries and...

  11. Inline inspection of textured plastics surfaces

    Science.gov (United States)

    Michaeli, Walter; Berdel, Klaus

    2011-02-01

    This article focuses on the inspection of plastics web materials exhibiting irregular textures such as imitation wood or leather. They are produced in a continuous process at high speed. In this process, various defects occur sporadically. However, current inspection systems for plastics surfaces are able to inspect unstructured products or products with regular, i.e., highly periodic, textures, only. The proposed inspection algorithm uses the local binary pattern operator for texture feature extraction. For classification, semisupervised as well as supervised approaches are used. A simple concept for semisupervised classification is presented and applied for defect detection. The resulting defect-maps are presented to the operator. He assigns class labels that are used to train the supervised classifier in order to distinguish between different defect types. A concept for parallelization is presented allowing the efficient use of standard multicore processor PC hardware. Experiments with images of a typical product acquired in an industrial setting show a detection rate of 97% while achieving a false alarm rate below 1%. Real-time tests show that defects can be reliably detected even at haul-off speeds of 30 m/min. Further applications of the presented concept can be found in the inspection of other materials.

  12. As main meal for sperm whales: plastics debris.

    Science.gov (United States)

    de Stephanis, Renaud; Giménez, Joan; Carpinelli, Eva; Gutierrez-Exposito, Carlos; Cañadas, Ana

    2013-04-15

    Marine debris has been found in marine animals since the early 20th century, but little is known about the impacts of the ingestion of debris in large marine mammals. In this study we describe a case of mortality of a sperm whale related to the ingestion of large amounts of marine debris in the Mediterranean Sea (4th published case worldwide to our knowledge), and discuss it within the context of the spatial distribution of the species and the presence of anthropogenic activities in the area that could be the source of the plastic debris found inside the sperm whale. The spatial distribution modelled for the species in the region shows that these animals can be seen in two distinct areas: near the waters of Almería, Granada and Murcia and in waters near the Strait of Gibraltar. The results shows how these animals feed in waters near an area completely flooded by the greenhouse industry, making them vulnerable to its waste products if adequate treatment of this industry's debris is not in place. Most types of these plastic materials have been found in the individual examined and cause of death was presumed to be gastric rupture following impaction with debris, which added to a previous problem of starvation. The problem of plastics arising from greenhouse agriculture should have a relevant section in the conservation plans and should be a recommendation from ACCOBAMS due to these plastics' and sperm whales' high mobility in the Mediterranean Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Improving Public Health and Environment through Plastic Waste Management in Mumbai Metropolitan Region

    Directory of Open Access Journals (Sweden)

    Sanjay RODE

    2015-12-01

    Full Text Available The Mumbai Metropolitan Region is growing in terms of population, industry, educational and commercial units. The daily requirements of commodities and services by all units have increased fast. Plastic is used extensively for packing, protection and service of various commodities. The use of plastic is much higher by industry and households in region. In Brihan Mumbai Municipal Corporation, the density of population is higher. The concentration of small and large industries is more. Therefore the plastic use is much higher for different purposes. It leads to more waste of plastic. In Ulhasnagar Municipal Corporation, the population and industrial units are less. Therefore plastic waste is less generated. Theaters are generating less plastic waste in metropolitan region. The Brihan Mumbai Municipal Corporation (BMC and municipal corporations in Thane district will continuously generate more plastic waste in future. The Tobit regression model shows that plastic waste is positively co-related and statistically significant with pollution and industry in region. Therefore the comprehensive policies are required to reduce plastic waste. This is because plastic waste is affecting on the health of human being. It also affects negatively on soil, air and water. The entire food supply chain gets affected due to plastic waste. The water logging is common due to plastic waste in region. It chock ups the drainage system and it becomes the ground for mosquitoes. It further leads to dengue, malaria and other diseases in region. Municipal corporations must collect plastic in separate bins and process it. The plastic and e-waste can be utilized for road construction in region. All the policies will certainly help to reduce the plastic waste and maintain the clean environment in region.

  14. About the new industrial production management concept as the company strategy in the fourth industrial revolution

    Directory of Open Access Journals (Sweden)

    Kovalchuk Julia

    2017-01-01

    Full Text Available The new industrial production management requires a review of the third industrial revolution results and accounting for mass adoption of information and communication technologies to create the organizational basis of the fourth industrial revolution. The future changes will affect all components of the organization and management components of industrial enterprises, forming the potential of new competitive advantages in a global economy. The research included the identification of key factors of formation, development and destruction (absorption related branches of knowledge the industrial production management as the theory and practical activities, given the critical approach to its nature and processes. Revealed common signs of the industrial production management need as a field of knowledge in the framework of previous and current industrial revolutions. It is shown that the industrial production management effectively solves the problem of subsistence economy, and substantiates that the modern digital economy also has the characteristics of subsistence economy. It is important the necessity of formulation of a new organizational thinking, the implementation of which is possible in the modern interpretation of the project office. The article represents the theoretical basis for developing practical recommendations for the formation of the new concept of industrial production management to take advantage of the impact of engineering component on the economic results and the creation of project offices for the development of traditional and created markets in the organization of a new production mode (based on the digital economy.

  15. Waterpipe industry products and marketing strategies: analysis of an industry trade exhibition.

    Science.gov (United States)

    Jawad, Mohammed; Nakkash, Rima T; Hawkins, Ben; Akl, Elie A

    2015-12-01

    Understanding product development and marketing strategies of transnational tobacco companies (TTCs) has been of vital importance in developing an effective tobacco control policy. However, comparatively little is known of the waterpipe tobacco industry, which TTCs have recently entered. This study aimed to gain an understanding of waterpipe tobacco products and marketing strategies by visiting a waterpipe trade exhibition. In April 2014, the first author attended an international waterpipe trade exhibition, recording descriptions of products and collecting all available marketing items. We described the purpose and function of all products, and performed a thematic analysis of messages in marketing material. We classified waterpipe products into four categories and noted product variation within categories. Electronic waterpipe products (which mimic electronic cigarettes) rarely appeared on waterpipe tobacco marketing material, but were displayed just as widely. Claims of reduced harm, safety and quality were paramount on marketing materials, regardless of whether they were promoting consumption products (tobacco, tobacco substitutes), electronic waterpipes or accessories. Waterpipe products are diverse in nature and are marketed as healthy and safe products. Furthermore, the development of electronic waterpipe products appears to be closely connected with the electronic cigarette industry, rather than the waterpipe tobacco manufacturers. Tobacco control policy must evolve to take account of the vast and expanding array of waterpipe products, and potentially also charcoal products developed for waterpipe smokers. We recommend that tobacco substitutes be classified as tobacco products. Continued surveillance of the waterpipe industry is warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  17. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation.

    Science.gov (United States)

    Quecholac-Piña, Xochitl; García-Rivera, Mariel Anel; Espinosa-Valdemar, Rosa María; Vázquez-Morillas, Alethia; Beltrán-Villavicencio, Margarita; Cisneros-Ramos, Adriana de la Luz

    2017-11-01

    Plastics are widely used in the production of short-life products, which are discarded producing an accumulation of these materials and problems due to their persistence in the environment and waste management systems. Degradable plastics (compostable, oxodegradable) have been presented as an alternative to decrease the negative effect of plastic waste. In this research, the feasibility of degrading a commercially available compostable film and oxodegradable polyethylene, with and without previous abiotic oxidation, is assessed in a home composting system. Reactors (200 L) were used to degrade the plastic films along with a mixture of organic food waste (50 %), mulch (25 %), and dry leaves (25 %), amended with yeast and a solution of brown sugar to increase the speed of the process. The presence of the plastic film did not affect the composting process, which showed an initial increase in temperature and typical profiles for moisture content, pH, with a final C/N of 17.4. After 57 days, the compostable plastic has decreased its mechanical properties in more than 90 %, while the oxodegradable film did not show significant degradation if it was not previously degraded by UV radiation. The use of these plastics should be assessed against the prevailing waste management system in each city or country. In the case of Mexico, which lacks the infrastructure for industrial composting, home composting could be an option to degrade compostable plastics along organic waste. However, more testing is needed in order to set the optimal parameters of the process.

  18. MODERN TOOLS OF PRODUCT PROMOTION OF MILITARY-INDUSTRIAL COMPLEX

    OpenAIRE

    Tuliakova, I. R.; Chesnokova, M.S.

    2014-01-01

    This article is devoted to the promotion of production of the military-industrial complex. In the new economy require specially coordinated effort to promote products, was no exception and the military-industrial complex. The article notes that the way can be used as tools of industrial marketing, marketing tools and experience.

  19. Accessories modifying based on plastic waste of shampoo bottle as home economic product

    Science.gov (United States)

    Setyowati, Erna; Sukesi, Siti

    2018-03-01

    Plastic is a waste that can not decompose by the soil and if its left without a good handling can pollute the environment. Plastic waste needs processing by the recycle bottles principle. Shampoo bottle is one of plastic waste with high density polyethylene type (HDPE). One of the innovation to recycling shampoo bottles waste into the new products whichbeneficially and aestheticallyform by engineered the buns accesories. Accessories are one of the tools used by most women, in the form of trinkets or ornaments which ajusted to the trend to beautify the look. Accessories from shampoo bottle waste can be obtained from household waste, beauty salon and the beauty program study by inculcating human beings' behavior by transforming waste into blessing while also increasing family income. Technique of making its by compiling through improvement of panelist team. The goal of this research is to engineering theaccessories based on shampoo bottle waste as home economics. The method are using experiment, observation and documentation, analysis using descriptive. The results obtained from the overall sensory test averaged at 93%, while the favored test averaged at 85.5%. The product can be ordered according to the desired design, but it takes a long time. Therefore accessories engineering from shampoo bottles waste-based can be used as home economics. The production of shampoo bottles waste-based accessories should improved its quality and quantity, to be marketed through the community, by the cooperation with accessories and bun craftsmen.

  20. Utilization of agro-based industrial by-products for biogas production in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ngoc, U.N.; Schnitzer, H. [Graz Univ. of Technology, (Austria). Inst. for Resource Efficient and Sustainable Systems; Berghold, H. [Joanneum Research Inst. for Sustainable Techniques and Systems (Austria)

    2007-07-01

    Due to the rapid rates of urbanization occurring in many countries in the world, the importance of an efficient and effective solid waste management system and the utilization/reuse of waste are more critical than ever before, especially for agricultural residues and agro-based industrial by-products. Over the past decade, the amount of solid waste generated in Vietnam has been increasing steadily. Numbers are predicted to continue to increase as well. There is significant potential to use the large amount of wastes for biogas conversion processes and for further production of commercial energy. This paper presented starts with estimation and analysis of the amounts of organic waste, agricultural residues, and agro-based industrial by-products generated from food industrial processes using general data sources for Vietnam. A laboratory study examined the use of agro-based industrial by-products and agricultural residues from cassava, sweet potato, pineapple residues, organic wastes, manures as input materials for biogas production in the anaerobic process. This paper provided an overview of Vietnam as a country, as well as a general overview of the amount of organic waste generated in the country. It also discussed the fermentation tests that were conducted to find out the potential of biogas production from some residues. It was concluded that a significant portion of waste could be reused as an environmentally sound source of energy. The utilization of agricultural residues and industrial byproducts as input materials for biogas production will not only reduce the quantity of organic waste thrown into landfills, but also reduce the negative impact on the environment. 10 refs., 7 tabs., 7 figs.

  1. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film

    International Nuclear Information System (INIS)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-01-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography–mass spectrometry (GC–MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg −1 with a median value of 1.70 mg kg −1 , and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film. -- Highlights: •Phthalate esters in soils from suburban intensive vegetable production systems were investigated. •Phthalate levels and risks of the vegetable soils with different plastic film use modes were examined. •Sources of phthalate esters in vegetable production soils were analyzed. -- PAE contamination of intensively managed vegetable soils varied widely depending on the mode of use of plastic film in different production systems

  2. Industrial Irradiation of Polymers: Systems and Concepts

    International Nuclear Information System (INIS)

    Mittendorfer, J.

    2006-01-01

    This paper provides a systematic survey of systems and concepts used in the industrial irradiation of polymers. It consists basically of three parts: in the first part, different types of applications like wires and cables, pipes and engineering plastics are discussed and the associated irradiation systems analyzed and highlighted according their basics modules. These are identified as the radiation source, the product handling system, process control and facility/shielding layout. In the second part, the irradiation process design is reviewed in detail. The discussion starts with the requirement analysis, e.g. the desired polymer parameters and effects, continues with a process development roadmap and concludes with process verification and validation. Special attention is drawn to process control, which plays an important role in industrial irradiation technology. The use of mathematical modeling to facilitate and support process and system design is discussed as well and several examples are given which demonstrate their capabilities. In the third part, the design of a electron beam facility for the irradiation of small plastic parts for the automotive industry is worked out in detail. Besides system and product handling considerations, throughput and economical estimates are provided. The paper concludes with a summary of the design and concept bullets which proved to be important in history and can facilitate new developments which will enhance the potential of industrial polymer irradiation

  3. Intensity of rivalry in Czech furniture production industry

    OpenAIRE

    Lucie Špačková; Pavel Žufan

    2012-01-01

    The paper focuses on furniture production industry in the Czech Republic and evaluates the influence of competition forces within this industry. These forces have a direct impact on success of competitive strategies of the firms. Furniture production industry is a typical branch occupied by numerous small and medium-sized firms. Small firms aim on satisfying domestic (or rather local) demand, medium-sized and big firms are much more aiming on exports. The methodical sources for evaluation of ...

  4. Plastics recycling: challenges and opportunities

    OpenAIRE

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to pro...

  5. Alaska’s timber harvest and forest products industry, 2011

    Science.gov (United States)

    Erik C. Berg; Charles B. Gale; Todd A. Morgan; Allen M. Brackley; Charles E. Keegan; Susan J. Alexander; Glenn A. Christensen; Chelsea P. McIver; Micah G. Scudder

    2014-01-01

    This report traces the flow of timber harvested in Alaska during calendar year 2011, describes the composition and operations of the state’s primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, export, sales of primary wood products,...

  6. CARBON DIOXIDE EMISSION ASSOCIATED WITH THE PRODUCTION OF PLASTICS - A COMPARISON OF PRODUCTION FROM CRUDE OIL AND RECYCLING FOR THE DUTCH CASE

    DEFF Research Database (Denmark)

    Rem, Peter C.; Olsen, Stig Irving; Welink, Jan-Henk

    2009-01-01

    recycling to the production of plastics from crude oil as a reference. The first scenario deals with packaging waste from selective collection, in which data from the current practice of the German DSD system were translated for the Dutch situation. In the second scenario, plastic packaging recovered from...... household waste using mechanical separation techniques is considered. It is assumed in the second scenario that the plastics are separated from the rest of the household waste and processed further to a compound close to the site at which the rest of the waste is disposed of, e.g. at an incinerator plant...

  7. Electricity consumption, industrial production, and entrepreneurship in Singapore

    International Nuclear Information System (INIS)

    Sun, Sizhong; Anwar, Sajid

    2015-01-01

    Within the context of a tri-variate vector autoregressive framework that includes entrepreneurship, this paper examines the link between electricity consumption and industrial production in Singapore's manufacturing sector. Unlike the existing studies, this paper focuses on one sector of the economy and utilises a unique monthly dataset. Empirical analysis based on Johansen's cointegration approach shows that the three variables are cointegrated – i.e., a stable long-run relationship exists among electricity consumption, output and entrepreneurship in Singapore's manufacturing sector. Empirical analysis based on data from January 1983 to February 2014 reveals that electricity consumption adjusts very slowly to shocks to industrial production and entrepreneurship. Furthermore, entrepreneurship Granger causes electricity consumption, which causes industrial production. As electricity consumption causes industrial output, the growth hypothesis concerning energy consumption and economic growth holds in Singapore's manufacturing sector and policies that restrict electricity production, without electricity imports, are likely to lead to a decline in the manufacturing output. - Highlights: • Using a unique monthly dataset, we focus on Singapore's manufacturing sector. • Electricity consumption, output and entrepreneurship are cointegrated. • Electricity consumption adjusts very slowly to shocks to the other variables. • Entrepreneurship causes electricity consumption which causes industrial production. • We find that growth hypothesis governs the electricity consumption and real output

  8. Industrial Upgrading in Global Production Networks: The Case of the Chinese Automotive Industry

    OpenAIRE

    Yansheng LI; Xin Xin KONG; Miao ZHANG

    2015-01-01

    This article examines the development of China’s automotive industry. The evidence shows that integration in global production networks has stimulated upgrading of technological capabilities among automotive firms. However, the competitiveness and intra-industry analyses show mixed results. Although intraindustry trade in automotive products has improved since 2000, the trade competitiveness of completely built up vehicles has largely remained in low value added activities. Nevertheless, firm...

  9. Product Differentiation and Industrial Structure.

    OpenAIRE

    Shaked, Avner; Sutton, John

    1987-01-01

    Some recent literature on "vertical product differentiation" has d eveloped the idea that if the nature of technology and tastes in some industry take a certain form, then the industry must necessarily be "concentrated" and must remain so, no matter how large the economy becomes. The present paper develops this idea further and looks at so me of its implications. This approach offers a simple unified framewo rk within which to reexplore many issues that arise in considering th e relationship ...

  10. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  11. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges.

    Science.gov (United States)

    Wilkes, R A; Aristilde, L

    2017-09-01

    Synthetic plastics, which are widely present in materials of everyday use, are ubiquitous and slowly-degrading polymers in environmental wastes. Of special interest are the capabilities of microorganisms to accelerate their degradation. Members of the metabolically diverse genus Pseudomonas are of particular interest due to their capabilities to degrade and metabolize synthetic plastics. Pseudomonas species isolated from environmental matrices have been identified to degrade polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polyethylene terephthalate, polyethylene succinate, polyethylene glycol and polyvinyl alcohol at varying degrees of efficiency. Here, we present a review of the current knowledge on the factors that control the ability of Pseudomonas sp. to process these different plastic polymers and their by-products. These factors include cell surface attachment within biofilms, catalytic enzymes involved in oxidation or hydrolysis of the plastic polymer, metabolic pathways responsible for uptake and assimilation of plastic fragments and chemical factors that are advantageous or inhibitory to the biodegradation process. We also highlight future research directions required in order to harness fully the capabilities of Pseudomonas sp. in bioremediation strategies towards eliminating plastic wastes. © 2017 The Society for Applied Microbiology.

  12. Consumer Exposure to Bisphenol A from Plastic Bottles

    Science.gov (United States)

    Bidabadi, Fatemeh

    2013-01-01

    Bisphenol A (BPA) is a plastic monomer and plasticizer and is a chemical that has one of the highest volume production worldwide, with more than six billion pounds each year. Its primary use is the production of polycarbonate plastics, epoxy resins used to line metal cans in a host of plastic consumer products such as toys, water pipes, drinking…

  13. Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics.

    Science.gov (United States)

    Unwin, John; Coldwell, Matthew R; Keen, Chris; McAlinden, John J

    2013-04-01

    Thermoplastics may contain a wide range of additives and free monomers, which themselves may be hazardous substances. Laboratory studies have shown that the thermal decomposition products of common plastics can include a number of carcinogens and respiratory sensitizers, but very little information exists on the airborne contaminants generated during actual industrial processing. The aim of this work was to identify airborne emissions during thermal processing of plastics in real-life, practical applications. Static air sampling was conducted at 10 industrial premises carrying out compounding or a range of processes such as extrusion, blown film manufacture, vacuum thermoforming, injection moulding, blow moulding, and hot wire cutting. Plastics being processed included polyvinyl chloride, polythene, polypropylene, polyethylene terephthalate, and acrylonitrile-butadiene-styrene. At each site, static sampling for a wide range of contaminants was carried out at locations immediately adjacent to the prominent fume-generating processes. The monitoring data indicated the presence of few carcinogens at extremely low concentrations, all less than 1% of their respective WEL (Workplace Exposure Limit). No respiratory sensitizers were detected at any sites. The low levels of process-related fume detected show that the control strategies, which employed mainly forced mechanical general ventilation and good process temperature control, were adequate to control the risks associated with exposure to process-related fume. This substantiates the advice given in the Health and Safety Executive's information sheet No 13, 'Controlling Fume During Plastics Processing', and its broad applicability in plastics processing in general.

  14. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Science.gov (United States)

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  15. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  16. Mixed Culture PHA Production With Alternating Feedstocks

    DEFF Research Database (Denmark)

    Oliveira, C.S.S.; Duque, A.F.; Carvalho, Gilda

    Polyhydroxyalkanoates (PHA) are a sustainable alternative to conventional plastics that can be obtained from industrial wastes/by-products using mixed microbial cultures (MMC). MMC PHA production is commonly carried out in a 3-stage process consisting of an acidogenic stage, a PHA producing cultu...

  17. Are Quantitative Measures of Academic Productivity Correlated with Academic Rank in Plastic Surgery? A National Study.

    Science.gov (United States)

    Susarla, Srinivas M; Lopez, Joseph; Swanson, Edward W; Miller, Devin; O'Brien-Coon, Devin; Zins, James E; Serletti, Joseph M; Yaremchuk, Michael J; Manson, Paul N; Gordon, Chad R

    2015-09-01

    The purpose of this study was to investigate the correlation between quantitative measures of academic productivity and academic rank among full-time academic plastic surgeons. Bibliometric indices were computed for all full-time academic plastic surgeons in the United States. The primary study variable was academic rank. Bibliometric predictors included the Hirsch index, I-10 index, number of publications, number of citations, and highest number of citations for a single publication. Descriptive, bivariate, and correlation analyses were computed. Multiple comparisons testing was used to calculate adjusted associations for subgroups. For all analyses, a value of p productivity. Although academic promotion is the result of success in multiple different areas, bibliometric measures may be useful adjuncts for assessment of research productivity.

  18. Data-driven in computational plasticity

    Science.gov (United States)

    Ibáñez, R.; Abisset-Chavanne, E.; Cueto, E.; Chinesta, F.

    2018-05-01

    Computational mechanics is taking an enormous importance in industry nowadays. On one hand, numerical simulations can be seen as a tool that allows the industry to perform fewer experiments, reducing costs. On the other hand, the physical processes that are intended to be simulated are becoming more complex, requiring new constitutive relationships to capture such behaviors. Therefore, when a new material is intended to be classified, an open question still remains: which constitutive equation should be calibrated. In the present work, the use of model order reduction techniques are exploited to identify the plastic behavior of a material, opening an alternative route with respect to traditional calibration methods. Indeed, the main objective is to provide a plastic yield function such that the mismatch between experiments and simulations is minimized. Therefore, once the experimental results just like the parameterization of the plastic yield function are provided, finding the optimal plastic yield function can be seen either as a traditional optimization or interpolation problem. It is important to highlight that the dimensionality of the problem is equal to the number of dimensions related to the parameterization of the yield function. Thus, the use of sparse interpolation techniques seems almost compulsory.

  19. Elimination of Plastic Polymers in Natural Environments

    OpenAIRE

    Ramirez-Ekner, Sofia; Bidstrup, Marie Juliane Svea; Brusen, Nicklas Hald; Rugaard-Morgan, Zsa-Zsa Sophie Oona Ophelia

    2017-01-01

    Plastic production and consumption continues to rise and subsequently plastic waste continues to accumulates in natural environments, causing harm to ecosystems.The aim of this paper was to come up with a way to utilize organisms, that have been identified to produce plastic degrading enzymes, as a waste disposal technology. This review includes accounts of plastic production rates, the occurrence of plastic in natural environments and the current waste management systems to create an underst...

  20. Drivers for Cleaner Production in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    2003-01-01

    This working paper tries to piece together information on regulatory initiatives promoting cleaner production (CP) in Malaysian industry, as well as points of discussion on environmental performance in the sector. It draws upon initial data collection by the team of the research project ‘A Study...... on Promotion and Implementation of Cleaner Production Practices in Malaysian Industry - Development of a National Program and Action Plan for Promotion of Cleaner Production’, which is coordinated by Institute of Environmental and Resource Management, Universiti Teknologi Malaysia; the objective of this study...... is ‘to formulate, establish and develop a comprehensive "National Cleaner Production Promotion Program" for Malaysia’....

  1. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  2. Chemical production from industrial by-product gases: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  3. A Lesson Plan to Develop Structured Discussion of the Benefits and Disadvantages of Selected Plastics Using the Product-Testing Method

    Science.gov (United States)

    Burmeister, Mareike; Eilks, Ingo

    2014-01-01

    People use many different products made from plastics every day. But conventional plastics such as polyvinyl chloride (PVC) do not always have a good reputation in society at large. Bioplastics such as thermoplastic starch (TPS) promise to be better alternatives but are they really better than conventional plastics? This article presents a new…

  4. Economical Recovery of By-products in the Mining Industry

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    2001-12-05

    The U.S. Department of Energy (DOE) Office of Industrial Technologies, Mining Industry of the Future Program, works with the mining industry to further the industry's advances toward environmental and economic goals. Two of these goals are (1) responsible emission and by-product management and (2) low-cost and efficient production (DOE 1998). DOE formed an alliance with the National Mining Association (NMA) to strengthen the basis for research projects conducted to benefit the mining industry. NMA and industry representatives actively participate in this alliance by evaluating project proposals and by recommending research project selection to DOE. Similarly, the National Research Council (NRC) has recently and independently recommended research and technology development opportunities in the mining industry (NRC 2001). The Oak Ridge National Laboratory (ORNL) and Colorado School of Mines engineers conducted one such project for DOE regarding by -product recovery from mining process residue. The results of this project include this report on mining industry process residue and waste with opportunity for by-product recovery. The U.S. mineral processing industry produces over 30,000,000 metric tons per year of process residue and waste that may contain hazardous species as well as valuable by-products. This study evaluates the copper, lead, and zinc commodity sectors which generate between 23,300,000 and 24,000,000 metric tons per year. The distribution of residual elements in process residues and wastes varies over wide ranges* because of variations in the original ore content as it is extracted from the earth's crust. In the earth's crust, the elements of interest to mining fall into two general geochemical classifications, lithophiles and chalcophiles** (Cox 1997). Groups of elements are almost always present together in a given geochemical classification, but the relative amounts of each element are unique to a particular ore body. This paper

  5. Plastic solid waste utilization technologies: A Review

    Science.gov (United States)

    Awasthi, Arun Kumar; Shivashankar, Murugesh; Majumder, Suman

    2017-11-01

    Plastics are used in more number of applications in worldwide and it becomes essential part of our daily life. In Indian cities and villages people use the plastics in buying vegetable as a carry bag, drinking water bottle, use of plastic furniture in home, plastics objects uses in kitchen, plastic drums in packing and storage of the different chemicals for industrial use, use plastic utensils in home and many more uses. After usage of plastics it will become part of waste garbage and create pollution due to presence of toxic chemicals and it will be spread diseases and give birth to uncontrolled issues in social society. In current scenario consumption of plastic waste increasing day by day and it is very difficult to manage the plastic waste. There are limited methodologies available for reutilization of plastic waste again. Such examples are recycling, landfill, incineration, gasification and hydrogenation. In this paper we will review the existing methodologies of utilization of plastic waste in current scenario

  6. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin.

    Science.gov (United States)

    Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Barredo, José Luis

    2010-10-01

    Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin).

  7. Industrial commodity statistics yearbook 2001. Production statistics (1992-2001)

    International Nuclear Information System (INIS)

    2003-01-01

    This is the thirty-fifth in a series of annual compilations of statistics on world industry designed to meet both the general demand for information of this kind and the special requirements of the United Nations and related international bodies. Beginning with the 1992 edition, the title of the publication was changed to industrial Commodity Statistics Yearbook as the result of a decision made by the United Nations Statistical Commission at its twenty-seventh session to discontinue, effective 1994, publication of the Industrial Statistics Yearbook, volume I, General Industrial Statistics by the Statistics Division of the United Nations. The United Nations Industrial Development Organization (UNIDO) has become responsible for the collection and dissemination of general industrial statistics while the Statistics Division of the United Nations continues to be responsible for industrial commodity production statistics. The previous title, Industrial Statistics Yearbook, volume II, Commodity Production Statistics, was introduced in the 1982 edition. The first seven editions in this series were published under the title The Growth of World industry and the next eight editions under the title Yearbook of Industrial Statistics. This edition of the Yearbook contains annual quantity data on production of industrial commodities by country, geographical region, economic grouping and for the world. A standard list of about 530 commodities (about 590 statistical series) has been adopted for the publication. The statistics refer to the ten-year period 1992-2001 for about 200 countries and areas

  8. Industrial commodity statistics yearbook 2002. Production statistics (1993-2002)

    International Nuclear Information System (INIS)

    2004-01-01

    This is the thirty-sixth in a series of annual compilations of statistics on world industry designed to meet both the general demand for information of this kind and the special requirements of the United Nations and related international bodies. Beginning with the 1992 edition, the title of the publication was changed to industrial Commodity Statistics Yearbook as the result of a decision made by the United Nations Statistical Commission at its twenty-seventh session to discontinue, effective 1994, publication of the Industrial Statistics Yearbook, volume I, General Industrial Statistics by the Statistics Division of the United Nations. The United Nations Industrial Development Organization (UNIDO) has become responsible for the collection and dissemination of general industrial statistics while the Statistics Division of the United Nations continues to be responsible for industrial commodity production statistics. The previous title, Industrial Statistics Yearbook, volume II, Commodity Production Statistics, was introduced in the 1982 edition. The first seven editions in this series were published under the title 'The Growth of World industry' and the next eight editions under the title 'Yearbook of Industrial Statistics'. This edition of the Yearbook contains annual quantity data on production of industrial commodities by country, geographical region, economic grouping and for the world. A standard list of about 530 commodities (about 590 statistical series) has been adopted for the publication. The statistics refer to the ten-year period 1993-2002 for about 200 countries and areas

  9. Industrial commodity statistics yearbook 2000. Production statistics (1991-2000)

    International Nuclear Information System (INIS)

    2002-01-01

    This is the thirty-third in a series of annual compilations of statistics on world industry designed to meet both the general demand for information of this kind and the special requirements of the United Nations and related international bodies. Beginning with the 1992 edition, the title of the publication was changed to industrial Commodity Statistics Yearbook as the result of a decision made by the United Nations Statistical Commission at its twenty-seventh session to discontinue, effective 1994, publication of the Industrial Statistics Yearbook, volume I, General Industrial Statistics by the Statistics Division of the United Nations. The United Nations Industrial Development Organization (UNIDO) has become responsible for the collection and dissemination of general industrial statistics while the Statistics Division of the United Nations continues to be responsible for industrial commodity production statistics. The previous title, Industrial Statistics Yearbook, volume II, Commodity Production Statistics, was introduced in the 1982 edition. The first seven editions in this series were published under the title The Growth of World industry and the next eight editions under the title Yearbook of Industrial Statistics. This edition of the Yearbook contains annual quantity data on production of industrial commodities by country, geographical region, economic grouping and for the world. A standard list of about 530 commodities (about 590 statistical series) has been adopted for the publication. Most of the statistics refer to the ten-year period 1991-2000 for about 200 countries and areas

  10. ENVIRONMENTAL ISSUE-PLASTIC

    OpenAIRE

    Sunita Shakle

    2017-01-01

    Polythene is the most common plastic, the annual global production is approximately 60 million tones, and its primary use is in packing. Plastic bags pollute soil and waters and kill thousands of marine generalize plastic bags are not biodegradable they clog water ways, spoil the land scape and end up in landfills. Where they may take 1000 year or more to break down into ever smaller particals that continue to pollution the soil and water.

  11. Development of a framework for sustainable uses of resources: more paper and less plastics?

    Science.gov (United States)

    Chen, Chung-Chiang

    2006-05-01

    Taiwan's EPA has implemented a new guideline called the "Plastic Products Restriction Policy", prohibiting some industries to use plastics as packaging materials for the sake of sustainable use of resources. The significant effect resulting from this policy is the substitution of plastic products with paper products. Is this policy beneficial to achieve future sustainability? I attempt to analyze the resource choice between renewable resources and exhaustible resources for production of final products and services in case of exhaustion of natural resources. In this paper, I develop a framework to examine the dynamic responsiveness of a socio-economical system in facing a continual depletion of natural resources provided by an environmental system. In this framework, the status of an environmental system in terms of carrying capacity is affected by the cumulative impacts caused from human activities, including environmental pollution and resource exploitation. Conversely, it also affects the growth of renewable resources. This framework can serve as a guideline to construct indicators to measure the status of the environmental system and the socio-economical system in order to support a policy planner that formulates an appropriate environmental policy. Based on this framework, I also develop a mathematical model to determine the optimal ratio of resources choice between renewable resources and exhaustible resources.

  12. Prioritizing Type of Industry through Health Risk Assessment of Occupational Exposure to Dimethylformamide in the Workplace.

    Science.gov (United States)

    Lee, Junghyun; Hahm, Miran; Huh, Da-An; Byeon, Sang-Hoon

    2018-03-13

    The purpose of this study was to classify hazards at an industrial level and evaluate the exposure risks of workers exposed to dimethylformamide (DMF) used as a solvent in the workplace and to determine industries that need priority measures in managing DMF exposure. We calculated hazard quotients at an industrial level. The exposure data of DMF in the workplace were obtained from the work environment monitoring program provided by the Korea Occupational Safety and Health Agency. The evaluation was conducted on textile manufacturing, leather manufacturing, chemical manufacturing, pharmaceutical manufacturing, and rubber manufacturing industries, which have many unit work sites handling DMF. The highest central tendency exposure and reasonable maximum exposure were 2.13 and 18.66 mg/m³ for the rubber product manufacturing industry, respectively. A total of 63.8% of workplaces in the textile manufacturing sector had a hazard quotient higher than 1. The highest risk for exposure to DMF is in the rubber and plastic manufacturing industry, and the lowest risk was in the medical materials and pharmaceutical manufacturing sector. Based on this study, effective management of DMF exposure could be achieved by establishing priority management measures for the textile and rubber and plastic product industries.

  13. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    OpenAIRE

    Bullon, Juan; González Arrieta, Angélica; Hernández Encinas, Ascensión; Queiruga Dios, Araceli

    2017-01-01

    The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities pr...

  14. RP-1 Polymer Identification System : Recycler of Plastics

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    It has been noticed that one of the primary obstacles in recycling is the lack of sufficient means to avoid cross contamination during collection. In particular, the new method to quickly and easily identify materials has been demanded in plastic industry due to the dramatic acceleration of plastic consumption in the last forty years. SpectraCode's new technology enables the instant point-and-shoot identification of black plastics, extracting a definitive signature from most black plastics in...

  15. Dictionary of plastics. 7. rev. ed. Kunststoff-Lexikon

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckhert, K [ed.

    1981-01-01

    The book starts with a list of about 400 acronyms for plastic materials and additives, caoutchouc types, and synthetic fibers. This is followed by a 500-page glossary of plastics and a 200-page appendix listing producers of plastic feedstocks, chemical substances and additives, recoverable materials, processing systems, semi-finished plastic products and end products, machinery, tools and further aids for plastics processing. (HK).

  16. Industrial Hemp in North America: Production, Politics and Potential

    Directory of Open Access Journals (Sweden)

    Jerome H. Cherney

    2016-11-01

    Full Text Available Most of the Western World banned the cultivation of Cannabis sativa in the early 20th century because biotypes high in ∆9-tetrahydrocannabinol (THC, the principal intoxicant cannabinoid are the source of marijuana. Nevertheless, since 1990, dozens of countries have authorized the licensed growth and processing of “industrial hemp” (cultivars with quite low levels of THC. Canada has concentrated on hemp oilseed production, and very recently, Europe changed its emphasis from fiber to oilseed. The USA, historically a major hemp producer, appears on the verge of reintroducing industrial hemp production. This presentation provides updates on various agricultural, scientific, social, and political considerations that impact the commercial hemp industry in the United States and Canada. The most promising scenario for the hemp industry in North America is a continuing focus on oilseed production, as well as cannabidiol (CBD, the principal non-intoxicant cannabinoid considered by many to have substantial medical potential, and currently in great demand as a pharmaceutical. Future success of the industrial hemp industry in North America is heavily dependent on the breeding of more productive oilseed cultivars, the continued development of consumer goods, reasonable but not overly restrictive regulations, and discouragement of overproduction associated with unrealistic enthusiasm. Changing attitudes have generated an unprecedented demand for the cannabis plant and its products, resulting in urgent needs for new legislative, regulatory, and business frameworks, as well as scientific, technological, and agricultural research.

  17. Competition and product quality in the supermarket industry.

    Science.gov (United States)

    Matsa, David A

    2011-01-01

    This article analyzes the effect of competition on a supermarket firm's incentive to provide product quality. In the supermarket industry, product availability is an important measure of quality. Using U.S. Consumer Price Index microdata to track inventory shortfalls, I find that stores facing more intense competition have fewer shortfalls. Competition from Walmart—the most significant shock to industry market structure in half a century—decreased shortfalls among large chains by about a third. The risk that customers will switch stores appears to provide competitors with a strong incentive to invest in product quality.

  18. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  19. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy-Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson, Robert W. Emerick, Alfred B. England, James P. Flanders, Frank J. Loge, Katherine A. Wiedeman, Michael P. Wolcott

    2010-04-08

    The forestry, wood and paper industries in the United States provide thousands of productive well-paying jobs; however, in the face of the recent economic downturn it faces significant challenges in remaining economically viable and competitive. To compete successfully on a global market that is increasingly driven by the need for sustainable products and practices, the industry must improve margins and diversify product lines while continuing to produce the staple products. One approach that can help to accomplish this goal sustainably is the forest biorefinery. In the forest biorefinery, traditional waste streams are utilized singly or in combination to manufacture additional products in a profitable and environmentally sustainable manner. In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. Renewable microbial polyesters are not currently used in WFRTCs primarily because their production costs are several times higher than those of conventional petrochemical-derived plastics, limiting their use to small specialty markets. The strategy for this project was to economically produce WFRTCs using microbial polyesters by reducing or eliminating the most costly steps in the bio-plastic production. This would be achieved by producing them in and from waste effluents from the municipal and forest products sectors, and by eliminating the costly purification steps. After production the plasticladen biosolids would be dried and used directly to replace petroleum

  20. Extruded plastic scintillator for MINERvA

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alan D.; FermilabRykalin, Victor V.; Wood, Brian M.; NICADD, DeKalb

    2005-01-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here

  1. Disaggregate energy consumption and industrial production in South Africa

    International Nuclear Information System (INIS)

    Ziramba, Emmanuel

    2009-01-01

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment.

  2. Quantitative and qualitative investigation of industrial solid waste in industrial plants located between Tehran and Karaj

    Directory of Open Access Journals (Sweden)

    M.R. Gohari

    2011-07-01

    Full Text Available Background and aims   Rapid population growth, industrial development, urbanization culture propagation and excessive material consumption are the most important factor which caused over increasing of municipal, industrial and agricultural waste in human society. Inappropriate disposal of generated waste in recent years created several environmental menace and crisis in human society.   methods   For investigation about existent situation of industrial waste generation questionnaire had been used. This questionnaire was catered by Iran environmental protection organization. Aforementioned questionnaire contained 45 questions about combination, quality and quantity of industrial waste. Total number of more than 50 personnel industry was 287 . But sample contained 50 randomly selected industries. Gathered data have been analyzed with spss 18.   Results  Total generated industrial waste was 123451KG per day which had volume equal to 781 cubic meters per day. Generated waste capitation per every worker was 5.8 KG. Maximum frequency of industrial was related to machinery and equipment group which maximum generated waste was related to this industrial group too. Maximum hazardous waste was for inflammable waste with 34 weight percent. Major hazardous waste generating industrial was chemical and plastic making industry.   Conclusion  yielded result from this investigation has shown that significant relation existed between waste production rate and personnel number. The more personnel are, the more waste production increase.

  3. Potential of Electronic Plastic Waste as a Source of Raw Material and Energy Recovery

    International Nuclear Information System (INIS)

    Norazli Othman; Nor Ezlin Ahmad Basri; Lariyah Mohd Sidek

    2009-01-01

    Nowadays, the production of electronic equipment is one of the fastest growing industrial activities in this world. The increase use of plastic in this sector resulted in an increase of electronic plastic waste. Basically, electronic plastic material contains various chemical elements which act as a flame retardant when electronic equipment is operated. In general, the concept of recycling electronic plastic waste should be considered in order to protect the environment. For this purpose, research has been conducted to different resins of electronic plastic waste to identify the potential of electronic plastic waste as a source of raw material and energy recovery. This study was divided into two part for example determination of physical and chemical characteristics of plastic resins and calculation of heating value for plastic resins based on Dulong formula. Results of this research show that the average calorific value of electronic waste is 30,872.42 kJ/ kg (7,375 kcal/ kg). The emission factor analysis showed that the concentration of emission value that might occur during waste management activities is below the standard set by the Environment Quality Act 1974. Basically, this research shows that electronic plastic waste has the potential to become the source of raw material and energy recovery. (author)

  4. Empirical models for end-use properties prediction of LDPE: application in the flexible plastic packaging industry

    Directory of Open Access Journals (Sweden)

    Maria Carolina Burgos Costa

    2008-03-01

    Full Text Available The objective of this work is to develop empirical models to predict end use properties of low density polyethylene (LDPE resins as functions of two intrinsic properties easily measured in the polymers industry. The most important properties for application in the flexible plastic packaging industry were evaluated experimentally for seven commercial polymer grades. Statistical correlation analysis was performed for all variables and used as the basis for proper choice of inputs to each model output. Intrinsic properties selected for resin characterization are fluidity index (FI, which is essentially an indirect measurement of viscosity and weight average molecular weight (MW, and density. In general, models developed are able to reproduce and predict experimental data within experimental accuracy and show that a significant number of end use properties improve as the MW and density increase. Optical properties are mainly determined by the polymer morphology.

  5. New Product Introduction in the Pharmaceutical Industry

    DEFF Research Database (Denmark)

    Hansen, Klaus Reinholdt Nyhuus

    Due to the limited time of the monopoly provided by patent protection that is used for recouping the R&D investment, pharmaceutical companies focus on keeping time-to-market for new products as short as possible. This process is however getting more uncertain, as the outcome of clinical trials...... is unknown and negotiations with authorities have become harder, making market introduction more difficult. This dissertation treats the new product introduction process in the pharmaceutical industry from an operations perspective. The overarching aim of this dissertation is to improve the planning...... uncertainty and several important industry characteristics. The model is used to gain several insights on the use of risk packaging and on keeping time-to-market short. As capacity in secondary pharmaceutical production is critical for product availability, a capacity planning model for a new drug delivery...

  6. Productivity Continued to Increase in Many Industries during 1984.

    Science.gov (United States)

    Herman, Arthur S.

    1986-01-01

    Productivity, as measured by output per employee hour, grew in 1984 in about three quarters of the industries for which the Bureau of Labor Statistics regularly publishes data. (A table shows productivity trends in industries measured by the Bureau, including mining, transportation and utilities, and trade and services.) (CT)

  7. Benefits of nitrogen for food, fibre and industrial production

    NARCIS (Netherlands)

    Stoumann Jensen, L.; Schjoerring, J.K.; Hoek, K.W. van der; Damgaard Poulsen, H.; Zevenbergen, J.F.; Pallière, C.; Lammel, J.; Brentrup, F.; Jongbloed, A.W.; Willems, J.; Grinsven, H. van

    2011-01-01

    Nature of the issue • Reactive nitrogen (N r ) has well-documented positive eff ects in agricultural and industrial production systems, human nutrition and food security. Limited N r supply was a key constraint to European food and industrial production, which has been overcome by Nr from the

  8. Opportunities, perspectives and limits in lactic acid production from waste and industrial by-products

    Directory of Open Access Journals (Sweden)

    Mladenović Dragana D.

    2016-01-01

    Full Text Available In line with the goals of sustainable development and environmental protection today great attention is directed towards new technologies for waste and industrial by-products utilization. Waste products represent potentially good raw material for production other valuable products, such as bioethanol, biogas, biodiesel, organic acids, enzymes, microbial biomass, etc. Since the first industrial production to the present, lactic acid has found wide application in food, cosmetic, pharmaceutical and chemical industries. In recent years, the demand for lactic acid has been increasing considerably owing to its potential use as a monomer for the production of poly-lactic acid (PLA polymers which are biodegradable and biocompatible with wide applications. Waste and industrial by-products such are whey, molasses, stillage, waste starch and lignocellulosic materials are a good source of fermentable sugars and many other substances of great importance for the growth of microorganisms, such as proteins, minerals and vitamins. Utilization of waste products for production of lactic acid could help to reduce the total cost of lactic acid production and except the economic viability of the process offers a solution of their disposal. Fermentation process depends on chemical and physical nature of feedstocks and the lactic acid producer. This review describes the characteristics, abilities and limits of microorganisms involved in lactic acid production, as well as the characteristics and types of waste products for lactic acid production. The fermentation methods that have been recently reported to improve lactic acid production are summarized and compared. In order to improve processes and productivity, fed-batch fermentation, fermentation with immobilized cell systems and mixed cultures and opportunities of open (non-sterilized fermentation have been investigated.

  9. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.

    Science.gov (United States)

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-06-01

    This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Our plastic age

    OpenAIRE

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste pl...

  11. AN ENVIRONMENTAL COMPARISON OF PLASTIC AND PAPER CONSUMER CARRIER BAGS IN SOUTH AFRICA: IMPLICATIONS FOR THE LOCAL MANUFACTURING INDUSTRY

    Directory of Open Access Journals (Sweden)

    J. Sevitz

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The conventional consumer carrier bags have recently received considerable attention in South Africa. The choice of material for these bags, based on environmental preferences in the South African context, could significantly influence the local manufacturing industry. Life Cycle Assessment (LCA, an environmental management tool, has been applied to objectively evaluate and compare the overall environmental impacts of the complete life cycles (from raw material extraction to final disposal of consumer plastic and paper carrier bags in South Africa. Paper bags have a higher carrying capacity compared to plastic bags and different use ratios were subsequently evaluated. Plastic bags have a lower environmental impact for use ratios of up to 2.5 plastic bags to one paper bag. Above this ratio the conclusions are not reliable. Paper bags would need to increase its recycled content significantly to be competitive in terms of environmental impacts. The re-use of thicker plastic, as proposed by the new plastic bag legislation, has the potential to significantly lower the impact of plastic bags.

    AFRIKAANSE OPSOMMING: Die konvensionele gebruikersdrasakke het onlangs aansienlike aandag in Suid Afrika ontvang. Die keuse van materiaal vir hierdie sakke, wat gebaseer is op omgewingsvoorkeure in die Suid-Afrikaanse konteks, kan 'n wesenlike invloed uitoefen op die plaaslike vervaardigingsindustrie. Lewenssiklusanalise (LCA, 'n omgewingsbestuurgereedskap, is aangewend vir 'n objektiewe evaluasie en vergelyking van die algehele omgewingsimpakte van die totale lewenssiklus (vanaf grondstofekstraksie tot finale wegdoening van gebruikersplastiek- en papierdrasakke in Suid-Afrika. Aangesien papiersakke 'n hoër drakapasiteit het in vergelyking met plastieksakke, is verskillende gebruiksverhoudings evalueer. Plastieksakke het 'n laer omgewingsimpak vir gebruiksverhoudings tot en met 2.5 plastieksakke vir elke papiersak. Die gevolgtrekkings

  12. Industrial requirements for interactive product configurators

    DEFF Research Database (Denmark)

    Queva, Matthieu Stéphane Benoit; Probst, Christian W.; Vikkelsøe, Per

    2009-01-01

    The demand for highly customized products at low cost is driving the industry towards Mass Customization. Interactive product configurators play an essential role in this new trend, and must be able to support more and more complex features. The purpose of this paper is, firstly, to identify...... requirements for modern interactive configurators. Existing modeling and solving technologies for configuration are then reviewed and their limitations discussed. Finally, a proposition for a future product configuration system is described....

  13. Biodiesel production from algae grown on food industry wastewater.

    Science.gov (United States)

    Mureed, Khadija; Kanwal, Shamsa; Hussain, Azhar; Noureen, Shamaila; Hussain, Sabir; Ahmad, Shakeel; Ahmad, Maqshoof; Waqas, Rashid

    2018-04-10

    Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater. This study was conducted to optimize the growth of microalgal strains and to assess biodiesel production potential of algae using untreated food industry wastewater as a source of nutrients. The food industry wastewater was collected and analyzed for its physicochemical characteristics. Different dilutions (10, 20, 40, 80, and 100%) of this wastewater were made with distilled water, and growth of two microalgal strains (Cladophora sp. and Spyrogyra sp.) was recorded. Each type of wastewater was inoculated with microalgae, and biomass was harvested after 7 days. The growth of both strains was also evaluated at varying temperatures, pH and light periods to optimize the algal growth for enhanced biodiesel production. After optimization, biodiesel production by Spyrogyra sp. was recorded in real food industry wastewater. The algal biomass increased with increasing level of food industry wastewater and was at maximum with 100% wastewater. Moreover, statistically similar results were found with algal growth on 100% wastewater and also on Bristol's media. The Cladophora sp. produced higher biomass than Spyrogyra sp. while growing on food industry wastewater. The optimal growth of both microalgal strains was observed at temperature 30 °C, pH: 8, light 24 h. Cladophora sp. was further evaluated for biodiesel production while growing on 100% wastewater and found that this strain produced high level of oil and biodiesel. Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater.

  14. Disaggregate energy consumption and industrial production in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziramba, Emmanuel [Department of Economics, University of South Africa, P.O Box 392, UNISA 0003 (South Africa)

    2009-06-15

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment. (author)

  15. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  16. Energy use in the food-products (not elsewhere classified) industry

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, A.C.; Earle, M.D.

    1980-06-01

    Energy consumption data in the food products industry were collected by a postal survey and by factory energy surveys. Average levels of energy consumption were evaluated for various product types, sugar refining was found to require 4.0 MJ/kg, fat and oil processing 8.5 MJ/kg, pasta product manufacture 4.3 MJ/kg, instant coffee production 48 MJ/kg, roasting of coffee beans 2.2 MJ/kg, vinegar production 3.3 MJ/litre, compressed yeast production 5.4 MJ/kg, sandwich spread preparation 5.3 MJ/kg, drying of products with initial moisture contents below 30% 8.2 MJ/kg, drying of products with initial moisture contents of 70 to 90% 39 MJ/kg and dry mixing of powders 0.46 MJ/kg. Data were also obtained for a variety of other minor products. For any particular product, differences in energy use that occurred between factories could largely be explained by differences in types of factory services and processes. Some data were available for equivalent US industries and in general, the New Zealand industy uses either a similar amount of or less energy than these United States industries. Possible areas for energy conservation in the industry are discussed.

  17. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  18. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  19. DeUterium industrial production - tome 8

    International Nuclear Information System (INIS)

    Chagas, T.P.

    1987-01-01

    Some selected bibliographical references about processes for deuterium industrial production are presented, as follow: isotope exchange H 2 S-H 2 O and NH 3 -H 2 , eletrolysis and distillation. (E.G.) [pt

  20. Towards eco-agro industrial clusters in aquatic production: the case of shrimp processing industry in Vietnam

    NARCIS (Netherlands)

    Pham Thi Ahn,; Tran Thi My Dieu,; Mol, A.P.J.; Kroeze, C.; Bush, S.R.

    2011-01-01

    The concept of industrial ecology has been applied in this research to study possibilities to develop an eco-industrial cluster model for fishery production industry in Vietnam. By learning from experiments of other developed countries, we apply the principles of Industrial Ecology and of Ecological

  1. Towards the industrial solar production of lime

    Energy Technology Data Exchange (ETDEWEB)

    Meier, A.; Bonaldi, E. [QualiCal SA, Bergamo (Italy); Cella, G.M. [QualiCal SA, Bergamo (Italy); Lipinski, W.; Palumbo, R.; Steinfeld, A. [ETH Zuerich (Switzerland) and PSI; Wieckert, C.; Wuillemin, D.

    2002-03-01

    A new industrial concept that aims at the development of the chemical engineering technology for the solar production of lime is being examined. To establish the technical feasibility, a 10 kW solar reactor has been designed, constructed, and experimentally tested at a high-flux solar furnace. The quality of the produced solar lime meets industrial standards. (author)

  2. Achievement report for fiscal 1998 on the research cooperation project for a technology to facilitate setting forming conditions for engineering plastics; 1998 nendo engineering plastic no seikei joken kan'i settei gijutsu ni kansuru kenkyu kyoryoku jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is intended to support plastics manufacturing being the important supporting industry in Thailand for manufacture of household electric appliances and automobiles, particularly the manufacture of engineering plastics having excellent heat and impact resistance. In order to achieve the target, a supporting system is being developed to allow injection molding of engineering plastics to be performed easily. The project aims particularly at developing a system that suits climate conditions in Thailand, properties of plastic materials procurable in Thailand, and skills of Thai engineers. The current fiscal year has carried out the following activities: evaluating materials required for the research and development, deciding the specifications for and ordering product evaluating and testing facilities, molds and mold cooling and heating adjustment devices, and an injection molding CAE system; these items were introduced and installed in Thailand; engineers were sent from Japan to perform technical guidance on operation, maintenance and management of the material and product evaluating and testing facilities, as well as joint researches; and Thai researchers were received to execute training on product evaluating and testing technologies, forming and processing technologies, and CAE utilizing technologies. (NEDO)

  3. DEEP DRAWING TECHNOLOGY WITH WALL IRONING IN MASS PACKAGING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Saša Ranđelović

    2017-04-01

    Full Text Available Aluminum is a metal that is being increasingly used in the packaging industry in the modern metal forming technology, but it also provides a good opportunity for effective advertising and product promotion. Processing technologies for aluminum plastic deformation ensure superior packaging that meets the most rigorous demands in the food, pharmaceutical, chemical, and other industries. It is the case of mass production with very little material loss that offers the possibility of multiple recycling. On the other hand, today's products for general purpose consumers cannot be imagined without aggressive advertising that has a major impact on customers. Modern graphics techniques for printing images and different basic surfaces offer great opportunities that manufacturers use widely in the promotion and sale of their products.

  4. Mathematical model for production of an industry focusing on worker status

    Science.gov (United States)

    Visalakshi, V.; kiran kumari, Sheshma

    2018-04-01

    Productivity improvement is posing a great challenge for industry everyday because of the difficulties in keeping track and priorising the variables that have significant impact on the productivity. The variation in production depends on the linguistic variables such as worker commitment, worker motivation and worker skills. Since the variables are linguistic we try to propose a model which gives an appropriate production of an industry. Fuzzy models aids the relationship between the factors and status. The model will support the industry to focus on the mentality of worker to increase the production.

  5. Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources

    Directory of Open Access Journals (Sweden)

    Songyan Yin

    2018-01-01

    Full Text Available In recent years, the research regarding waste conversion to resources technology has attracted growing attention with the continued increase of waste accumulation issues and rapid depletion of natural resources. However, the study, with respect to utilizing plastics waste as carbon resources in the metals industry, is still limited. In this work, an environmentally friendly approach to utilize snack packaging plastic waste as a valuable carbon resources for steel carburization is investigated. At high temperature, plastic waste could be subject to pyrolytic gasification and decompose into small molecular hydrocarbon gaseous products which have the potential to be used as carburization agents for steel. When heating some snack packaging plastic waste and a steel sample together at the carburization temperature, a considerable amount of carbon-rich reducing gases, like methane, could be liberated from the plastic waste and absorbed by the steel sample as a carbon precursor for carburization. The resulting carburization effect on steel was investigated by optical microscopy, scanning electron microscopy, electron probe microanalyzer, and X-ray photoelectron spectrometer techniques. These investigation results all showed that snack packaging plastic waste could work effectively as a valuable carbon resource for steel carburization leading to a significant increase of surface carbon content and the corresponding microstructure evolution in steel.

  6. Recycling of plastic: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas Højlund

    2009-01-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plasti...... to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming....

  7. Rational analysis and index of plasticity of clays for extrusion evaluation

    International Nuclear Information System (INIS)

    Silva, A.R.; Guimaraes Filho, M.A.S.; Santos, C.V.P.; Fagury Neto, E.; Rabelo, A.A.

    2011-01-01

    In the microregion Maraba, in the southeast paraense, there's a important industrial park in the area of red ceramic due to the quality of the extracted clays in the proximities of their rivers. With the intention of collaborating for the production of tiles and structural blocks of quality, in this work the rational analysis of clays was accomplished, through the relationship of the qualitative X-ray diffraction and X-ray fluorescence results. Was possible to quantify the present phases in the collected clays and these results were correlated to the Atterberg's limits - plasticity and liquidity limitsand the respective plasticity indexes - making possible to classify the clays in areas of great and acceptable extrusion. The results of the rational analysis demonstrated that the analyzed clays are plastic kaolinites and don't present quantitative differences very accentuated among the present phases detected besides they possess an area of acceptable extrusion naturally. (author)

  8. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  9. Quality analysis during production of car counter cases

    Directory of Open Access Journals (Sweden)

    Marta Jagusiak-Kocik

    2014-07-01

    Full Text Available In the chapter the company operating in the plastic industry was presented. The car counter case to Fiat was the main subject. The production process of the research product depicted technologically was presented. Hierarchy of the nonconformities with use of ParetoLorenz diagram was made.

  10. Intra-industry momentum and product market competition around the world

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-06-01

    Full Text Available This paper examines the relationship between product market competition and intra-industry momentum returns. Based on 12,982 firm observations from 19 developed markets for the period of 1990–2010, I find that buying winners and selling losers in competitive industries generates significantly higher momentum profits than that in concentrated industries. The higher the intensity of product market competition, the larger are the intra-industry momentum returns. The results are robust to sub-samples (periods of the U.S., non-U.S. countries, the G7 countries, 1990–2000, and 2001–2010. I further employ the nearness of a stock's price to the 52-week high to determine past winners and losers and find stronger results. I also compare intra-industry momentum returns with Jegadeesh and Titman (1993 individual stock momentum and Moskowitz and Grinblatt (1999 inter-industry momentum strategies. My results suggest that intra-industry momentum strategy outperforms the latter two strategies in most cases. The overall results are consistent with the notion that severe product market competition induces managers to improve financial performance.

  11. Opportunities for the forest products industries

    Science.gov (United States)

    Alan W. Rudie

    2011-01-01

    The concept of sustainable harvests is not new to lumber and paper companies—they have been concerned about it and been practicing it for decades, long before it became the headline in a newspaper article. After decades of static products and markets, the industry is offered an opportunity to add products in a new business sector—fuels and chemicals. Although paper...

  12. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  13. Dielectric heating. Industrial applications; Chauffage dielectrique. Applications industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Roussy, G. [Nancy-1 Univ. Henri Poincare, Dir. de Recherche 54 (France); Rochas, J.F. [Societe Sairem, 75 - Paris (France); Oberlin, C. [Electricite de France (EDF), Div. de Recherche, 75 - Paris (France)

    2003-11-01

    The heating of insulating or badly power conducting products using high frequency (HF) electromagnetic waves and microwaves (MW) is used in several industrial applications. This article presents some examples of conventional or recent applications of dielectric heating in the industry: 1 - selection criteria between HF and MW heating systems; 2 - HF applications: traditional applications (wood forming and sticking, welding of thermoplastic materials, drying of textile materials, correction of the humidity profile in the paper industry, end-baking of biscuits in the food industry), recent applications (over-moulding of automotive glazing materials, gluing and moulding of plastic parts in the automotive industry, drying of the coating of textile ropes), innovative applications; 3 - microwave applications: traditional applications (moderating of frozen meat by 915 MHz microwaves, drying of coatings on polystyrene or sand core models for foundry, pre-vulcanization of rubber sections, 2450 MHz pasteurization of pumpable products with morsels), examples of recent applications (continuous dehydration in vacuum, MW assisted granulator-dryers in the pharmaceutical industry, decontamination of hospital wastes), examples of innovative applications in the chemical sector, applications in progress; 4 - conclusion. (J.S.)

  14. Thermal comfort study of plastics manufacturing industry in converting process

    Directory of Open Access Journals (Sweden)

    Sugiono Sugiono

    2017-09-01

    Full Text Available Thermal comfort is one of ergonomics factors that can create a significant impact to workers performance. For a better thermal comfort, several environment factors (air temperature, wind speed and relative humidity should be considered in this research. The object of the study is a building for converting process of plastics manufacturing industry located in Malang, Indonesia. The maximum air temperature inside the building can reach as high as 36°C. The result of this study shows that heat stress is dominantly caused by heat source from machine and wall building. The computational fluid dynamics (CFD simulation is used to show the air characteristic through inside the building. By using the CFD simulation, some scenarios of solution are successfully presented. Employees thermal comfort was investigated based on predicted mean vote model (PMV and predicted percentage of dissatisfied model (PPD. Existing condition gives PMV in range from 1.83 to 2.82 and PPD in range from 68.9 to 98%. Meanwhile, modification of ventilation and replacing ceiling material from clear glass into reflective clear glass gave significant impact to reduce PMV into range from 1.63 to 2.18 and PPD into range from 58.2 to 84.2%. In sort, new design converting building process has more comfortable for workers.

  15. The Meaning of Life-long Education for Contemporal' Industrial Production

    Directory of Open Access Journals (Sweden)

    Janez Tušek

    2001-12-01

    Full Text Available The article shows the significance of and the need for permanent education of the people employed in industry who want to update production, implement novelties, monitor competition, and constantly increase productivity. Besides general needs and principles of life-long education there are some basic and general needs of education for modern industrial production. There is a special emphasis on education for overall quality, the significance of standardisation, protection of the environment, job satisfaction, safety at work, and dealing with customers. One chapter is dedicated to training for development and improvement of products, patent protection of new products, learning from competition, use of internet and other sources. At the end there are some cases of successful education in Slovenian industry.

  16. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste”

    PhD Candidate: Xiaoyun Bing

    Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower

  17. Impacts of the manufacturing process using fiberglass reinforced plastic composite on the environment and occupational health: the automotive industry case

    Directory of Open Access Journals (Sweden)

    Cíntia Madureira Orth

    2012-06-01

    Full Text Available The production of fiberglass reinforced plastic composite parts may cause serious damages to the health of workers and/or the environment, especially due to the generation of process trimmings, noise level and gas emission.  In view of that, this essay aims at assessing the main impacts of the Molding and Finish processes of an automotive plant on the environment and occupational health. It was observed that the open molding method adopted by the studied plant is the main cause of the generation of residues and that the waste of raw materials as trimmings may reach up to 30%. The final destination of those trimmings, which represent 45% of all the residues generated by the factory, is the industrial landfill. It was also observed that, due to the use of open molds, the levels of styrene and fiber dust were above the tolerance limits, presenting risks to the health of the workers.  Therefore, the studied company should consider the possibility of adopting less aggressive technologies, such as that used in closed molds. The reduction of the negative impacts of the productive processes in their source should be part of the company’s policy. Furthermore, the prevention must be continuous and improved every day.

  18. Design and Checking Analysis of Injection Mold for a Plastic Cup

    Science.gov (United States)

    Li, Xuebing

    2018-03-01

    A special injection mold was designed for the structural characteristics of a plastic cup part. The mold was simulated by Moldflow software and verified by calculating the stripping force, the pulling force and the clamping force of the mold so that to determine the appropriate injection parameters. It has been proved that the injection mold is effective and practical in the actual producing and can meet the quality requirements during the course of using it, which solved some problems for injection molding of this kind of parts and can provide some reference for the production of other products in the same industry.

  19. Fungal Morphology in Industrial Enzyme Production - Modelling and Monitoring

    DEFF Research Database (Denmark)

    Quintanilla, D.; Hagemann, T.; Hansen, K.

    2015-01-01

    Filamentous fungi are widely used in the biotechnology industry for the production of industrial enzymes. Thus, considerable work has been done with the purpose of characterizing these processes. The ultimate goal of these efforts is to be able to control and predict fermentation performance......, and on the way the data is interpreted-i.e. which models were applied. The main filamentous fungi used in industrial fermentation are introduced, ranging from Trichoderma reesei to Aspergillus species. Due to the fact that secondary metabolites, like antibiotics, are not to be considered bulk products, organisms...

  20. Evaluation of plastic packaging materials used in radiation sterilized medical products and food

    International Nuclear Information System (INIS)

    Li Fengmei; Wang Ying; Liu Xiaoguang; Yang Baoyu

    2000-01-01

    This paper studied the results of evaluation on resistance to radiation, moisture permeability, bacteria permeability, tensile strength, elongation at break and sealing ability for several plastic films available on the market. The result shows that nylon, sarin, and polyethylene complex films, high and low density polyethylene films are applicable for packing of radiation sterilized products. (author)

  1. Traceability: a demand of agro industrial chain for special products

    Directory of Open Access Journals (Sweden)

    José Verissimo Foggiatto Silveira

    2007-10-01

    Full Text Available The inclusion of agricultural products with different nutritional features has altered the relationship, the upstream and the downstream of enterprises that produce and commercialize them. Coordination in the Agro Industrial System is demanded, including traceability as a way to guarantee the conformity of products, attending external clients and agricultural industries that require quality certification. This quality tool enables the identification of some details in the productive chain, such as seeds, farming, harvesting, storage, transportation and industrialization of products. Thus, this essay describes the concept of traceability and provides information of special products from a cooperative from Paraná, which has controlled process in the productive chain, demanded by contractual partnerships done with enterprises that provide fertilizers and food processors. It was identified that this cooperative commercializes three products that need traceability: two special kinds of corn and the regular kind of soybean.

  2. Study of mortars with industrial residual plastic scales

    Directory of Open Access Journals (Sweden)

    Magariños, O. E.

    1998-06-01

    Full Text Available This work proposes the utilization of industrial residues of PET (Polyethylene Terephtalate as a partial substitute of arids (sand in mortar making for construction components. Therefore, the environmental impact of large volumes of plastic of urban residues could be decreased. When PET scales were added to mortars in partial replacement of sand, lower unitary weight, acceptable absorption and resistances according to international specifications were achieved. Mortars with 66% of sand replacement by scales and without any additive, showed optimal characteristics to be used in concret block manufacturing.

    Este trabajo de investigación se desarrolla a partir de la hipótesis de utilizar los desechos post-industriales de PET (Tereftalato de Polietileno como sustituto de áridos (arena, ingrediente de morteros, en la fabricación de componentes constructivos. En dicho trabajo se estudian las propiedades físico-químicas de distintos morteros en los que se reemplazó el contenido de árido por escamas de plástico en distintas proporciones. Se compararon y evaluaron las propiedades físico-mecánicas de los morteros en estudio con los convencionales mediante ensayos de resistencia a la flexión, compresión, absorción, durabilidad y microfotografías por barrido electrónico. Estos estudios determinaron que el agregado de PET en morteros puede ser usado como un posible sustituto de áridos, ya que se obtuvieron morteros con 66% de reemplazo de arena por escamas que presentaron menor peso unitario, absorción aceptable y resistencias acordes a las exigidas por normas.

  3. L-(+-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste

    Directory of Open Access Journals (Sweden)

    Marcela Piassi Bernardo

    Full Text Available ABSTRACT Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid, a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7 g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively.

  4. Research and chemical industry in 90's

    International Nuclear Information System (INIS)

    Trapasso, I.

    1992-01-01

    This paper examines the importance of research with respect to changes taking place within the chemical industry. Specific areas having a significant impact on the future evolution of the industry are identified. The chemical industry is highly R ampersand D intensive with respect to its overall sales volume, as well as, to R ampersand D levels in other industries; and R ampersand D has been a dominant factor influencing the restructuring, on a global scale, of this industry. In the 90's, the industry is expected to have a supply model which is based on the production of marketable high-technology products and integrated systems, developed through coordinated research in multi-disciplinary scientific fields. The optimum strategic and organizational strategies which are to be adopted by the industry during this decade are discussed with reference to the directions being taken by a large multi-national firm in developing strategies in various areas, e.g., new prime materials, environmental protection, pharmacology, and biotechnology. A look is given at recent developments in the sector of advanced polymers, with attention given to processes involving polymer genetics, new products with a wide range of applications and those offering a high level of environmental compatibility. A review of new materials development includes an assessment of prospects for biodegradable plastics based on natural carbohydrates

  5. Digital prototyping technique applied for redesigning plastic products

    Science.gov (United States)

    Pop, A.; Andrei, A.

    2015-11-01

    After products are on the market for some time, they often need to be redesigned to meet new market requirements. New products are generally derived from similar but outdated products. Redesigning a product is an important part of the production and development process. The purpose of this paper is to show that using modern technology, like Digital Prototyping in industry is an effective way to produce new products. This paper tries to demonstrate and highlight the effectiveness of the concept of Digital Prototyping, both to reduce the design time of a new product, but also the costs required for implementing this step. The results of this paper show that using Digital Prototyping techniques in designing a new product from an existing one available on the market mould offers a significantly manufacturing time and cost reduction. The ability to simulate and test a new product with modern CAD-CAM programs in all aspects of production (designing of the 3D model, simulation of the structural resistance, analysis of the injection process and beautification) offers a helpful tool for engineers. The whole process can be realised by one skilled engineer very fast and effective.

  6. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    Science.gov (United States)

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-11-01

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g -1 plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g -1 plastic was produced.

  7. Prioritizing Type of Industry through Health Risk Assessment of Occupational Exposure to Dimethylformamide in the Workplace

    Directory of Open Access Journals (Sweden)

    Junghyun Lee

    2018-03-01

    Full Text Available The purpose of this study was to classify hazards at an industrial level and evaluate the exposure risks of workers exposed to dimethylformamide (DMF used as a solvent in the workplace and to determine industries that need priority measures in managing DMF exposure. We calculated hazard quotients at an industrial level. The exposure data of DMF in the workplace were obtained from the work environment monitoring program provided by the Korea Occupational Safety and Health Agency. The evaluation was conducted on textile manufacturing, leather manufacturing, chemical manufacturing, pharmaceutical manufacturing, and rubber manufacturing industries, which have many unit work sites handling DMF. The highest central tendency exposure and reasonable maximum exposure were 2.13 and 18.66 mg/m3 for the rubber product manufacturing industry, respectively. A total of 63.8% of workplaces in the textile manufacturing sector had a hazard quotient higher than 1. The highest risk for exposure to DMF is in the rubber and plastic manufacturing industry, and the lowest risk was in the medical materials and pharmaceutical manufacturing sector. Based on this study, effective management of DMF exposure could be achieved by establishing priority management measures for the textile and rubber and plastic product industries.

  8. 5th CIRP international conference on industrial product-service systems

    CERN Document Server

    2013-01-01

    “An Industrial Product-Service System is characterized by the integrated and mutually  determined planning, development, provision and use of product and service shares including its immanent software components in Business-to-Business applications and represents a knowledge-intensive socio-technical system.” – Meier, Roy, Seliger (2010) Since the first conference in 2009, the CIRP International Conference on Industrial Product-Service Systems has become a well-established international forum for the review and discussion of advances, research results and industrial improvements. Researchers from all over the world have met at previous IPS² conferences in Cranfield (2009), Linköping (2010), Braunschweig (2011) and Tokyo (2012). In 2013, the 5th CIRP International Conference on Industrial Product-Service Systems is held in Bochum. Important topics of IPS² research presented at the conference are: planning and development, sustainability, business models, operation, service engineering, knowledge mana...

  9. Characterization of clay and mass used in red ceramic industry in Cariri region - Ceara

    International Nuclear Information System (INIS)

    Neta, I.A.B.; Cartaxo, A.S.; Esmeraldo, A.D.; Gomes, F.F.; Silva, F.C.; Ribeiro, S.B.N.; Neiva, L.S.; Brasileiro, M.I.

    2016-01-01

    The study of the characteristics of raw materials used in the production of red ceramic industry articles, such as bricks and tiles, has a key role in determining the quality of the final product. This study aims to evaluate the chemical and physical properties of clays and pasta from pottery G. Matos, Crato, Ceara. Three samples were collected, processed and submitted to the characterization DRX. They were also analyzed for plasticity by the methods of Atterberg and Pfefferkorn. In the method Atterberg, samples and Fat Mass Ready clay are within the plasticity index range for red ceramics, Pferfferkorn method, pasta and ready Fat also had plasticity, but with different results of the above method. In both ostestes, the red mass showed no moldability. XRD, the samples show quartz peaks, which were in the greatest amount in the sample that did not develop plasticity, addition, montmorillonite obtained peaks kaolinite. (author)

  10. Experimental Investigation of the Productivity of a Wet Separation Process of Traditional and Bio-Plastics

    Directory of Open Access Journals (Sweden)

    Monica Moroni

    2018-05-01

    Full Text Available The separation process within a mechanical recycling plant plays a major role in the context of the production of high-quality secondary raw materials and the reduction of extensive waste disposal in landfills. Traditional plants for plastic separation employ dry or wet processes that rely on the different physical properties among the polymers. The hydraulic separator is a device employing a wet technology for particle separation. It allows the separation of two-polymer mixtures into two products, one collected within the instrument and the other one expelled through its outlet ducts. Apparatus performance were analyzed as a function of fluid and solid flow rates, flow patterns developing within the apparatus, in addition to the density, shape, and size of the polymers. For the hydraulic configurations tested, a two-way coupling takes place where the fluid exerts an influence on the plastic particles and the opposite occurs too. The interaction between the solid and liquid phases determines whether a certain polymer settles within the device or is expelled from the apparatus. Tests carried out with samples of increasing volumes of solid particles demonstrate that there are no significant differences in the apparatus effectiveness as far as a two-way interaction takes place. Almost pure concentrates of Polyethylene Terephthalate (PET, Polyvinyl Chloride (PVC, and Polycarbonate (PC can be obtained from a mixture of traditional polymers. Tests conducted on Polylactic Acid (PLA and Mater-Bi® samples showed that the hydraulic separator can be effectively employed to separate bio-plastics from conventional plastics with remarkable grade and recovery.

  11. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  12. Geotourism products industry element: A community approach

    Science.gov (United States)

    Basi Arjana, I. W.; Ernawati, N. M.; Astawa, I. K.

    2018-01-01

    The ability of a tourism area to provide products that could satisfy the needs and desires of tourists is the key to success in developing tourism. Geotourists are a niche market that has specific needs. This study aims to identify the needs of geotourists, which is undertaken by evaluating the perceptions of geotourists with respect to 6 elements which are the industrial aspects of community-based tourism products, using a qualitative approach. In-depth interview technique is used as data collection method. These products are as follows: there are five major categories of geotourism commercial elements, which include: travel services, accommodation, transportation, food and beverage, souvenir and packaging. The research results show that there are various products which are the output of the industry elements desired by tourists in Batur representing the needs of different market segments and accommodating the sustainability of nature. These needs are arised and inspired by local culture. The necessity to offer an assortment of products packages is indicated to provide plentiful options for tourists, to lengthen tourist’s stay, and also to introduce various product components available in Batur. The research output could be used and contribute in providing a reference in developing geotourism products.

  13. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wogsland, J.

    2001-06-18

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  14. 4th CIRP International Conference on Industrial Product-Service Systems

    CERN Document Server

    Kimita, Koji

    2013-01-01

    Industrial Product-Service Systems (IPS2), which is defined as “an integrated industrial product and service offering that delivers value in use,” has expanded rapidly over the last decade. IPS2 has allowed us to achieve both high added value and high productivity and has enriched our QOL by improving the performance of products and services. We are now struggling with many awkward issues related to sustainability, but IPS2 is expected to be the “philosopher’s stone” for solving these issues. Following the pattern of conferences held in Cranfield in 2009, Linköping in 2010, and Braunschweig in 2011, the fourth International CIRP Conference on Industrial Product-Service Systems, held on November 8-9, 2012, in Tokyo, will cover various aspects of IPS2. Topics planned for this year’s conference reflect the latest IPS2 information in both the natural sciences and humanities and include case studies from various industries. IPS2 is still a relatively new field, so it is important to keep track of the ...

  15. Chemistry in production of heavy water and industrial solvents

    International Nuclear Information System (INIS)

    Thomas, P.G.

    2015-01-01

    Industries are the temples of modern science built on the robust foundation of science and technology. The genesis of giant chemical industries is from small laboratories where the scientific thoughts are fused and transformed into innovative technologies Heavy water production is an energy intensive giant chemical industry where various hazardous and flammable chemicals are handled, extreme operating conditions are maintained and various complex chemical reactions are involved. Chemistry is the back bone to all chemical industrial activities and plays a lead role in heavy water production also. Heavy Water Board has now mastered the technology of design, construction, operation and maintenance of Heavy Water plants as well as fine tuning of the process make it more cost effective and environment friendly. Heavy Water Board has ventured into diversified activities intimately connected with our three stages of Nuclear Power Programme. Process development for the production of nuclear grade solvents for the front end and back end of our nuclear fuel cycle is one area where we have made significant contributions. Heavy Water Board has validated, modified and fine-tuned the synthesis routes for TBP, D2EHPA, TOPO, TAPO TIAP, DNPPA, D2EHPA-II, DHOA etc and these solvents were accepted by end users. Exclusive campaigns were carried out in laboratory scale, bench scale and pilot plant scale before scaling up to industrial scale. The process chemistry is understood very well and chemical parameters were monitored in every step of the synthesis. It is a continual improvement cycle where fine tuning is carried out for best quality and yield of product at lowest cost. In this presentation, an attempt is made to highlight the role of chemistry in the production of Heavy Water and industrial solvents

  16. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling

    International Nuclear Information System (INIS)

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-01-01

    Highlights: ► The article shows WEEE plastics characterization from a recycling unit in Portugal. ► The recycling unit has low machinery, with hand sorting of plastics elements. ► Most common polymers are PS, ABS, PC/ABS, HIPS and PP. ► Most plastics found have no identification of plastic type or flame retardants. ► Ecodesign is still not practiced for EEE, with repercussions in end of life stage. - Abstract: This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile–butadiene–styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.

  17. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  18. DETECTING VERTICAL INTRA-INDUSTRY TRADE IN CULTURAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Affortunato Francesca

    2012-12-01

    Full Text Available The European integration process has always since markedly characterized by the increasing incidence of Intra-Industry Trade. This has been theoretically justified on the grounds of the new approaches emerging in international trade literature, based on imperfect competition and differentiated products. In recent years another distinctive economic feature of European Union is the importance gained by the so called “cultural and creative sectors”, which are often studied and monitored by reports for their great growth potential. We provide here a systematic decomposition of world trade in “cultural/creative goods” for the year 2009 (using harmonised bilateral flows for some 213 products defined as “cultural products” by UNESCO, 2009 into three trade types: inter-industry, intra-industry (IIT in horizontally versus vertically differentiated products. We show that the world trade in cultural goods is significantly characterised by two-way trade of vertically differentiated products. Moreover we specifically focus on the Italian peculiarities in the “cultural trade”: therefore we first work out which ones of the world countries are the “top exporters” of these categories of products and then we compute an indicator of the Italian goods’ quality relative to each of these competitors. Not surprisingly, we find that the most important bilateral IIT intensities in cultural products are observed in Europe. However the presence of developing countries is not unimportant. This can be explained partly to as a consequence of the increasing level of trade integration among some Asian countries and as a consequence of an increasing despecialization of firstly industrialized countries in the production and trading of these products. Finally, with reference to the relative quality of Italian cultural products compared with that of the other top-exporters in these sectors, we find that Italian

  19. Production of catechols : microbiology and technology

    NARCIS (Netherlands)

    Krab-Hüsken, L.

    2002-01-01

    Catechols play an important role in the fine-chemical and flavour industry, as well as in photography, dyeing fur, rubber and plastic production. Many of these compounds cannot easily be synthesised chemically, but some micro-organisms are capable of

  20. Developing engineering design core competences through analysis of industrial products

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Lenau, Torben Anker

    2011-01-01

    Most product development work carried out in industrial practice is characterised by being incremental, i.e. the industrial company has had a product in production and on the market for some time, and now time has come to design a new and upgraded variant. This type of redesign project requires...... that the engineering designers have core design competences to carry through an analysis of the existing product encompassing both a user-oriented side and a technical side, as well as to synthesise solution proposals for the new and upgraded product. The authors of this paper see an educational challenge in staging...... a course module, in which students develop knowledge, understanding and skills, which will prepare them for being able to participate in and contribute to redesign projects in industrial practice. In the course module Product Analysis and Redesign that has run for 8 years we have developed and refined...

  1. Evaluation of the levels of phthalate ester plasticizers in surface ...

    African Journals Online (AJOL)

    Evaluation of the levels of phthalate ester plasticizers in surface water of Ethiope ... Gas chromatography (GC) coupled with mass spectrometer (MS) was used to ... with their common use in plastic materials and other industrial chemicals.

  2. Energy consumption restricted productivity re-estimates and industrial sustainability analysis in post-reform China

    International Nuclear Information System (INIS)

    Chen, Shiyi; Santos-Paulino, Amelia U.

    2013-01-01

    This paper investigates the impact of energy on China's industrial sustainability by using a novel approach to estimate real total factor productivity. The growth accounting indicates that the substantial industrial reforms in China have led to productivity growth. Energy and capital are also important factors driving China's industrial growth. Productivity growth in China's industry is mostly attributable to the high-tech light industrial sectors. - Highlights: ► Productivity has become the most important growth engine in majority of sectors. ► Energy and capital are also important factors promoting China's industrial growth. ► The productivity improvement is more attributable to high-tech light industry. ► The heavy industry performs worse than the light one in terms of productivity

  3. Project and Production Management in the Construction Industry

    OpenAIRE

    Chien-Ho Ko

    2012-01-01

    In this issue, the Journal of Engineering, Project, and Production Management (EPPM-Journal) presents five original research papers related to project and production management in the construction industry from authors in Africa, Asia, and Europe.

  4. Plastics control paraffin buildup

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-01

    Paraffin buildup in producing oil wells has been virtually eliminated by the use of plastic-coated sucker rods. The payout of the plasticing process is generally reached in less than a year, and the paraffin buildup may be inhibited for 10 yr or longer. Most of the plants applying plastic coatings to sucker rods are now fully automated, though a few still offer the hand-sprayed coating that some operators prefer. The several steps involved are described. The ideal plastic for the job is resistant to chemicals at high and low temperatures, flexible, has good adhesion, abrasion resistance, impact resistance, and a smooth glossy finish. The phenol aldehyde and epoxy resins presently offered by the industry fulfill these specifications very well; the multicoating and multibaking techniques improve their performance. Due to wide variations in the severity of the paraffin problem from one oil field to another, there is no general rule to estimate the possible savings from using plastic-coated sucker rods. The process, however, does appear to do a remarkable job in controlling paraffin buildup wherever it is a problem in producing oil by pump.

  5. Recycling potential of post-consumer plastic packaging waste in Finland.

    Science.gov (United States)

    Dahlbo, Helena; Poliakova, Valeria; Mylläri, Ville; Sahimaa, Olli; Anderson, Reetta

    2018-01-01

    Recycling of plastics is urged by the need for closing material loops to maintain our natural resources when striving towards circular economy, but also by the concern raced by observations of plastic scrap in oceans and lakes. Packaging industry is the sector using the largest share of plastics, hence packaging dominates in the plastic waste flow. The aim of this paper was to sum up the recycling potential of post-consumer plastic packaging waste in Finland. This potential was evaluated based on the quantity, composition and mechanical quality of the plastic packaging waste generated by consumers and collected as a source-separated fraction, within the mixed municipal solid waste (MSW) or within energy waste. Based on the assessment 86,000-117,000 tons (18 kg/person/a) of post-consumer plastic packaging waste was generated in Finland in 2014. The majority, 84% of the waste was in the mixed MSW flow in 2014. Due to the launching of new sorting facilities and separate collections for post-consumer plastic packaging in 2016, almost 40% of the post-consumer plastic packaging could become available for recycling. However, a 50% recycling rate for post-consumer plastic packaging (other than PET bottles) would be needed to increase the overall MSW recycling rate from the current 41% by around two percentage points. The share of monotype plastics in the overall MSW plastics fraction was 80%, hence by volume the recycling potential of MSW plastics is high. Polypropylene (PP) and low density polyethylene (LDPE) were the most common plastic types present in mixed MSW, followed by polyethylene terephthalate (PET), polystyrene (PS) and high density polyethylene (HDPE). If all the Finnish plastic packaging waste collected through the three collection types would be available for recycling, then 19,000-25,000 tons of recycled PP and 6000-8000 tons of recycled HDPE would be available on the local market. However, this assessment includes uncertainties due to performing the

  6. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  7. Peran Unit Pelaksana Teknis (Upt) Industri Kulit Dan Produk Kulit Magetan Dalam Pemberdayaan Penyamak Kulit Di Kabupaten Magetan

    OpenAIRE

    purwanto, sofia rizky; astuti, puji; astrika, lusia

    2016-01-01

    Tanning industry is one of the regional potential in Magetan which has existed since the end of the Diponegoro War (± 1830), the tanning industry have helped support the leather industry. But in the years 1960-1970 the tanning industry has declined and nearly died because they were unable to compete with the plastics industry. To cope the situation the Local Government Magetan . UPT Industry Leather and Leather Products Magetan aims to build through the empowerment to the tanners, either thro...

  8. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    OpenAIRE

    SU Yong-zhong; ZHANG Ke; LIU Ting-na; WANG Ting

    2016-01-01

    A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP) in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different texture...

  9. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    OpenAIRE

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  10. Development of plastic scintillator based food radioactivity contamination monitoring system

    International Nuclear Information System (INIS)

    Parihar, A.; Sahani, R.M.; Mahala, V.K.; Vaijapurkar, S.G.

    2016-01-01

    Radioactivity is naturally present in soil, water and food stuffs. Food can be contaminated after discharge of radioactivity into the environment from industries that concentrate natural radionuclide and from civil or military nuclear operations. The contamination can be in three ways; by direct deposition, through the food chain and induced radioactivity due to exposure of high neutron flux. The health effects on human depend on the type of radionuclide and the length of time people are exposed to it. The studies of fission product behaviour in the food chain have revealed radionuclide Strontium-90, Caesium 137 and Iodine-131 are of major concern. Plastic scintillator is already developed indigenously at Defence Laboratory, Jodhpur. Efforts has been made to develop a portable field instrument using plastic scintillator for assessment of beta ( 90 Sr) and gamma ( 137 Cs and 131 I) radioactivity in food

  11. Technical specifications for mechanical recycling of agricultural plastic waste.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E

    2013-06-01

    Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. [Current status of bio-based materials industry in China].

    Science.gov (United States)

    Diao, Xiaoqian; Weng, Yunxuan; Huang, Zhigang; Yang, Nan; Wang, Xiyuan; Zhang, Min; Jin, Yujuan

    2016-06-25

    In recent years, bio-based materials are becoming a new dominant industry leading the scientific and technological innovation, and economic development of the world. We reviewed the new development of bio-based materials industry in China, analyzed the entire market of bio-based materials products comprehensively, and also stated the industry status of bio-based chemicals, such as lactic acid, 1,3-propanediol, and succinic acid; biodegradable bio-based polymers, such as co-polyester of diacid and diol, polylactic acid, carbon dioxide based copolymer, polyhydroxyalknoates, polycaprolactone, and thermoplastic bio-based plastics; non-biodegradable bio-based polymers, such as bio-based polyamide, polytrimethylene terephthalate, bio-based polyurethane, and bio-based fibers.

  13. Product Innovation Development in the Companies of Creative Industries

    Directory of Open Access Journals (Sweden)

    Rolandas Strazdas

    2011-10-01

    Full Text Available Many authors distinguish product innovation as a key factor for long-term competitiveness. Dominant narrow perception of a product is leading towards incorrect product development process and the consequent result is a bad product. Narrow perception of a product is one of the main paralysing factors affecting the creator in the process of product development, which leads towards a low level of product innovation. As a result, a company is losing its uniqueness, originality, and is not of  interest neither for consumers nor the product developers themselves. This article deals with the product perception problems in the companies of creative industries. The main limiting factors for the perception of a product are analysed in the article as well as possibilities to expand the perception of a product. Five main product development methods: conservative, delegative, holistic, limited open, fully open are described in the article. The choice of the product development methods is especially important for the creative industries companies whose product development process is very intensive. 

  14. Impact of Bio-Based Plastics on Current Recycling of Plastics

    Directory of Open Access Journals (Sweden)

    Luc Alaerts

    2018-05-01

    Full Text Available Bio-based plastics are increasingly appearing in a range of consumption products, and after use they often end up in technical recycling chains. Bio-based plastics are different from fossil-based ones and could disturb the current recycling of plastics and hence inhibit the closure of plastic cycles, which is undesirable given the current focus on a transition towards a circular economy. In this paper, this risk has been assessed via three elaborated case studies using data and information retrieved through an extended literature search. No overall risks were revealed for bio-based plastics as a group; rather, every bio-based plastic is to be considered as a potential separate source of contamination in current recycling practices. For PLA (polylactic acid, a severe incompatibility with PET (polyethylene terephthalate recycling is known; hence, future risks are assessed by measuring amounts of PLA ending up in PET waste streams. For PHA (polyhydroxy alkanoate there is no risk currently, but it will be crucial to monitor future application development. For PEF (polyethylene furanoate, a particular approach for contamination-related issues has been included in the upcoming market introduction. With respect to developing policy, it is important that any introduction of novel plastics is well guided from a system perspective and with a particular eye on incompatibilities with current and upcoming practices in the recycling of plastics.

  15. APPLICATION OF GRANULATION TECHNOLOGY IN VARIOUS INDUSTRIES

    Directory of Open Access Journals (Sweden)

    B. V. YEGOROV

    2017-10-01

    Full Text Available Science and practice proved the high efficiency of granulated mixed fodders. This article presents an overview of granulation technologies for various industries. This article discusses the application of granulation technologies in various industries. The processes of granulation are mass technological processes currently used in a wide range of industries: feed industry, food industry, pharmaceutical industry, fertilizer production, polyethylene, metal production, mining, etc. A wide range of different materials are granulated, including chemicals, iron ore, mixed fodder, and much more. Granulation is a process of pressing or shaping a material in the form of granules.  Granulation is widely used in the production of pigments, dyes, synthetic detergents, catalysts, plastics, soot, chemical reagents, etc. The use of granular raw materials in the metallurgical industry helps not only to mechanize processes, but also to increase their intensity by increasing the contact surface of interacting media. Granular fertilizers retain their properties for a long time. In the mining industry, granulation processes are used at the stage of preparation and enrichment of raw materials and release of the finished product.  Particular attention is paid to the feed industry. Granulation allows to ensure stable homogeneity, to improve sanitary and hygienic parameters, to increase nutritional value, to increase the storage period, improve the physical properties. However, despite all the advantages, the existing granulation production lines have a relatively high productivity and, at the same time, a high energy intensity. In this regard, this article proposes a technology for improving the granulation of mixed fodders. According to a preliminary literary review, It should be concluded that improving the technology of the granulation process for feed production is a topical issue in the feed industry today. The development of technology for improving the

  16. [Fermentation production of microbial catalase and its application in textile industry].

    Science.gov (United States)

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  17. Fiscal 1997 survey report. Basic survey on trends of waste use type production facilities and waste fuel production facilities; 1997 nendo chosa hokokusho. Haikibutsu riyogata seizo shisetsu oyobi haikibutsu nenryo seizo shisetsu doko kiso chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This survey was made to obtain the basic data for future spread and promotion of No.6 type (waste use type production facilities) and No.7 type (waste fuel production facilities) which were added to the objects having been subsidized since fiscal 1997 under `the environmental harmony type energy community project.` In the former, the kiln in the cement industry and the blast furnace in the steel industry can be extremely large places to receive waste plastic since the facilities are distributed in every area and the treatment capacity is large. However, the effective collection, transportation and sorting of large quantity of waste plastic, especially the problem of removal of vinyl chloride, is a big bottleneck. As to the use of waste plastic using gasification technology, there are no actual results on the commercial basis. That is, however, appropriate for treatment of the waste difficult in treatment, and can be expected of the usage in the chemical industry. In the latter, in the facilities using industrial waste raw materials as fuel, solidification and liquefaction are both operated on a commercial basis. In relation to the solidification and use as fuel of general waste, the treatment of combustion ash is preventing the expansion of use of waste in the industrial field because of a large quantity of chlorine included in the products. 92 refs., 54 figs., 35 tabs.

  18. Flotation separation of waste plastics for recycling-A review.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian

    2015-07-01

    The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Isotopes for the improvement of industrial products

    International Nuclear Information System (INIS)

    Schultze-Kraft, P.

    1978-01-01

    Full text: For many years the International Atomic Energy Agency has been giving technical assistance to developing countries on the application of radioisotopes in medicine, agriculture and hydrology. With increasing industrialization, these countries feel a growing need for the use of isotopic methods as a means of improving the control of production processes and the quality of industrial products. In response to the demand for training in this field, the IAEA recently held its first Regional Training Course in the Practical Use of Radioisotope Techniques in Industry for Process and Quality Control. The course was given from 27 March to 28 April 1978 at the Instituto Venezolano de Investigaciones Cientificas (IVIC) in Caracas, Venezuela, in co-operation with the Consejo Nacional para el Desarrollo de la Industria Nuclear (CONAN) and the Junta del Acuerdo de Cartagena. It was financed jointly by the IAEA and CONAN, and in addition received a special contribution by the Government of the Federal Republic of Germany. Participants were 18 engineers and physicists from Bolivia, Chile, Colombia, Ecuador, Peru and Venezuela, and the lecturers came from Denmark, Federal Republic of Germany, Poland and the host country. Course directors were Dr. J.J. Henriquez (IVIC) and Dr. L. Wiesner (IAEA expert). The idea of the course was to demonstrate that radioisotope techniques can considerably reduce production costs by optimizing industrial processes and making more efficient use of raw materials. It is estimated that the paper industry in the USA, for example, is saving about 100 million dollars per year through the application of radioisotopes. During the training course, the participants gained practical experience in applying isotopic techniques in several fields: in a paper mill at Moron they measured the weight per surface area, and in the cement factory of Ocumare del Tuy the residence time of clinker, at the new international airport of Maiquetia they determined the

  20. The Four Corners timber harvest and forest products industry, 2007

    Science.gov (United States)

    Steven W. Hayes; Todd A. Morgan; Erik C. Berg; Jean M. Daniels; Mike Thompson

    2012-01-01

    This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2007, describes the composition and operations of the region's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as...

  1. Evaluation of ground calcite/water heavy media cyclone suspensions for production of residual plastic concentrates.

    Science.gov (United States)

    Gent, Malcolm; Sierra, Héctor Muñiz; Menéndez, Mario; de Cos Juez, Francisco Javier

    2018-01-01

    Viable recycled residual plastic (RP) product(s) must be of sufficient quality to be reusable as a plastic or source of hydrocarbons or fuel. The varied composition and large volumes of such wastes usually requires a low cost, high through-put recycling method(s) to eliminate contaminants. Cyclone separation of plastics by density is proposed as a potential method of achieving separations of specific types of plastics. Three ground calcite separation medias of different grain size distributions were tested in a cylindrical cyclone to evaluate density separations at 1.09, 1.18 and 1.27 g/cm 3 . The differences in separation recoveries obtained with these medias by density offsets produced due to displacement of separation media solid particles within the cyclone caused by centrifugal settling is evaluated. The separation density at which 50% of the material of that density is recovered was found to increase from 0.010 to 0.026 g/cm 3 as the separation media density increased from 1.09 to 1.27 g/cm 3 . All separation medias were found to have significantly low Ep 95 values of 0.012-0.033 g/cm 3 . It is also demonstrated that the presence of an excess content of 75%) resulted in reduced separation efficiencies. It is shown that the optimum separations were achieved when the media density offset was 0.03-0.04 g/cm 3 . It is shown that effective heavy media cyclone separations of RP denser than 1.0 g/cm 3 can produce three sets of mixed plastics containing: PS and ABS/SAN at densities of >1.0-1.09 g/cm 3 ; PC, PMMA at a density of 1.09-1.18 g/cm 3 ; and PVC and PET at a density of >1.27 g/cm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Improving the Management of Innovative Development of Industrial Production According to Industry Specifics

    Directory of Open Access Journals (Sweden)

    Papizh Yuliia S.

    2018-03-01

    Full Text Available The problem of improvement of management efficiency of innovative development of industrial enterprises in modern economic conditions is indicated. The dynamics of innovative processes in Ukraine together with volumes of innovative activity of domestic enterprises are analyzed. The basic principles of formation and efficient functioning of the organizational-economic mechanism of innovative development of industrial production are substantiated. The branch specificity in management of innovative development of coal enterprises is identified. Directions of improvement of the organizational-economic mechanism of management of innovative development of enterprises of coal industry are defined. The basic principles of introduction of the mechanism for stimulation of innovative development of enterprises of coal industry are suggested.

  3. Recycling of packing plastics

    International Nuclear Information System (INIS)

    Gintenreiter-Koegl, S.

    2001-05-01

    The ordinance on the avoidance of packaging waste was a serious intervention in the public and private waste management in Austria. Above all the high expenses for an overall packaging waste collection and the recycling of packaging plastics were criticized. The landfill ordinance comes into force in 2004 and this means another major change in the Austrian waste management system. In the course of this change the overall collection and the recycling and recovery of waste streams, especially of the high caloric plastics waste, have to be discussed again. The goal of this work was on the one hand to develop and adapt the hydrocracking process for the recovery of mixed plastics waste and to show a possible application in Austria. On the other hand the work shows the technical, ecological and economical conditions for packaging plastics recycling and recovery in order to find optimum applications for the processes and to examine their contribution to a sustainable development. A hydrocracking test plant for the processing of mixed plastic wastes was built and had been running for about three years. The tests were carried out successfully and the suitability of the technology for the recovery of packaging plastics could be shown. Results show at least a 35 % yield of fuel. The hydrocracking technology is quite common in the oil industries and therefore an integration on a refinery site is suggested. (author)

  4. Plastic flexible films waste management - A state of art review.

    Science.gov (United States)

    Horodytska, O; Valdés, F J; Fullana, A

    2018-04-21

    Plastic flexible films are increasingly used in many applications due to their lightness and versatility. In 2014, the amount of plastic films represented 34% of total plastic packaging produced in UK. The flexible film waste generation rises according to the increase in number of applications. Currently, in developed countries, about 50% of plastics in domestic waste are films. Moreover, about 615,000 tonnes of agricultural flexible waste are generated in the EU every year. A review of plastic films recycling has been conducted in order to detect the shortcomings and establish guidelines for future research. This paper reviews plastic films waste management technologies from two different sources: post-industrial and post-consumer. Clean and homogeneous post-industrial waste is recycled through closed-loop or open-loop mechanical processes. The main differences between these methods are the quality and the application of the recycled materials. Further research should be focused on closing the loops to obtain the highest environmental benefits of recycling. This could be accomplished through minimizing the material degradation during mechanical processes. Regarding post-consumer waste, flexible films from agricultural and packaging sectors have been assessed. The agricultural films and commercial and industrial flexible packaging are recycled through open-loop mechanical recycling due to existing selective waste collection routes. Nevertheless, the contamination from the use phase adversely affects the quality of recycled plastics. Therefore, upgrading of current washing lines is required. On the other hand, household flexible packaging shows the lowest recycling rates mainly because of inefficient sorting technologies. Delamination and compatibilization methods should be further developed to ensure the recycling of multilayer films. Finally, Life Cycle Assessment (LCA) studies on waste management have been reviewed. A lack of thorough LCA on plastic films waste

  5. Development of the production of special steels for nuclear industries

    International Nuclear Information System (INIS)

    Vieillard-Baron, B.

    1977-01-01

    The development of electro-nuclear industries has a powerful impact on the production of special steels, although the quantity of material applied to the non-conventional parts of nuclear power plants is quite small as compared to the total production requirements in this industrial field. Evolution bears on the product research, development and testing methods, on the technical and marketing services - in particular the establishment of quality control teams and assurance manuals - and the implementation of high performance production equipments. Manufacturing must however take place under normal work load and productivity conditions of production tools, and thus ensure a satisfactory profitability on investments entailed [fr

  6. Cleaner production options for reducing industrial waste: the case of batik industry in Malang, East Java-Indonesia

    Science.gov (United States)

    Sirait, M.

    2018-01-01

    The aim of this research is to conduct cleaner production options for improving the environmental performance during the production of batik industry, the case of UKM batik, Malang, East Java. Batik industry is one of small and medium textile industry which has contribution to economic growth in Malang. However, during production the batik, it generates wastewater that has potential to decrease the environmental performance. Wastewater from Celaket batik industry has BOD, COD, TSS, and pH level is far larger than the threshold of water quality standard as a result of use chemical substance during the dyes processing. In order to prevent generating wastewater, this study utilized cleaner production options, such as substitution of input material.Substitution of input material for dyes process was implemented by replacement chemical dyes (e.g.indigosol, nafthol, rapid) with natural dyes (e.g. Indigofero Tintoria). Modifying of technology/equipment was conducted by developing wastewater treatment equipment to reduce waste of batik production. The implementation of this strategy was carried out by changing input material from chemical dyes with natural dyes. The CP uptake could reduce significantly the environmental impact in term of reduction of COD, BOD, and TSS.

  7. COMPARISON OF POLYJET PRINTING AND SILICON MOULDING AS RAPID PLASTIC MOULDING SOLUTIONS

    Directory of Open Access Journals (Sweden)

    R. Singh

    2012-12-01

    Full Text Available The aim of the present investigation is to compare two rapid molding (RM solutions, namely polyjet printing (PP and silicon molding (SM, for the manufacture of plastic components. The comparison has been made on the basis of dimensional accuracy (as per IT grades, mechanical properties (namely surface hardness, surface roughness and production cost. The comparison of the experimental results will serve as a yard stick for the further selection of processes for industrial applications.

  8. Labour Productivity in the New Zealand Construction Industry: A Thorough Investigation

    Directory of Open Access Journals (Sweden)

    John E Tookey

    2011-03-01

    Full Text Available Productivity growth is strongly correlated to economic growth and increases in welfare. This fact also holds true at the industry level and is particularly true in the NZ construction industry, since productivity growth in this sector may have significant effects on the affordability of housing in the country. In recent years construction in NZ has been subjected to a series of reports that have either highlighted ‘failure’ to grow productivity or have exhorted the industry to improve its ‘poor performance’.  However thus far little by way of analysis has gone into the productivity figures that have been quoted, nor has much been done to explain and justify if or why these figures are correct or incorrect.This research seeks to deconstruct construction productivity figures in NZ and explain the patterns over recent years of ‘poor performance’ in comparison with other industries.  As such it will examine the nature of the NZ construction industry and analyse the historic statistics related to its labour productivity. This will provide an overall understanding of the sector as well as those extraneous factors that may have significant influences on the NZ construction sector.The research found that while factors influencing inputs of labour productivity measure such as labour and material costs remained stable, factors impacting the corresponding outputs such as house and land prices, value of work in Non-residential and Infrastructure construction grew significantly between 1997 and 2007. Given the positive skewing effect of standard economic indicators (inflation etc on construction labour productivity figures, the relatively poor performance of construction is worrying for the industry. The paper concludes by demonstrating labour productivity in construction is significantly worse performing than previously suspected.

  9. [Guidelines to productivity bargaining in the health care industry].

    Science.gov (United States)

    Fottler, M D; Maloney, W F

    1979-01-01

    A potential conflict exists between the recent growth of unionization in the health care industry and management efforts to increase productivity. One method of managing this conflict is to link employee rewards to employee productivity through productivity bargaining.

  10. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  11. Innovation Barriers and Enablers that Affect Productivity in Uganda Building Industry

    Directory of Open Access Journals (Sweden)

    Henry Mwanaki Alinaitwe, , and

    2007-06-01

    Full Text Available The construction industry has of recent been blamed for lack of innovation. Lack of innovation in the industry is believed to be responsible for the decreasing or stagnant levels of productivity in comparison with other industries. This paper reviews the major barriers and enablers to innovation in general. Propositions were made about the factors that affect innovation in the construction industry which were then formulated into a questionnaire. A survey was made on building contractors in Uganda, a developing country, targeting those with financial strength, large in size, and with high capacity to carry out big projects. The identified factors were then ranked and correlated. The level of training in science, engineering and technical education, and the level of research and development at the industry level are looked at as the greatest innovation enablers in building that will drive forward labour productivity. The size of the domestic market and the level of security are the worst innovation barriers that lead to low productivity in the building industry in Uganda. Contractors, policy makers and the government should address the identified factors in order to improve productivity.

  12. Operational impact of product variety in the process industry

    DEFF Research Database (Denmark)

    Moseley, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    2016-01-01

    The purpose of this research article is to examine the impact of product variety on production performance in the process industry. As the number of product variants sold by a process company typically impacts the run length, production data from a mineral wool insulation manufacturer is analyzed...

  13. Improving Public Health and Environment through Plastic Waste Management in Mumbai Metropolitan Region

    OpenAIRE

    Sanjay RODE

    2015-01-01

    The Mumbai Metropolitan Region is growing in terms of population, industry, educational and commercial units. The daily requirements of commodities and services by all units have increased fast. Plastic is used extensively for packing, protection and service of various commodities. The use of plastic is much higher by industry and households in region. In Brihan Mumbai Municipal Corporation, the density of population is higher. The concentration of small and large industries is more. Therefor...

  14. Implementation of NFC technology for industrial applications: case flexible production

    Science.gov (United States)

    Sallinen, Mikko; Strömmer, Esko; Ylisaukko-oja, Arto

    2007-09-01

    Near Field communication (NFC) technology enables a flexible short range communication. It has large amount of envisaged applications in consumer, welfare and industrial sector. Compared with other short range communication technologies such as Bluetooth or Wibree it provides advantages that we will introduce in this paper. In this paper, we present an example of applying NFC technology to industrial application where simple tasks can be automatized and industrial assembly process can be improved radically by replacing manual paperwork and increasing trace of the products during the production.

  15. Factors driving and restraining adoption of Automation technologies in Swedish wood product industry.

    OpenAIRE

    Mapulanga, Mwanza; Saladi, Praveen

    2016-01-01

    Swedish wood product industry contributes significantly to the economy of the country. This industry adds more value to the sawn timber produced in order to manufacture different wooden products. Companies in Swedish wood product industry are presently seen as underdeveloped in terms of investments and developments in automation technologies. Automation technologies are seen by companies as a solution for improving productivity, product quality, manufacturing cost reduction and ultimately imp...

  16. Labour Productivity Convergence in 52 Industries: A Panel Data Analysis of Some European Countries

    Directory of Open Access Journals (Sweden)

    Tahir Mahmood

    2012-01-01

    Full Text Available Beta convergence and the speed of convergence of labour productivity for 52 industries are studied with a panel of data including 13 European countries. We use fixed effect approach to model the heterogeneity across countries. In primary sector and in service sector, the existence of -convergence is found for all industries. In manufacturing sector, convergence is found for all industries except for electronic and computing equipment industries. In general the speed of convergence estimates show slow adjustment. Speed is highest in the capital intensive industries. In primary production the convergence is slowest in agriculture and fastest in fishing industry. In manufacturing sector the convergence is slowest in food, drink and tobacco, and it is fastest in oil refining and nuclear fuel manufacturing industries. By augmenting the productivity models with labour utilization variable speeds up the convergence. Labour utilization is positively related to productivity growth in primary production industries, ICT producing manufacturing industries, and ICT producing services industries.

  17. Decomposition of Productivity Considering Multi-environmental Pollutants in Chinese Industrial Sector

    OpenAIRE

    Fujii, Hidemichi; Cao, Jing; Managi, Shunsuke

    2015-01-01

    The objective of this study is to calculate and decompose productivity incorporating multi-environmental pollutants in Chinese industrial sectors from 1992 to 2008. We apply a weighted Russell directional distance model to calculate productivity from both the economic and environmental performance. The main findings are: (1) Chinese industrial sectors increased productivity, with the main contributing factors being labor saving prior to 2000; (2) The main contributing factors for productivity...

  18. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Science.gov (United States)

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  19. l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste.

    Science.gov (United States)

    Bernardo, Marcela Piassi; Coelho, Luciana Fontes; Sass, Daiane Cristina; Contiero, Jonas

    2016-01-01

    Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Biotechnology for improved hHydroxy fatty acid production in oilseed lesquerella

    Science.gov (United States)

    The conventional source of hydroxy fatty acid (HFA) is from castor (Ricinus communis), 90% of castor oil is ricinoleic acid (18:1OH). Ricinoleic acid and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. The production of ca...

  1. Mitigation measures to avert the impacts of plastics and microplastics in the marine environment (a review).

    Science.gov (United States)

    Ogunola, Oluniyi Solomon; Onada, Olawale Ahmed; Falaye, Augustine Eyiwunmi

    2018-04-01

    The increasing demand for and reliance on plastics as an everyday item, and rapid rise in their production and subsequent indiscriminate disposal, rise in human population and industrial growth, have made the material an important environmental concern and focus of interest of many research. Historically, plastic production has increased tremendously to over 250 million tonnes by 2009 with an annual increased rate of 9%. In 2015, the global consumption of plastic materials was reported to be > 300 million tonnes and is expected to surge exponentially. Because plastic polymers are ubiquitous, highly resistant to degradation, the influx of these persistent, complex materials is a risk to human and environmental health. Because microplastics are principally generated from the weathering or breakdown of larger plastics (macroplastics), it is noteworthy and expedient to discuss in detail, expatiate, and tackle this main source. Macro- and microplastic pollution has been reported on a global scale from the poles to the equator. The major problem of concern is that they strangulate and are ingested by a number of aquatic biota especially the filter feeders, such as molluscs, mussels, oysters, from where it enters the food chain and consequently could lead to physical and toxicological effects on aquatic organisms and human being as final consumers. To this end, in order to minimise the negative impacts posed by plastic pollution (macro- and microplastics), a plethora of strategies have been developed at various levels to reduce and manage the plastic wastes. The objective of this paper is to review some published literature on management measures of plastic wastes to curb occurrence and incidents of large- and microplastics pollution in the marine environments.

  2. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications

    International Nuclear Information System (INIS)

    Gualtieri, Alessandro F.; Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele; Lassinantti Gualtieri, Magdalena; Lusvardi, Gigliola; Cavenati, Cinzia; Zanatto, Ivano

    2011-01-01

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 o C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca 3 Cr 2 (SiO 4 ) 3 ] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO 5 ]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

  3. Manufacture of wood/plastic composites by radiation

    International Nuclear Information System (INIS)

    Iwamoto, Takeo

    1976-01-01

    The manufacture and use of wood/plastic composite (WPC) as an example of wood matrix and wood sawdust/plastic composites (SDP) as an example of plastic matrix are reviewed. The raw material for WPC are mostly vinyl monomers, particularly methyl methacrylate and styrene. The reaction in WPC polymerization is radical polymerization. Researches on the radiation sources mostly resulted in gamma-ray. Electron beam can be applied only to thin products. The future use of WPC may be for furnitures, sporting goods, decorative parts and the like. Vital study on the reduction of manufacturing costs is required, for example, the improvement of reaction and the adoption of continuous process must be considered. The raw materials for SDP are wood sawdust, vinyl monomer (mostly methyl methacrylate) and resins. Electron beam accelerators are the most preferable radiation source because of its high efficiency and safe operation. SDP shows good forming property. The most preferable use of SDP is as interior materials for prefabricated houses, for example, opening frames for bath rooms. Some combination of the technologies of wood engineering, chemical engineering and radiation engineering must be established to develop and maintain the demands. The present radiation sources are forced to grow to large scale industrially, but the establishment of radiation source technology which can be enlarged stepwise is important to keep pace with the development. (Iwakiri, K.)

  4. CONTRIBUTION TO THE IMPROVEMENT OF PRODUCTS QUALITY IN BAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Aleksandar Marić

    2009-09-01

    Full Text Available Food industry occupies special place in the processing industry, especially when we talk on the manufacturing of bakery products. Variable products quality on the market initiated the authors of this study to make an attempt, using comparative analysis of methods for quality control that are at most applied in bakery plants and other "convenient" methods to indicate the shortcomings and to argue convenience of using of methods that would improve testing of the quality. That approach could create a base for designing of model of quality improvement the baking industry.

  5. Monitoring and evaluation of production processes an analysis of the automotive industry

    CERN Document Server

    Panda, Anton; Pandová, Iveta

    2016-01-01

    This book presents topics on monitoring and evaluation of production processes in the automotive industry. Regulation of production processes is also described in details. The text deals with the implementation and evaluation of these processes during the mass production of components useful in the automotive industry. It evaluates the effects and results achieved after implementation in practice. The book takes into account the different methodologies of the world's automakers and applicable standards, such as standard EN ISO 9001 and the requirements of VDA and ISO/TS 16949. The content is used to those working with the development, production and quality control of new products in the demanding automotive industry. The information provided may also be useful to engineers and technical staff in organizations working with series production and production of spare parts for the automotive and other demanding industries. The content presented was written based on discussions with various companies and organiza...

  6. Development of crayfish bio-based plastic materials processed by small-scale injection moulding.

    Science.gov (United States)

    Felix, Manuel; Romero, Alberto; Cordobes, Felipe; Guerrero, Antonio

    2015-03-15

    Protein has been investigated as a source for biodegradable polymeric materials. This work evaluates the development of plastic materials based on crayfish and glycerol blends, processed by injection moulding, as a fully biodegradable alternative to conventional polymer-based plastics. The effect of different additives, namely sodium sulfite or bisulfite as reducing agents, urea as denaturing agent and L-cysteine as cross-linking agent, is also analysed. The incorporation of any additive always yields an increase in energy efficiency at the mixing stage, but its effect on the mechanical properties of the bioplastics is not so clear, and even dampened. The additive developing a greater effect is L-cysteine, showing higher Young's modulus values and exhibiting a remnant thermosetting potential. Thus, processing at higher temperature yields a remarkable increase in extensibility. This work illustrates the feasibility of crayfish-based green biodegradable plastics, thereby contributing to the search for potential value-added applications for this by-product. © 2014 Society of Chemical Industry.

  7. Sensor array for the detection of organic and inorganic contaminants in post-consumer recycled plastics for food contact.

    Science.gov (United States)

    Davis, Nathan; Danes, Jeffrey E; Vorst, Keith

    2017-10-01

    Post-consumer recycled (PCR) plastic material is made by collecting used plastic products (e.g., bottles and other plastic packaging materials) and reprocessing them into solid-state pellets or flakes. Plastic recycling has positive environmental benefits, but may also carry potential drawbacks due to unwanted organic and inorganic contaminants. These contaminants can migrate into food packaging made from these recycled plastic materials. The purpose of this research was to identify economically viable real-time monitoring technologies that can be used during the conversion of virgin and recycled resin feedstocks (i.e., various blends of virgin pellets and recycled solid-state pellet or mechanically ground flake) to final articles to ensure the safety, quality and sustainability of packaging feedstocks. Baseline analysis (validation) of real-time technologies was conducted using industry-standard practices for polymer analysis. The data yielded supervised predictive models developed by training sessions completed in a controlled laboratory setting. This technology can be employed to evaluate compliance and aid converters in commodity sourcing of resin without exceeding regulatory thresholds. Furthermore, this technology allowed for real-time decision and diversion strategies during the conversion of resin and flake to final articles or products to minimise the negative impact on human health and environmental exposure.

  8. A Planning Guide for Small and Medium Size Wood Products Companies

    Science.gov (United States)

    Jeff Howe; Stephen Bratkovich

    2005-01-01

    At the beginning of the 21st century, North American wood products companies are facing competitive pressure from numerous sources. Traditional products are being manufactured in new regions (e.g., China and the developing nations), and substitute products are being developed by competing industries (e.g., plastics and composites). The bottom line is strained by...

  9. Promotion on the industrial products market

    Directory of Open Access Journals (Sweden)

    Raluca-Dania TODOR

    2015-12-01

    Full Text Available The literature abounds with articles and books on marketing and especially promoting consumer products. As consumers for these goods we are exposed each day to promotional messages of major product brands in order to attract or retain us when we are already buyers. Fewer things have been written about how to do promotion of industrial goods, which are a special category of goods, but have a very high quota in trade of goods, both nationally and internationally. This article will analy

  10. Preparative electrophoresis of industrial fission product solutions

    International Nuclear Information System (INIS)

    Tret, Joel

    1971-07-01

    The aim of this work is to contribute to the development of the continuous electrophoresis technique while studying its application in the preparative electrophoresis of industrial fission product solutions. The apparatus described is original. It was built for the purposes of the investigation and proved very reliable in operation. The experimental conditions necessary to maintain and supervise the apparatus in a state of equilibrium are examined in detail; their stability is an important factor, indispensable to the correct performance of an experiment. By subjecting an industrial solution of fission products to preparative electrophoresis it is possible, according to the experimental conditions, to prepare carrier-free radioelements of radiochemical purity (from 5 to 7 radioelements): 137 Cs, 90 Sr, 141+144 Ce, 91 Y, 95 Nb, 95 Zr, 103+106 Ru. (author) [fr

  11. The Four Corners timber harvest and forest products industry, 2012

    Science.gov (United States)

    Colin B. Sorenson; Steven W. Hayes; Todd A. Morgan; Eric A. Simmons; Micah G. Scudder; Chelsea P. McIver; Mike T. Thompson

    2016-01-01

    This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2012, describes the composition and operations of the region’s primary forest products industry, and quantifies volumes and uses of wood fiber. Recent changes in the wood products industry are discussed, as well as trends...

  12. Identification of volatile organic compounds (VOCs in plastic products using gas chromatography and mass spectrometry (GC/MS

    Directory of Open Access Journals (Sweden)

    Nerlis Pajaro-Castro

    2014-10-01

    Full Text Available Plastic materials are widely used in daily life. They contain a wide range of compounds with low molecular mass, including monomeric and oligomeric residues of polymerization, solvent-related chemicals residues, and various additives. Plastic products made of expanded polystyrene (EPS are currently employed as food containers. This study therefore sought to identify volatile organic compounds released by EPS from food packages and utensils used in Cartagena, Colombia. EPS-based plates, food and soup containers were subjected to various temperatures and released chemicals captured by solid phase microextraction, followed by on-column thermal desorption and gas chromatography/mass spectrometry analysis. The results revealed the presence of at least 30 different compounds in the EPS-based products examined; the most frequently found were benzaldehyde, styrene, ethylbenzene and tetradecane. The release of these molecules was temperature-dependent. It is therefore advisable to regulate the use of EPS products which may be subjected to heating in order to protect human health by decreasing the exposure to these chemicals.

  13. Industrial agglomeration and production costs in Norwegian salmon aquaculture

    OpenAIRE

    Tveterås, Ragnar

    2002-01-01

    During the last decade, empirical evidence of regional agglomeration economies has emerged for some industries. This paper argues that externalities from agglomeration are not only present in some manufacturing and service sectors, but can also occur in primary industries, such as aquaculture. Econometric analyses in this literature have primarily estimated rather restrictive production function specifications on aggregated industry data. Here, cost functions are estimated o...

  14. Industrial applications or electron beams

    International Nuclear Information System (INIS)

    Martin, J. I.

    2001-01-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron beam Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawatts (over 8 million tons of products per year). Electron beam is now utilized by many major industries including plastics, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organisation od the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author) 8 refs

  15. Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Larsen, Thomas Ostenfeld; Thrane, Ulf

    2011-01-01

    as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were...... examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B(2), B(4), and B(6)) were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83......%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also...

  16. Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors

    International Nuclear Information System (INIS)

    Long, Ruyin; Shao, Tianxiang; Chen, Hong

    2016-01-01

    Highlights: • We evaluate the industrial carbon productivity of China’s provinces. • The regional disparity and clustering features exist simultaneously. • There is evident spatial dependence in regional industrial carbon productivity. • We employ spatial panel data models to examine the impact factors. • Spatial effects are found to be important in understanding industrial CO_2 emissions. - Abstract: This study measured the industrial carbon productivity of 30 provinces in China from 2005 to 2012 and examined the space–time characteristics and the main factors of China’s industrial carbon productivity using Moran’s I index and spatial panel data models. The empirical results indicate that there is significant positive spatial dependence and clustering characteristics in China’s province-level industrial carbon productivity. The spatial dependence may create biased estimated parameters in an ordinary least squares framework; according to the analysis of our spatial panel models, industrial energy efficiency, the opening degree, technological progress, and the industrial scale structure have significantly positive effects on industrial carbon productivity whereas per-capita GDP, the industrial energy consumption structure, and the industrial ownership structure exert a negative effect on industrial carbon productivity.

  17. Utilization of efficiency potentials with coldness from industrial wast heat; Mit Kaelte aus industrieller Abwaerme Effizienz-Potenziale nutzen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-04-15

    Increasing energy efficiency is one of the main challenges in the plastics processing industry. However, the structure and the parameters of the cooling sections of extrusion lines have been optimized only in a few cases with respect to maximum efficiency and minimal operating costs. Thus, an innovative cascaded cooling section enables not only an energy-efficient cooling, but also an improvement of the properties of the finished plastic products.

  18. 77 FR 9947 - Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...

    Science.gov (United States)

    2012-02-21

    ...] Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing... ``Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing... for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing, and...

  19. An applied investigation of corn-based distillers dried grains with solubles in the production of natural fiber-plastic composites

    Science.gov (United States)

    Castillo, Hugo Eudosio

    The main objective of this research was to examine uses for distillers dried grains with solubles (DDGS), a coproduct of ethanol production plant, in the fiber-reinforced plastic composites industry. Initially the effort intended to take advantage of the DDGS components, using chemical reactions, to produce coupling agents to improve the physical properties of the composite. Four different chemicals plus water were used to convert proteins into soluble amino acids. The results were not as expected, and appeared to show an early pyrolysis of DDGS components. This may be due to regeneration of proteins when pH of solutions is neutralized. Procedures were then investigated to utilize DDGS for different markets. Considering that oils and proteins of DDGS can thermally decompose, it seemed important to separate the major components and work with DDGS fiber alone. A procedure to extract oil from DDGS using ethanol and then to hydrolyze proteins with ethanol diluted with water, acid and sodium sulfite, was developed. The resulting DDGS fiber or residual material, with a low content of oil and proteins, was used as filler in a propylene matrix with a lubricant and coupling agent to make natural fiber plastic composites (NFPC). Composites containing wood flour (WPC) were prepared simultaneously with those of DDGS fiber to compare tensile properties and fracture surfaces of the specimens by scanning electron microscope (SEM). This study demonstrates that DDGS fiber can replace wood fiber as a filler in NFPC.

  20. Production of grids in plastic detectors

    CERN Document Server

    Birabeau, J P; Brun, R; Cordaillat, A; Mendola, Onofrio

    1972-01-01

    In order to facilitate the locating of tracks of charged particles in cellulose nitrate and polycarbonate (makrofol, lexan) foils, a method has been developed for the photo-deposition of translucent coordinate grids on this materials. The grids are resistant to the strongly caustic solutions used in developing tracks in plastic foils. (9 refs) .

  1. Endocrine disruption: In silico interactions between phthalate plasticizers and corticosteroid binding globulin.

    Science.gov (United States)

    Sheikh, Ishfaq A; Beg, Mohd A

    2017-12-01

    Endocrine disruption is a phenomenon when a man-made or natural compound interferes with normal hormone function in human or animal body systems. Endocrine-disrupting compounds (EDCs) have assumed considerable importance as a result of industrial activity, mass production of synthetic chemicals and environmental pollution. Phthalate plasticizers are a group of chemicals used widely and diversely in industry especially in the plastic industry, and many of the phthalate compounds have endocrine-disrupting properties. Increasing evidence indicates that steroid nuclear receptors and steroid binding proteins are the main targets of endocrine disruption. Corticosteroid-binding globulin (CBG) is a steroid binding protein that binds and transports cortisol in the blood circulation and is a potential target for endocrine disruption. An imbalance of cortisol in the body leads to many health problems. Induced fit docking of nine important and environmentally relevant phthalate plasticizers (DMP, BBP, DBP, DIBP, DnHP, DEHP, DINP, DnOP, DIDP) showed interactions with 10-19 amino acid residues of CBG. Comparison of the interacting residues of CBG with phthalate ligands and cortisol showed an overlapping of the majority (53-82%) of residues for each phthalate. Five of nine phthalate compounds and cortisol shared a hydrogen bonding interaction with the Arg-252 residue of CBG. Long-chain phthalates, such as DEHP, DINP, DnOP and DIDP displayed a higher binding affinity and formed a number of interactions with CBG in comparison to short-chain phthalates. The similarity in structural binding characteristics of phthalate compounds and native ligand cortisol suggested potential competitive conflicts in CBG-cortisol binding function and possible disruption of cortisol and progesterone homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Seabirds, gyres and global trends in plastic pollution

    International Nuclear Information System (INIS)

    Franeker, Jan A. van; Law, Kara Lavender

    2015-01-01

    Fulmars are effective biological indicators of the abundance of floating plastic marine debris. Long-term data reveal high plastic abundance in the southern North Sea, gradually decreasing to the north at increasing distance from population centres, with lowest levels in high-arctic waters. Since the 1980s, pre-production plastic pellets in North Sea fulmars have decreased by ∼75%, while user plastics varied without a strong overall change. Similar trends were found in net-collected floating plastic debris in the North Atlantic subtropical gyre, with a ∼75% decrease in plastic pellets and no obvious trend in user plastic. The decreases in pellets suggest that changes in litter input are rapidly visible in the environment not only close to presumed sources, but also far from land. Floating plastic debris is rapidly “lost” from the ocean surface to other as-yet undetermined sinks in the marine environment. - Highlights: • Seabirds are effective biological monitors of floating plastic marine debris. • Plastics in fulmar stomachs and in the North Atlantic gyre show similar trends. • Pre-production plastic pellets show strong decreases in fulmars and in the gyre. • These data show that floating plastics rapidly disappear from the ocean surface. - Long term studies give evidence that reduced input of plastic debris into the ocean becomes rapidly visible. Floating plastics disappear to as-yet undetermined sinks

  3. Application of radiation in industrial processes (Paper No. IT-01)

    International Nuclear Information System (INIS)

    Murthy, T.S.

    1990-02-01

    The application of radiations both from gamma irradiation sources and electron beams has immense potential in diverse fields of industry and public health care programmes. The technical and economic effectiveness of radiation technology has been well demonstrated in different parts of the world and in India over last few years. The major applications for using this technology favourably considered all over the world include radiation sterilisation of medical products, hygienisation of sewage sludge, radiation processing of wood plastic composites, vulcanisation of natural rubber latex, cross linking of wires and cables using radiation, production of bio materials and drugs release systems and treatment of flue gases. Some of the areas which have been successfully exploited on an industrial or semi industrial scale in India and the current status of this programme is high lighted in this paper. (author). 9 refs

  4. Use of recycled plastics in concrete: A critical review.

    Science.gov (United States)

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. POTENTIAL PRODUCTION OF OIL FROM WASTE PLASTIC PYROLIYSIS IN GEOSTECH BUILDING

    OpenAIRE

    Kristyawan, I Putu Angga

    2017-01-01

    Office waste is produced from activity that carried in the office area. In Geostech office area, 18.05 % composition of the waste is plastic waste. Plastic waste total in Geostech is 17.1 kg/week. The highest of plastic waste type is PP (Polypropylene). plastic waste. From the waste total is known that that the potential of oil produced through pyrolysis is 11.6 kg/week or 13.7 L/week. Pirolysis oil can be used as substitute for diesel fuel because of the calorific value equal with the calori...

  6. The Productivity Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, E.

    2014-07-01

    Chennai, also called the Detroit of India, is India's second fastest growing auto market and exports auto components and vehicles to US, Germany, Japan and Brazil. For inclusive growth and sustainable development, 250 auto component industries in Ambattur, Thirumalisai and Thirumudivakkam Industrial Estates located in Chennai have adopted the Cluster Development Approach called Automotive Component Cluster. The objective is to study the Value Chain, Correlation and Data Envelopment Analysis by determining technical efficiency, peer weights, input and output slacks of 100 auto component industries in three estates. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper model by taking net worth, fixed assets, employment as inputs and gross output as outputs. The non-zero represents the weights for efficient clusters. The higher slack obtained reveals the excess net worth, fixed assets, employment and shortage in gross output. To conclude, the variables are highly correlated and the inefficient industries should increase their gross output or decrease the fixed assets or employment. Moreover for sustainable development, the cluster should strengthen infrastructure, technology, procurement, production and marketing interrelationships to decrease costs and to increase productivity and efficiency to compete in the indigenous and export market.

  7. Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: Characterization and potential applications.

    Science.gov (United States)

    Zhao, Xuyuan; Zhan, Lu; Xie, Bing; Gao, Bin

    2018-05-26

    In this study, hydrothermal method was applied for the treatment of five typical waste plastics (PC, HIPS, ABS, PP and PA6). The hydrothermal products of oils and solid residues were analyzed for the product slate and combustion behaviors. Some predominant chemical feedstock were detected in the oils, such as phenolic compounds and bisphenol A (BPA) in PC oils, single-ringed aromatic compounds and diphenyl-sketetons compounds in HIPS and ABS oils, alkanes in PP oils, and caprolactam (CPL) in PA6 oils. The hydrothermal solid residues were subjected to DSC analysis. Except the solid residues of PA6, all the solid residues had enormous improvement on the enthalpy of combustion. The solid residues of PC had the maximum promotion up to 576.03% compared to the raw material. The hydrothermal treatment significantly improved the energy density and facilitated effective combustion. Meanwhile, the glass fiber was recovered from the PA6 plastics. In addition, the combustion behaviors of the uplifting residues were investigated to provide the theoretical foundation for further study of combustion optimization. All the results indicated that the oils of waste plastics after hydrothermal treatment could be used as chemical feedstock; the solid residues of waste plastics after hydrothermal treatment could be used as potentially clean and efficient solid fuels. The hydrothermal treatment for various waste plastics was verified as a novel waste-to-energy technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Industrial applications of radiation chemistry; Perspectives industrielles de la chimie sous rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Jean Rene [Commissariat a l' energie atomique et aux energies alternatives - CEA, Service de chimie-physique, CEN de Saclay (France)

    1959-07-01

    The status of industrial applications of radiation chemistry as it stands 6 months after the second Geneva international conference is described. The main features of the interaction of ionizing radiations with matter are briefly stated and a review is made of the best studied and the more promising systems of radiation chemistry. The fields of organics, plastics, heterogeneous catalysis are emphasized. Economies of radiation production and utilization are discussed. Reprint of a paper published in Industries atomiques - no. 5-6, 1959.

  9. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    Science.gov (United States)

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  10. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    Science.gov (United States)

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  11. Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Plastic Parts and Products Fact Sheet

    Science.gov (United States)

    This page contains an August 2004 fact sheet with information regarding the final NESHAP for Surface Coating of Plastic Parts and Products. This document provides a summary of the information for the information for this regulation.

  12. USE OF SINGLE-MINUTE EXCHANGE OF DIE – SMED – AS A STRATEGY TO INCREASE PRODUCTIVITY IN A PLASTIC BOTTLE LABELER

    Directory of Open Access Journals (Sweden)

    Teonas Bartz

    2012-12-01

    Full Text Available The increase in the production and sale of food products stored in plastic containers, which serve different markets, caused the company researched departed in search of new concepts to increase the productivity of production equipment. With the increase of productivity, there is greater flexibility in planning and scheduling of production and exchange of tools. The implementation of the methodology of Single-Minute Exchange of Die – SMED reduces the setup time of equipment, maximizing the period of machine operation. With this the company more flexible production process and can reduce production batches, increasing operating rates, productivity and competitiveness of organizations. In this paper, we present the steps necessary for the implementation of the SMED in a labeling machine for plastic bottles. To this end, there were activities analysis, suggestions for improvements in machinery and procedures, timing of the steps before and after the improvements implemented and analyzes of the times obtained. After that, we obtained a significant reduction in setup time machine studied.

  13. Personal Selling for the Forest Products Industry

    OpenAIRE

    Smith, Robert L. (Robert Lee), 1955 August 21-; Hansen, Eric, 1968-; Olah, David F.

    2009-01-01

    The role of salespeople in today's forest products industry is evolving from order taking and price quoting to promoting mutually profitable value exchanges. This publication details the salesperson's responsibilities, describes successful sales strategies, and lists additional available resources.

  14. Energy and materials flows in the production of olefins and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.; Shen, S.Y.

    1980-08-01

    Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

  15. Utilization of the UV laser with picosecond pulses for the formation of surface microstructures on elastomeric plastics

    Science.gov (United States)

    Antoszewski, B.; Tofil, S.; Scendo, M.; Tarelnik, W.

    2017-08-01

    Elastomeric plastics belong to a wide range of polymeric materials with special properties. They are used as construction material for seals and other components in many branches of industry and, in particular, in the biomedical industry, mechatronics, electronics and chemical equipment. The micromachining of surfaces of these materials can be used to build micro-flow, insulating, dispensing systems and chemical and biological reactors. The paper presents results of research on the effects of micro-machining of selected elastomeric plastics using a UV laser emitting picosecond pulses. The authors see the prospective application of the developed technology in the sealing technique in particular to shaping the sealing pieces co-operating with the surface of the element. The result of the study is meant to show parameters of the UV laser’s performance when producing typical components such as grooves, recesses for optimum ablation in terms of quality and productivity.

  16. INDUSTRIAL WASTE MANAGEMENT TO IMPROVE ENVIRONMENTAL SECURITY

    Directory of Open Access Journals (Sweden)

    V. A. Perfilov

    2016-01-01

    Full Text Available Aim. Disposal of industrial waste to improve the environmental safety by means of recycling and reusing in the manufacture of building materials.Materials and methods. We made a selection of new optimum compositions of fiber-concretes using industrial carbon black from heat generating productions, glass fibers, plasticizers, activated mixing water produced using an ultrasonic unit.Results. New fiber-reinforced concrete compositions were developed using carbon black as an additive. As a result of the processing of the experimental data, it has been revealed that introduction of carbon black as an additive contributed to the increase of the strength characteristics of nearly all fiber-reinforced concrete compositions. It has been found that microparticles of carbon black accumulate the products of hydration of portlandcement-hydrosilicate calcium on the surface and contribute to the formation of a solid microarming concrete structure.Conclusions. The use of industrial carbon black in fibrous concrete mixture using restructured water improves its rheological properties, reduces its segregation and improves the homogeneity of the concrete. Recycling and re-using carbon black in the production of building materials will improve the environmental ecology.

  17. Research on the recycling industry development model for typical exterior plastic components of end-of-life passenger vehicle based on the SWOT method.

    Science.gov (United States)

    Zhang, Hongshen; Chen, Ming

    2013-11-01

    In-depth studies on the recycling of typical automotive exterior plastic parts are significant and beneficial for environmental protection, energy conservation, and sustainable development of China. In the current study, several methods were used to analyze the recycling industry model for typical exterior parts of passenger vehicles in China. The strengths, weaknesses, opportunities, and challenges of the current recycling industry for typical exterior parts of passenger vehicles were analyzed comprehensively based on the SWOT method. The internal factor evaluation matrix and external factor evaluation matrix were used to evaluate the internal and external factors of the recycling industry. The recycling industry was found to respond well to all the factors and it was found to face good developing opportunities. Then, the cross-link strategies analysis for the typical exterior parts of the passenger car industry of China was conducted based on the SWOT analysis strategies and established SWOT matrix. Finally, based on the aforementioned research, the recycling industry model led by automobile manufacturers was promoted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Factors Influencing Productivity Change in the Forest Products Industry,

    Science.gov (United States)

    1985-04-01

    y Calificaciones. Una . Prueba De La Hipotesis de Hirschman Para La Industria 1 39 . * Lationoamericana. El Trimestre Economico XLVTI(3):613-650...Association federale des Syndicates de Producterus de Papiers, Cartons et Celluloses. 1958. Organization et Productivite dans les Industries du Papier, du...Carton et de la Cellulose. Summary in: - Productivity Measurement Review 13:41-46. Atkinson, R. C. 1980. Tax Incentives and Research. Science 208:449

  19. FSSC 22000 Packaging Implementation: a Plastics Industry Research

    OpenAIRE

    Cantanhede, Vanessa; Pereira, Karen Signori; Barreto, Daniel Weingart

    2018-01-01

    Abstract This paper presents the outcomes of an exploratory research carried out in companies, which are located in Brazil. They are FSSC-22000-certified food plastic packaging manufacturers. In order to identify the key aspects of the implementation process and certification, a questionnaire was developed and sent to twenty certified organizations. Out of them, eleven of which participating companies responded in a collaborative way. Based on the data obtained, improving competitiveness and...

  20. Radiation Processing of Starch Based Plastic Blends. Chapter 15

    International Nuclear Information System (INIS)

    Khandal, D.; Mikus, P.; Dole, P.; Baumberger, S.; Coqueret, X.

    2016-01-01

    There is an increasing interest in renewable and environmentally friendly polymers from biomass for substituting synthetic polymers in various sectors and for various applications, as well as in finding new applications. Basic and applied research aims particularly to develop bio-sourced polymers for materials (for example, materials for packaging, soil mulching and for manufacturing automobile interiors), specialty products (for example, adhesives, absorbents, humectants and surfactants) and high value added products (for example, cosmetics and pharmaceutical applications). Despite the promising growth and inherent potential of bio-based plastics, they still account for only 1% of the total polymer market. The total technical substitution potential of the bio-based market is considered to be almost 270 Mt, but market projections are always only a few Mt, simply because the major barriers hindering potential growth are the high production costs and technical challenges involved in scaling up the process from the laboratory to an industrial production scale.

  1. A new technology for automatic identification and sorting of plastics for recycling.

    Science.gov (United States)

    Ahmad, S R

    2004-10-01

    A new technology for automatic sorting of plastics, based upon optical identification of fluorescence signatures of dyes, incorporated in such materials in trace concentrations prior to product manufacturing, is described. Three commercial tracers were selected primarily on the basis of their good absorbency in the 310-370 nm spectral band and their identifiable narrow-band fluorescence signatures in the visible band of the spectrum when present in binary combinations. This absorption band was selected because of the availability of strong emission lines in this band from a commercial Hg-arc lamp and high fluorescence quantum yields of the tracers at this excitation wavelength band. The plastics chosen for tracing and identification are HDPE, LDPE, PP, EVA, PVC and PET and the tracers were compatible and chemically non-reactive with the host matrices and did not affect the transparency of the plastics. The design of a monochromatic and collimated excitation source, the sensor system are described and their performances in identifying and sorting plastics doped with tracers at a few parts per million concentration levels are evaluated. In an industrial sorting system, the sensor was able to sort 300 mm long plastic bottles at a conveyor belt speed of 3.5 m.sec(-1) with a sorting purity of -95%. The limitation was imposed due to mechanical singulation irregularities at high speed and the limited processing speed of the computer used.

  2. Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface

    Science.gov (United States)

    Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling

    2014-12-01

    Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.

  3. Leaching behavior of solidified plastics radioactive wastes

    International Nuclear Information System (INIS)

    Yook, Chong Chul; Lee, Byung Hun; Jae, Won Mok; Kim, Kyung Eung

    1986-01-01

    It is highly needed to develope the solidification process to dispose safely the radioactive wastes increasing with the growth of the nuclear industry. The leaching mechanisms of the solidified plastic wastes were investigated and the leaching rates of the plastic wastes were also measured among the many solidification processes. In addition, the transport equation based on the diffusion or the diffusion-dissolution was compared with the empirical equation derived from the experimental data by graphical method. Consequently, leaching process of the solidified plastic wastes is quite well agreed with the mass transport theory, but it may be difficult to simulate leaching process by diffusion dissolution mechanism. But the theoretical equation could be applicable to the cumulative amount of radionuclides leached form the plastic wastes disposed into the environment. (Author)

  4. 77 FR 24722 - Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability

    Science.gov (United States)

    2012-04-25

    ...] Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability AGENCY: Food and... safety assessment of nanomaterials in cosmetic products. This guidance is intended to assist industry in... Cosmetic Products.'' The draft guidance is intended to assist industry in identifying the potential safety...

  5. Evaluation of microsilica admixture for production of high strength concrete.

    Science.gov (United States)

    1990-08-01

    This study consisted of a laboratory evaluation of the effect of microsilica on the physical properties of both plastic and hardened portland cement concrete. Microsilica (silica fume) is a by-product of the industrial manufacture of ferro silicon an...

  6. The forest products industry at an energy/climate crossroads

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Baek, Youngsun

    2010-01-01

    Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other 'green' products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO 2 emissions. - Research highlights: →Transformational energy and climate policies such as a national renewable electricity standard, a national policy of carbon constraints, and incentives for industrial energy efficiency could have significant impact upon the future of the forest products industry. →Each policy scenario reduces CO 2 emissions over time, compared to the business-as-usual forecast, with the carbon constrained policy producing the largest decline. As a package, the three policies together could cut CO 2 emissions from the electricity sector by an estimated 41% by 2030. →This study underscores the value of incentivizing energy efficiency in a portfolio of energy and

  7. Plastics in the marine environment: the dark side of a modern gift.

    Science.gov (United States)

    Hammer, Jort; Kraak, Michiel H S; Parsons, John R

    2012-01-01

    Plastics are cheap, strong, and durable and offer considerable benefits to humanity. They potentially can enhance the benefits that both medical and scientific technology will bestow to humankind. However, it has now been several decades since the use of plastics exploded, and we have evidence that our current approach to production, use, transport and disposal of plastic materials has caused, and is still causing serious effects on wildlife, and is not sustainable. Because of frequent inappropriate waste management practices, or irresponsible human behavior, large masses of plastic items have been released into the environment, and thereby have entered the world's oceans. Moreover, this process continues, and in some places is even increasing. Most plastic debris that now exists in the marine environment originated from ocean-based sources such as the fishing industry. Plastics accumulate in coastal areas, at the ocean surface and on the seabed. Because 70% of all plastics are known to eventually sink, it is suspected that ever increasing amounts of plastic items are accumulating in seabed sediments. Plastics do not biodegrade, although, under the influence of solar UV radiations, plastics do degrade and fragment into small particles, termed microplastics. Our oceans eventually serve as a sink for these small plastic particles and in one estimate, it is thought that 200,000 microplastics per km(2) of the ocean's surface commonly exist. The impact of plastic debris has been studied since the beginning of the 1960's. To date, more than 267 species in the marine environment are known to have been affected by plastic entanglement or ingestion. Marine mammals are among those species that are most affected by entanglement in plastic debris. By contrast, marine birds suffer the most from ingestion of plastics. Organisms can also be seriously absorbed by floating plastic debris, or the contaminants may derive from plastic additives that are leached to the environment

  8. Analyzing the competences of production engineering graduates: an industry perspective

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda dos Santos

    2017-11-01

    Full Text Available Abstract This paper aims at conducting an analysis the competences of production engineering graduates, building on an industry view. To this end, we conducted a survey addressing 103 medium and large companies within the Brazilian manufacturing industry. The results suggest that companies do recognize the importance of competences. Some gaps in the competences of graduates were also pointed out by respondents. This study suggests the need for the development of efforts for providing the production engineer with a better professional background. The links between university and industry are likely to contribute towards such direction, notably as a starting point for institutions and industries to foster their student’s competences, aiming their aptitude for an ever-competitive job market, which values the flexible, creative being, who is capable of creating innovative solutions.

  9. Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains

    Science.gov (United States)

    Frisvad, Jens C.; Larsen, Thomas O.; Thrane, Ulf; Meijer, Martin; Varga, Janos; Samson, Robert A.; Nielsen, Kristian F.

    2011-01-01

    Aspergillus niger is perhaps the most important fungus used in biotechnology, and is also one of the most commonly encountered fungi contaminating foods and feedstuffs, and occurring in soil and indoor environments. Many of its industrial applications have been given GRAS status (generally regarded as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B2, B4, and B6) were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also produced fumonisins. Strains optimized through random mutagenesis usually maintained their mycotoxin production capability. Toxigenic strains were also able to produce the toxins on media suggested for citric acid production with most of the toxins found in the biomass, thereby questioning the use of the remaining biomass as animal feed. In conclusion it is recommended to use strains of A. niger with inactive or inactivated gene clusters for fumonisins and ochratoxins, or to choose isolates for biotechnological uses in related non-toxigenic species such as A. tubingensis, A. brasiliensis, A vadensis or A. acidus, which neither produce fumonisins nor ochratoxins. PMID:21853139

  10. Applications and societal benefits of plastics.

    Science.gov (United States)

    Andrady, Anthony L; Neal, Mike A

    2009-07-27

    This article explains the history, from 1600 BC to 2008, of materials that are today termed 'plastics'. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years.

  11. Ethanol production in Brazil: a bridge between science and industry

    Directory of Open Access Journals (Sweden)

    Mario Lucio Lopes

    Full Text Available ABSTRACT In the last 40 years, several scientific and technological advances in microbiology of the fermentation have greatly contributed to evolution of the ethanol industry in Brazil. These contributions have increased our view and comprehension about fermentations in the first and, more recently, second-generation ethanol. Nowadays, new technologies are available to produce ethanol from sugarcane, corn and other feedstocks, reducing the off-season period. Better control of fermentation conditions can reduce the stress conditions for yeast cells and contamination by bacteria and wild yeasts. There are great research opportunities in production processes of the first-generation ethanol regarding high-value added products, cost reduction and selection of new industrial yeast strains that are more robust and customized for each distillery. New technologies have also focused on the reduction of vinasse volumes by increasing the ethanol concentrations in wine during fermentation. Moreover, conversion of sugarcane biomass into fermentable sugars for second-generation ethanol production is a promising alternative to meet future demands of biofuel production in the country. However, building a bridge between science and industry requires investments in research, development and transfer of new technologies to the industry as well as specialized personnel to deal with new technological challenges.

  12. Industry 4.0 - How will the nonwoven production of tomorrow look like?

    Science.gov (United States)

    Cloppenburg, F.; Münkel, A.; Gloy, Y.; Gries, T.

    2017-10-01

    Industry 4.0 stands for the on-going fourth industrial revolution, which uses cyber physical systems. In the textile industry the terms of industry 4.0 are not sufficiently known yet. First developments of industry 4.0 are mainly visible in the weaving industry. The cost structure of the nonwoven industry is unique in the textile industry. High shares of personnel, energy and machine costs are distinctive for nonwoven producers. Therefore the industry 4.0 developments in the nonwoven industry should concentrate on reducing these shares by using the work force efficiently and by increasing the productivity of first-rate quality and therefore decreasing waste production and downtimes. Using the McKinsey digital compass three main working fields are necessary: Self-optimizing nonwoven machines, big data analytics and assistance systems. Concepts for the nonwoven industry are shown, like the “EasyNonwoven” concept, which aims on economically optimizing the machine settings using self-optimization routines.

  13. Supply of the Industrial Products in Romania. A Territorial Approach

    Directory of Open Access Journals (Sweden)

    Adriana Grigorescu

    2008-03-01

    Full Text Available The industrial products and services supply was analyzed in the present paper through the statistical indicators of the industrial production, applied for Romania (2005, both at macroeconomic and regional level (on development regions. The first part of the paper presents some of the methodological reglamentations used in determining the “industrial production” statistical indicator, according to the European Union statistical practices (Pack, 2000; *** ìMethodology of short-term business statisticsî, 2006; Peneder, 2001. In the second part of the paper, the authors analyze the main industrial policy previsions in Romania in order to accelerate the process of resource allocation among and within the various sectors, to improve the competitiveness, to attenuate the discrepancies between the economic development level of Romanian regions and to become part of a common European industrial policy. Regional analysis is a domain largely studied by Kangas, Leskinen, Kangas, 2007; Leskinen, Kangas, 2005; Rondinelli, 1996; Banai-Kashani, Reza, 1989.  

  14. Expanding Canadian natural gas production will strengthen growth of LP-gas industry

    International Nuclear Information System (INIS)

    Hawkins, D.J.

    1994-01-01

    In 1992, over 86% of Canadian propane and 70% of Canadian butane production originated in gas plants. Propane and butane production not recovered at gas plants is recovered in other processing facilities, primarily refineries and heavy oil upgraders. As a result, supplies of both products are largely tied to natural gas production, and the outlook for natural gas therefore provides the basis for any discussion on the outlook for gas processing and NGL industry infrastructure. The paper discusses gas processing, economies of scale, NGL supply, expected declines, industry structure and infrastructure, the two major centers of the Canadian NGL industry, new shippers, and required pipeline expansion

  15. INMETRO products analysis program: impact on quality of the brazilian industry

    Directory of Open Access Journals (Sweden)

    Marcos André Borges

    2008-07-01

    Full Text Available The main objective is to proceed a detailed analysis of the Products Analysis Program of Inmetro, evaluating its contribution to the suppliers of products and services. The relevance of this program - a governmental initiative financed with public resources that relates several sectors of the society – as a factor of incentive to the competitiveness of the national industry, can be evidenced by the research of the impact generated by this activity, translated in improvement actions to the analyzed products and services that aim at the correction of eventual non-conformity to the criteria set in standards and technical regulations related to health and safety. Several sectors in industry have been benefited with the creation or revision of standards, implementation of industry quality programs, voluntary or mandatory conformity assessment programs, and others. The consequences include, beyond the protection of the consumers, the increase of national industry competitiveness and domestic market strength, and the warranty of loyal competition between the suppliers. Key-words: Product Analysis, Quality, Inmetro.

  16. Corporate social responsibility in marine plastic debris governance.

    Science.gov (United States)

    Landon-Lane, Micah

    2018-02-01

    This paper explores the governance characteristics of marine plastic debris, some of the factors underpinning its severity, and examines the possibility of harnessing corporate social responsibility (CSR) to manage plastic use within the contextual attitudes of a contemporary global society. It argues that international and domestic law alone are insufficient to resolve the "wicked problem" of marine plastic debris, and investigates the potential of the private sector, through the philosophy of CSR, to assist in reducing the amount and impacts of marine plastic debris. To illustrate how CSR could minimise marine plastic pollution, an industry-targeted code of conduct was developed. Applying CSR would be most effective if implemented in conjunction with facilitating governance frameworks, such as supportive governmental regulation and non-governmental partnerships. This study maintains that management policies must be inclusive of all stakeholders if they are to match the scale and severity of the marine plastic debris issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Productive efficiency of tea industry: A stochastic frontier approach ...

    African Journals Online (AJOL)

    In an economy where recourses are scarce and opportunities for a new technology are lacking, studies will be able to show the possibility of raising productivity by improving the industry's efficiency. This study attempts to measure the status of technical efficiency of tea-producing industry for panel data in Bangladesh using ...

  18. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  19. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review.

    Science.gov (United States)

    Harrison, Jesse P; Boardman, Carl; O'Callaghan, Kenneth; Delort, Anne-Marie; Song, Jim

    2018-05-01

    Plastic litter is encountered in aquatic ecosystems across the globe, including polar environments and the deep sea. To mitigate the adverse societal and ecological impacts of this waste, there has been debate on whether 'biodegradable' materials should be granted exemptions from plastic bag bans and levies. However, great care must be exercised when attempting to define this term, due to the broad and complex range of physical and chemical conditions encountered within natural ecosystems. Here, we review existing international industry standards and regional test methods for evaluating the biodegradability of plastics within aquatic environments (wastewater, unmanaged freshwater and marine habitats). We argue that current standards and test methods are insufficient in their ability to realistically predict the biodegradability of carrier bags in these environments, due to several shortcomings in experimental procedures and a paucity of information in the scientific literature. Moreover, existing biodegradability standards and test methods for aquatic environments do not involve toxicity testing or account for the potentially adverse ecological impacts of carrier bags, plastic additives, polymer degradation products or small (microscopic) plastic particles that can arise via fragmentation. Successfully addressing these knowledge gaps is a key requirement for developing new biodegradability standard(s) for lightweight carrier bags.

  20. Mechanism of management of competitiveness of production of agrarian and industrial complex

    Directory of Open Access Journals (Sweden)

    Buryak E. A.

    2016-04-01

    Full Text Available the concept of competitiveness and mechanisms of management of competitiveness of production is considered. Major factors of ensuring competitiveness of production of agrarian and industrial complex are allocated. The main problems of production of wheat in the Republic of Crimea making negative impact on the level of her competitiveness are revealed. The mechanism of management of competitiveness of production of agrarian and industrial complex is developed.

  1. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products

    Directory of Open Access Journals (Sweden)

    Musaalbakri Abdul Manan

    2017-12-01

    Full Text Available The promise of industrial biotechnology has been around since Chaim Weizmann developed acetone–butanol–ethanol fermentation at the University of Manchester in 1917 and the prospects nowadays look brighter than ever. Today’s biorefinery technologies would be almost unthinkable without biotechnology. This is a growing trend and biorefineries have also increased in importance in agriculture and the food industry. Novel biorefinery processes using solid state fermentation (SSF technology have been developed as alternative to conventional processing routes, leading to the production of added-value products from agriculture and food industry raw materials. SSF involves the growth of microorganisms on moist solid substrate in the absence of free-flowing water. Future biorefineries based on SSF aim to exploit the vast complexity of the technology to modify biomass produced by agriculture and the food industry for valuable by-products through microbial bioconversion. In this review, a summary has been made of the attempts at using modern microbial SSF technology for future biorefineries for the production of many added-value products ranging from feedstock for the fermentation process and biodegradable plastics to fuels and chemicals.

  2. Potential reduced exposure products (PREPs) in industry trial testimony.

    Science.gov (United States)

    Wayne, Geoffrey Ferris

    2006-12-01

    To identify patterns in trial testimony that may reflect on the intentions or expectations of tobacco manufacturers with regard to the introduction of potential reduced exposure products (PREPs). Research was conducted using the Deposition and Trial Testimony Archive (DATTA) collection of trial testimony and depositions housed online at Tobacco Documents Online (www.tobaccodocuments.org). Relevant testimony was identified through full-text searches of terms indicating PREPs or harm reduction strategies. The role and function of PREPs in testimony were classified according to common and contrasting themes. These were analysed in the context of broader trial arguments and against changes in time period and the market. Analysis of testimony suggests that the failure of PREPs in the market tempered initial industry enthusiasm and made protection of the conventional cigarette market its major priority. The "breakthrough" character of PREPs has been de-emphasised, with trial arguments instead positioning PREPs as simply another choice for consumers. This framework legitimises the sale of conventional brands, and shifts the responsibility for adoption of safer products from the manufacturer to the consumer. Likewise, testimony has abandoned earlier dramatic health claims made with regard to PREPs, which had undermined industry arguments regarding efforts to reduce harm in conventional products. More recent testimony advocates the broad acceptance of independent guidelines that would validate use of health claims and enable the industry to market PREPs to consumers. Trial testimony reflects the changing role and positioning of PREPs by the tobacco industry. The findings are of particular importance with regard to future evaluation and potential regulation of reduced harm products.

  3. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  4. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    Science.gov (United States)

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  5. Plastics and environment

    International Nuclear Information System (INIS)

    Avenas, P.

    1996-01-01

    Synthetic organic polymers, such as plastics, PVC, polyamides etc are considered less ecological than natural materials such as wood. Other artificial materials such as metals, glass or biodegradable plastics have also a better image than petroleum products. This short paper demonstrates that the manufacturing or the transport of every material uses energy and that the complete energy balance sheet of a plastic bottle, for instance, is more favourable than the one of a glass bottle. Plastic materials are also easily valorized and recycled and part of the energy spent during manufacturing can be recovered during incineration for district heating. During the life-cycle of such a synthetic material, the same petroleum quantity can be used twice which leads to less negative effects on the environment. Finally, the paper focusses on the problem of biodegradable materials which are not degradable when buried under several meters of wastes and which are a nuisance to recycling. (J.S.)

  6. Measuring industry productivity and cross-country convergence

    NARCIS (Netherlands)

    Inklaar, Robert; Diewert, W. Erwin

    2016-01-01

    This paper introduces a new method for simultaneously comparing industry productivity across countries and over time. The new method is similar to the method for making multilateral comparisons of Caves, Christensen and Diewert (1982b) but their method can only compare gross outputs across

  7. Integrated production planning and water management in the food industry: A cheese production case study

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo; Hottenrott, Andreas

    2017-01-01

    Efficient water management is increasingly relevant in the food industry. Exploiting water reuse opportunities in planning production activities is a key part of this. We study integrated water management and production planning in cheese production. For this, we develop a water-integrated lot

  8. Radiation processing of wood-plastic composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1992-01-01

    There are three main types of radiation-processed composite material derived from plastics and fibrous natural polymers. The first are the monomer-impregnated, radiation-treated wood-plastic composites (WPC). They became a commercial success in the early 1970s. More recently, work has focused on improving the WPCs by creating in them interpenetrating network (IPN) systems by the use of appropriate multifunctional oligomers and monomers. The main kinetic features of radiation-initiated chain polymerization remain applicable even in impregnated wood. The second type are the plastics filled or reinforced with dispersed wood fiber or other cellulosics (WFRP). In their case, radiation processing offers a new opportunity to apply radiation-reactive adhesion promoters between wood or cellulosic fibers and the thermoplastic matrices. The third type are the laminar composites made by electron beam coating of wood-based agglomerate sheets and boards. This chapter reviews the industrial applications and the radiation processing of the three types of the wood-plastic composites and indicates future trends. (orig.)

  9. An Example of Learning about Plastics and Their Evaluation as a Contribution to Education for Sustainable Development in Secondary School Chemistry Teaching

    Science.gov (United States)

    Burmeister, Mareike; Eilks, Ingo

    2012-01-01

    This paper describes the development and evaluation of a secondary school lesson plan for chemistry education on the topic Education for Sustainable Development (ESD). The lessons focus both on the chemistry of plastics and on learning about the societal evaluation of competing, chemistry-based industrial products. A specific teaching method was…

  10. Oil sorbents from plastic wastes and polymers: A review.

    Science.gov (United States)

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Intermediate product selection and blending in the food processing industry

    DEFF Research Database (Denmark)

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates...

  12. Cost competitive “soft sensor” for determining product recovery in industrial methanol

    DEFF Research Database (Denmark)

    S.B.A. Udugama, Isuru; Mansouri, Seyed Soheil; Huusom, Jakob Kjøbsted

    2017-01-01

    The measurement of ratio of product recovery in industrial methanol distillation is of high economic importance and represent a key performance index (KPI) of the distillation unit. In current operations, the product recovery of many industrial distillation units are not actively monitored, instead...

  13. EFFECTS OF OIL AND NATURAL GAS PRICES ON INDUSTRIAL PRODUCTION IN THE EUROZONE MEMBER COUNTRIES

    Directory of Open Access Journals (Sweden)

    Yılmaz BAYAR

    2014-04-01

    Full Text Available Industrial production is one of the leading indicators of gross domestic product which reflects the overall economic performance of a country. In other words decreases or increases in industrial production point out a contracting or expanding economy. Therefore, changes in prices of oil and natural gas which are the crucial inputs to the industrial production are also important for the overall economy. This study examines the effects of changes in oil and natural gas prices on the industrial production in the 18 Eurozone member countries during the period January 2001-September 2013 by using panel regression. We found that oil prices and natural gas prices had negative effect on industrial production in the Eurozone member countries.

  14. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    Directory of Open Access Journals (Sweden)

    Juan BULLON

    2017-03-01

    Full Text Available The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities present different subdivisions, each with its own traits. The length of the textile process and the variety of its technical processes lead to the coexistence of different sub-sectors in regards to their business structure and integration. The textile industry is developing expert systems applications to increase production, improve quality and reduce costs. The analysis of textile designs or structures includes the use of mathematical models to simulate the behavior of the textile structures (yarns, fabrics and knitting. The Finite Element Method (FEM has largely facilitated the prediction of the behavior of that textile structure under mechanical loads. For classification problems Artificial Neural Networks (ANNs haveproved to be a very effective tool as a quick and accurate solution. The Case-Based Reasoning (CBR method proposed in this study complements the results of the finite element simulation, mathematical modeling and neural networks methods.

  15. The Use of Modelling Methods for Product Configuration in Industrial Applications

    DEFF Research Database (Denmark)

    Hvam, Lars; Bonev, Martin; Haug, Anders

    2014-01-01

    reported. This article investigates the challenge on how industrial companies model their product CSs. The study is based on interviews of 18 industrial companies using CSs for configuring customer-tailored products. It investigates the relationship between using a structured modelling technique...... for modelling product families relative to less or no formal approaches. Furthermore, the study explores the specific characteristics of configuration set-ups with respect to size and complexity and their effect on product variant management and availability of product knowledge in organizations. The results......Developing product configuration system (CS) requires extracting and representing domain expert knowledge in appropriate product models. As acknowledged by researchers, this is often one of the most challenging activities in configuration projects, where only little empirical insights have yet been...

  16. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  17. GGDC Productivity Level Database : International Comparisons of Output, Inputs and Productivity at the Industry Level

    NARCIS (Netherlands)

    Inklaar, Robert; Timmer, Marcel P.

    2008-01-01

    In this paper we introduce the GGDC Productivity Level database. This database provides comparisons of output, inputs and productivity at a detailed industry level for a set of thirty OECD countries. It complements the EU KLEMS growth and productivity accounts by providing comparative levels and

  18. Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar, Thallada; Kaneko, Jun; Muto, Akinori; Sakata, Yusaku [Department of Applied Chemistry, Faculty of Engineering, Okayama University, 3-1-1 Tsushima Naka, 700-8530 Okayama (Japan); Jakab, Emma [Research Laboratory of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest (Hungary); Matsui, Toshiki [Toda Kogyo Co. Ltd., Hiroshima 739-0652 (Japan); Uddin, Md. Azhar [Process Safety and Environment Protection Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2004-08-01

    Pyrolysis of polypropylene (PP)/polyethylene (PE)/polystyrene (PS)/poly(vinyl chloride) (PVC)/high impact polystyrene with brominated flame retardant (HIPS-Br) plastics mixed with poly(ethylene terephthalate) (PET) was performed at 430C under atmospheric pressure using a semi-batch operation. The presence of PET in the pyrolysis mixture of PP/PE/PS/PVC/HIPS-Br affected significantly the formation of decomposition products and the decomposition behavior of the plastic mixture. We observed the following effects of PET on the pyrolysis of PP/PE/PS/PVC/HIPS-Br mixed plastics: (1) the yield of liquid product decreased and the formation of gaseous products increased; (2) a waxy residue was formed in addition to the solid carbon residue; (3) the formation of SbBr{sub 3} was not detected in liquid products; (4) the yield of chlorinated branched alkanes increased as well as vinyl bromide and ethyl bromide were formed. The use of calcium carbonate carbon composite (Ca-C) completely removed the chlorine and bromine content from the liquid products during PP/PE/PS/PVC/HIPS-Br pyrolysis, however in the presence of PET, the catalytic experiment (Ca-C, 8g) yielded liquid products containing 310ppm of Br and 20ppm of Cl. In addition, the Ca-C increased the yield of liquid products about 3-6wt.%, as well as enhanced the gaseous product evolution and decreased the yield of residue. The halogen free liquid hydrocarbons can be used as a feedstock in a refinery or as a fuel.

  19. Preparing skilled labor in industry through production-based curriculum approach in vocational high school

    Science.gov (United States)

    Yoto

    2017-09-01

    Vocational high school (Sekolah Menengah Kejuruan / SMK) aims to prepare mid-level skilled labors to work in the industry and are able to create self-employment opportunities. For those reasons, the curriculum in SMK should be based on meeting the needs of the industries and is able to prepare learners to master the competence in accordance with the skills program of their choice. Production based curriculum is the curriculum which the learning process is designed together with the production process or using production process as a learning medium. This approach with the primary intention to introduce students with the real working environment and not merely simulations. In the production-based curriculum implementation model, students are directly involved in the industry through the implementation of industrial working practices, do work on production units in school, and do practical work in school by doing the job as done in the industry by using industry standards machines.

  20. Plastic solidification system for radioactive waste

    International Nuclear Information System (INIS)

    Kani, Jiro; Irie, Hiromitsu; Obu, Etsuji; Nakayama, Yasuyuki; Matsuura, Hiroyuki.

    1979-01-01

    The establishment of a new solidification system is an important theme for recent radioactive-waste disposal systems. The conditions required of new systems are: (1) the volume of the solidified product to be reduced, and (2) the property of the solidified product to be superior to the conventional ones. In the plastic solidification system developed by Toshiba, the waste is first dried and then solidified with thermosetting resin. It has been confirmed that the property of the plastic solidified product is superior to that of the cement-or bitumen-solidified product. Investigation from various phases is being carried on for the application of this method to commercial plants. (author)

  1. Coliquefaction of coal, tar sand bitumen and plastic (interaction among coal, bitumen and plastic); Sekitan/tar sand bitumen/plastic no kyoekika ni okeru kyozon busshitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Okuyama, Y.; Matsubara, K. [NKK Corp., Tokyo (Japan); Kamo, T.; Sato, Y. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    For the improvement of economy, coliquefaction of coal, tar sand bitumen and plastic was performed under low hydrogen pressure, to investigate the influence of interaction among these on the liquefaction characteristics. For comparison, coliquefaction was also performed under the hydrogen pressure same as the NEDOL process. In addition, for clarifying its reaction mechanism, coliquefaction of dibenzyl and plastic was performed as a model experiment, to illustrate the distribution of products and composition of oil, and to discuss the interaction between dibenzyl and various plastics, and between various plastics. Under direct coal liquefaction conditions, coprocessing of Tanito Harum coal, Athabasca tar sand and plastic was carried out under low hydrogen pressure with an autoclave. The observed value of oil yield was higher than the calculated value based on the values from separate liquefaction of coal and plastic, which suggested the interaction between coal and the mixed plastic. The results of coliquefaction of coal, tar sand bitumen and plastic could be explained from the obtained oil yield and its composition by the coliquefaction of dibenzyl and plastic. 2 refs., 3 tabs.

  2. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products.

    Science.gov (United States)

    García Ibarra, Verónica; Rodríguez Bernaldo de Quirós, Ana; Paseiro Losada, Perfecto; Sendón, Raquel

    2018-05-07

    Plastic materials are widely used in food packaging applications; however, there is increased concern because of the possible release of undesirable components into foodstuffs. Migration of plastic constituents not only has the potential to affect product quality but also constitutes a risk to consumer health. In order to check the safety of food contact materials, analytical methodologies to identify potential migrants are required. In the first part of this work, a GC/MS screening method was developed for the identification of components from plastic packaging materials including intentionally and "non-intentionally added substances" (NIAS) as potential migrants. In the second part of this study, the presence of seven compounds (bis (2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), butylated hydroxytoluene (BHT), acetyl tributyl citrate (ATBC), benzophenone (BP)) previously identified in packaging materials were investigated in food products (corn and potatoes snacks, cookies, and cakes). For this purpose, a suitable extraction method was developed and quantification was performed using GC-MS. The developed method was validated in terms of linearity, recovery, repeatability, and limits of detection and quantification. The spiked recoveries varied between 82.7 and 116.1%, and relative standard deviation (RSD) was in the range of 2.22-15.9%. The plasticizer ATBC was the most detected compound (94% samples), followed by DEP (65%), DEHP (47%), BP (44%), DBP (35%), DIBP (21%), and BHT (12%). Regarding phthalates, DEP and DEHP were the most frequently detected compounds in concentrations up to 1.44 μg g -1 . In some samples, only DBP exceeded the European SML of 0.3 mg kg -1 established in Regulation 10/2011. Graphical abstract Chemical migration from plastic packaging into food.

  3. Intermediate product selection and blending in the food processing industry

    NARCIS (Netherlands)

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter; Grunow, Martin

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates are

  4. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent.

    Science.gov (United States)

    Zhang, S F; Zhang, L L; Luo, K; Sun, Z X; Mei, X X

    2014-04-01

    The separation properties of the aluminium-plastic laminates in postconsumer Tetra Pak structure were studied in this present work. The organic solvent blend of benzene-ethyl alcohol-water was used as the separation reagent. Then triangle coordinate figure analysis was taken to optimize the volume proportion of various components in the separating agent and separation process. And the separation temperature of aluminium-plastic laminates was determined by the separation time, efficiency, and total mass loss of products. The results show that cost-efficient separations perform best with low usage of solvents at certain temperatures, for certain times, and within a certain range of volume proportions of the three components in the solvent agent. It is also found that similar solubility parameters of solvents and polyethylene adhesives (range 26.06-34.85) are a key factor for the separation of the aluminium-plastic laminates. Such multisolvent processes based on the combined-system concept will be vital to applications in the recycling industry.

  5. Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

  6. Alabama's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Science.gov (United States)

    Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment and earnings in Alabama's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base. in 1980 than in 1970. Of the 13 Southern States, only 5 had more forest products industry employment than Alabama. Moreover, during...

  7. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. EFFECTIVE FACTORS AND MODEL SYSTEMS IN THE INDUSTRIAL PRODUCTION OF NISIN

    Directory of Open Access Journals (Sweden)

    Ömer ŞİMŞEK

    2007-01-01

    Full Text Available Nisin is the first bacteriocin identified in Lactococcus lactis and belongs to type 1 lanthibiotic group. High nisin production in cultured media is related with the composition of fermentation medium, pH, produced nisin concentration and most importantly growth amount of cell. For industrial purpose, batch, fed-batch and continue fermentation systems were developed by regarding these factors. Maintaining efficient production of nisin having important potential at preservation of foods is important for both industrial production and using as starter culture. In this review the fermentation factors at nisin production were outlined and constructed model systems were compared.

  9. 7 CFR 58.348 - Plastic cream.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Plastic cream. 58.348 Section 58.348 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Products Bearing Usda Official Identification § 58.348 Plastic cream. The flavor shall be sweet, pleasing...

  10. Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method

    International Nuclear Information System (INIS)

    Ren, Shan; Zhang, Jianliang

    2013-01-01

    Highlights: • Co-combustion kinetic analysis of solid fuels was made by iso-conversional method. • Thermodynamic and kinetic parameters of combustion for blends were determined. • WP can improve the combustion characteristic of high ash anthracite. • Reasonable utilization the energy of WP is important for industrial production. - Abstract: Combustion mechanisms and kinetics of plastics-coal blends with 0, 10, 20, 40 and 100% waste plastics (WP) are studied separately by thermogravimetric analysis (TGA) from ambient temperature to 900 °C in air atmosphere. These blends are combusted at different heating rates. The results indicate that, with the increase of waste plastics content, the combustion processes of blends could be divided into one stage, two stages, three stages and one stage. Meanwhile, the ignition and final temperatures of them both decrease. The maximum weight loss rate of WP is much higher than that of other samples. The iso-conversional method is used for the kinetic analysis of the non-isothermal thermogravimetric data and results indicate that, when the waste plastics content varied from 0% to 40%, the values of activation energy increase from 113.3 kJ mol −1 to 156.0 kJ mol −1 , and the value of activation energy for pure WP is 278.8 kJ mol −1

  11. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    Science.gov (United States)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  12. Food Safety Practices in the Egg Products Industry.

    Science.gov (United States)

    Viator, Catherine L; Cates, Sheryl C; Karns, Shawn A; Muth, Mary K; Noyes, Gary

    2016-07-01

    We conducted a national census survey of egg product plants (n = 57) to obtain information on the technological and food safety practices of the egg products industry and to assess changes in these practices from 2004 to 2014. The questionnaire asked about operational and sanitation practices, microbiological testing practices, food safety training for employees, other food safety issues, and plant characteristics. The findings suggest that improvements were made in the industry's use of food safety technologies and practices between 2004 and 2014. The percentage of plants using advanced pasteurization technology and an integrated, computerized processing system increased by almost 30 percentage points. Over 90% of plants voluntarily use a written hazard analysis and critical control point (HACCP) plan to address food safety for at least one production step. Further, 90% of plants have management employees who are trained in a written HACCP plan. Most plants (93%) conduct voluntary microbiological testing. The percentage of plants conducting this testing on egg products before pasteurization has increased by almost 30 percentage points since 2004. The survey findings identify strengths and weaknesses in egg product plants' food safety practices and can be used to guide regulatory policymaking and to conduct required regulatory impact analysis of potential regulations.

  13. Industrial powder metallurgy processing for production of high field Nb3Sn

    International Nuclear Information System (INIS)

    Hecker, A.; Gregory, E.; Wong, J.; Thieme, C.L.H.; Foner, S.

    1988-01-01

    Technology transfer is discussed for fabricating Nb 3 Sn(Ti) via powder metallurgy methods from laboratory scale production at MIT to industrial production at Supercon Inc. Industrial production techniques such as hydrostatic extrusion and drawing have produced superconducting wires with promising critical current densities in preliminary field measurements. Initial steps toward process modification and optimization to improve the commercial feasibility of the powder metallurgy process are evaluated. These modifications are aimed at reducing production time and increasing process flexibility

  14. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    Science.gov (United States)

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used

  15. Elements in a new sustainable industrial culture - Environmental assessment in product development

    DEFF Research Database (Denmark)

    Alting, Leo; Hauschild, Michael Zwicky; Wenzel, Henrik

    1997-01-01

    In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for 3 industrial cases how a newly developed LCA...... methodology can assist the product developer in development of more environmentally friendly products. Finally, common experience gained will be discussed....

  16. Establishing a Commercialization Model for Innovative Products in the Residential Construction Industry

    OpenAIRE

    McCoy, Andrew Patton

    2007-01-01

    Throughout the world, innovation is viewed as a critical factor in the future health of the construction industry. There is universal interest in successful commercialization of innovative construction products. This thesis focuses on the US construction industry's ability to successfully commercialize innovative products. US small, limited-resource innovators will be key players in this success. Recent failures of entrepreneurial business ventures in the commercialization of such product...

  17. Wood product industry - present state and studies of the development alternatives; Puuteollisuuden nykytilan ja haasteiden arviointia

    Energy Technology Data Exchange (ETDEWEB)

    Holmijoki, O.; Paajanen, T.; Kairi, M.

    2007-07-01

    In this research project the development of the wood products industry and its operating environment in Finland was studied using statistical data mainly from years 1995 - 2003. In this context, the wood products industry includes the sawmilling industry, the plywood and other wood panel industry, prefabricated wooden housing and the building joinery industry, wood packing manufacture and the manufacture of other wooden products. The development of the wood products industry and its operating environment has been estimated by combining statistical data about the business economy, production economy and the national economy from the Central Statistical Office of Finland together with data from the Finnish Forest Research Institute. Based on statistical data, the wood product markets, profitability and cost structure of branches, input market, use of labour force and investments have been studied. The economic importance of the wood products industry has been estimated at a national and a local level. Challenges facing wood products industry branches have been analysed using example calculations based on input-output theory. In the evaluation method, the business environment of the wood products industry branches and related branches, have been described with a use table at basic prices commonly using in the national economy. This method has enabled the direct and indirect effects of simultaneous quantity and price changes occurring in the wood product markets and markets related to the wood product industry, to be analysed. In the example calculations, variation of sawn timber production and log import, as well as the increments of sawn timber upgrading, wood product usage in building, wood panel production and purchase energy price, were reviewed

  18. Towards the effective plastic waste management in Bangladesh: a review.

    Science.gov (United States)

    Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain

    2017-12-01

    The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.

  19. Plans for industrial production of the SSC magnets

    International Nuclear Information System (INIS)

    Karpenko, V.N.; Rardin, D.C.

    1986-01-01

    The Universities Research Association through its Central Design Group is currently conducting research and development for the Department of Energy on a superconducting super collider (SSC). The proposed SSC is a device in which protons would be accelerated around a ring approximately 50 miles in circumference. The protons would be kept in their path by means of thousands of powerful superconducting magnets. Two such rings of magnets would be housed in a common underground tunnel, allowing groups of protons to be accelerated in opposite directions and collided, in order to study the fundamental nature of matter and energy. The magnet system is a major element of the SSC in terms of technical requirements, quantity of components and cost. In order to meet technical and production requirements imposed by this system early participation of industry is necessary. The program plans were developed with the objective to involve industry in the early stages of research and development of superconducting magnets, leading to cost effective processes of potential mass production of high quality accelerator magnets by industry. While a decision has not been made by the Department of Energy on whether or not to request construction of the SSC project, if such a request is made and the project is authorized and funded, it would lead to industrial manufacture of a large quantity of superconducting magnets

  20. Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry

    International Nuclear Information System (INIS)

    Nakano, Makiko; Managi, Shunsuke

    2008-01-01

    The Japanese electricity industry has experienced regulatory reforms since the mid-1990s. This article measures productivity in Japan's steam power-generation sector and examines the effect of reforms on the productivity of this industry over the period 1978-2003. We estimate the Luenberger productivity indicator, which is a generalization of the commonly used Malmquist productivity index, using a data envelopment analysis approach. Factors associated with productivity change are investigated through dynamic generalized method of moments (GMM) estimation of panel data. Our empirical analysis shows that the regulatory reforms have contributed to productivity growth in the steam power-generation sector in Japan

  1. 27 CFR 555.181 - Reporting of plastic explosives.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Reporting of plastic..., FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.181 Reporting of plastic explosives. All persons, other than an agency of the United States...

  2. Recycling plastic bottles in a creative way

    OpenAIRE

    Pavlin, Suzana

    2016-01-01

    Beside other plastic products, plastic bottles represent a true environmental disaster in the last few years. We assume that hardly anyone asks what happens after they drink that last drop of water out of it. Just like most municipal waste, a plastic bottle can be reused, recycled, burned or deposited into landfill. When the Environment Protection Act is not respected, plastic bottle ends up in the nature, very often in the sea, where it decomposes very slowly and has negative influence on th...

  3. Triboelectrostatic separation for granular plastic waste recycling: a review.

    Science.gov (United States)

    Wu, Guiqing; Li, Jia; Xu, Zhenming

    2013-03-01

    The world's plastic consumption has increased incredibly in recent decades, generating more and more plastic waste, which makes it a great public concern. Recycling is the best treatment for plastic waste since it cannot only reduce the waste but also reduce the consumption of oil for producing new virgin plastic. Mechanical recycling is recommended for plastic waste to avoid the loss of its virgin value. As a mechanical separation technology, triboelectrostatic separation utilizes the difference between surface properties of different materials to get them oppositely charged, deflected in the electric field and separately collected. It has advantages such as high efficiency, low cost, no concern of water disposal or secondary pollution and a relatively wide processing range of particle size especially suitable for the granular plastic waste. The process of triboelectrostatic separation for plastic waste is reviewed in this paper. Different devices have been developed and proven to be effective for separation of plastic waste. The influence factors are also discussed. It can be concluded that the triboelectrostatic separation of plastic waste is a promising technology. However, more research is required before it can be widely applied in industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. North Dakota timber industry: an assessment of timber product output and use, 2009

    Science.gov (United States)

    David E. Haugen; Robert A. Harsel

    2013-01-01

    Presents recent North Dakota forest industry trends; production and receipts of industrial roundwood; and production of saw logs and other products in 2009. Logging residue generated from timber harvest operations is reported, as well as wood and bark residue generated at primary wood-using mills and disposition of mill residues.

  5. Microbial Propionic Acid Production

    Directory of Open Access Journals (Sweden)

    R. Axayacatl Gonzalez-Garcia

    2017-05-01

    Full Text Available Propionic acid (propionate is a commercially valuable carboxylic acid produced through microbial fermentation. Propionic acid is mainly used in the food industry but has recently found applications in the cosmetic, plastics and pharmaceutical industries. Propionate can be produced via various metabolic pathways, which can be classified into three major groups: fermentative pathways, biosynthetic pathways, and amino acid catabolic pathways. The current review provides an in-depth description of the major metabolic routes for propionate production from an energy optimization perspective. Biological propionate production is limited by high downstream purification costs which can be addressed if the target yield, productivity and titre can be achieved. Genome shuffling combined with high throughput omics and metabolic engineering is providing new opportunities, and biological propionate production is likely to enter the market in the not so distant future. In order to realise the full potential of metabolic engineering and heterologous expression, however, a greater understanding of metabolic capabilities of the native producers, the fittest producers, is required.

  6. Trace of Korean mechanical industry

    International Nuclear Information System (INIS)

    1996-12-01

    This book reports 50 years of Korean mechanical engineers, which includes birth and history, remembrance and future of Korean society of mechanical engineers, current situation and development of mechanical industry such as national industry and 50 years of mechanical industry, track, airline industry, ship and marine engine, a precision instrument, cutting work, casting, welding, plastic working freeze and air handling nuclear power and textile machinery.

  7. A Novel Brominated Triazine-based Flame Retardant (TTBP-TAZ) in Plastic Consumer Products and Indoor Dust

    NARCIS (Netherlands)

    Ballesteros Gomez, A.M.; de Boer, J.; Leonards, P.E.G.

    2014-01-01

    The presence of a novel brominated flame retardant named 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) is reported for the first time in plastic parts of consumer products and indoor dust samples. TTBP-TAZ was identified by untargeted screening and can be a replacement of the banned

  8. PECULIARITIES OF THE ELECTROTECHNICAL INDUSTRY AND THEIR IMPACT ON THE PRODUCTION COSTS

    Directory of Open Access Journals (Sweden)

    POPESCU (COSTACHE LUMINITA NICOLETA

    2014-05-01

    Full Text Available The electrotechnical industry is in the top branch within the industrial development and the technical progress, currently providing a wide range of innovative products and services, and as a result of this dynamic development, the electrotechnical industry has currently become a key industry for many other industrial sectors. Electricity has established itself in most areas of activity due to its easy use, easy distance transport, the fact that it can be turned into other forms of energy and because it is the most suitable for the supply of automation processes. Consequently, given that industry is the key factor for the recovery, modernization and economic revival of the country, we can say that the electrotechnical industry also has a crucial influence on Romania’s social and economic evolution, and this evolution is in its turn the result of the production cost monitoring and control in this sector.

  9. South Dakota timber industry: an assessment of timber product output and use, 2009

    Science.gov (United States)

    Ronald J. Piva; Gregory J. Josten

    2013-01-01

    Presents recent South Dakota forest industry trends; production and receipts of industrial roundwood; and production of saw logs, veneer logs, pulpwood, and other products in 2009. Logging residue generated from timber harvest operations is reported, as well as wood and bark residue generated at primary wood-using mills and disposition of mill residues.

  10. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  11. Industrial waste treatment and application in rubber production

    Science.gov (United States)

    Pugacheva, I. N.; Popova, L. V.; Repin, P. S.; Molokanova, L. V.

    2018-03-01

    The paper provides for the relevance of various industrial waste treatment and application, as well as their secondary commercialization. It considers treatment of secondary polymer materials turning to additives applied in rubber production, in particular, in production of conveyor and V-type belts used in mechanical engineering. It is found that oligomers obtained from petroleum by-products can be used as an impregnating compound for fiber materials. Such adhesive treatment prior to introduction of impregnating compounds into elastomeric materials improves adhesion and complements performance of obtained composites.

  12. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  13. GELCASTING: From laboratory development toward industrial production

    Energy Technology Data Exchange (ETDEWEB)

    Omatete, O.O.; Janney, M.A.; Nunn, S.D.

    1995-07-01

    Gelcasting, a ceramic forming process, was developed to overcome some of the limitations of other complex-shape forming techniques such as injection molding and slip casting. In gelcasting, a concentrated slurry of ceramic powder in a solution of organic monomers is poured into a mold and then polymerized in-situ to form a green body in the shape of the mold cavity. Thus, it is a combination of polymer chemistry with slip processing and represents minimal departure from standard ceramic processing. The simplicity of the process has attracted industrial partners and by collaboration between them and the developers, the process is being advanced from the laboratory toward industrial production.

  14. Improved coordination of the production cycle in the paper industry : To manage a wide product range and sequence-dependent changeovers

    OpenAIRE

    Johansson, Carl; Strandberg, Erik

    2015-01-01

    Today the manufacturing industry is faced with the challenge to stay competitive in an era of shorter product lifecycles and increased product variety. This has forced manufacturing companies to deal with an increased amount of products and more and faster changes to the product line. The same trend can also be seen in the paper industry where bulk products decreasing and more diversified products in smaller lot-sizes increasing, with a greater focus on customer specific products. Traditional...

  15. Bacterial L-arabinose isomerases: industrial application for D-tagatose production.

    Science.gov (United States)

    Boudebbouze, Samira; Maguin, Emmanuelle; Rhimi, Moez

    2011-12-01

    D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area.

  16. 77 FR 31742 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Science.gov (United States)

    2012-05-30

    ... product is prescribed, no manufacturer may make any representation with respect to water usage of such... or plastic plate that requires the testing laboratory to adapt its test depending on the specific...

  17. THE EFFECT OF AMOUNT OF NATURAL ZEOLIT CATALYST IN PRODUCT OF POLYPROPILENE (PP PLASTIC WASTE PYROLYSIS

    Directory of Open Access Journals (Sweden)

    khalimatus sa'diyah

    2015-12-01

    Full Text Available To overcome the waste problem, especially plastic waste , environmental concerned scientists from various disciplines have conducted various research and actions. Catalytic pyrolysis processes was chosen as an alternative method to recycle plastic waste. The purpose of this experiment was to determine the effect of natural zeolit catalyst on the pyrolysis process with oxygen-free conditions to obtain maximum hydrocarbon compounds (gasoline fraction in C5-C9. The process of pyrolysis was conducted in 3.5 dm3 unstirred stainless steel semi-batch reactor. This process operated at atmospheric pressure with nitrogen injection. Plastic waste that used in this particular paper was 50 grams of polypropylene (PP. In pyrolysis process, natural zeolite catalysts was added 2,5 gram (5% weight of natural zeolite per weight of plastic waste samples, 5 gram (10% , and 10 gram (20%. Temperature of pyrolysis was 450°C and were maintained until 30 minutes. Steam that produced from pyrolisis was condensed and analysed by gas chromatography–mass spectrometry (GC-MS to determine yield of hydrocarbons produced. From the analysis of GC-MS, liquid products of pyrolysis contained lots of aromatic hydrocarbons. The optimal amount of catalyst that produce liquid with hydrocarbon compound that has the quality of gasoline was 10 gram (20% with ≤C9 composition as 29,16% n-paraffin, 9,22% cycloparaffin, and 61,64% aromatics.

  18. Radioactive sealed sources production process for industrial radiography

    International Nuclear Information System (INIS)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S.

    2017-01-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  19. Radioactive sealed sources production process for industrial radiography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: hobeddaniel@gmail.com, E-mail: jrcamara@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  20. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    Science.gov (United States)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.