WorldWideScience

Sample records for plastic films steel

  1. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    Rahbar Ranji Ahmad

    2012-06-01

    Corrosion is one of the detrimental phenomena which reduces strength of structures. It is common practice to assume a uniform thickness reduction for general corrosion. Since the actual corroded plate has rough surfaces, to estimate the remaining strength of corroded structures, typically a much higher level of accuracy is required. The main aim of present work is to study plastic collapse load of corroded steel plates with irregular surfaces under tension. Non-linear finite element method by using computer code ANSYS was employed to determine plastic collapse load. By comparing the results with uniform thickness assumption, a reduction factor was proposed. It is found that by uniform thickness assumption, plastic collapse load of corroded plates are overestimated.

  2. Electrochemically enhanced surface plasticity of steels

    Science.gov (United States)

    Gutman, E. M.; Unigovski, Ya.; Shneck, R.; Ye, F.; Liang, Y.

    2016-12-01

    There are serious problems with the formability of alloys which are relatively hard and brittle below ambient temperatures, e.g., in cold extrusion and drawing processes. It is known that electrochemical surface treatment can decrease residual stresses and hardness of the surface layer as a result of the chemomechanical effect (CME), and also improve the plastic deformation ability, e.g., deep drawing of high-strength alloys. Plastic deformation ability of materials can be characterized by hardness measurements. The present study shows some possibilities to improve the surface ductility of carbon steels and FeSi6.5 steel under anodic polarization depending on the current density, composition and pH of acids and chloride electrolytes. The relative Vickers hardness (RVH) amounting to a squared ratio of the penetration depth of a cone indenter in air as compared to that in a solution (hair/hsol)2 was found as a function of the current density and the electrolyte composition. A decrease in hardness of the surface layer as a result of anodic electrochemical polarization was found for different steels.

  3. Investigation of the plastic fracture of high strength steels

    Science.gov (United States)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.

  4. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  5. EXTRUSION DIE CAE OF THE STEEL REINFORCED PLASTIC PIPE

    Institute of Scientific and Technical Information of China (English)

    W.Q. Ma; H.Y. Sun; D.C. Kang; K.D. Zhao

    2004-01-01

    The steel reinforced plastic pipe is a new kind of pressure pipe. It is made up with steel wires and plastic. Because reinforced skeleton of the steel wire increase the complexity of plastic flow during the extrusion phase, the traditional design criteria of extrusion die is not suitable. The study on extrusion die of the kind of pipe is very important step in produce development. Using finite element (FE) method in this paper, the flow rule of molten plastic inside the die has been predicted and a group of optimal structural parameters was obtained. These results are helpful for reducing the design cycle and improve the quality of the final product.

  6. Investigation of the Hot Plasticity of Duplex Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    LIN Gang; ZHANG Zhi-xia; SONG Hong-wei; TONG Jun; ZHOU Can-dong

    2008-01-01

    Hot plasticity of a nitrogen alloyed 25Cr-7Ni-4 Mo duplex stainless steel was investigated.The results indicate that thc main factors affecting the hot plasticity of duplex stainless steel are listed as follows:coalescent force of phase interface,microstructure,and the phase ratio and difference between the mechanicsl propertms of ferrite and austenite.The heat treatment and sulphur contents have a notable effect on the hot plasticity.The reasonable heat treatrnents and the irlcreased interfacial coalescent force will effectively enhance the hot plasticity of duplex stainless steel.

  7. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  8. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic inst

  9. Evolution of microstresses in plastically deformed duplex steel

    Energy Technology Data Exchange (ETDEWEB)

    Baczmanski, A.; Wierzbanowski, K. [Akademia Gorniczo-Hutnicza, Krakow (Poland). WFTJ; Braham, C. [LMMM, URA-CNRS 1219, Ecole Nationale Superieure d' Arts et Metiers, Paris (France); Lodini, A. [IFTS, Univ. de Reims Charleville-Mezieres (France)

    2000-07-01

    The X-ray diffraction method has been applied to determine the internal stresses in two phases austeno-ferritic steel during uniaxial tensile test. The elasto-plastic deformation model was used to predict internal stresses and critical resolved shear stress for the both phases. The model calculations were successfully compared with the information obtained from the shift and broadening of diffraction peak. Finally, the parameters characterising elasto-plastic deformation for duplex steel were determined. (orig.)

  10. Microstructural evolution in deformed austenitic TWinning Induced Plasticity steels

    NARCIS (Netherlands)

    Van Tol, R.T.

    2014-01-01

    This thesis studies the effect of plastic deformation on the stability of the austenitic microstructure against martensitic transformation and diffusional decomposition and its role in the phenomenon of delayed fracture in austenitic manganese (Mn)-based TWinning Induced Plasticity (TWIP) steels. Th

  11. 49 CFR 178.519 - Standards for plastic film bags.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for plastic film bags. 178.519 Section... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic...

  12. Permeable Steel and Its Application in Plastic-injection Mould

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhaoyao; CAO Wenjiong; WU Zhengqiang; YU Minqiang; LI Yuanyuan

    2010-01-01

    The gas in plastics mould has great influence on performance, appearance and lifespan of the injection molded parts. Venting channel and its appendix system should be used for gas exhausting in general. However, the dependence on the venting system complicates the mould design. Furthermore in certain condition, it is difficult to integrate the venting system into the mould. Currently a kind of mold material which has gas permeability has been developed in abroad, but the applications of this mold material were restricted by its higher cost and smaller size. In this research, a porous material which was made by powder metallurgy was applied to plastic mould to replace the venting system. Permeability of the steel with different secondary processing was tested and compared with a special apparatus. The metallographic samples of the steel with different secondary processing were prepared and investigated. Finally an actual injection set was established to investigate the applications of permeable steel. The metallographies indicate that the micro-holes inside permeable steel were interconnected. Moulds made of permeable steel exhibit good permeability in the plastic-injection experiments and gas generated in the mould cavity was smoothly exhausted. The melted plastic did not penetrate into the mould or block in the micro-holes. After several times of plastic-injection experiments, the mould still retained good permeability. The strength of this permeable steel is between 200-250 MPa and suitable for industrial applications. The venting systems simplified by permeable steel in plastic-injection have simple structures, which can be applied into any place that requires gas exhausting.

  13. Effect of plastic deformation on diffusion-rolling bonding of steel sandwich plates

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Jingtao Han

    2006-01-01

    Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and "diffused interlayer" thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed.

  14. Plastic plus stainless-steel fibers make resilient, impermeable material

    Science.gov (United States)

    Smirra, J. R.

    1965-01-01

    Plastic material combined with stainless-steel fibers and molded under heat and pressure into a desired configuration is both soft enough to deform under a load and resilient enough to return to its original shape when the load is removed.

  15. Mechanical characterization of commercial biodegradable plastic films

    Science.gov (United States)

    Vanstrom, Joseph R.

    Polylactic acid (PLA) is a biodegradable plastic that is relatively new compared to other plastics in use throughout industry. The material is produced by the polymerization of lactic acid which is produced by the fermentation of starches derived from renewable feedstocks such as corn. Polylactic acid can be manufactured to fit a wide variety of applications. This study details the mechanical and morphological properties of selected commercially available PLA film products. Testing was conducted at Iowa State University and in conjunction with the United States Department of Agriculture (USDA) BioPreferred ProgramRTM. Results acquired by Iowa State were compared to a similar study performed by the Cortec Corporation in 2006. The PLA films tested at Iowa State were acquired in 2009 and 2010. In addition to these two studies at ISU, the films that were acquired in 2009 were aged for a year in a controlled environment and then re-tested to determine effects of time (ageing) on the mechanical properties. All films displayed anisotropic properties which were confirmed by inspection of the films with polarized light. The mechanical testing of the films followed American Society for Testing and Materials (ASTM) standards. Mechanical characteristics included: tensile strength (ASTM D882), elongation of material at failure (ASTM D882), impact resistance (ASTM D1922), and tear resistance (ASTM D4272). The observed values amongst all the films ranged as followed: tensile strength 33.65--8.54 MPa; elongation at failure 1,665.1%--47.2%; tear resistance 3.61--0.46 N; and puncture resistance 2.22--0.28 J. There were significant differences between the observed data for a number of films and the reported data published by the Cortec Corp. In addition, there were significant differences between the newly acquired material from 2009 and 2010, as well as the newly acquired materials in 2009 and the aged 2009 materials, suggesting that ageing and manufacturing date had an effect on

  16. Hydrogen induced plastic deformation of stainless steel

    NARCIS (Netherlands)

    Gadgil, V.J.; Keim, Enrico G.; Geijselaers, Hubertus J.M.

    1998-01-01

    Hydrogen can influence the behaviour of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the

  17. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    Science.gov (United States)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  18. Plastic deformation wear in modified medium manganese steel

    Directory of Open Access Journals (Sweden)

    YUAN Hai-lun

    2007-08-01

    Full Text Available A medium manganese steel with high wear-resistance, strength and toughness has been produced with addition of a complex modifier (or refining agent containing Nb, N, RE and Si-Ca. The results showed that the wear resistance, strength and toughness of the modified medium manganese steel are respectively 1.92 times, 1.45 times and 3.63 times as high as that of the referenced unmodified medium manganese steel. The plastic deformation characteristic involved in the wear mechanism of the modified medium manganese steel was investigated by means of plastic-elasticity calculation and TEM electro-microscopy. The relationship between wear resistance and yield strength of the steel was established. Since the wear volume W is proportional to the square of the loading and to the numbers of the abrasives, and inversely proportional to the square of the yield strength of the materials, the wear resistance can be substantially improved by the enhancement of yield strength of the materials. The calculation results generally agreed with the experimental results.

  19. Plastic deformation wear in modified medium manganese steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A medium manganese steel with high wear-resistance, strength and toughness has been produced with addition of a complex modifier (or refining agent) containing Nb, N, RE and Si-Ca. The results showed that the wear resistance, strength and toughness of the modified medium manganese steel are respectively 1.92 times, 1.45times and 3.63 times as high as that of the referenced unmodified medium manganese steel. The plastic deformation characteristic involved in the wear mechanism of the modified medium manganese steel was investigated by means of plastic-elasticity calculation and TEM electro-microscopy. The relationship between wear resistance and yield strength of the steel was established. Since the wear volume W is proportional to the square of the loading and to the numbers of the abrasives, and inversely proportional to the square of the yield strength of the materials, the wear resistance can be substantially improved by the enhancement of yield strength of the materials. The calculation results generally agreed with the experimental results.

  20. Fabrication of Functional Plastic Parts Using Nanostructured Steel Mold Inserts

    Directory of Open Access Journals (Sweden)

    Nicolas Blondiaux

    2017-06-01

    Full Text Available We report on the fabrication of sub-micro and nanostructured steel mold inserts for the replication of nanostructured immunoassay biochips. Planar and microstructured stainless steel inserts were textured at the sub-micron and nanoscale by combining nanosphere lithography and electrochemical etching. This allowed the fabrication of structures with lateral dimensions of hundreds of nanometers and aspect ratios of up to 1:2. Nanostructured plastic parts were produced by means of hot embossing and injection molding. Surface nanostructuring was used to control wettability and increase the sensitivity of an immunoassay.

  1. Plastic deformation modelling of tempered martensite steel block structure by a nonlocal crystal plasticity model

    Directory of Open Access Journals (Sweden)

    Martin Boeff

    2014-01-01

    Full Text Available The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investigated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pronounced strain gradients occur in the grain boundary region even under homogeneous loading. The isotropic hardening of strain gradients strongly influences the global stress–strain diagram while the kinematic hardening of strain gradients influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.

  2. Degradation studies on plasticized PVC films submited to gamma radiation

    Directory of Open Access Journals (Sweden)

    Vinhas Glória Maria

    2003-01-01

    Full Text Available Poly (vinyl chloride, PVC, is a rigid polymer and for several of its applications must be compounded with plasticizing agents. The plasticizers minimize the dipolar interactions, which exist between the polymer's chains, promoting their mobility. In this work we studied the properties of PVC/plasticizer systems submitted to different doses of gamma radiation. We have used four commercial plasticizers amongt them di(2-ethylhexyl phthalate, DEHP, which is present in a great number of commercial applications. The PVC/plasticizer systems have been studied as films made by the solvent evaporation technique. Irradiated and non-irradiated films have been characterized by viscosimetric analysis, mechanical essays and infrared spectroscopy. The results have shown that the rigid, non plasticized, PVC film presented the greatest degradation index, while among the plasticized films the one which presented the larger degradation index due to chain scission was the DEHP plasticized PVC.

  3. Weldability of Low Carbon Transformation Induced Plasticity Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mei; LI Lin; FU Ren-yu; ZHANG Ji-cheng; WAN Zi

    2008-01-01

    Transformation induced plasticity (TRIP) steel exhibited high or rather high carbon equivalent (CE) because of its chemical composition,which was a particularly detrimental factor affecting weldability of steels.Thus the weldability of a TRIP steel (grade 600) containing (in mass percent,%) 0.11C-1.19Si-1.67Mn was extensively studied.The mechanical properties and impact toughness of butt joint,the welding crack susceptibility of weld and heat affected zone (HAZ) for tee joint,control thermal severity (CTS) of the welded joint,and Y shape 60° butt joint were measured after the gas metal arc welding (GMAW) test.The tensile strength of the weld was higher than 700 Mpa.Both in the fusion zone (FZ) and HAZ for butt joint,the impact toughness was much higher than 27 J,either at room temperature or at -20 ℃,indicating good low temperature impact ductility of the weld of TRIP 600 steel.In addition,welding crack susceptibility tests revealed that weldments were free of surface crack and other imperfection.All experimental results of this steel showed fairly good weldability.For application,the crossmember in automobile made of this steel exhibited excellent weldability,and fatigue and durability tests were also accomplished for crossmember assembly.

  4. Austempering of hot rolled transformation-induced plasticity steels

    Institute of Scientific and Technical Information of China (English)

    Zhuang Li; Di Wu

    2008-01-01

    Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering inAustempering in the salt bath after hot rolling Was investigated. The effect of isothermal holding time on mechanical properties was studied throughing of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and ad TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holdingprecipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%,respevtively.

  5. Influence of thickness on properties of plasticized oat starch films

    Directory of Open Access Journals (Sweden)

    Melicia Cintia Galdeano

    2013-08-01

    Full Text Available The aim of this study was to investigate the effect of thickness (between 80 and 120 µm on apparent opacity, water vapor permeability and mechanical properties (tensile and puncture of oat starch films plasticized with glycerol, sorbitol, glycerol:sorbitol mixture, urea and sucrose. Films were stored under 11, 57, 76 and 90% relative humidity (RH to study the mechanical properties. It was observed that the higher the thickness, the higher was the opacity values. Films without the plasticizer were more opaque in comparison with the plasticized ones. Glycerol:sorbitol films presented increased elongation with increasing thickness at all RH. Puncture force showed a strong dependence on the film thickness, except for the films plasticized with sucrose. In general, thickness did not affect the water permeability.

  6. PENGARUH PLASTICIZER PADA KARAKTERISTIK EDIBLE FILM DARI PEKTIN

    Directory of Open Access Journals (Sweden)

    Sang Kompiang Wirawan

    2012-05-01

    Full Text Available EFFECT OF PLASTICIzER ON THE PECTINIC EDIBLE FILM CHARACTERISTICS. The peel of Balinese Citrus contains high concentration of pectin which can be further processed to be edible films. The edible films can be utilized as a food coating which protects the food from any external mass transports such as humid, oxygen, and soluble material and can be served as a carrier to improve the mechanical-handing properties of the food. Edible films made of organic polymers tend to be brittle and thus addition of a plasticizer is required during the process. The work studies the effect of the type and the concentration of plasticizers on the tensile strength, the elongation of break, and the water vapor permeabilty of the edible film. Sorbitol and glycerol were used as plasticizers. Albedo from the citrus was hydrolized with hydrochloride acid 0.1 N to get pectinate substance. Pectin was then dissolved in water dan mixed with the plasticizers and CaCl2.2H2O solution. The concentrations of the plasticizers were 0, 0.03, 0.05, 0.1, and 0.15 mL/mL of solution. The results showed that increasing the concentration of plasticizers will decrease the tensile strength, but increase the elongation and film permeability. Sorbitol-plasticized films are more brittle, however exhibited higher tensile strength and water vapor permeability than of glycerol-plasticized film. The results suggested that glycerol is better plasticizer than sorbitol.  Kulit jeruk bali banyak mengandung pektin yang dapat dimanfaatkan sebagai bahan baku edible film. Edible film bisa digunakan untuk melapisi bahan makanan, melindungi makanan dari transfer massa eksternal seperti kelembaban, oksigen, dan zat terlarut, serta dapat digunakan sebagai carrier untuk meningkatkan penanganan mekanik produk makanan. Film yang terbuat dari bahan polimer organik ini cenderung rapuh sehingga diperlukan penambahan plasticizer. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh kadar dan jenis

  7. Transformation plasticity in boron-bearing low carbon steel

    Science.gov (United States)

    Jeong, Hye-Jin; Kim, Moon-Jo; Kim, Dong-Wan; Suh, Dong-Woo; Oh, Jin-Keun; Han, Heung Nam

    2015-09-01

    The transformation plasticity (TP), which indicates that permanent strain remains after solid-solid phase transformation, even under much smaller stress than the yield stress, has been described by a vacancy diffusion mechanism in the migrating interface during diffusional phase transformation. In this study, the influence of boron (B) addition on the TP of low carbon high strength steel was investigated through the observation of the B segregation in the phase interface between primary austenite phase and ferrite phase using secondary ion mass spectroscopy. The B segregation at the austenite-ferrite phase interface was confirmed to cause drastic decrease of the TP strain by comparison of the dilatation behavior of B-bearing and B-free steels under a tensile force during slow cooling, where the diffusional phase transformation occurs in B-bearing steel. Furthermore, it was also confirmed that the velocity of B diffusion is larger than the migration velocity of interface at the given temperature through a calculation based on Fick's law.

  8. Films from Glyoxal-Crosslinked Spruce Galactoglucomannans Plasticized with Sorbitol

    Directory of Open Access Journals (Sweden)

    Kirsi S. Mikkonen

    2012-01-01

    Full Text Available Films were prepared from a renewable and biodegradable forest biorefinery product, spruce O-acetyl-galactoglucomannans (GGMs, crosslinked with glyoxal. For the first time, cohesive and self-standing films were obtained from GGM without the addition of polyol plasticizer. In addition, glyoxal-crosslinked films were prepared using sorbitol at 10, 20, 30, and 40% (wt.-% of GGM. Glyoxal clearly strengthened the GGM matrix, as detected by tensile testing and dynamic mechanical analysis. The elongation at break of films slightly increased, and Young's modulus decreased with increasing sorbitol content. Interestingly, the tensile strength of films was constant with the increased plasticizer content. The effect of sorbitol on water sorption and water vapor permeability (WVP depended on relative humidity (RH. At low RH, the addition of sorbitol significantly decreased the WVP of films. The glyoxal-crosslinked GGM films containing 20% sorbitol exhibited the lowest oxygen permeability (OP and WVP of the studied films and showed satisfactory mechanical performance.

  9. Plastic deformation effect of the corrosion resistance in case of austenitic stainless steel

    Science.gov (United States)

    Haraszti, F.; Kovacs, T.

    2017-02-01

    The corrosion forms are different in case of the austenitic steel than in case of carbon steels. Corrosion is very dangerous process, because that corrosion form is the intergranular corrosion. The austenitic stainless steel shows high corrosion resistance level. It knows that plastic deformation and the heat treating decrease it’s resistance. The corrosion form in case of this steel is very special and the corrosion tests are difficult. We tested the selected steel about its corrosion behaviour after high rate deformation. We wanted to find a relationship between the corrosion resistance decreasing and the rate of the plastic deformation. We wanted to show this behaviour from mechanical and electrical changing.

  10. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  11. Size effect in plastically deformed passivated thin films

    Institute of Scientific and Technical Information of China (English)

    HWANG; Keh-Chih

    2009-01-01

    The flow theory of mechanism-based strain gradient plasticity theory (MSG) developed by Qiu et al. (2003) is extended for incompressible material. The MSG flow theory is used to predict the increase of plastic work hardening for plane strain tension of surface-passivated Cu thin film. The theoretical predictions agree well with experiments for suitably chosen material parameters.

  12. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up...... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride...

  13. Correlation between plastic films properties and flexographic prints quality

    Directory of Open Access Journals (Sweden)

    Joanna Izdebska

    2015-12-01

    Full Text Available The article presents a preliminary study of the correlation between films properties and flexographic print quality defined as the optical density of full tone. It is also an attempt to answer the question whether traditional plastic films can be replaced by biodegradable and compostable films as printing substrates and as materials for packaging. Four kinds of films were used in the experiments – two plastic films (PP and PET and two biodegradable films (PLA and cellulose. The permeability to water vapour and oxygen, as well as the tensile strength and elongation at break of the material were investigated for all samples. The measurements of the contact angle with water, diiodomethane and printing ink were also conducted for these films, and their surface free energy was determined. All samples were printed on laboratory equipment by a flexographic technique using water-based inks and the optical density of copies was measured. It has been found that the print quality was determined by the type of film used. Furthermore, the correlation between optical density and wettability defined as the contact angle between film and water or printing ink turned out to be significant. Other important parameter is surface free energy, albeit to a little lesser extent. The barrier and mechanical properties of the material have an even weaker impact on optical density. In addition, it is possible to choose the biodegradable film with properties corresponding to conventional, commonly used films which enable high quality prints.

  14. Material characterization and finite element modelling of cyclic plasticity behavior for 304 stainless steel using a crystal plasticity model

    OpenAIRE

    Lu, Jiawa; Sun, Wei; Becker, Adib A.

    2016-01-01

    Low cycle fatigue tests were carried out for a 304 stainless steel at room temperature. A series of experimental characterisations, including SEM, TEM, and XRD were conducted for the 304 stainless steel to facilitate the understanding of the mechanical responses and microstructural behaviour of the material under cyclic loading including nanostructure, crystal structure and the fractured surface. The crystal plasticity finite element method (CPFEM) is a powerful tool for studying the microstr...

  15. High-Strength and High-Plasticity TWIP Steel for Modern Vehicle

    Institute of Scientific and Technical Information of China (English)

    Zhenli MI; Di TANG; Ling YAN; Jin GUO

    2005-01-01

    In this paper new high-strength and high-plasticity twinning induced plasticity (TWIP) steel for modern automobile body was investigated. Some basic experimental results were given. The results indicate the TWlP steel has excellent properties. It exhibits high ultimate tensile strength (600~1100 MPa) and extremely large elongation of 60% to 90%. In the future it would be capable of satisfying the requirements of new generation of vehicle.

  16. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...... place, when both steels after DPD are annealed. Both oriented nucleation and oriented growth of oriented lamellae are demonstrated to account for such an orientation dependence. The underlying mechanisms are discussed, including the differences in stored energy, structural variation, and recovery...

  17. Impact toughness of tungsten films deposited on martensite stainless steel

    Institute of Scientific and Technical Information of China (English)

    HUANG Ning-kang; YANG Bin; WANG De-zhi

    2005-01-01

    Tungsten films were deposited on stainless steel Charpy specimens by magnetron sputtering followed by electron beam heat treatment. Charpy impact tests and scanning electron microscopy were used to investigate the ductile-brittle transition behavior of the specimens. With decreasing test temperature the fracture mode was transformed from ductile to brittle for both kinds of specimens with and without W films. The data of the crack initiation energy, crack propagation energy, impact absorbing energy, fracture time and deflection as well as the fracture morphologies at test temperature of -70 ℃ show that W films can improve the impact toughness of stainless steel.

  18. "Green" films from renewable resources: properties of epoxidized soybean oil plasticized ethyl cellulose films.

    Science.gov (United States)

    Yang, Dong; Peng, Xinwen; Zhong, Linxin; Cao, Xuefei; Chen, Wei; Zhang, Xueming; Liu, Shijie; Sun, Runcang

    2014-03-15

    Epoxidized soybean oil (ESO), which is a biomass-derived resource, was first used as a novel plasticizer for ethyl cellulose (EC) film preparation. Surface morphologies, mechanical performances, thermal properties, oxygen and water vapor permeabilities of plasticized EC films were detected in detail to evaluate the plasticizing effect of ESO and explore the plastication mechanisms. Results showed that ESO was an effective plasticizer that outstripped conventional plasticizers, i.e. dibutyl phthalate (DBP) and triethyl citrate (TEC) in producing high-quality films. Especially, at plasticizer concentrations of 15-25%, ESO-EC films had preferable mechanical properties and better thermal stability, as well as non-flammability. In addition, the water vapor permeability of ESO-EC films was lower than that of traditional plasticized films. Their oxygen permeability was also remained in a low level. These outstanding performances were related to the relatively high molecular weight, hydrophobicity, chemical structure of ESO, and the intermolecular interactions between ESO and EC chains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    Chu-lin YU; Zhi-ping CHEN; Ji WANG; Shun-juan YAN; Li-cai YANG

    2012-01-01

    The effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells is investigated through experimental and numerical buckling analysis using six welded steel cylindrical shell specimens.The relationship between the amplitude of weld reinforcement and the axial plastic buckling critical load is explored.The effect of the material yield strength and the number of circumferential welds on the axial plastic buckling is studied.Results show that circumferential weld reinforcement represents a severe imperfect form of axially compressed welded steel cylindrical shells and the axial plastic buckling critical load decreases with the increment of the mean amplitude of circumferential weld reinforcement.The material yield strength and the number of circumferential welds are found to have no significant effect on buckling waveforms; however,the axial plastic buckling critical load can be decreased to some extent with the increase of the number of circumferential welds.

  20. Gelatin films plasticized with a simulated biodiesel coproduct stream

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In order to explore the possibility of substituting an unrefined biodiesel coproduct stream (BCS for refined glycerol as a polymer plasticizer we have prepared cast gelatin films plasticized with a simulated BCS, i.e., mixtures of glycerol and some of the typical components found in BCS (methyl linoleate, methyl oleate, linoleic acid, and oleic acid. We measured the tensile properties as a function of plasticizer composition, and analyzed the specific effect of each individual component on tensile properties. We found that it is the unrecovered alkyl esters that largely determine the tensile properties, and that BCS can be successfully used to plasticize cast gelatin films as long as the BCS contains 11 parts by weight, or less, of unrecovered alkyl esters per 100 parts glycerol.

  1. MATHEMATICAL FORMULATION OF PLASTIC CHARACTERISTICS OF WIRE OF STEEL 70 AT HIGH-SPEED WIRE DRAWING

    Directory of Open Access Journals (Sweden)

    Yu. L. Bobarikin

    2011-01-01

    Full Text Available The carried out numerical experiments subject to initial and boundary conditions indicate that mathematical model of elastic-plastic characteristics of steel 90 can be used for numerical calculations of wire drawing routes for this grade of steel.

  2. Quantitative Analysis of Microstructural Constituents in Welded Transformation-Induced-Plasticity Steels

    NARCIS (Netherlands)

    Amirthalingam, M.; Hermans, M.J.M.; Zhao, L.; Richardson, I.M.

    2009-01-01

    A quantitative analysis of retained austenite and nonmetallic inclusions in gas tungsten arc (GTA)–welded aluminum-containing transformation-induced-plasticity (TRIP) steels is presented. The amount of retained austenite in the heat-affected and fusion zones of welded aluminum-containing TRIP steel

  3. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin;

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...

  4. Regularities of Macroscopic Localization of Plastic Deformation in the Stretching of a Low-Carbon Steel

    Science.gov (United States)

    Barannikova, S. A.; Kosinov, D. A.; Nadezhkin, M. V.; Lunev, A. G.; Gorbatenko, V. V.; Zuev, L. B.; Gromov, V. E.

    2014-07-01

    The special features of plastic deformation localization in the stretching of polycrystals of low-carbon steel 08 ss after hot rolling and electrolytic saturation with hydrogen are investigated. The main types and parameters of plastic flow localization in different stages of strain hardening are determined by the method of double-exposure speckle photography.

  5. An investigation of the plastic fracture of high strength steels. Ph.D. Thesis

    Science.gov (United States)

    Cox, T. B.; Low, J. R., Jr.

    1973-01-01

    Three generally recognized stages of plastic fracture in high strength steels are considered in detail. These stages consist of void initiation, void growth, and void coalescence. A brief review of the existing literature on plastic fracture is included along with an outline of the experimental approach used in the investigation.

  6. Effect of hydrogen on plastic strain localization and fracture of steels

    Science.gov (United States)

    Nadjozhkin, M. V.; Lunev, A. G.; Li, Yu V.; Barannikova, S. A.

    2016-02-01

    The effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested specimens of low-carbon steels have been studied using a double exposure speckle photography technique. It is found that the mechanical properties of low-carbon steels are affected adversely by hydrogen embrittlement. The deformation diagrams were examined for the deformed samples of low-carbon steels. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation.

  7. Plastic Instabilities and Their Consequences in Steels and Other High Strength Alloys

    Science.gov (United States)

    1991-09-01

    rate yes Superalloys * Alloy 600 quasi-static no Rend 41 quasi-static no Steels * HY80 quasi-static no ultra-soft5 no low temperatures no AISI 4340...AD-A240 976 ([f) A Final Technical Report Contract No. N00014-88-K-0111 S PLASTIC INSTABILITIES AND THEIR CONSEQUENCES IN STEELS AND OTHER HIGH...PLASTIC INSTABILITIES AND THEIR CONSEQUENCES IN STEELS AND OTHER HIGH STRENGTH ALLOYS Submitted to: Office of Naval Research 800 North Quincy Street

  8. An Experimental Study on Steel and Teflon Squeeze Film Dampers

    Directory of Open Access Journals (Sweden)

    Asad A. Khalid

    2006-01-01

    Full Text Available In this paper, the vibration analysis on Teflon and steel squeeze film dampers has been carried out. At different frequency ranges, vibration amplitude and the resonance frequency are measured. The eccentricity ratio at resonance speed has been determined. Results show that the vibration amplitude of the steel damper is 10% less at resonance compared with the Teflon damper. On the other hand, saving weight of 36% has been achieved by using the Teflon damper.

  9. ADHERENCE AND PROPERTIES OF SILICON CARBIDE BASED FILMS ON STEEL

    OpenAIRE

    Lelogeais, M.; Ducarroir, M.; Berjoan, R.

    1991-01-01

    Coatings of silicon carbide with various compositions have been obtained in a r.f plasma assisted process using tetramethylsilane and argon as input gases. Some properties against mechanical applications of such deposits on steel have been investigated. Residual stresses and hardness are reported and discussed in relation with plasma parameters and deposit composition. By scratch testing, it was shown that the silicon carbide films on steel denote a good adherence when compared with previous ...

  10. EFFECT OF COPPER ON THE HOT PLASTICITY OF 304HC STAINLESS STEEL

    Institute of Scientific and Technical Information of China (English)

    G.Z. Cui; H.S. Di; G.D. Wang; X.H. Liu

    2005-01-01

    The plasticity map of 304HC stainless steel was determined by using tensile and compressive test. The effect of Cu on the hot plasticity of 304HC stainless steel was analyzed. The microstructure, inclusion and fracture surface were studied by using the method of optical microscopy, SEM,EDS and EPMA. The results showed that Cu has effect on the hot plasticity and the hotplasticity of 304HC stainless steel decrease with the increase of Cu content. The deformation temperature also hasmuch effect on the hot plasticity, the suitable deformation temperature are 1100-1200℃.The reason is that the brittle compounds were precipitated from austenite during cooling. These brittle compounds are Cu2S, Cu2O and PbCl etc.

  11. Discrete dislocation plasticity analysis of the wedge indentation of films

    NARCIS (Netherlands)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-01-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at +/- 35.3 degrees and 90 degrees with respect to the indentation direction. The analyses are carried out for

  12. Experimental Study on Elastic-Plastic Behavior of SRC Columns with High Strength Steel

    OpenAIRE

    2006-01-01

    The demand to use high strength and high performance material because of large span and high rise of building in recent years. As to use of high-strength steel in composite steel and reinforced concrete structures, it remains to be clarified whether the ductile behavior can be ensured, especially when the high-strength steel is used in combination with High-strength concrete. This paper describes the test results on the elasto-plastic behavior of SRC column using high strength steel, and disc...

  13. Effect of Aluminum and Silicon on Transformation Induced Plasticity of the TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    Lin LI; B.C. De Cooman; P. Wollants; Yanlin HE; Xiaodong ZHOU

    2004-01-01

    With the sublattice model, equilibrium compositions of ferrite (α) and austenite (γ) phases, as well as the volume percent of austenite (γ) at 780℃ in different TRIP steels were calculated. Concentration profiles of carbon, Mn, Al and Si in the steels were also estimated under the lattice fixed frame of reference so as to understand the complex mechanical behavior of TRIP steels after different isothermal bainitic transformation treatments. The effect of Si and Mn on transformation induced plasticity (TRIP) was discussed according to thermodynamic and kinetic analyses. It is recognized that Al also induces phase transformation in the steels but its TRIP effect is not as strong as that of Si.

  14. Adiabatic Shear Localization for Steels Based on Johnson-Cook Model and Second- and Fourth-Order Gradient Plasticity Models

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-bin

    2007-01-01

    To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effects of strain-hardening, strain rate sensitivity, and thermal-softening are successfully described. The various parameters for 1006 steel, 4340 steel and S-7 tool steel are assigned. The distributions and evolutions of the local plastic shear strain and deformation in adiabatic shear band (ASB) are predicted. The calculated results of the second- and fourth-order gradient plasticity models are compared. S-7 tool steel possesses the steepest profile of local plastic shear strain in ASB, whereas 1006 steel has the least profile. The peak local plastic shear strain in ASB for S-7 tool steel is slightly higher than that for 4340 steel and is higher than that for 1006 steel. The extent of the nonlinear distribution of the local plastic shear deformation in ASB is more apparent for the S-7 tool steel, whereas it is the least apparent for 1006 steel. In fourth-order gradient plasticity model, the profile of the local plastic shear strain in the middle of ASB has a pronounced plateau whose width decreases with increasing average plastic shear strain, leading to a shrink of the portion of linear distribution of the profile of the local plastic shear deformation. When compared with the second-order gradient plasticity model, the fourth-order gradient plasticity model shows a lower peak local plastic shear strain in ASB and a higher magnitude of plastic shear deformation at the top or base of ASB, which is due to wider ASB. The present numerical results of the second- and fourth-order gradient plasticity models are consistent with the previous numerical and experimental results at least qualitatively.

  15. Plasma-polymerized thiophene films for enhanced rubber steel bonding

    Science.gov (United States)

    Delattre, James L.; d'Agostino, Riccardo; Fracassi, Francesco

    2006-03-01

    Thin films of plasma-polymerized thiophene (PPTh) were deposited on cold-rolled steel substrates to improve adhesion to rubber compounds. PPTh films were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy. The ratio of carbon-to-sulfur found in PPTh films is 4:1, suggesting the monomer structure is generally intact, which was supported by FT-IR absorptions characteristic of polymerized thiophene rings. However, some fragmentation did occur to give acetylenic and aliphatic groups. Steel-rubber adhesion measurements, performed in accordance with the ASTM 429-B peel test, strongly depended on cleaning and pretreatment methods as well as film thickness. Best results were obtained on polished steel samples that were cleaned with acid, pretreated with a hydrogen/argon plasma, then coated with 50 Å of PPTh film. These samples exhibited a peel force of 14.3 N/mm, which is comparable to that of polished brass control samples. Depth-profiling XPS analysis of the rubber-steel interface showed the existence of an iron sulfide layer which is likely responsible for the strong adhesion.

  16. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    of the polyhalostyrenes have essentially rate-independent and moderately temperature-dependent responses to such large doses of ionizing radiation. While radiation-induced optical absorption in the ultraviolet for polystyrene is unstable following irradiation, thus leading to an intrinsic low-intensity rate dependence......Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up...... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride...

  17. Effect of aging on the microstructure of plasticized cornstarch films

    Directory of Open Access Journals (Sweden)

    Rossana M.S.M. Thiré

    2005-06-01

    Full Text Available Aging of cornstarch films prepared by casting was investigated. Water and glycerol-plasticized cornstarch films were stored at 50% relative humidity over a period of 330 days. Aging was followed by X-ray diffraction (XRD and atomic force microscopy (AFM. XRD spectra indicated development of B-type crystallinity even for fresh films and that the crystallinity index increased from 0.06 to 0.28 as a function of storage time. AFM images of 270-day-old films revealed that the general morphology and the overall roughness have not changed due to aging. AFM phase contrast images at higher magnification showed an increasing number of ordered domains at the surface of these films, which may be attributed to recrystallization of amylose. No morphological change was observed at least at the surface of the granular region, which is enriched in amylopectin.

  18. SELF-LUBRICATING THIN FILMS FOR TOOL STEELS

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2012-02-01

    Full Text Available Specimens made from Vanadis 6 cold work tool steel were machined, ground, heat processed by standard regime and finally mirror polished. After that, they were layered with CrAgN. The Ag-content in the layers was chosen to 3 wt% and 15 wt% respectively. Microstructural analysis revealed that the addition of 3 wt%Ag did not influence the growth manner of the films but the addition of 15 wt%Ag has made considerable changes in the film growth. The layer with 3 wt%Ag had excellent adhesion on the steel substrate. On the other hand, the addition of 15%Ag had strongly negative impact on the coating adhesion. Similar effect of different Ag addition has been established also to both the hardness and the Young modulus of the films, also. Both films have superior tribological properties against hard material (alumina as well as against soft counterpart (CuSn6 as-cast bronze.

  19. SELF-LUBRICATING THIN FILMS FOR TOOL STEELS

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2012-03-01

    Full Text Available Specimens made from Vanadis 6 cold work tool steel were machined, ground, heat processed by standard regime and finally mirror polished. After that, they were layered with CrAgN. The Ag-content in the layers was chosen to 3 wt% and 15 wt% respectively. Microstructural analysis revealed that the addition of 3 wt%Ag did not influence the growth manner of the films but the addition of 15 wt%Ag has made considerable changes in the film growth. The layer with 3 wt%Ag had excellent adhesion on the steel substrate. On the other hand, the addition of 15%Ag had strongly negative impact on the coating adhesion. Similar effect of different Ag addition has been established also to both the hardness and the Young modulus of the films, also. Both films have superior tribological properties against hard material (alumina as well as against soft counterpart (CuSn6 as-cast bronze.

  20. Beyond steel : some producers give plastic production tubing a second look

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.

    2008-11-15

    The oil and gas sector is considering the use of plastics as an alternative to steel for production tubing. Innovations in manufacturing have made exotic plastics more available. Among these is Aramid fibre, a patented plastic marketed by PolyFlow Inc. The tubing known as Thermoflex was designed to improve gas flow out of natural gas wells where liquid loading often occurs in older wells. Plastics have the advantage of being lighter and smoother than steel. A smooth surface and less friction results in less back-pressure downhole. Plastics are inert to many grades of oil and gas, including the corrosive kinds. As such, they are well suited for sour wells. The combination of criss-crossed Aramid fibres wrapped around a Fortron plastic core makes the Thermoflex tubing much stronger than steel. The key disadvantage of Thermoflex is its operating temperature. The tubing should not be installed below -18 degrees C. Warm water must be circulated through the tubing in cold weather applications. To date, operators using Thermoflex tubing in shallow gas wells have not experienced any bitumen buildup that sometimes occurs in steel tubing. 1 ref., 2 figs.

  1. Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange

    Science.gov (United States)

    Allais, Arnaud; Hoffmann, Ernst

    2008-02-05

    Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

  2. Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) Steel, A Review

    Institute of Scientific and Technical Information of China (English)

    Liqing CHEN; Yang ZHAO; Xiaomei QIN

    2013-01-01

    High manganese twinning-induced plasticity (TWIP) steel is a new kind of structural material and possesses both high strength and superior plasticity and can meet the weight-lightening requirement for manufacturing vehicle body.The excellent formability of the TWIP steel comes from the extraordinary strain hardening effect during plastic deformation.The reduction of specific weight by aluminum alloying and strain hardening effect can lead to an effective weight reduction of the steel components,and provide a better choice for materials in vehicle body design.The TWIP effect in high Mn steels is generally associated with the successive workhardening generated by twins and influenced by some factors,such as Mn content,AI addition revealed by stacking fault energy (SFE),grain size,deformation temperature and strain rate.The present review introduces some aspects of the TWIP steels relating to their physical metallurgy,influencing factors associated with their deformation mechanisms,and a prospect for the future investigation is also described.Moreover,as a potential candidate for replacing Ni-Cr austenitic stainless steel,researches on the oxidation behavior and corrosion resistance of Fe-Mn-AI-C system steels are also reviewed.

  3. Effect of Activated Plastic Films on Inactivation of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Belén Soriano Cuadrado

    2016-07-01

    Full Text Available In the present study, low density polyethylene films were activated by co-extrusion with zinc oxide, zinc acetate or potassium sorbate. Films were also surface-activated with tyrosol singly or in combination with lactic acid or p-hydroxybenzoic acid. Activated films were tested on Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enterica and Pseudomonas fluorescens. The combinations showing greatest inhibition zones and broadest inhibitory spectrum were the films activated with tyrosol plus p-hydroxybenzoic acid. A small delay in growth of Listeria innocua was observed on seabream packed in ZnO-activated films during refrigerated storage for 7 days. When films activated with 2.5% tyrosol or with 1.5% tyrosol plus 0.5 p-hydroxybenzoic acid were used for vacuum packaging of smoked salmon and smoked tuna challenged with cocktails of S. enterica and L. monocytogenes strains, the combination of tyrosol and p-hydroxybenzoic acid improved inactivation of both pathogens during chill storage compared to films singly activated with tyrosol. The best results were obtained in smoked salmon, since no viable pathogens were detected after 7 days of chill storage for the activated film. Results from the study highlight the potential of plastic films surface-activated with tyrosol and p-hydroxybenzoic acid in the control of foodborne pathogens in smoked seafood.

  4. Long-Term Physical Stability of Plasticized Hemicellulose Films

    Directory of Open Access Journals (Sweden)

    Susanna L. Heikkinen

    2013-12-01

    Full Text Available Oat spelt arabinoxylan (OsAX and spruce galactoglucomannan (GGM are hemicelluloses that can be extracted in large quantities from side-streams of the agriculture and forest industries. They both form self-standing films, making them potential future packaging materials. This systematic study focuses on the effect of long-term storage on the physical stability of hemicellulose-based films. OsAX and GGM films were plasticized with 40% (w/w of the polysaccharide of glycerol, sorbitol, or their blends, and their stability was followed for four months. Ageing especially affected the glycerol-containing films, in which the tensile strength and Young’s modulus increased and elongation at break decreased. Although the mechanical properties were altered, storage did not affect crystallinity of the films. Oxygen gas permeability (OP and water vapor permeability (WVP properties were monitored in OsAX films. Interestingly WVP decreased during storage; more than a 40% decrease was seen when plasticizer blends contained 50% or more glycerol. In contrast, there were no drastic changes in the OP during storage; all the OPs obtained were between 3.7 and 8.9 [cm3 µm/ (m2 d kPa].

  5. Ultrafine-grained low carbon steels by severe plastic deformation

    Directory of Open Access Journals (Sweden)

    S. Dobatkin

    2008-07-01

    Full Text Available The structure and properties of 0,14% C and 0,1% C - B low-carbon steels taken in two initial states, martensitic and ferritic-pearlitic, were studied after cold equal-channel angular (ECA pressing. ECA pressing leads to the formation of only partially submicrocrystalline structure with a grain size of 150 – 300 nm, depending on the steel alloying and initial state. The finest structure with the elements of 190 nm in size is obtained in the 0,1% C - B steel microalloyed with boron. The strength of the 0,1% C - B steel after cold ECA pressing (Rm = 805-1235 MPa meets the specifications of fasteners of the R80 - R120 strength grade. The strength of the deformed 0,14% C steel is close to the R80 strength grade.

  6. Plasticizing Effects of Polyamines in Protein-Based Films

    Directory of Open Access Journals (Sweden)

    Mohammed Sabbah

    2017-05-01

    Full Text Available Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins. At the same time, they enhanced the dimension of nanoparticles under pH 8.0 as a result of macromolecular aggregations. By using native protein solutions, handleable films were obtained only from samples containing either a minimum of 33 mM glycerol or 4 mM spermidine, or both compounds together at lower glycerol concentrations. However, 2 mM spermidine was sufficient to obtain handleable film by using heat-treated samples without glycerol. Conversely, brittle materials were obtained by spermine alone, thus indicating that only spermidine was able to act as an ionic plasticizer. Lastly, both polyamines, mainly spermine, were found able to act as “glycerol-like” plasticizers at concentrations higher than 5 mM under experimental conditions at which their amino groups are undissociated. Our findings open new perspectives in obtaining protein-based films by using aliphatic polycations as components.

  7. Composite Behavior of Lath Martensite Steels Induced by Plastic Strain, a New Paradigm for the Elastic-Plastic Response of Martensitic Steels

    Science.gov (United States)

    Ungár, Tamás; Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Ribárik, Gábor; Shi, Zengmin

    2017-01-01

    Based on high-resolution neutron diffraction experiments, we will show that in lath martensite steels, the initially homogeneous dislocation structure, i.e., homogeneous on the length scale of grain size, is disrupted by plastic deformation, which, in turn, produces a composite on the length scale of martensite lath packets. The diffraction patterns of plastically strained martensitic steel reveal characteristically asymmetric peak profiles in the same way as has been observed in materials with heterogeneous dislocation structures. The quasi homogeneous lath structure, formed by quenching, is disrupted by plastic deformation producing a composite structure. Lath packets oriented favorably or unfavorably for dislocation glide become soft or hard. Two lath packet types develop by work softening or work hardening in which the dislocation densities become smaller or larger compared to the initial average dislocation density. The decomposition into soft and hard lath packets is accompanied by load redistribution and the formation of long-range internal stresses between the two lath packet types. The composite behavior of plastically deformed lath martensite opens a new way to understand the elastic-plastic response in this class of materials.

  8. Serum Chrome levels sampled with steel needle vs. plastic IV cannula

    DEFF Research Database (Denmark)

    Penny, Jeannette Østergaard; Overgaard, Søren

    2010-01-01

      Modern Metal-on-metal (MoM) joint articulations releases metal ions to the body. Research tries to establish how much this elevates metal ion levels and whether it causes adverse effects. The steel needle that samples the blood may introduce additional chromium to the sample thereby causing bias....... This study aimed to test that theory. Method: We compared serum chromium values for two sampling methods, steel needle and IV plastic cannula, as well as sampling sequence in 16 healthy volunteers. Results: We found statistically significant chromium contamination from the steel needle with mean differences...... between the two methods of 0.073 ng/mL, for the first sample, and 0.033 ng/mL for the second. No difference was found between the first and second plastic sample. The first steel needle sample contained an average of 0.047 ng/mL more than the second. This difference was only borderline significant...

  9. Computer aided design of free-machinability prehardened mold steel for plastic

    Institute of Scientific and Technical Information of China (English)

    HE Yan-lin; LI Lin; GAO Wen; WANG Qing-liang; WU Xiao-chun

    2005-01-01

    In order to improve the machinability but not to impair other properties of the prehardened mold steel for plastic, the composition was designed by application of Thermo-Calc software package to regulate the type of nonmetallic inclusion formed in the steel. The regulated non-metallic inclusion type was also observed by SEM and EDX. Then the maehinability assessment of the steel with designed composition under different conditions was studied by the measurement of tool wear amount and cutting force. The results show that the composition of free cutting elements adding to mold steel for plastic can be optimized to obtain proper type of non-metallic inclusion in the aid of Thermo-Calc, compared with the large volume fraction of soft inclusion which is needed for promoting ductile fracture at low cutting speeds, the proper type of inclusion at high cutting speeds is glassy oxide inclusion. All those can be obtained in the present work.

  10. Effect of plasticizer on moisture sorption isotherm of sugar palm (Arenga Pinnata) starch film

    Science.gov (United States)

    Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Rosyida, Vita Taufika

    2016-02-01

    The effect of plasticizer type (glycerol, sorbitol) and plasticizer concentrations (30, 35, 40, 45% w/w polymer) on the moisture sorption isotherm characteristics of sugar palm (Arenga pinnata) starch films were investigated. Moisture affinity of sugar palm starch films was influenced by the plasticizer type and plasticizer concentration. The affinity of the glycerol plasticized film is stronger than that of sorbitol plasticized film. Sugar palm starch film with a higher concentration of glycerol absorbs more moisture with higher initial absorption rate than that of with sorbitol. Films with higher plasticizer concentration of glycerol and sorbitol show higher equilibrium moisture contents at the given relative humidity. The moisture sorption isotherm characteristic of sugar palm starch films can be described very well with the semi empirical 4 parameter Peleg's model.

  11. Quantitative Analysis of Microstructural Constituents in Welded Transformation-Induced-Plasticity Steels

    OpenAIRE

    Amirthalingam, M.; Hermans, M.J.M.; L. Zhao; Richardson, I. M.

    2009-01-01

    A quantitative analysis of retained austenite and nonmetallic inclusions in gas tungsten arc (GTA)–welded aluminum-containing transformation-induced-plasticity (TRIP) steels is presented. The amount of retained austenite in the heat-affected and fusion zones of welded aluminum-containing TRIP steel with different base metal austenite fractions has been measured by magnetic saturation measurements, to study the effect of weld thermal cycles on the stabilization of austenite. It is found that f...

  12. Ratcheting deformation of advanced 316 steel under creep-plasticity condition

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Fumiko; Ishikawa, Akiyoshi; Asada, Yasuhide [Tokai Univ., Tokyo (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Tension-torsion biaxial ratcheting tests have been conducted with Advanced 316 Steel (316FR Steel) at 650 C under a cyclic strain rate of 10{sup -3} to 10{sup -5} s{sup -1}. Accumulation of ratcheting strain has been measured. Accumulated ratchet strain has shown to be much larger than predicted based on a usual method of the linear superposition of strains due to creep and plasticity. The result shows there observed the creep-plasticity interaction in the observation. (orig.)

  13. Tensile plastic strain localization in single crystals of austenite steel electrolytically saturated with hydrogen

    Science.gov (United States)

    Barannikova, S. A.; Nadezhkin, M. V.; Mel'Nichuk, V. A.; Zuev, L. B.

    2011-09-01

    The effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested Fe-18Cr-12Ni-2Mo single crystals of austenite steel with low stacking-fault energy has been studied using a double-exposure speckle photography technique. The main parameters of plastic-flow localization at various stages of the deformation hardening of crystals have been determined in single crystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential.

  14. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Barannikova, Svetlana A., E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Zuev, Lev B., E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  15. A plastic collapse method for evaluating rotation capacity of full-restrained steel moment connections

    Directory of Open Access Journals (Sweden)

    Lee Kyungkoo

    2008-01-01

    Full Text Available An analytical method to model failure of steel beam plastic hinges due to local buckling and low-cycle fatigue is proposed herein. This method is based on the plastic collapse mechanism approach and a yield-line plastic hinge (YLPH model whose geometry is based on buckled shapes of beam plastic hinges observed in experiments. Two limit states, strength degradation failure induced by local buckling and low-cycle fatigue fracture, are considered. The proposed YLPH model was developed for FEMA-350 WUF-W, RBS and Free Flange connections and validated in comparisons to experimental data. This model can be used to estimate the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions.

  16. Features of plastic strain localization at the yield plateau in Hadfield steel single crystals

    Science.gov (United States)

    Barannikova, S. A.; Zuev, L. B.

    2008-07-01

    Spatiotemporal distributions of local components of the plastic distortion tensor in Hadfield steel single crystals oriented for single twinning have been studied under active tensile straining conditions using the double-exposure speckle photography technique. Features of the macroscopically inhomogeneous strain localization at the yield plateau are considered. Relations between local components of the plastic distortion tensor in the zone of strain localization are analyzed.

  17. Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type

    Science.gov (United States)

    Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.

    2017-07-01

    In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.

  18. Tribological thin films on steel rolling element bearing surfaces

    Science.gov (United States)

    Evans, Ryan David

    Tribological thin films are of interest to designers and end-users of friction management and load transmission components such as steel rolling element bearings. This study sought to reveal new information about the properties and formation of such films, spanning the scope of their technical evolution from natural oxide films, to antiwear films from lubricant additives, and finally engineered nanocomposite metal carbide/amorphous hydrocarbon (MC/a-C:H) films. Transmission electron microscopy (TEM) was performed on the near-surface material (depth gear oil additives. Site-specific thinning of cross-section cone surface sections for TEM analyses was conducted using the focused ion beam milling technique. Two types of oxide surface films were characterized for the cones tested in mineral oil only, each one corresponding to a different lubrication severity. Continuous and adherent antiwear films were found on the cone surfaces tested with lubricant additives, and their composition depended on the lubrication conditions. A sharp interface separated the antiwear film and base steel. Various TEM analytical techniques were used to study the segregation of elements throughout the film volume. The properties of nanocomposite tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films depend sensitively on reactive magnetron sputtering deposition process conditions. TaC/a-C:H film growth was studied as a function of three deposition parameters in designed experiments: acetylene flow rate, applied d.c. bias voltage, and substrate carousel rotation rate. Empirical models were developed for the following film characteristics to identify process-property trend relationships: Ta/C atomic ratio, hydrogen content, film thickness. TaC crystallite size, Raman spectrum, compressive stress, hardness, and elastic modules. TEM measurements revealed the film base structure consisted of equiaxed cubic B1-TaC crystallites (< 5 nm) suspended in an a-C:H matrix. At the nanometer-scale, the

  19. Plastic evolution behavior of H340LAD_Z steel by an optical method

    Science.gov (United States)

    Guo, Nan; Liang, Jin; Yu, Qiang; Qian, Boxing

    2017-02-01

    An optical method based on digital image correlation (DIC) technology was proposed to measure the plastic evolution of the high-strength low alloy steel H340LAD_Z. The basic principle of DIC technology is introduced, and then, the use of a 3D deformation measurement system and electronic universal testing machine to dynamically measure plastic evolution during the tensile yield stage is described. Through the full-field full-process measurement of plastic deformation during the yield stage in the 0°, 45° and 90° loading directions, the plastic evolution law was revealed. The results demonstrate that the proposed 3D DIC method can accurately reveal the starting and ending times for plastic evolution. The specimens in the three directions exhibit different plastic evolution behaviors, although they have similar yield strengths and yield times. The specimens in the 45° and 90° loading directions began to enter plastic deformation from bottom to top and the plastic area was maintained in a constant deformed state, while the evolution behavior in the 0° direction transited from both sides to the middle and plastic deformation was uneven. It is important to study plastic evolution of a metal sheet to determine the material properties and to provide an accurate basis for finite element modeling.

  20. Plastic evolution behavior of H340LAD-Z steel by an optical method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Nan; Liang, Jin; Yu, Qiang; Qian, Boxing

    2017-02-01

    An optical method based on digital image correlation (DIC) technology was proposed to measure the plastic evolution of the high-strength low alloy steel H340LAD-Z. The basic principle of DIC technology is introduced, and then, the use of a 3D deformation measurement system and electronic universal testing machine to dynamically measure plastic evolution during the tensile yield stage is described. Through the full-field full-process measurement of plastic deformation during the yield stage in the 0°, 45° and 90° loading directions, the plastic evolution law was revealed. The results demonstrate that the proposed 3D DIC method can accurately reveal the starting and ending times for plastic evolution. The specimens in the three directions exhibit different plastic evolution behaviors, although they have similar yield strengths and yield times. The specimens in the 45° and 90° loading directions began to enter plastic deformation from bottom to top and the plastic area was maintained in a constant deformed state, while the evolution behavior in the 0° direction transited from both sides to the middle and plastic deformation was uneven. It is important to study plastic evolution of a metal sheet to determine the material properties and to provide an accurate basis for finite element modeling.

  1. Computational material design for Q&P steels with plastic instability theory

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Guang; Choi, Kyoo Sil; Hu, Xiaohua; Sun, Xin

    2017-07-17

    In this paper, the deformation limits of Quenching and Partitioning (Q&P) steels are examined with the plastic instability theory. For this purpose, the constituent phase properties of various Q&P steels were first experimentally obtained, and used to estimate the overall tensile stress-strain curves based on the simple rule of mixture (ROM) with the iso-strain and iso-stress assumptions. Plastic instability theory was then applied to the obtained overall stress-strain curves in order to estimate the deformation limits of the Q&P steels. A parametric study was also performed to examine the effects of various material parameters on the deformation limits of Q&P steels. Computational material design was subsequently carried out based on the information obtained from the parametric study. The results show that the plastic instability theory with iso-stress-based stress-strain curve may be used to provide the lower bound estimate of the uniform elongation (UE) for the various Q&P steels considered. The results also indicate that higher austenite stability/volume fractions, less strength difference between the primary phases, higher hardening exponents of the constituent phases are generally beneficial for the performance improvement of Q&P steels, and that various material parameters may be concurrently adjusted in a cohesive way in order to improve the performance of Q&P steel. The information from this study may be used to devise new heat treatment parameters and alloying elements to produce Q&P steels with the improved performance.

  2. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Science.gov (United States)

    2010-10-01

    ... operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating... design pressure of the weakest element in the segment, determined in accordance with subparts C and D of... K of this part, if any variable necessary to determine the design pressure under the design...

  3. Theoretical Studies of Laws Nanostructuring and Heterogeneous Hardening of Steel Samples by Wave Intensive Plastic Deformation

    Directory of Open Access Journals (Sweden)

    A.V. Kirichek

    2015-12-01

    Full Text Available Theoretical studies and calculations, allowing to define the required parameters of the wave deformation hardening, are performed in order to obtain heterogeneous hardened surface layer in steel samples. The conditions for the effective use of impact energy for elastic-plastic deformation of the processed material and the establishment of a deep hardened surface layer are revealed.

  4. Fatigue Analysis of Steel Catenary Risers Based on a Plasticity Model

    Institute of Scientific and Technical Information of China (English)

    Yongqiang Dong; LipingSun

    2015-01-01

    The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625″ steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.

  5. Fatigue analysis of steel catenary risers based on a plasticity model

    Science.gov (United States)

    Dong, Yongqiang; Sun, Liping

    2015-03-01

    The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625″ steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.

  6. Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol

    Directory of Open Access Journals (Sweden)

    H. Somashekarappa

    2013-01-01

    Full Text Available The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC and Polyvinylpyrrolidone (PVP blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.

  7. Performance-based plastic design method for steel concentric braced frames

    Science.gov (United States)

    Banihashemi, M. R.; Mirzagoltabar, A. R.; Tavakoli, H. R.

    2015-09-01

    This paper presents a performance-based plastic design (PBPD) methodology for the design of steel concentric braced frames. The design base shear is obtained based on energy-work balance equation using pre-selected target drift and yield mechanism. To achieve the intended yield mechanism and behavior, plastic design is applied to detail the frame members. For validity, three baseline frames (3, 6, 9-story) are designed according to AISC (Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, 2005) seismic provisions (baseline frames). Then, the frames are redesigned based on the PBPD method. These frames are subjected to extensive nonlinear dynamic time-history analyses. The results show that the PBPD frames meet all the intended performance objectives in terms of yield mechanisms and target drifts, whereas the baseline frames show very poor response due to premature brace fractures leading to unacceptably large drifts and instability.

  8. Corrosion protection by sonoelectrodeposited organic films on zinc coated steel.

    Science.gov (United States)

    Et Taouil, Abdeslam; Mahmoud, Mahmoud Mourad; Lallemand, Fabrice; Lallemand, Séverine; Gigandet, Marie-Pierre; Hihn, Jean-Yves

    2012-11-01

    A variety of coatings based on electrosynthesized polypyrrole were deposited on zinc coated steel in presence or absence of ultrasound, and studied in terms of corrosion protection. Cr III and Cr VI commercial passivation were used as references. Depth profiling showed a homogeneous deposit for Cr III, while SEM imaging revealed good surface homogeneity for Cr VI layers. These chromium-based passivations ensured good protection against corrosion. Polypyrrole (PPy) was also electrochemically deposited on zinc coated steel with and without high frequency ultrasound irradiation in aqueous sodium tartrate-molybdate solution. Such PPy coatings act as a physical barrier against corrosive species. PPy electrosynthesized in silent conditions exhibits similar properties to Cr VI passivation with respect to corrosion protection. Ultrasound leads to more compact and more homogeneous surface structures for PPy, as well as to more homogeneous distribution of doping molybdate anions within the film. Far better corrosion protection is exhibited for such sonicated films.

  9. Mechanical and service properties of low carbon steels processed by severe plastic deformation

    Directory of Open Access Journals (Sweden)

    J. Zrnik

    2009-07-01

    Full Text Available The structure and properties of the 0,09% C-Mn-Si-Nb-V-Ti, 0,1% C-Mn-V-Ti and 0,09% C-Mo-V-Nb low-carbon steels were studied after cold equal-channel angular pressing (ECAP. ECAP leads to the formation of partially submicrocrystalline structure with a grain size of 150 – 300 nm. The submicrocrystalline 0,09% C-Mn-Si-Nb-V-Ti steel compared with the normalized steel is characterized by Re higher more than by a factor of 2 and by the impact toughness higher by a factor of 3,5 at a test temperature of -40°C. The plasticity in this case is somewhat lower. The high-strength state of the submicrocrystalline 0,1% C-Mn-V-Ti and 0,09% C-Mo-V-Nb steels after ECAP is retained up to a test temperature of 500°C. The strength properties at 600°C (i.e. the fire resistance of these steels are higher by 20-25% as compared to those of the undeformed steels. The strength of the 0,09% C-Mo-V-Nb steel at 600°C is substantially higher than that of the 0,1% C-Mn-V-Ti steel.

  10. Development of Non-Quenched Prehardened Steel for Large Section Plastic Mould

    Institute of Scientific and Technical Information of China (English)

    LUO Yi; WU Xiao-chun; MIN Yong-an; ZHU Zhu; WANG Hong-bin

    2009-01-01

    In order to meet the demand of prehardened steel for large section plastic mould and save energy, a non-quenched prehardened (NQP) steel is developed. The temperature field of a large block is researched by finite ele-ment method simulation and 9 test steels are designed in the laboratory. Their microstructures and hardness are in-vestigated when they are air cooled and control cooled at cooling rate similar to the simulation. The result shows that the hardness uniformity through section is closely correlated to bainitic hardenability for the NQP steel, and the hardness of one test steel (0.27C-1.95Mn-1.04Cr-0. 45Mo-0.1V) fluctuates between HRC 40 and 43 under both cooling conditions. The test steel has better machinability compared with C45 steel, and the NQP steel is produced successfully in the factory based on the laboratory results. Its microstructure is bainite, and it is distributed uniformly through the size of 460 mm×800 mm×3 200 mm.

  11. Optimization of the place of the plastic hinges by steel braces at RC buildings

    Science.gov (United States)

    Hatami, Farzad; Ragheb, Mohammad; Namazi, Meysam

    2012-12-01

    Usage of steel braces has become a solution not only for retrofitting of RC structures but as a method in designing of concrete frames in recent years. Although X-braced RC frames have been number of successful studies, but eccentric braced RC frames have not been studied seriously. Maybe it's because of the non ductile behaviour of concrete beams. In this article, a numerical study was conducted to evaluate performance of concrete frames, braced with eccentric steel brace with a vertical steel shear link. Vertical steel shear link eliminated shortcomings of non ductile concrete beam. Therefore 4, 8 and 12 storey concrete frames were designed and subjected to a push over analysis. Life safety level was chose to evaluate the frames and hinges performance. Results were compared with the same frames designed with X braces and moment resisting frame. Results indicated that steel braces shift the place of plastic hinges to be formed on the bracing members instead of columns and beams. Furthermore steel braces delayed the process of formation of first plastic hinge and column failure mechanism.

  12. Effect of Plasticizers on Properties of Rice Straw Fiber Film

    Institute of Scientific and Technical Information of China (English)

    Chen Hong-rui; Chen Hai-tao; Liu Shuang; Dun Guo-qiang; Zhang Ying

    2014-01-01

    In order to improve the properties of rice straw fiber film, one factor contrast test method was employed. Plasticizer type was chosen as input variable, dry tension strength and elongation, wet tension strength and elongation, bursting strength and tearing strength were chosen as indexes. The results showed that there were significant differences among the means of dry tension strength, dry elongation and bursting strength of different plasticizers; there were not significant differences among the means of wet tension strength, wet elongation and tearing strength of different plasticizers; for dry tension strength and elongation, glycerol had a significant difference with sorbitol and PEG, no significant difference was observed between sorbitol and PEG, dry tension strength added glycerol had been reduced 6.8% compared with that added sorbitol, reduced 9.5% compared with that added PEG; elongation had been improved 6.1% and 9.4%, respectively; for bursting strength, sorbitol had a significant difference with glycerol and PEG, no significant difference was observed between glycerol and PEG; bursting strength added glycerol and added PEG had been improved 6.9% and 5.6%, respectively compared with that of the added sorbitol. The results provided a theoretical reference for further improving the straw fiber film manufacturing process.

  13. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols

    DEFF Research Database (Denmark)

    Cervera, Mirna Fernández; Karjalainen, Milja; Airaksinen, Sari

    2004-01-01

    The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer...... in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly...

  14. [Reducing nutrients loss by plastic film covering chemical fertilizers].

    Science.gov (United States)

    Chen, Huo-jun; Wei, Ze-bin; Wu, Qi-tang; Zeng, Shu-cai

    2010-03-01

    With the low utilization rate of fertilizers by crop and the growing amount of fertilizer usage,the agricultural non-point source pollution in China is becoming more and more serious. The field experiments planting corns were conducted, in which the applied chemical fertilizers were recovered with plastic film to realize the separation of fertilizers from rain water. In the experiments, the influences of different fertilizing treatments on the growing and production of sweet corn were observed. The fertilizer utilization rate and the nutrient contents in surface run-off water with and without the film covering were also determined. Results showed that, with only 70% of the normal amount of fertilizers,the sweet corn could already get high yield under the experimental soil conditions. Soil analysis after corn crops showed that the amounts of available N, P and K in the soil increased obviously with the film-covering, and the decreasing order was: 100% fertilizers with film-covering > 70% fertilizers with film-covering > 100% fertilizers, 70% fertilizers > no fertilizer. The average utilization coefficients of fertilizers by the crop were 42%-87%, 0%-3%, 5%-15% respectively for N, P and K. It was higher with film-covering than that without covering, especially for the high fertilization treatment. Analysis of water samples collected for eight run-off events showed that, without film-covering, N, P and K average concentrations in the runoff waters with fertilizations were 27.72, 2.70 and 7.07 mg x L(-1), respectively. And they were reduced respectively by 39.54%, 28.05%, 43.74% with the film-covering. This can give significant benefits to the decrease of agricultural non-point source pollution and water eutrophication.

  15. Analysis of Phthalate Esters in Air, Soil and Plants in Plastic Film Greenhouse

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The phthalate esters such as DMP, DEP, DBP and DEHP in air, soil and plant samples in plastic film greenhouse were clean up with fine silica gel column and determined with HPLC. It was found that the concentrations of PEs in air and soil samples in plastic film greenhouse are much higher than those of contrast samples. But concentrations of PEs in plants in plastic film greenhouse are not remarkably affected by the pollution of air and soil.

  16. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    Science.gov (United States)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  17. Physical evaluation of biodegradable films of calcium alginate plasticized with polyols

    Directory of Open Access Journals (Sweden)

    A. A. Santana

    2013-12-01

    Full Text Available The influence of different polyols as plasticizers of alginate films on their physical attributes like moisture content, soluble mass in water, water uptake, water vapor permeability, opacity and mechanical properties were determined and the results discussed based on scanning electron microscopy observations and glass transition temperature. The alginate films were obtained by casting, using three different gramatures. Calcium crosslinked and non-reticulated films were considered. The films plasticized with glycerol and xylitol were more hygroscopic than the films with mannitol. The lowest water vapor permeability values were found for films plasticized with mannitol, at all studied thicknesses. The films plasticized with glycerol and xylitol showed very similar functional attributes regarding their application as food wrappings. The Ca2+ crosslinked mannitol films showed the highest tensile strength at rupture (>140 MPa.

  18. Plastic and damage behaviour of a high strength X100 pipeline steel: Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, B. [Centre des Materiaux, Mines Paris, Paristech, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Luu, T.T. [Centre des Materiaux, Mines Paris, Paristech, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Applied Mechanics Division, IFP, 92852 Rueil-Malmaison (France); Perrin, G. [Applied Mechanics Division, IFP, 92852 Rueil-Malmaison (France); Pineau, A. [Centre des Materiaux, Mines Paris, Paristech, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Besson, J. [Centre des Materiaux, Mines Paris, Paristech, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France)], E-mail: jacques.besson@ensmp.fr

    2008-05-15

    The purpose of this work is to develop a constitutive model integrating anisotropic behaviour and ductile damage for a X100 pipeline steel. The model is based on a set of experiments on various smooth, notched and cracked specimens and on a careful fractographic examination of the damage mechanisms. The model is based on an extension of the Gurson-Tvergaard-Needleman model which includes plastic anisotropy. Provided brittle delamination is not triggered, the developed model can accurately describe the plastic and damage behaviour of the material. The model is then used as a numerical tool to investigate the effect of plastic anisotropy and delamination on ductile crack extension. It is shown in particular that it is not possible to obtain a unified description of rupture properties for notched and cracked specimens tested along different directions without accounting for plastic anisotropy.

  19. Micro-thermomechanical constitutive model of transformation induced plasticity and its application on armour steel

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.Y. [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: suncy@me.ustb.edu.cn; Fang, G.; Lei, L.P.; Zeng, P. [Key Laboratory of Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-01-15

    Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J{sub 2} flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results.

  20. A physicochemical study of sugar palm (Arenga Pinnata) starch films plasticized by glycerol and sorbitol

    Science.gov (United States)

    Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri

    2016-02-01

    The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.

  1. Magnetic properties of cementite and the coercive force of carbon steels after plastic deformation and annealing

    Science.gov (United States)

    Ul'Yanov, A. I.; Chulkina, A. A.

    2009-05-01

    Magnetic hysteresis properties of cementite obtained by the method of mechanical alloying have been studied. It is shown that the strongly deformed cementite is in a low-coercivity state, and the cementite annealed at 500°C is in a high-coercivity state. The need to allow for the contribution of the coercivity of cementite to the coercive force of high-carbon steel is shown. Taking into account this point of view, the behavior of the coercive force depending on the degree of cold plastic deformation by drawing is explained for a number of carbon steels with a structure of fine platelike and globular cementite.

  2. Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Fanny [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Martin, Guilhem, E-mail: guilhem.martin@simap.grenoble-inp.fr [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Lhuissier, Pierre; Bréchet, Yves; Tassin, Catherine [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Roch, François [Areva NP, Tour Areva, 92084 Paris La Défense (France); Todeschini, Patrick [EDF R& D, Avenue des Renardières, 77250 Moret-sur-Loing (France); Simar, Aude [Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2016-06-14

    In dissimilar welds between low-alloy steel and stainless steel, the post-weld heat-treatment results in a high variety of microstructures coexisting around the fusion line, due to carbon diffusion and carbides dissolution/precipitation. The local constitutive laws in the vicinity of the fusion zone were identified by micro tensile specimens for the sub-millimeter sized zones, equivalent bulk materials representing the decarburized layer using both wet H{sub 2} atmosphere and diffusion couple, and nano-indentation for the carburized regions (i.e. the martensitic band and the austenitic region). The decarburized zone presents only 50% of the yield strength of the low-alloy steel heat affected zone and a ductility doubled. The carburized zones have a yield strength 3–5 times higher than that of the low-alloy steel heat affected zone and have almost no strain hardening capacity. These properties result in heterogeneous plastic deformation happening over only millimeters when the weld is loaded perpendicularly to the weld line, affecting its overall behavior. The constitutive laws experimentally identified were introduced as inputs into a finite elements model of the transverse tensile test performed on the whole dissimilar weld. A good agreement between experiments and simulations was achieved on the global stress-strain curve. The model also well predicts the local strain field measured by microscale DIC. A large out-of-plane deformation due to the hard carburized regions has also been identified.

  3. FINITE ELEMENT ANALYSIS OF SUBSTRATE LOCAL PLASTIC DEFORMATION INDUCED BY CRACKED THIN HARD FILM

    Institute of Scientific and Technical Information of China (English)

    Zhu Youli; Ro(z)niatowski K; Kurzydlowski K; Huang Yuanlin; Xu Binshi

    2004-01-01

    It has been postulated that, with tensile loading conditions, micro-cracks on thin hard film act as stress concentrators enhancing plastic deformation of the substrate material in their vicinity. Under favorable conditions the localized plastic flow near the cracks may turn into macroscopic plastic strain thus affects the plasticity behaviors of the substrate. This phenomenon is analyzed quantitatively with finite element method with special attention focused on the analysis and discussion of the effects of plastic work hardening rate, film thickness and crack depth on maximum plastic strain, critical loading stress and the size of the local plastic deformation zone. Results show that micro-cracks on thin hard film have unnegligible effects on the plasticity behaviors of the substrate material under tensile loading.

  4. Influence of plastic deformation on low temperature surface hardening of stainless steel by gaseous nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... plastically deformed to different equivalent strains by uniaxial tension. Gaseous nitriding of the strained material was performed in ammonia at atmospheric pressure in the temperature range 693-703 K. Microstructural characterization of the as-deformed states and the nitrided case included X-ray diffraction...

  5. Effect of plasticizer on surface of free films prepared from aqueous solutions of salts of cationic polymers with different plasticizers

    Science.gov (United States)

    Bajdik, János; Fehér, Máté; Pintye-Hódi, Klára

    2007-06-01

    Acquisition of a more detailed understanding of all technological processes is currently a relevant tendency in pharmaceutical technology and hence in industry. A knowledge of film formation from dispersion of polymers is very important during the coating of solid dosage forms. This process and the structure of the film can be influenced by different additives. In the present study, taste-masking films were prepared from aqueous citric acid solutions of a cationic polymer (Eudragit ® E PO) with various hydrophilic plasticizers (glycerol, propylene glycol and different poly(ethylene glycols)). The mechanical properties, film thickness, wetting properties and surface free energy of the free films were studied. The aim was to evaluate the properties of surface of free films to predict the arrangement of macromolecules in films formed from aqueous solutions of salts of cationic polymers. A high molecular weight of the plasticizer decreased the work of deformation. The surface free energy and the polarity were highest for the film without plasticizer; the hydrophilic additives decreased these parameters. The direction of the change in polarity (a hydrophilic component caused a decrease in the polarity) was unexpected. It can be explained by the change in orientation of the macromolecules, a hydrophobic surface being formed. Examination of the mechanical properties and film thickness can furnish additional results towards a knowledge of film formation by this not frequently applied type of polymer from aqueous solution.

  6. Modeling texture development during cold rolling of IF steel by crystal plasticity finite element method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals,Taylor-type and finite element polycrystai models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finte element modeling,based on the rate dependent crystal constitutive equations.Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the development of rolling texture of interstitial-flee steel (IF steel) at various reductions.The modeled results show a good agreement with the experimental results.With increasing reduction,the predicted and experimental rolling textures tend to sharper,and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.Conclusions are obtained that rolling textures calculated with 48 {110}+{ 112}+{123} slip systems are more approximate to EBSD results.

  7. Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.Y. [Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen (China); Department of Mechanical Engineering, The University of Hong Kong, Hong Kong (China); Huang, W., E-mail: whuang@szu.edu.cn [Department of Civil Engineering, Shenzhen University, Shenzhen (China); Huang, M.X., E-mail: mxhuang@hku.hk [Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen (China); Department of Mechanical Engineering, The University of Hong Kong, Hong Kong (China)

    2015-03-25

    The increase of strain rate generally enhances dislocation evolution in face-centred cubic (FCC) metals. However, by synchrotron X-ray diffraction experiments, the present work demonstrates for the first time that a higher strain rate leads to a lower dislocation density in a twinning-induced plasticity steel with an FCC structure. This unexpected suppression of dislocation evolution has been attributed to the temperature increase due to dissipative heating at high strain rate deformation.

  8. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    Science.gov (United States)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  9. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    Science.gov (United States)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  10. Plastic flow properties and fracture toughness characterization of unirradiated and irradiated tempered martensitic steels

    Science.gov (United States)

    Spätig, P.; Bonadé, R.; Odette, G. R.; Rensman, J. W.; Campitelli, E. N.; Mueller, P.

    2007-08-01

    We investigate the plastic flow properties at low and high temperature of the tempered martensitic steel Eurofer97. We show that below room temperature, where the Peierls friction on the screw dislocation is active, it is necessary to modify the usual Taylor's equation between the flow stress and the square root of the dislocation density and to include explicitly the Peierls friction stress in the equation. Then, we compare the fracture properties of the Eurofer97 with those of the F82H steel. A clear difference of the fracture toughness-temperature behavior was found in the low transition region. The results indicate a sharper transition for Eurofer97 than for the F82H. Finally, the shift of the median toughness-temperature curve of the F82H steel was determined after two neutron irradiations performed in the High Flux Reactor in Petten.

  11. Severe plastic deformation through adiabatic shear banding in Fe-C steels

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D; Syn, C; Sherby, O

    2004-12-01

    Severe plastic deformation is observed within adiabatic shear bands in iron-carbon steels. These shear bands form under high strain rate conditions, in excess of 1000 s{sup -1}, and strains in the order 5 or greater are commonly observed. Studies on shear band formation in a ultrahigh carbon steel (1.3%C) are described in the pearlitic condition. A hardness of 11.5 GPa (4600 MPa) is obtained within the band. A mechanism is described to explain the high strength based on phase transformation to austenite from adiabatic heating resulting from severe deformation. Rapid re-transformation leads to an ultra-fine ferrite grain size containing carbon principally in the form of nanosize carbides. It is proposed that the same mechanism explains the ultrahigh strength of iron-carbon steels observed in ball-milling, ball drop tests and in severely deformed wires.

  12. The adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel

    NARCIS (Netherlands)

    Buijnsters, J.G.; Shankar, P.; Enckevort, W.J.P. van; Schermer, J.J.; Meulen, J.J. ter

    2004-01-01

    Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the adhe

  13. Effect of dynamic plastic deformation on microstructure and annealing behaviour of modified 9Cr-1Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg V.; Tao, N. R.;

    2015-01-01

    The effect of dynamic plastic deformation on the microstructure of a modified 9Cr - 1Mo steel has been investigated in comparison with the effect of quasi- static compression. It is found that the boundary spacing after dynamic plastic deformation is smaller and the hardness is higher than those ...

  14. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional...

  15. Metal oxide films on glass and steel substrates

    CERN Document Server

    Sohi, A M

    1987-01-01

    in the pH8 electrolyte supports the view that the rate limiting reduction reaction is possibly oxygen (or water) reduction although some contribution from an organic 'impurity' cannot be ruled out. Coatings of Fe sub 3 O sub 4 on mild steel have been prepared by CVD using pneumatic spraying techniques and the corrosion behaviour of coated electrodes in organic-phosphate electrolyte (pH8) has been examined. A variety of thin (10-1000nm) metal oxide films have been deposited on flat glass substrates by the pyrolysis of an aerosol of metal acetylacetonates in a suitable carrier. The optical characteristics and thickness of the films have been measured and particular interest has centered on the use of a novel pin on disc apparatus to measure the physical durability of such thin films. Characteristic friction/penetration force traces have been established for 1st Series transition metal oxide films and some ranking in terms of 'hardness' established. The use of SnO sub 2 - coated glass for electrodes in a light m...

  16. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels

    Science.gov (United States)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2004-08-01

    Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

  17. Effects of Aluminum Addition on Tensile and Cup Forming Properties of Three Twinning Induced Plasticity Steels

    Science.gov (United States)

    Hong, Seokmin; Shin, Sang Yong; Kim, Hyoung Seop; Lee, Sunghak; Kim, Sung-Kyu; Chin, Kwang-Geun; Kim, Nack J.

    2012-06-01

    In the present study, a high Mn twinning induced plasticity (TWIP) steel and two Al-added TWIP steels were fabricated, and their microstructures, tensile properties, and cup formability were analyzed to investigate the effects of Al addition on deformation mechanisms in tensile and cup forming tests. In the high Mn steel, the twin formation was activated to increase the strain hardening rate and ultimate tensile strength, which needed the high punch load during the cup forming test. In the Al-added TWIP steels, the twin formation was reduced, while the slip activation increased, thereby leading to the decrease in strain hardening rate and ultimate tensile strength. As twins and slips were homogeneously formed during the tensile or cup forming test, the punch load required for the cup forming and residual stresses were relatively low, and the tensile ductility was sufficiently high even after the cup forming test. This indicated that making use of twins and slips simultaneously in TWIP steels by the Al addition was an effective way to improve overall properties including cup formability.

  18. An Electrochemical Study on the Corrosion Inhibition of Stainless Steel by Polyaniline Film

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Lin NIU; Qiu Hong LI; Su Xiang WU; Feng Hua WEI

    2004-01-01

    Polyaniline(PANI) film was electrosynthesized on 304 stainless steel by cyclic voltammetry using aqueous oxalic acid as supporting electrolyte. The potential sweep rates were changed to achieve the PANI film with different thickness and structures. Protective properties of the PANI film for corrosion of stainless steel in 3% NaCl aqueous solution were investigated by monitoring potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS).The results showed that the PANI film which was formed with lower sweep rate led to more positive shift of corrosion potential and greater charge transfer resistance, reflecting higher inhibition for corrosion of the stainless steel.

  19. Towards ultra-high ductility TRIP-assisted multiphase steels controlled by strain gradient plasticity effects

    Science.gov (United States)

    Hatami, M. K.; Pardoen, T.; Lacroix, G.; Berke, P.; Jacques, P. J.; Massart, T. J.

    2017-01-01

    TRansformation Induced Plasticity (TRIP) is a very effective mechanism to increase the strain hardening capacity of multiphase steels containing a fraction of metastable austenite, leading to both high strength and large uniform elongation. Excellent performances have been reached in the past 20 years, with recent renewed interest through the development of the 3rd generation of high strength steels often involving a TRIP effect. The microstructure and composition optimization is complex due to the interplay of coupled effects on the transformation kinetics and work hardening such as phase stability, size of retained austenite grains, temperature and loading path. In particular, recent studies have shown that the TRIP effect can only be quantitatively captured for realistic microstructures if strain gradient plasticity effects are taken into account, although direct experimental validation of this claim is missing. Here, an original computational averaging scheme is developed for predicting the elastoplastic response of TRIP aided multiphase steels based on a strain gradient plasticity model. The microstructure is represented by an aggregate of many elementary unit cells involving each a fraction of retained austenite with a specified stability. The model parameters, involving the transformation kinetics, are identified based on experimental tensile tests performed at different temperatures. The model is further assessed towards original experiments, involving temperature changes during deformation. A classical size independent plasticity model is shown unable to capture the TRIP effect on the mechanical response. Conversely, the strain gradient formulation properly predicts substantial variations of the strain hardening with deformation and temperature, hence of the uniform elongation in good agreement with the experiments. A parametric study is performed to get more insight on the effect of the material length scale as well as to determine optimum transformation

  20. Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses.

    Science.gov (United States)

    Fu, Xiaowei; Du, Qizhen

    2011-11-09

    Uptake of di-(2-ethylhexyl) phthalate (DEHP) of nine vegetables including potherb mustard, bok choy, celery, spinach, cabbage, leaf of tube, lettuce, garlic, and edible amaranth in plastic film greenhouses with different plastic films, film thickness, greenhouse age, and greenhouse height was studied. The results showed that the higher the DEHP content of film, the thicker the film, the lower the height of the greenhouse, and the younger the age of the greenhouse were, the higher the DEHP concentration of vegetables was. The results afford significant information for production of safe vegetables with low level DEHP contamination.

  1. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China

    Science.gov (United States)

    Liu, E. K.; He, W. Q.; Yan, C. R.

    2014-09-01

    Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.

  2. EFFECT OF PLASTICIZERS ON MECHANICAL PROPERTIES OF EDIBLE FILM FROM JANENG STARCH – CHITOSAN

    Directory of Open Access Journals (Sweden)

    Narlis Juandi

    2016-10-01

    Full Text Available The interest in the development of edible and biodegradable films has increased because it is every day more evident that non degradable are doing much damage to the environment. In this research, edible films were based on blends of janeng starch in different proportions, added of palm oil or glycerol, which were used as plasticizers. The objective was to study the effect of two different plasticizers, palm oil and glycerol of edible film from janeng starch–chitosan on the mechanical properties and FTIR spectra. Increasing concentration of glycerol as plasticizer resulted tend to increased tensile strength and elongation at break. The tensile strength and elongation at break values for palm oil is higher than glycerol as plasticizer at the same concentration. FTIR spectra show the process of making edible film from janeng starch–chitosan with palm oil or glycerol as plasticizers are physically mixing in the presence of hydrogen interactions between chains.

  3. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    Science.gov (United States)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  4. Experimental study of Electro-Plastic Effect on Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xun; Lan, Shuhuai; Ni, Jun, E-mail: junni@umich.edu

    2013-10-10

    Application of Advanced High Strength Steels (AHSS) into vehicle structures calls for innovative manufacturing processes. In terms of reducing deformation resistance through external energy, Electro-Plastic Effect (EPE) provides a potential alternative to traditional thermal softening phenomenon. In this work, effectiveness of EPE on one group of AHSS, Transformation Induced Plasticity (TRIP) Steel, was evaluated. It was found that EPE cannot be effectively initiated until the current density reaches a threshold value between 7.4 A/mm{sup 2} and 11.4 A/mm{sup 2}. Besides, the softening phenomenon is more distinct at larger strains. Underlying mechanisms are explained from perspectives of dislocation multiplication, gliding and mechanical twinning. The inevitable Joule heating phenomenon associated with current was suppressed with forced air cooling and the temperature distribution inside the tensile specimen was numerically calculated with a coupled Finite Element Model. Effectiveness of EPE rather than thermal softening or expansion was further proved with the larger flow stress reduction under higher current density and shorter pulses at same temperature increase. Hollomon equation was adopted to model the observed stress strain relationships. Since material properties of TRIP steels are directly related to the phase transformation from retained austenite into martensite, volume fraction of retained austenite was quantitatively measured by X-ray Diffraction (XRD). It was found that the applied current retarded martensitic transformation process. Metallographic analysis was further performed and phenomena of change of grain structures and phase distribution were hardly observable.

  5. Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film.

    Science.gov (United States)

    Panda, Brajabihari; Parihar, Aditi Singh; Mallick, Subrata

    2014-06-01

    Effect of different hydrophilic plasticizers on drug crystallinity of hydroxypropyl methylcellulose (HPMC) matrix film was studied. HPMC films containing telmisartan using different plasticizers were prepared by casting method. Drug crystallinity in the films was examined using polarized light microscopy (PLM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) to describe their phase behavior/solid state miscibility/crystal growth and drug-polymer-plasticizer interaction. HPMC and plasticizer were compatible with the drug and no phase separation was observed upon solvent evaporation. Plasticized-HPMC contributed a major role in the significant inhibition of crystal growth of the drug in the film. The triethanolamine film produced a relatively smooth surface in comparison to the other films in the submicron level. The films have not shown any significant changes even after exposure to stress (40°C/75% RH, 6 w). Triethanolamine as plasticizer brought about amorphization of telmisartan to the maximum extent in the film which is technologically more advantageous than the others owing to its anticipated better bioavailability.

  6. Preparation and Characterization of Nano-Structured SiO2 Thin Films on Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Rong Chun XIONG; Dong Zhou YAN; Gang WEI

    2003-01-01

    Nano-structured SiO2 thin films were prepared on the surface of carbon steel for the first time by LPD. The compositions of the films were analyzed by XPS, and the surface morphology of the thin films were observed by AFM. The thin films were constituted by compact particles of SiO2, and there was no Fe in the films. In the process of film forming, the SiO2 colloid particles were deposited or absorbed directly onto the surface of carbon steel substrates that were activated by acid solution containing inhibitor, and corrosion of the substrates was avoided. The nano-structured SiO2 thin films that were prepared had excellent protective efficiency to the carbon steel.

  7. The Effects of plasticizers and palmitic acid toward the properties of the carrageenan Film

    Science.gov (United States)

    Heru Wibowo, Atmanto; Listiyawati, Oktaviana; Purnawan, Candra

    2016-02-01

    Varied plasticizers and palmitic acid additive have been added in the carrageenan film. The film was made by mixing of the carrageenan and plasticizers (glycerol, polyethylene glycol, polyvinyl alcohol) with composition of 92:3, 90:6, 87:9, 84:12, 81:15(%w/w) and in the presence of palmitic acid as additive with 1%, 2%, 3%, 4%, 5% of total weight. Casting method was used for the film molding and drying at 60oC with the oven for 12 hours. To investigate the effects of plasticizers and additive, some mechanical tests on film were performed. The test result concludes that plasticizers in the film decreased the tensile strength and increased the elongation break of the carrageenan film. The additive of palmitic acid decreased the tensile strength of the carrageenan film and also decreased the-the water absorbance of the film. The highest tensile strength of films made was with the formulation of carrageenan: PEG with composition of 92:3 (% w/w). The highest elongation break of the film was for carrageenan:PVA with the composition of 81: 15 (%w/w) and carrageenan:palmitic acid:PEG with the composition of 92: 3: 1 (%w/w). The lowest water absorption of the film was achieved for carrageenan:PVA:palmitic acid with the composition of 87: 3: 5 (%w/w).

  8. The effect of plastic constraint on the initiation of ductile tears in shipbuilding structural steels

    Institute of Scientific and Technical Information of China (English)

    LI Qing-fen; WANG Peng; REN Zheng-yi; LONG Ping

    2003-01-01

    In this paper, the effect of plastic constraint on the initiation of ductile tears in four different shipbuilding structural steels has been experimentally studied by measuring the J-integral and crack opening displacement COD at initiation in three-point bend specimens with deep and shallow notches. Experimental results of seven groups of different strength alloy steels show that both δì and Jì values of ductile tear from the shallow crack specimens which have less constraint flow field are significantly higher than those of deeply notched specimens. Slip-line-field analysis shows that, for shallow crack, the hydrostatic stress is lower than that from standard deeply cracked bend specimen, which develops a high level of crack tip constraint, provides a lower bound estimate of toughness, and will ensure an unduly conservative approach when applied to structural defects, especially if initiation values of COD and J-integral are used.

  9. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    Science.gov (United States)

    Leuning, N.; Steentjes, S.; Schulte, M.; Bleck, W.; Hameyer, K.

    2016-11-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment.

  10. The influence of the residual copper on the pipes steel hot plasticity according to environmental requirements

    Directory of Open Access Journals (Sweden)

    Rusănescu C.O.

    2013-01-01

    Full Text Available Considering the importance of gaseous and/or liquid fuels impact on the environment, the resistance of pipelines at hot plastic deformation is important. Therefore, in order to avoid or reduce any adverse impact on the environment, the influence of residual copper on hot deformability of steel pipes was investigated in this paper. The negative copper influence was experimentally proved using torsion deformation at temperatures above 1000o, under the air and argon atmosphere. The samples were heated and then deformed at different temperatures with constant deformation rate. Also, structural analysis of investigated materials was done, using metallographic and SEM analysis.

  11. Evolution of oxide nanoparticles during dynamic plastic deformation of ODS steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, Nairong;

    2014-01-01

    The microstructure as well as the deformation behavior of oxide nanoparticles has been analyzed in the ferritic ODS steel PM2000 after compression by dynamic plastic deformation (DPD) to different strains. A dislocation cell structure forms after deformation to a strain of 1.0. DPD to a strain of 2.......1 results in nanoscale lamellae with an average lamellar spacing of approximately 70 nm. During DPD oxide nanoparticles, identified as yttrium aluminum perovskite YAlO3, are found to deform differently depending on their size. Whereas particles with a size of less than 15 nm change their shape and aspect...

  12. Effect of transient change in strain rate on plastic flow behaviour of low carbon steel

    Indian Academy of Sciences (India)

    A Ray; P Barat; P Mukherjee; A Sarkar; S K Bandyopadhyay

    2007-02-01

    Plastic flow behaviour of low carbon steel has been studied at room temperature during tensile deformation by varying the initial strain rate of 3.3 × 10-4 s-1 to a final strain rate ranging from 1.33 × 10-3 s-1 to 2 × 10-3 s-1 at a fixed engineering strain of 12%. Haasen plot revealed that the mobile dislocation density remained almost invariant at the juncture where there was a sudden increase in stress with a change in strain rate and the plastic flow was solely dependent on the velocity of mobile dislocations. In that critical regime, the variation of stress with time was fitted with a Boltzmann type Sigmoid function. The increase in stress was found to increase with final strain rate and the time elapsed in attaining these stress values showed a decreasing trend. Both of these parameters saturated asymptotically at a higher final strain rate.

  13. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Espejel, A. [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Dominguez-Crespo, M.A. [Instituto Politecnico Nacional, CICATA-Unidad Altamira-Tamaulipas, km 14.5, Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, Tamps (Mexico); Cabrera-Sierra, R. [Instituto Politecnico Nacional, Departamento de Ingenieria Quimica Industrial, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Rodriguez-Meneses, C. [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico); Arce-Estrada, E.M., E-mail: earce@ipn.m [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Ed. 7, Zacatenco 07738, Mexico, D.F. (Mexico)

    2010-07-15

    Corrosion films formed by voltammetry using different switching potentials and by immersion on API-X52 pipeline steel in simulated acid sour media (NACE ID182) have been characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Linear Polarization and Electrochemical Impedance Spectroscopy (EIS) techniques. XRD and EDS analysis showed that the films are mainly composed of sulphide compounds (mackinawite, troilite, marcasite and pyrite) as well as iron oxides, as steel damage increases. Across SEM micrographs the corrosion films formed by potentiodynamic and immersion tests are very similar, covering most of the steel. Polarization and EIS results corroborate poor behavior against corrosion.

  14. Caracterização por XPS de filmes passivos formados sobre aços de baixa liga em meio de bicarbonato XPS characterization of passive films formed on mild steels in bicarbonate medium

    Directory of Open Access Journals (Sweden)

    Valéria Almeida Alves

    2005-03-01

    Full Text Available Passive films formed in bicarbonate solutions on carbon steel, chromium steel and high speed steel have been characterized by XPS. The passive films formed on chromium and high speed steels showed superior protective properties than those formed on carbon steel. It was confirmed by XPS that the steel composition influences the passive film composition. Chromium oxide and hydroxide, as well as molybdenum and tungsten oxides and hydroxides are present in the passive film of chromium steel and high speed steel, respectively, besides iron oxide and hydroxide. The more complex composition of the oxide film on high speed steel explains its electrochemical behaviour and highest corrosion resistance.

  15. Fatigue Hardening Behavior of 1.5 GPa Grade Transformation-Induced Plasticity-Aided Martensitic Steel

    Science.gov (United States)

    Sugimoto, Koh-Ichi; Hojo, Tomohiko

    2016-11-01

    Low cycle fatigue hardening/softening behavior of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-1.0 pct Cr-0.2 pct Mo-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel consisting of a wide lath martensite structure matrix and a narrow lath martensite-metastable retained austenite mixture was investigated. The steel exhibited notable fatigue hardening in the same way as TRIP-aided bainitic ferrite steel, although conventional martensitic steel such as SCM420 steel with the same tensile strength exhibited fatigue softening. The considerable fatigue hardening of this steel is believed to be associated mainly with the compressive internal stress that results from a difference in flow stress between the matrix and the martensite-austenite-like phase, with a small contribution from the strain-induced transformation and dislocation hardenings.

  16. Plastic Mechanisms for Thin-Walled Cold-Formed Steel Members in Eccentric Compression

    Directory of Open Access Journals (Sweden)

    Ungureanu Viorel

    2016-03-01

    Full Text Available The Eurocode 3 concerning thin-walled steel members divides members subjected to compression into four classes, considering their ductility. The representatives of the class C4 are short bars, for which the load-capacity corresponds to the maximum compression stresses less than the yield stress. There are bars prone to local buckling in the elastic range and they do not have a real post-elastic capacity. The failure at ultimate stage of such members, either in compression or bending, always occurs by forming a local plastic mechanism. This fact suggests the possibility to use the local plastic mechanism to characterise the ultimate strength of such members. The present paper is based on previous studies and some latest investigations of the authors, as well as the literature collected data. It represents an attempt to study the plastic mechanisms for members in eccentric compression about minor axis and the evolution of plastic mechanisms, considering several types of lipped channel sections.

  17. Adhesion of an Amylolytic Arthrobacter sp. to Starch-Containing Plastic Films

    OpenAIRE

    1990-01-01

    Cells of the amylolytic bacterium KB-1 (thought to be an Arthrobacter sp.) adhered (∼70%) to the surface of plastic films composed of starch-poly (methylacrylate) graft copolymer (starch-PMA), but did not adhere (

  18. Effects of UV-absorbing plastic films on greenhouse whitefly (Homoptera: Aleyrodidae).

    Science.gov (United States)

    Mutwiwa, Urbanus N; Borgemeister, Christian; von Elsner, Burkhard; Tantau, Hans-Juergen

    2005-08-01

    Studies were conducted to investigate the effects of ultraviolet (UV)-absorbing plastic films on the orientation and distribution behavior of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). In field experiments, small tunnels were constructed and covered with either an UV-transmitting (Thermilux) or UV-absorbing (K-Rose) plastic film. Results show that significantly more whiteflies were recorded in the tunnels with high compared with those with low UV intensities. Moreover, whitefly penetration and dispersion were less inside the UV-deficient tunnels. These results suggest that the type of plastic film used for greenhouse covers may have a significant influence on both the initial immigration and distribution of T. vaporariorum into greenhouses. The possibilities of using UV-absorbing plastic films for whitefly integrated pest management in greenhouses are discussed.

  19. Influence of severe plastic deformation on the structure and properties of ultrahigh carbon steel wire

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, D R; Sherby, O D; Syn, C K

    1999-07-01

    Ultrahigh-carbon steel wire can achieve very high strength after severe plastic deformation, because of the fine, stable substructures produce. Tensile strengths approaching 6000 MPa are predicted for UHCS containing 1.8%C. This paper discusses the microstructural evolution during drawing of UHCS wire, the resulting strength produced and the factors influencing fracture. Drawing produces considerable alignment of the pearlite plates. Dislocation cells develop within the ferrite plates and, with increasing strain, the size normal to the axis ({lambda}) decreases. These dislocation cells resist dynamic recovery during wire drawing and thus extremely fine substructures can be developed ({lambda} < 10 nm). Increasing the carbon content reduces the mean free ferrite path in the as-patented wire and the cell size developed during drawing. For UHCS, the strength varies as {lambda}{sup {minus}5}. Fracture of these steels was found to be a function of carbide size and composition. The influence of processing and composition on achieving high strength in these wires during severe plastic deformation is discussed.

  20. The test study of the shear strength of the interface between the steel and fiber reinforced plastic in composite guide

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X.; Guo, J. [Jiaozuo Institute of Technology, Jiaozuo (China)

    2001-02-01

    A new kind of composite guide has been put forward in the light of existing situation that the shaft furniture is corroded seriously. The guide is composed of a steel core which is protected from corrosion by a layer of glass fibre reinforced plastic. The sheer strength of the interface between the steel and the glass fibre reinforced plastic was tested. The test results indicates that the shear strength of the interface withstands the working conditions of the mining shaft, therefore, the performance of the composite materials will not be restricted due to poor shear strength of the interface. 4 refs., 5 figs., 2 tabs.

  1. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging.

    Science.gov (United States)

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-01-01

    In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.

  2. Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films.

    Science.gov (United States)

    Bonacucina, Giulia; Di Martino, Piera; Piombetti, Martina; Colombo, Angela; Roversi, Francesco; Palmieri, Giovanni F

    2006-04-26

    Film coating is a technique widely used in the pharmaceutical field to improve and modify technological and release characteristics of capsules, tablets and granules. In this paper physical and mechanical properties of free films of Amprac 01, obtained by the solvent cast method, were studied in order to investigate the film forming ability of this modified starch and the effects of the addition of different plasticizers. A morphological microscopical analysis (SEM) was performed to study surface properties of the films, while thermal analysis (DSC) was carried out to investigate the influence of different types of plasticizers on the glass transition temperature of the polymer. Then a mechanical characterization permitted to evaluate important parameters such as film crack resistance and deformation at break. Extensional creep/relaxation tests were also performed to investigate the viscoelastic characteristics. As clearly demonstrated by the T(g) values, the residual water present in the films acted as plasticizers, making possible the formation of free films characterised by good macroscopical and mechanical properties. Except glycerol, the kind and amount of the other tested plasticizers did not markedly improve the mechanical and crack resistance of the films.

  3. The Gibbs Thomson effect in magnetron-sputtered austenitic stainless steel films

    Science.gov (United States)

    Cusenza, S.; Borchers, C.; Carpene, E.; Schaaf, P.

    2007-03-01

    Magnetron sputtering of austenitic stainless steel AISI 316, which has a face-centred cubic structure (γ), leads to films exhibiting a body-centred cubic (α) structure or a mixture of α- and γ-phases. The microstructure of the deposited films was studied by Mössbauer spectroscopy, x-ray diffraction and transmission electron microscopy. With increasing deposition temperature a phase transformation from α- to γ-phase was observed in these films. Instantaneous recording of the electromotive force shows that nickel content and deposition temperature are crucial factors for phase stability and phase formation. In room temperature deposited stainless steel films, the phase transformation after vacuum annealing can be described by the Johnson-Mehl-Avrami kinetic model. These phase transformations in stainless steel films during annealing can be explained with the Gibbs-Thomson effect, where the grain boundary energy raises the Gibbs free energy.

  4. The Gibbs-Thomson effect in magnetron-sputtered austenitic stainless steel films

    Energy Technology Data Exchange (ETDEWEB)

    Cusenza, S [Universitaet Goettingen, II Physikalisches Institut, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Borchers, C [Universitaet Goettingen, II Physikalisches Institut, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Carpene, E [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Schaaf, P [Universitaet Goettingen, II Physikalisches Institut, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2007-03-14

    Magnetron sputtering of austenitic stainless steel AISI 316, which has a face-centred cubic structure ({gamma}), leads to films exhibiting a body-centred cubic ({alpha}) structure or a mixture of {alpha}- and {gamma}-phases. The microstructure of the deposited films was studied by Moessbauer spectroscopy, x-ray diffraction and transmission electron microscopy. With increasing deposition temperature a phase transformation from {alpha}- to {gamma}-phase was observed in these films. Instantaneous recording of the electromotive force shows that nickel content and deposition temperature are crucial factors for phase stability and phase formation. In room temperature deposited stainless steel films, the phase transformation after vacuum annealing can be described by the Johnson-Mehl-Avrami kinetic model. These phase transformations in stainless steel films during annealing can be explained with the Gibbs-Thomson effect, where the grain boundary energy raises the Gibbs free energy.

  5. TECHNICAL CHARACTERIZATION OF ECO-COMPATIBLE PLASTIC FILMS FOR SOIL SOLARIZATION: FOUR YEARS OF EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Salvatore Margiotta

    2007-12-01

    Full Text Available Soil solarization relies on solar radiation being converted to heat for the killing of soilborne pathogens. On one hand, this technique can be considered as an environmentally-friendly way to manage soilborne pests, as an alternative of methyl bromide phased-out in 2005, than using chemicals. On the other hand, high employment of traditional plastic sheets in agriculture causes the production of enormous quantities of waste, whose inappropriate management might have negative effects on the environment. In order to determine a reduction of the charge of plastic waste and to facilitate the waste disposal, one of the most interesting approaches, from an environmental point of view, lies in the location of innovatory plastic films such as co-extruded ultrathin films, which are able to reduce the plastic quantity to be managed, and biodegradable laminates, which after a first usage, will spontaneously start up a degradation process that avoids their collection and their consequent disposal. Beside the ecological proprieties of these innovative films, it is necessary to study their technical and agronomical behavior in order to determine their efficiency and the possibility to be used in place of the traditional plastic films. This paper represents a review of the researches carrier out by the Technical Economics Department of the University of Basilicata (Italy in the last years (1999, 2000, 2002 and 2003 on the technical performances of some innovative plastic films used for soil solarization.

  6. Switching of the electrical conductivity of plasticized PVC films under uniaxial pressure

    Science.gov (United States)

    Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.

    2011-11-01

    The jumplike switching of the electrical conductivity in wide-band-gap polymer (antistatic plasticized polyvinylchloride) films under uniaxial pressure is studied. In various plasticized PVC materials, the uniaxial pressure inducing a conductivity jump by four orders of magnitude or higher changes from several to several hundreds of bars, and this effect is retained at a film thickness of several hundred microns, which is two orders of magnitude larger than the critical film thicknesses known for other wide-band-gap polymers. In addition to the earlier interpretation of the conductivity anomalies in plasticized PVC, we proposed a phenomenological electron-molecular dynamic nanotrap model, in which local charge transfer is provided by mobile molecule segments in a plasticized polymer.

  7. Research of silane film cooperation with ZrO2 on electrogalvanized steel

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Changsheng LIU; Haiyun YU

    2012-01-01

    The silane composite film formed on electrogalvanized steel sheet by silane film with ZrO2 improve the corrosion resistance.The surface morphology,the structure and composition as well as the corrosion resistance of the prepared silane composite film were investigated by SEM,AFM,XPS and electrochemical test.The experimental results showed that the structure of the silane composite film was composed of Si-O-Si three-dimensional network doped with ZrO2 showing excellent corrosion resistance,because the structure of this kind of composite film has much less micropore which improves the uniform and density of the silane film.

  8. Direct writing patterns for electroless plated copper thin film on plastic substrates.

    Science.gov (United States)

    Liao, Ying-Chih; Kao, Zhen-Kai

    2012-10-24

    A simple and efficient method is developed to create conductive copper thin films on polymer surfaces. Instead of regular palladium colloid inks, micropatterns of silver nitrate inks, which serve as an activating agent for copper plating, were printed and dried on flexible plastic substrates. The printed plastic sheets were then immersed in an electroless copper plating bath at 55 °C for 2 min to create copper thin films on the printed patterns. The prepared copper films have an electrical conductivity as high as 83% of bulk copper and show good adhesion on PET or PI substrates.

  9. Adiabatic shear localization evolution for steel based on the Johnson-Cook model and gradient-dependent plasticity

    Institute of Scientific and Technical Information of China (English)

    Xuebin Wang

    2006-01-01

    Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural effect (interactions and interplay among microstructures) due to heterogeneity of texture plays an important role in the process of development or evolution of an adiabatic shear band with a certain thickness depending on the grain diameter. The distributed plastic shear strain and deformation in the shear band are derived and depend on the critical plastic shear strain corresponding to the peak flow shear stress, the coordinate or position, the internal length parameter, and the average plastic shear strain or the flow shear stress. The critical plastic shear strain, the distributed plastic shear strain, and deformation in the shear band are numerically predicted for a kind of steel deformed at a constant shear strain rate.Beyond the peak shear stress, the local plastic shear strain in the shear band is highly nonuniform and the local plastic shear deformation in the band is highly nonlinear. Shear localization is more apparent with the increase of the average plastic shear strain. The calculated distributions of the local plastic shear strain and deformation agree with the previous numerical and experimental results.

  10. Microstructure-property relationships and constitutive response of plastically graded case hardened steels

    Science.gov (United States)

    Klecka, Michael A.

    Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response

  11. Effect of CO2 on Atmospheric Corrosion of UNS G10190 Steel under Thin Electrolyte Film

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO2 has been studied in the lab using an atmospheric corrosion monitor(ACM) in combination with XRD and SEM observations of the surface of steel. The ACM study indicated that the corrosion rate of the steel increased with increasing carbon dioxide concentration. The XRD and SEM observations showed that no carbonate was found in the corrosion product on the steel surface. The corrosion product consisted of two layers, i. e., inner and outer layer. From the experimental results, it was concluded that CO2 played an enhancing role in the atmospheric corrosion of UNS G10190 steel. The film of the corrosion product showed slight protection.

  12. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel

    Science.gov (United States)

    Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna

    2015-10-01

    Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.

  13. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel.

    Science.gov (United States)

    Tesler, Alexander B; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna

    2015-10-20

    Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.

  14. Preparation and Haemocompatibility of Regular Array Microporous PLGA Films on Stainless Steel Surface

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Regular array microporous films from poly ( L-lactic-co-glycolic acid) ( PLGA ) were prepared on stainless steel substrates utilizing the condensation of water droplets on polymer solutions. The size of the pores and regularity can be controlled by atmospheric humidity and concentration of polymer solution. The microporons films have strong hydrophobicity and good haemocompatibility.

  15. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cissé, Sarata [CEA Saclay, DEN/DANS/DMN/SEMI, 91191 Gif-sur-Yvette Cedex (France); Laffont, Lydia, E-mail: lydia.laffont@ensiacet.fr [Institut CARNOT, CIRIMAT-ENSIACET, 4 allée Emile Monso, 31030 Toulouse Cedex 4 (France); Lafont, Marie-Christine [Institut CARNOT, CIRIMAT-ENSIACET, 4 allée Emile Monso, 31030 Toulouse Cedex 4 (France); Tanguy, Benoit [CEA Saclay, DEN/DANS/DMN/SEMI, 91191 Gif-sur-Yvette Cedex (France); Andrieu, Eric [Institut CARNOT, CIRIMAT-ENSIACET, 4 allée Emile Monso, 31030 Toulouse Cedex 4 (France)

    2013-02-15

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δε{sub p}/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  16. Fitting the flow curve of a plastically deformed silicon steel for the prediction of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sablik, M.J. [Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX 78238-5166 (United States)]. E-mail: msablik@swri.org; Landgraf, F.J.G. [Metallurgy and Mat. Sci. Dept., Escola Politecnica da USP, 05508-970, Sao Paulo, SP (Brazil); Magnabosco, R. [UNIFEI, Sao Bernardo de Campo, SP (Brazil); Fukuhara, M. [Instituto Nacional de Metrologia INMETRO, Duque de Caxias, RJ (Brazil); Campos, M.F. de [Instituto Nacional de Metrologia INMETRO, Duque de Caxias, RJ (Brazil); Machado, R. [Instituto Nacional de Metrologia INMETRO, Duque de Caxias, RJ (Brazil); Missell, F.P. [Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil)

    2006-09-15

    We report measurements and modelling of magnetic effects due to plastic deformation in 2.2% Si steel, emphasizing new tensile deformation data. The modelling approach is to take the Ludwik law for the strain-hardening stress and use it to compute the dislocation density, which is then used in the computation of magnetic hysteresis. A nonlinear extrapolation is used across the discontinuous yield region to obtain the value of stress at the yield point that is used in fitting Ludwik's law to the mechanical data. The computed magnetic hysteresis exhibits sharp shearing of the loops at small deformation, in agreement with experimental behavior. Magnetic hysteresis loss is shown to follow a Ludwik-like dependence on the residual strain, but with a smaller Ludwik exponent than applies for the mechanical behavior.

  17. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    Science.gov (United States)

    Monnet, Ghiath; Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae; Devincre, Benoit

    2009-11-01

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  18. A study of the heterogeneity of plastic deformation in IF steel by EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Allain-Bonasso, Nathalie, E-mail: allain-b@univ-metz.fr [LEM3, CNRS-UMR 7239, Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz-Cedex (France); Wagner, Francis, E-mail: francis.wagner@univ-metz.fr [LEM3, CNRS-UMR 7239, Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz-Cedex (France); Berbenni, Stephane, E-mail: stephane.berbenni@ensam.eu [LEM3, CNRS-UMR 7239, Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz-Cedex (France); Field, David P., E-mail: dfield@wsu.edu [School of Mechanical and Materials Engineering, Washington State University (United States)

    2012-06-30

    The objective of this experimental study is to recognize the roles of several quantities like grain size and orientation distributions on the development of plastic heterogeneities. The measurements are performed on an interstitial free (IF) steel by Electron Back Scattered Diffraction (EBSD) at different states of deformation (from 0% to 17% tensile deformation). For each level of deformation, EBSD maps are performed before and after the deformation on exactly the same area. Several parameters as the Grain Orientation Spread (GOS), the Grain Orientation Spread over the grain Diameter (GOS/D) and the Geometrically Necessary Dislocation (GND) densities can thus be determined for different subpopulations of grains ranked as a function of individual grains sizes to follow the evolution of the deformed-induced microstructure. It appears that none of these grain scale measures are deciding and that grain neighborhood interactions play an important role.

  19. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, Ghiath, E-mail: ghiathmonnet@yahoo.f [EDF-R and D, MMC, Avenue des Renardieres, 77818 Moret sur Loing (France); Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae [EDF-R and D, MMC, Avenue des Renardieres, 77818 Moret sur Loing (France); Devincre, Benoit [LEM, CNRS-ONERA, 29 av. de la division Leclerc, 92130 Chatillon (France)

    2009-11-15

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  20. Plasticization effect of triacetin on structure and properties of starch ester film.

    Science.gov (United States)

    Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin

    2013-05-15

    The aim of this work was to evaluate the plasticizing effect of triacetin on the structure and properties of starch ester film and further establish the structure-property relationships. The presence of triacetin resulted in multiple structure changes of the film. The mobility of macromolecular chain was increased to form scattered crystallite during the film formation process. The amorphous region was enlarged to contain more triacetin squeezed from crystalline region. The plasticization of triacetin and restriction of crystallite oppositely influenced the mobility of macromolecular chains in different regions. The thermal stability of triacetin changed along with its fluctuant interaction with macromolecules. Comparatively, the enhanced ether bond and the restriction from crystalline regions on the mobility of the amorphous chain consequently improved the thermal stability of the film matrix. The interaction between triacetin and starch ester was essential to film forming but unexpectedly lowered the triacetin stability.

  1. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Jorgensen, R.L.

    2009-01-01

    also decreases adhesion of other food-relevant bacteria. The manipulation of adhesion was not attributable to growth inhibitory effects. Chemical analysis revealed that the stainless steels were covered by homogenous layers of adsorbed proteins. The presence of tropomyocin was indicated by appearance......Preconditioning of stainless steel with aqueous cod muscle extract significantly impedes subsequent bacterial adhesion most likely due to repelling effects of fish tropomyosin. The purpose of this study was to determine if other food conditioning films decrease or enhance bacterial adhesion...... to stainless steel. Attachment of Pseudomonas fluorescens AH2 to stainless steel coated with water-soluble coatings of animal origin was significantly reduced as compared with noncoated stainless steel or stainless steel coated with laboratory substrate or extracts of plant origin. Coating with animal extracts...

  2. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    Science.gov (United States)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  3. Alternative plasticizers for the production of thermo-compressed agar films.

    Science.gov (United States)

    Sousa, Ana M M; Souza, Hiléia K S; Liu, LinShu; Gonçalves, Maria P

    2015-05-01

    Agar films were produced by thermo-compression using choline chloride (ChCl) as a plasticizer with urea. The three solid components were mixed together with the salt and urea (minor components) added to agar (main component) according to a fixed mass ratio of, respectively, 1.16:1:5. A central composite rotatable design (CCRD) with three parameters, 2(3), was used to evaluate the effects of temperature (X1; °C), time (X2; min) and applied load (X3; kN) of heat-pressing on the maximum tensile strength (TS) of the films (Y; MPa). Mixtures of urea and agar prepared at a mass ratio of 1:5 did not form homogeneous films suggesting the important plasticizing role of the salt. Heat-pressing the mixtures at more draconian conditions led to much darker and opaque films, with better mechanical resistance (higher values of TS). The most resistant film (∼ 15 MPa) was obtained at 140°C, 20 min and 176 kN. Selected films, including the optimal, showed similar water sorption profiles and close values of water vapor permeability (∼ 2.5-3.7 × 10(-9)gm(-1)s(-1)Pa(-1)). The fracture behavior and mechanical properties of the films were greatly affected by additional water plasticization when the films were stored at different conditions of relative humidity.

  4. Plasticity-induced martensitic transformation around fatigue cracks in type SUS304 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Y. [Dept. of Mechanical Engineering, Faculty of Engineering, Tokyo Univ. of Science, Shinjuku-ku, Tokyo (Japan); Iwasaki, Y.; Shimizu, T.; Kasumi, S. [Tokyo Univ. of Science (Japan)

    2003-07-01

    The presented study investigates plasticity-induced martensitic transformation around fatigue cracks in Type SUS304 austenitic stainless steel. Volume fraction of {alpha}' martensite transformed in uniformly stretched SUS304 plates was measured and expressed as a function of the applied strain level. The distributions of {alpha}' phase fraction in the plastic wake regions produced around fatigue cracks were then measured by ferrite scope in fatigued SUS 304 plate specimens. The results were compared with the distributions of vertical magnetic flux density B{sub z} above the fatigue cracks in the specimens magnetized by a strong magnetic field higher than 0.4 T. It was revealed that the B{sub z} distributions reflected the {alpha}' phase fraction distributions in the wake regions: i.e., the distance between two outermost peaks of the B{sub z} distributions had good linear correlations with real fatigue crack length, and the maximum and the minimum values of B{sub z} also showed good linear relationships with the applied stress intensity factor range {delta}K. These results imply that not only crack length but also the applied {delta}K level or the applied stress range {delta}{sigma} level can be detected effectively in an electromagnetic non-destructive way. (orig.)

  5. Investigation of conductivity switching upon action of monoaxial pressure on plasticized PVC films

    CERN Document Server

    Vlasov, D V; Krystob, V I; Vlasova, T V

    2010-01-01

    The effect of conductivity switching of wideband polymers -plasticized PVC films under the influence of mono axial pressure is experimentally investigated. For various plasticizers the value of monoaxial pressure, causing jumps of conductivity on four and more orders, changes from units to hundreds bars, and the effect remains at a thickness of films of an order of hundreds micron, that is on two orders more than critical thickness for others wideband polymers. In addition to the reasons stated earlier on the interpretation of anomalies of plastic compounds conductivity, the phenomenological electron-molecular model of dynamic traps is considered, in which local transfer of charges is carried out by mobile segments of the plasticized polymer molecules.

  6. Structure-property relation in HPMC polymer films plasticized with Sorbitol

    Science.gov (United States)

    Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.

    2013-06-01

    A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.

  7. The crystallography of carbide-free bainites in thermo-mechanically processed low Si transformation-induced plasticity steels

    Energy Technology Data Exchange (ETDEWEB)

    Pereloma, Elena V. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia)

    2014-12-05

    Highlights: • First EBSD study comparing ferrite in granular bainite and bainitic laths in two TRIP steels. • Both TRIP steels (base and with Nb–Ti additions) subjected to the same TMP schedule. • Crystallography of the ferrite in the 2 bainites studied using the K–S orientation relationship. • Variants in GB associated with self-accommodation. • BF variant selection linked to RA plastic accommodation and limited volume. - Abstract: Carbide-free bainites are important microstructural constituents in bainitic, nanobainitic and transformation-induced plasticity (TRIP) steels. A comparison of the crystallography of ferrite in granular bainite and bainitic ferrite lath morphologies, both of which were simultaneously present in a base and a Nb–Ti containing TRIP steel, has been carried out using electron back-scattering diffraction. Ferrite in granular bainite was characterised by the realisation of nearly all 24 variants of the Kurdjumov–Sachs orientation relationship; which in turn was associated with the self-accommodation of the transformation strain. On the other hand, bainitic ferrite comprised a mostly parallel lath structure between thick interlayers of retained austenite and exhibited variant selection such that one or more crystallographic packets are not realised and sometimes only 1–2 variants formed in a crystallographic packet. The variant selection in bainitic ferrite laths was associated with: (i) the plastic accommodation of transformation strain by retained austenite and, (ii) the limited available volume for its formation.

  8. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    Science.gov (United States)

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-02-03

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g(-1) plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g(-1) plastic was produced.

  9. Formation of TiO2 Modified Film on Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Laizhou SONG; Shizhe SONG; Zhiming GAO

    2004-01-01

    A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min,dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.

  10. Experiment and optimal design of a collection device for a residual plastic film baler

    Directory of Open Access Journals (Sweden)

    Qi NIU,Xuegeng CHEN,Chao JI,Jie WU

    2015-12-01

    Full Text Available It is imperative to carry out research on residual plastic film collection technology to solve the serious problem of farmland pollution. The residual plastic film baler was designed as a package for film strip collection, cleaning and baling. The collection device is a core component of the baler. Response surface analysis was used in this study to optimize the structure and working parameters for improving the collection efficiency of residual film and the impurity of film package. The results show that the factors affecting the collection rate of residual film and the impurity of the film package are the speed ratio (k between the trash removal roller and eccentric collection mechanism, the number (z and the mounting angle (θ of spring teeth in the same revolution plane. For the collection rate, the importance of the three factors are in the order, k>z>θ. Meanwhile, for the impurity, the importance of three factors are in the order, z>k>θ. When the speed ratio, the mounting angle and the number of spring teeth was set at 1.6º, 45º, and 8º, respectively, the collection rate of residual film was 88.9% and the impurity of residual film package was 14.2% for the baler.

  11. Aging properties of films of plasticized vital wheat gluten cast from acidic and basic solutions.

    Science.gov (United States)

    Olabarrieta, Idoia; Cho, Sung-Woo; Gällstedt, Mikael; Sarasua, Jose-Ramon; Johansson, Eva; Hedenqvist, Mikael S

    2006-05-01

    In order to understand the mechanisms behind the undesired aging of films based on vital wheat gluten plasticized with glycerol, films cast from water/ethanol solutions were investigated. The effect of pH was studied by casting from solutions at pH 4 and pH 11. The films were aged for 120 days at 50% relative humidity and 23 degrees C, and the tensile properties and oxygen and water vapor permeabilities were measured as a function of aging time. The changes in the protein structure were determined by infrared spectroscopy and size-exclusion and reverse-phase high-performance liquid chromatography, and the film structure was revealed by optical and scanning electron microscopy. The pH 11 film was mechanically more stable with time than the pH 4 film, the latter being initially very ductile but turning brittle toward the end of the aging period. The protein solubility and infrared spectroscopy measurements indicated that the protein structure of the pH 4 film was initially significantly less polymerized/aggregated than that of the pH 11 film. The polymerization of the pH 4 film increased during storage but it did not reach the degree of aggregation of the pH 11 film. Reverse-phase chromatography indicated that the pH 11 films were to some extent deamidated and that this increased with aging. At the same time a large fraction of the aged pH 11 film was unaffected by reducing agents, suggesting that a time-induced isopeptide cross-linking had occurred. This isopeptide formation did not, however, change the overall degree of aggregation and consequently the mechanical properties of the film. During aging, the pH 4 films lost more mass than the pH 11 films mainly due to migration of glycerol but also due to some loss of volatile mass. Scanning electron and optical microscopy showed that the pH 11 film was more uniform in thickness and that the film structure was more homogeneous than that of the pH 4 film. The oxygen permeability was also lower for the pH 11 film. The

  12. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    Science.gov (United States)

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations.

  13. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  14. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-02-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  15. Effect of slow plastic and elastic straining on sulphide stress cracking and hydrogen embrittlement of 3. 5% Ni steel and APL 5L X60 pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Erlings, J.G.; Groot, H.W. de; Nauta, J.

    1987-01-01

    A procedure is presented with which the roles of elastic and elastic-plastic straining in stress corrosion cracking (SCC) and hydrogen embrittlement (HE) can be determined. Premature failure of 3.5% Ni steels in sour and sweet environments due to SCC was only found when slow plastic straining was applied. With purely elastic slow straining the material remained crack-free, even in a buffered NACE solution. Depending on the sourness of the environment, the API 5L X60 pipeline material did not always need plastic straining to suffer HE cracking. Under none of the test conditions studied was hardened material susceptible to SCC or HE cracking. The non-hardened material tested was not susceptible to SCC in the various CO/sub 2/- and/or H/sub 2/S-containing media used.

  16. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N.R.;

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level...... of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization...

  17. Investigation on short-term burst pressure of plastic pipes reinforced by cross helically wound steel wires

    Institute of Scientific and Technical Information of China (English)

    Jin-yang ZHENG; Yong-jian GAO; Xiang LI; Xiu-feng LIN; Yu-bin LU; Yan-cong ZHU

    2008-01-01

    Plastic pipes reinforced by cross helically wound steel wires (PSP), which have exhibited excellent mechanical performance, consist of inner polyethylene (PE) layer, winding layer and outer PE layer. The winding layer is composed of two monolayers where steel wires are cross helically wound. An analytical procedure is developed to predict the short-term burst pressure of PSP as the monolayer is assumed to be elastic and orthotropic. The 3D anisotropic elasticity and Maximum Stress Failure Criterion are employed in the formulation of the elasticity problem. Good agreement between the theoretical results and the experimental data shows that the proposed approach can well predict the short-term burst pressure of PSP.

  18. Physical metallurgy of laser surface melted plastic mould steels: a case study

    Directory of Open Access Journals (Sweden)

    Colaço, R.

    1998-04-01

    Full Text Available The purpose of this paper is to illustrate the potential of laser surface melting to improve the surface characteristics of plastic mould steels, using a typical plastic mould steel (DIN X43Cr12 as a case study. After laser surface melting the microstructure of this steel is formed by fine dendrites of austenite partially transformed into martensite. Although the equilibrium solidification phase is 8- ferrite, the formation of primary austenite is kinetically favored and this phase tends to predominate at the high solidification speeds used in laser processing. It was observed that the volume fraction of retained austenite depends critically on the laser processing parameters, so that the microstructure can change from almost completely martensitic to almost completely austenitic by changing the laser processing parameters. Laser melted tool steels show remarkable secondary hardening after tempering at suitable temperatures. In DIN X42Cr13 the secondary hardening peak temperature after LSM (600°C is 100°C higher than after conventional heat treatment (500°C, due to the presence of large amounts of retained austenite. It was observed that this phase only destabilizes above 600°C, due to the precipitation of M7C3 and stress relieving. After destabilization, retained austenite transforms into martensite during cooling. Secondary hardening is due to the transformation of retained austenite into martensite and to the precipitation of M7C3 and M23C6 carbides.

    El objetivo del presente trabajo es ilustrar el potencial de la fusión superficial mediante láser para la mejora de las características estructurales de los moldes de acero para plásticos, centrándolo en el caso concreto del acero DIN X42Cr13. Tras el tratamiento de fusión superficial mediante láser, la microestructura del material está formada por dendritas finas de austenita parcialmente transformadas en

  19. Effects of Plastic Deformation and Stresses on Dilatation during the Martensitic Transformation in a B-bearing Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To provide data for improved modelling of the behaviour of steelcomponents in a simultaneous forming and quenching process, the effects of plastic deformation and stresses on dilatation during the martensitic transformation in a B-bearing steel were investigated. It was found that plastic deformation of austenite at high temperatures enhances ferrite formation significantly,and consequently, the dilatation decreases markedly even at a cooling rate of 280℃/s. The created ferritic-martensitic microstructure possesses clearly lower hardness and strength than the martensitic structure. Elastic stresses cause the preferred orientation in martensite to be formed so that diametric dilatation can increase by nearly 200% under axial compression.

  20. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... plastically deformed to different equivalent strains by uniaxial tension. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at 703 K (430 °C) and 693 K (420 °C) depending on the material. Microstructural characterization of the as-deformed states and the nitrided...

  1. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Joong-Ki [Graduate Institute of Ferrous Technology, POSTECH, Pohang 790-784 (Korea, Republic of); Steel Products Research Group, Technical Research Laboratories, POSCO, Pohang 790-785 (Korea, Republic of); Yi, Il-Cheol [Graduate Institute of Ferrous Technology, POSTECH, Pohang 790-784 (Korea, Republic of); Son, Il-Heon; Yoo, Jang-Yong [Steel Products Research Group, Technical Research Laboratories, POSCO, Pohang 790-785 (Korea, Republic of); Kim, Byoungkoo [Materials Technology Development Team, DHIC, Changwon 642-792 (Korea, Republic of); Zargaran, A. [Graduate Institute of Ferrous Technology, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Nack J., E-mail: njkim@postech.ac.kr [Graduate Institute of Ferrous Technology, POSTECH, Pohang 790-784 (Korea, Republic of)

    2015-09-17

    The effect of wire drawing on the microstructural evolution and deformation behavior of Fe–Mn–Al–C twinning-induced plasticity (TWIP) steel has been investigated. The inhomogeneities of the stress state, texture, microstructure, and mechanical properties were clarified over the cross section of drawn wire with the aid of numerical simulation, Schmid factor analysis, and electron backscatter diffraction (EBSD) techniques. The analysis of texture in drawn wire shows that a mixture of <111> and <100> fiber texture was developed with strain; however, the distribution of <111> and <100> fibers was inhomogeneous along the radial direction of wire due to uneven strain distribution and different stress state along the radial direction. It has also been shown that the morphology, volume fraction, and variant system of twins as well as twinning rate were dependent on the imposed stress state. The surface area was subjected to larger strain and more complex stress state involving compression, shear, and tension than the center area, resulting in a larger twin volume fraction and more twin variants in the former than in the latter at all the strain levels. While the surface area was saturated with twins at an early stage of drawing, the center area was not saturated with twins even at fracture, implying that the fracture of wire were initiated at the surface area because of the exhaustion of ductility due to twinning. Based on these results, it is suggested that imposing a uniform strain distribution along the radial direction of wire by the control of processing conditions such as die angle and amount of reduction per pass is necessary to increase the drawing limit of TWIP steel.

  2. Thin plastic radiochromic dye films as ionizing radiation dosimeters

    Science.gov (United States)

    Buenfil-Burgos, A. E.; Uribe, R. M.; de la Piedad, A.; McLaughlin, W. L.; Miller, A.

    Radiochromic dye films were fabricated by casting polyvinyl butyral (PVB) in weakly acidic solution with the leucocyanide of pararosaniline. Calibrated films of 10-25 μm thickness were useful over a response range of about 10 3-10 5 Gy, by applying spectrophotometric analysis at the wavelength of the maximum of the radiation-induced absorption band (550 nm). The effects of temperature, pressure, and humidity during curing of the films pointed to the need for carefully controlling these parameters. For casting films at the high altitude of Mexico City (≈ 2500 meters), the optimum conditions are 45-75% r.h. and 20-25° C for a drying period of 72 to 92 hours, when the solvent is a mixture of ethanol and 2-methoxyethanol. The response of films fabricated in this way were compared with those of commercially available PVB and Nylon films. The effects of temperature, humidity, and period of storage on the response of these films were studied in the range from -5 to 60° C and from 11.8 to 96.6% r.h. for up to four months between irradiation and spectral analysis, and within nominal experimental uncertainty (≈ 10%), we found that all the radiochromic films studied can be stored for extended periods under steady-state conditions in the temperature range from -5 to 30° C and from 11.8-75.6% r.h. without correction factors for instability, but under extreme conditions of moisture at elevated temperatures the radiochromic image showed a fading effect on storage.

  3. Investigation of phase transformation for ferrite–austenite structure in stainless steel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Merakeb, Noureddine [Laboratory of Physical Metallurgy and Property of Materials (LM2PM), Metallurgy and Materials Engineering Department, Badji Mokhtar University, P.O. Box 12, Annaba 23000 (Algeria); Messai, Amel [Laboratoire d' Ingénierie et Sciences des Matériaux Avancés (ISMA), Institut des Sciences et Technologie, Abbès Laghrour University, Khenchela 40000 (Algeria); Ayesh, Ahmad I., E-mail: ayesh@qu.edu.qa [Department of Mathematics, Statistics and Physics, Qatar University, Doha (Qatar)

    2016-05-01

    In this work we report on phase transformation of 304 stainless steel thin films due to heat treatment. Ex-situ annealing was applied for evaporated 304 stainless steel thin films inside an ultra-high vacuum chamber with a pressure of 3 × 10{sup −7} Pa at temperatures of 500 °C and 600 °C. The structure of thin films was studied by X-ray diffraction (XRD) and conversion electron Mössbauer spectroscopy (CEMS) techniques. The results revealed a transformation from α-phase that exhibits a body-centered cubic structure (BCC) to γ-phase that exhibits a face-centered cubic (FCC) due to annealing. In addition, the percentage of γ-phase structure increased with the increase of annealing temperature. Annealing thin films increased the crystal size of both phases (α and γ), however, the increase was nonlinear. The results also showed that phase transformation was produced by recrystallization of α and γ crystals with a temporal evolution at each annealing temperature. The texture degree of thin films was investigated by XRD rocking curve method, while residual stress was evaluated using curvature method. - Highlights: • Stainless steel thin films were fabricated by thermal evaporation on quartz. • Alpha to gamma phase transformation of thin films was investigated. • Annealing of thin films reduces disruption in crystal lattice. • The stress of as-grown thin films was independent on the thin film thickness. • The stress of the thin films was reduced due to annealing.

  4. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    Science.gov (United States)

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L(-1) Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  5. Oxidized potato starch based thermoplastic films : Effect of combination of hydrophilic and amphiphilic plasticizers

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Broekhuis, Antonius A.

    2016-01-01

    Different combinations of hydrophilic (glycerol and water) and amphiphilic (isoleucine) plasticizers were studied in the production of thermoplastic starch (TPS) powders and films from oxidized potato starch. All powder samples had an irregular and shrivelled morphology. In all mixtures containing i

  6. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic subst

  7. Rapid and simple colorimetric assay for detecting the enzymatic degradation of biodegradable plastic films.

    Science.gov (United States)

    Shinozaki, Yukiko; Watanabe, Takashi; Nakajima-Kambe, Toshiaki; Kitamoto, Hiroko K

    2013-01-01

    We developed a rapid and simple method for evaluating the degradation of solid biodegradable plastics (BPs). Dye-containing BP films were used as substrates and the release of dye caused by the degradation of BPs was confirmed by a color change in the enzyme solution after a reaction time of 24 h.

  8. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so th

  9. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  10. Size effects in single crystal thin films : nonlocal crystal plasticity simulations

    NARCIS (Netherlands)

    Yefimov, S; van der Giessen, E

    2005-01-01

    Stress relaxation in single crystalline thin films on substrates subjected to thermal loading is studied using a recently proposed nonlocal continuum crystal plasticity theory. The theory is founded on a statistical-mechanics description of the collective behaviour of dislocations in multiple slip,

  11. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so

  12. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.|info:eu-repo/dai/nl/325844208

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic subst

  13. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata Starch

    Directory of Open Access Journals (Sweden)

    Muhammed L. Sanyang

    2015-06-01

    Full Text Available The use of starch based films as a potential alternative choice to petroleum derived plastics is imperative for environmental waste management. This study presents a new biopolymer (sugar palm starch for the preparation of biodegradable packaging films using a solution casting technique. The effect of different plasticizer types (glycerol (G, sorbitol (S and glycerol-sorbitol (GS combination with varying concentrations (0, 15, 30 and 45, w/w% on the tensile, thermal and barrier properties of sugar palm starch (SPS films was evaluated. Regardless of plasticizer types, the tensile strength of plasticized SPS films decreased, whereas their elongation at break (E% increased as the plasticizer concentrations were raised. However, the E% for G and GS-plasticized films significantly decreased at a higher plasticizer concentration (45% w/w due to the anti-plasticization effect of plasticizers. Change in plasticizer concentration showed an insignificant effect on the thermal properties of S-plasticized films. The glass transition temperature of SPS films slightly decreased as the plasticizer concentration increased from 15% to 45%. The plasticized films exhibited increased water vapor permeability values from 4.855 × 10−10 to 8.70 × 10−10 g·m−1·s−1·Pa−1, irrespective of plasticizer types. Overall, the current study manifested that plasticized sugar palm starch can be regarded as a promising biopolymer for biodegradable films.

  14. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XUE Qi; JIN Yong; HU Dong-ping; HUANG Ben-sheng; DENG Bai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported.The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainless steel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2to 2.0. The Ti [C, N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion between the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  15. Development of wear resistant zirconium oxide thin films on stainless steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Then, I.K.; Mujahid, M. [School of Materials Engineering, Nanyang Technological Univ. (Singapore); Zhang, B. [Dou Yee Technologies Pte Ltd, Bedok Industrial Park C (Singapore)

    2005-07-01

    The present work deals specifically with the development of zirconium oxide thin film coatings on the stainless steel orthodontic bracket system by sputtering technique. Thin films of zirconium oxide have been deposited on injection molded stainless steel substrates using sputtering under controlled temperature and environment conditions. The deposited films, 1.5 {mu}m in thickness, were found to have a predominantly tetragonal structure with grain size of about 5 nm. The grain size was found to increase only slightly with increasing heat treatment time at 650 C. It has been shown that thin-film zirconia coatings with stable structure and good adhesion along with very low friction coefficient could be produced. (orig.)

  16. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants

    OpenAIRE

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K.

    2012-01-01

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth ind...

  17. A study on rate sensitivity of elasto-plastic fracture toughness of TRIP steel evaluated by a small punch test

    Directory of Open Access Journals (Sweden)

    Shi L.

    2012-08-01

    Full Text Available TRIP steel indicates an excellent characteristic in energy absorption because of its high ductility and strength by strain-induced martensitic transformation (SIMT. Recently, some shock absorption members are being used for automotive industries. For good fuel consumption of the automobile, it would realize the weight reduction without decaying performance if TRIP steel can be applied to those members. It can be considered that the fracture toughness is an important factor to evaluate the performance. To evaluate fracture toughness locally at any point of a product of those members, small punch testing method is quite effective. In the present study, first, an impact small punch testing apparatus is established. In addition, elasto-plastic fracture toughness of TRIP steel under impact loading and its rate sensitivity tested at various deflection rates are challenged to evaluate.

  18. A study on rate sensitivity of elasto-plastic fracture toughness of TRIP steel evaluated by a small punch test

    Science.gov (United States)

    Iwamoto, T.; Hashimoto, S.-ya; Shi, L.

    2012-08-01

    TRIP steel indicates an excellent characteristic in energy absorption because of its high ductility and strength by strain-induced martensitic transformation (SIMT). Recently, some shock absorption members are being used for automotive industries. For good fuel consumption of the automobile, it would realize the weight reduction without decaying performance if TRIP steel can be applied to those members. It can be considered that the fracture toughness is an important factor to evaluate the performance. To evaluate fracture toughness locally at any point of a product of those members, small punch testing method is quite effective. In the present study, first, an impact small punch testing apparatus is established. In addition, elasto-plastic fracture toughness of TRIP steel under impact loading and its rate sensitivity tested at various deflection rates are challenged to evaluate.

  19. Polyamines as new cationic plasticizers for pectin-based edible films.

    Science.gov (United States)

    Esposito, Marilena; Di Pierro, Prospero; Regalado-Gonzales, Carlos; Mariniello, Loredana; Giosafatto, C Valeria L; Porta, Raffaele

    2016-11-20

    Zeta potential and particle size were determined on pectin aqueous solutions as a function of pH and the effects of calcium ions, putrescine and spermidine on pectin film forming solutions and derived films were studied. Ca(2+) and polyamines were found to differently influence pectin zeta potential as well as thickness and mechanical and barrier properties of pectin films prepared at pH 7.5 either in the presence or absence of the plasticizer glycerol. In particular, Ca(2+) was found to increase film tensile strength and elongation at break only in the presence of glycerol and did not affect film thickness and permeability to both water vapor and CO2. Conversely, increasing polyamine concentrations progressively reduced film tensile strength and markedly enhanced film thickness, elongation at break and permeability to water vapor and CO2, both in the presence and absence of glycerol. Our findings indicate that polyamines give rise to a structural organization of the heteropolysaccharide different from that determined by calcium ions, previously described as "egg box" model, and suggest their possible application as plasticizers to produce pectin-based "bioplastics" with different features.

  20. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)-agar biodegradable films.

    Science.gov (United States)

    Madera-Santana, T J; Freile-Pelegrín, Y; Azamar-Barrios, J A

    2014-08-01

    The effects of the addition of glycerol (GLY) on the physicochemical and morphological properties of poly(vinyl alcohol) (PVA)-agar films were reported. PVA-agar films were prepared by solution cast method, and the addition of GLY in PVA-agar films altered the optical properties, resulting in a decrease in opacity values and in the color difference (ΔE) of the films. Structural characterization using Fourier transformation infrared (FTIR) spectroscopy and X-ray diffraction (XRD) indicated that the presence of GLY altered the intensity of the bands (from 1200 to 800cm(-1)) and crystallinity. The characterization of the thermal properties indicated that an increase in the agar content produces a decrease in the melting temperature and augments the heat of fusion. Similar tendencies were observed in plasticized films, but at different magnification. The formulation that demonstrated the lowest mechanical properties contained 25wt.% agar, whereas the formulation that contained 75wt.% agar demonstrated a significant improvement. The water vapor transmission rate (WVTR) and surface morphology analysis demonstrated that the structure of PVA-agar films is reorganized upon GLY addition. The physicochemical properties of PVA-agar films using GLY as a plasticizer provide information for the application of this formulation as packaging material for specific food applications.

  1. Development of plastic deformations in 12Kh18N10T steel under cyclic symmetrical bending of specimens of various length

    Energy Technology Data Exchange (ETDEWEB)

    Pisarenko, G.S.; Leonets, V.A.; Bega, N.D. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-08-01

    Effect of specimen length on intensity of plastic deformation development and cyclic strength is studied for annealed 12Kh18N10T steel under cyclic symmetrical bending. The intensity of microplastic deformations and cyclic strength of annealed 12Kh18N10T steel in the considered case is due to self-heating.

  2. Elastic-Plastic Endochronic Constitutive Model of 0Crl7Ni4Cu4Nb Stainless Steels

    Directory of Open Access Journals (Sweden)

    Jinquan Guo

    2016-01-01

    Full Text Available We presented an elastic-plastic endochronic constitutive model of 0Crl7Ni4Cu4Nb stainless steel based on the plastic endochronic theory (which does not need the yield surface and experimental stress-strain curves. The key feature of the model is that it can precisely describe the relation of stress and strain under various loading histories, including uniaxial tension, cyclic loading-unloading, cyclic asymmetric-stress axial tension and compression, and cyclic asymmetric-stress axial tension and compression. The effects of both mean stress and amplitude of stress on hysteresis loop based on the elastic-plastic endochronic constitutive model were investigated. Compared with the experimental and calculated results, it is demonstrated that there was a good agreement between the model and the experiments. Therefore, the elastic-plastic endochronic constitutive model provides a method for the accurate prediction of mechanical behaviors of 0Crl7Ni4Cu4Nb stainless steel subjected to various loadings.

  3. Thin-Film Coated Plastic Wrap for Food Packaging

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2017-07-01

    Full Text Available In this study, the antimicrobial property and food package capability of polymethylpentene (PMP substrate with silicon oxdie (SiOx and organic silicon (SiCxHy stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The experimental results show that the stacked pair number of SiOx/SiCxHy on PMP is limited to three pairs, beyond which the films will crack and cause package failure. The three-pair SiOx/SiCxHy on PMP shows a low water vapor transmission rate of 0.57 g/m2/day and a high water contact angle of 102°. Three-pair thin-film coated PMP demonstrates no microbe adhesion and exhibits antibacterial properties within 24 h. Food shelf life testing performed at 28 °C and 80% humidity reports that the three-pair thin-film coated PMP can enhance the food shelf-life to 120 h. The results indicate that the silicon-based thin film may be a promising material for antibacterial food packaging applications to extend the shelf-life of food products.

  4. Thin-Film Coated Plastic Wrap for Food Packaging.

    Science.gov (United States)

    Wu, Hsin-Yu; Liu, Ting-Xuan; Hsu, Chia-Hsun; Cho, Yun-Shao; Xu, Zhi-Jia; Liao, Shu-Chuan; Zeng, Bo-Han; Jiang, Yeu-Long; Lien, Shui-Yang

    2017-07-18

    In this study, the antimicrobial property and food package capability of polymethylpentene (PMP) substrate with silicon oxdie (SiOx) and organic silicon (SiCxHy) stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The experimental results show that the stacked pair number of SiOx/SiCxHy on PMP is limited to three pairs, beyond which the films will crack and cause package failure. The three-pair SiOx/SiCxHy on PMP shows a low water vapor transmission rate of 0.57 g/m²/day and a high water contact angle of 102°. Three-pair thin-film coated PMP demonstrates no microbe adhesion and exhibits antibacterial properties within 24 h. Food shelf life testing performed at 28 °C and 80% humidity reports that the three-pair thin-film coated PMP can enhance the food shelf-life to 120 h. The results indicate that the silicon-based thin film may be a promising material for antibacterial food packaging applications to extend the shelf-life of food products.

  5. Passive film growth on carbon steel and its nanoscale features at various passivating potentials

    Science.gov (United States)

    Li, Yuan; Cheng, Y. Frank

    2017-02-01

    In this work, the passivation and topographic sub-structure of passive films on a carbon steel in a carbonate/bicarbonate solution was characterized by electrochemical measurements, atomic force microscopy and X-ray photoelectron spectroscopy. When passivating at a potential near the active-passive transition, the film contains the mixture of Fe3O4, Fe2O3 and FeOOH, with numerous nanoscale features. As the film-forming potential shifts positively, the passive film becomes more compact and the nanoscale features disappear. When the film is formed at a passive potential where the oxygen evolution is enabled, the content of FeOOH in the film increases, resulting in an amorphous topography and reduced corrosion resistance.

  6. Microstructure design of low alloy transformation-induced plasticity assisted steels

    Science.gov (United States)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  7. Effect of carbon dioxide and temperature on passive film parametersof superduplex stainless steel

    Directory of Open Access Journals (Sweden)

    Emandro Vieira da Costa

    2013-01-01

    Full Text Available Superduplex stainless steel has been frequently employed in new sites of Brazilian Pre-Salt. In these environments, chloride concentration, temperature and carbon dioxide are normally present in higher levels than those at sea water at room temperature. In these conditions, it is expected that the passive films of stainless steel also show modifications. To better understand such modifications, samples of superduplex stainless steel UNS S32750 were submitted to electrochemical impedance measurements in brine media, at two temperatures and under presence/absence of carbon dioxide. The electrochemical impedance results were initially tested using the Kramers-Kronig transform and subsequently fitted by equivalent circuit employing constant phase elements - CPE. Moreover, to quantify the effect of each factor (temperature, chloride, carbon dioxide and microstructure on the equivalent circuit, their parameters were tested applying statistical analysis. Significant effect of carbon dioxide and temperature was found on related parameters of passive film for heat-treated samples.

  8. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri;

    2016-01-01

    Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge re...

  9. Buckling patterns of thin films on compliant substrates: the effect of plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Yin Jie; Chen Xi, E-mail: xichen@columbia.edu [Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027 (United States)

    2011-02-02

    Most previous studies on spontaneous buckling pattern formations in thin films on compliant substrates were limited to elastic deformation, where the herringbone mode is the most often observed under equi-biaxial compression. In practice, plastic deformation is often encountered in ductile metal and polymer films. The effect of plasticity on buckling patterns is explored in this paper using extensive finite element simulations, where the film is assumed to be elastic-perfectly plastic. It is found that upon equi-biaxial compression, depending on the competition among the yield strain, critical buckling strain and applied strain, three new types of patterns may emerge: the plastic diamond-like pattern, the elastoplastic square lattice pattern and the elastoplastic sharp herringbone pattern, and their characteristics are compared with the elastic herringbone mode. Moreover, unique features including the asymmetry in crests and troughs, the sharp saw-like undulation profile and varying wavelengths with applied strain are observed for some types of the new patterns. The study may find its potential applications in the design of stretchable electronics, fabrication of micro/nanofluid channels or channel networks, and morphogenesis of tissues and plants, among others.

  10. Fabrication of superhydrophobic film by microcellular plastic foaming method

    Science.gov (United States)

    Zhang, Zhen Xiu; Li, Ya Nan; Xia, Lin; Ma, Zhen Guo; Xin, Zhen Xiang; Kim, Jin Kuk

    2014-08-01

    To solve the complicated manufacturing operation and the usage of toxic solvent problems, a simple and novel method to fabricate superhydrophobic film by surface foaming method was introduced in this paper. The superhydrophobic property of the foamed material was obtained at a contact angle >150° and a rolling angle about 8°. The foamed material can instantly generate its superhydrophobicity via peeling process. The effects of blowing agent content, foaming time and peeling rate on the foam structure and superhydrophobicity were studied.

  11. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    Science.gov (United States)

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  12. Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth.

    Science.gov (United States)

    Rychter, Piotr; Kot, Marta; Bajer, Krzysztof; Rogacz, Diana; Šišková, Alena; Kapuśniak, Janusz

    2016-02-10

    The utilization of starch films, obtained by extrusion of potato starch with urea as plasticizer, for the fertilization of plants has been undertaken. Release rate of urea from the starch films was conducted in water conditions. The molecular weight distribution, surface erosion and weight loss of the starch samples have been determined. The evaluation of efficiency of urea as a fertilizer in the process of release from the starch films was performed under laboratory conditions based on the plant growth test proposed by OECD 208 Guideline and the PN-ISO International Standard using oat and common radish. Although among extruded starch-based films, those that contain the highest amount of fertilizer hold the most promise for a delayed release system, the time of release of fertilizer from obtained films in undertaken study was not satisfactory. All the same, in the present study effort has been made to utilize extruded samples as a fertilizer for agriculture or horticulture purposes. Urea-plasticized starch was successfully used as a fertilizer. Plant growth assessment, including determination of such parameters as fresh and dry matter of plants and their visual evaluation, has proved the stimulating effect of using extruded films on the growth and development of cultivated plants.

  13. CIGS thin-film solar cells on steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wuerz, R. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany)], E-mail: roland.wuerz@zsw-bw.de; Eicke, A.; Frankenfeld, M.; Kessler, F.; Powalla, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Rogin, P.; Yazdani-Assl, O. [Leibniz-Institut fuer Neue Materialien gGmbH, Campus D2 2, 66123 Saarbruecken (Germany)

    2009-02-02

    Steel foil is an attractive candidate for use as a flexible substrate material for Cu(In{sub x},Ga{sub 1-x})Se{sub 2} solar cells (CIGS). It is stable at the high temperatures involved during CIGS processing and is also commercially available. Stainless chromium (Cr) steel is more expensive than Cr-free steel sheets, but the latter are not stable against corrosion. We processed CIGS solar cells on both types of substrates. The main problem arising here is the diffusion of detrimental elements from the substrate into the CIGS absorber layer. The diffusion of iron (Fe) and other substrate elements into the CIGS layer was investigated by Secondary Ion Mass Spectrometry (SIMS). The influence of the impurities on the solar cell parameters was determined by current voltage (JV) and external quantum efficiency (EQE) measurements. A direct correlation between the Fe content in the CIGS layer and the solar cell efficiency was found. The diffusion of Fe could be strongly reduced by a diffusion barrier layer. Thus we could process CIGS solar cells with a conversion efficiency of 12.8% even on Cr-free steel substrate.

  14. Characterization of Surface Films Formed During Corrosion of a Pipeline Steel in H2S Environments

    Science.gov (United States)

    Huang, F.; Cheng, P.; Dong, Y. Y.; Liu, J.; Hu, Q.; Zhao, X. Y.; Cheng, Y. Frank

    2017-01-01

    In this work, the surface films formed on an X52 pipeline steel in H2S-containing environments with various pH values and H2S concentrations were characterized by surface analysis techniques and electrochemical impedance spectroscopy. A stoichiometric FeS film is formed during H2S corrosion of the steel. At low pH (e.g., 3.5) and low H2S concentration (e.g., 0.2 mmol/L), the film is primarily crystalline FeS. When the H2S concentration increases to 2 and 20 mmol/L, mackinawite is also formed. At high pH of 5.5 and low H2S concentration of 0.2 mmol/L, the film is amorphous FeS. With the increase in the H2S concentration to 2 and 20 mmol/L, the film changes to crystalline FeS and the mixture of crystalline FeS and mackinawite, respectively. In low-pH solution (pH 3.5), the compact, crystalline FeS is more protective for steel corrosion compared to mackinawite. As the H2S concentration increases, the corrosion is increased. At high pH of 5.5, when the H2S concentration is 0.2 mmol/L, the low corrosivity of the environment causes production of amorphous FeS only. As the H2S concentration is increased, a thick film is generated, reducing somewhat the steel corrosion.

  15. Characterization of Surface Films Formed During Corrosion of a Pipeline Steel in H2S Environments

    Science.gov (United States)

    Huang, F.; Cheng, P.; Dong, Y. Y.; Liu, J.; Hu, Q.; Zhao, X. Y.; Cheng, Y. Frank

    2017-02-01

    In this work, the surface films formed on an X52 pipeline steel in H2S-containing environments with various pH values and H2S concentrations were characterized by surface analysis techniques and electrochemical impedance spectroscopy. A stoichiometric FeS film is formed during H2S corrosion of the steel. At low pH (e.g., 3.5) and low H2S concentration (e.g., 0.2 mmol/L), the film is primarily crystalline FeS. When the H2S concentration increases to 2 and 20 mmol/L, mackinawite is also formed. At high pH of 5.5 and low H2S concentration of 0.2 mmol/L, the film is amorphous FeS. With the increase in the H2S concentration to 2 and 20 mmol/L, the film changes to crystalline FeS and the mixture of crystalline FeS and mackinawite, respectively. In low-pH solution (pH 3.5), the compact, crystalline FeS is more protective for steel corrosion compared to mackinawite. As the H2S concentration increases, the corrosion is increased. At high pH of 5.5, when the H2S concentration is 0.2 mmol/L, the low corrosivity of the environment causes production of amorphous FeS only. As the H2S concentration is increased, a thick film is generated, reducing somewhat the steel corrosion.

  16. Growth and corrosion behavior of molybdate passivation film on hot dip galvanized steel

    Institute of Scientific and Technical Information of China (English)

    卢锦堂; 孔纲; 陈锦虹; 许乔瑜; 眭润舟

    2003-01-01

    Hot dip galvanized steel sheets were passivated by molybdate aqueous solution containing 10 g/LNa2 MoO4 @ 2H2O, and the growth behavior and corrosion resistance of the passivation film were investigated. Inthe initial stage of passivation, the mass gain of film increases with passivation time proportionally. The film growsup more quickly and is apt to cracking at grain boundaries of zinc, then the cracks spread gradually on the whole sur-face of the film, and eventually the film will flake off with the increasing of film thickness. XPS results indicate thatMo compounds are present in Mo(Ⅵ) state on the surface of the film, and Mo(Ⅵ) and Mo(Ⅳ ) states inside thefilm. NSS test shows that, the corrosion resistance of the passivation film decreases as the cracks occur, but inAASS test, the thicker the film is, the better the corrosion resistance is, the cracks of film have little effect on thecorrosion resistance.

  17. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ng, M H Andrew; Hartadi, Lysia T; Tan Huiwen; Poa, C H Patrick [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)], E-mail: patrick-poa@imre.a-star.edu.sg

    2008-05-21

    Optically transparent and electrically conductive single-walled carbon nanotube (SWNT) thin films were fabricated at room temperature using a dip-coating technique. The film transparency and sheet resistance can be easily tailored by controlling the number of coatings. Aminopropyltriethoxysilane (APTS) was used as an adhesion promoter and, together with surfactant Triton X-100, greatly improved the SWNTs coating. Only five coats were required to obtain a sheet resistance of 2.05 {omega}{open_square} and film transparency of 84 %T. The dip-coated film after post-deposition treatment with nitric acid has a sheet resistance as low as 130 {omega}{open_square} at 69 %T. This technique is suitable for large-scale SWNT coating at room temperature and can be used on different types of substrates such as glass and plastics. This paper will discuss the role of the adhesion promoter and surfactant in the coating process.

  18. Two-surface plasticity Model and Its Application to Spring-back Simulation of Automotive Advanced High Strength Steel Sheets

    Science.gov (United States)

    Park, Taejoon; Seok, Dong-Yoon; Lee, Chul-Hwan; Noma, Nobuyasu; Kuwabara, Toshihiko; Stoughton, Thomas B.; Chung, Kwansoo

    2011-08-01

    A two-surface isotropic-kinematic hardening law was developed based on a two-surface plasticity model previously proposed by Lee et al., (2007, Int. J. Plast. 23, 1189-1212). In order to properly represent the Bauschinger and transient behaviors as well as permanent softening during reverse loading with various pre-strains, both the inner yield surface and the outer bounding surface expand (isotropic hardening) and translate (kinematic hardening) in this two-surface model. As for the permanent softening, both the isotropic hardening and the kinematic hardening evolution of the outer bounding surface were modified by introducing softening parameters. The numerical formulation was also developed based on the incremental plasticity theory and the developed constitutive law was implemented into the commercial finite element program, ABAQUS/Explicit and ABAQUS/Standard using the user-defined material subroutines. In this work, a dual phase (DP) steel was considered as an advanced high strength steel sheet and uni-axial tension tests and uni-axial tension-compression-tension tests were performed for the characterization of the material property. For a validation purpose, the developed two-surface plasticity model was applied to the 2-D draw bending test proposed as a benchmark problem of the NUMISHEET 2011 conference and successfully validated with experiments.

  19. The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures

    Indian Academy of Sciences (India)

    A K Patnaik; C L Bauer; T S Srivatsan

    2008-06-01

    The intrinsic advantages of strengthening the steel-based structures by the use of fibre reinforced plastic (FRP) material have not yet been fully exploited. In this paper, a succinct overview of recent studies made to enhance the strength of steel beams using FRP laminates is presented. The results presented and discussed in this paper were obtained by closely studying the behaviour of steel beams strengthened with carbon FRP material. An attempt is made to succinctly summarise the findings for two different types of strengthening of the steel beams using carbon FRP laminates. The first type of beams focuses on enhancing the strength of steel in flexure while the second focuses on increasing the shear strength of the beams. Three beams were designed so as to cause them to fail in flexure. Of the beams studied, two were strengthened using carbon FRP strips attached to the tension flange. One of the beams was tested to facilitate comparison of their behaviour to the two beams which are strengthened in flexure. Three other beams were designed such that they failed predominantly in shear. Of these three, two were strengthened with carbon FRP strips attached to the webs while the third beam was used as a control beam for the purpose of drawing comparisons. Preliminary results revealed a noticeable increase in the strength for both the flexure strengthened beams and the beams strengthened in shear. The observed increase in shear strength of the beams was 26% while the increase in strength for the beams tested in flexure was 15%. This study convincingly shows that it is possible to strengthen steel beams using carbon FRP laminates in both flexure and in shear.

  20. Ageing of passive films on stainless steels in sulfate solutions - XPS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, A. [Cagliari Univ. (Italy). Dipartimento di Chimica e Technologie Inorganiche e Metallorganiche; Elsener, B. [ETH Hoenggerberg, Zuerich (Switzerland). Inst. of Mater. Chem. and Corrosion

    1995-11-01

    The passivation of stainless steels 1.4301 (18% Cr and 8% Ni) and 1.4529 (20% Cr, 25% Ni and 6% Mo) was studied in neutral 1 M Na{sub 2}SO{sub 4} solutions as a function of polarization time (ageing) at two passivation potential in the passive range by electrochemistry and XPS analysis. The passive current density decreases with time according to a power law indicating higher stability of the passive film after ageing. XPS analyses show that the integral Cr{sup 3+} content in the passive films of the two stainless steels is similar, a slight increase in total film thickness and constant overall composition of the passive film with passivation time is found. ARXPS measurements indicate a bilayer structure and pronounced changes within the passive layer during ageing: Fe{sup 2+} becomes gradually eliminated at longer passivation times. A different ageing behaviour of the 1.4301 (without Mo) and 1.4529 SS (with 6% Mo) is found: the conventional 1.4301 steel shows a more pronounced bilayer structure after 24 h of passivation, but a lower content of hydroxide in the outer layer. On the contrary the passive film of the 1.4529 SS becomes progressively more hydrated during ageing, the amount of Cr(hy) and of OH{sup -} increases with time. The higher pitting resistance of the 1.4529 SS might be explained by the formation of more hydrated (thus more amorphous and flexible) Cr(III)hydroxide passive film, the presence of Mo{sup 6+} and the lower Fe{sup 3+} content in the passive film (reducing pit initiation) together with the marked nickel enrichment at the interface (favouring pit repassivation). (orig.)

  1. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging

    OpenAIRE

    Sanyang, M. L.; Sapuan, S. M.; Jawaid, M.; M. R. Ishak; J. Sahari

    2015-01-01

    In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water...

  2. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China.

    Science.gov (United States)

    Li, Kankan; Ma, Dong; Wu, Juan; Chai, Chao; Shi, Yanxi

    2016-12-01

    The content of phthalate esters (PAEs) was investigated in 36 vegetable fields with plastic film mulching in Shandong Peninsula, East China. Soils at depths of 0-10 cm, 10-20 cm, and 20-40 cm were collected, and 16 PAEs were analyzed by gas chromatography-mass spectrometry. PAEs were detected in all the analyzed samples. The total contents of the 16 PAEs (Σ16PAEs) ranged from 1.374 to 18.810 mg/kg, with an average of 6.470 mg/kg. Among the four areas of Shandong Peninsula, including Qingdao, Weihai, Weifang, and Yantai, the highest Σ16PAE in the soil was observed in Weifang district (9.786 mg/kg), which is famous for large-scale vegetable production. Despite the significant differences among the Σ16PAEs, the PAE compositions in soils with plastic film mulching in Shandong Peninsula were comparable. Diethyl phthalate (DEP), diisobutyl phthalate, and di(4-methyl-2-pentyl) phthalate were present in all the samples, whereas di-n-hexyl phthalate was detected only in Qingdao (∼1%) and dicyclohexyl phthalate was observed only in Weifang (5.7-8.2%) in low proportions. The ratios of dimethyl phthalate, DEP, and di-n-butyl phthalate, which exceeded allowable concentrations, were 63.9-100% at different soil depths, indicating high PAE pollution. The concentration of butyl benzyl phthalate detected only in Weifang exceeded the recommended allowable soil concentration. Overall, the high PAE content in the soil with plastic film mulching in Shandong Peninsula is an issue of concern because of the large amounts of plastic film used.

  3. Thermoplastic starch plasticized with alginate-glycerol mixtures: Melt-processing evaluation and film properties.

    Science.gov (United States)

    López, Olivia V; Ninago, Mario D; Lencina, M M Soledad; García, María A; Andreucetti, Noemí A; Ciolino, Andrés E; Villar, Marcelo A

    2015-08-01

    Corn starch melt-processing in the presence of a commonly used plasticizer mixture (water/glycerol) and a non-conventional alternative (alginate/glycerol) was evaluated. All assayed formulations were successfully processed by melt-mixing and injected in circular probes. It was determined that all samples presented a typical viscoelastic behavior, observing a decrease in storage and loss modulus with water and alginate concentration, which facilitated samples processability. Concerning to thermal stability, it was not affected neither for water nor alginate presence. From injected probes, flexible films were obtained by thermo-compression. Films with the highest assayed water content presented a sticky appearance, whereas those containing alginate were non-tacky. Plasticizing action of water and alginate was evidenced by the occurrence of homogeneous fracture surfaces, without the presence of unmelted starch granules. Besides, the shift of glass transition temperature to lower values also corroborated the plasticizing effect of both additives. In conclusion, obtained results demonstrated the well-plasticizing action of sodium alginate on starch matrix, turning this additive into a promissory alternative to replace water during melt-processing of thermoplastic corn-starch.

  4. Physical and biological treatments of polyethylene-rice starch plastic films

    Energy Technology Data Exchange (ETDEWEB)

    El-Naggar, Manal M.A., E-mail: mmelnaggar@yahoo.com [Microbiology Lab., National Institute of Oceanography and Fisheries, Alexandria (Egypt); Farag, Magdy Gh. [Development Plastic Center, Victoria, Alexandria (Egypt)

    2010-04-15

    This study aimed to produce an industrial applicable thermo-stable {alpha}-amylase from marine Bacillus amyloliquefaciens which isolated and selected according to its significant enzyme production. The effect of different pH values and temperatures on the bacterial growth and the enzyme production was estimated using an experimental statistical design; maximum amylase production and bacterial growth was obtained at pH 7.0 and 50 deg. C. Some biodegradable polyethylene rice starch plastic films (PERS-P) were manufactured using 0, 2.5, 5, 7.5 and 10% starch concentrations. The biodegradability (reduction in the plastic elongation%) was tested using the exposure to UV radiation at {lambda}{sub 300-400nm} (intensity of about 1000 W/m{sup 2}) and the produced B. amyloliquefaciens thermo-stable {alpha}-amylase. A significant reduction in the elongation% of these biodegradable plastics was observed in both cases especially on testing the 10% PERS-P; they showed a reduction of 26% and 20%, respectively, compared to the untreated plastic films (180 {+-} 5).

  5. Microstructure, morphology, adhesion and tribological behavior of sputtered niobium carbide and bismuth films on tool steel

    Directory of Open Access Journals (Sweden)

    Laura Angélica Ardila Rodríguez

    2014-11-01

    Full Text Available Normal 0 21 false false false ES-CO X-NONE AR-SA Normal 0 21 false false false ES-CO X-NONE AR-SA NbC, Bi and Bi/NbC coatings were deposited on AISI M2 steel substrates using unbalanced magnetron sputtering at room temperature with zero bias voltage. Were studied the phase structure, the morphology, the adhesion and the tribological behavior of the three coatings. The niobium carbide film crystallized in the NbC cubic structure, and the bismuth layers had a rhombohedral phase with random orientation. The NbC coating had a smooth surface with low roughness, while the Bi layers on steel and on NbC coating had higher roughness and a morphology composed of large particles. By using a ductile Nb interlayer good adhesion between the NbC coating and the steel substrate was achieved. The Bi coating had better adhesion with the NbC layer than with the steel substrate. The tribological performance of the Bi coating on steel was not satisfactory, but according to the preliminary results, the produced NbC and Bi/NbC coatings have the potential to improve the tribological performance of the steel.

  6. Advanced Micromechanical Model for Transformation-Induced Plasticity Steels with Application of In-Situ High-Energy X-Ray Diffraction Method

    Science.gov (United States)

    Choi, K. S.; Liu, W. N.; Sun, X.; Khaleel, M. A.; Ren, Y.; Wang, Y. D.

    2008-12-01

    Compared to other advanced high-strength steels, transformation-induced plasticity (TRIP) steels exhibit better ductility at a given strength level and can be used to produce complicated automotive parts. This enhanced formability comes from the transformation of retained austenite to martensite during plastic deformation. In this study, as a first step in predicting optimum processing parameters in TRIP steel productions, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. The method uses a microstructure-based representative volume element (RVE) to capture the complex deformation behavior of TRIP steels. The mechanical properties of the constituent phases of the TRIP 800 steel and the fitting parameters describing the martensite transformation kinetics are determined using the synchrotron-based in-situ high-energy X-ray diffraction (HEXRD) experiments performed under a uniaxial tensile deformation. The experimental results suggest that the HEXRD technique provides a powerful tool for characterizing the phase transformation behavior and the microstress developed due to the phase-to-phase interaction of TRIP steels during deformation. The computational results suggest that the response of the RVE well represents the overall macroscopic behavior of the TRIP 800 steel under deformation. The methodology described in this study may be extended for studying the effects of the various processing parameters on the macroscopic behaviors of TRIP steels.

  7. Design of Quenching Process for Large-sized AISI P20 Steel Block Used as Plastic Die

    Institute of Scientific and Technical Information of China (English)

    Dongli SONG; Jianfeng GU; Jiansheng PAN; Xin YAO

    2006-01-01

    For large-sized AISI P20 steel block used as plastic die with a thickness of more than 200 mm, appropriate quenching processes are the key to obtain much thick hardened layer. In this paper, different quenching processes of AISI P20 steel block such as oil quenching, direct water quenching, water quenching with precooling and water quenching with pre-cooling and self-tempering were numerically investigated by computer simulation based on the detailed discussion on the mathematical models of quenching processes including partial differential equations of heat transfer, thermal physical properties, latent heat, heat transfer coefficient and calculation of phase transformation, The results show that the water quenching with pre-cooling and self-tempering process can not only effectively avoid quenching cracks, but also obtain deeper harden depth than oil quenching.

  8. Observation of the TWIP + TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel

    Science.gov (United States)

    Lee, Seawoong; Lee, Kyooyoung; De Cooman, Bruno C.

    2015-06-01

    The intercritically annealed Fe-0.15 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl and Fe-0.30 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl medium Mn steels were found to have improved mechanical properties due to the TWIP and TRIP plasticity-enhancing mechanisms being activated in succession during tensile deformation. The increase of the C content from 0.15 to 0.30 pct resulted in ultra-high strength properties and a strength-ductility balance of approximately 65,000 MPa-pct, i.e., equivalent to the strength-ductility balance of high Mn TWIP steel with a fully austenitic microstructure.

  9. Identification of fatty foods with contamination possibilities by plasticizers when stored in PVC film packaging

    Directory of Open Access Journals (Sweden)

    Hilda Duval Barros

    2011-06-01

    Full Text Available Poly-(vinyl chloride (PVC requires the addition of plasticizers - additives that give flexibility and malleability for its processing into flexible film. The most used ones are: di-(2-ethylhexyl adipate (DEHA and di-(2-ethylhexyl phthalate (DEHP. Toxic effects of DEHP have been observed by several authors. Phthalates are being replaced by alternative substances in PVC flexible products, because of their possible toxicological effects. DEHA is a substitute for phthalates widely used as a plasticizer in PVC materials for involving food. Some authors have shown that the exposure to DEHA also induces toxicity. A cross-sectional study was performed to identify which fatty foods carry the possibility of contamination by DEHP and DEHA. Eighteen different foods with at least 3% (m/m fat and the possibility of being wrapped in plastic film were determined. This study suggested that all foods were subject to contamination by DEHP and DEHA in those conditions - in decreasing consumption order of 96 to 22% in the convenience sample. New guidelines on the limits of DEHA and DEHP established by the Brazilian legislation, as additives in PVC film for packaging fatty food, are still relevant to ensure human health.

  10. A Sustainable Performance Assessment Framework for Plastic Film Supply Chain Management from a Chinese Perspective

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2016-10-01

    Full Text Available Academics’ and practitioners’ interest in sustainable supply chain management has received great concern in recent years. The application of biaxially-oriented polypropylene (BOPP plastic film has had a significant influence on the economic, environmental and social performance of supply chain management. However, research on the integration of these three sustainable dimensions is still rare in this field. In this paper, we identify sustainability criteria based on a triple bottom line approach (economic benefit, environmental protection and social responsibility from the supply chain perspective, develop a hybrid multi-criteria decision making framework to evaluate the criteria and select alternatives and apply the proposed approach to a real case study at a focal BOPP plastic film company in China. In the framework, a fuzzy analytical hierarchy process (FAHP is used to determine the performance criteria weights and a fuzzy technique for order performance by similarity to ideal solution (FTOPSIS is applied to rank the alternatives. The case study finds that the economic dimension was the most important aspect with environmental second and social third. The results also verify the effectiveness of the proposed framework. This paper develops an effective and systematic approach for decision makers to conduct evaluations and select optimal alternatives for focal plastic film companies.

  11. High-rate deposition of nano-crystalline silicon thin films on plastics

    Energy Technology Data Exchange (ETDEWEB)

    Marins, E.; Guduru, V.; Cerqueira, F.; Alpuim, P. [Centro de Fisica, Universidade do Minho, 4800-058 Guimaraes, 4710-057 Braga (Portugal); Ribeiro, M. [Centro de Nanotecnologia e Materiais Tecnicos, Funcionais e Inteligentes (CeNTI), 4760-034 Vila Nova de Famalicao (Portugal); Bouattour, A. [Institut fuer Physikalische Elektronik (ipe), Universitaet Stuttgart, 70569 Stuttgart (Germany)

    2011-03-15

    Nanocrystalline silicon (nc-Si:H) is commonly used in the bottom cell of tandem solar cells. With an indirect bandgap, nc-Si:H requires thicker ({proportional_to}1 {mu}m) films for efficient light harvesting than amorphous Si (a-Si:H) does. Therefore, thin-film high deposition rates are crucial for further cost reduction of highly efficient a-Si:H based photovoltaic technology. Plastic substrates allow for further cost reduction by enabling roll-to-roll inline deposition. In this work, high nc-Si:H deposition rates on plastic were achieved at low substrate temperature (150 C) by standard Radio-frequency (13.56 MHz) Plasma Enhanced Chemical Vapor Deposition. Focus was on the influence of deposition pressure, inter-electrode distance (1.2 cm) and high power coupled to the plasma, on the hydrogen-to-silane dilution ratios (HD) necessary to achieve the amorphous-to-nanocrystalline phase transition and on the resulting film deposition rate. For each pressure and rf-power, there is a value of HD for which the films start to exhibit a certain amount of crystalline fraction. For constant rf-power, this value increases with pressure. Within the parameter range studied the deposition rate was highest (0.38 nm/s) for nc-Si:H films deposited at 6 Torr, 700 mW/cm{sup 2} using HD of 98.5%. Decreasing the pressure to 3 Torr (1.5 Torr) and rf-power to 350 mW/cm{sup 2} using HD - 98.5% deposition rate is 0.12 nm/s (0.076 nm/s). Raman crystalline fraction of these films is 72, 62 and 53% for the 6, 3 and 1.5 Torr films, respectively (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture

    OpenAIRE

    2013-01-01

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles thr...

  13. Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture

    OpenAIRE

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-01-01

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles thr...

  14. A novel biobased plasticizer of epoxidized cardanol glycidylether: Synthesis and application in soft poly(vinyl chloride) films

    Science.gov (United States)

    A novel plasticizer derived from cardanol, epoxied cardanol glycidyl ether (ECGE), was synthesized and characterized by 1H-NMR and 13C-NMR. Effects of the ECGE combined with dioctyl phthalate (DOP), a commercial plasticizer, in soft poly(vinyl chloride) (PVC) films were studied. Dynamic mechanical a...

  15. Effect of r-value and texture on plastic deformation and necking behavior in interstitial-free steel sheets

    Science.gov (United States)

    Oh, Gyu-Jin; Lee, Kye-Man; Huh, Moo-Young; Park, Jin Eon; Park, Soo Ho; Engler, Olaf

    2017-01-01

    Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.

  16. Morphology and thermal properties of PLA films plasticized with aliphatic oligoesters; Morfologia e propriedades termicas de filmes de PLA plastificados com oligoesteres alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Inacio, Erika M.; Dias, Marcos L., E-mail: erika.minacio@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Lima, Maria Celiana P. [Instituto Federal do Rio de Janeiro (IFRJ), Duque de Caxias, RJ (Brazil)

    2015-07-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  17. Development of flexible plasmonic plastic sensor using nanograting textured laminating film

    Science.gov (United States)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2017-02-01

    The work presented in this paper describes the development of a cost-effective, flexible plasmonic plastic sensor using gold-coated nanograting nanoimprinted on a laminating plastic. The fabrication of plasmonic plastic sensor involved the transfer of nanograting pattern from polydimethylsiloxane (PDMS) polymer stamp to laminating plastic via thermal nanoimprint lithography, and subsequent gold film deposition. Gold-coated nanograting sample acted as a plasmonic chip, which exhibited surface plasmon resonance (SPR) mode in reflectance spectra under the white light illumination. The theoretical calculation was performed to study and analyze the excited SPR mode on the plasmonic chip. Further, the bulk refractive index sensitivity was demonstrated with respect to changing surrounding dielectric medium giving a value about 800  ±  27 nm/RIU (refractive index unit). In addition, the surface binding sensitivity upon adsorption of bovine serum albumin protein on the sensor surface was approximately 4.605 nm/(ng/mm2).We believe that our proposed low-cost plastic based plasmonic sensing device could be a potential candidate for the label-free and high-throughput screening of biological molecules.

  18. In-situ strain localization analysis in low density transformation-twinning induced plasticity steel using digital image correlation

    Science.gov (United States)

    Eskandari, M.; Yadegari-Dehnavi, M. R.; Zarei-Hanzaki, A.; Mohtadi-Bonab, M. A.; Basu, R.; Szpunar, J. A.

    2015-04-01

    The effect of deformation temperature on the strain localization has been evaluated by an adapted digital image correlation (DIC) technique during tensile deformation. The progress of strain localization was traced by the corresponding strain maps. The electron backscatter diffraction analysis and tint etching technique were utilized to determine the impact of martensitic transformation and deformation twinning on the strain localization in both elastic and plastic regimes. In elastic regime the narrow strain bands which are aligned perpendicular to the tension direction were observed in temperature range of 25 to 180 °C due to the stress-assisted epsilon martensite. The strain bands were disappeared by increasing the temperature to 300 °C and reappeared at 400 °C due to the stress-assisted deformation twinning. In plastic regime strain localization continued at 25 °C and 180 °C due to the strain-induced alfa-martensite and deformation twinning, respectively. The intensity of plastic strain localization was increased by increasing the strain due to the enhancement of martensite and twin volume fraction. The plastic strain showed more homogeneity at 300 °C due to the lack of both strain-induced martensite and deformation twinning. Effect of deformation mechanism by changing temperature on strain localization is investigated by digital image correlation. EBSD technique is served to validate deformation mechanism as well as microstructural evolution. Strain induced martensite as well as deformation twinning is activated in the present steel affecting strain localization.

  19. Adherence of ion beam sputter deposited metal films on H-13 steel

    Science.gov (United States)

    Mirtich, M. J.

    1980-01-01

    An electron bombardment argon ion source sputter deposited 17 metals and metal oxides on H-13 steel. The films ranged 1 to 8 micrometers in thickness and their adherence was generally greater than the capacity of the measuring device; adherence quality depended on proper precleaning of the substrate before deposition. N2 or air was introduced for correct stoichiometry in metallic compounds. Au, Ag, MgO, and Ta5Si3 films 8 microns thick have bond strength equal to 1 micron coatings; the bond strength of pure metallic films up to 5 microns thick was greater than the epoxy to film bond (8000 psi). The results of exposures of coated material to temperatures up to 700 C are presented.

  20. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XUEQi; JINYong; HUDong-ping; HUANGBen-sheng; DENGBai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported. The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainlesss teel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2 to 2.0. The Ti [C,N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion hetween the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  1. Electrochemical Behavior of Oxide Films of Stainless Steel in 40 kHz Sonicated Sulphate Electrolytes

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-qun; LI Min-wei; WANG Hui

    2007-01-01

    This paper describes effects of 40 kHz ultrasound on the oxide films of stainless steel in sulphate electrolytes so as to determine the transmitted power and to characterize mass transfer and peak current density on the electrode surface. Emphasis was mainly laid on electrochemical oxidations and peeling mechanism of oxide films in sonicated sulphate solutions (0.5 and 1.0 mol/L). Polarization voltammetry, current response traces and SEM analysis were carried out in order to provide full information as to oxide films surface.Results shows that the rate of electrochemical oxidation, the shape of polarization curves and the surface micrographs in sonicated sulphate electrolytes are different from those obtained without introduction of ultrasound. It is concluded that ultrasound can change the electro-chemical behavior of oxide films by its cavitaion effects, which would produce transient mechanical impulsive force and enhance electrochemical reactions.

  2. Predication of Plastic Flow Characteristics in Ferrite/Pearlite Steel Using a Fern Unit Cell Method

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Jingtao Han; Jing Liu; Lv Zhang

    2004-01-01

    The flow stress of ferrite/pearlite steel under uni-axial tension was simulated with finite element method (FEM) by applying commercial software MARC/MENTAT. Flow stress curves of ferrite/pearlite steels were calculated based on unit cell model. The effects of volume fraction, distribution and the aspect ratio of pearlite on tensile properties have been investigated.

  3. Ti-Nb thin films deposited by magnetron sputtering on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E. David; Niemeyer, Terlize C.; Afonso, Conrado R. M.; Nascente, Pedro A. P., E-mail: nascente@ufscar.br [Department of Materials Engineering, Federal University of Sao Carlos, CEP 13565-905 Sao Carlos, São Paulo (Brazil)

    2016-03-15

    Thin films of Ti-Nb alloys were deposited on AISI 316L stainless steel substrate by magnetron sputtering, and the structure, composition, morphology, and microstructure of the films were analyzed by means of x-ray diffraction (XRD), (scanning) transmission electron microscopy (TEM) coupled with energy-dispersive x-ray spectroscopy, atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Thin films of four compositions were produced: Ti{sub 85}Nb{sub 15} (Ti-26 wt. % Nb), Ti{sub 80}Nb{sub 20} (Ti-33 wt. % Nb), Ti{sub 70}Nb{sub 30} (Ti-45 wt. % Nb), and Ti{sub 60}Nb{sub 40} (Ti-56 wt. % Nb). Structural characterization by XRD indicated that only the β phase was present in the thin films and that the increase in the Nb content modified the alloy film texture. These changes in the film texture, also detected by TEM analysis, were attributed to different growth modes related to the Nb content in the alloy films. The mean grain sizes measured by AFM increased with the Nb amount (from 197 to 222 nm). XPS analysis showed a predominance of oxidized Ti and Nb on the film surfaces and an enrichment of Ti.

  4. Film-induced stress enhancing stress corrosion cracking of austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    李金许; 陈浩; 王燕斌; 乔利杰; 褚武扬

    2001-01-01

    A constant deflection device designed for use within a transmission electron microscopy (TEM) was used to investigate the change in dislocation configuration ahead of a crack tip during stress corrosion cracking (SCC) of type 310 austenitic stainless steel in a boiling MgCl2 solution, and the initiation process of stress corrosion microcrack. Results showed that corrosion process during SCC enhanced dislocation emission, multiplication and motion. Microcracks of SCC were initiated when the corrosion-enhanced dislocation emission and motion reached critical state.   A passive film formed during corrosion of austenitic stainless steel in the boiling MgCl2 solution generated a tensile stress. During SCC, the additive tensile stress generated at the metal/passive film interface helps enhance dislocation emission and motion.

  5. Nonlinear response and two stable electroconducting states in transparent plasticized PVC films

    Science.gov (United States)

    Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.

    2010-10-01

    The electric conductivity of transparent plasticized poly(vinyl chloride) (PVC) films with thicknesses about 30-50 μm has been studied in electric fields with strengths significantly below the breakdown level. It is established that the PVC films exhibit spontaneous reversible transitions between two stable states—with high and relatively low conductivities, in which the bulk resistivity amounts to ˜103 and 106 Ω m, respectively. Relaxation current-voltage characteristics have been measured in a continuous regime, which allowed the Debye relaxation processes to be taken into consideration and effects related to the nonlinearity and transitions between indicated states to be separated. A regime with deterministic switching between the two conducting states has been observed. A simple qualitative model that describes the anomalous character of conductivity in polymer films is proposed.

  6. Highly Uniform Thin-Film Transistors Printed on Flexible Plastic Films with Morphology-Controlled Carbon Nanotube Network Channels

    Science.gov (United States)

    Numata, Hideaki; Ihara, Kazuki; Saito, Takeshi; Endoh, Hiroyuki; Nihey, Fumiyuki

    2012-05-01

    Carbon nanotube (CNT) transistor arrays were fabricated on plastic films by printing. All the device elements were directly patterned by maskless printing without any additional patterning process, and minimum materials were used. During fabrication, the morphology of the CNT random network was controlled by an adsorption mechanism on the surface to be printed, which resulted in excellent and uniform electrical properties. The field-effect mobility was further improved by post-treatment to modify the morphology of the CNT network. These results are promising for realizing printed electronics integrated with CNT transistors.

  7. Analysis of the cracking problem of weld corner of PVC plastic-steel windows%PVC塑钢窗焊角开裂问题的分析

    Institute of Scientific and Technical Information of China (English)

    李慧

    2012-01-01

    The general cracking rules of weld corner of PVC plastic-steel windows are discussed.The main causes of weld corner cracking and the effect of PVC plastic-steel windows assembling plant,the installation process of PVC plastic-steel windows and the inherent quality of PVC profiles on weld corner cracking are analyed.The improvement measures are provided.%探讨了PVC塑钢窗焊角开裂的一般规律,分析了焊角开裂的主要原因以及PVC塑钢窗组装厂、PVC塑钢窗的安装过程、PVC型材的内在质量对焊角开裂的影响,并提出了改进措施。

  8. Atomic-scale analysis of plastic deformation in thin-film forms of electronic materials

    Science.gov (United States)

    Kolluri, Kedarnath

    Nanometer-scale-thick films of metals and semiconductor heterostructures are used increasingly in modern technologies, from microelectronics to various areas of nanofabrication. Processing of such ultrathin-film materials generates structural defects, including voids and cracks, and may induce structural transformations. Furthermore, the mechanical behavior of these small-volume structures is very different from that of bulk materials. Improvement of the reliability, functionality, and performance of nano-scale devices requires a fundamental understanding of the atomistic mechanisms that govern the thin-film response to mechanical loading in order to establish links between the films' structural evolution and their mechanical behavior. Toward this end, a significant part of this study is focused on the analysis of atomic-scale mechanisms of plastic deformation in freestanding, ultrathin films of face-centered cubic (fcc) copper (Cu) that are subjected to biaxial tensile strain. The analysis is based on large-scale molecular-dynamics simulations. Elementary mechanisms of dislocation nucleation are studied and several problems involving the structural evolution of the thin films due to the glide of and interactions between dislocations are addressed. These problems include void nucleation, martensitic transformation, and the role of stacking faults in facilitating dislocation depletion in ultrathin films and other small-volume structures of fcc metals. Void nucleation is analyzed as a mechanism of strain relaxation in Cu thin films. The glide of multiple dislocations causes shearing of atomic planes and leads to formation of surface pits, while vacancies are generated due to the glide motion of jogged dislocations. Coalescence of vacancy clusters with surface pits leads to formation of voids. In addition, the phase transformation of fcc Cu films to hexagonal-close packed (hcp) ones is studied. The resulting martensite phase nucleates at the film's free surface and

  9. Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution

    Science.gov (United States)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Pan, Yue; Li, Jun

    2016-12-01

    Passive films grow on the surface of Cr-modified steels subjected to saturated Ca(OH)2 solution. Electrochemical techniques, such as measurement of open circuit potentials, polarization curves, and electrochemical impedance spectroscopy combined with X-ray photoelectron spectrometer and auger electron spectroscopy, were applied to study the influence of low Cr content on the passive film formation mechanism of steel rebar in saturated Ca(OH)2 solution. Results show that Cr inhibits the formation of passive film at the beginning of its formation. Corrosion current density decreases and polarization resistance increases with the extension of the immersion time. A stable passive film takes at least three days to form. The passive film resistance of HRB400 carbon steel is higher than that of Cr-modified steels in the early stage of immersion (72 h), and Cr promotes the formation of a denser and more compact passive film. The stable passive film is primarily made up of iron oxides with a thickness of 5-6 nm. Cr are involved in the formation of passive films, thereby resulting in a film that consists of an inner layer that contains Cr-Fe oxides and an outer layer that contains Fe oxides, whose thickness presents a slight increase as the content of Cr increases.

  10. The effect of glycerol from biodiesel production waste as a plasticizer on physical character edible film of chitosan

    Science.gov (United States)

    Rosyid, Fajar Abdul; Triastuti, Rr. Juni; Andriyono, Sapto

    2017-02-01

    Chitosan edible film is a thin layer of clear packaging made from chitosan edible and biodegradable. Edible chitosan films are stiffer and less elastic, so it should be added plasticizer glycerol. One source of glycerol is inexpensive and easily obtained is crude glycerol from biodiesel production. The purpose of this study was to determine the effect of various concentrations of crude glycerol plasticizer on the physical characteristics of chitosan edible film and determine the best concentration of crude glycerol plasticizer. This study used a completely randomized design (CRD) with five treatments and four replications. The Edible film using the g chitosan and some plasticizers concentration of crude glycerol (0.2, 0.4, 0.8, and 1 mL) and a control treatment that used 0.4 mL of pure glycerol was made. The results showed that the use of crude glycerol plasticizer had effect to the physical character of chitosan edible film. Increasing concentrations of crude glycerol plasticizer exhibits the lowers value of the thickness and tensile strength, however, can increase the value of percent elongation. The best concentration of this research is the treatment of B (0.2 ml crude glycerol) which resulted in 0.55 mm thickness, the tensile strength of 95.38 kgf/cm2 and a percent elongation of 2.13%.

  11. Thresholds for Fatigue Initiation and Propagation and Plastic Work in HY80 and HY130 Steels.

    Science.gov (United States)

    1980-10-16

    MNl/en for HY80 and 3.8 MN/m2 for HY130 (R = 0.05) seemed low compared to some other published values for steels .6 It was, therefore, decided to...Macrocrack Growth in Tempered HY80 , HY130, and 4140 Steels : Threshold and Mid-AK Range", submitted to Fatigue of Engineering Materials and Structures...Assistant 9/79 to present. PUBLICATIONS 1. S. I. Kwun and M. E. Fine, "Fatigue Macrocrack Growth in Tempered HY80 , HYI30, and 4140 Steels : Threshold and

  12. The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling

    NARCIS (Netherlands)

    Eyckens, P.; Mulder, J.; Gawad, J.; Vegter, H.; Roose, D.; Boogaard, van den A.H.; Van Bael, A.; Van Houtte, P.

    2015-01-01

    An essential aspect of materials modelling in the field of metal plasticity is hardening. The classical assumption of isotropic hardening in metal plasticity models is often too simplified to describe actual material behaviour. This paper focuses on the non-isotropic hardening termed differential ha

  13. Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures

    CERN Document Server

    Garion, C; Sgobba, Stefano

    2006-01-01

    The present paper is focused on constitutive modelling and identification of parameters of the relevant model of plastic strain- induced martensitic transformation in austenitic stainless steels at low temperatures. The model used to describe the FCCrightward arrow BCC phase transformation in austenitic stainless steels is based on the assumption of linearization of the most intensive part of the transformation curve. The kinetics of phase transformation is described by three parameters: transformation threshold (p/sub xi/), slope (A) and saturation level (xi/sub L/). It is assumed that the phase transformation is driven by the accumulated plastic strain p. In addition, the intensity of plastic deformation is strongly coupled to the phase transformation via the description of mixed kinematic /isotropic linear plastic hardening based on the Mori-Tanaka homogenization. The theory of small strains is applied. Small strain fields, corresponding to phase transformation, are decomposed into the volumic and the shea...

  14. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Science.gov (United States)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  15. Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, S. [Laboratory for Tribology and Interface Nanotechnology, University of Ljubljana, Ljubljana (Slovenia); Kovač, J. [Jozef Stefan Institute, Jamova 19, 1000 Ljubljana (Slovenia); Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [Laboratory for Tribology and Interface Nanotechnology, University of Ljubljana, Ljubljana (Slovenia)

    2016-10-15

    Highlights: • The effect of the ZDDP concentrations onto the steel, H-DLC and Si-DLC surfaces is investigated. • ZDDP film structure on the DLC coatings is different from steel. • Different concentrations of ZDDP do not affect the final chemical structure of the ZDDP film on any of the studied surfaces. • The thickness of the thermal film is linear with the concentration for a given surface. • The reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings. - Abstract: This work focuses on the ZDDP concentration (1, 5 and 20 wt%) to form a ZDDP film on surfaces during static thermal tests at 150 °C. Silicon-doped and hydrogenated DLC coatings, as well as steel as reference, were studied using Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The results show that, on the three surfaces, the structure of the ZDDP thermal film consists of identical groups of pyrophosphate and zinc oxide, while the sulphuric groups are dissimilar. On the steel surface, the sulphuric part consists of a mixture of organic sulphide and sulphohydryl groups, but on H-DLC and Si-DLC only organic sulphide groups are found; there are no sulphohydryl groups. Moreover, both ATR-FTIR and XPS show that different concentrations of ZDDP do not affect the final chemical structure of the ZDDP thermal film on any of the studied surfaces. In addition, the XPS results show that the thickness of the thermal film is linear with the concentration for the whole range from 1 to 20 wt%, supporting also its uniform chemical structure. These thicknesses further show that the reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings.

  16. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited Onto the Plastic Substrate

    Directory of Open Access Journals (Sweden)

    Shao-Kai Lu

    2014-03-01

    Full Text Available In this study, we utilize the RF magnetron sputtering system to deposit the indium tin oxide (ITO conductive transparent film with low resistivity and high light transmittance to the polyethylene tetephthalate (PET plastic substrate and measure the film’s bending property and reliability at different tensile/compressive strain bending curvatures as well as the flexibility after cycling bending. The results show that the critical curvatures corresponded to the significant increase in the resistance of the 150 nm-thick ITO film deposited onto the PET substrate under tensile and compressive stress areO 14.1 mm and 5.4 mm, respectively. By observing the film’s surface crack and morphology, we can further discover that the critical curvature of the crack generated when the film is bent is quite consistent with the critical curvature at which the conductivity property degrades, and the film can withstand a higher compressive strain bending. In addition, the resistance and adhesion behavior of the film almost is unchanged after cycling bent for 1000 times with the curvature below the critical curvature.

  17. Stability of passivated 316L stainless steel oxide films for cardiovascular stents.

    Science.gov (United States)

    Shih, Chun-Che; Shih, Chun-Ming; Chou, Kuang-Yi; Lin, Shing-Jong; Su, Yea-Yang

    2007-03-15

    Passivated 316L stainless steel is used extensively in cardiovascular stents. The degree of chloride ion attack might increase as the oxide film on the implant degrades from exposure to physiological fluid. Stability of 316L stainless steel stent is a function of the concentration of hydrated and hydrolyated oxide concentration inside the passivated film. A high concentration of hydrated and hydrolyated oxide inside the passivated oxide film is required to maintain the integrity of the passivated oxide film, reduce the chance of chloride ion attack, and prevent any possible leaching of positively charged ions into the surrounding tissue that accelerate the inflammatory process. Leaching of metallic ions from corroded implant surface into surrounding tissue was confirmed by the X-ray mapping technique. The degree of thrombi weight percentage [W(ao): (2.1 +/- 0.9)%; W(ep): (12.5 +/- 4.9)%, p < 0.01] between the amorphous oxide (AO) and the electropolishing (EP) treatment groups was statistically significant in ex-vivo extracorporeal thrombosis experiment of mongrel dog. The thickness of neointima (T(ao): 100 +/- 20 microm; T(ep): 500 +/- 150 microm, p < 0.01) and the area ratio of intimal response at 4 weeks (AR(ao): 0.62 +/- 0.22; AR(ep): 1.15 +/- 0.42, p < 0.001) on the implanted iliac stents of New Zealand rabbit could be a function of the oxide properties.

  18. Impedance investigation of thermally formed oxide films on AISI 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hamadou, L. [Laboratoire de Materiaux, Electrochimie et Corrosion, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. 17, Tizi-Ouzou 15000 (Algeria)], E-mail: lamhama@yahoo.fr; Kadri, A.; Benbrahim, N. [Laboratoire de Materiaux, Electrochimie et Corrosion, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. 17, Tizi-Ouzou 15000 (Algeria)

    2010-03-15

    Thin oxide layers on 304L stainless steel were grown by thermal oxidation at 300 deg. C at different durations ranging from 2 to 4 h. The structural characterization of the oxide films was carried out by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical impedance spectroscopy was used to investigate the effects of exposure time and applied potential on the electronic properties of these films. Oxide films are described by a multilayer structure, with n-type iron oxide and oxyhydroxide in the outer layers and p-type chromium oxide in the inner layer. Doping densities evaluated from Mott-Schottky plots increased with the oxidation duration, with characteristics of highly disordered semiconductor.

  19. Observing phthalate leaching from plasticized polymer films at the molecular level.

    Science.gov (United States)

    Zhang, Xiaoxian; Chen, Zhan

    2014-05-06

    Phthalates, the most widely used plasticizers in poly(vinyl chloride) (PVC), have been extensively studied. In this paper, a highly sensitive, easy, and effective method was developed to examine short-term phthalate leaching from PVC/phthalate films at the molecular level using sum frequency generation vibrational spectroscopy (SFG). Combining SFG and Fourier transform infrared spectroscopy (FTIR), surface and bulk molecular structures of PVC/phthalate films were also comprehensively evaluated during the phthalate leaching process under various environments. The leaching processes of two phthalates, diethyl phthalate (DEP) and dibutyl phthalate (DBP), from the PVC/phthalate films with various weight ratios were studied. Oxygen plasma was applied to treat the PVC/phthalate film surfaces to verify its efficacy on preventing/reducing phthalate leaching from PVC. Our results show that DBP is more stable than DEP in PVC/phthalate films. Even so, DBP molecules were still found to very slowly leach to the environment from PVC at 30 °C, at a rate much slower than DEP. Also, the bulk DBP content substantially influences the DBP leaching. Higher DBP bulk concentration yields less stable DBP molecules in the PVC matrix, allowing molecules to leach from the polymer film more easily. Additionally, DBP leaching is very sensitive to temperature changes; higher temperature can strongly enhance the leaching process. For most cases, the oxygen plasma treatment can effectively prevent phthalate leaching from PVC films (e.g., for samples with low bulk concentrations of DBP-5 and 30 wt %). It is also capable of reducing phthalate leaching from high DBP bulk concentration PVC samples (e.g., 70 wt % DBP in PVC/DBP mixture). This research develops a highly sensitive method to detect chemicals at the molecular level as well as provides surface and bulk molecular structural changes. The method developed here is general and can be applied to detect small amounts of chemical

  20. Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture.

    Science.gov (United States)

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-05-10

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.

  1. Broadband terahertz transmission within the symmetrical plastic film coated parallel-plate waveguide.

    Science.gov (United States)

    Liu, Jiamin; Liang, Huawei; Zhang, Min; Su, Hong

    2014-09-10

    We report on the broadband terahertz (THz) transmission within a symmetrical plastic film coated parallel-plate waveguide. We theoretically study the antiresonant reflecting mechanism of the waveguide, and we find that the broadband THz wave can transmit in this waveguide with ultralow loss. The loss of the TM mode in this waveguide can be 4 orders of magnitude lower than the uncoated parallel-plate waveguide. The transmission bandwidth of this waveguide is up to 5.12 THz. We further show the mode field distributions which explain the loss mechanism.

  2. Differential hardening in IF steel - Experimental results and a crystal plasticity based model

    NARCIS (Netherlands)

    Mulder, J.; Eyckens, P.; van den Boogaard, Antonius H.; Hora, P.

    2015-01-01

    Work hardening in metals is commonly described by isotropic hardening, especially for monotonically increasing proportional loading. The relation between different stress states in this case is determined by equivalent stress and strain definitions, based on equal plastic dissipation. However,

  3. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    Directory of Open Access Journals (Sweden)

    Subramanian B

    2015-10-01

    Full Text Available Balasubramanian Subramanian,1 Sundaram Maruthamuthu,2 Senthilperumal Thanka Rajan1 1Electrochemical Material Science Division, 2Corrosion and Materials Protection Division, Central Electrochemical Research Institute, Karaikudi, India Abstract: Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.% of approximately 1.5 µm and 3 µm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. Keywords: thin film metallic glasses, sputtering, biocompatibility, corrosion, antimicrobial activity

  4. Laser direct joining of metal and plastic

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Seiji [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kawahito, Yousuke [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: kawahito@jwri.osaka-u.ac.jp

    2008-12-15

    We have developed an innovative rapid laser direct joining process of metal and plastic lap plates without adhesives or glues. The joints made between a Type 304 stainless steel plate and a polyethylene terephthalate (PET) plastic sheet of 30 mm width possessed tensile shear loads of about 3000 N. Transmission electron microscope photographs of the joint demonstrated that Type 304 and the PET were bonded on the atomic, molecular or nanostructural level through a Cr oxide film.

  5. Tailoring the mechanical properties of steel sheets using FeC films and diffusion annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cantergiani, Elisa [Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Fillon, Amélie [Université de Rouen, Groupe de Physique des Matériaux, UMR CNRS 6634, BP-12, 76801, Saint Etienne du Rouvray Cedex (France); Lawrence, Ben [The University of British Columbia, Dept. of Materials Engineering, 309-6350 Stores Road, Vancouver, Canada V6T1Z4 (Canada); Sauvage, Xavier [Université de Rouen, Groupe de Physique des Matériaux, UMR CNRS 6634, BP-12, 76801, Saint Etienne du Rouvray Cedex (France); Perez, Michel [Université de Lyon, MATEIS-INSA-Lyon, UMR CNRS 5510, 69621 Villeurbanne (France); Scott, Colin P. [Canmet MATERIALS, Hamilton, ON, Canada L8P0A5 (Canada); Weck, Arnaud, E-mail: aweck@uottawa.ca [Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Centre for Research in Photonics at the University of Ottawa, 800 King Edward Ave., Ottawa, ON, Canada K1N 6N5 (Canada)

    2016-03-07

    In this work amorphous FeC films were deposited on thin sheets of interstitial free steel using physical vapor deposition. Annealing treatments were then carried out to diffuse C from the coating into the substrate at temperatures lower than those traditionally used in carburizing treatments. The yield stress was shown to significantly increase with annealing temperature from ~120 MPa at 25 °C up to a maximum of 300 MPa at 630 °C without any significant loss of ductility. At 710 °C, a decrease in yield strength was related to the coarsening of carbides inside the IF steel (confirmed by atom probe tomography), and the associated reduction in the matrix solid solution carbon concentration (confirmed by thermoelectric power measurements). The through-thickness carbon diffusion profile was predicted using Fick's law and validated by Knoop hardness measurements. Yield strength predictions were accurate if the crystallization of the FeC film was taken into account as it controls the amount of carbon available to be diffused in the interstitial free steel substrate.

  6. Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Blomfeldt, Thomas O. J.; Hedenqvist, Mikael S.

    2012-01-01

    Xylans, an important sub-class of hemicelluloses, represent a largely untapped resource for new renewable materials derived from biomass. As with other carbohydrates, nanocellulose reinforcement of xylans is interesting as a route to new bio-materials. With this in mind, birch wood xylan was comb......Xylans, an important sub-class of hemicelluloses, represent a largely untapped resource for new renewable materials derived from biomass. As with other carbohydrates, nanocellulose reinforcement of xylans is interesting as a route to new bio-materials. With this in mind, birch wood xylan...... was combined with nanofibrillated cellulose (NFC) and films were cast with and without glycerol, sorbitol or methoxypolyethylene glycol (MPEG) as plasticizers. Microscopy revealed some NFC agglomeration in the composite films as well as a layered nanocellulose structure. Equilibrium moisture content...

  7. Fracture performance of high strength steels, aluminium and magnesium alloys during plastic deformation

    Directory of Open Access Journals (Sweden)

    Yu Haiyan

    2015-01-01

    Full Text Available A series of uniaxial tension tests were performed for 5052 and 6061 aluminum alloys, AZ31B magnesium alloy, TRIP600 and DP600 steels, to obtain a better understanding of their fracture performance. Scanning electron microscope (SEM observation of the microstructure evolution was conducted. The dimple structure, orientation relationship between the fracture surface and tensile direction, necking behavior were analyzed. The fracture mechanism and fracture mode of each material was discussed in detail. The results show that TRIP600 steel is subject to a typical inter-granular ductile fracture combined by shear fracture. DP600 steel belongs to mainly ductility mixed with normal fracture. Both 5052 and 6061 aluminum alloys are subject to a mixed ductility fracture and brittle fracture. AA5052 and AA6061 belong to a typical shear fracture and a normal fracture, respectively. Magnesium AZ31B is typical of a brittle fracture combined with normal fracture.

  8. ANALISA FAKTOR PENYEBAB KEGAGALAN MESIN GRINDER PADA PROSES PRODUKSI PLASTIC FILM DI PT. MUTIARA HEXAGON

    Directory of Open Access Journals (Sweden)

    Imam Hidayat

    2013-10-01

    Full Text Available Bila suatu mesin memiliki tingkat kegagalan yang tinggi, maka perlu dilakukan analisis mengenai  penyebab  –  penyebab  kegagalan  tersebut  hingga  ke  akar  permasalahannya sehingga dapat menentukan tindakan yang sesuai untuk meningkatkan kinerja suatu mesin. PT. Mutiara Hexagon merupakan sebuah perusahaan yang bergerak dibidang industri pembuatan plastik  kemasan.  Dalam  line  pembuatan lembaran film  diperlukan mesin  CPP  (Cast  Poly Propylene Machine dan mesin grinder dalam prosesnya. Pada penelitian yang dilakukan di PT. Mutiara Hexagon, terdapat beberapa kegagalan yang terjadi pada mesin grinder pada proses produksi plastic film, sehingga menyebabkan seluruh line pada divisi film mengalami downtime. Tujuan dari penelitian ini adalah untuk melakukan analisa mengenai faktor penyebab kegagalan mesin grinder, penulis melakukan observasi secara langsung dan melihat proses produksi plastic film.Penulis menggunakan metode Failure Effect and Mode Analysis (FMEA dan Fault Tree Analysis (FTA. Penerapan analisis Failure Effect and  Mode Analysis (FMEA dapat menentukan sejauh mana tingkat kegagalan terjadi. Dari hasil analisis FMEA kemudian dapat dilanjutkan dengan menggunakan Fault Tree Analysis (FTA guna mengetahui lebih lanjut penyebab-penyebab dasar suatu kegagalan.Dari hasil perhitungan nilai Risk Priority Number (RPN pada tiap-tiap kegagalan yang terjadi  diantaranya yang  paling  tinggi  adalah kegagalan mesin  grinder rusak  dengan nilai kegagalannya mencapai 120. Kemudian dianalisa penyebab kegagalan tersebut dengan menggunakan metode FTA di dapatkan minimal cut sets yaitu: as grinder patah, katup hisap blower terbuka terlalu besar, kegagalan pada motor blower, baut pada dudukan pisau patah, pisau tumpul dan human error. Berdasarkan nilai probabilitas masing-masing cut set didapatkan nilai probabilitas kegagalan grinder periode 1 Juni 2012 -1 Juni 2013 mencapai 60%.

  9. Effects of Alloying Elements on the Concentration Profile of Equilibrium Phases in Transformation Induced Plasticity Steel

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With the two sublattices model, equilibrium compositions of ferrite (α) and austenite (γ) phases, as well as thevolume percent of austenite (γ) in different TRIP steels are calculated. Concentration profiles of carbon, manganese,aluminum and silicon in these steels are also estimated under the lattice fixed frame of reference so as to identifyif the equilibrium state is obtained. Through the comparison between the profiles after different time diffusion, thedistribution of elements in phases is exhibited and the complex effect due to the mutual interaction of the elementson diffusion is discussed.

  10. Investigation of Deformation Mechanisms in Deep-Drawn and Tensile-Strained Austenitic Mn-Based Twinning Induced Plasticity (TWIP) Steel

    NARCIS (Netherlands)

    Van Tol, R.T.; Zhao, L.; Schut, H.; Sietsma, J.

    2012-01-01

    The effect of strain on the deformation mechanisms in an austenitic Mn-based twinning induced plasticity (TWIP) steel is investigated using magnetic measurements, XRD, positron beam Doppler spectroscopy, and finite element method simulations. The experimental observations reveal the formation of a0-

  11. Preparation of plastic and biopolymer multilayer films by plasma source ion implantation.

    Science.gov (United States)

    Shin, Gye Hwa; Lee, Yeon Hee; Lee, Jin Sil; Kim, Young Soo; Choi, Won Seok; Park, Hyun Jin

    2002-07-31

    The plasma source ion implantation (PSII) technique was used to improve the adhesion between linear low-density polyethylene (LLDPE) and biopolymer. LLDPE was treated with the PSII using O(2) or CF(4) gas to modify its surface. After modification, chitosan or corn zein was used for coating on LLDPE. Wettability of the LLDPE surface was evaluated with a contact angle meter by the sessile drop method. X-ray photoelectron spectroscopy (XPS) was used to analyze the LLDPE surface. Before and after treatment, in the case of LLDPE treated with O(2) PSII, oxygen-containing functional groups were formed on the implanted surface. In the CF(4) PSII treated LLDPE, it was observed that the fluorine concentration on the surface of LLDPE remarkably increased and hydrophobic groups were formed by chemical reaction. Bilayer films coated with chitosan or corn zein showed 10 times lower oxygen permeability. Tensile strength of multilayer films was decreased a little compared with that of LLDPE. The plastic and biopolymer multilayer films have potential for food packaging application because of their O(2) gas barrier property and easy recyclability of the multilayer film.

  12. Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage.

    Science.gov (United States)

    Jouki, Mohammad; Yazdi, Farideh Tabatabaei; Mortazavi, Seyed Ali; Koocheki, Arash

    2013-11-01

    In this study, we investigated the potential of quince seed mucilage (QSM) as a new source for preparation of edible films and determined the physical, mechanical, barrier, antioxidant, microstructural and thermal properties. QSM films were prepared by incorporation of three levels of glycerol (25-50%, w/w). As glycerol concentration increased, water vapor permeability (WVP), oxygen permeability (O2P), elongation at break (EB), water solubility and moisture content of QSM films increased while, tensile strength (TS), density and surface hydrophobicity decreased significantly. The measurement of color values showed that by the increasing of the glycerol concentration in polymer matrix, the b and L values increased while ΔE value decreased. Microscopic views indicated smooth and uniform surface morphology without obvious cracks, breaks, or openings on the surfaces after the incorporation of glycerol as a plasticizer. The results of the present study suggest that QSM as a new antioxidant edible film with interesting specifications can potentially be used for packaging of a wide range of food products.

  13. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    Science.gov (United States)

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  14. Effect of heating conditions on the removal of oxide film on steel surface by the inert gas fusion method

    Energy Technology Data Exchange (ETDEWEB)

    Ise, T.

    1998-12-01

    This study was carried out to establish an analytical technique for accurate evaluation of bulk oxygen in ultra-clean steel using the inert gas fusion method without pre-cleaning such as electrolytic or chemical polishing. This method had a two-step heating pattern, one was a continuous heating stage to re-move contamination, and another was a fixed high-temperature stage to analysis oxide inclusions. In this paper, reduction sites of oxide film and the effect of bulk carbon content are also discussed. The results obtained are as follows: (1) The separation of bulk oxygen and contaminant oxygen on the steel surface depended on the heating rate of the steel at heating stage I. The lower the rate was, the better the separation was. (2) The optimum heating rate of the steel was 1K/s. (3) In the case of high-carbon chromium bearing steel which contained 3.4 ppm of oxygen (a calibration standard sample JSS GS-6a) , approximately a half of its total oxygen content was estimated to consist of contaminant oxygen on the steel surface, This value was well compared to the measurement by the charged particle activation analysis method and was found to be reasonable. (4) It was found that both the carbon content in the steel and the feed of carbon from the crucible/ steel contact surface affected the removal of oxide film. (author)

  15. Review on δ-Transformation-Induced Plasticity (TRIP) Steels with Low Density: The Concept and Current Progress

    Science.gov (United States)

    Yi, H. L.

    2014-09-01

    Novel alloys with high aluminum addition, so-called δ-transformation-induced plasticity (TRIP), have been developed recently for the third generation of advanced high strength steels for automotive applications, which are promising owing to the potential weldability as well as the combination of strength and ductility. In addition, the high aluminum addition results in a density reduction of approximately 5% in these δ-TRIP alloys without sacrificing the Young's modulus in uniaxial tensile tests. The origin of δ-TRIP concept is introduced first with a review of the published work on δ-TRIP alloys. This review will include methodology for retention of δ-ferrite in casting, rolling and welding conditions, microstructure evolution by austempering, as well as microstructures-properties relationship involving the roles of blocky and lath retained austenite. In addition, currently unresolved problems will be discussed regarding the fundamentals of materials design, automotive application, and industrial manufacturing.

  16. Relationship between anelastic and non-linear visco-plastic behavior of 316 stainless steel at low homologous temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nir, N.; Huang, F.H.; Hart, E.W.; Li, C.Y.

    1976-05-01

    At low homologous temperature the plastic strain rate seems to be controlled largely by dislocation glide friction. However, since a sizeable fraction of the applied stress sigma is dissipated in overcoming the strong barriers due to dislocation tangles generated by strain hardening, only a portion of the applied stress is actually expended against the frictional resistance. A recent model for this process includes the role of dislocation pile-ups at the strong barriers. The pile-ups provide a mechanism for producing the internal back stresses that limit the effective frictional stress. The also appear in the deformation as a stored anelastic strain component. The resultant behavior at low temperature and high stress is similar to that proposed by Grupta and Li. The same model also predicts an anelastic behavior at low stress. Measurements at both high and low stress levels on 316 Stainless Steel have now shown that the predictions of the model are quantitatively consistent at both stress levels.

  17. Novel ultrafine Fe(C) precipitates strengthen transformation-induced-plasticity steel

    NARCIS (Netherlands)

    Tirumalasetty, G.K.; Fang, C.M.; Xu, Q.; Jansen, J.; Sietsma, J.; Van Huis, M.A.; Zandbergen, H.W.

    2012-01-01

    A transmission electron microscopy study was conducted on nanoprecipitates formed in Ti microalloyed transformation-inducedplasticity-assisted steels, revealing the presence of Ti(N), Ti2CS and a novel type of ultra-fine Fe(C) precipitate. The matrix/precipitate orientation relationships, sizes and

  18. Serum chromium levels sampled with steel needle versus plastic IV cannula. Does method matter?

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Overgaard, Søren

    2010-01-01

    PURPOSE: Modern metal-on-metal (MoM) joint articulations releases metal ions to the body. Research tries to establish how much this elevates metal ion levels and whether it causes adverse effects. The steel needle that samples the blood may introduce additional chromium to the sample thereby caus...

  19. Serum Chrome levels sampled with steel needle vs. plastic IV cannula

    DEFF Research Database (Denmark)

    Penny, Jeannette Østergaard; Overgaard, Søren

    2010-01-01

      Modern Metal-on-metal (MoM) joint articulations releases metal ions to the body. Research tries to establish how much this elevates metal ion levels and whether it causes adverse effects. The steel needle that samples the blood may introduce additional chromium to the sample thereby causing bia...

  20. Starch/polyester films: simultaneous optimisation of the properties for the production of biodegradable plastic bags

    Directory of Open Access Journals (Sweden)

    J. B. Olivato

    2013-01-01

    Full Text Available Blends of starch/polyester have been of great interest in the development of biodegradable packaging. A method based on multiple responses optimisation (Desirability was used to evaluate the properties of tensile strength, perforation force, elongation and seal strength of cassava starch/poly(butylene adipate-co-terephthalate (PBAT blown films produced via a one-step reactive extrusion using tartaric acid (TA as a compatibiliser. Maximum results for all the properties were set as more desirable, with an optimal formulation being obtained which contained (55:45 starch/PBAT (88.2 wt. (%, glycerol (11.0 wt. (% and TA (0.8 wt. (%. Biodegradable plastic bags were produced using the film with this formulation, and analysed according to the standard method of the Associação Brasileira de Normas Técnicas (ABNT. The bags exhibited a 45% failure rate in free-falling dart impact tests, a 10% of failure rate in dynamic load tests and no failure in static load tests. These results meet the specifications set by the standard. Thus, the biodegradable plastic bags fabricated with an optimised formulation could be useful as an alternative to those made from non-biodegradable materials if the nominal capacity declared for this material is considered.

  1. Waxes and plastic film in relation to the shelf life of yellow passion fruit

    Directory of Open Access Journals (Sweden)

    Mota Wagner Ferreira da

    2003-01-01

    Full Text Available The high perishability of the yellow passion fruit (Passiflora edulis f. flavicarpa reduces its postharvest conservation and availability, mainly for in natura consumption. These losses of quality and commercial value occur due to the high respiration and loss of water. This work aimed to evaluate the influence of a modified atmosphere - wax emulsions and plastic film - on the shelf life of the yellow passion fruit. Plastic film (Cryovac D-955, 15 mum thickness reduced fresh weight loss and fruit wilting, kept higher fruit and rind weight and higher pulp osmotic potential over the storage period. However, it was not efficient in the control of rottenness. Sparcitrus wax (22-23% polyethylene/maleyc resin caused injury to the fruit, high fruit weight losses and wilting and resulted in lower pulp osmotic potential; this wax lead to a higher concentration of acid and a lower relation of soluble solids/acidity. Among the tested waxes, Fruit Wax (18-21% carnauba wax was the best, promoting reduced weight loss, wilting and rottenness.

  2. The Optimum Sowing Time for Plastic-film Corn and the Application of Two Related Theories

    Institute of Scientific and Technical Information of China (English)

    WU Rui-xiang; WANG Xin-huan; LIU Rong-quan; LU Cui-ling; L(U) Yong-lai; LI Hua; ZHANG Li; LU Xiu-zhi; YU Shu-ping; WU Xiu-yan

    2002-01-01

    There are two main theories, the "temperature-raising" theory and the "precipitation-based regulation" theory, which guide the optimum sowing time of the plastic-film corn. The former was applied in the humid or semi-humid ecotope and on irrigated or half-shaded land in the arid and semi-arid ecotopes,while the latter was suitable for the dry-farming land in the semi-arid ecotope. The results of experiments and investigations for many years showed that the corn output was increased by 69.2% when the former theory was applied to guide the optimum sowing time for plastic-film corn in the semi-humid ecotope, and by 60.0%when the latter theory was applied in the semi-arid ecotope. In the semi-arid ecotope, however, the output was increased only by 15.7% when the former theory was applied, and even dropped by 14.4% when the latter theory was applied.

  3. Determination of interfacial fracture energies of Ni films on titanium and stainless steel substrates by peel test

    Institute of Scientific and Technical Information of China (English)

    任凤章; 周根树; 赵文轸; 胡志忠; 郑茂盛; 鞠新华

    2002-01-01

    The interfacial fracture energy G, which includes the effect of residual stress, was deduced for Ni films on titanium and stainless steel substrates based on the energy-balance argument and the numerical method for the work expenditure Gdb of Moidu et al. The estimated interfacial fracture energies G are independent of the film thickness, the peel angle and the residual stress. The value of G for Ni films on a stainless steel substrate is about 5.47~6.08N/m for various peel angles θ, while 5.33~6.72N/m for Ni films on titanium substrate with various film thickness h. The effect of the residual stress on the peel strength P/b was also discussed.

  4. MgB2 thick films with remarkable ductility on stainless steel substrate

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Cheng-gang; AN Ling; CHEN Li-ping; DING Li-li; ZHANG Kai-cheng; CHEN Chin-ping; XU Jun; FENG Qing-rong; GAN Zi-zhao

    2006-01-01

    We fabricated several superconducting MgB2 thick films on stainless steel (SS) substrates by using hybrid physical-chemical vapor deposition (HPCVD) technique.The thickness was in the 10 pμm to 20 pμm range,and the onset critical transition temperature Te (onset) and the width of the superconducting transition ( △ T) were about 37.8 and 1.2 K.They were dense and textured along (101) direction with high tenacity,despite the existence of a little amount of MgO and Mg.We bent the films at different degrees and studied the ductility and transport properties of these MgB2 thick films under applied force.The results demonstrated that the superconducting properties of these thick films,prepared by HPCVD,stay almost unaffected even with the films bent to a large degree with a curvature of 0.5 nun.This indicated that the superconducting wires or tapes of MgB2 with a core of SS had the advantages of avoiding rigidity and brittleness in industrial handling.The technique of HPCVD has,therefore,a high application potential.

  5. Effects of Vacuum-Carburizing Conditions on Surface-Hardened Layer Properties of Transformation-Induced Plasticity-Aided Martensitic Steel

    Directory of Open Access Journals (Sweden)

    Koh-ichi Sugimoto

    2017-08-01

    Full Text Available The effects of carbon potential in vacuum-carburization on the surface-hardened layer properties of the 0.2%C-1.5%Si-1.5%Mn-1.0%Cr-0.05%Nb transformation-induced plasticity-aided martensitic steel were investigated for the fabrication of precision gears. The volume fraction of retained austenite and hardness in the surface hardened layer of the steel increased with increasing carbon potential. Subsequent fine-particle peening enhanced the hardness and the compressive residual stress via severe plastic deformation and strain-induced martensite transformation, especially under a high carbon potential. The severe plastic deformation mainly contributed to increased hardness and compressive residual stress and the contribution of the strain-induced martensitic transformation was relatively small.

  6. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film.

    Science.gov (United States)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-09-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg(-1) with a median value of 1.70 mg kg(-1), and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film.

  7. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    Science.gov (United States)

    Zhang, Z. B.; Mishin, O. V.; Tao, N. R.; Pantleon, W.

    2015-03-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  8. Microstructure and annealing behavior of a modified 9Cr−1Mo steel after dynamic plastic deformation to different strains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.B.; Mishin, O.V. [Danish-Chinese Center for Nanometals, Section for Materials Science and Advanced Characterization, Department of Wind Energy, Technical University of Denmark, Risø Campus, 4000 Roskilde (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Tao, N.R. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark); Pantleon, W., E-mail: pawo@dtu.dk [Section for Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Sino-Danish Center for Education and Research (China); Sino-Danish Center for Education and Research (Denmark)

    2015-03-15

    The microstructure, hardness and tensile properties of a modified 9Cr−1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  9. FATIGUE LIFE PREDICTION BASED ON MACROSCOPIC PLASTIC ZONE ON FRACTURE SURFACE OF AISI-SAE 1018 STEEL

    Directory of Open Access Journals (Sweden)

    G.M. Domínguez Almaraz

    2010-06-01

    Full Text Available This paper deals with rotating bending fatigue tests at high speed (150 Hz carried out on AISI-SAE 1018 steel with a high content of impurities (non metallic inclusions, for which the high experimental stress inside the specimen is close to the elastic limit of the material. Simulations of rotating loading are obtained by Visual NASTRAN software in order to determine the numerical stresse and strain distributions inside a hypothetical homogeneous specimen; later, this information is used for the experimental set up. A general description of experimental test machine and experimental conditions are developed and then, the experimental results are presented and discussed according the observed failure origin related to the non metallic inclusions and the associated high stress zones. Finally, a simple model is proposed to predict the fatigue life for this non homogeneous steel under high speed rotating bending fatigue tests close to the elastic limit, based on the rate between the visual macro-plastic deformation zone at fracture surface and the total fracture surface, together with the crack initiation inclusion (or inclusions located at this zone.

  10. Structure and electrical properties of PZT/LNO/PT multilayer films on stainless steel substrates

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    PbZr0.53Ti0.47O3 (PZT) ferroelectric thin films were deposited on LaNiO3 (LNO) by sol-gel method. The PbTiO3 (PT) seed layer was depos-ited between the LNO buffer layer and stainless steel (SS) substrate, which effectively decreased the annealing temperature of LNO layer from 750 C to 650 C. X-ray diffraction (XRD) reveals that LNO layers with PT layer crystallize into a perovskite phase on annealing at 650 C for 10 min. PZT deposited on LNO buffer layer with PT seed layer exhibits good ferroelectric proper...

  11. Constitutive Relations Analyses of Plastic Flow in Dual-Phase Steels to Elucidate Structure-Strength-Ductility Correlations

    Science.gov (United States)

    Saimoto, S.; Timokhina, I. B.; Pereloma, E. V.

    2017-07-01

    The structure-strength characterization is typically performed by correlating the structure with x-ray, electron, or atomic imaging devices to the bulk mechanical tensile parameters of yield stress and the plastic yielding response. The problem is that structure parameters embedded in the stress-strain data cannot be revealed without an analyzable constitutive relation. New functional slip-based constitutive formulation with precise digital fitting parameters can replicate the measured data with at least two loci. Thus, this study examines the possibility of identifying the mechanical response as a result of the various microstructure components. The key parameter, the mean slip distance, can be calibrated from the initial work-hardening slope at 0.2% strain from which all the fit parameters can be determined. In this process, a newly derived friction stress is defined to separate the yield phenomenon from the plastic strains beyond yield-point elongation. This methodology has been applied to dual-phase steel specimens that resulted in excellent predictive correlations with prior structure-strength characterization. Hence, the structure-strength-ductility changes resulting from processing conditions can be more precisely surmised from mechanical testing. Thus, a method to delineate the nanostructure evolution with deformation using mesoscopic mechanical parameters has been introduced.

  12. Deposition of Chromium Thin Films on Stainless Steel-304 Substrates Using a Low Energy Plasma Focus Device

    Science.gov (United States)

    Javadi, S.; Ghoranneviss, M.; Hojabri, A.; Habibi, M.; Hosseinnejad, M. T.

    2012-06-01

    In this paper, we study thin films of chromium deposited on stainless steel-304 substrates using a low energy (1.6 kJ) plasma focus device. The films of chromium are likewise deposited with 25 focus shots each at various axial distances from the top of the anode (3, 5, 7, 9 and 11 cm). We also consider different angular positions with respect to the anode axis (0°, 15° and 30°) at a distance of 5 cm from the anode tip to deposit the chromium films on the stainless steel substrates. To characterize the structural properties of the films, we benefit from X-ray diffraction (XRD) analysis. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are applied as well to study the surface morphology of these deposited films. Furthermore, we make use of Vicker's micro-hardness measurements to investigate the mechanical properties of chromium thin films. The XRD results show that the degree of crystallinity of chromium thin films depends on the substrate axial and angular positions. The AFM images illustrate that the film deposited at the distance of 5 cm and the angular position of 0° has quite a uniform surface with homogeneous distribution of grains on the film surface. From the hardness results, we observe that the sample deposited at the axial distance of 5 cm from the anode tip and at the angle of 0° with respect to the anode axis, is harder than the other deposited films.

  13. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Science.gov (United States)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  14. A procedure for hardening steel 45 by plastic deformation using a simple roller

    Directory of Open Access Journals (Sweden)

    Tomás Fernández Columbíe

    2010-04-01

    Full Text Available This work presents the techniques used in an experimental design leading to evaluating the behaviour of an indepen-dent variable force (P, ranging from 500 up to 2500 N, 27 minimum revolution number (n, average 54 and maxi-mum 110 rev/min and 0.075, 0, 125 and 0.25 mm/rev advance for determining the dependent hardness (H pa-ttern when AISI 1045 steel test tubes were subjected to surface rolling for creating a compressive state deforming and increasing its resistance to abrasive wear and fatigue. The variables involved in the process were statistically a-nalysed, revealing increased hardness ranging from 220 up to 262 HV. Optical microscopy was used for analysing the effect of hardening caused by deformation, establishing a mechanism for hardening steel by the elements in the crystalline network sliding due to burnishing.

  15. Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.K. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Doquet, V., E-mail: doquet@lms.polytechnique.fr [Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-08-30

    In-situ tensile tests were carried out on Fe22Mn0.6C and Fe22Mn0.6C3Al (wt%) twinning-induced plasticity (TWIP) steels specimens covered with gold micro-grids. High resolution atomic force microscopy (AFM) and scanning electron microscope (SEM) images were periodically captured. The latter were used for measurements of the plastic strain field, using digital image correlation (DIC). Although no meso-scale localization bands appeared, some areas were deformed three times more than average. Plastic deformation inside the grains was more heterogeneous in Fe22Mn0.6C, but at meso-scale, the degree of strain heterogeneity was not higher, at least up to 12% strain. Plastic deformation started from grain boundaries or annealing twin boundaries in both materials, due to a high elastic anisotropy of the grains. An original method based on DIC was developed to estimate the twin fraction in grains that exhibit a single set of slip/twin bands. Deformation twinning accommodated 60–80% of the plastic strain in some favorably oriented grains, from the onset of plastic flow in Fe22Mn0.6C, but was not observed in the Al-bearing steel until 12% strain. The back stress was important in both materials, but significantly higher in Fe22Mn0.6C.

  16. Reducing hydrogen permeation in 304 stainless steel by compound layers of Al, Zr and Ti oxides films

    Science.gov (United States)

    Hernández L, R. T.; Cortes S, V.; Granados S, J.; Orozco S, S.

    2017-01-01

    A single and double layer formed by thin films coatings of aluminium oxide, zirconium oxide and titanium oxide were deposited over 304 stainless steel surface by ultrasonic spray pyrolysis technique. The steel samples were conformed for tensile tests. The purpose of these layers is to reduce hydrogen embrittlement effect in steel. An electrochemical cell was used in hydrogen charged, where a low concentration of sulfuric acid is utilized like electrolytic solution. Tension trials show the change the fracture type in samples with or without coating after hydrogen charged. The embrittlement percent factor and SEM micrographs indicate a reduction of hydrogen permeation for coated samples with double layer.

  17. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    OpenAIRE

    Vasconcelos Daniela C. Leite; Cesar Maria das Graças M.M.; Cunha Marco Antônio da; Vasconcelos Wander L.

    1999-01-01

    The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz) of the coated steel samples were evaluated as well. The use of MgO containing strontium red...

  18. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  19. Electrochemical codeposition of sol-gel films on stainless steel: controlling the chemical and physical coating properties of biomedical implants.

    Science.gov (United States)

    Okner, Regina; Favaro, Gregory; Radko, Anna; Domb, Abraham Jacob; Mandler, Daniel

    2010-12-14

    The electrochemically assisted codeposition of sol-gel thin films on stainless steel is described. Specifically, electrodeposition of films based on aminopropyltriethoxysilane (APTS), and its codeposition with propyltrimethoxysilane (PrTMOS) and phenyltrimethoxysilane (PhTMOS) has been accomplished by applying negative potentials. The latter increases the concentration of hydroxyl ions on the stainless steel surface and thus catalyzes the condensation and deposition of the sol-gel films. The films were characterized by profilometry, electrochemical impedance spectroscopy (EIS), alternating current voltammetry (ACV), goniometry, atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM and SEM analysis of codeposited APTS:PrTMOS films disclosed the structural changes induced by altering the deposition solution composition and the applied potential. Codeposited APTS:PhTMOS did not show any structural differences from their electrodeposited homopolymers, while Nano Scratch Test clearly revealed the changes in the elastic and adhesion properties, suggesting the formation of an APTS:PhTMOS composite. EIS of the films showed good resistance towards penetration of hydrophilic species, such as hexacyanoferrate. ACV measurements of the homo and codeposits showed the decrease of the interfacial capacity as a result of the electrochemical deposition. In essence, controllable sol-gel films with tunable chemical and physical properties based on controlling the combination of the precursors, pH and electrochemical properties can be electrodeposited on conducting surfaces. The application of this approach has been demonstrated by coating a stainless steel coronary stent.

  20. Specific migration of di-(2-ethylhexyl)adipate (DEHA) from plasticized PVC film: results from an enforcement campaign

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Breindahl, T.

    1998-01-01

    Units. Initially, all films were screened for the migration into isooctane (exposed 2 h at 40 degrees C) of DEHA and other potentially present low molecular weight plasticizers using full scanning mass spectrometry. Films showing a substantial migration of DEHA were further tested with olive oil...... according to the declared field of application (exposed for 10 days at 40 degrees C). In 47 of the 49 films the migrate contained a substantial amount of DEHA. In 46 films the migration exceeded the specific migration limit of 3 mg/dm(2) after use of the relevant reduction factor given in legislation....... However, because of the general uncertainty of the analytical method and because the variation in the thickness of the films was calculated to be I mg/dm(2), the action limit in this campaign was 4 mg/cm(2). A migration higher than this action limit was found in 42 films (89% of the samples...

  1. Effects of drip irrigation under plastic film with saline water on cotton growth and yields

    Science.gov (United States)

    Wang, B.; Jin, M.; He, Y.; Zhou, J.; Brusseau, M. L.

    2012-12-01

    To study the influence of different irrigation system for drip irrigation under plastic film with saline water on cotton growth and yields, field experiments at key irrigation experiment station of water resources management division in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China were set up consist of different irrigation ratio (5250, 4500, 3750, 3000m3/hm2), different irrigation times (24, 12 and 8 times) and different rotation irrigation modes. The results show that: with the larger irrigation ratio, the cotton growth and yields was also better, and the significant influence on cotton growth and yields for irrigation ratio is between 3750-4500 m3/hm2. When the irrigation ratio is smaller (3000m3/hm2), cotton growth and yields for irrigation times of 8 times are higher, When the irrigation ratio is bigger (4500m3/hm2), cotton growth for irrigation times of 12 times are better and its cotton yields are higher correspondingly. According to the growth of cotton, yields and water productivity, the suitable irrigation system of cotton is the irrigation ratio of 4500-3750 m3/ hm2 and the irrigation times of 18 times for drip irrigation under plastic film with saline water. For different rotation drip irrigation experiments with saline water and fresh water, the cotton yields and irrigation water productivity is higher under the disposal of SF (rotation irrigation in first 6 times with saline water irrigation and then 6 times with fresh water irrigation) compared to FS (rotation irrigation in first 6 times with fresh water and then 6 times with saline water) and SSFA (rotation irrigation with twice saline water and once fresh water) compared to SFA (alternative irrigation with saline water and fresh water). Compared to the different alternate irrigation experiments, the cotton yields and water productivity for pure saline water irrigation is higher. In addition, the trend is the larger the irrigation ratio and the higher the yields. It maybe dues to the low

  2. Thinning identification technique using stainless steel film heater and response surface method

    Science.gov (United States)

    Ogasawara, Nagahisa; Yamada, Hiroyuki

    2011-05-01

    The infrared thermography has not been widely applied to nondestructive inspection for metals. It is because the metal emissivity is too low to be measured the temperature. To make up for this disadvantage, a new heating technique using a stainless steel film was proposed and a nondestructive inspection system with the response surface method was developed. The stainless film has a high electric resistance and generates large Joule heat. Its response is quick and the quantity of heat is easily controlled. Moreover, the film has a high enough thermal conductivity, therefore a black painted film can be a blackbody surface of metal structures. Consequently IR camera can easily measure the metal temperature accurately. The nondestructive inspection system that can quantitatively identify geometrical parameters of a local thinning was developed. The system consists of a forward analysis and an inverse analysis. In the forward analysis, the response surface that shows a relationship between geometrical parameters and characteristic values is built by experimental design method. In the inverse analysis, substituting the characteristic values into the response surface, the geometrical parameters are finally identified. The inspection system can identify the local thinning shape robustly by selecting the attribute for the shape parameters.

  3. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    Science.gov (United States)

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the

  4. Comparison of the tribological properties at 25 C of seven different polyimide films bonded to 301 stainless steel

    Science.gov (United States)

    Fusaro, R. L.

    1980-01-01

    A pin-on-disk type of friction and wear apparatus was used to study the tribological properties of seven different polyimide films bonded to AISI 301 stainless steel disks at 25 C. It was found that the substrate material was extremely influential in determining the lubricating ability of the polyimide films. All seven films spalled in less than 1000 cycles of sliding. This was believed to be caused by poor adherence to the 301 stainless steel or the inability of the films to withstand the high localized tensile stresses imparted by the deformation of the soft substrate under sliding conditions. The friction coefficients obtained for six of the polyimides varied between 0.21 to 0.32 while one varied between 0.32 to 0.39.

  5. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, D. G., E-mail: kopanitsa@mail.ru; Ustinov, A. M., E-mail: artemustinov@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Potekaev, A. I., E-mail: potekaev@spti.tsu.ru [National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Kopanitsa, G. D., E-mail: georgy.kopanitsa@mail.com [National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  6. Effects of Strain Rate and Plastic Work on Martensitic Transformation Kinetics of Austenitic Stainless Steel 304

    Institute of Scientific and Technical Information of China (English)

    Fang PENG; Xiang-huai DONG; Kai LIU; Huan-yang XIE

    2015-01-01

    The martensitic transformation behavior and mechanical properties of austenitic stainless steel 304 were studied by both experiments and numerical simulation. Room temperature tensile tests were carried out at various strain rates to investigate the effect on volume fraction of martensite, temperature increase and flow stress. The results show that with increasing strain rate, the local temperature increases, which suppresses the transformation of martensite. To take into account the dependence on strain level, strain rate sensitivity and thermal effects, a kinetic model of martensitic transformation was proposed and constitutive modeling on stress-strain response was conducted. The validity of the proposed model has been proved by comparisons between simulation results and experimental ones.

  7. Plastic behavior of medium carbon vanadium microalloyed steel at temperatures near g « a transformation

    Directory of Open Access Journals (Sweden)

    Lourenço N.J.

    2001-01-01

    Full Text Available Dilatometric techniques were used to build the continuous cooling transformation (CCT diagram for a medium carbon microalloyed steel; the microstructure and hardness were determined at different cooling rates. The mechanical behavior of the steel in the austenite field and at temperatures approaching austenite to ferrite transformation was measured by means of hot torsion tests under isothermal and continuous cooling conditions. The no recrystallization temperatures, Tnr, and start of phase transformation, Ar3, were determined under continuous cooling condition using mean flow stress vs. inverse of absolute temperature diagrams. Interruption of static recrystallization within the interpass time in the austenite field indicated that the start of vanadium carbonitride precipitation occurred under 860 °C. Austenite transformation was found to start at around 710 °C, a temperature similar to that measured by dilatometry, suggesting that interphase precipitation delays the transformation of deformed austenite. Pearlite was observed at temperatures ranging from 650 °C to 600 °C, with the flow curves taking on a particular shape, i.e., stress rose sharply as strain was increased, reaching peak stress at low deformation, around 0.2, followed by an extensive softening region after peak stress.

  8. Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy

    Science.gov (United States)

    Bonny, G.; Terentyev, D.; Pasianot, R. C.; Poncé, S.; Bakaev, A.

    2011-12-01

    Austenitic stainless steels are commonly used materials for in-core components of nuclear light water reactors. In service, such components are exposed to harsh conditions: intense neutron irradiation, mechanical and thermal stresses, and aggressive corrosion environment which all contribute to the components' degradation. For a better understanding of the prevailing mechanisms responsible for the materials degradation, large-scale atomistic simulations are desirable. In this framework we developed an embedded atom method type interatomic potential for the ternary FeNiCr system to model movement of dislocations and their interaction with radiation defects. Special attention has been drawn to the Fe-10Ni-20Cr alloy, whose properties were ensured to be close to those of 316L austenitic stainless steel. In particular, the stacking fault energy and elastic constants are well reproduced. The fcc phase for the Fe-10Ni-20Cr random alloy was proven to be stable in the temperature range 0-900 K and under shear strain up to 5%. For the same alloy the stable glide of screw dislocations and stability of Frank loops was confirmed.

  9. Orientation-dependent recrystallization in an oxide dispersion strengthened steel after dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Tao, N.R.; Mishin, Oleg V.

    2015-01-01

    dynamic plastic deformation. Different boundary spacings and different stored energy densities for regions belonging to either of the two fibre texture components result in a quite heterogeneous deformation microstructure. Upon annealing, preferential recovery and preferential nucleation...... of recrystallization are found in the 〈111〉- oriented lamellae, which had a higher stored energy density in the as-deformed condition. In the course of recrystallization, the initial duplex fibre texture is replaced by a strong 〈111〉 fibre recrystallization texture....

  10. The Adhesion Improvement of Cubic Boron Nitride Film on High Speed Steel Substrate Implanted by Boron Element

    Institute of Scientific and Technical Information of China (English)

    CAI Zhi-hai; ZHANG Ping; TAN Jun

    2005-01-01

    Cubic boron nitride(c-BN) films were deposited on W6Mo5Cr4V2 high speed steel(HSS) substrate implanted with boron ion by RF-magnetron sputtering. The films were analyzed by the bending beam method, scratch test, XPS and AFM. The experimental results show that the implantation of boron atom can reduce the in ternal stress and improve the adhesion strength of the films. The critical load of scratch test rises to 27.45 N, compared to 1.75 N of c-BN film on the unimplanted HSS. The AFM shows that the surface of the c-BN film on the implanted HSS is low in roughness and small in grain size. Then the composition of the boron implanted layer was analyzed by the XPS. And the influence of the boron implanted layer on the internal stress and adhesion strength of c-BN films were investigated.

  11. PREPARATION AND CORROSION RESISTANCE OF NiP/TiO2 COMPOSITE FILM ON CARBON STEEL IN SULFURIC ACID SOLUTION

    Institute of Scientific and Technical Information of China (English)

    L.Z. Song; S.Z. Song; J. Zhao

    2006-01-01

    A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy)and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.

  12. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Directory of Open Access Journals (Sweden)

    Vodnar Dan C

    2012-07-01

    Full Text Available Abstract Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C for 10 days and at refrigerated temperature (4°C for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea

  13. Flexible aluminum-doped zinc-oxide thin-film transistor fabricated on plastic substrates

    Science.gov (United States)

    Han, Dedong; Chen, Zhuofa; Zhao, Nannan; Wang, Wei; Huang, Fuqing; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2014-03-01

    We have studied processing and characteristics of flexible Aluminum-doped Zinc Oxide thin-film transistors (AZO TFTs) fabricated on plastic substrates using radio frequency (rf) magnetron sputtering. To improve the performance of flexible AZO TFT, we studied effects of device structures on characteristics of the aluminum-doped zinc oxide thin film transistors. The electrical properties of top-gate type and bottom-gate type AZO TFTs were investigated, respectively. The top-gate type AZO TFTs shows a threshold voltage of 1.4 V, a Ion/Ioff current ratio of 1.0×107, a field effect mobility of 28.2 cm2/ V•s, a subthreshold swing of 0.19 V/decade. And the bottom-gate type AZO TFTs shows a threshold voltage of 1.7 V, a Ion/Ioff ratio of 1.0×107, a field effect mobility of 209 cm2/ V•s, a subthreshold swing of 0.16 V/decade, and the off current of less than 10-11A at room temperature. Both TFTs show low threshold voltage, high Ion/Ioff ratio and high field effect mobility. By comparison, the bottom-gate type AZO TFTs shows better characteristics. The flexible AZO-TFT is a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics due to flexible, transparency, high mobility, and low-temperature processing.

  14. Some aspects over the quality of thin films deposited on special steels used in hydraulic blades

    Science.gov (United States)

    Tugui, C. A.; Vizureanu, P.; Iftimie, N.; Steigmann, R.

    2016-08-01

    The experimental research involved in this paper consists in the obtaining of superior physical, chemical and mechanical properties of stainless steels used in the construction of hydraulic turbine blades. These properties are obtained by deposition of hard thin films in order to improve the wear resistance, increasing the hardness but maintaining the tenacious core of the material. The chosen methods for deposition are electrospark deposition because it has relatively low costs, are easy to obtain, the layers have a good adherence to support and the thickness can be variable in function of the established conditions and the pulsed laser deposition because high quality films can be obtained at nanometric precision. The samples will be prepared for the analysis of the structure using optical method as well as for the obtaining of the optimal roughness for the deposition. The physical, chemical and mechanical properties will be determined after deposition using SEM and EDX, in order to emphasize the structure film-substrate and repartition of the deposition elements on the surface and in transversal section. The non-destructive testing has emphasized the good adherence between deposited layer and the metallic support, due to double deposition, spallation regions doesn't appear.

  15. Effect of Heat Treatment on Microstructures and Mechanical Properties of Severe Plastically Deformed Hypo- and Hyper-Eutectoid Steels by Caliber Rolling Process.

    Science.gov (United States)

    Yun, Shin-Cheon; Kim, Hyun-Jin; Bae, Chul-Min; Lee, Kee-Ahn

    2016-02-01

    This study investigated the effect of post-heat treatment on the microstructures and mechanical properties of severe plastically deformed hypo- and hyper-eutectoid steels that underwent a caliber rolling process. First, 28 passes of caliber rolling were performed on both the hypo-eutectoid steel with Fe-0.47% C (wt%) composition and the hyper-eutectoid steel with Fe-1.02%C (wt%) composition. Then, the caliber rolled materials underwent heat treatment at 500 degrees C for 1, 3, 5, 10, 30 and 60 minutes. The caliber rolled steel possessed a 300-400 nm-sized oval cementite structure created through elongating and segmentation regardless of the C composition. The observation of heat-treated microstructures showed that cementite structure became globular and ferrite size increased as heat treatment temperature increased. In the hardness measurement, the initial caliber rolled samples showed 372.8 Hv (hypoeutectoid) and 480.1 Hv (hyper-eutectoid). However, hardness dramatically decreased up to 10 min. heat treatments, and then showed a constant or small reduction with time. The yield strengths (compression) of caliber rolled hypo- and hypereutectoid steels obtained were 1097 MPa and 1426 MPa, respectively, and the yield strengths of the same steels after heat treatment (500 degrees C, 60 min.) were identified to be 868 MPa and 1316 MPa, respectively.

  16. MgB2 thick films deposited on stainless steel substrate with Tc higher than 39K

    Institute of Scientific and Technical Information of China (English)

    LI Fen; GUO Tao; ZHANG Kai-cheng; CHEN Chin-ping; FENG Qing-rong

    2006-01-01

    Thick MgB2 (magnesium diborate) films,~10 μm,with Tc (onset)=39.4 K and Tc (zero)=39.2 K have been successfully grown on a stainless steel substrate using a technique called hybrid physical-chemical deposition (HPCVD).The deposition rate is high,~6.7 nm/s.The X-ray diffraction (XRD) indicates that it is highly (101) and c-axis oriented.The scanning electron microscope (SEM) images demonstrate that the film grown is in"island-mode".The uniform superconducting phase in the film is shown by the M-T measurement.

  17. Diamond-like carbon films synthesized on bearing steel surface by plasma immersion ion implantation and deposition

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-xi; TANG Bao-yin; WANG Lang-ping; WANG Xiao-feng; YU Yong-hao; SUN Tao; HU Li-guo

    2004-01-01

    Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on properties of the thin film were investigated. The chemical compositions of the as-deposited films were characterized by Raman spectroscopy. The micro-hardness, friction and wear behavior, corrosion resistance of the samples were evaluated, respectively. Compared with uncoated substrates, micro-hardness results reveal that the maximum is increased by 88.7%. In addition, the friction coefficient decreases to about 0.1, and the corrosion resistance of treated coupons surface are improved significantly.

  18. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  19. Transferability and Adhesion of Sol-Gel-Derived Crystalline TiO2 Thin Films to Different Types of Plastic Substrates.

    Science.gov (United States)

    Amano, Natsumi; Takahashi, Mitsuru; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-01-31

    Anatase thin films were prepared on various plastic substrates by our recently developed sol-gel transfer technique. Polycarbonate (PC), poly(methyl methacrylate) (PMMA), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyether ether ketone (PEEK), and polyvinylidene chloride (PVDC) were employed as plastic substrates. A Si(100) substrate was first coated with a polyimide (PI)/polyvinylpyrrolidone (PVP) mixture layer, and an alkoxide-derived titania gel film was deposited on it by spin-coating. The resulting titania gel film was heated to 600 °C, during which the PI/PVP layer decomposed and the gel film was converted into a 60 nm thick anatase film. The anatase film was then transferred from the Si(100) substrate to the plastic substrate. This was achieved by heating the plastic/anatase/Si(100) stack in a near-infrared image furnace to 120-350 °C, depending on the type of plastic substrate, under unidirectional pressure. The anatase film cracked during transfer to PE, PP, PEEK, and PVDC substrates but did not crack during transfer to PC, PMMA, and PET substrates. The fraction of the total film area that was successfully transferred was assessed with the aid of image analysis. This fraction tended to be large for plastics with C═O and C-O groups and small for those without these groups. The film/substrate adhesion assessed by cross-cut tape tests also tended to be high for plastics with C═O and C-O groups and low for those without these groups. The adhesion to plastics without C═O or C-O groups could be enhanced and their transfer area fraction increased by oxidizing the native plastic surface by ultraviolet-ozone treatment prior to transfer.

  20. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    Science.gov (United States)

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®

  1. Effect of reduction of area on microstructure and mechanical properties of twinning-induced plasticity steel during wire drawing

    Science.gov (United States)

    Hwang, Joong-Ki; Son, Il-Heon; Yoo, Jang-Yong; Zargaran, A.; Kim, Nack J.

    2015-09-01

    The effect of reduction of area (RA), 10%, 20%, and 30%, during wire drawing on the inhomogeneities in microstructure and mechanical properties along the radial direction of Fe-Mn-Al-C twinning-induced plasticity steel has been investigated. After wire drawing, the deformation texture developed into the major and minor duplex fiber texture. However, the texture became more pronounced in both center and surface areas as the RA per pass increased. It also shows that a larger RA per pass resulted in a higher yield strength and smaller elongation than a smaller RA per pass at all strain levels. Although inhomogeneities in microstructure and mechanical properties along the radial direction decreased with increasing RA per pass, there existed an optimum RA per pass for maximum drawing limit. Insufficient penetration of strain from surface to center at small RA per pass (e.g., 10%) and high friction and unsound metal flow at large RA per pass (e.g., 30%) all resulted in heterogeneous microstructure and mechanical properties along the radial direction of drawn wire. On the other hand, 20% RA per pass improved the drawing limit by about 30% as compared to the 10% and 30% RAs per pass.

  2. Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D service loads

    Directory of Open Access Journals (Sweden)

    Ji-Su Kim

    2015-04-01

    Full Text Available This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1 a section average approach and (2 a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the overconservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

  3. Experimental and Numerical Study on the Effect of ZDDP Films on Sticking During Hot Rolling of Ferritic Stainless Steel Strip

    Science.gov (United States)

    Hao, Liang; Jiang, Zhengyi; Wei, Dongbin; Gong, Dianyao; Cheng, Xiawei; Zhao, Jingwei; Luo, Suzhen; Jiang, Laizhu

    2016-10-01

    The aim of this study is to investigate the effect of zinc dialkyl dithio phosphate (ZDDP) films on sticking during hot rolling of a ferritic stainless steel strip. The surface characterization and crack propagation of the oxide scale are very important for understanding the mechanism of the sticking. The high-temperature oxidation of one typical ferritic stainless was conducted at 1373 K (1100 °C) for understanding its microstructure and surface morphology. Hot-rolling tests of a ferritic stainless steel strip show that no obvious cracks among the oxide scale were observed with the application of ZDDP. A finite element method model was constructed with taking into consideration different crack size ratios among the oxide scale, surface profile, and ZDDP films. The simulation results show that the width of the crack tends to be reduced with the introduction of ZDDP films, which is beneficial for improving sticking.

  4. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    Science.gov (United States)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  5. DECREASING PITTING SUSCEPTIBILITY OF PASSIVE FILMS ON X70 PIPELINE STEEL IN NaCl SOLUTIONS BY ILLUMINATION

    Institute of Scientific and Technical Information of China (English)

    W.C. Zhu; W.H. Leng; J.Q. Zhang; C.N. Cao

    2006-01-01

    The influence of UV illumination on passivity and pitting susceptibility on X70 pipeline steel in a borate buffer (pH=8.4) solution containing NaCl is described. It is observed that illumination of the sample leads to a decrease in its pitting susceptibility as indicated by pitting potential and incubation time measurements in chloride containing electrolytes. This effect is strongly dependent on the applied potential during passivation. The electronic properties of the passive films on X70steel were studied by Mott-Schottky analysis and photocurrent transient measurements. The results indicated that illumination during passivation led to modifications in the electronic properties of the passive films, mainly to a decrease of the bulk doping and an increase in the surface state density. The cause for the decrease in the pitting susceptibility is preliminary explained in terms of such modifications of the passive film.

  6. Progress in depositing MgB{sub 2} films on stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li Fen [Department of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Guo Tao [Department of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Zhang Kaicheng [Department of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Chen Chinping [Department of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Feng Qingrong [Department of Physics and State Key Laboratory for Artificial Structure and Mesoscopic Physics, Peking University, Beijing 100871 (China)]. E-mail: qrfeng@pku.edu.cn

    2007-02-01

    We have made a progress in fabricating MgB{sub 2} films, {approx}25 {mu}m, on the stainless steel substrate by hybrid physical-chemical vapor deposition. The superconducting transition temperature is, T {sub C} (onset) = 39.6 K with a transition width, {delta}T = 0.5 K. The characterization by scanning electron microscope and X-ray diffraction indicates that its structure is polycrystalline. At T = 0 K, the upper critical field H {sub C2} is determined as 15.2 T by extrapolation from a polynomial fitting to the transition temperatures under various applied fields, T {sub C}(H). In the self field, the critical current density J {sub C} is determined as 3.74 MA/cm{sup 2} at T = 15 K by a magnetic measurement according to the Bean model.

  7. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    Directory of Open Access Journals (Sweden)

    Abdulkareem Mohammed Ali Al-Sammarraie

    2017-01-01

    Full Text Available The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and thermodynamics parameters were established from Tafel plots using three-electrode potentiostat. The deposited films were examined by FTIR, Raman, XRD, SEM, and AFM techniques; they revealed high percentages of conversion to the few layers of graphene with confirmed defects.

  8. Immobilization of antibacterial chlorhexidine on stainless steel using crosslinking polydopamine film: Towards infection resistant medical devices.

    Science.gov (United States)

    Mohd Daud, Nurizzati; Saeful Bahri, Ihda Fithriyana; Nik Malek, Nik Ahmad Nizam; Hermawan, Hendra; Saidin, Syafiqah

    2016-09-01

    Chlorhexidine (CHX) is known for its high antibacterial substantivity and is suitable for use to bio-inert medical devices due to its long-term antibacterial efficacy. However, CHX molecules require a crosslinking film to be stably immobilized on bio-inert metal surfaces. Therefore, polydopamine (PDA) was utilized in this study to immobilize CHX on the surface of 316L type stainless steel (SS316L). The SS316L disks were pre-treated, modified with PDA film and immobilized with different concentrations of CHX (10mM-50mM). The disks were then subjected to various surface characterization analyses (ATR-FTIR, XPS, ToF-SIMS, SEM and contact angle measurement) and tested for their cytocompatibility with human skin fibroblast (HSF) cells and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results demonstrated the formation of a thin PDA film on the SS316L surface, which acted as a crosslinking medium between the metal and CHX. CHX was immobilized via a reduction process that covalently linked the CHX molecules with the functional group of PDA. The immobilization of CHX increased the hydrophobicity of the disk surfaces. Despite this property, a low concentration of CHX optimized the viability of HSF cells without disrupting the morphology of adherent cells. The immobilized disks also demonstrated high antibacterial efficacy against both bacteria, even at a low concentration of CHX. This study demonstrates a strong beneficial effect of the crosslinked PDA film in immobilizing CHX on bio-inert metal, and these materials are applicable in medical devices. Specifically, the coating will restrain bacterial proliferation without suffocating nearby tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of mechanical tensile properties of plastic film on plastic recycling method%农田地膜拉伸性能变化对缠绕式回收的影响

    Institute of Scientific and Technical Information of China (English)

    张佳喜; 王学农; 张丽; 喻晨; 蒋永新; 张海春; 刘旋峰; 乔园园; 王祥金

    2015-01-01

    农田长期覆膜种植产生的大量地膜对农田土壤质量、作物生长及环境造成严重的影响,为解决这一问题,于 2014年3月至2014年10月在新疆库尔勒尉犁县达西村开展大田试验,对比不同厚度、不同时间及不同位置地膜拉伸性能的变化规律,并针对0.01 mm地膜进行缠绕式回收试验.结果表明:地膜铺放后的30~60 d期间,由于受到风和紫外线照射等因素,拉伸强度有明显的下降,下降幅度较大;当地膜回收的时候,0.01 mm地膜最大拉伸力在近株端和远株端分别为1.52 N和1.305 N,是0.008 mm地膜的1.4倍和1.22倍.显然0.01 mm地膜的拉伸性能较0.008 mm拉伸性能有了一定的提升,这对地膜回收有一定的积极作用,但是经过理论计算及田间试验0.01 mm地膜的拉伸性能还是不足以采用简单缠绕的方式进行回收.本研究揭示了地膜拉伸性能在不同时间、不同厚度及不同位置受到紫外线等影响的变化规律,为地膜回收机的研制提供了理论依据.%Plastic mulching technology has brought huge economic benefits, while the residual plastic film produced series of serious problems such as pollution on land. A large number of plastic recycling is becoming urgent and important task in our country. A large amount and long term of used plastic film on soil has caused great serious influence on the high quality of farmland planting, crop growth, the rural ecological environment and new rural construction, which has attracted more and more attention. Now, the research on the recovery mechanism is limited to equipment of plastic film enwinding recycling, and there are few studies on the variation rule of the tensile properties of used plastic film and the impact. During our practical research work, performance such as unstable recycling capability, low film recovery rate and work parts deformation often appears in the used plastic film recycling. To address these problems, we carried out some

  10. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    Science.gov (United States)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  11. Crystalline plasticity constitutive equations for BCC steel at low temperature; Loi de comportement en plasticite cristalline pour acier a basse temperature

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, G. [EDF RD, MMC, Avenue des Renardieres, Ecuelles, 77818 Moret-sur-Loing Cedex (France); Vincent, L. [CEA Saclay, DEN, SRMA, 91191 Gif-sur-Yvette Cedex (France)

    2011-07-01

    The prediction of the irradiation-induced evolution of the ductile-fragile transition curve of pressure vessel steels is a major research topic in the nuclear industry. Multi-scale approaches starting from ab initio scale up to macroscopic continuum mechanics are currently investigated through the European project PERFORM60. At the intermediate level of crystal plasticity, several effects need to be described accurately before considering the introduction of irradiation hardening mechanisms, such as the thermal activity of dislocations slip, the different mobilities between screw and edge dislocations at low temperature. These effects should be introduced in a crystal plasticity law used in finite-element simulations of polycrystalline aggregates. Accordingly, a new crystal plasticity law is proposed in this paper based on a critical analysis of previous numerical results obtained with a discrete dislocations dynamics code. (authors)

  12. Research of Tool Durability in Surface Plastic Deformation Processing by Burnishing of Steel Without Metalworking Fluids

    Science.gov (United States)

    Grigoriev, S. N.; Bobrovskij, N. M.; Melnikov, P. A.; Bobrovskij, I. N.

    2017-05-01

    Modern vector of development of machining technologies aimed at the transition to environmentally safe technologies - “green” technologies. The concept of “green technology” includes a set of signs of knowledge intended for practical use (“technology”). One of the ways to improve the quality of production is the use of surface plastic deformation (SPD) processing methods. The advantage of the SPD is a capability to combine effects of finishing and strengthening treatment. The SPD processing can replace operations: fine turning, grinding or polishing. The SPD is a forceful contact impact of indentor on workpiece’s surface in condition of their relative motion. It is difficult to implement the core technology of the SPD (burnishing, roller burnishing, etc.) while maintaining core technological advantages without the use of lubricating and cooling technology (metalworking fluids, MWF). The “green” SPD technology was developed by the authors for dry processing and has not such shortcomings. When processing with SPD without use of MWF requirements for tool’s durability is most significant, especially in the conditions of mass production. It is important to determine the period of durability of tool at the design stage of the technological process with the purpose of wastage preventing. This paper represents the results of durability research of natural and synthetic diamonds (polycrystalline diamond - ASPK) as well as precision of polycrystalline superabrasive tools made of dense boron nitride (DBN) during SPD processing without application of MWF.

  13. Plasticizing effect of choline chloride/urea eutectic-based ionic liquid on physicochemical properties of agarose films

    Directory of Open Access Journals (Sweden)

    Ahmad Adlie Shamsuri

    2012-11-01

    Full Text Available Agarose films were formed with the addition of 30 to 70 wt% choline chloride/urea eutectic-based ionic liquid (ChCl/Urea. The ChCl/Urea was prepared through complexation at a 1:2 mole ratio. The films were prepared by dissolving ChCl/Urea in distilled water followed by dispersion of the agarose at 95 °C. The solution was gelled at room temperature, and the formed gel was dried in an oven overnight at 70 °C. Mechanical testing indicated that the agarose film containing 60 wt% ChCl/Urea had higher tensile extension and tensile strain at break compared to the pristine agarose film. The addition of ChCl/Urea also reduced the glass transition temperature (Tg of agarose films. Cross-section SEM images of the agarose films showed that surface roughness disappeared with the incorporation of ChCl/Urea. FTIR spectra confirmed the presence of intermolecular hydrogen bonding between agarose and ChCl/Urea. XRD patterns demonstrated that an amorphous phase was obtained when ChCl/Urea was added. Agarose films containing more ChCl/Urea exhibited higher transparency, as measured by a UV-Vis spectrometer. In summary, the physicochemical properties of agarose films were evidently affected by the incorporation of the ChCl/Urea as a plasticizing agent.

  14. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wilbraham, Richard J., E-mail: r.wilbraham@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Boxall, Colin, E-mail: c.boxall@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Goddard, David T., E-mail: dave.t.goddard@nnl.co.uk [National Nuclear Laboratory, Preston Laboratory, Springfields, Preston, Lancashire PR4 0XJ (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom); Woodbury, Simon E., E-mail: simon.woodbury@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom)

    2015-09-15

    Highlights: • The first report of the presence of both UO{sub 2} and polymeric UO{sub 2}{sup 2+} in the same electrodeposited U oxide sample. • The action of H{sub 2}O{sub 2} on electrodeposited U oxides is described using corrosion based concepts. • Electrodeposited U oxide freely dissolves at hydrogen peroxide concentrations <100 μmol dm{sup −3}. • At [H{sub 2}O{sub 2}] > 0.1 mmol dm{sup −3} dissolution is inhibited by formation of a studtite passivation layer. • At [H{sub 2}O{sub 2}] ⩾ 1 mol dm{sup −3} studtite formation competes with uranyl–peroxide complex formation. - Abstract: For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H{sub 2}O{sub 2}-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H{sub 2}O{sub 2}] ⩽ 100 μmol dm{sup −3} the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H{sub 2}O{sub 2} concentrations between 1 mmol dm{sup −3} and 0.1 mol dm{sup −3}, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H{sub 2}O{sub 2}] > 0.1 mol dm{sup −3} the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO{sub 2} films has not hitherto been observed or explored, either in terms

  15. Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels.

    Science.gov (United States)

    Sohn, Seok Su; Song, Hyejin; Jo, Min Chul; Song, Taejin; Kim, Hyoung Seop; Lee, Sunghak

    2017-04-28

    Needs for steel designs of ultra-high strength and excellent ductility have been an important issue in worldwide automotive industries to achieve energy conservation, improvement of safety, and crashworthiness qualities. Because of various drawbacks in existing 1.5-GPa-grade steels, new development of formable cold-rolled ultra-high-strength steels is essentially needed. Here we show a plausible method to achieve ultra-high strengths of 1.0~1.5 GPa together with excellent ductility above 50% by actively utilizing non-recrystallization region and TRansformation-Induced Plasticity (TRIP) mechanism in a cold-rolled and annealed Fe-Mn-Al-C-based steel. We adopt a duplex microstructure composed of austenite and ultra-fine ferrite in order to overcome low-yield-strength characteristics of austenite. Persistent elongation up to 50% as well as ultra-high yield strength over 1.4 GPa are attributed to well-balanced mechanical stability of non-crystallized austenite with critical strain for TRIP. Our results demonstrate how the non-recrystallized austenite can be a metamorphosis in 1.5-GPa-grade steel sheet design.

  16. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Yasuhiro, E-mail: chimi.yasuhiro@jaea.go.jp [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kitsunai, Yuji [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Kasahara, Shigeki [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chatani, Kazuhiro; Koshiishi, Masato [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Nishiyama, Yutaka [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2016-07-15

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%–2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps. - Highlights: • Visible step structures depend on the neutron dose and the applied strain. • Local strain at grain boundaries was accumulated with the neutron dose. • Oxide thickness increases with neutron dose and local strain at grain boundaries. • No penetrative oxidation was observed along grain boundaries or surface steps.

  17. Nitriding of high speed steel by bipolar PBII for improvement in adhesion strength of DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Junho, E-mail: choi@mech.t.u-tokyo.ac.jp [University of Tokyo, Tokyo (Japan); Soejima, Koji; Kato, Takahisa [University of Tokyo, Tokyo (Japan); Kawaguchi, Masahiro [Tokyo Metropolitan Industrial Technology Research Institute (TIRI), Tokyo (Japan); Lee, Wonsik [Korea Institute of Industrial Technology (KITECH), Incheon (Korea, Republic of)

    2012-02-01

    In the present study, bipolar plasma based ion implantation and deposition (bipolar PBII) was used for plasma nitriding of high speed steel (SKH2), and the effects of the treatment parameters (positive pulse voltage, negative pulse voltage, treatment pressure, treatment time, and precursor gases) on the nitriding process were investigated. The hardness, roughness, and depth of nitride layer were also measured. The adhesion strength of diamond-like carbon (DLC) films coated on the nitride substrate was evaluated by carrying out Rockwell indentation and microscratch tests. Nitriding by bipolar PBII was achieved in the combining of two effects: nitrogen ion implantation by applying a high negative pulse voltage and thermal diffusion of nitrogen atoms under the application of a high positive pulse voltage. However, a very high voltage negative pulse caused surface roughening of the nitride layer. Application of a high positive pulse voltage during nitriding was found to be effective in promoting the thermal diffusion of the implanted nitrogen atoms. Effective nitriding could be achieved under the following conditions: high positive pulse voltage, low negative pulse voltage, high nitrogen gas pressure, and addition of hydrogen to the precursor gas. The adhesion strength of the DLC films on the SKH2 substrate was well improved after nitriding.

  18. Preparation, characterization and dissolution of passive oxide film on the 400 series stainless steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaseelan, V.S.; Rufus, A.L.; Chandramohan, P.; Subramanian, H.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2015-12-15

    Full system decontamination of Primary Heat Transport (PHT) system of Pressurised Heavy Water Reactors (PHWRs) resulted in low decontamination factors (DF) on stainless steel (SS) surfaces. Hence, studies were carried out with 403 SS and 410 SS that are the material of construction of “End-Fitting body” and “End-Fitting Liner tubes”. Three formulations were evaluated for the dissolution of passive films formed over these alloys viz., i) Two-step process consisting of oxidation and reduction reactions, ii) Dilute Chemical Decontamination (DCD) and iii) High Temperature Process. The two-step and high temperature processes could dissolve the oxide completely while the DCD process could remove only 60%. Various techniques like XRD, Raman spectroscopy and SEM-EDX were used for assessing the dissolution process. The two-step process is time consuming, laborious while the high temperature process is less time consuming and is recommended for SS decontamination. - Graphical abstract: SEM micrograph of the oxide film formed in an autoclave over the 403 SS and 410 SS surfaces, the “End-Fitting Body and End-Fitting Liner” materials of Pressurized Heavy Water Reactor (PHWR). - Highlights: • The oxides formed over 403 and 410 SS are spinels similar to magnetite. • Oxide is duplex in nature with chromium rich inner layer. • Dilute Chemical Decontamination process could dissolve only 60% of the oxide. • Oxidation-Reduction process dissolves 100% oxide layer but time consuming. • High Temperature process is 100% efficient and less time consuming.

  19. Specific migration of di-(2-ethylhexyl)adipate (DEHA) from plasticized PVC film: results from an enforcement campaign

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Breindahl, T.

    1998-01-01

    , olive oil, followed by clean-up using size exclusion chromatography and final determination of di-(2-ethylhexyl) adipate (DEHA) by combined capillary gas chromatography and mass spectrometry (GC-MS). In the initial screening, the samples were exposed to the alternative food simulant, isooctane, and DEHA...... Units. Initially, all films were screened for the migration into isooctane (exposed 2 h at 40 degrees C) of DEHA and other potentially present low molecular weight plasticizers using full scanning mass spectrometry. Films showing a substantial migration of DEHA were further tested with olive oil...

  20. Lead-Free Piezoelectric MEMS Energy Harvesters of (K,Na)NbO3 Thin Films on Stainless Steel Cantilevers

    Science.gov (United States)

    Tsujiura, Yuichi; Suwa, Eisaku; Kurokawa, Fumiya; Hida, Hirotaka; Suenaga, Kazufumi; Shibata, Kenji; Kanno, Isaku

    2013-09-01

    We fabricated piezoelectric MEMS energy harvesters (EHs) of lead-free (K,Na)NbO3 (KNN) thin films on microfabricated stainless steel cantilevers. The use of metal substrates makes it possible to fabricate thin cantilevers owing to a large fracture toughness compared with Si substrates. KNN films were directly deposited onto Pt-coated stainless steel cantilevers by rf-magnetron sputtering, thereby simplifying the fabrication process of the EHs. From XRD measurement, we confirmed that the KNN films on Pt-coated stainless steel cantilevers had a perovskite structure with a preferential (001) orientation. The transverse piezoelectric coefficient e31f and relative dielectric constant ɛr were measured to be -3.8 C/m2 and 409, respectively. From the evaluation of the power generation performance of a KNN thin-film EH (length: 7.5 mm, width: 5.0 mm, weight of tip mass: 25 mg), we obtained a large average output power of 1.6 µW under vibration at 393 Hz and 10 m/s2.

  1. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reduction in cold forward rod extrusion....

  2. Sustainable Materials Management (SMM) Web Academy Webinar: Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  3. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...

  4. Anti-adherence potential of Enterococcus durans cells and its cell-free supernatant on plastic and stainless steel against foodborne pathogens.

    Science.gov (United States)

    Amel, Ait Meddour; Farida, Bendali; Djamila, Sadoun

    2015-07-01

    It is demonstrated that numerous bacteria are able to attach to surfaces of equipment used for food handling or processing. In this study, a strain of Enterococcus durans, originally isolated from a milking machine surface, was firstly studied for its biofilm formation potential on plastic and stainless steel supports. The strain was found to be a biofilm producer either at 25, 30 or 37 °C on polystyrene microtitre plates, with a best adherence level observed at 25 °C. En. durans showed a strong adhesion to stainless steel AISI-304. Antibacterial and anti-adherence activities of En. durans were tested against four foodborne pathogens (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853 and Listeria innocua CLIP 74915) which were shown as biofilm producers on both plastic and stainless steel. En. durans cells and cell-free culture supernatant showed a significant (P < 0.05) inhibition potential of the pathogens either on solid media or in broth co-cultures. Characterization of the antibacterial substances indicated their proteinaceous nature which assigned them most probably to bacteriocins group.

  5. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling

    Science.gov (United States)

    Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.

    2015-05-01

    The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of ~980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.

  6. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Vasconcelos Daniela C. Leite

    1999-01-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  7. Properties of Surface Film on X70 Pipeline Steel in CO32-/HCO3- Environment

    Institute of Scientific and Technical Information of China (English)

    胡钢; 许淳淳

    2005-01-01

    The electrochemical behavior of X70 pipeline steel in (0.5 mol·L-1 Na2CO3+lmol·L-1 NaHCO3) solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyze the composition and microstructure of the surface film. The results showed that there were two anodic peaks at -600 mV and -350 inV.The surface film formed at -600 mV mainly consisted of ferrous carbonates and ferrous hydroxycarbonates. It had a small reaction resistance. It was metastable and possessed poor protective property. Numerous pits and microcracks existed on the film, which could be the active paths for the initiation of stress corrosion cracking. The surface film formed at -350 mV, mainly consisted of ferric oxides. It has high reaction resistance and offered good protection for the substrate.

  8. Crystallographic investigation of aluminium nitride thin films on stainless steel foil for highly efficient piezoelectric vibration energy harvesters

    Science.gov (United States)

    Moriwaki, N.; Minh, L. V.; Ohigashi, R.; Shimada, O.; Kitayoshi, H.; Kuwano, H.

    2016-11-01

    This study reports piezoelectric properties and crystallographic microstructures of aluminium nitride (AlN, wurtzite structure) thin films on 50 μm thick stainless steel foil. The transverse piezoelectric coefficient d31f and e31f of 10 pm thick AlN films were estimated as -1.42 ± 0.08 μm/V and -0.48 ± 0.03 C/m2 from a tip displacement of the piezoelectric cantilevers. Dielectric constant s33 was measured as 10.5 ± 1.0. An electron beam diffraction pattern by a high-resolution transmission electron microscope and x-ray diffraction pattern showed that abundance ratio of the orientation such as , and of AlN crystal on stainless steel foils increased with increasing thickness.

  9. Individual phase constitutive properties of a TRIP-assisted QP980 steel from a combined synchrotron X-ray diffraction and crystal plasticity approach

    Energy Technology Data Exchange (ETDEWEB)

    Hu, X. H.; Sun, X.; Hector, L. G.; Ren, Y.

    2017-06-01

    Microstructure-based constitutive models for multiphase steels require accurate constitutive properties of the individual phases for component forming and performance simulations. We address this requirement with a combined experimental/theoretical methodology which determines the critical resolved shear stresses and hardening parameters of the constituent phases in QP980, a TRIP assisted steel subject to a two-step quenching and partitioning heat treatment. High energy X-Ray diffraction (HEXRD) from a synchrotron source provided the average lattice strains of the ferrite, martensite, and austenite phases from the measured volume during in situ tensile deformation. The HEXRD data was then input to a computationally efficient, elastic-plastic self-consistent (EPSC) crystal plasticity model which estimated the constitutive parameters of different slip systems for the three phases via a trial-and-error approach. The EPSC-estimated parameters are then input to a finite element crystal plasticity (CPFE) model representing the QP980 tensile sample. The predicted lattice strains and global stress versus strain curves are found to be 8% lower that the EPSC model predicted values and from the HEXRD measurements, respectively. This discrepancy, which is attributed to the stiff secant assumption in the EPSC formulation, is resolved with a second step in which CPFE is used to iteratively refine the EPSC-estimated parameters. Remarkably close agreement is obtained between the theoretically-predicted and experimentally derived flow curve for the QP980 material.

  10. Influence of plastic strain localization on the stress corrosion cracking of austenitic stainless steels; Influence de la localisation de la deformation plastique sur la CSC d'aciers austenitiques inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Cisse, S.; Tanguy, B. [CEA Saclay, DEN, SEMI, 91 - Gif-sur-Yvette (France); Andrieu, E.; Laffont, L.; Lafont, M.Ch. [Universite de Toulouse. CIRIMAT, UPS/INPT/CNRS, 31 - Toulous (France)

    2010-03-15

    The authors present a research study of the role of strain localization on the irradiation-assisted stress corrosion cracking (IASCC) of vessel steel in PWR-type (pressurized water reactor) environment. They study the interaction between plasticity and intergranular corrosion and/or oxidation mechanisms in austenitic stainless steels with respect to sublayer microstructure transformations. The study is performed on three austenitic stainless grades which have not been sensitized by any specific thermal treatment: the A286 structurally hardened steel, and the 304L and 316L austenitic stainless steels

  11. Ti+C+N FILM PREPARATION AND ITS PROPERTIES BY LOW ENERGY CO-DEPOSITION ON STEEL

    Institute of Scientific and Technical Information of China (English)

    Z.Z.Yi; X.Zhang; T.H.Zhang; Z.S.Xiao

    2002-01-01

    The Ti+C+N film was co-deposited on H13 steel by Filtered Vacuum Arc PlasmaDeposition (FVAPD) operated with a modified cathode. The co-deposited layer waseffective for the improvement of surface hardness and corrosion resistance. The nano-hardness value of the co-deposited film is 1.3 times more than that of undepositedsample. The corrosion behavior measurement shows that the corrosion resistance foracid corrosion and pitting corrosion was improved greatly. It is owing to the formationof the new ternary ceramic phase TiCo.7 No.3 in the co-deposited layer. The mechanismof property improvement is discussed.

  12. Effects of reduced-rate methyl bromide applications under conventional and virtually impermeable plastic film in perennial crop field nurseries.

    Science.gov (United States)

    Hanson, Bradley D; Gerik, James S; Schneider, Sally M

    2010-08-01

    Producers of perennial crop nursery stock in California use preplant soil fumigation to meet state phytosanitary requirements. Although methyl bromide (MB) has been phased out in many agricultural industries, it is still the preferred treatment in the perennial nursery industry and is used under Critical Use Exemptions and Quarantine/Preshipment provisions of the Montreal Protocol. The present research was conducted to evaluate reduced-rate MB applications sealed with conventional and low-permeability plastic films compared with the primary alternative material. Reduced rates (100-260 kg ha(-1)) of MB applied in combination with chloropicrin (Pic) and sealed with a low-permeability plastic film provided weed and nematode control similar to the industry standard rate of 392 kg ha(-1) MB:Pic (98:2) sealed with high-density polyethylene (HDPE) film. However, the primary alternative chemical, 1,3-dichloropropene (1,3-D), tended to provide slightly lower pest control even on sites with relatively low plant parasitic nematode, soil-borne pathogen and weed pest pressure. If California regulations change to allow the use of low-permeability films in broadcast fumigant applications, the results of this research suggest that reduced rates of MB in perennial crop nurseries could serve as a bridge strategy until more technically, economically and environmentally acceptable alternatives are developed. Published 2010 by John Wiley & Sons, Ltd.

  13. Effect of plasticizer type and amount on hydroxypropyl methylcellulose-beeswax edible film properties and postharvest quality of coated plums (cv. Angeleno).

    Science.gov (United States)

    Navarro-Tarazaga, Maria Ll; Sothornvit, Rungsinee; Pérez-Gago, María B

    2008-10-22

    The effect of the composition of hydroxypropyl methylcellulose (HPMC)-beeswax (BW) edible coatings on stand-alone film properties and on postharvest quality of coated 'Angeleno' plums was studied. Glycerol (G) and mannitol (M) were tested as plasticizers at two different plasticizer/HPMC ratios (100:1 and 300:1 molar basis). BW content was 20 or 40% (dry basis). An increase in G content increased film flexibility and vapor permeability (WVP), whereas an increase in M content enhanced film brittleness without affecting WVP. An increase in BW content reduced film flexibility and reduced WVP of only G-plasticized films. Coatings reduced plum softening and bleeding, but were not effective in reducing plum weight loss. At low plasticizer content, coatings reduced texture loss effectively. Low BW also lowered plum bleeding. Plasticizer type affected only ethanol and acetaldehyde contents without affecting the remaining quality parameters. Therefore, HPMC-BW coatings have the potential to extend the shelf life of plums. However, this effect depends on coating composition. Differences between coating and film performance indicate that data from stand-alone films may be used as a preliminary screening, but coating performance should be analyzed on coated fruit.

  14. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    Science.gov (United States)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-03-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  15. Determination of structural and mechanical properties, diffractometry, and thermal analysis of chitosan and hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol

    Directory of Open Access Journals (Sweden)

    Jefferson Rotta

    2011-06-01

    Full Text Available In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v in water and chitosan (2% w/v in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100 of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM, differential scanning calorimetry (DSC, and thermal gravimetric analysis (TGA. The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.

  16. Experimental Investigation of the Dynamic Response of Squeeze Film Dampers Made of Steel and Glass/Epoxy

    Directory of Open Access Journals (Sweden)

    Waleed F. Faris

    2008-01-01

    Full Text Available This work is devoted to the fabrication and investigation of the Squeeze Film Dampers (SFDs which are widely used in many applications. This include the fabrication of a test rig and several dampers with different sizes and two different materials which composite and non-composite. Composite dampers (Glass/epoxy, each consists of 30 layers, were fabricated by hand lay-up method. Outer and inner diameters of all the fabricated dampers were maintained as 60 and 40 mm respectively. Non-composite dampers (Steel were fabricated and tested using turning machine. Three dampers of different lengths were examined for both materials. A rotor-bearing system for the analysis has been designed and fabricated. The test rig consists of mild steel shaft, two supports, oil pressure system, and two self-alignment ball bearings were fixed on each end support. Two squeeze film dampers were used for the two support ends. Vibration amplitude has been examined for all the fabricated dampers at different shaft rotational speeds. The first resonance speed was examined for all the dampers tested. Results show that the vibration amplitude of the steel damper was lower than Glass/epoxy dampers with the same L/D ratio. On the other hand, a considerable weight saving has been achieved by using Glass/epoxy composite dampers. It has been found that the performance of squeeze film damper improved with increasing length/diameter ratio (L/D within the range tested.

  17. Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

    Science.gov (United States)

    Bottoli, Federico; Christiansen, Thomas L.; Winther, Grethe; Somers, Marcel A. J.

    2016-08-01

    The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed ( ɛ eq=0.5) samples of stable stainless steel EN 1.4369 were nitrided or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa's in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone.

  18. Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings.

    Science.gov (United States)

    Floroian, Laura; Ristoscu, Carmen; Mihailescu, Natalia; Negut, Irina; Badea, Mihaela; Ursutiu, Doru; Chifiriuc, Mariana Carmen; Urzica, Iuliana; Dyia, Hussien Mohammed; Bleotu, Coralia; Mihailescu, Ion N

    2016-06-09

    In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns) excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release and possess

  19. Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings

    Directory of Open Access Journals (Sweden)

    Laura Floroian

    2016-06-01

    Full Text Available In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release

  20. Effects of plastic pre-straining level on the creep deformation, crack initiation and growth behaviour of 316H stainless steel

    OpenAIRE

    Mehmanparast, Ali; Davies, C M; Dean, David W.; Nikbin, Kamran

    2016-01-01

    The effects of the material pre-straining level, in the form of plastic pre-compression at room temperature, on the tensile, creep deformation, creep crack initiation and growth behaviour of 316H stainless steel have been examined at 550 °C. Experiments have been performed on the 4%, 8% and 12% pre-compressed specimens and the results are compared with existing data on the pre-compressed material to investigate the change in mechanical response, creep failure, creep crack initiation and growt...

  1. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    Science.gov (United States)

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Low friction slip-rolling contacts. Influences of alternative steels, high performance thin film coatings and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Christian

    2013-02-01

    Due to the growing environmental awareness worldwide, containment provisions for CO{sub 2} emissions in mobility systems and increasing performance requirements the demands on mechanical systems and their materials continuously rise. These high demands require the implementation of new technical approaches, for example of light-weight strategies in automotive powertrains, and directly raise questions about the suitability of the most promising technical solution. Two basic parameters, the surface hardness of the tooth flanks and the core fatigue strength of the tooth root, illustrate exemplarily increasing demands on material grades used for gear wheels in automotive powertrains. In addition to light-weight strategies, a reduction in friction and an increase of the fatigue lifetime are two other major development directions to strive the mentioned targets. It is clear that any kind of solution must show an equal application profile, preferably an improvement, compared to the state-of-the-art solutions. For tribological systems, the following paths may offer lower friction and higher load carrying capabilities: 1. Alternative base oils and additives (such as esters, polyglycols), 2. Thin film coatings (e.g. DLC) and/or 3. Novel steel metallurgies. In previous investigations on the slip-rolling resistance of thin film coatings (a-C, ta-C, Zr(C,N)) the substrates were mainly made of the bearing steels 100Cr6H and Cronidur 30. Applying contact pressures of up to P{sub 0max} = 2.9 GPa (F{sub N} = 2,000 N), the samples were tested up to 10 million load cycles in endurance tests. The aim of the present work is to broaden the research by varying the input parameters. Newly developed engine oil mixtures, high performance thin film coatings and alternative steel solutions are intensively investigated in highly stressed slip-rolling contacts at lubricant temperatures of 120 C. Specifically, in using new steel metallurgies, i.e. the high toughness and high strength steels V300

  3. Development and Application of A New Generation High Strength-plasticity Steels%新一代高强塑性钢的开发与应用

    Institute of Scientific and Technical Information of China (English)

    李光瀛; 周积智

    2011-01-01

    为满足汽车、建筑、能源等工业对材料强度级别和使用性能不断提高的要求,世界钢铁业正在开发新一代高强塑性钢.基于先进高强度钢AHSS汽车板、高强度抗震建筑用钢和高等级管线钢的开发,讨论了新一代高强塑性钢的主要技术特征,包括使用性能(成形性、抗冲撞能力、抗震性能、抗皱能力、超载下的形变能力)对塑性指标(均匀延伸率、n值、屈强比)的要求、复相组织与残余奥氏体的强塑化机理、关键工艺技术以及新产品新技术的发展方向.同时考虑到对强韧性和焊接性能的要求,讨论了热变形奥氏体动力学模型、高韧性焊接热影响区HAZ的细化韧化以及硫含量的影响与控制.%To meet the increasing requirement of automotive, construction and energy industry on high strength and high performance of structural materials, a new generation of high strength-plasticity (HSP) steels has been developed by the steel industry in the world.Based on the development of advanced high strength steels AHSS, high strength steels for construction and high grade pipeline steels, the main features of HSP steels are discussed, including the requirement of performance (formability, crashworthiness, aseismic ability, buckling resistance and deformability) on plasticity index (uniform elongation, n-value, yield ratio), the strengtheningplasticizing mechanism with multiphase structure and retained austenite, key process and technology as well as the promised new products and new techniques.For the necessary toughness and weldability, the dynamic model for austenite recrystallization, high toughness welding HAZ refinement and toughening and the effect of sulfur content are also discussed.

  4. EFFECT OF MAGNETRON-SPUTTERED Al FILM ON LOW-TEMPERATURE PACK-ALUMINIZING COATING FOR OIL CASING STEEL N80

    OpenAIRE

    MIN HUANG; YU WANG; MENG-XIAN ZHANG; YAN-QIU HUO; PENG-JIN GAO

    2014-01-01

    Low-temperature aluminizing coating was prepared onto the surface of oil casing steel N80 with a magnetron-sputtered Al film to improve its corrosion resistance. Results show that magnetron-sputtered Al film is able to form gradient aluminide coating, composed of iron aluminide FeAl3, Fe2Al5 and Fe3Al with different contents of aluminum. Both the density and continuity of iron aluminide layer for oil casing steel N80 with magnetron-sputtered Al film can be improved. Under the same corrosion c...

  5. Evaluation of retail fresh meat packagings covered with stretch films of plasticized PVC and non-PVC alternatives

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Togeskov, P.; Hallas, J.

    2004-01-01

    The characteristics and performance of several non-PVC stretch films were compared to those of plasticized PVC. Initially the main polymer components Of the film were identified by infrared spectrometry and differential scanning calorimetry. The differences between films in mechanical properties,...... (thiobarbituric acid reactive substances) through a prolonged shelf-life test. No differences in meat quality during normal shelf-life were seen as a function of the film used....... to legislation. The potential for specific migration was investigated by solvent extraction followed by gas chromatography. Twenty-four components were identified, of which 11 could be compared to relevant migration limits based on evaluations of the EU Scientific Committee for Food. The release of solvents...... was estimated by direct thermal desorption at 100degreesC. Four films of different composition were used in a storage experiment with fresh beef. The meat quality was followed by measurements of colour, microbiological quality (total colony forming units and lactic acid bacteria) and lipid oxidation...

  6. The development of thermal nanoprobe methods as a means of characterizing and mapping plasticizer incorporation into ethylcellulose films.

    Science.gov (United States)

    Meng, Jin; Levina, Marina; Rajabi-Siahboomi, Ali R; Round, Andrew N; Reading, Mike; Craig, Duncan Q M

    2012-08-01

    The phase composition and distribution of ethylcellulose (EC) films containing varying amounts of the plasticizer fractionated coconut oil (FCO) were studied using a novel combination of thermal and mapping approaches. The thermal and thermomechanical properties of films containing up to 30% FCO were characterized using modulated temperature differential scanning calorimetry (MTDSC) and dynamic mechanical analysis (DMA). Film surfaces were mapped using atomic force microscopy (AFM; topographic and pulsed force modes) and the composition of specific regions identified using nanothermal probes. Clear evidence of distinct conjugate phases was obtained for the 20-30% FCO/EC film systems. We suggest a model whereby the composition of the distinct phases may be estimated via consideration of the glass transition temperatures observed using DSC and DMA. By combining pulsed force AFM and nano-thermal analysis we demonstrate that it is possible to map the two separated phases. In particular, the use of thermal probes allowed identification of the distinct regions via localized thermomechanical analysis, whereby nanoscale probe penetration is measured as a function of temperature. The study has indicated that by using thermal and imaging techniques in conjunction it is possible to both identify and map distinct regions in binary films.

  7. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films.

    Science.gov (United States)

    Alves, J S; dos Reis, K C; Menezes, E G T; Pereira, F V; Pereira, J

    2015-01-22

    Cellulose at the nanoparticle scale has been studied as a reinforcement for biodegradable matrices to improve film properties. The goal has been to investigate the properties of starch/gelatin/cellulose nanocrystals (CNC) films. Eleven treatments were considered using RCCD (rotatable central composite design), in addition to four control treatments. For each assay, the following dependent variables were measured: water vapor permeability (WVP), thickness, opacity and mechanical properties. The microstructure and thermal properties of the films were also assessed. Increases in gelatin and CNC concentrations lead to increases in film thickness, strength and elongation at break. The films containing only gelatin in their matrix displayed better results than the starch films, and the addition of CNC had a positive effect on the assessed response variables. The films exhibited homogeneous and cohesive structures, indicating strong interactions between the filler and matrix. Films with low levels of gelatin and CNC presented the maximum degradation temperature.

  8. GREENHOUSE PLASTIC FILMS CAPABLE OF MODIFYING THE SPECTRAL DISTRIBUTION OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2010-03-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of innovative covering films for protected cultivation capable of modifying the spectral distribution of the transmitted radiation and thus the vegetative activity. Two photoselective films, three photoluminescent films and one low-density polyethylene film were used as greenhouse coverings for cherry trees and peach trees, grown in pots. The photoselective films were characterised by a reduction of the R/FR ratio in comparison to the natural solar radiation. Tree growth parameters, such as the apical shoot of cherry trees and the shoot of peach trees, were monitored. Different responses to vegetative activities were observed under the films, depending on the species, with a higher shoots growth rate in the peach with respect to the cherry. The photoselective film characterised by the lowest R/FR ratio significantly enhanced the growth of cherry and peach trees in comparison to the trees cultivated under the other greenhouse films

  9. Deposition of magnesium nitride thin films on stainless steel-304 substrates by using a plasma focus device

    Science.gov (United States)

    Ramezani, Amir Hoshang; Habibi, Maryam; Ghoranneviss, Mahmood

    2014-08-01

    In this research, for the first time, we synthesize magnesium nitride thin films on 304-type stainless steel substrates using a Mather-type (2 kJ) plasma focus (PF) device. The films of magnesium nitride are coated with different number of focus shots (like 15, 25 and 35) at a distance of 8 cm from the anode tip and at 0° angular position with respect to the anode axis. For investigation of the structural properties and surface morphology of magnesium nitride films, we utilized the X-ray diffractometer (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis, respectively. Also, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. Furthermore, Vicker's microhardness is used to study the mechanical properties of the deposited films. The results show that the degree of crystallinity of deposited thin films (from XRD), the average size of particles and surface roughness (from AFM), crystalline growth of structures (from SEM) and the hardness values of the films depend on the number of focus shots. The EDX analysis demonstrates the existence of the elemental composition of magnesium in the deposited samples.

  10. Reel Plastic Magic; A History of Films and Filmmaking in America.

    Science.gov (United States)

    Kardish, Laurence

    This topical history of American films begins with an explanation of how movies work and describes the earlier American films from the nickelodeons through D.W. Griffith. The development of the studios and the major American films of the 1920's through the 1950's is treated largely in terms of important stars, like Mary Pickford, Charlie Chaplin,…

  11. Preparation of porous TiO{sub 2}/ZnO composite film and its photocathodic protection properties for 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongmei; Liu, Wei, E-mail: weiliu@ouc.edu.cn; Cao, Lixin; Su, Ge; Duan, Ruijing

    2014-05-01

    Highlights: • Porous TiO{sub 2}/ZnO composite films were prepared on the 304 stainless steel. • The preparation parameters of the composite films were optimized. • Porous TiO{sub 2}/ZnO composite films provide an effective photogenerated cathodic protection for 304 stainless steel. - Abstract: TiO{sub 2}/ZnO composite films with porous structure were prepared on the 304 stainless steel (304SS) by the sol-gel method and heating treatment. The crystalline phase and morphology of as-prepared TiO{sub 2}/ZnO composite films were characterized systematically by X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet–visible (UV–vis) spectroscopy, respectively. The influences of Ti/Zn molar ratio and the annealing temperature on the photoelectric property of the samples have been investigated and their photocathodic protection performances for 304 stainless steel under dark and UV conditions have also been evaluated in 3.0% NaCl solution by the electrochemical measurements. The results indicate that porous TiO{sub 2}/ZnO composite film has a great enhancement of the light absorption and photoelectric property under UV illumination. This can be ascribed to the mutual effect of TiO{sub 2}/ZnO heterojunctions and the porous structures in the composite films, which provide a better photogenerated cathodic protection for 304SS.

  12. Design and Test of a Collecting Machine for the Plastic Film Residue%一种残膜检拾机的设计和试验

    Institute of Scientific and Technical Information of China (English)

    闫志鹏

    2015-01-01

    针对残膜对土地的带来的污染,人工检拾农田残留地膜劳动强度大、费时费力,检拾后的耕地需多次翻耕、松土等问题,设计了一种一次能完成捡膜、集膜、清膜及松土整地等作业工序的残膜检拾机械,并对该检拾机械进行了检拾作业研究,实验,对推广小型简易残膜检拾机械有着重要意义。%Aiming at the pollution of plastic film residue, the working intensity of collecting plastic films by hand is great and time-consuming, and the land is then need to be plowed and loosed repeatedly, a collecting machine for the plastic film resi-due which can collect plastic film residue and loosen the soil once for all is designed in this paper. The collecting work of this machine is researched and tested;the results show that it has great significance to generalize the small and simple machine for collecting plastic film residue.

  13. Development of visible light activated TiO{sub 2} thin films on stainless steel via sol spraying with emphasis on microstructural evolution and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Mansour [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Golestani-Fard, Farhad, E-mail: Golestanifard@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Center of Excellence for Advanced Materials, Iran University of Science and Technology, P.O. Box 16845-195, Tehran (Iran, Islamic Republic of); Saghafian, Hasan [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Center of Excellence for High Strength Alloys Technology (CEHSAT), Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Barati, Nastaran; Khanahmadi, Amirhossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • Uniform TiO{sub 2} films were applied on 304 stainless steel using sol spraying method. • Increasing thickness and calcination temperature promoted crack formation in films. • Increasing calcination temperature encouraged Fe diffusion into thin films. • Introducing nitrogen into TiO{sub 2} thin films led to visible light activation. • 150 nm thin film calcined at 500 °C, showed the best photocatalytic performance. - Abstract: Visible light activated nitrogen doped TiO{sub 2} thin films were developed on 304 stainless steel by sol spraying method using a common painting airbrush. Thin films with different thickness were prepared and calcined at various temperatures from 400 to 600 °C. The samples were studied using ellipsometry, XRD, GIXRD, XPS, DRS, SEM and FESEM. Photocatalytic activities of the films were investigated by measuring their ability to degrade methylene blue solution under visible light irradiation. Results revealed that uniform nanostructured films with a thickness range of 29–150 nm were successfully prepared on stainless steel by sol spraying. Doping nitrogen into TiO{sub 2} structure restricted the crystallite growth of anatase phase and reduced the band gap energy to 2.85 eV and therefore, activated TiO{sub 2} in visible light region. Increasing calcination temperature not only promoted crack formation in thin films, but also encouraged Fe diffusion from substrate into thin films structure. However, the N doped TiO{sub 2} film calcined at 500 °C with a thickness of 150 nm indicated a significant photocatalytic activity in visible light with 22% higher efficiency in comparison with undoped TiO{sub 2} film. Development of TiO{sub 2} based photocatalytic thin films by a simple method of airbrushing, builds up the hope for industrial scale applications in future.

  14. Effect of oil lamination between plasticized starch layers on film properties.

    Science.gov (United States)

    Basiak, Ewelina; Debeaufort, Frédéric; Lenart, Andrzej

    2016-03-15

    To reduce the hygroscopic character of biodegradable starch-based films, rapeseed oil was incorporated by lamination (starch-oil-starch 3-layers technique). The lipid lamination followed by starch solution casting step induced an emulsion type structure of dried films. Composite films are more opalescent and glossier than fatty free starch films. For all the films, structure is heterogeneous in the cross-section only. Adding fat induced a twice decrease of the tensile strength. Thermal gravimetry analysis did not show differences between films with and without oil. Lipid reduced the moisture absorption particularly at higher RH as well as the surface swelling index, when water droplet contact occurred. Addition of lipids always decreases the contact angle for all liquid tested, except for water. Surface affinity of films for liquids less polar that water increased with rapeseed oil addition. The addition of rapeseed oil significantly reduces water vapour and oxygen permeability.

  15. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature

    Science.gov (United States)

    Huang, Lingling; Han, Dedong; Chen, Zhuofa; Cong, Yingying; Wu, Jing; Zhao, Nannan; Dong, Junchen; Zhao, Feilong; Liu, Lifeng; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2015-04-01

    High-performance nickel (Ni)-doped zinc oxide thin-film transistors (NZO TFTs) have been successfully fabricated on transparent flexible plastic substrates at a low temperature. The effect of different oxygen partial pressures during channel deposition on the electrical properties of NZO TFTs was studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant influence on the performance of NZO TFTs. Finally, it was demonstrated that a NZO film with 100% Ar sputtering gas during channel deposition exhibited the best electrical properties, with a drain current on/off ratio of 108, a positive threshold voltage of 2.59 V, a subthreshold swing of 233 mV/decade, and a saturation mobility of 118.9 cm2·V-1·s-1. The results show that Ni-doped ZnO is a promising candidate for flexible fully transparent displays.

  16. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles.

    Science.gov (United States)

    Chen, Haixin; Liu, Jingjing; Zhang, Afeng; Chen, Jing; Cheng, Gong; Sun, Benhua; Pi, Xiaomin; Dyck, Miles; Si, Bingcheng; Zhao, Ying; Feng, Hao

    2017-02-01

    Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L. cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000kgha(-1) wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO2 emission over both cycles, and straw mulching increased soil CH4 absorption over both cycles, but patterns of soil N2O emissions under straw or film mulching are not consistent. Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications.

  17. Consideration on buckling and plastic breakdown strength characteristics of a steel plate with surface layers of ultra fine grain microstructure (SUF); Hyoso chosairyu koban no zakutsu sosei hokai kyodo tokusei ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M.; Yao, T.; Yajima, H.; Miyamoto, H.; Morita, S. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering; Ogihara, Y.; Ishikawa, T. [Nippon Steel Corp., Tokyo (Japan)

    1996-10-01

    Buckling and plastic breakdown strength characteristics of a structure fabricated by using new steel plates with surface layer made into ultra fine grain structure were analyzed and discussed by using a belt plate buckling and plasticity test and the finite element method. The tested steel plate has a thickness of 25 mm, and was fabricated for ocean vessel use, with surface layers on both sides of about 1/6 of the whole thickness having been made an ultra fine grain structure. As a result of a belt steel buckling and plasticity test on a steel plate with surface ratio of 29%, both of the initial yield stress and the buckling stress were found increased by about 4 to 10% as compared with a steel plate having surface ratio of 0%. An analysis by using the finite element method was made on square steel plates with a length of 80 cm, a width of 100 cm, and thicknesses of 12 mm and 24 mm. A result was obtained that, in the case of surface layer ratio of 33%, both of the initial yield stress and the maximum load withstanding force were higher by 5 to 16% than the case of surface ratio of 0%. Similar rise in strength was shown also in bend preventing plates which are basic constituting members of a vessel. 6 refs., 10 figs., 2 tabs.

  18. 晶粒度对塑料模具钢性能的影响%Effect of grain size on performance of plastic mould steel

    Institute of Scientific and Technical Information of China (English)

    管爱琴

    2016-01-01

    采用光学轮廓仪、光学显微镜以及扫描电镜研究了晶粒度对镜面塑料模具钢力学性能、抛光性能和腐蚀性能的影响。结果显示,晶粒度为6级时的XPM钢具有良好的强韧性配合,抗拉强度为1250 MPa,断面收缩率为24.5%,伸长率为20.2%,冲击吸收能量为24.8 J;XPM钢各晶粒度级别的Ra 值均在4~8 nm之间;随着晶粒度级别的增大,腐蚀速率逐渐减小。%Effect of grain size on mechanical properties , polishing performance and corrosion resistance of the mirror plastic mould steel was studied by optical profiler ,optical microscope and scanning electron microscopy ,respectively.The results show that the chemical composition optimized XPM steel has good combination of strength and toughness i .e.tensile strength 1250 MPa, section shrinkage rate 24.5%, the elongation 20.2%, and impact absorbing energy 24.8 J,when the grain size is grade 6.The Ra values of XPM mirror plastic mould steel is between the 5-6 nm.With the increase of the number of grain size grade the corrosion rate gradually decreases .

  19. Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel

    Institute of Scientific and Technical Information of China (English)

    Yang Li; Gui-yong Xiao; Lu-bin Chen; Yu-peng Lu

    2014-01-01

    Acoustic emission (AE) monitored tensile tests were performed on 35CrMnSiA steel subjected to different heat treatments. The results showed that quenching and partitioning (Q−P) heat treatments enhanced the combined mechanical properties of high strength and high ductility for commercial 35CrMnSiA steel, as compared with traditional heat treatments such as quenching and tempering (Q−T) and austempering (AT). AE signals with high amplitude and high energy were produced during the tensile deformation of 35CrMnSiA steel with retained austenite (RA) in the microstructure (obtained via Q−P and AT heat treatments) due to an austenite-to-martensite phase transforma-tion. Moreover, additional AE signals would not appear again and the mechanical properties would degenerate to a lower level once RA de-generated by tempering for the Q−P treated steel.

  20. Serration Phenomena Occurring During Tensile Tests of Three High-Manganese Twinning-Induced Plasticity (TWIP) Steels

    Science.gov (United States)

    Hong, Seokmin; Shin, Sang Yong; Lee, Junghoon; Ahn, Dong-Hyun; Kim, Hyoung Seop; Kim, Sung-Kyu; Chin, Kwang-Geun; Lee, Sunghak

    2014-02-01

    In this study, the serration phenomena of two high-Mn TWIP steels and an Al-added TWIP steel were examined by tensile tests, and were explained by the microstructural evolution including formation of localized Portevin-Le Chatelier deformation bands and twins. In stress-strain curves of the high-Mn steels, serrations started in a fine and short shape, and their height and periodic interval increased with increasing strain, whereas the Al-added steel did not show any serrations. According to digital images of strain rate and strain obtained from a vision strain gage system, deformation bands were initially formed at the upper region of the gage section, and moved downward along the tensile loading direction. The time when the band formation started was matched with the time when one serration occurred in the stress-time curve. This serration behavior was generally explained by dynamic strain aging, which was closely related with the formation of deformation bands.

  1. Migration from plasticized films into foods. 1. Migration of di-(2-ethylhexyl)adipate from PVC films during home-use and microwave cooking.

    Science.gov (United States)

    Startin, J R; Sharman, M; Rose, M D; Parker, I; Mercer, A J; Castle, L; Gilbert, J

    1987-01-01

    Migration of di-(2-ethylhexyl)adipate (DEHA) into a diverse range of foods arising from the domestic use of plasticized PVC films has been determined using a stable isotope dilution GC/MS procedure. Aspects of home use reported in this study include the wrapping and covering of foods such as cheese, cooked meats, sandwiches, cakes, fresh fruit and vegetables; the use of films during food preparation such as marinading; covering during microwave reheating of previously prepared foods, and covering during microwave cooking. Contact between film and foods was for differing temperatures and times, representative of the range of conditions likely to be experienced in practice in the home. Migration increased with both the length of contact time and temperature of exposure, with the highest levels observed where there was a direct contact between the film and food, and where the latter had a high fat content on the contact surface. Highest levels of migration were observed for cheese, cooked meats, cakes and for microwave-cooked foods, whilst lower levels were observed for wrapping of unfilled sandwiches, fruit and vegetables (except avocado), and for food preparation including microwave reheating where there was covering of the food in a container but little or no direct contact.

  2. Modelling of the plasticity and brittle failure of the irradiated bainitic steels; Modelisation du comportement en plasticite et a rupture des aciers bainitiques irradies

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, C.N.

    2010-02-15

    Low alloy steels are used in various equipments of nuclear reactors. Subjected to neutron irradiation produced during the operation of reactors, these materials exhibit significant changes in their microstructure, especially with the formation of radiation defects as interstitial loops, void clusters and precipitates. These defects in interactions with dislocations lead to a hardening and embrittlement which are directly related to the received dose and neutron flux. The plastic behaviour of non-irradiated low alloy bainitic steels has been the object of several modelling based on observations from experiments and atomistic simulations. Some of them result from thesis supported by EDF and CEA, which describe different strategies for the micro-mechanical modelling of brittle failure. Improvements in this work come from the integration of new physical characteristics and the attention paid to the representativeness of the microstructure: whereas realistic microstructures in terms of morphology and crystal orientations have been adopted, a dislocation density based constitutive model in the large deformation framework is used to describe crystal plasticity. This choice is justified by the need to take into account, in the constitutive modelling, the interactions between dislocations and irradiation defects under severe loading conditions. The plasticity laws have been implemented in the finite elements code ZeBuLoN in order to perform computations of polycrystalline aggregates. Such aggregates are representative volume elements. They thus provide the database required for the application of brittle failure models to structures. This multi-scale character confers to the modelling the status of 'micro-mechanical local approach of failure'. (author)

  3. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.

    Science.gov (United States)

    Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José

    2009-06-01

    A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes.

  4. Lubricant Film Breakdown and Material Pick-Up in Sheet Forming of Advanced High Strength Steels and Stainless Steels when Using Environmental Friendly Lubricants

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Olsson, M.; Bay, Niels

    2014-01-01

    Increasing focus on environmental issues in industrial production has urged sheet metal stamping companies to look for new tribo-systems in order to substitute hazardous lubricants such as chlorinated paraffin oils. The efficiency of chlorinated paraffin is due to the fact that the lubricant reacts...... chemically with the tool and workpiece material forming thin films, which adhere strongly to the surfaces and reduce the tendency to metal-metal contact and material pick-up. Production tests of new, environmentally benign tribo-systems are, however, costly and laboratory tests are preferred as a preliminary...... and stainless steels. The performance of the tribo-systems was analyzed in the laboratory by means of a newly developed simulative test as well as in an industrial production process. The results obtained show a good agreement between the laboratory test and the industrial production process regarding...

  5. Possibility of Prediction of Properties of High-Toughness Materials by Complex Analysis of the Size of Zones of Plastic Strain and Other Parameters of Steel 09G2S

    Science.gov (United States)

    Simonov, M. Yu.; Shaimanov, G. S.; Simonov, Yu. N.; Khanov, A. M.

    2016-05-01

    Relations between the parameters of dynamic crack resistance, impact toughness, sizes of zones of plastic strain in the start region, hardness of the unstrained material, strength characteristics, and tempering temperature of steel 09G2S are determined. The linear regression equations are used to construct mathematical and graphical models for predicting the level of properties in quenched and tempered steel 09G2S. The method is used to predict the properties of a tubular billet from steel 09G2S with composition somewhat different from the rated one after quenching and high tempering at 570°C.

  6. Failure Orientation in Stretch Forming and Its Correlation with a Polycrystal Plasticity-Based Material Model for a Collection of Highly Formable Sheet Steels

    Science.gov (United States)

    An, Yuguo; Boterman, Romke; Atzema, Eisso; Abspoel, Michael; Scholting, Marc

    2016-07-01

    Robust design optimization techniques have been developed in recent years within the automotive industry with the aim of reducing scrap rates and improving process stability in sheet metal forming. These new techniques are able to take process variations and other sources of material scatter into account. Among the many material variables and inputs used, the yield criterion is an important aspect and this is used to describe the plastic behavior of sheet metals. To achieve a reliable output in an optimization study, the yield criterion selected must be representative of material response and scatter. However, simple material models that deviate from real material behavior are often used due to a lack of material data, which is usually a requirement when using more complex models. In the present research, a polycrystal plasticity-based CTFP model has been evaluated in stretch forming for a collection of highly formable sheet steel materials. The results demonstrate that the CTFP model can capture the yielding character and also detect the minor deviations presented by different coils. The stretching factor derived from the CTFP model, as opposed to the work hardening and ductility, has a dominant effect on failure for a collection of materials with similar mechanical properties. Results also indicate that plastic deformation causes texture evolution and, consequently, an evolving yield locus. Such changes in the yield locus during deformation have an effect on stretching and friction calibration in FE simulations.

  7. Study on the passive film formed on 2205 stainless steel in acetic acid by AAS and XPS

    Institute of Scientific and Technical Information of China (English)

    Xue-qun Cheng; Xiao-gang Li; Chao-fang Dong

    2009-01-01

    The properties of the passive film formed on 2205 stainless steel in acetic acid at high temperature that contained chloride ions were studied by atomic absorption spectrometry (AAS), X-ray photoelectron spectroscopy (XPS), and electrochemical polariza-tion measurements.AAS results show that molybdenum is enriched on the surface as the passive film is dissolved.This enrichment decreases the corrosion resistance because it hinders chloride adsorption and Fe ion dissolution, and acts as a local pH buffer because it consumes protons.The dissolution ratio of Fe/Cr is approximately 10 during the active dissolution of the passive film.XPS results indicate that when the potential is in the passivation region, Cr comprises about 50% of the metal cations in the near-surface region of the passive film and is the main metal constituent in this region.When the polarization potential is much greater than the transpas-sivation potential, the Mo content accounts for approximately 45% of the metal cations in the near-surface region; Fe and Ni have no obvious influence on the formation, dissolution, or puncture of the passive film.

  8. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Vicentini, Denice S. [Mechanical Engineering Department, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil); Smania, Arthur [Microbiology and Parasitology Department, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil); Laranjeira, Mauro C.M., E-mail: mauro@qmc.ufsc.br [Mechanical Engineering Department, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil); Chemistry Department, QUITECH, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil)

    2010-05-10

    In this study ZnO nanoparticles were prepared by the Pechini method from a polyester by reacting citric acid with ethylene glycol in which the metal ions are dissolved, and incorporated into blend films of chitosan (CS) and poly (vinyl alcohol) (PVA) with different concentrations of polyoxyethylene sorbitan monooleate, Tween 80 (T80). These films were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), swelling degree, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the films was tested, and the films containing ZnO nanoparticles showed antibacterial activity toward the bacterial species Staphylococcus aureus. The observed antibacterial activity in the composite films prepared in this work suggests that they may be used as hydrophilic wound and burn dressings.

  9. Plasticity and Interfacial Dislocation Mechanisms in Epitaxial and Polycrystalline Al Films Constrained by Substrates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Stresses in epitaxial and textured Al films were determined by substrate-curvature measurements. It was found that in both cases the flow stresses increase with decreasing film thickness. The flow stresses in the epitaxial Al films are in agreement with a dislocation-based model, while the same model strongly underestimates the flow stresses of textured Al films. In-situ transmission electron microscopy studies indicate that dislocations channeling through epitaxial Al films on single-crystalline (0001) α-AI2O3 substrates frequently deposit dislocation segments adjacent to the interface. Furthermore, the AI/α-AI2O3 interface acted as a dislocation source. In this case, the interface is between two crystalline lattices. In contrast, the interface of textured Al films on oxidized silicon substrates is between the crystalline Al and the amorphous SiOx interlayer. It is speculated that the different nature of the interfaces changes dislocation mechanisms and thus influences the flow stresses.

  10. THE EFFECT OF PLASTICIZER CONTENT AND DISACCHARIDE TYPE ON THE MECHANICAL, BARRIER AND PHYSICAL PROPERTIES OF BOVINE GELATIN-BASED FILMS

    Directory of Open Access Journals (Sweden)

    PEDRO GUERRERO1

    2014-06-01

    Full Text Available Gelatins are regarded as alternative raw materials to prepare films for food packaging. However, the improvement of their mechanical and water barrier properties is necessary in order to obtain useful materials in service conditions. To improve these functional properties, two strategies have been carried out in this work. First, glycerol was added as plasticizer to increase the flexibility of the films. Second, lactose or sucrose was added to react with gelatin and increase water resistance of gelatin-based films. Commercial gelatin, glycerol and lactose or sucrose were employed in this work and processing of the films was carried out by solution casting. All gelatin films obtained were transparent and flexible. Moreover, the hydrophobic character of the films was increased and the film solubility was decreased by the addition of glycerol and disaccharides. As was observed via FTIR, the changes were due to the interactions between gelatin and glycerol and Maillard reaction between gelatin and disaccharides.

  11. Wear behavior of contacting between thin film coating on SKD11 ball and 304 stainless steel disk

    Directory of Open Access Journals (Sweden)

    Sriprasird, J.

    2007-11-01

    Full Text Available Wear is a well known problem in metal stamping die, especially on the die working with stainless steel workpiece, in which wear rate is severe. This research considered various types of material coating on tool surface which were regularly practised in modern stamping industry due to the ability to increase wear resistance. The model study of friction "Ball-on-disk" technique was employed throughout this work. The disk was made from stainless steel austenitic grade (SUS304. The ball was made from cold work tool steel, SKD11 (JIS and was hardened to 60±2 HRC. Ball surface conditions selected for this work were non-coated, coated by TiC-CVD, TiCN (TiC/TiCN/TiN Multilayer-CVD and TiCN (TiN/TiCN Double layer-PVD, and treated by VC-TD. Tests were carried out without lubricant. The results show that the coating film and the surface treatment has no effect on the friction coefficient but it can reduce wear rate by 64.1-99.7% at contact pressure condition less than 1,100 MPa. At the higher level of contact pressure, only 2 types of coating, TiCN (Multilayer-CVD and TiC-CVD, can reduce wear rate. The other two, which are TiCN (Double layer-PVD coating film and a surface treatment by VC-TD process, on the contrary increase the rate of wear significantly. This is due to delamination of coating film at high contact pressure. The coating particles of high hardness accelerate wear phenomenon on the tool surface. Therefore, proper selection of tool surface condition depends on level of contact pressure generated in the process.

  12. Discussion on the Harm of Plastic Film and Its Recycling Measures%地膜危害及其回收利用措施探讨

    Institute of Scientific and Technical Information of China (English)

    马永波

    2015-01-01

    介绍台安县的地膜使用及回收现状,探讨残留地膜对土壤理化性质、作物生长发育及环境的不利影响,根据台安县的生产实际,论述促进残膜回收的主要措施,为确保农业高产稳产提供有益借鉴。%The article introduces the application of plastic film and its recycling status in Tai'an county, discusses the harmful influence of residual plastic film to soil properties, crops growth and environment, and expounds main measures of promoting the recycling of residual plastic film based on the practice in Tai’an county, provides a beneficial reference for assuring stable and high yield for agri-culture.

  13. 册亨县水稻覆膜直播栽培试验%Experiment of Plastic Film Mulching Cultivation by Direct Seeding of Rice in Ceheng County

    Institute of Scientific and Technical Information of China (English)

    黄如泽

    2014-01-01

    册亨县水稻覆膜直播栽培试验研究结果表明,地膜覆盖直播栽培能耐干旱、没有杂草、病虫害少,只是开始时用工较多,但整体上分析,覆膜直播比旱育稀植移栽的效果好。%The results of experiment of plastic film mulching cultivation by direct seeding of rice in Ceheng County showed that plastic film mulching cultivation by direct seeding had drought tolerance,no weeds,fewer pests and diseases,just the employment was more at the beginning,but on the whole,plastic film mulching cultivation by direct seeding had better effect than dry nursery and sparse planting transplant.

  14. PENGARUH PENAMBAHAN PLASTICIZER TERHADAP SIFAT FISIK DAN MEKANIK EDIBLE FILM PATI JAGUNG

    OpenAIRE

    Adiansyah; Bastian, Februadi

    2008-01-01

    ABSTRAK AGROKOMPLEKS 2008 Edible film adalah lapisan tipis dan kontinyu yang dibuat dari bahan yang dapat dimakan, diletakkan diantara komponen makanan (film) yang berfungsi sebagai penghambat terhadap transfer massa (uap air, oksigen dan zat terlarut) dan sebagai carrier bahan makanan atau aditif. Penelitian ini dilaksanakan dalam dua tahap yaitu ekstraksi pati jagung. Pada tahap ini akan diperoleh pati jagung sebagai bahan dasar edible film. Parameter yang diukur pada pati jagung yaitu...

  15. EVALUASI KARAKTERISTIK FISIK EDIBLE FILM DARI GELATIN KULIT KAMBING BLIGON YANG MENGGUNAKAN GLISEROL SEBAGAI PLASTICIZER

    OpenAIRE

    Said, Muhammad Irfan; Triatmojo, Suharjono; Erwanto, Yuny; Fudholi, Achmad

    2013-01-01

    Bahan baku dalam pembuatan edible film dari golongan pati telah banyak digunakan, sedangkan golongan protein yang berasal dari ternak masih jarang digunakan. Gelatin merupakan salah satu jenis bahan yang digunakan dalam pembuatan edible film dari golongan protein asal ternak. Bahan ini diketahui memiliki sifat-sifat yang baik dan berpotensi untuk digunakan sebagai bahan baku dalam pembuatan edible film (Klahorst, 1999). Gelatin pada dasarnya adalah sebuah produk hidrokoloid yang merupa...

  16. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.

    Science.gov (United States)

    Park, Kwi-Il; Son, Jung Hwan; Hwang, Geon-Tae; Jeong, Chang Kyu; Ryu, Jungho; Koo, Min; Choi, Insung; Lee, Seung Hyun; Byun, Myunghwan; Wang, Zhong Lin; Lee, Keon Jae

    2014-04-23

    A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 μA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate over 100 LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses.

    Science.gov (United States)

    Wang, Jun; Chen, Gangcai; Christie, Peter; Zhang, Manyun; Luo, Yongming; Teng, Ying

    2015-08-01

    Phthalate esters (PAEs) are suspected of having adverse effects on human health and have been frequently detected in soils and vegetables. The present study investigated their occurrence and composition in plastic film greenhouse soil-vegetable systems and assessed their potential health risks to farmers exposed to these widespread pollutants. Six priority control phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP), were determined in 44 plastic film greenhouse vegetables and corresponding soils. Total PAEs ranged from 0.51 to 7.16mgkg(-1) in vegetables and 0.40 to 6.20mgkg(-1) in soils with average concentrations of 2.56 and 2.23mgkg(-1), respectively. DnBP, DEHP and DnOP contributed more than 90% of the total PAEs in both vegetables and soils but the proportions of DnBP and DnOP in vegetables were significantly (p3.00mgkg(-1) but were greenhouses. Health risks were mainly by exposure through vegetable consumption and soil ingestion.

  18. Characterizations of plasticized polymeric film coatings for preparing multiple-unit floating drug delivery systems (muFDDSs with controlled-release characteristics.

    Directory of Open Access Journals (Sweden)

    Sheng-Feng Hung

    Full Text Available Effervescent multiple-unit floating drug delivery systems (muFDDSs consisting of drug (lorsartan- and effervescent (sodium bicarbonate-containing pellets were characterized in this study. The mechanical properties (stress and strain at rupture, Young's modulus, and toughness of these plasticized polymeric films of acrylic (Eudragit RS, RL, and NE and cellulosic materials (ethyl cellulose (EC, and Surelease were examined by a dynamic mechanical analyzer. Results demonstrated that polymeric films prepared from Surelease and EC were brittle with less elongation compared to acrylic films. Eudragit NE films were very flexible in both the dry and wet states. Because plasticizer leached from polymeric films during exposure to the aqueous medium, plasticization of wet Eudragit RS and RL films with 15% triethyl citrate (TEC or diethyl phthalate (DEP resulted in less elongation. DEP might be the plasticizer of choice among the plasticizers examined in this study for Eudragit RL to provide muFDDSs with a short time for all pellets to float (TPF and a longer period of floating. Eudragit RL and RS at a 1∶1 ratio plasticized with 15% DEP were optimally selected as the coating membrane for the floating system. Although the release of losartan from the pellets was still too fast as a result of losartan being freely soluble in water, muFDDSs coated with Eudragit RL and RS at a 1∶1 ratio might have potential use for the sustained release of water-insoluble or the un-ionized form of drugs from gastroretentive drug delivery systems.

  19. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    DEFF Research Database (Denmark)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa

    2017-01-01

    phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties......, including an ultimate tensile strength of ~900 MPa and elongation to fracture of ~94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite...... formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}〈110〉 texture in ferrite and martensite (BCC phases) are the main active components during...

  20. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China

    OpenAIRE

    Qiaofei Liu; Yu Chen; Weiwei Li; Yang Liu; Juan Han; Xiaoxia Wen; Yuncheng Liao

    2016-01-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and...

  1. Constitutive model of plastic mould steel NAK80%NAK80塑料模具钢本构关系的试验研究

    Institute of Scientific and Technical Information of China (English)

    吕杰; 徐飞飞; 刘其广

    2012-01-01

    The mechanical property of plastic mould steel NAK80 was studied on the electronic material tensile test system, the thermal simulation testing machine and the Split Hopkinson Pressure Bar over a wide range of temperatures (25 to 600 ℃) and strain rates (700 to 5 000 s-1). Experiments show that the flow behaviors are not sensitive to strain rates at ambient temperature; the yield strength and flow stress decline with the temperature increasing at the same strain rate of (10-2 s-1) ; However, under high temperature, the stress declines with the strain increasing after yielding because of the prominent thermal - softening effect. Base on the experiments, the Johnson - Cook model was fitted, and the model was used to predict the flow behaviors of plastic mold steel NAK80 at different temperature and different strain rates. The comparisons between models and (he experiments show the fitted Johnson-Cook model can well describe the flow behaviors of plastic mould steel NAK80.%利用电子材料拉伸试验机、热模拟试验机和分离式Hopkinson压杆系统对NAK80塑料模具钢在较宽温度范围( 25~600℃)和不同应变率(700~5 000 s-1)条件下的力学特性开展了系列的试验研究.结果表明:室温下,NAK80塑料模具钢流变行为对应变率不敏感;相同应变率下(10-2 s-1),其屈服强度和流变应力随温度升高而下降,且高温下热软化效应明显,导致屈服后应变增加而应力下降.以试验数据为基础,拟合了Johnson-Cook模型,和用该模型对不同温度和不同应变率下NAK80塑料模具钢的流变应力进行预测,与试验数据对比表明,拟合的Johnson-Cook模型能够较好的描述NAK80塑料模具钢的流变行为.

  2. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  3. Two hardening mechanisms in single crystal thin films studied by discrete dislocation plasticity

    NARCIS (Netherlands)

    Nicola, L; Van der Giessen, E; Needleman, A

    2005-01-01

    thermal stress in single crystal thin films on a rigid substrate are used to study size effects. The relation between the residual stress and the dislocation structure in the films after cooling is analyzed using dislocation dynamics. A boundary layer characterized by a high stress gradient and a hi

  4. Vibrational micro-energy harvesters utilizing Nb-doped Pb(Zr,Ti)O3 films on stainless steel substrates

    Science.gov (United States)

    Van Minh, L.; Sano, T.; Fujii, T.; Kuwano, H.

    2016-11-01

    This work presents the micromachined energy harvesters using Nb-doped Pb(Zr,Ti)O3 (PNZT) films grown directly on the stainless steel substrates (SUS430). Piezoelectric materials on metallic substrates have been attracted to practical and robust energy harvesters. Nb-doped PZT films with (001)-preferred orientation grown on SUS substrates provided excellent properties for energy harvesting - high piezoelectric coefficient (e 31 = -10.6 C/m2) and low dielectric permittivity (ɛr = 373). The PNZT-based micro-energy harvester comprising a cantilever of 1.7 mm× 5 mm × 0.05 mm and a proof mass of 3 mm× 5 mm × 47 mm achieved the normalized power density (NPD) of 2.87 mW.g-2.cm-3. It is the highest performance among the published SUS-based energy harvesters, being closer to the best Si- based energy harvesters.

  5. Quality changes of 'Sanguinello' oranges wrapped with different plastic films under simulated marketing conditions.

    Science.gov (United States)

    D'Aquino, S; Malinconico, M; Avella, M; Di Lorenzo, M L; Mura; Palma, A

    2013-01-01

    Chemical and eating quality of citrus fruit changes slowly after harvest, and quality alteration is mainly due to shrinkage, loss of firmness, excessive weight loss and decay rather than a reduction of nutritional value and taste features. Film wrapping may be a suitable means to reduce transpiration and preserve market quality provided film permeability to gases does not lead to: 1) a reduction of in-package O2 partial pressure at a point that would induce anaerobic respiration; 2) an increase of CO2 concentration to toxic levels. This experiment was carried out to study quality changes of 'Sanguinello' oranges treated or not treated with 500 mg/L imazalil (IMZ) and wrapped with continuous, macro- or micro-perforated polyolefinic films. Wrapped and no-wrapped fruit were stored at 20 degrees C and 60% RH for 20 or 30 days. In-package gas composition of the macro-perforated film showed no significant difference compared to air composition, while in-package partial pressure of CO2 and O2 ranged between 4 (continuous film) and 9.8 kPa (micro-perforated films), and 14.8 (continuous film) and 5 kPa (micro-perforated films), respectively. After 30 days of storage weight loss in fruit wrapped with the macro-perforated film was (4.3%) slightly lowerthan un-packed fruit (5%), while in all other packages weight loss never exceeded 0.7%.Quality changes were quite stable over storage in all treatments, although slight but significantly lower levels of total soluble solids and ascorbic acid were detected in micro-perforated films with the lowest degree of perforation. However, the sensory analysis denoted a remarkable decrease of firmness in un-wrapped or wrapped fruit with macro-perforated film, while a moderate build-up of off-flavour, which reduced the eating quality, developed in micro-perforated films. Decay ranged between 6 and 12% in not treated fruit, with the lowest incidence detected in un-wrapped fruit, whereas differences among the different films were not

  6. PLASTIC DEFORMATION ON THE MACHINED SURFACE OF STEEL Cr20Ni10MoTi AT DRILLING

    Directory of Open Access Journals (Sweden)

    Jozef Jurko

    2009-07-01

    Full Text Available Information about material machinability is very important for the machining technology. Precise and reliable information on the machinability of a material before it enters the machining process is a necessity, and this brings the verification of technological methods in practice. This article presents the conclusions of machinability tests on austenitic stainless steel according to EN-EU (ISO: steel Cr20Ni10MoTi. This article presents the conclusions of VEGA grant agency at the Ministry of Education SR for supporting research work and co-financing the projects: Grant work #01/3173/2006 with the title „Experimental investigation of cutting zones in drilled and milled stainless steels

  7. Influence of steel composition and plastic deformation on the surface properties induced by low temperature thermochemical processing

    DEFF Research Database (Denmark)

    Bottoli, Federico

    “PressPerfect” Project was to create a methodology to predict the performance of high quality stainless steels after forming and finishing treatments. The Ph.D. Project focused on the optimization of low-temperature thermochemical processes on severalstainless steel classes used for the surface treatment of industrial......Low-temperature thermochemical surface hardening by nitriding, carburizing and nitrocarburizing is used to improve the performance of stainless steels with respect to wear, fatigue and corrosion resistance.The dissolution of nitrogen and/or carbon atoms in the materials surface leads...... to the formation of a supersaturated solid solution known as expanded austenite, or S-Phase. Expanded austenite is characterized by high hardness, up to 1400 Vickers, and high compressive stresses in the surface region, which result in improved wear and fatigue resistance of the components. Along...

  8. Enhancing the release of the antioxidant tocopherol from polypropylene films by incorporating the natural plasticizers lecithin, olive oil, or sunflower oil.

    Science.gov (United States)

    López de Dicastillo, Carol; Ares Pernas, Ana; Castro López, María del Mar; López Vilariño, José Manuel; González Rodríguez, María Victoria

    2013-12-01

    In this work, natural plasticizers-modified polypropylenes intended for food active packaging were developed. Sunflower oil, olive oil, and soy lecithin, without any known harmful effects or toxicity, were employed as natural plasticizers, also implementing the attractiveness of using synthetic plastics on active packaging developments. Their incorporation during the extrusion of polypropylene was tried as a means to obtain polymers with improved diffusion paths, allowing differences in antioxidant release rates for active packaging materials. Thermal and rheological characterization of the films showed that blending natural plasticizers do not significantly modify their thermal properties; however, small variations of viscoelastic properties were observed. Furthermore, the resulting release of tocopherol was highly dependent on the polymer formulation. Furthermore, it was clearly time-controlled by using those natural plasticizers, especially olive oil. Antioxidant activity results also showed that packaged foods are protected against oxidative degradation over time, resulting from the improved release of the antioxidants.

  9. Tracer aroma compound transfer from a solid and complex-flavored food matrix packed in treated papers or plastic packaging film.

    Science.gov (United States)

    Dury-Brun, Cécile; Lequin, Sonia; Chalier, Pascale; Desobry, Stéphane; Voilley, Andrée

    2007-02-21

    The objective of this work was to study the transfer of four aroma compounds (ethyl butyrate, ethyl hexanoate, cis-3-hexenol, and benzaldehyde) from a solid and complex-flavored food matrix (sponge cake) toward and through packaging films placed in indirect contact during storage in accelerated aging conditions (38 degrees C and 86% relative humidity gradient). The efficiency of treated papers relative to that of standard paper and plastic as barrier was tested. Before storage, aroma compound volatility in the sponge cake was measured, and similar values were found between aroma compounds, due to the fat content of the sponge cake. Whatever the aroma compound, permeability values during storage were similar for the same packaging film. The plastic film was the highest barrier, whereas calendering and coating treatments applied to treated papers decreased effectively their permeability. An opposite trend was observed for aroma compound sorption into packaging films during storage.

  10. Application of plastic trash sorting technology in separating waste plastic mulch films from impurities%塑料垃圾分选技术在废旧地膜与杂质分离中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    石鑫; 牛长河; 乔园园; 张海春; 王学农

    2016-01-01

    Plastic film mulching technique has been using widely in China because of it’s notable features such as raising temperature,inhibiting weed growth,promoting crop maturity and increasing production. A large number of used plastic mulch films which have not be recycled and accumulated in the soil year after year and results serious waste plastic mulch film pollution. Recycled waste plastic mulch films twined each other with other impurities and makes the mulch film utilization becomes difficult. Some recycled waste plastic mulch films has been stacked or burned on field ridge freely which leads secondary pollution.Thus, the waste plastic mulch film pollution problems should be cracked from it’s beginning.Agricultural waste plastic mulch film and impurities separation technology is key links during mechanized mulch films recycling and reusing. Waste plastic mulch film as a valuable renewable resource and be important part of plastic production which comes from waste plastic mulch film by separation process. Effective recycling and reusing of waste plastic mulch film can improve economic benefits and even what’s more is that it can decrease the secondary pollution probability which caused by improper waste plastic mulch film handling. Some documents shows that the thickness of plastic mulch film used in foreign countries is generally above 0.12mm which keep the tensile strength of plastic mulch film be good enough and promote the rolling recycling machine development.Waste plastic mulch film is clean and complete which recycled by rolling recycling machine and it can be reused directly.At present, there is no relevant report about technology and equipment for waste plastic mulch film separation at abroad.The thickness of the plastic mulch film used generally in China between 0.004-0.008mm which leads the tensile strength not good enough after harvesting season and can not be recycled by rolling way. The only way which can recycling waste plastic mulch film by

  11. 1,3-dichloropropene and chloropicrin emissions following simulated drip irrigation to raised beds under plastic films.

    Science.gov (United States)

    Ashworth, D J; Luo, L; Xuan, R; Yates, S R

    2010-08-01

    Using laboratory soil chambers a nonscaled representation of an agricultural raised bed was constructed. For a sandy loam soil, 1,3-dichloropropene (1,3-D) and chloropicrin (CP) were applied at 5 cm depth with an excess of water (simulated drip irrigation). Application was made under both high density polyethylene (HDPE) and virtually impermeable film (VIF) covering the soil bed (the furrow was left uncovered). Soil gas distribution of the fumigants, together with emissions into the headspace above the bed, sidewall and furrow were determined over time. Total emissions from the HDPE treatment were cis 1,3-D 28%, trans 1,3-D 24%, and CP 8%. Due to its lower permeability, the values for VIF were 13%, 7%, and 1.5%, respectively. With HDPE, the majority (86-93%) of the emissions occurred from the bed, while for VIF the majority (92-99%) of the emissions was from the furrow. Compared to a range of literature values for shank injection, the use of drip application appears to offer a benefit in reducing 1,3-D and CP emissions. However, the most meaningful comparison is with our previous data for simulated shank injection where the same soil was covered (completely) with the same plastic films (1). In this comparison, only 1,3-D emissions under HDPE were lower with drip application; 1,3-D emissions under VIF and CP emissions under both films were greater with the drip application.

  12. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly.

  13. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  14. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  15. An in-situ neutron diffraction study of a multi-phase transformation and twinning-induced plasticity steel during cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Ahmed A., E-mail: asaleh@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, New South Wales 2522 (Australia); Brown, Donald W.; Clausen, Bjørn; Tomé, Carlos N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pereloma, Elena V. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, New South Wales 2522 (Australia); Electron Microscopy Centre, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Davies, Christopher H. J. [Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800 (Australia); Gazder, Azdiar A. [Electron Microscopy Centre, University of Wollongong, Wollongong, New South Wales 2500 (Australia)

    2015-04-27

    In-situ neutron diffraction during cyclic tension-compression loading (∼+3.5% to −2.8%) of a 17Mn-3Al-2Si-1Ni-0.06C steel that exhibits concurrent transformation and twinning -induced plasticity effects indicated a significant contribution of intragranular back stresses to the observed Bauschinger effect. Rietveld analysis revealed a higher rate of martensitic transformation during tension compared to compression. Throughout cycling, α′-martensite exhibited the highest phase strains such that it bears an increasing portion of the macroscopic load as its weight fraction evolves. On the other hand, the ε-martensite strain remained compressive as it accommodated most of the internal strains caused by the shape misfit associated with the γ→ε and/or ε→α′ transformations.

  16. The effect of machining the gage section on Biaxial Tension/Shear plasticity experiments of DP780 sheet steel

    NARCIS (Netherlands)

    Walters, C.L.

    2013-01-01

    An experimental approach for determining the effect of machining the gage section of specimens for quasi-static, biaxial tension/shear testing of sheet steels is described. This method is demonstrated by comparing the results found by an existing testing method with a reduced thickness (Mohr and Osw

  17. Hardness-based plasticity and fracture model for quench-hardenable boron steel (22MnB5)

    NARCIS (Netherlands)

    Greve, L.; Eller, T.K.; Medricky, M.; Andres, M.T.

    2013-01-01

    A comprehensive strain hardening and fracture characterization of different grades of boron steel blanks has been performed, providing the foundation for the implementation into the modular material model (MMM) framework developed by Volkswagen Group Research for an explicit crash code. Due to the i

  18. Studies of diamond-like carbon (DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Liu Gui-Chang; Wang Li-Da; Deng Xin-Lü; Xu Jun

    2008-01-01

    In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and thesp3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp3 bonding and reduced the hardness. The incorporated Si atoms substituted sp2- bond carbon atoms in ring structures, which promoted the formation of sp3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.

  19. Development of visible light activated TiO2 thin films on stainless steel via sol spraying with emphasis on microstructural evolution and photocatalytic activity

    Science.gov (United States)

    Momeni, Mansour; Golestani-Fard, Farhad; Saghafian, Hasan; Barati, Nastaran; Khanahmadi, Amirhossein

    2015-12-01

    Visible light activated nitrogen doped TiO2 thin films were developed on 304 stainless steel by sol spraying method using a common painting airbrush. Thin films with different thickness were prepared and calcined at various temperatures from 400 to 600 °C. The samples were studied using ellipsometry, XRD, GIXRD, XPS, DRS, SEM and FESEM. Photocatalytic activities of the films were investigated by measuring their ability to degrade methylene blue solution under visible light irradiation. Results revealed that uniform nanostructured films with a thickness range of 29-150 nm were successfully prepared on stainless steel by sol spraying. Doping nitrogen into TiO2 structure restricted the crystallite growth of anatase phase and reduced the band gap energy to 2.85 eV and therefore, activated TiO2 in visible light region. Increasing calcination temperature not only promoted crack formation in thin films, but also encouraged Fe diffusion from substrate into thin films structure. However, the N doped TiO2 film calcined at 500 °C with a thickness of 150 nm indicated a significant photocatalytic activity in visible light with 22% higher efficiency in comparison with undoped TiO2 film. Development of TiO2 based photocatalytic thin films by a simple method of airbrushing, builds up the hope for industrial scale applications in future.

  20. Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit.

    Science.gov (United States)

    Miao, Lixiang; Zhang, Yuchao; Yang, Xiaofang; Xiao, Jinping; Zhang, Huiqin; Zhang, Zuofa; Wang, Yuezhi; Jiang, Guihua

    2016-09-15

    The influence of colored light-quality selective plastic films (red, yellow, green, blue, and white) on the content of anthocyanin, the activities of the related enzymes and the transcripts of the flavonoid gene was studied in developing strawberry fruit. The results indicated that colored films had highly significant effects on the total anthocyanin content (TAC) and proportions of individual anthocyanins. Compared with the white control film, the red and yellow films led to the significant increase of TAC, while the green and blue films caused a decrease of TAC. Colored film treatments also significantly affected the related enzyme activity and the expression of structural genes and transcription factor genes, which suggested that the enhancement of TAC by the red and yellow films might have resulted from the activation of related enzymes and transcription factor genes in the flavonoid pathway. Treatment with red and yellow light-quality selective plastic films might be useful as a supplemental cultivation practice for enhancing the anthocyanin content in developing strawberry fruit.

  1. Preparation of Polyvinyl Alcohol/Xylan Blending Films with 1,2,3,4-Butane Tetracarboxylic Acid as a New Plasticizer

    Directory of Open Access Journals (Sweden)

    Cun-dian Gao

    2014-01-01

    Full Text Available Miscible, biodegradable polyvinyl alcohol (PVA/xylan blending films were firstly prepared in the range of the PVA/xylan weight ratio from 1 : 2 to 3 : 1 by casting method using 1,2,3,4-butane tetracarboxylic acid (BTCA as a new plasticizer. The properties of blending films as functions of PVA/xylan weight ratio and BTCA amount were discussed. XRD and FT-IR were applied to characterize the blending films. Experimental results indicated that tensile strength (TS and elongation at break (EAB of blending films decreased along with the decrease of the PVA/xylan weight ratio. Both of TS and EAB firstly increased and then decreased as the amount of BTCA was increased. More importantly, blending films were biodegraded almost by 41% with an addition of 10% BTCA in blending films within 30 days in soil. For all hydroxyl functionalized polymers (xylan and PVA, their molecular interactions and miscibility with BTCA endowed blending films with the biocompatibility and biodegradability. Therefore, these blending films are environmentally friendly materials which could be applied as biodegradable plastics for food packaging and agricultural applications.

  2. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    Science.gov (United States)

    Ballinger, Jared

    Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase

  3. Evaluation of impacts of stress triaxiality on plastic deformability of RAFM steel using various types of tensile specimen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Taichiro, E-mail: kato.taichiro@jaea.go.jp [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan); Ohata, Mitsuru [Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Nogami, Shuhei [Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • The fracture ductility is lower as the stress triaxiality is higher. • Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. • Voids of interrupted R0.2 specimen were rounded shape than those of RB1. • The fracture surface of specimens were observed the elongated and the equiaxed dimples. • The decrease of plastic deformability of the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch. - Abstract: A case study on a fusion blanket design such as DEMO indicated that there could be some sections with high stress triaxiality, a parameter to evaluate the magnitude of plastic constraint, in the case of plasma disruption or coolant loss accident. Therefore, it is necessary to accurately understand the ductility loss limit of structural material in order to conduct the structural design assessment of the irradiated and embrittled fusion reactor blanket. Tensile tests were conducted by using three kinds of tensile specimen shapes to investigate of the plastic deformability of F82H. From the results, the fracture ductility is lower as the stress triaxiality is higher. Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. That of interrupted R0.2 specimen was rounded shape compared with those of RB1. The fracture surface of RB1 and R0.2 specimens were observed the elongated dimples and the equiaxed dimples without so much elongation, respectively. It is considered that the decrease of plastic deformability for the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch.

  4. 马铃薯大棚套黑膜覆盖栽培技术%Planting Potato Using Black Plastic Film Mulching in an Anti-fogging Agricultural Plastic Film Covered Tunnel

    Institute of Scientific and Technical Information of China (English)

    林长治

    2013-01-01

    Potato has become a main crop in winter cropping system in Changle, but due to differences in cultivation, management and variation in annual climate conditions, potato yield and quality vary to a large extent. Planting potato using black plastic film mulching combined with drip irrigation under the mulching for fertigation in an anti-fogging agricultural plastic film covered tunnel provides potato a stable entironments for growth, and thereby increasing yield and quality of potato. Also by using this technique, potato could be marketed more than a month earlier. Therefore, the profit could be increased for potato farmers.%马铃薯已成为长乐市冬季农业生产的主要作物,但由于栽培技术与管理水平差异,年际气候变化较大,产量和品质也大不相同。马铃薯大棚套黑膜覆盖栽培技术通过构建温室大棚覆盖塑料无滴膜,起垄播种后覆盖黑色地膜,膜下铺设灌溉和施肥用的滴灌带等方法,为马铃薯生长发育提供了一个相对稳定的生态环境,可有效地提高马铃薯的产量和品质,且比露地栽培提早一个多月上市,稳定增加农户种植效益。

  5. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  6. Paper-Thin Plastic Film Soaks Up Sun to Create Solar Energy

    Science.gov (United States)

    2006-01-01

    A non-crystallized silicon known as amorphous silicon is the semiconductor material most frequently chosen for deposition, because it is a strong absorber of light. According to the U.S. Department of Energy, amorphous silicon absorbs solar radiation 40 times more efficiently than single-crystal silicon, and a thin film only about 1-micrometer (one one-millionth of a meter) thick containing amorphous silicon can absorb 90 percent of the usable light energy shining on it. Peak efficiency and significant reduction in the use of semiconductor and thin film materials translate directly into time and money savings for manufacturers. Thanks in part to NASA, thin film solar cells derived from amorphous silicon are gaining more and more attention in a market that has otherwise been dominated by mono- and poly-crystalline silicon cells for years. At Glenn Research Center, the Photovoltaic & Space Environments Branch conducts research focused on developing this type of thin film solar cell for space applications. Placing solar cells on thin film materials provides NASA with an attractively priced solution to fabricating other types of solar cells, given that thin film solar cells require significantly less semiconductor material to generate power. Using the super-lightweight solar materials also affords NASA the opportunity to cut down on payload weight during vehicle launches, as well as the weight of spacecraft being sent into orbit.

  7. Filme plástico perfurado em túneis baixos cultivados com alface Perforated plastic film for low tunnels cultivated with lettuce

    Directory of Open Access Journals (Sweden)

    José E. B. A. Monteiro

    2002-12-01

    Full Text Available O objetivo deste trabalho foi avaliar as condições micrometeorológicas no interior de túneis baixos cultivados com alface, através da perfuração do filme plástico, técnica utilizada para melhorar a ventilação no interior dos túneis, porém ainda pouco conhecida. Assim, foram testados túneis sem e com cultura de alface, com 0, 5, 10, 15 e 20% de área de filme perfurada e, também, um canteiro sem túnel, durante a primavera. As variáveis meteorológicas utilizadas para a avaliação dos tratamentos foram temperatura e umidade relativa do ar, verificando-se que, quanto maior o percentual de perfuração, menor a elevação da temperatura no interior do ambiente protegido e maior a perda de umidade para o ambiente exterior. A produção obtida nos ambientes protegidos foi maior e de melhor qualidade.The present work was carried out with the objective to evaluate the micrometeorological conditions inside low tunnels cultivated with lettuce. A technique used to improve the ventilation inside the tunnels is the perforation of the plastic film, though still not very well known. Therefore, tunnels were tested without and with lettuce crop, with 0, 5, 10, 15 and 20% of perforated film area and in soil without tunnel, during spring. The meteorological variables used for the evaluation of the treatments were temperature and relative humidity of air. It was verified that the elevation of the temperature inside the protected atmosphere was inversely related to percentage of perforation contrary to the humidity loss for the external atmosphere. The production obtained under protected conditions was higher and of better quality.

  8. Damage evaluation of fiber reinforced plastic-confined circular concrete-filled steel tubular columns under cyclic loading using the acoustic emission technique

    Science.gov (United States)

    Li, Dongsheng; Du, Fangzhu; Ou, Jinping

    2017-03-01

    Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP–CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP–CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP–CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP–CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP–CCFT columns and provide critical warning information for composite structures.

  9. Plastic-film Mulching in Different Periods for Lanzhou Lily Production and Soil Temperature and Humidity Influence%不同时期覆膜对兰州百合产量及土壤温湿度的影响

    Institute of Scientific and Technical Information of China (English)

    徐学军; 魏桂琴

    2012-01-01

    在兰州百合种植区进行秋覆膜、顶凌覆膜和不覆膜3种栽培模式试验,结果表明,在兰州百合生长的每一个生育期,株高、茎粗、叶长、叶宽、根重均是秋覆膜(A)〉顶凌覆膜(B)〉不覆膜(CK);0~20cm土壤含水量、土壤温度不同生育时期秋覆膜、顶凌覆膜均高于传统不覆膜栽培;百合鳞茎产量秋覆膜栽培较传统不覆膜栽培高21.2%,顶凌覆膜栽培较传统不覆膜栽培高4.5%。%In autumn plastic-film mulching,plastic-film mulching topling and no plastic-film mulching three cultivation patterns test in Lanzhou lily growing areas,the experimental results show that the growth in Lanzhou lily every growth period,the plant height,stem diameter,leaf length,leaf width and weight of root,of all is an.autumn plastic-film mulching〉b.topling〉CK.No plastic-film mulching;0-20 cm soil moisture,soil temperature of plastic-film mulching topling and autumn plastic-film mulching are higher than the traditional non-plastic-film mulching cultivation in different growth periods.Lily bulb production with autumn plastic-film mulching with a more traditional cultivation no coated high 21.2%,plastic-film mulching top ling with a more traditional cultivation no laminating high 4.5%.

  10. Identification of plasticity model parameters of the heat-affected zone in resistance spot welded martensitic boron steel

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Meinders, Vincent T.; van den Boogaard, Antonius H.; Duflou, J.; Leacock, A.; Micari, F.; Hagenah, H.

    2015-01-01

    A material model is developed that predicts the plastic behaviour of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which

  11. Identification of plasticity model parameters of the heat-affected zone in resistance spot welded martensitic boron steel

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Meinders, Vincent T.; van den Boogaard, Antonius H.; Merklein, M.

    2014-01-01

    A material model is developed that predicts the plastic behavior of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which

  12. 不同地膜覆盖方式在果树生产中的应用%Application of Different Plastic Film Mulching in Fruit Tree Production

    Institute of Scientific and Technical Information of China (English)

    李红波; 陶增姣; 李海东; 辛燕; 路瑾瑾; 祝秋平; 郑禾

    2016-01-01

    Aiming to investigate the application of different plastic film mulching methods in the production of fruit trees,in the paper, the author applied the application of different plastic film mulching (ordinary plastic film, non-woven cloth and cloth) is used as the material. The result showed that the ordinary plastic film mulching short-term cost savings, but to the pollution of the environment larger; non-woven cloth pollution automatic degradation, but actual service life is short;gardening cloth durable, long term saving production cost, the best overall performance.%本研究旨在探讨不同地膜覆盖方式在果树生产上的应用。以不同地膜覆盖(普通塑料地膜、无纺布地布和园艺地布)为材料,在果树生产上进行应用。结果表明:普通塑料地膜覆盖短期节约成本,但对环境污染较大;无纺布地布无污染可自动降解,但实际使用寿命较短;园艺地布经久耐用,长期来看节约生产成本,综合表现最好。

  13. Nano-Floating Gate Memory Devices Composed of ZnO Thin-Film Transistors on Flexible Plastics

    Directory of Open Access Journals (Sweden)

    Park Byoungjun

    2011-01-01

    Full Text Available Abstract Nano-floating gate memory devices were fabricated on a flexible plastic substrate by a low-temperature fabrication process. The memory characteristics of ZnO-based thin-film transistors with Al nanoparticles embedded in the gate oxides were investigated in this study. Their electron mobility was found to be 0.18 cm2/V·s and their on/off ratio was in the range of 104–105. The threshold voltages of the programmed and erased states were negligibly changed up to 103 cycles. The flexibility, memory properties, and low-temperature fabrication of the nano-floating gate memory devices described herein suggest that they have potential applications for future flexible integrated electronics.

  14. Flexible photodiodes constructed with CdTe nanoparticle thin films and single ZnO nanowires on plastics.

    Science.gov (United States)

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2011-10-14

    We construct a flexible pn heterostructured photodiode using a CdTe nanoparticle thin film and a single ZnO nanowire (NW) on a plastic substrate. The photocurrent characteristics of the flexible photodiode are examined under illumination with 325 nm wavelength light and the photocurrent efficiencies at bias voltages of ± 2.5 V are estimated to be 8.0 and 2.1 µA W(-1) under forward and reverse bias conditions, respectively. The photocurrent generation of the pn heterostructured photodiode is dominantly associated with the transport of the photogenerated charge carriers in the single ZnO NW. Furthermore, the operations of our flexible photodiode are investigated in the upwardly and downwardly bent states, as well as in the flat state.

  15. Post-annealing-free, room temperature processed nanocrystalline indium tin oxide thin films for plastic electronics

    Science.gov (United States)

    Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo

    2016-06-01

    In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.

  16. 绿豆覆膜栽培效应研究%The Effect of Plastic Film Mulching on Mung Bean

    Institute of Scientific and Technical Information of China (English)

    赵雪英; 卢成达; 张泽燕; 张耀文

    2014-01-01

    在绿豆鼓粒期,选取晴朗无云天气,对不同覆膜方式处理下的绿豆进行光合指标采集,结合成熟期与绿豆产量有关的表型性状,研究不同地膜覆盖方式对绿豆产量的影响。结果表明:地膜覆盖能增温、保湿、保持养分、增加光效。用140 cm渗水地膜覆盖处理的绿豆持绿度高,叶片叶绿素含量明显高于露地平播(对照),净光合速率高,干物质积累时间长,绿豆产量有明显增加。140 cm渗水地膜覆盖绿豆产量2691 kg/hm2,较露地平播和窄幅地膜处理分别增加了20.9%和6.3%。%In order to study the effect of plastic film mulching dealt with different way on mung bean yield, the author chose the cloudless fine weather to measure the photosynthetic indexes in the seed filling period of mung bean, and measured the phenotypic traits relating to mung bean yield in the mature period. The results showed that the plastic film mulching could increase soil temperature, retain moisture, keep nutrient, and increase photosynthetic efficiency, the mung bean had higher green degree, net photosynthetic rate, and its chorophyll content was significantly higher than no-covered (contrast), so its photosynthetic matter accumulation time was long, the yield had obviously increased. The mung bean yield was 2691 kg/hm2 with 140 cm water-osmosis plastic membrane covered, which increased by 20.9%to no-covered and 6.3%to narrow membrane treatment.

  17. Water vapor permeability, mechanical, optical and sensorial properties of plasticized guar gumedible films

    Science.gov (United States)

    Edible films were prepared by casting method using guar gum and glycerol in different ratios. The concentration of guar gum was 1.0, 1.5 and 2.0% whereas glycerol concentration was 20, 30 and 40% (w/v). The water vapor permeability (WVP), mechanical properties (tensile strength and elongation), thic...

  18. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    CERN Document Server

    Tanaka, T; Shinohara, M; Takagi, T

    2002-01-01

    Application of pulsed high negative voltage (approx 10 mu s pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N sub 2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N sub 2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron mic...

  19. Tensile Elastic Properties of Typical Stainless Steels and Nonferrous Metals as Affected by Plastic Deformation and by Heat Treatment

    Science.gov (United States)

    Mcadam, D J; Mebs, R W

    1940-01-01

    A general discussion is given of the relationships between stress, strain, and permanent set. From stress-set curves are derived proof stresses based on five different percentages of permanent set. The influence of prior plastic extension on these values is illustrated and discussed. A discussion is given of the influence of work-hardening, rest interval, and internal stress on the form of the proof stress-extension curve.

  20. Mechanism of protective film formation during CO2 corrosion of X65 pipeline steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Electrochemical techniques,X-ray diffraction (XRD),and scanning electron microscopy (SEM) were applied to study the corrosion behaviors of X65 steel in static solution with carbon dioxide (CO2 at 65℃.The results show that iron carbonate (FeCO3deposits on the steel surface as a corrosion product scale.This iron carbonate scale acts as a barrier to CO2 corrosion,and can reduce the general corrosion rate.The protection ability of the scale is closely related to the scale morphological characteristics.

  1. Utilização de diferentes filmes plásticos como cobertura de abrigos para cultivo protegido = Use of different greenhouses plastic film as cover

    Directory of Open Access Journals (Sweden)

    José Weselli de Sá Andrade

    2011-07-01

    Full Text Available O presente projeto foi desenvolvido na Faculdade de Engenharia – Unesp, Campus de Ilha Solteira, no município de Ilha Solteira, Estado de São Paulo. Estudou-se o comportamento do ambiente em duas condições de ambiente protegido, com cobertura plástica do solo e em solo nu. Avaliaram-se as médias, por quinquídio, dos valores médios,máximos e mínimos diários de temperatura e umidade relativa do ar. As médias, por quinquídio, dos: valores médios diários de déficit de saturação de vapor d’água; dos totais diários de densidade de fluxo de radiação; das transmitâncias à radiação, em cada abrigo e asregressões lineares para estimativa dos totais diários de radiação no interior dos abrigos, em função do total diário de radiação em campo aberto. O ambiente protegido reduziu em relação ao campo aberto a densidade de fluxo de radiação solar, com maior intensidade, no abrigo coberto com filme plástico térmico difusor de luz. O maior efeito dos abrigos ocorreu sobre as temperaturas máximas, tendo maiores valores a estufa coberta com filme de polietileno convencional. Não ocorreram diferenças para umidade relativa do ar entre as estufas. O mulching plástico preto aumentou a temperatura do solo a 6 e 12 cm de profundidade.This project was developed in the Faculty of Engineering - Unesp, Campus of Ilha Solteira, in the municipality of Ilha Solteira – São Paulo State. We studied the environmental behavior under two conditions of protected environment, with plastic covering the soil and bare soil. It was evaluated the quinquidial averages, averages values, maximum and minimum daily temperature and relative humidity; quinquidial averages of the daily average values of deficiency of saturation of water vapor; the density of total daily flow of radiation; from transmission to radiation in each shelter and the linear regressions to estimate the total daily radiation inside the shelter, according to the daily total

  2. The third-order optical nonlinearity of the stainless steel doped SrTiO3 thin film grown by L-MBE

    Institute of Scientific and Technical Information of China (English)

    Lifeng Liu(刘丽峰); Yiyan Fei(费义艳); Haizhong Guo(郭海中); Wenfeng Xiang(相文峰); Huibin Lü(吕惠宾); Zhenghao Chen(陈正豪)

    2003-01-01

    Stainless steel-doped SrTiO3 thin films were fabricated by laser molecular beam epitaxy (L-MBE).Nonlinear optical property of the thin film was measured by the single beam Z-scan technique at thewavelength of 532 nm. Two two-phonon absorption coefficient and nonlinear refractive index weredetermined to be 9.37 × 10-7 m/W and 1.55 × 10-6 esu, respectively. The merit figure T was calculatedto be 1.8, satisfying condition T < 2 for an optical switch. The thin film has a very promising prospectfor the applications in optical device.

  3. One-step hydrothermal preparation of TiO{sub 2}/WO{sub 3} nanocomposite films on anodized stainless steel for photocatalytic degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, W.T. [Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Ni, H.W., E-mail: nihongwei@wust.edu.cn [Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Chen, R.S.; Wang, Z.Y. [Key Laboratory for Ferrous Metallurgy and Resource Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); Li, Y.W; Li, J.H. [Yangjiang SHIBAZI Group, Yangjiang 529500 (China)

    2013-12-02

    TiO{sub 2}/WO{sub 3} nanocomposite film was deposited on anodized stainless steel by one step hydrothermal reaction. Polished stainless steel foil was anodized to form nanopore arrays on the surface that is favorable for the immobilization of photocatalyst. The TiO{sub 2}/WO{sub 3} nanocomposite film prepared in 0.01 mol/L (NH{sub 4}){sub 2}TiF{sub 6} and 0.0066 mol/L Na{sub 2}WO{sub 4} solution at 120 °C for 3 h exhibits the maximum photocatalytic activity, which is five times higher than that of pure TiO{sub 2} film and eight times higher than that of pure WO{sub 3} film. As compared with the pure TiO{sub 2} film, the main absorption edge of the WO{sub 3}/TiO{sub 2} nanocomposite film shifts toward visible region and the absorption intensity is obviously improved. The nanocomposite film has a preferable crystallinity of anatase TiO{sub 2} and the monoclinic WO{sub 3}, as revealed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning electron microscopy images show that the nanocomposite film is homogenous in size distribution and uniform in morphology. The high resolution transmission electron microscopy images further demonstrate the formation of mixed crystal between WO{sub 3} and TiO{sub 2} nanoparticles. The excellent photocatalytic activity of the nanocomposite film should be attributed to the formation of heterojunction between TiO{sub 2} and WO{sub 3} nanoparticles that can facilitate the separation of photo-generated electron–hole pairs. - Highlights: • TiO{sub 2}/WO{sub 3} nanocomposite film on anodized stainless steel by hydrothermal deposition • The anodized stainless steel offered a favorable substrate to immobilize the photocatalyst. • The photocatalytic activity of TiO{sub 2}/WO{sub 3} film is significantly higher than that of TiO{sub 2} film. • The heterojunction between TiO{sub 2} and WO{sub 3} leads to excellent photocatalytic activity.

  4. Neutron diffraction analysis of Cr-Ni-Mo-Ti austenitic steel after cold plastic deformation and fast neutrons irradiation

    Science.gov (United States)

    Voronin, V. I.; Valiev, E. Z.; Berger, I. F.; Goschitskii, B. N.; Proskurnina, N. V.; Sagaradze, V. V.; Kataeva, N. F.

    2015-04-01

    A quantitative assessment is presented of the dislocation density and relative fractions of edge and screw dislocations in reactor-steel samples 16Cr-15Ni-3Mo-1Ti subjected to preliminary cold deformation by rolling and subsequent fast neutron irradiation using neutron diffraction analysis. The Williamson-Hall modified method was used for calculations. It is shown that the fast neutron irradiation leads to a decrease in the density of dislocations that appeared after samples deformation. The applicability of neutron diffraction analysis to the examination of dislocation structure of deformed and irradiated materials is shown.

  5. Modeling the ductile fracture and the plastic anisotropy of DC01 steel at room temperature and low strain rates

    Science.gov (United States)

    Tuninetti, V.; Yuan, S.; Gilles, G.; Guzmán, C. F.; Habraken, A. M.; Duchêne, L.

    2016-08-01

    This paper presents different extensions of the classical GTN damage model implemented in a finite element code. The goal of this study is to assess these extensions for the numerical prediction of failure of a DC01 steel sheet during a single point incremental forming process, after a proper identification of the material parameters. It is shown that the prediction of failure appears too early compared to experimental results. Though, the use of the Thomason criterion permitted to delay the onset of coalescence and consequently the final failure.

  6. ELASTO-PLASTIC BEHAVIOR OF RC FRAMES COMPOSED OF STEEL JACKETTED RC SHORT COLUMNS AND SPANDREL WALLS

    OpenAIRE

    Nasruddin

    2012-01-01

    This experimental study is a part of the investigation on the seismic design method for Double Tubes Hybrid System (DTHS) for buildings. This structural system consists of RC core walls as the interior tube, and the exterior frames composed of RC short columns and RC spandrel walls as the exterior tube. The RC core walls are designed as the Energy Dissipation Structural Walls (EDSW), which are composed of RC coupled shear walls linked by short steel H-shaped beams as the energy dissipation de...

  7. Mathematical modeling of phenomena of dynamic recrystallization during hot plastic deformation in high-carbon bainitic steel

    Directory of Open Access Journals (Sweden)

    T. Dembiczak

    2017-01-01

    Full Text Available Based on the research results, coefficients were determined in constitutive equations, describing the kinetics of dynamic recrystallization in high-carbon bainitic steel during hot deformation. The developed mathematical model takes into account the dependence of changing kinetics in the size evolution of the initial austenite grains, the value of strain, strain rate, temperature and time. Physical simulations were carried out on rectangular specimens measuring 10 × 15 × 20 mm. Compression tests with a plane state of deformation were carried out using a Gleeble 3800.

  8. Effect of different types of plastic packaging films on the moisture and aflatoxin contents of pistachio nuts during storage.

    Science.gov (United States)

    Shakerardekani, Ahmad; Karim, Roselina

    2013-04-01

    Pistachio nut (Pistacia vera L.) is one of the popular tree nuts in the world. Proper selection of packaging materials is necessary to prevent absorption of moisture and aflatoxin formation which will influence the overall product quality and safety. This research is undertaken to study the effect of different type of flexible packaging films on the moisture and aflatoxin contents of whole pistachio nuts during storage at ambient temperature (22-28 °C) and relative humidity of 85-100%. Five types of plastic films tested were low density polyethylene (LDPE) which serves as the control, food-grade polyvinyl chloride (PVC), nylon (LDPE/PA), polyamide/polypropylene (PA/PP) and polyethylene terephthalate (PET). The moisture content and aflatoxin content of pistachio nuts were measured using oven drying method and HPLC, respectively. Sample were analysed at 0, 2, 4, 6, 8 and 10 months during the storage period. Results showed that there was an increase in moisture content with the increase in storage time of pistachio nuts. The increase in moisture content was associated with the aflatoxin level of pistachio nuts during storage time. All the packaging materials except LDPE delayed the moisture absorption and aflatoxin formation of the product. The most suitable packaging materials for maintaining the quality and safety of pistachio nuts is PET films followed by nylon, PA/PP and PVC. The shelf-life of pistachio can be extended from 2 months (Control) to 5 months when PET is used as the packaging material.

  9. Properties of passive film formed on 316L/2205 stainless steel by Mott-Schottky theory and constant current polarization method

    Institute of Scientific and Technical Information of China (English)

    CHENG XueQun; LI XiaoGang; DU CuiWei

    2009-01-01

    Semiconductor properties of the passive films formed on 316L and 2205 stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS) in the high-temperature acetic acid.The results showed that the corrosion resistance of 2205 was higher than that of 316L,and the passive films formed on 316L and 2205 stainless steel showed p-type and n-type semiconductor behavior,respectively.Destruction and self-repairing of passive films were studied by using the constant current polarization method.The results showed that for 316L,the self-repairing process would occur when the destruction was lower than the critical extent or it would not do;for 2205,the self-repairing process only happened in a short time when the destruction was in the same extent as 316L.

  10. DEPOSITION OF TiBN HARD FILMS ON HOT-WORKING-STEEL DIES FOR ALUMINIUM EXTRUSION VIA A DUPLEX PROCESS

    Institute of Scientific and Technical Information of China (English)

    K. MUller

    2001-01-01

    Hot working steels have been used as die materials for hot extrusion of aluminium.Due to tribological interaction at elevated temperature between the die bearing and thesurface of extruded aluminium profiles, not only the surface quality of the extrudedproduct, but also the lifetime of the dies decreases. Deposition of TiBN hard films onthe die bearing could improve the die performance. Treatment should be done in aduplex process process combining a plasma nitriding pretreatment (PN) and a plasmaassisted chemical vapour deposition (PACVD) of TiBN. In this study the influence ofthe process conditions on the properties of the duplex coatings was investigated. Therelationship between structure and mechanical property was researched. For testingthese TiBN hardfilms under elevated temperature conditions and for comparison withother possible coatings special extrusion dies with different coated bearings were used.The extrusion trials were performed on the 8MN-extrusion press at the research anddevelopment center for extrusion, Technical University of Berlin.

  11. Current Situation ,Problems and Solutions of Plastic Film Utility in Gansu Province%甘肃省农膜利用现状和存在问题及解决途径

    Institute of Scientific and Technical Information of China (English)

    冯海

    2012-01-01

      甘肃是一个地膜覆盖栽培大省,地膜已经覆盖不同农作区及不同作物,随着地膜应用量和使用年限不断增加,农用地膜大量残留于土壤中,地膜降解速度缓慢,加上残膜的回收利用率低,土壤中残膜不断增加,造成土壤污染,导致农作物产量下降,耕地质量变劣。通过对甘肃省农用地膜利用现状分析,指出残膜对农业生态环境和农作物产生的危害,提出了农田残膜回收的对策和措施。%  Gansu is a major province of plastic film mulching area ,where the different farming areas and crops had been covered with plastic film .With the increasing amount and years of plastic film applications ,a large number of agricultural plastic film remained in the soil ,while slow degradation and low utilization rate of plastic film caused the increasing of residual plastic film ,as a result ,soil was polluted and crop yield decreased .The harm of residual plastic film for agro-ecological environment and crops were pointed out ,and the countermeas-ures and advice of recycling residual plastic film were proposed through the analysis of utilization status of plas-tic film in Gansu province .

  12. Diamond film deposition on WC-Co and steel substrates with a CrN interlayer for tribological applications

    Science.gov (United States)

    Chandran, Maneesh; Hoffman, Alon

    2016-06-01

    The most renowned property of diamond is its exceptional hardness. By depositing diamond films on tungsten carbide (WC-Co) and steel substrates, the hardness of diamond can be combined with the toughness of these materials, resulting in an excellent wear resistance material for tribological applications. However, poor adhesion of diamond coating on these substrates leads to a lesser lifetime for the diamond coated tools than expected. The prime reasons for the lack of proper adhesion are the preferential formation of graphitic layer at the interface due to the catalytic activities of cobalt/iron and the interfacial residual stresses due to the mismatch in thermal expansion coefficients of diamond (1.5  ×  10-6 K-1) and WC-Co (5.2  ×  10-6 K-1) or steel (12  ×  10-6 K-1). In this review, we discuss the possibility of using a Cr-N interlayer as a diffusion barrier to prevent the catalytic activities of cobalt/iron and also to relax the interfacial residual stresses to some extent to enhance the adhesion of diamond coatings on these substrates. An overview of the most pertinent results of the last two decades, including the recent progress is introduced. We describe in detail how the Cr-N interlayer with the desired properties is fabricated. We give a concise overview of diamond deposition process, including the methods to vary the grain size from microcrystalline to nanocrystalline, which are suitable for some tribological applications. We describe in detail on surface and interface analysis, residual stress measurements, assessment adhesion strength and tribological performance of diamond coated WC-Co and steel substrates using various characterization techniques. We conclude by highlighting the current progress and future perspectives of diamond coatings on these substrates for tribological applications.

  13. Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates

    Science.gov (United States)

    Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad

    2015-02-03

    The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

  14. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hamadou, L. [Laboratoire de Materiaux, Electrochimie et Corrosion, Universite Mouloud MAMMERI de, Tizi-Ouzou, B.P. 17 (15000) (Algeria)]. E-mail: lamhama@yahoo.fr; Kadri, A. [Laboratoire de Materiaux, Electrochimie et Corrosion, Universite Mouloud MAMMERI de, Tizi-Ouzou, B.P. 17 (15000) (Algeria); Benbrahim, N. [Laboratoire de Materiaux, Electrochimie et Corrosion, Universite Mouloud MAMMERI de, Tizi-Ouzou, B.P. 17 (15000) (Algeria)

    2005-12-15

    The comprehension of passivity and its protective character against corrosion is closely connected with the electronic properties of passive films. Passive films formed anodically on carbon steel in borate/boric acid solution, pH 9.2, have been characterised by electrochemical impedance spectroscopy (EIS). Mott-Schottky plots and impedance measurements were made on films formed at different potentials and times. The investigation allowed the determination of the semiconductive properties of the films. The results of the capacitance response indicate that the passive films behave like highly doped n-type semiconductors, showing that the passive film properties are dominated by iron. The value of donors density (N {sub D}) for the passive film is of the order of 10{sup 21} cm{sup -3} and decreases with increasing formation time and potential, indicating that defects decrease with increasing film thickness. Based on the information about the physical phenomena, an equivalent circuit is proposed to fit the experimental data, leading to determination of anodic film capacitance and film resistance.

  15. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2016-01-01

    at a strain of 5.4; the dislocations are stored as threading dislocations, as dislocation tangles and as cell boundaries with low to medium misorientation angles. An analysis of the evolution of microstructure and strength with increasing strain suggests that dislocation-based plasticity is a dominating...... mechanism in the wire and three strengthening mechanisms are applied: boundary strengthening, dislocation strengthening and solid solution hardening with their relative contributions to the total flow stress which change as the strain is increased. Based on linear additivity good correspondence between...

  16. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  17. The influence of adding corrosion inhibitor and pH on the electrochemical properties of hybrid films applied to galvanised steel

    Directory of Open Access Journals (Sweden)

    Sandra Raquel Kunst

    2012-10-01

    Full Text Available This study was aimed at coating galvanised steel with a hybrid film obtained from a sol consisting of silane precursors 3 - (trimetoxisil-ilpropil methacrylate (TMSPMA and tetraethoxysilane (TEOS. The pH of the hydrolysed-silane solution was 1 and 3. The influence of adding corrosion inhibitor (i.e. 0.01M cerium nitrate was evaluated for all samples. The hybrid films were deposited by dip-coating. The film was characterised scanning electron microscopy (SEM, profilometry, contact angle measurement, potentiodynamic polarisation and electrochemical impedance spectroscopy. The results showed that solution pH influenced hybrid film formation and final surface properties. Additionally, cerium nitrate as corrosion inhibitor addition enhances corrosion resistance of the films.

  18. 残膜回收机械化技术在和静县的示范推广应用%Demonstration and application of plastic film recovery mechanization technology in Hejing County

    Institute of Scientific and Technical Information of China (English)

    冉亚平

    2013-01-01

      残膜对农业生产和生态环境造成了严重的污染,实施机械化回收残膜技术,减少“白色污染”,提出了残膜回收机在作业中存在的问题及措施建议。%  Plastic film for agricultural production and ecological environment caused serious pollution, the implemen-tation of mechanized recycling plastic film technology to reduce "white pollution", plastic film recycling machine existing problems in the job and measures recommended.

  19. Comparison of surface emissions and subsurface distribution of cis- and trans-1,3-dichloropropene and chloropicrin in sandy field beds covered with four different plastic films.

    Science.gov (United States)

    Ou, Li-Tse; Thomas, John E; Allen, L Hartwell; Vu, Joseph C; Dickson, Donald W

    2008-06-01

    The purpose of this study was to conduct a field study at a Florida field site on surface emissions and subsurface distribution of cis-and trans-1,3-dichloropropene (1,3-D) and chloropicrin (CP) in raised beds injected with Telone C35 with four replications. A total of 16 beds were applied with Telone C35 by chisel injection and covered with four different plastic films, 4 beds for each film. Each bed was installed with five 20-cm long soil pore air probes and a surface air collection pan at arbitrarily locations along the length of each bed for sampling soil pore air and surface air, respectively, for analysis of the three biologically active compounds, cis- and trans-1,3-D and CP. We found that average concentrations of the three compounds at 20-cm depth among the beds covered with four different plastic films generally were not statistically different. Among the four beds covered with the same plastic film, average concentrations of the three compounds were statistically different only in the four metallic PE covered beds at 5 and 24 hours after injection. Volatilization rates of the three compounds among the beds covered with four different plastic films, with the exception of CP at 48 hours after injection, were not statistically different. It appeared that initial upward diffusion and volatilization flux were influenced by solar radiation. Initial subsurface concentrations of the three compounds and volatilization flux, especially cis-1,3-D, were greater in the beds on the east side of the field than that in the beds on the west side of the field. Whether or not difference in initial subsurface concentrations of the compounds between east side beds and west side beds may influence fumigant efficacy remains to be determined.

  20. Design of Width Automatic Control System of Triple Extrusion Plastic Film%三层共挤农膜幅宽自动控制系统设计

    Institute of Scientific and Technical Information of China (English)

    苗汇静; 任益芳; 宋吉江; 徐秀美

    2012-01-01

    In order to improve the level of automation of large blow molding equipment, and to manufacture the production of Large width plastic film, the hreadth automatic control system of triple extrusion plastic film has been designed. The system uses a master-slave MCU control, mainly consisted of the ultrasonic distance measurement device and fan control devices. Ultrasonic sensors are used to measure the distance from the ultrasonic probe to the plastic bubble film. And the MCU is used to calculate the width of plastic film by programming. Then, by comparing the width reached by the MCU with the standard width, it controls the fan speed. By adjusting the speed of into fan and exhaust fan, achieve the purpose of controlling the width of plastic film. Using the method of ultrasonic cycle reflection measures the ultrasonic distance. Using humanoid intelligent control algorithm adjusts the fan speed. There are many control modes, for Plastic film of 10~ 20m in width. It achieves real-time control and precise width control. The test results show that the system control precision is high.%为提高大型吹塑设备自动化水平,实现大型幅宽农膜生产制备,设计了三层共挤农膜幅宽自动控制系统;该系统采用主从单片机控制,主要由超声波测距装置和风机控制装置组成;用超声波传感器测出超声探头至泡膜的距离,通过单片机编程算出农膜幅宽,和标准幅宽比较,去控制风机转速;通过调节进风机和排风机的转速,达到控制农膜幅宽的目的;超声波测距采用超声波循环反射测量法,风机调速采用仿人智能控制算法,将控制分为多个模态,以实现l0~20m农膜幅宽的实时控制和精确控制;试验结果表明,控制精度较高.

  1. The passive oxide films growth on 316L stainless steel in borate buffer solution measured by real-time spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haisong; Wang, Lu; Sun, Dongbai [National Center for Materials Service Safety (NCMS), University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongying, E-mail: hyyu@ustb.edu.cn [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-10-01

    Highlights: • The optical properties of passive oxide films on 316L stainless steel were studied. • The thickness of the oxide films (1.5–2.6 nm) increased linearly with the potentials. • The growth of passive film followed high electric field ion conduction model. • Selective solubility of oxide induced compositional change of passive film. - Abstract: Passive film growth on 316L stainless steel was investigated in borate buffer electrolyte (pH = 9.1) by real-time spectroscopic ellipsometry (SE) and the composition was estimated by X-ray photoelectron spectroscopy (XPS). Anodic passivation of 316L SS was carried out in the potential range from 0 V{sub SCE} to 0.9 V{sub SCE}, after potentiostatic polarization for 1800s, the current density decayed from 10{sup −2} A cm{sup −2} to 10{sup −6} A cm{sup −2}. The passive film thickness was simulated from Frenel and Drude reflection equations, the average complex refractive index was assumed to be N = 2.3 − j0.445. The estimated thickness increased linearly with potential from 1.5 nm at 0 V to 2.6 nm at 0.8 V. The growth of passive film followed high electric field ion conduction model. The passive film mainly contained the oxide/hydroxide of iron and chromium. The selective solubility of oxide in passive film explained the change of iron and chromium content at different potentials. Few nickel and molybdenum also contributed to the passive film with a constant content.

  2. The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale

    Directory of Open Access Journals (Sweden)

    Huang Yongli

    2011-01-01

    Full Text Available Abstract Nanoindentation creep and loading rate change tests were employed to examine the rate sensitivity (m and hardness of nanocrystalline tetragonal Ta films. Experimental results suggested that the m increased with the decrease of feature scale, such as grain size and indent depth. The magnitude of m is much less than the corresponding grain boundary (GB sliding deformation with m of 0.5. Hardness softening behavior was observed for smaller grain size, which supports the GB sliding mechanism. The rate-controlling deformation was interpreted by the GB-mediated processes involving atomic diffusion and the generation of dislocation at GB.

  3. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  4. Progress in the development of gas-impregnated lapped plastic film insulation

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E B; McNerney, A J; Muller, A C; Rigby, S J

    1977-01-01

    A flexible superconducting power transmission cable is under development. The electrical insulation consists of lapped polymeric film tapes impregnated with supercritical helium. Ways of satisfying the many constraints on the material were described. Although the cable is intended for low-temperature operation good electrical and mechanical characteristics are needed at room-temperature. Results are given for both small-sample tests and a model cable fabricated commercially. The results are compared with those obtained by other workers and the design of the next test cable is given.

  5. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel.

    Science.gov (United States)

    Husain, Esam; Narayanan, Tharangattu N; Taha-Tijerina, Jose Jaime; Vinod, Soumya; Vajtai, Robert; Ajayan, Pulickel M

    2013-05-22

    Recently, two-dimensional, layered materials such as graphene and hexagonal boron nitride (h-BN) have been identified as interesting materials for a range of applications. Here, we demonstrate the corrosion prevention applications of h-BN in marine coatings. The performance of h-BN/polymer hybrid coatings, applied on stainless steel, were evaluated using electrochemical techniques in simulated seawater media [marine media]. h-BN/polymer coating shows an efficient corrosion protection with a low corrosion current density of 5.14 × 10(-8) A/cm(2) and corrosion rate of 1.19 × 10(-3) mm/year and it is attributed to the hydrofobic, inert and dielectric nature of boron nitride. The results indicated that the stainless steel with coatings exhibited improved corrosion resistance. Electrochemical impedance spectroscopy and potentiodynamic analysis were used to propose a mechanism for the increased corrosion resistance of h-BN coatings.

  6. Effect of compound plasticizer on zein films%复合增塑剂对玉米醇溶蛋白膜性能的影响

    Institute of Scientific and Technical Information of China (English)

    马立娜; 李桂娟; 李娜娜; 秦立福; 康海杨

    2012-01-01

    以木糖醇和甘油为复合增塑剂制备出木糖醇/甘油/玉米醇溶蛋白膜.通过TGA、扫描电镜、红外光谱及电子织物强力机研究玉米醇溶蛋白膜的热性能、微观结构及力学性能.结果表明:在160℃之前膜性能稳定,与纯玉米醇溶蛋白膜相比,添加复合增塑剂后玉米醇溶蛋白膜表面产生了多孔结构,随木糖醇含量增加孔洞结构有增大的趋势,抗拉强度略有下降,伸长率有所提高.%Xylitol/glycerol/zein film were produced with xylitol/glyc-erol as a compound plasticizer. Microstructure,mechanical properties and thermal stability of xylitol/glycerol/zein film were studied. The thermal properties of xylitol/zein film were stable below 160℃,there was holes in zein film which contained xylitol and glycerol. the tensile strength of xylitol/glycerot/zein film is lower than the tensile strength of pure zein film, but the elongation at break of the xylitol/ glycerol/zein film was higher than the elongation at break of pure zein film.

  7. Preparation of Crosslinked Amphiphilic Silver Nanogel as Thin Film Corrosion Protective Layer for Steel

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-07-01

    Full Text Available Monodisperse silver nanoparticles were synthesized by a new developed method via reaction of AgNO3 and oleic acid with the addition of a trace amount of Fe3+ ions. Emulsion polymerization at room temperature was employed to prepare a core-shell silver nanoparticle with controllable particle size. N,N'-methylenebisacrylamide (MBA and potassium peroxydisulfate (KPS were used as a crosslinker, and as redox initiator system, respectively for crosslinking polymerization. The structure and morphology of the silver nanogels were characterized by Fourier transform infrared spectroscopy (FTIR, transmission and scanning electron microscopy (TEM and SEM. The effectiveness of the synthesized compounds as corrosion inhibitors for steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. Monolayers of silver nanoparticle were self-assembled on the fresh active surface of the steel electrode and have been tested as a corrosion inhibitor for steel in 1 M HCl solution. The results of polarization measurements showed that nanogel particles act as a mixed type inhibitor.

  8. Preparation of crosslinked amphiphilic silver nanogel as thin film corrosion protective layer for steel.

    Science.gov (United States)

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Ezzat, Abdelrahman O

    2014-07-17

    Monodisperse silver nanoparticles were synthesized by a new developed method via reaction of AgNO3 and oleic acid with the addition of a trace amount of Fe3+ ions. Emulsion polymerization at room temperature was employed to prepare a core-shell silver nanoparticle with controllable particle size. N,N'-methylenebisacrylamide (MBA) and potassium peroxydisulfate (KPS) were used as a crosslinker, and as redox initiator system, respectively for crosslinking polymerization. The structure and morphology of the silver nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), transmission and scanning electron microscopy (TEM and SEM). The effectiveness of the synthesized compounds as corrosion inhibitors for steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Monolayers of silver nanoparticle were self-assembled on the fresh active surface of the steel electrode and have been tested as a corrosion inhibitor for steel in 1 M HCl solution. The results of polarization measurements showed that nanogel particles act as a mixed type inhibitor.

  9. Quantitative characterization of the interfacial adhesion of Ni thin film on steel substrate: A compression-induced buckling delamination test

    Science.gov (United States)

    Zhu, W.; Zhou, Y. C.; Guo, J. W.; Yang, L.; Lu, C.

    2015-01-01

    A compression-induced buckling delamination test is employed to quantitatively characterize the interfacial adhesion of Ni thin film on steel substrate. It is shown that buckles initiate from edge flaws and surface morphologies exhibit symmetric, half-penny shapes. Taking the elastoplasticity of film and substrate into account, a three-dimensional finite element model for an edge flaw with the finite size is established to simulate the evolution of energy release rates and phase angles in the process of interfacial buckling-driven delamination. The results show that delamination propagates along both the straight side and curved front. The mode II delamination plays a dominant role in the process with a straight side whilst the curved front experiences almost the pure mode I. Based on the results of finite element analysis, a numerical model is developed to evaluate the interfacial energy release rate, which is in the range of 250-315 J/m2 with the corresponding phase angle from -41° to -66°. These results are in agreement with the available values determined by other testing methods, which confirms the effectiveness of the numerical model.

  10. STUDY CONCERNING THE INFLUENCE OF CERTAIN HYDROPHILIC AUXILIARIES ON THE PROPERTIES OF THE PLASTICIZED POLYVINYL CHLORIDE POROUS FILMS Part II-HYGIENIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    BĂLĂU MÎNDRU Tudorel

    2015-05-01

    Full Text Available The purpose of this paper was to obtain certain PVC films with improved hygienic properties, with applications both in the artificial leather industry and in other domains. This was done by introducing certain hydrophilic auxiliaries with free chemical functions into the chemical structure of the PVC films, such as: collagen hydrolysates (CH, hydroxyl-terminated polydimethylsiloxane (HTPDMS and nonylphenol ethoxylate (NPE. The use of these hydrophilic auxiliaries combined with the action of the high frequency electric fields (H.F.E.F. allows the attainment of cellular structures where the walls of the cells obtained from the expanding process display an enhanced humidity absorption. The collagen hydrolysates used to obtain the plasticized PVC porous films was obtained by electrolytic hydrolysis starting from Chamois leather powder waste resulting from buffing operation, according to a methodology described in a previous paper. The first part of this study was concerned with the influence of the addition of hydrophilic agents upon the moisture sorption of the plasticized PVC porous films. In this paper, there was investigated the water vapour and air permeability as well as the water vapour absorption of the porous films expanded in the H.F.E.F. in correlation with the nature and the recipe variant of the hydrophilic auxiliaries. The results highlighted the fact that the use of certain combinations of hydrophilic agents led to obtaining materials with adequate hygienic properties.

  11. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel

    National Research Council Canada - National Science Library

    Gund, Girish S; Dubal, Deepak P; Chodankar, Nilesh R; Cho, Jun Y; Gomez-Romero, Pedro; Park, Chan; Lokhande, Chandrakant D

    2015-01-01

    ...) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet...

  12. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  13. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    Science.gov (United States)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  14. Recent developments of ion beam induced luminescence: radiation hardness study of thin film plastic scintillators

    Science.gov (United States)

    Quaranta, Alberto

    2005-10-01

    Ion beam induced luminescence (IBIL) measurements have been performed on thin film scintillators based on polyvinyltoluene (PVT) and 6FDA-DAD and BPDA-3F polyimides with H+ (1.85 MeV) and He+ (1.8-2.2 MeV) ion beams. The radiation hardness of the undoped polymers has been verified to depend mainly on the deposited energy density, polyimides exhibiting a higher resistance with respect to PVT. In PVT a new fluorescence band, attributed to the radical precursors of the network crosslinking, has been observed. The efficiency of doped polymers degradates with a higher rate, depending on the dye intrinsic lability. At high radiation fluences, the relative efficiency to NE102 of doped polyimides scintillators increases owing to the intrinsic host improved resistance.

  15. Drying Mechanisms in Plasticized Latex Films: Role of Horizontal Drying Fronts.

    Science.gov (United States)

    Divry, V; Gromer, A; Nassar, M; Lambour, C; Collin, D; Holl, Y

    2016-07-14

    This article presents studies on the drying kinetics of latexes with particles made progressively softer by adding increasing amounts of a plasticizer, in relation to speeds of horizontal drying fronts and particle deformation mechanisms. Global drying rates were measured by gravimetry, and speeds of the horizontal fronts were recorded using a video camera and image processing. Particle deformation mechanisms were inferred using the deformation map established by Routh and Russel (RR). This required precise measurements of the rheological properties of the polymers using a piezorheometer. The results show that latexes with softer particles dry slowly, but in our systems, this is not due to skin formation. A correlation between global drying rates and speeds of horizontal fronts could be established and interpreted in terms of the evolution of mass transfer coefficients of water in different areas of the drying system. The speeds of the horizontal drying fronts were compared with the RR model. A remarkable qualitative agreement of the curve shapes was observed; however, the fit could not be considered good. These results call for further research efforts in modeling and simulation.

  16. Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Won; Lee, Jung Min [Korea Institute of Industrial Technology, Jinju (Korea, Republic of); Joun, Man Soo [Gyeongsang National University, Jinju (Korea, Republic of); Kim, Dong Hwan [International University of Korea, Jinju (Korea, Republic of)

    2016-07-15

    During a galvannealed sheet metal forming, the failures of coating layers (powdering, flaking and cracking) frequently affect the strain state of sheets and deteriorate the frictional characteristic between sheets and tools. Two FE-models in this study were suggested to investigate the effects of the mechanical behavior of coating layers on the formability and friction of the coated steel sheets in FE analysis; the first is one-layer model to express the coated sheet as one stress-strain curve and the second is a multiple-layer model which is composed of substrates and coating layers, separately. First, the frictional properties and the formability of the coated sheets were experimentally investigated using a cup deep-drawing trial. After, the drawing process was simulated by FE analysis of the two models. In the multiplelayer model, the mechanical behavior of the coating is defined as a stress-strain curve which was determined using the nanoindentation test of the coating, its FE analysis and artificial neural network method. The result showed that the multiple-layer model provides more accuracy predictions of drawing loads than the one-layer model in the FE analysis, compared to the actual cup drawing test.

  17. Effects of plastic-film mulching and nitrogen application on forage-oriented maize in the agriculture-animal husbandry ecotone in North China

    Institute of Scientific and Technical Information of China (English)

    Xiong DU; Xiuju BIAN; Weihong ZHANG; Fucun YANG; Lifeng ZHANG

    2008-01-01

    To counter the actual problems of forage shortage and low quality existing in the agriculture-animal husbandry ecotone in North China,a research was conducted to study the effects of plastic-film mulching and nitrogen application on the production of forageoriented maize with the aim of producing water-saving forage with high-yield and good quality.Field experiments combined with laboratory experimental estimation and analysis was adopted.Plastic-film mulching increased the dry biomass of forage-oriented maize by 23.8% with effectively improving the maize's nitrogen absorption so that the apparent utilization ratio and output-input ratio of nitrogen were enhanced.The content of crude protein in maize plant was increased and thus,forage nutritive quality was improved.Plastic-film mulching remodeled the maize field water consumption scheduling pattern and increased the water use efficiency by over 10%.Nitrogen application to forage-oriented maize co-improved the biomass and the nutritive quality with the nutritive matter (percentage and yield) several times of the biomass.Nitrogen application increased maize biomass production by 36.1%-39.5% and it increased the contents of crude protein and crude fat in maize plant by 109% and 145%,respectively.The yields of the two nutritive matters increased by 160% and 210%.Nitrogen application at the were considered as the most proper rates to guarantee high yield and good quality of forage-oriented maize and were the rates to keep the available nitrogen balanced in the soil.Plastic-film mulching and nitrogen fertilizer application to forage-oriented maize was an effective way of producing forage with high yield and good quality,relieving the shortage of animal forage and acceleratingecological recovery and economic development in this ecotone in North China.

  18. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau

    Science.gov (United States)

    Lin, Wen; Liu, Wenzhao; Xue, Qingwu

    2016-12-01

    To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage.

  19. [Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic film mulching cultivation].

    Science.gov (United States)

    Zhang, Yi; Lü, Shi-Hua; Ma, Jing; Xu, Hua; Yuan, Jiang; Dong, Yu-Jiao

    2014-03-01

    A field experiment was conducted to assess the effect of controlled release fertilizer on N2O emission in paddy field under plastic film mulching cultivation (PM) with water-saving irrigation. Results showed that in the rice growing season, cumulative N2O emissions from the plots applied with urea (PM+U) and with controlled release fertilizer (PM+CRF) were (38.2 +/- 4.4) and (21.5 +/- 5.2) mg N x m(-2), respectively. The N2O emission factors were 0.25% and 0.14% in the treatments PM+U and PM+CRF, respectively. The controlled release fertilizer decreased the total N2O emission by 43.6% compared with urea, of which 49.6% was reduced before the drying period. It also reduced the peak of N2O emission by 52.6%. However, it did not affect soil microbial biomass N and soil NH(4+)-N content at any rice growing stage, and grain yield either. No significant correlation was observed between N2O flux and soil Eh or soil temperature at the depth of 5 cm.

  20. Yield Potential of Soil Water and Its Sustainability for Dryland Spring Maize with Plastic Film Mulch on the Loess Plateau

    Science.gov (United States)

    Lin, Wen; Liu, Wenzhao

    2016-04-01

    Plastic film mulch(PM) is an agronomic measure widely used in the dryland spring maize production system on the Loess Plateau of China. The measure can greatly increase yield of dryland maize due to its significant effects on soil water conservation. Few researches have been done to investigate how the yield potential is impacted by PM. The yield-water use (ET) boundary equation raised by French and Schultz provides a simple approach to calculate crop water limited yield potential and gives a benchmark for farmers in managing their crops. However, method used in building the equation is somewhat arbitrary and has no strict principle, which leads to the uncertainty of equation when it is applied. Though using PM can increase crop yield, it increases soil temperature, promotes crop growth and increases the water transpired by crop, which further leads to high water consumption as compared with crops without PM. This means that PM may lead to the overuse of soil water and hence is unsustainable in a long run. This research is mainly focused on the yield potential and sustainability of PMing for spring maize on the Loess Plateau. A principle that may be utilized by any other researchers was proposed based on French & Schultz's boundary equation and on part of quantile regression theory. We used a data set built by collecting the experimental data from published papers and analyzed the water-limited yield potential of spring maize on the Loess Plateau. Moreover, maize yield and soil water dynamics under PM were investigated by a long-term site field experiment. Results show that on the Loess Plateau, the water limited yield potential can be calculated using the boundary equation y = 60.5×(x - 50), with a platform yield of 15954 kghm-2 after the water use exceeds 314 mm. Without PMing, the water limited yield potential can be estimated by the boundary equation y = 47.5×(x - 62.3) , with a platform yield of 12840 kghm-2 when the water use exceeds 325 mm, which

  1. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China.

    Science.gov (United States)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-01-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  2. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China

    Science.gov (United States)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-01-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions. PMID:27329934

  3. Studies of Composition and Structure of CO2 Corrosion Film of X56 Steel in the Medium of CO2 and Salt Water

    Institute of Scientific and Technical Information of China (English)

    LIChun-fu; DAIJia-lin; WANGBing; ZHANGYing; ZHANGXian-ju; LUDong-li; LUOPing-ya

    2004-01-01

    The X56 steel samples was corroded in the medium of salt water solution at the conditions of CO2 partial pressure Pco2 0.5 to 2.0 MPa. temperature 80℃ and flow rate 1.4m/s. Corrosion weigh loss, composition and strutcture, morphology and phase of corrosion films of the samples were investigate by SEM, EDS, XRD and XPS. The results indicated that the corrosion degree was accelerated with increasing Pco2. The intense localised corrosion occurred on the surface of samples. The corrosion films mainly comprised of FeCO3 and complex phase products (Fe. Ca,...)CO3. There exists serious pitting on the metal substrates under the corrosion film. The theoretic and experimental analyses indicate this is caused by existed micropores or micro holes in films, which have the function of mass transportation.

  4. Studies of Composition and Structure of CO2 Corrosion Film of X56 Steel in the Medium of CO2 and Salt Water

    Institute of Scientific and Technical Information of China (English)

    LI Chun-fu; DAI Jia-lin; WANG Bing; ZHANG Ying; ZHANG Xian-ju; LU Dong-li; LUO Ping-ya

    2004-01-01

    The X56 steel samples was corroded in the medium of salt water solution at the conditions of CO2 partial pressure PCo2 0.5 to 2.0 MPa, temperature 80 ℃ and flow rate 1.4m/s. Corrosion weigh loss, composition and structure, morphology and phase of corrosion films of the samples were investigate by SEM, EDS, XRD and XPS. The results indicated that the corrosion degree was accelerated with increasing PCo2. The intense localised corrosion occurred on the surface of samples.The corrosion films mainly comprised of FeCO3 and complex phase products (Fe, Ca....)CO3. There exists serious pitting on the metal substrates under the corrosion film. The theoretic and experimental analyses indicate this is caused by existed micropores or micro holes in films, which have the function of mass transportation.

  5. Effect of the final annealing of cold rolled stainless steels sheets on the electronic properties and pit nucleation resistance of passive films

    Energy Technology Data Exchange (ETDEWEB)

    Amri, J.; Souier, T. [Institut National Polytechnique de Grenoble, CNRS/ SIMAP 1130, rue de la piscine BP 75, 38402 Saint Martin d' Heres Cedex (France); Malki, B. [Institut National Polytechnique de Grenoble, CNRS/ SIMAP 1130, rue de la piscine BP 75, 38402 Saint Martin d' Heres Cedex (France)], E-mail: Brahim.Malki@ltpcm.inpg.fr; Baroux, B. [Institut National Polytechnique de Grenoble, CNRS/ SIMAP 1130, rue de la piscine BP 75, 38402 Saint Martin d' Heres Cedex (France)

    2008-02-15

    Semiconducting properties of passive films formed on AISI 304 stainless steel grade were investigated by capacitances measurements in chloride containing aqueous solutions for different surface finishes: BA (bright annealing in hydrogen containing atmospheres) and 2B (standard annealing in oxidising atmospheres followed by pickling in acid, then water rinsing). Mott-Schottky analysis shows that for high enough electrode potential, and whatever the surface finish, the films behave like n-type semiconductors. 2B passive film appears to be more donor-doped than BA one and the density of donor states increases with chloride concentration. The electron donor levels are assumed to be generated by negatively charged cations vacancies produced by the chloride ions reaction with the outer passive film. This reaction looks easier for 2B than BA condition, which explains why BA resists better than 2B to pit nucleation.

  6. Microstructural characterizations and hardness evaluation of d.c. reactive magnetron sputtered CrN thin films on stainless steel substrate

    Indian Academy of Sciences (India)

    Hetal N Shah; Vipin Chawla; R Jayaganthan; Davinder Kaur

    2010-04-01

    Chromium nitride (CrN) thin films were deposited on stainless steel (grade: SA304) substrate by using d.c. reactive magnetron sputtering and the influence of process parameters such as substrate temperature, pressure, and power on their microstructural characteristics were investigated in the present work. The CrN films were characterized with X-ray diffraction (XRD) to reveal the formation of different phases and its texture. The films showed the (111) preferred orientation but its intensity decreased, while intensity of peak (200) increased with increase in working pressure. The mixture of CrN and Cr2N phases were identified at low working pressure and temperature. The preferred orientations of CrN thin films are strongly influenced by sputtering conditions, thickness, and the induced residual stress in the films as observed in the present work. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology and surface topography of thin films, respectively. The study shows that the hardness of films strongly depends on the grain size and the film density, which are influenced by combined effect of the working pressure, temperature, and power of the sputtering process.

  7. 我国残膜回收机研究现状及建议%Present Situation of Research on Plastic Film Residue Collector in China and Some Suggestions

    Institute of Scientific and Technical Information of China (English)

    李明洋; 马少辉

    2014-01-01

    Plastic film covers are important in the Chinese agricultural production .The coverage area has reached over ten millions hectares .Plastic film covers application greatly improves the production of crops , With the increase of plastic film application amounts , the residue of mulching plastic film in the field become more and more .These residual film has caused serious white pollution on cultivated land and villages .In order to recover the remnant film better and reduce the white pollution .This paper describes the present situation of plastic film residue collector in China and the working prin -ciple of several typical plastic film residue collector .At last put forward some suggestions on the future development of plastic film residue collector .%地膜已成为我国农业生产中广泛应用的物质材料之一,我国应用地膜技术的土地多达1000万 hm2多。地膜的应用大大提高了农作物的产量,但是随着废膜越来越多的残留,对耕地、村庄造成了严重的白色污染。为此,阐述了我国残膜回收机研究的现状和几种典型残膜回收机的工作原理,并对未来残膜回收机的发展提出了建议。

  8. Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Högström, Jonas, E-mail: jhogstrom@gmail.com; Fredriksson, Wendy, E-mail: wendy.fredriksson@kemi.uu.se; Edstrom, Kristina, E-mail: kristina.edstrom@kemi.uu.se; Björefors, Fredrik, E-mail: fredrik.bjorefors@kemi.uu.se; Nyholm, Leif, E-mail: leif.nyholm@kemi.uu.se; Olsson, Claes-Olof A., E-mail: drclabbe@kth.se

    2013-11-01

    An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H{sub 2}SO{sub 4} and acetic acid diluted with 0.02 M Na{sub 2}B{sub 4}O{sub 7} · 10H{sub 2}O and 1 M H{sub 2}O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.

  9. Self-healing effect of ceria electrodeposited thin films on stainless steel in aggressive 0.5 mol/L NaCl aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Desislava Guergova; Emilia Stoyanova; Dimitar Stoychev; Ivalina Avramova; Plamen Stefanov

    2015-01-01

    The self-healing effect of electrochemically deposited CeO2-Ce2O3 films on stainless steel OC404 (SS) in 0.5 mol/L NaCl solution was studied. It was established that the corrosion potential of the steel, after covering it with CeO2-Ce2O3 layer and thermal treatment (i.e. potential of the system CeO2-Ce2O3/SSt.t.), was shifted sharply to a considerably more positive value, while the corro-sion current was reduced noticeably. The X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and scan-ning electron microscopy (SEM) analyses on the observed scratched surface area of the system CeO2-Ce2O3/SSt.t., after exposure of investigated specimens to 0.5 mol/L NaCl corrosion media, showed partial accumulation of ceria, as well as remarkable increase in the concentrations of oxides of Al, Cr and Fe, on the mechanically revealed steel surface. On the basis of the obtained results one could conclude that the secondary passive oxide/hydroxide films, formed after a definite time interval of exposure to corrosion media, acted as barriers, hindering the corrosion processes in active zones. A hypothesis was put forward about the mechanism of self-repairing oxide layers on the steel surface and their corrosion protection effect respectively.

  10. Note: Large area deposition of Rh single and Rh/W/Cu multilayer thin films on stainless steel substrate by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A. T. T.; Khare, Alika, E-mail: alika@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2014-04-15

    Mirror like thin films of single layer Rh and multilayer Rh/W/Cu are deposited on highly polished 50 mm diameter stainless steel substrate by Pulsed Laser Deposition (PLD) technique for first mirror application in fusion reactors. For this, the conventional PLD technique has been modified by incorporating substrate rastering stage for large area deposition via PLD. Process optimization to achieve uniformity of deposition as estimated from fringe visibility and thickness is also discussed.

  11. Effect of Precursor Microstructure on Retained Austenite and Mechanical Property of Low Carbon Steels with IQ&P Treatments

    Directory of Open Access Journals (Sweden)

    CHEN Lian-sheng

    2017-02-01

    Full Text Available The microstructure, retained austenite and mechanical property of low-carbon steels with different precursor microstructures were studied by means of intercritical reheating-quenching and partitioning (IQ&P processes. The results show that the structure of IQ&P-Ⅰ multiphase steel with precursor ferrite + pearlite (F+P is blocky ferrite, martensite (M. The blocky retained austenite(RA of IQ&P-Ⅰ multiphase steel exists in the boundary of ferrite and martensite and film-like retained austenite distributes around the lath martensite as the shape of thin slice. The transformation induced plastic effect of IQ&P-Ⅰ multiphase steel with less content of retained austenite is unapparent. The tensile strength of IQ&P-Ⅰ multiphase steel reaches 957 MPa, but the tensile elongation is only 20%, and the production of strength and elongation is 19905.6 MPa·%. The structure of IQ&P-Ⅱ multiphase steel with precursor martensite is needle or lath grey-black ferrite and martensite. The fine needle like martensite is distributed evenly on the ferrite matrix. The film-like retained austenite is only distributed on the ferrite matrix. The content of retained austenite of IQ&P-Ⅱ multiphase steel reaches 13.2% with more obvious TRIP effect and higher stability. The production of strength and elongation of IQ&P-Ⅱ multiphase steel is 21560 MPa·% with good combination of strength and plasticity.

  12. Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement

    Directory of Open Access Journals (Sweden)

    Mohammadreza Foruzanmehr

    2014-04-01

    Full Text Available   Objective(s: Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis.   Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were deposited on nano-scale electro-polished stainless steel 316L with 1 to 5 nano-sized layers. Surface morphology and structure of the film were studied with X-ray diffraction and atomic force microscopy. Blood compatibility was also determined by measuring the platelet activation (CD62P expression, platelet adhesion (Scanning Electron Microscopy, and the blood clotting time on these samples. Results: The films were compact and smooth and existed mainly in the form of anatase. By increasing the number of TiO2 thin layer, clotting time greatly extended, and the population of activated platelet and P-selectine expression changed according to the surface characteristics of each layer. Conclusion: The findings revealed that stainless steel 316L coated with nano-structured TiO2 layer improved blood compatibility, in terms of both blood platelet activity and coagulation cascade, which can decrease the thrombogenicity of blood contacting devices which were made from stainless steel.

  13. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    Energy Technology Data Exchange (ETDEWEB)

    Mustatea, Gabriel [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Vidal, Loïc [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France); Calinescu, Ioan [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Dobre, Alina; Ionescu, Mariana [National Research and Development Institute for Food Bioresources – IBA Bucharest (Romania); Balan, Lavinia, E-mail: lavinia.balan@uha.fr [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France)

    2015-01-15

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3–11 nm) were generated from hydroalcoholic AgNO{sub 3} solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  14. A study on corrosion resistant graphene films on low alloy steel

    Directory of Open Access Journals (Sweden)

    A. S. Sai Pavan

    2016-04-01

    Full Text Available Abstract Graphene nanosheets were produced after synthesizing graphene oxide via Hummer’s method and a modified Hummer’s method. The obtained graphene after reduction was dispersed in 1-propanol to get a coating solution. Mild steel coupons were coated with the graphene solution via dip coating method. Corrosion studies were carried out at different environments like water (pH 6.0, HCl (0.1 N, NaCl (3.5 wt% and NaOH (1 M. Tafel analysis showed a reduction in the corrosion rate up to 99 % after three layer deposition with the graphene developed using the modified Hummer’s method. X-ray diffraction and Raman Spectroscopy confirmed the presence of graphene.

  15. A study on corrosion resistant graphene films on low alloy steel

    Science.gov (United States)

    Sai Pavan, A. S.; Ramanan, Sutapa Roy

    2016-11-01

    Graphene nanosheets were produced after synthesizing graphene oxide via Hummer's method and a modified Hummer's method. The obtained graphene after reduction was dispersed in 1-propanol to get a coating solution. Mild steel coupons were coated with the graphene solution via dip coating method. Corrosion studies were carried out at different environments like water (pH 6.0), HCl (0.1 N), NaCl (3.5 wt%) and NaOH (1 M). Tafel analysis showed a reduction in the corrosion rate up to 99 % after three layer deposition with the graphene developed using the modified Hummer's method. X-ray diffraction and Raman Spectroscopy confirmed the presence of graphene.

  16. Polar-axis-oriented crystal growth of tetragonal PZT films on stainless steel substrate using pseudo-perovskite nanosheet buffer layer

    Directory of Open Access Journals (Sweden)

    Yoshiki Minemura

    2015-07-01

    Full Text Available Lead zirconate titanate (PZT film with polar axis orientation was grown on a SUS 316L stainless steel substrate with the help of a Ca2Nb3O10 nanosheet (ns-CN layer that had a pseudo-perovskite-type crystal structure. The ns-CN buffer layer was supported on a platinized SUS 316L (Pt/SUS substrate, followed by chemical solution deposition (CSD of the PZT films with tetragonal symmetry (Zr/Ti =40/60. The PZT films consisting of c-domain, with [001]-axis orientation of the perovskite unit cell, were deposited on the ns-CN/Pt/SUS substrate owing to (i epitaxial lattice matching between the unit cell of PZT and substrate surface and (ii in-plane thermal stress applied to the PZT film during cooling-down step of CSD procedure. The c-domain-oriented PZT film on ns-CN/Pt/SUS substrate exhibited enhanced remanent polarization of approximately 52 μC/cm2 and lowered dielectric permittivity of approximately 230, which are superior to those of conventional PZT films with random crystal orientation and comparable to those of epitaxial PZT films grown on (100SrRuO3//(100SrTiO3 substrates.

  17. Effect of plastic film mulching on the grain filling and hormonal changes of maize under different irrigation conditions.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Plastic film mulching (PM is widely utilized for maize production in China. However, the effect of PM on the grain yield of crops has not been established, and the biochemical mechanism underlying the increase or decrease in grain yield under PM is not yet understood. Grain filling markedly affects the grain yield. The objective of this study was to investigate the effects of PM on maize grain filling under different irrigation levels and the relationship of such effects with hormonal changes. In the present study, PM was compared with traditional nonmulching management (TN under 220 mm, 270 mm and 320 mm irrigation amount, and the grain filling characters of the grains located in various parts of the ear and the hormonal changes in the grains were measured. The results indicated that at 220 mm irrigation, PM significantly increased the grain filling rate of the middle and basal grains and decreased the grain filling rate of the upper grains. At 270 mm irrigation, the PM significantly increased the grain filling rate of the all grains. At 320 mm irrigation, the PM only significantly increased the grain filling rate of the upper grains. The IAA, Z+ZR and ABA content in the grains was positively correlated with the grain weight and grain-filling rates; however, the ETH evolution rate of the grains was negatively correlated with the grain weight and grain-filling rates. These results show that the effect of PM on maize grain filling is related to the irrigation amount and that the grain position on the ear and the grain filling of the upper grains was more sensitive to PM and irrigation than were the other grains. In addition, the PM and irrigation regulated the balance of hormones rather than the content of individual hormones to affect the maize grain filling.

  18. Evolution of Surface Morphology and Chemistry in ZnO Thin Films and Steel Surfaces studied by Synchrotron X-ray Spectroscopy and Imaging

    Science.gov (United States)

    Jiang, Hua

    films after treatment, with platelet-shaped structures that are 100-200 nm wide by 1mum long. In addition, Zn heterogeneity, anisotropic structure and disordering were also observed in the aged Al-doped ZnO thin films using synchrotron x-ray characterization. X-ray diffraction and absorption spectroscopy indicate the formation of a zinc hydroxide in Al-doped films due to environmental aging. Utilizing advanced characterization methods, our studies provide information with unprecedented level of details and reveal the chemical and morphologically heterogeneous nature of degradation in ZnO films. Anti-corrosion coating is widely used on industrial steel products. While the effect of these coatings is proven to be positive, fundamental studies on the chemical evolution of the protected metal is lacking. Here, we conducted in situ x-ray spectroscopic experiment to observe the process of steel corrosion with and without the protective coating. X-ray fluorescence mapping was conducted to observe surface morphology and elemental distribution during redox process. X-ray absorption near-edge structure spectroscopy was performed to determine the oxidation states and chemical information of Fe. Steel without coating was corroded rapidly and homogeneously, within 1 hour. Steel with anti-corrosion Zr-based (Henkel Corporation) coating showed good resistivity to corrosive environment (5wt% NaCl solution). Only very slight local oxidation was observed after approximately 10 hours of treatment. Our study laid foundation for possibility to conduct in situ research on numerous materials under various environments.

  19. Preparation of porous TiO2/ZnO composite film and its photocathodic protection properties for 304 stainless steel

    Science.gov (United States)

    Xu, Hongmei; Liu, Wei; Cao, Lixin; Su, Ge; Duan, Ruijing

    2014-05-01

    TiO2/ZnO composite films with porous structure were prepared on the 304 stainless steel (304SS) by the sol-gel method and heating treatment. The crystalline phase and morphology of as-prepared TiO2/ZnO composite films were characterized systematically by X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet-visible (UV-vis) spectroscopy, respectively. The influences of Ti/Zn molar ratio and the annealing temperature on the photoelectric property of the samples have been investigated and their photocathodic protection performances for 304 stainless steel under dark and UV conditions have also been evaluated in 3.0% NaCl solution by the electrochemical measurements. The results indicate that porous TiO2/ZnO composite film has a great enhancement of the light absorption and photoelectric property under UV illumination. This can be ascribed to the mutual effect of TiO2/ZnO heterojunctions and the porous structures in the composite films, which provide a better photogenerated cathodic protection for 304SS.

  20. Effect of Relative Humidity on the Tribological Properties of Self-Lubricating H3BO3 Films Formed on the Surface of Steel Suitable for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    E. Hernández-Sanchez

    2015-01-01

    Full Text Available The effect of environmental humidity on the self-lubricating properties of a thin film of boric acid (H3BO3 was evaluated. H3BO4 films were successfully formed on the surface of AISI 316L steel. The study was conducted on AISI 316L steel because of its use in biomedical applications. First, the samples were exposed to boriding to generate a continuous surface layer of iron borides. The samples were then exposed to a short annealing process (SAP at 1023 K for 5 min and cooled to room temperature while controlling the relative humidity (RH. Five different RH conditions were tested. The purpose of SAP was to promote the formation of a surface film of boric acid from the boron atoms present in the iron boride layers. The presence of the boric acid at the surface of the borided layer was confirmed by Raman spectroscopy and X-ray diffraction (XRD. The self-lubricating capability of the films was demonstrated using the pin-on-disk technique. The influence of RH was reflected by the friction coefficient (FC, as the samples cooled with 20% of RH exhibited FC values of 0.16, whereas the samples cooled at 60% RH showed FC values of 0.02.