WorldWideScience

Sample records for plastic film soaks

  1. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Kohei [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Takahashi, Hideaki [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Naito, Hiroyoshi [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)]. E-mail: naito@pe.osakafu-u.ac.jp

    2006-06-19

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser ({lambda} = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers.

  2. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    International Nuclear Information System (INIS)

    Asada, Kohei; Takahashi, Hideaki; Naito, Hiroyoshi

    2006-01-01

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser (λ = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers

  3. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    Science.gov (United States)

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  4. Smart film actuators using biomass plastic

    International Nuclear Information System (INIS)

    Yoneyama, Satoshi; Tanaka, Nobuo

    2011-01-01

    This paper presents a novel smart film actuator based on the use of a biomass plastic as a piezoelectric film. Conventional polymeric smart sensors and actuators have been based upon synthetic piezoelectric polymer films such as PVDF. Almost all synthetic polymers are made from nearly depleted oil resources. In addition combustion of their materials releases carbon dioxide, thereby contributing to global warming. Thus at least two important sustainability principles are violated when employing synthetic polymers: avoiding depletable resources and avoiding ecosystem destruction. To overcome such problems, industrial plastic products made from synthetic polymers were developed to replace oil-based plastics with biomass plastics. This paper applies a biomass plastic with piezoelectricity such as poly-L-lactic acid (PLLA). As a result, PLLA film becomes a distributed parameter actuator per se, hence an environmentally conscious smart film actuator is developed. Firstly, this paper overviews the fundamental properties of piezoelectric synthetic polymers and biopolymers. The concept of carbon neutrality using biopolymers is mentioned. Then a two-dimensional modal actuator for exciting a specific structural mode is proposed. Furthermore, a biomass plastic-based cantilever beam with the capability of modal actuation is developed, the validity of the proposed smart film actuator based upon a biomass plastic being analytically as well as experimentally verified

  5. SYNTHESIS AND CHARACTERIZATION OF HDPE PLASTIC FILM FOR HERBICIDE CONTAINER USING FLY ASH CLASS F AS FILLER

    Directory of Open Access Journals (Sweden)

    Yatim Lailun Ni’mah

    2010-06-01

    Full Text Available High Density Polyethylene (HDPE plastic plays an important role in various applications, for example, it can be used as a container (bottle. Petrokimia Kayaku Company, a branch of Petrokimia Company of Gresik, produces herbicides using HDPE plastic bottles as their container. Those plastic bottles undergo degradation (kempot for certain period of time. The aim of this research is to characterize and to synthesize the HDPE plastic film with class F fly ash as filler. The results expected from this research are producing the plastic with a better properties and durability. This research was initiated by taking the sample of HDPE plastic bottle and herbicides (containing Gramakuat, on active material parakuat dichloride at Petrokimia Kayaku Company. Both the initial HDPE and the degraded bottles was analyzed their tensile strength and Fourier Transform-Infra Red (FTIR spectral. The next step was to synthesize the HDPE plastic film using class F fly ash as filler and a coupling agent. The filler concentrations were 0%, 5%, 10%, 15%, and 20wt %. The best result was 5% filler concentration with tensile strength of 27.7 lbs. This HDPE film was then subjected to degradation test using pyridine solution with various concentrations (1%, 3% and 5% for two weeks, thermal degradation at 100 °C for two weeks and chemical resistance by xylene with soak time variation of 24 h, 98 h and 168 h. The result of degradations test show that the value of tensile strength was decreased with the increase of filler consentration. The chemical resistance, however, was increased.   Keywords: degradation, filler, fly ash, HDPE, Herbicide

  6. PENGARUH PLASTICIZER PADA KARAKTERISTIK EDIBLE FILM DARI PEKTIN

    Directory of Open Access Journals (Sweden)

    Sang Kompiang Wirawan

    2012-05-01

    Full Text Available EFFECT OF PLASTICIzER ON THE PECTINIC EDIBLE FILM CHARACTERISTICS. The peel of Balinese Citrus contains high concentration of pectin which can be further processed to be edible films. The edible films can be utilized as a food coating which protects the food from any external mass transports such as humid, oxygen, and soluble material and can be served as a carrier to improve the mechanical-handing properties of the food. Edible films made of organic polymers tend to be brittle and thus addition of a plasticizer is required during the process. The work studies the effect of the type and the concentration of plasticizers on the tensile strength, the elongation of break, and the water vapor permeabilty of the edible film. Sorbitol and glycerol were used as plasticizers. Albedo from the citrus was hydrolized with hydrochloride acid 0.1 N to get pectinate substance. Pectin was then dissolved in water dan mixed with the plasticizers and CaCl2.2H2O solution. The concentrations of the plasticizers were 0, 0.03, 0.05, 0.1, and 0.15 mL/mL of solution. The results showed that increasing the concentration of plasticizers will decrease the tensile strength, but increase the elongation and film permeability. Sorbitol-plasticized films are more brittle, however exhibited higher tensile strength and water vapor permeability than of glycerol-plasticized film. The results suggested that glycerol is better plasticizer than sorbitol.  Kulit jeruk bali banyak mengandung pektin yang dapat dimanfaatkan sebagai bahan baku edible film. Edible film bisa digunakan untuk melapisi bahan makanan, melindungi makanan dari transfer massa eksternal seperti kelembaban, oksigen, dan zat terlarut, serta dapat digunakan sebagai carrier untuk meningkatkan penanganan mekanik produk makanan. Film yang terbuat dari bahan polimer organik ini cenderung rapuh sehingga diperlukan penambahan plasticizer. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh kadar dan jenis

  7. 49 CFR 178.519 - Standards for plastic film bags.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for plastic film bags. 178.519 Section... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic film...

  8. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  9. Plasticized chitosan/polyolefin films produced by extrusion.

    Science.gov (United States)

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Waste product profile: Plastic film and bags

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C. [Environmental Industry Associations, Washington, DC (United States)

    1996-10-01

    Plastic film is recycled by being pelletized following a granulation or densifying process. Manufacturing and converting plants are the major sources of plastic film for recycling because they can supply sufficient amounts of clean raw material of a known resin type. Post-consumer collection programs are more recent. They tend to focus on businesses such as grocery stores that are large generators of plastic bags. In this case, the recycling process is more complex, requiring sorting, washing, and removal of contaminants as a first step. Curbside collection of plastic bags is rare.

  11. Degradation studies on plasticized PVC films submited to gamma radiation

    Directory of Open Access Journals (Sweden)

    Vinhas Glória Maria

    2003-01-01

    Full Text Available Poly (vinyl chloride, PVC, is a rigid polymer and for several of its applications must be compounded with plasticizing agents. The plasticizers minimize the dipolar interactions, which exist between the polymer's chains, promoting their mobility. In this work we studied the properties of PVC/plasticizer systems submitted to different doses of gamma radiation. We have used four commercial plasticizers amongt them di(2-ethylhexyl phthalate, DEHP, which is present in a great number of commercial applications. The PVC/plasticizer systems have been studied as films made by the solvent evaporation technique. Irradiated and non-irradiated films have been characterized by viscosimetric analysis, mechanical essays and infrared spectroscopy. The results have shown that the rigid, non plasticized, PVC film presented the greatest degradation index, while among the plasticized films the one which presented the larger degradation index due to chain scission was the DEHP plasticized PVC.

  12. Plastic flexible films waste management - A state of art review.

    Science.gov (United States)

    Horodytska, O; Valdés, F J; Fullana, A

    2018-04-21

    Plastic flexible films are increasingly used in many applications due to their lightness and versatility. In 2014, the amount of plastic films represented 34% of total plastic packaging produced in UK. The flexible film waste generation rises according to the increase in number of applications. Currently, in developed countries, about 50% of plastics in domestic waste are films. Moreover, about 615,000 tonnes of agricultural flexible waste are generated in the EU every year. A review of plastic films recycling has been conducted in order to detect the shortcomings and establish guidelines for future research. This paper reviews plastic films waste management technologies from two different sources: post-industrial and post-consumer. Clean and homogeneous post-industrial waste is recycled through closed-loop or open-loop mechanical processes. The main differences between these methods are the quality and the application of the recycled materials. Further research should be focused on closing the loops to obtain the highest environmental benefits of recycling. This could be accomplished through minimizing the material degradation during mechanical processes. Regarding post-consumer waste, flexible films from agricultural and packaging sectors have been assessed. The agricultural films and commercial and industrial flexible packaging are recycled through open-loop mechanical recycling due to existing selective waste collection routes. Nevertheless, the contamination from the use phase adversely affects the quality of recycled plastics. Therefore, upgrading of current washing lines is required. On the other hand, household flexible packaging shows the lowest recycling rates mainly because of inefficient sorting technologies. Delamination and compatibilization methods should be further developed to ensure the recycling of multilayer films. Finally, Life Cycle Assessment (LCA) studies on waste management have been reviewed. A lack of thorough LCA on plastic films waste

  13. Influence of thickness on properties of plasticized oat starch films

    Directory of Open Access Journals (Sweden)

    Melicia Cintia Galdeano

    2013-08-01

    Full Text Available The aim of this study was to investigate the effect of thickness (between 80 and 120 µm on apparent opacity, water vapor permeability and mechanical properties (tensile and puncture of oat starch films plasticized with glycerol, sorbitol, glycerol:sorbitol mixture, urea and sucrose. Films were stored under 11, 57, 76 and 90% relative humidity (RH to study the mechanical properties. It was observed that the higher the thickness, the higher was the opacity values. Films without the plasticizer were more opaque in comparison with the plasticized ones. Glycerol:sorbitol films presented increased elongation with increasing thickness at all RH. Puncture force showed a strong dependence on the film thickness, except for the films plasticized with sucrose. In general, thickness did not affect the water permeability.

  14. Characterization of Parylene as a Water Barrier via Buried-in Pentacene Moisture Sensors for Soaking Tests

    OpenAIRE

    Lo, Hsi-wen; Tai, Yu-Chong

    2007-01-01

    We present a simple method to characterize parylene as a water barrier for soaking tests. The key component is the buried-in pentacene moisture sensor, which is a thin-film transistor sandwiched between two layers of parylene C. This pentacene thin-film transistor takes bottom contact configuration and uses parylene C as the gate dielectric material. Parylene films containing pentacene moisture sensors are soaked in saline at room temperature and the saturation drain curr...

  15. Feasibility study of the separation of chlorinated films from plastic packaging wastes.

    Science.gov (United States)

    Reddy, Mallampati Srinivasa; Yamaguchi, Takefumi; Okuda, Tetsuji; Tsai, Tsung-Yueh; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2010-04-01

    This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0g/cm(3) and floated in water even though the true density was more than 1.0g/cm(3). However, the apparent density of the PS and the PET films increased with agitation to more than 1.0g/cm(3), whereas that of chlorinated plastic films was kept less than 1.0g/cm(3). The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10wt.% of the chlorinated films and real PPW films with 9wt.% of the chlorinated films. About 76wt.% of the artificial PPW films and 75wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7wt.% and 3.0wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Feasibility study of the separation of chlorinated films from plastic packaging wastes

    International Nuclear Information System (INIS)

    Reddy, Mallampati Srinivasa; Yamaguchi, Takefumi; Okuda, Tetsuji; Tsai, Tsung-Yueh; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2010-01-01

    This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0 g/cm 3 and floated in water even though the true density was more than 1.0 g/cm 3 . However, the apparent density of the PS and the PET films increased with agitation to more than 1.0 g/cm 3 , whereas that of chlorinated plastic films was kept less than 1.0 g/cm 3 . The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10 wt.% of the chlorinated films and real PPW films with 9 wt.% of the chlorinated films. About 76 wt.% of the artificial PPW films and 75 wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7 wt.% and 3.0 wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films.

  17. Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type

    Science.gov (United States)

    Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.

    2017-07-01

    In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.

  18. Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Blomfeldt, Thomas O. J.; Hedenqvist, Mikael S.

    2012-01-01

    was combined with nanofibrillated cellulose (NFC) and films were cast with and without glycerol, sorbitol or methoxypolyethylene glycol (MPEG) as plasticizers. Microscopy revealed some NFC agglomeration in the composite films as well as a layered nanocellulose structure. Equilibrium moisture content...... in plasticized films increased with glycerol content but was independent of xylan:NFC ratio in unplasticized films. Sorbitol- and MPEG-plasticized films showed equilibrium moisture contents of approximately 10 wt% independent of plasticizer content. Tensile testing revealed increases in tensile strength...... with increased NFC content in the xylan:NFC composition range from 50:50 to 80:20 and plasticizer addition generally provided less brittle films. The oxygen permeability of unplasticized xylan-NFC films fell into a range which was similar to that for previously measured pure NFC films and was statistically...

  19. The calibration of photographic and spectroscopic films: 1: A microscopic analysis of IIaO films. 2: The effects of agitation and soaking on IIaO films. 3: The effects of electric field on IIaO films. 4: The effects of X-ray radiation on IIaO films

    Science.gov (United States)

    Hammond, E. C., Jr.; Peters, K.; Boone, K.

    1978-01-01

    The grain structure of the emulsion using both reflected and transmission light was examined along with the effects of soaking. The effect of a static charge by a Tesla-coil, and the effects of airport equipment, and dental X-rays on the film were also analyzed.

  20. Morphology and thermal properties of PLA films plasticized with aliphatic oligoesters

    International Nuclear Information System (INIS)

    Inacio, Erika M.; Dias, Marcos L.; Lima, Maria Celiana P.

    2015-01-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  1. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China

    Science.gov (United States)

    Liu, E. K.; He, W. Q.; Yan, C. R.

    2014-09-01

    Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.

  2. Effect of Plasticizers on Physicochemical and Mechanical Properties of Chitosan-Gelatin Films

    Science.gov (United States)

    Manshor, N. Mohammed; Rezali, M. I.; Jai, J.; Yahya, A.

    2018-05-01

    Composite chitosan-gelatin films were produced to investigate the effect of plasticizer and composition of chitosan and gelatin on physicochemical and mechanical properties of the films. The films were prepared according to ratio of chitosan: gelatin of 1:1, 1:2 and 2:1. For each film, glycerol, sorbitol and sucrose were added as plasticizer. The film forming solution was poured on a glass plate and dried for 12 hours in an oven at 60°C. The highest tensile strength was 4.04 MPa for films of ratio 2:1 plasticized with glycerol compared to sorbitol and sucrose which were 3.94 MPa and 3.84 MPa, respectively. However, films plasticized with sorbitol at ratio of 1:2 had the highest percent elongation which was 68.20%, followed by glycerol and sucrose which were 26.51% and 24.08%, respectively.

  3. Experience from using plastic film in radon measurement

    International Nuclear Information System (INIS)

    Joensson, G.

    1999-01-01

    Plastic film is a useful detector of radon gas. The method of detection of the gas is used for several decades to measure radon concentrations both indoors and in soil. Experiences from radon measurements in Sweden indoors, in soil and in water using the plastic film Kodak LR 115-II are discussed in this report. Some examples are given from various projects. One example is taken from a large scale mapping of indoor radon levels in houses, where the building material is the main source of radon. In another example the measurements from a large scale soil radon mapping are discussed. The use of the plastic film for measurements of radon levels in water is also discussed. All the investigations are made in order to give the authorities concerned information of the radon situation and to study the connection between high indoor radon levels and various types of cancers

  4. Preparation of A-150 tissue-equivalent plastic films

    International Nuclear Information System (INIS)

    Saion, E.B.; Shaari, A.H.; Watt, D.E.

    1992-01-01

    A-150 tissue-equivalent (TE) plastic is widely used as a wall material for tissue-equivalent proportional counters (TEPCS) used in experimental microdosimetry. The objective of this note is to give a technical account of how A-150 TE plastic film can be fabricated in the laboratory from commercially available A-150 TE plastic. (author)

  5. Material properties of plasticized hardwood xylans for potential application as oxygen barrier films.

    Science.gov (United States)

    Gröndahl, Maria; Eriksson, Lisa; Gatenholm, Paul

    2004-01-01

    Free films based on glucuronoxylan isolated from aspen wood were prepared by casting from aqueous solutions and drying in a controlled environment. Addition of xylitol or sorbitol facilitated film formation and thus examination of the material properties of these films. The mechanical properties of the films were evaluated using tensile testing and dynamic mechanical analysis in a controlled ambient relative humidity. The strain at break increased, and the stress at break and Young's modulus of the films decreased with increasing amounts of xylitol and sorbitol due to plasticization. At high amount of plasticizer, it was found that films with xylitol gave lower extensibility. Wide-angle X-ray scattering analysis showed that xylitol crystallized in a distinct phase, which we believe contributes to the more brittle behavior of these films. The effect of the plasticizers on the glass transition temperature was determined using dynamic mechanical analysis and differential scanning calorimetry. An increased amount of plasticizer shifted the glass transition to lower temperatures. The effect of moisture on the properties of plasticized films was investigated using water vapor sorption isotherms and by humidity scans in dynamic mechanical analysis. Sorption isotherms showed a transition from type II to type III when adding plasticizer. The films showed low oxygen permeability and thus have a potential application in food packaging.

  6. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films.

    Science.gov (United States)

    Hakalahti, Minna; Salminen, Arto; Seppälä, Jukka; Tammelin, Tekla; Hänninen, Tuomas

    2015-08-01

    TEMPO/NaClO2 oxidized cellulosic nanofibrils (TCNF) were covalently bonded with poly(vinyl alcohol) (PVA) to render water stable films. Pure TCNF films and TCNF-PVA films in dry state showed similar humidity dependent behavior in the elastic region. However, in wet films PVA had a significant effect on stability and mechanical characteristics of the films. When soaked in water, pure TCNF films exhibited strong swelling behavior and poor wet strength, whereas covalently bridged TCNF-PVA composite films remained intact and could easily be handled even after 24h of soaking. Wet tensile strength of the films was considerably enhanced with only 10 wt% PVA addition. At 25% PVA concentration wet tensile strengths were decreased and films were more yielding. This behavior is attributed to the ability of PVA to reinforce and plasticize TCNF-based films. The developed approach is a simple and straightforward method to produce TCNF films that are stable in wet conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan

    Directory of Open Access Journals (Sweden)

    Thawien Bourtoom

    2008-04-01

    Full Text Available The properties of biodegradable blend film from rice starch-chitosan with different plasticizers were determined. Three plasticizers comprising sorbitol (SOR, glycerol (GLY and polyethylene glycol (PEG were studied over a range of concentration from 20 to 60%. Increasing concentration of these plasticizers resulted in decreased tensile strength (TS concomitant with an increase in elongation at break (E, water vapor permeability (WVP and film solubility (FS. SOR plasticized films were the most brittle, with the highest tensile strength (TS, 26.06 MPa. However, its effect on WVP was low (5.45 g.mm/m2.day.kPa. In contrast, GLY and PEG plasticized films had a flexible structure contradictory to a low TS (14.31MPa and 16.14MPa, respectively providing a high WVP (14.52 g.mm/m2.day.kPa and 14.69 g.mm/m2.day.kPa, respectively. SOR plasticized films, demonstrated little higher FS compared to PEG and GLY plasticized films but not significant different (p<0.05. The color of biodegradable blend film from rice starch-chitosan was more affected by the concentration of the plasticizer used than by its type. Nine moisture sorption models were applied to experimental data. Moisture content of the film increased at elevated water activity. The time to reach equilibrium moisture content (EMC was about 20-24 days at lower humidity and 13-16 days at higher humidities. The EMC of glycerol and sorbitol rice starchchitosan biodegradable blend films showed a logarithmic increase at above 0.59 aw and reached the highest moisture content of 51.46% and 42.97 % at 0.95 aw, whereas PEG rice starch-chitosan biodegradable blend films did not show much increase in moisture content.

  8. Design study of plastic film heat exchanger

    Science.gov (United States)

    Guyer, E. C.; Brownell, D. L.

    1986-02-01

    This report presents the results of an effort to develop and design a unique thermoplastic film heat exchanger for use in an industrial heat pump evaporator system and other energy recovery applications. The concept for the exchanger is that of individual heat exchange elements formed by two adjoining and freely hanging plastic films. Liquid flows downward in a regulated fashion between the films due to the balance of hydrostatic and frictional forces. The fluid stream on the outside of film may be a free-falling liquid film, a condensing gas, or a noncondensing gas. The flow and structural principles are similar to those embodied in an earlier heat exchange system developed for use in waste water treatment systems (Sanderson). The design allows for high heat transfer rates while working within the thermal and structural limitations of thermoplastic materials. The potential of this new heat exchanger design lies in the relatively low cost of plastic film and the high inherent corrosion and fouling resistance. This report addresses the selection of materials, the potential heat transf er performance, the mechanical design and operation of a unit applied in a low pressure steam recovery system, and the expected selling price in comparison to conventional metallic shell and tube heat exchangers.

  9. Application of β plastic film thickness gauge in automatic production of agricultural film

    International Nuclear Information System (INIS)

    Liu Longzhi; Guo Juhao

    1996-01-01

    The author briefly explains the importance of agricultural film at home, and mainly explains the measuring principles of plastic film thickness, the design of β detector, the temperature compensation technology and the design of automatic control device

  10. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  11. Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol

    OpenAIRE

    Somashekarappa, H.; Prakash, Y.; Hemalatha, K.; Demappa, T.; Somashekar, R.

    2013-01-01

    The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the f...

  12. Gelatin films plasticized with a simulated biodiesel coproduct stream

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In order to explore the possibility of substituting an unrefined biodiesel coproduct stream (BCS for refined glycerol as a polymer plasticizer we have prepared cast gelatin films plasticized with a simulated BCS, i.e., mixtures of glycerol and some of the typical components found in BCS (methyl linoleate, methyl oleate, linoleic acid, and oleic acid. We measured the tensile properties as a function of plasticizer composition, and analyzed the specific effect of each individual component on tensile properties. We found that it is the unrecovered alkyl esters that largely determine the tensile properties, and that BCS can be successfully used to plasticize cast gelatin films as long as the BCS contains 11 parts by weight, or less, of unrecovered alkyl esters per 100 parts glycerol.

  13. Ferroelectricity and Piezoelectricity in Free-Standing Polycrystalline Films of Plastic Crystals.

    Science.gov (United States)

    Harada, Jun; Yoneyama, Naho; Yokokura, Seiya; Takahashi, Yukihiro; Miura, Atsushi; Kitamura, Noboru; Inabe, Tamotsu

    2018-01-10

    Plastic crystals represent a unique compound class that is often encountered in molecules with globular structures. The highly symmetric cubic crystal structure of plastic crystals endows these materials with multiaxial ferroelectricity that allows a three-dimensional realignment of the polarization axes of the crystals, which cannot be achieved using conventional molecular ferroelectric crystals with low crystal symmetry. In this work, we focused our attention on malleability as another characteristic feature of plastic crystals. We have synthesized the new plastic/ferroelectric ionic crystals tetramethylammonium tetrachloroferrate(III) and tetramethylammonium bromotrichloroferrate(III), and discovered that free-standing translucent films can be easily prepared by pressing powdered samples of these compounds. The thus obtained polycrystalline films exhibit ferroelectric polarization switching and a relatively large piezoelectric response at room temperature. The ready availability of functional films demonstrates the practical utility of such plastic/ferroelectric crystals, and considering the vast variety of possible constituent cations and anions, a wide range of applications should be expected for these unique and attractive functional materials.

  14. Thermal Characteristics of Plastic Film Tension in Roll-to-Roll Gravure Printed Electronics

    Directory of Open Access Journals (Sweden)

    Kui He

    2018-02-01

    Full Text Available In the printing section of a roll-to-roll gravure printed electronics machine, the plastic film tension is directly associated with the product quality. The temperature distribution of the plastic film in the printing section is non-uniform, because of the higher drying temperature and the lower room temperature. Furthermore, the drying temperature and the room temperature are not constants in industrial production. As the plastic film is sensitive to temperature, the temperature of the plastic film will affects the web tension in the printing section. In this paper, the thermal characteristics of the plastic film tension in roll-to-roll gravure printed electronics are studied in order to help to improve the product quality. First, the tension model including the factor of temperature is derived based on the law of mass conservation. Then, some simulations and experiments are carried out in order to in-depth research the effects of the drying temperature and room temperature based on the relations between system inputs and outputs. The results show that the drying temperature and room temperature have significant influences on the web tension. The research on the thermal characteristics of plastic film tension would benefit the tension control accuracy for further study.

  15. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols

    DEFF Research Database (Denmark)

    Cervera, Mirna Fernández; Karjalainen, Milja; Airaksinen, Sari

    2004-01-01

    The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer...... in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly...

  16. Plasticizing Effects of Polyamines in Protein-Based Films

    Directory of Open Access Journals (Sweden)

    Mohammed Sabbah

    2017-05-01

    Full Text Available Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins. At the same time, they enhanced the dimension of nanoparticles under pH 8.0 as a result of macromolecular aggregations. By using native protein solutions, handleable films were obtained only from samples containing either a minimum of 33 mM glycerol or 4 mM spermidine, or both compounds together at lower glycerol concentrations. However, 2 mM spermidine was sufficient to obtain handleable film by using heat-treated samples without glycerol. Conversely, brittle materials were obtained by spermine alone, thus indicating that only spermidine was able to act as an ionic plasticizer. Lastly, both polyamines, mainly spermine, were found able to act as “glycerol-like” plasticizers at concentrations higher than 5 mM under experimental conditions at which their amino groups are undissociated. Our findings open new perspectives in obtaining protein-based films by using aliphatic polycations as components.

  17. Rheological and structural characterisation of film-forming solutions and biodegradable edible film made from kefiran as affected by various plasticizer types.

    Science.gov (United States)

    Ghasemlou, Mehran; Khodaiyan, Faramarz; Oromiehie, Abdulrasoul

    2011-11-01

    The rheological properties of kefiran film-forming solutions, as well as the structural characterisation of the resulting films, were investigated as a function of various plasticizer types. The behaviours of the storage (G') and loss (G″) moduli as a function of frequency were typical of gel-like material, with the G' higher than the G″. Kefiran-based films, which may find application as edible films, were prepared by a casting and solvent-evaporation method. Possible interaction between the adjacent chains in the kefiran polymer and various plasticizers was proven by Fourier-transform infrared spectroscopy (FT-IR). The crystallinity of plasticized kefiran film was also analysed using X-ray diffraction (XRD); this revealed an amorphous-crystalline structure. These results were explained by the film's microstructure, which was analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The present study has helped determine possible interactions of kefiran, plasticizer and water molecules in determining film properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Stabilization of soil using plastic waste

    International Nuclear Information System (INIS)

    Khan, S.A.

    2005-01-01

    The economy in a soil stabilization project depends on the cost of the stabilizing material. Cheaper the stabilizing material, lesser will be the project cost. Specially manufactured geotextiles are successfully being used for soil stabilization, but the cost is higher. In this study, the cuttings of the waste polyethylene shopper bags have been used to stabilize the soil. The polyethylene shopper bags are transformed to cuttings for easy mixing with the soil by conventional methods. The plastic cuttings acted similar to the non-woven geotextile fibers. Different quantities of the shopper bag cuttings were mixed with the soil. The soil was compacted in the California Bearing Ratio (CBR) test molds according to the British Standards. CBR values of the soil with varying quantities of the plastic cuttings were determined both for the un-soaked and soaked conditions. The tests showed significant increase in the CBR values of the stabilized soil under un-soaked conditions. However, the improvement in the CBR values under the soaked condition was comparatively lesser than that of the un-soaked condition. This method of stabilization proved economical due to low cost of the waste shopper bags. (author)

  19. α-sealed transfer device and portable plastic film sealers

    International Nuclear Information System (INIS)

    Fu Zhujun; Shan Ruixia

    1990-04-01

    An α transfer device which can be operated remotely is presented. The device is able to perform sealed transfer of radioactive articles from a hot cell or shielded glove box to the outside and non-radioactive articles from the outside to a hot cell or shielded glove box by using bag sealing technology. The structure of the transfer device is simple. Its operation is safe and reliable. The sealing performance of the device is very good (for alpha). The use of this transfer device will greatly reduce α contamination of the building and creates a favourable condition for operating radioactive materials in an undivided area. The portable heat sealing device is also a necessary tool in bag sealing technology and α-sealed transfer. Two types of portable plastic film sealers have been developed. Their structure is simple. The operation of the portable plastic film sealers is easy. Their performance is also excellent. Both the α-sealed transfer device and portable plastic film sealers are very useful to the reprocessing plant of nuclear fuel

  20. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation.

    Science.gov (United States)

    Quecholac-Piña, Xochitl; García-Rivera, Mariel Anel; Espinosa-Valdemar, Rosa María; Vázquez-Morillas, Alethia; Beltrán-Villavicencio, Margarita; Cisneros-Ramos, Adriana de la Luz

    2017-11-01

    Plastics are widely used in the production of short-life products, which are discarded producing an accumulation of these materials and problems due to their persistence in the environment and waste management systems. Degradable plastics (compostable, oxodegradable) have been presented as an alternative to decrease the negative effect of plastic waste. In this research, the feasibility of degrading a commercially available compostable film and oxodegradable polyethylene, with and without previous abiotic oxidation, is assessed in a home composting system. Reactors (200 L) were used to degrade the plastic films along with a mixture of organic food waste (50 %), mulch (25 %), and dry leaves (25 %), amended with yeast and a solution of brown sugar to increase the speed of the process. The presence of the plastic film did not affect the composting process, which showed an initial increase in temperature and typical profiles for moisture content, pH, with a final C/N of 17.4. After 57 days, the compostable plastic has decreased its mechanical properties in more than 90 %, while the oxodegradable film did not show significant degradation if it was not previously degraded by UV radiation. The use of these plastics should be assessed against the prevailing waste management system in each city or country. In the case of Mexico, which lacks the infrastructure for industrial composting, home composting could be an option to degrade compostable plastics along organic waste. However, more testing is needed in order to set the optimal parameters of the process.

  1. Plasticization of Poly (lactic) acid Film as a Potential Coating Material

    Science.gov (United States)

    Yang, Ping; Li, Hua; Liu, Qingsong; Dong, Hongbiao; Duan, Yafei; Zhang, Jiasong

    2018-01-01

    PLA-based composite films with different plasticizers, such as polyethylene glycol (PEG) and Tributyl citrate (TBC), were prepared using a solvent casting method and their machanical, water absorbency and NO3 --N permeability properties were tested. Tensile strength, elongation at break, water absorbency and NO3 --N permeability of neat PLA film were 1.99 ± 0.04 MPa, 2.7 ± 0.46%, 29.33 ± 0.3% and 216.03 ± 19.92 mg·L-1·m-2·h-1, respectively. After the addition of plasticizers the tensile strength were decreased, tensile strength of flims added 40wt% TBC and PEG decreased by 59.3% and 52.26%. While the elongation at break of the PLA film gradually increased. The elongation at break reached the value of 23.96±0.48% and 38.55±1.66% for the films added PEG and TBC respectively at the concentration of 40wt%. Water absorbency decreased as the increase of plasticizers. The NO3 --N permeability attained a maximum of 300.05±10.47 and 270.97±14.54 mg·L-1·m-2·h-1 for films added PEG and TBC at the concentration of 10 wt % respectively. Considered the NO3 --N permeability, PEG at 10wt% seemed the better plasticizer for PLA used in control release of fertilizer.

  2. The Effects of plasticizers and palmitic acid toward the properties of the carrageenan Film

    Science.gov (United States)

    Heru Wibowo, Atmanto; Listiyawati, Oktaviana; Purnawan, Candra

    2016-02-01

    Varied plasticizers and palmitic acid additive have been added in the carrageenan film. The film was made by mixing of the carrageenan and plasticizers (glycerol, polyethylene glycol, polyvinyl alcohol) with composition of 92:3, 90:6, 87:9, 84:12, 81:15(%w/w) and in the presence of palmitic acid as additive with 1%, 2%, 3%, 4%, 5% of total weight. Casting method was used for the film molding and drying at 60oC with the oven for 12 hours. To investigate the effects of plasticizers and additive, some mechanical tests on film were performed. The test result concludes that plasticizers in the film decreased the tensile strength and increased the elongation break of the carrageenan film. The additive of palmitic acid decreased the tensile strength of the carrageenan film and also decreased the-the water absorbance of the film. The highest tensile strength of films made was with the formulation of carrageenan: PEG with composition of 92:3 (% w/w). The highest elongation break of the film was for carrageenan:PVA with the composition of 81: 15 (%w/w) and carrageenan:palmitic acid:PEG with the composition of 92: 3: 1 (%w/w). The lowest water absorption of the film was achieved for carrageenan:PVA:palmitic acid with the composition of 87: 3: 5 (%w/w).

  3. EFFECT OF PLASTICIZERS ON MECHANICAL PROPERTIES OF EDIBLE FILM FROM JANENG STARCH – CHITOSAN

    Directory of Open Access Journals (Sweden)

    Narlis Juandi

    2016-10-01

    Full Text Available The interest in the development of edible and biodegradable films has increased because it is every day more evident that non degradable are doing much damage to the environment. In this research, edible films were based on blends of janeng starch in different proportions, added of palm oil or glycerol, which were used as plasticizers. The objective was to study the effect of two different plasticizers, palm oil and glycerol of edible film from janeng starch–chitosan on the mechanical properties and FTIR spectra. Increasing concentration of glycerol as plasticizer resulted tend to increased tensile strength and elongation at break. The tensile strength and elongation at break values for palm oil is higher than glycerol as plasticizer at the same concentration. FTIR spectra show the process of making edible film from janeng starch–chitosan with palm oil or glycerol as plasticizers are physically mixing in the presence of hydrogen interactions between chains.

  4. Effects of plasticizers on sorption and optical properties of gum cordia based edible film.

    Science.gov (United States)

    Haq, Muhammad Abdul; Jafri, Feroz Alam; Hasnain, Abid

    2016-06-01

    The present study aimed to characterize a biodegradable film produced from the polysaccharide of an indigenous plant Cordia myxa. Effect of plasticizer type (Glycerol, Sorbitol, PEG200 and PEG 400) and concentration (0-30 %) was studied on sorption and optical properties of the casted film. Increase in plasticizer concentration resulted in increase in equilibrium moisture content of the film and was supported by GAB model of sorption indicating that isotherms were of Type II. The monolayer value increased with the increase in plasticizer concentration with a peak of 0.93 g.g-1 for glycerol. Addition of plasticizers improved the total color (ΔE) with glycerol showing the highest effects. All films showed resistance to UV light in the range of 280-200 nm. The polysaccharide of the fruit of C.myxa can be used to prepare an edible film with improved properties as compared to other available edible coatings.

  5. A physicochemical study of sugar palm (Arenga Pinnata) starch films plasticized by glycerol and sorbitol

    Science.gov (United States)

    Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri

    2016-02-01

    The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.

  6. Morphology and thermal properties of PLA films plasticized with aliphatic oligoesters; Morfologia e propriedades termicas de filmes de PLA plastificados com oligoesteres alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Inacio, Erika M.; Dias, Marcos L., E-mail: erika.minacio@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Lima, Maria Celiana P. [Instituto Federal do Rio de Janeiro (IFRJ), Duque de Caxias, RJ (Brazil)

    2015-07-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  7. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Physical and biological treatments of polyethylene-rice starch plastic films

    Energy Technology Data Exchange (ETDEWEB)

    El-Naggar, Manal M.A., E-mail: mmelnaggar@yahoo.com [Microbiology Lab., National Institute of Oceanography and Fisheries, Alexandria (Egypt); Farag, Magdy Gh. [Development Plastic Center, Victoria, Alexandria (Egypt)

    2010-04-15

    This study aimed to produce an industrial applicable thermo-stable {alpha}-amylase from marine Bacillus amyloliquefaciens which isolated and selected according to its significant enzyme production. The effect of different pH values and temperatures on the bacterial growth and the enzyme production was estimated using an experimental statistical design; maximum amylase production and bacterial growth was obtained at pH 7.0 and 50 deg. C. Some biodegradable polyethylene rice starch plastic films (PERS-P) were manufactured using 0, 2.5, 5, 7.5 and 10% starch concentrations. The biodegradability (reduction in the plastic elongation%) was tested using the exposure to UV radiation at {lambda}{sub 300-400nm} (intensity of about 1000 W/m{sup 2}) and the produced B. amyloliquefaciens thermo-stable {alpha}-amylase. A significant reduction in the elongation% of these biodegradable plastics was observed in both cases especially on testing the 10% PERS-P; they showed a reduction of 26% and 20%, respectively, compared to the untreated plastic films (180 {+-} 5).

  9. Physical and biological treatments of polyethylene-rice starch plastic films

    International Nuclear Information System (INIS)

    El-Naggar, Manal M.A.; Farag, Magdy Gh.

    2010-01-01

    This study aimed to produce an industrial applicable thermo-stable α-amylase from marine Bacillus amyloliquefaciens which isolated and selected according to its significant enzyme production. The effect of different pH values and temperatures on the bacterial growth and the enzyme production was estimated using an experimental statistical design; maximum amylase production and bacterial growth was obtained at pH 7.0 and 50 deg. C. Some biodegradable polyethylene rice starch plastic films (PERS-P) were manufactured using 0, 2.5, 5, 7.5 and 10% starch concentrations. The biodegradability (reduction in the plastic elongation%) was tested using the exposure to UV radiation at λ 300-400nm (intensity of about 1000 W/m 2 ) and the produced B. amyloliquefaciens thermo-stable α-amylase. A significant reduction in the elongation% of these biodegradable plastics was observed in both cases especially on testing the 10% PERS-P; they showed a reduction of 26% and 20%, respectively, compared to the untreated plastic films (180 ± 5).

  10. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up...... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride......, the dyed polychlorostyrenes show essentially the same response to radiation-processing gamma-ray fields and to very high-intensity electron beams, and a relatively stable absorption spectrum at wavelengths for dosimetry analysis in the visible spectral region of ≈430 nm....

  11. Effect of Plasticizer Type on Tensile Property and In Vitro Indomethacin Release of Thin Films Based on Low-Methoxyl Pectin

    Directory of Open Access Journals (Sweden)

    Pensak Jantrawut

    2017-07-01

    Full Text Available This study developed the interests of low-methoxyl pectin (LMP together with plasticizers for the preparation of elastic thin films. The effect of different plasticizer types (glycerol: Gly; sorbitol: Sor; propylene glycol: PG; and polyethylene glycol 300: PEG 300 and concentrations (20–40% w/w on mechanical and thermal properties of LMP films as well as on in vitro release of indomethacin were evaluated. Without any plasticizer, a brittle LMP film with low tensile strength and % elongation at break was obtained. Addition of plasticizers from 20% to 40% caused reduction in the tensile strength and Young’s modulus values, whereas percent elongation was increased. Forty percent Gly-plasticized and PG-plasticized films were selected to deliver indomethacin in comparison with non-plasticized film. No significant difference in indomethacin release profiles was displayed between the films. The analysis of indomethacin release model indicated that more than one drug release mechanism from the film formulation was involved and possibly the combination of both diffusion and erosion. Even though indomethacin incorporated in non-plasticized film showed similar release profile, Gly or PG should be added to enhanced film flexibility and decrease film brittleness.

  12. TECHNICAL CHARACTERIZATION OF ECO-COMPATIBLE PLASTIC FILMS FOR SOIL SOLARIZATION: FOUR YEARS OF EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Salvatore Margiotta

    2007-12-01

    Full Text Available Soil solarization relies on solar radiation being converted to heat for the killing of soilborne pathogens. On one hand, this technique can be considered as an environmentally-friendly way to manage soilborne pests, as an alternative of methyl bromide phased-out in 2005, than using chemicals. On the other hand, high employment of traditional plastic sheets in agriculture causes the production of enormous quantities of waste, whose inappropriate management might have negative effects on the environment. In order to determine a reduction of the charge of plastic waste and to facilitate the waste disposal, one of the most interesting approaches, from an environmental point of view, lies in the location of innovatory plastic films such as co-extruded ultrathin films, which are able to reduce the plastic quantity to be managed, and biodegradable laminates, which after a first usage, will spontaneously start up a degradation process that avoids their collection and their consequent disposal. Beside the ecological proprieties of these innovative films, it is necessary to study their technical and agronomical behavior in order to determine their efficiency and the possibility to be used in place of the traditional plastic films. This paper represents a review of the researches carrier out by the Technical Economics Department of the University of Basilicata (Italy in the last years (1999, 2000, 2002 and 2003 on the technical performances of some innovative plastic films used for soil solarization.

  13. Plastic-Film Mulching for Enhanced Water-Use Efficiency and Economic Returns from Maize Fields in Semiarid China.

    Science.gov (United States)

    Zhang, Peng; Wei, Ting; Cai, Tie; Ali, Shahzad; Han, Qingfang; Ren, Xiaolong; Jia, Zhikuan

    2017-01-01

    Film mulch has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid areas of Northwest China. To find more sustainable and economic film mulch methods for alleviating drought stress in semiarid region, it is necessary to test optimum planting methods in same cultivation conditions. A field experiment was conducted during 2013 and 2014 to evaluate the effects of different plastic film mulch methods on soil water, soil temperature, water use efficiency (WUE), yield and revenue. The treatments included: (i) the control, conventional flat planting without plastic film mulch (CK); (ii) flat planting with maize rows (60 cm spacing) on plastic film mulch (70 cm wide); (iii) furrow planting of maize (60 cm spacing), separated by consecutive plastic film-mulched ridges (each 50 cm wide and 15 cm tall); (iv) furrow planting of maize (60 cm spacing), separated by alternating large and small plastic film-mulched ridges (large ridges: 70 cm wide and 15 cm tall, small ridges 50 cm wide and 10 cm tall); and (v) furrow-flat planting of maize (60 cm spacing) with a large plastic film-mulched ridge (60 cm wide and 15 cm tall) alternating with a flat without plastic film-mulched space (60 cm wide). Topsoil temperature (5-25 cm) was significantly ( p plastic film mulch than the control (CK), and resulted in greater soil water storage (0-200 cm) up to 40 days after planting. Maize grain yield and WUE were significantly ( p < 0.05) higher with the furrow planting methods (consecutive film-mulched ridges and alternating film-mulched ridges) than the check in both years. Maize yield was, on average, 29% ( p < 0.05) greater and 28% ( p < 0.05) greater with these furrow planting methods, while the average WUE increased by 22.8% ( p < 0.05) with consecutive film-mulched ridges and 21.1% ( p < 0.05) with alternating film-mulched ridges. The 2-year average net income increased by 1559, 528, and 350 Chinese Yuan

  14. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata Starch

    Directory of Open Access Journals (Sweden)

    Muhammed L. Sanyang

    2015-06-01

    Full Text Available The use of starch based films as a potential alternative choice to petroleum derived plastics is imperative for environmental waste management. This study presents a new biopolymer (sugar palm starch for the preparation of biodegradable packaging films using a solution casting technique. The effect of different plasticizer types (glycerol (G, sorbitol (S and glycerol-sorbitol (GS combination with varying concentrations (0, 15, 30 and 45, w/w% on the tensile, thermal and barrier properties of sugar palm starch (SPS films was evaluated. Regardless of plasticizer types, the tensile strength of plasticized SPS films decreased, whereas their elongation at break (E% increased as the plasticizer concentrations were raised. However, the E% for G and GS-plasticized films significantly decreased at a higher plasticizer concentration (45% w/w due to the anti-plasticization effect of plasticizers. Change in plasticizer concentration showed an insignificant effect on the thermal properties of S-plasticized films. The glass transition temperature of SPS films slightly decreased as the plasticizer concentration increased from 15% to 45%. The plasticized films exhibited increased water vapor permeability values from 4.855 × 10−10 to 8.70 × 10−10 g·m−1·s−1·Pa−1, irrespective of plasticizer types. Overall, the current study manifested that plasticized sugar palm starch can be regarded as a promising biopolymer for biodegradable films.

  15. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    Science.gov (United States)

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents.

    Science.gov (United States)

    Zdanowicz, Magdalena; Johansson, Caisa

    2016-10-20

    The aim of this work was to prepare two- and three-components deep eutectic solvents (DES) and investigate their potential as starch plasticizers. Starch/DES films were prepared via casting method. Mechanical properties, water vapor- and oxygen transmission rates were measured; additionally contact angle and moisture sorption were determined and FTIR analysis was applied on the films. Native potato starch and hydroxypropylated and oxidized starch (HOPS) with common plasticizers (e.g. polyols, urea) and DES were studied. Moreover, influence of three methods of DES introduction and concentration of plasticizer on the films properties were compared. HOPS films were prepared by two methods: as non-cured and cured samples. Some of DESs containing citrate anion exhibited crosslinking ability of polysaccharide matrix. Non-cured HOPS/DES films exhibited more favourable mechanical and barrier properties than cured analogue films. Samples prepared with unmodified potato starch had higher mechanical and barrier properties than films made with HOPS. Starch-based films plasticized with novel DESs with parallel crosslinking activity exhibited satisfactory mechanical and barrier properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Use of thin plastic films at cryogenic temperatures

    Science.gov (United States)

    Lark, R. F.; Hoggatt, J. T.; Wiedekamp, K. E.; Shdo, J. G.

    1972-01-01

    Commercially available plastic film materials that remain flexible at cryogenic temperatures and resist failures caused by folds and wrinkles created during expulsion were investigated for use in expulsion bladders for liquefied gases. Compatible adhesive systems, fabrication techniques, and results of impact and dynamic loading tests are summarized.

  18. The measurement of longwave radiation properties upon plastic films used in greenhouses

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Sugaya, H.

    1982-01-01

    Due to the rising cost of heating oils in recent years, the subject of heat conservation on a greenhouse has become more important. In this aspect, the plastic films used for reducing heat losses must have low transmittance property for longwave radiation, also need to have low emissivity. The properties of plastic films which affect on the transfer of energy are important. The paper discusses the measurements of reflectance, transmittance, and emissivity of longwave radiation (thermal radiation) upon various plastic films used for crop protection in agriculture, particularly in a greenhouse. New measuring methods for reflectance and emissivity were presented, and the previous transmittance calculations (Hagiwara and Horiguchi, 1972) were improved by using newly obtained reflectance values. The transmittance values obtained from the present study are about 2-5 percent larger than the values obtained from the previous study. The reason for the discrepancy may be due to the negligence of the reflectance term in the previous calculation. (author)

  19. The Influence of Thermic Plastic Films on Vegetative and Reproductive Growth of Iceberg Lettuce 'Dublin'

    OpenAIRE

    Wael M. Semida; P. Hadley; W. Sobeih; N. A. El-Sawah; M. A. S. Barakat

    2013-01-01

    Photoselective plastic films with thermic properties are now available so that greenhouses clad with such plastics exhibit a higher degree of “Greenhouse Effect” with a consequent increase in night time temperature. In this study, we investigate the potential benefits of a range of thermic plastic films used as greenhouse cover materials on the vegetative and reproductive growth and development of Iceberg lettuce (Lactuca sativa L). Transplants were grown under thermic fi...

  20. Structure-property relation in HPMC polymer films plasticized with Sorbitol

    Science.gov (United States)

    Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.

    2013-06-01

    A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.

  1. Impact of Ultraviolet-Blocking Plastic Films on Insect Vectors of Virus Diseases Infesting Crisp Lettuce

    OpenAIRE

    Díaz Desani, Beatriz M.; Biurrun, R.; Moreno, Aránzazu; Nebreda, Miguel; Fereres, Alberto

    2006-01-01

    Ultraviolet (UV)-absorbing plastic films are being used as a photoselective barrier to control insect vectors and associated virus diseases in different horticultural crops. A 2-year experiment was carried out in northeastern Spain (Navarra) to evaluate the impact of a UV-blocking film (AD-IR AV) on the population density of insect pests and the spread of insect-transmitted virus diseases associated with head lettuce [Lactuca sativa (L.)]. Results showed that the UV-absorbing plastic film did...

  2. Soil solarization in open air with experimental and biodegradable plastic films [Apulia

    International Nuclear Information System (INIS)

    Russo, G.; Scarascia Mugnozza, G.; Frisullo, S.

    2004-01-01

    The use of biodegradable materials is a sustainable solution to the problem of high amounts of plastic films that must be disposed for soil solarization, since biodegradable films can be degraded directly in soil. The comparison of Mater-B biodegradable film with EVA and Polydac film for soil solarization and phythopatological tests in field is the aim of the present research. Experimental field tests were carried out in Borgo Cervaro (FG) in June and July 2002. A data logger connected with sensors was used to measure and collect climatic parameters. During field tests, climatic parameters and soil temperatures at different depth for soil under the different materials were evaluated. The performances of plastic materials were investigated measuring laceration and tensile strength and radiometric properties every 15 days. Soil samples were analysed in order to verify the reduction of infesting load of soilborne pathogens during soil solarization. The tests, although affected by adverse climatic conditions, show the capacity of the biodegradable film to obtain similar performances compared to traditional films. The traditional films produced higher temperatures in soil, longer duration and a higher number of hours with temperature higher than 40 deg C. Phytopathological results showed a higher sterilising effect for EVA and Polydac films in comparison to the Mater-B one [it

  3. Edible Film from Polyblend of Ginger Starch, Chitosan, and Sorbitol as Plasticizer

    Science.gov (United States)

    Sariningsih, N.; Putra, Y. P.; Pamungkas, W. P.; Kusumaningsih, T.

    2018-03-01

    Polyblend ginger starch/chitosan based edible film has been succesfully prepared and characterized. The purpose of this research was to produce edible film from polyblend of ginger starch, chitosan, and sorbitol as plasticizer. The resulted edible film were characterized by using FTIR, TGA and UTM. Edible film of ginger starch had OH vibration (3430 cm-1). Besides, edible film had elongation up to 15.63%. The thermal degradation of this material reached 208°C indicating high termal stability. The water uptake of the edible film was 42.85%. It concluded that edible film produce in this research has potential as a packaging.

  4. Pattern formation in plastic liquid films on elastomers by ratcheting.

    Science.gov (United States)

    Huang, Jiangshui; Yang, Jiawei; Jin, Lihua; Clarke, David R; Suo, Zhigang

    2016-04-20

    Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates. Because the patterns develop progressively under cyclic loads, we call this phenomenon as "patterning by ratcheting". We observe the phenomenon in plastic liquids of several kinds, and studied the effects of thickness, the cyclic frequency of the stretch, and the range of the stretch. Finite element simulations show that the ratcheting phenomenon can occur in materials described by a commonly used model of elastic-plastic deformation.

  5. Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation

    Directory of Open Access Journals (Sweden)

    Yann-Cherng Chern

    2015-08-01

    Full Text Available A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area as large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.

  6. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    Science.gov (United States)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  7. Fruit sphere microenvironments and berry phenolic content of Cabernet Sauvignon (Vitis vinifera L. cultivated under rain-shelter systems with coloured plastic film

    Directory of Open Access Journals (Sweden)

    Jiang-Fei MENG

    Full Text Available Abstract Rain-shelter cultivation has been proven an important cultivation method for grape-plantings in continental monsoon climate zones, of which white plastic films are the most common shelter material. However, while this method and material reduces the occurrence of the disease, it can also decrease the grape berry quality. Five colours (including red, yellow, blue, purple, and white of plastic films were covered above Cabernet Sauvignon (Vitis vinifera L. grapevine rows before veraison. Rain-shelter cultivation reduced air temperature, wind speed, and total solar radiation and enhanced relative humidity in the fruit sphere of grapevines. For each particular colour plastic film, the irradiance of its corresponding spectrum band in the canopy of vines was higher than with other colour plastic films. Meanwhile, the blue plastic film treatment significantly promoted the accumulation of total phenolics, anthocyanins, flavonoids, tannins, and phenolic acids more than the other colours of plastic films. Blue plastic films are more beneficial for berry quality promotion of wine grapes, especially Cabernet Sauvignon, under rain-shelter cultivation in continental monsoon climate zones.

  8. Natural moisturizing factors (NMF) in the stratum corneum (SC). I. Effects of lipid extraction and soaking.

    Science.gov (United States)

    Robinson, Marisa; Visscher, Marty; Laruffa, Angela; Wickett, Randy

    2010-01-01

    Natural moisturizing factor (NMF) is essential for appropriate stratum corneum hydration, barrier homeostasis, desquamation, and plasticity. It is formed from filaggrin proteolysis to small, hygroscopic molecules including amino acids. We hypothesized that common lipid extraction and soaking in water would alter the level of NMF in the upper SC and its biophysical properties. A novel method of measuring and quantifying the amino acid components of NMF is presented. Adhesive tapes were used to collect samples of the stratum corneum (SC) and were extracted with 6mM perchloric acid for analysis by reverse-phase HPLC. HPLC results were standardized to the amount of protein removed by the tapes. An increase in NMF was found with increased SC depth. Also, the combination of extraction and soaking was found to increase NMF loss relative to control or to extraction or soaking alone. Our results indicate that common skin care practices significantly influence the water binding materials in the upper SC. The findings have implications for the evaluation and formulation of skin care products.

  9. Effect of radurization and combined soaking treatment on meat texture during cold storage

    International Nuclear Information System (INIS)

    Hassan, I.M.; Mahmoud, A.A.; Emam, O.A.

    1986-01-01

    Sensory and objective texture properties of 0, 2, 5, and 10 KGy irradiated beef meat were followed throughout different cold periods at 4 plus or minus 1 degree. Irradiation doses up to KGy caused slight toughness which could only be detected by plasticity measurements. When soaking treatment in 250 ppm butylated hydroxy toluene and 0.5% sodium pyrophosphate was combined with the irradiation treatments in all the tested levels, the texture was not significantly affected. Progressive increase in the meat tenderness was detected during cold storage. The higher the irradiation dose the much less meat tenderness was observed during cold storage. The magnitude of the differently used texture-measurement method responses to ageing was varied. Plasticity measurements gave higher correlation coefficients with sensory panels than intron measurements

  10. Local Plasticity of Al Thin Films as Revealed by X-Ray Microdiffraction

    Science.gov (United States)

    Spolenak, R.; Brown, W. L.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2003-03-01

    Grain-to-grain interactions dominate the plasticity of Al thin films and establish effective length scales smaller than the grain size. We have measured large strain distributions and their changes under plastic strain in 1.5-μm-thick Al0.5%Cu films using a 0.8-μm-diameter white x-ray probe at the Advanced Light Source. Strain distributions arise not only from the distribution of grain sizes and orientation, but also from the differences in grain shape and from stress environment. Multiple active glide plane domains have been found within single grains. Large grains behave like multiple smaller grains even before a dislocation substructure can evolve.

  11. Thermatically sealed double window panes with distended plastic film between them. Termoruder med lag af plastfilm udspaendt mellem glassene

    Energy Technology Data Exchange (ETDEWEB)

    Lund Nielsen, B.

    1988-05-15

    On the basis of a literary study this report examines improved methods of calculating the U-value and the solar factor for double glazings with plastic films suspended vertically in the air gap. The methods take into account that plastic film is capable of transmitting infrared radiation. Annex 1 includes copies of computer programs developed during the project. The programs calculate the U-value and the solar factor of glazings according to the above improved methods. The report further includes sections about the coating of glass and plastics and of the aging of plastic film. (author) 13 refs.

  12. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film

    International Nuclear Information System (INIS)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-01-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography–mass spectrometry (GC–MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg −1 with a median value of 1.70 mg kg −1 , and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film. -- Highlights: •Phthalate esters in soils from suburban intensive vegetable production systems were investigated. •Phthalate levels and risks of the vegetable soils with different plastic film use modes were examined. •Sources of phthalate esters in vegetable production soils were analyzed. -- PAE contamination of intensively managed vegetable soils varied widely depending on the mode of use of plastic film in different production systems

  13. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  14. Reduction of heat insulation upon soaking of the insulation layer

    Science.gov (United States)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  15. Large-grain polycrystalline silicon film by sequential lateral solidification on a plastic substrate

    International Nuclear Information System (INIS)

    Kim, Yong-Hae; Chung, Choong-Heui; Yun, Sun Jin; Moon, Jaehyun; Park, Dong-Jin; Kim, Dae-Won; Lim, Jung Wook; Song, Yoon-Ho; Lee, Jin Ho

    2005-01-01

    A large-grain polycrystalline silicon film was obtained on a plastic substrate by sequential lateral solidification. With various combinations of sputtering powers and Ar working gas pressures, the conditions for producing dense amorphous silicon (a-Si) and SiO 2 films were optimized. The successful crystallization of the a-Si film is attributed to the production of a dense a-Si film that has low argon content and can endure high-intensity laser irradiation

  16. Effect of aging on the microstructure of plasticized cornstarch films

    Directory of Open Access Journals (Sweden)

    Rossana M.S.M. Thiré

    2005-06-01

    Full Text Available Aging of cornstarch films prepared by casting was investigated. Water and glycerol-plasticized cornstarch films were stored at 50% relative humidity over a period of 330 days. Aging was followed by X-ray diffraction (XRD and atomic force microscopy (AFM. XRD spectra indicated development of B-type crystallinity even for fresh films and that the crystallinity index increased from 0.06 to 0.28 as a function of storage time. AFM images of 270-day-old films revealed that the general morphology and the overall roughness have not changed due to aging. AFM phase contrast images at higher magnification showed an increasing number of ordered domains at the surface of these films, which may be attributed to recrystallization of amylose. No morphological change was observed at least at the surface of the granular region, which is enriched in amylopectin.

  17. Open fibre reinforced plastic (FRP) flat plate collector (FPC) and spray network systems for augmenting the evaporation rate of tannery effluent (soak liquor)

    International Nuclear Information System (INIS)

    Srithar, K.; Mani, A.

    2007-01-01

    Presently, tanneries in Tamilnadu, India are required to segregate the effluent of soaking and pickling sections from other wastewater streams and send it to shallow solar pans for evaporation to avoid land pollution. A large area of solar pans is required for evaporating the water in the effluent at salt concentration in the range of 4-5%. An experimental study has been made by using fibre reinforced plastic flat plate collector (FRP-FPC) and spray system in a pilot plant with a capacity to handle 5000 l per day, which increases the evaporation rate. After increasing the salt concentration level to near saturation limit, the concentrated liquid was sent to conventional solar pans for its continued evaporation and recovery of salt. In this improved system, the rate of evaporation was found to be 30-40% more than that in the conventional solar pans. The performance is compared with the theoretically simulated performance. (author)

  18. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    Science.gov (United States)

    Wolfe, Jesse D [Fairfield, CA; Theiss, Steven D [Woodbury, MN; Carey, Paul G [Mountain View, CA; Smith, Patrick M [San Ramon, CA; Wickbold, Paul [Walnut Creek, CA

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  19. Influence of ionizing radiation and use of plasticizers on the mechanical properties and barrier properties of biodegradable films

    International Nuclear Information System (INIS)

    Ponce, Patricia; Parra, Duclerc F.; Carr, Laura G.; Sato, Juliana S.; Lugao, Ademar B.

    2005-01-01

    This work reports the influence of radiation and plasticizers on the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of edible films made of starch. These films were prepared with 4 g of starch/100 mL of water; 2-10 g polyethylene glycol (PEG)/100 g starch; and at natural pH. Tensile strength and percentage elongation were measured using a Mechanical Universal Testing Machine Instron 4400R and the water vapour permeability was determined according to ASTM E96-80 (ASTM, 1989). The mechanical properties of starch films are influenced by the plasticizer concentration. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the films, also increase the permeability of the films in water. After irradiation, the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of the films were improved due to chemical reactions among polymer molecules. The films were irradiated at room temperature with gamma radiation. Irradiated starch cassava films with polyethylene glycol (PEG) as plasticizer have good flexibility and low water permeability, which indicate potential application as edible films (author)

  20. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions

    Directory of Open Access Journals (Sweden)

    Sreejata Bandopadhyay

    2018-04-01

    Full Text Available Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs offer an environmentally sustainable alternative to conventional polyethylene (PE mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  1. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions.

    Science.gov (United States)

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M; DeBruyn, Jennifer M

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  2. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    Science.gov (United States)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  3. Enhancement of Moisture Protective Properties and Stability of Pectin through Formation of a Composite Film: Effects of Shellac and Plasticizer.

    Science.gov (United States)

    Luangtana-Anan, Manee; Soradech, Sitthiphong; Saengsod, Suthep; Nunthanid, Jurairat; Limmatvapirat, Sontaya

    2017-12-01

    The aim of this investigation was to develop the high moisture protective ability and stable pectin through the design of composite films based on varying shellac concentrations. A film casting method was applied to prepare a free film. The moisture protective properties and mechanical properties were investigated. The findings was the composite films exhibited the reductions in the hydrophilicity, water vapor permeability, and the moisture content compared with pectin films. The single and composite films were then study for their stability at 40 °C and 75% RH for 90 d. Among the concentrations of shellac, 50% (w/w) could improve stability in terms of moisture protection after 90 d of storage, whereas lower concentrations of shellac (10% to 40%) could not achieve this. However, the higher shellac content also contributed to weaker mechanical properties. The mechanical improvement and stability of composite films with the incorporation of plasticizers were further investigated. Polyethylene glycol 400 and diethyl phthalate at a concentration of 10% were used. The results indicated that both plasticizers could enhance the mechanical characteristics and had a slight effect on moisture protection. The stability of pectin in terms of moisture protective properties could, therefore, be modified through the fabrication of composite films with hydrophobic polymers, that is, shellac and the addition of proper plasticizers to enhance mechanical properties, which could offer wide applications for edible film in food, agro, and pharmaceutical industries. The composite film with 50% shellac could improve moisture protective properties of pectin film. Adding a plasticizer could build up the higher mechanical characteristics of composite film. Stability of pectin could be modified by fabrication of composite films with proper content of shellac and plasticizer. © 2017 Institute of Food Technologists®.

  4. Capturing Plastic Surgery on Film-Making Reconstruction Visible.

    Science.gov (United States)

    Lunger, Alexander; Ismail, Tarek; Sarraf, Namita; Epple, Christian; Schaefer, Kristin Marit; Schaefer, Dirk J

    2017-09-01

    The Swiss Plastic Surgery Association (https://plasticsurgery.ch/en/) decided to produce a corporate video to illustrate the concept of "plastic surgery of confidence" to the public. We show the diversity of specializations and the vast range of tasks that surgeons passionately handle day in and day out. We wanted to convey 2 main messages: first, that plastic surgery is more than just cosmetic surgery, and second, that plastic surgery in Switzerland is synonymous with quality and confidence. We selected 17 topics that we felt had good filmic potential and would best explain to the public what plastic surgery is about. This included the selection of appropriate patients, experts, and locations from all over the country. We thought it crucial to show the initial preoperative situation, as only in this case would the achievement of reconstruction be evident and comprehensive to the layman audience. The actual production was filmed in 5 different locations and took 5 days of shooting. We recorded 17 surgeons, 9 patients, and about 30 voluntary background actors. From 23 hours of footage, we created a 7 minute, 22 second corporate video, recorded in 3 of the Swiss national languages. The video was presented to the public online in June 2016, on the same day as the National Open Day of Plastic Surgery in Switzerland. The video is available online. We evaluated the impact of the video using a questionnaire for lay people and observed that it could substantially improve the perception of our specialty, especially regarding the reconstructive aspect. We feel that a freely available corporate video is a very useful means to promote plastic surgery and help patients better understand what it is all about.

  5. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    Science.gov (United States)

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Basic Strain Gradient Plasticity Theories with Application to Constrained Film Deformation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, John W.

    2011-01-01

    films: the compression or extension of a finite layer joining rigid platens. Full elastic-plastic solutions are obtained for the same problem based on a finite element method devised for the new class of flow theories. Potential difficulties and open issues associated with the new class of flow theories......A family of basic rate-independent strain gradient plasticity theories is considered that generalize conventional J(2) deformation and flow theories of plasticity to include a dependence on strain gradients in a simple way. The theory builds on three recent developments: the work of Gudmundson (J....... Mech. Phys. Solids 52 (2004), 1379-1406) and Gurtin and Anand (J. Mech. Phys. Solids 57 (2009), 405-421), proposing constitutive relations for flow theories consistent with requirements of positive plastic dissipation; the work of Fleck and Willis (J. Mech. Phys. Solids 57 (2009), 161-177 and 1045...

  7. Evaluation of retail fresh meat packagings covered with stretch films of plasticized PVC and non-PVC alternatives

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Togeskov, P.; Hallas, J.

    2004-01-01

    The characteristics and performance of several non-PVC stretch films were compared to those of plasticized PVC. Initially the main polymer components Of the film were identified by infrared spectrometry and differential scanning calorimetry. The differences between films in mechanical properties......, such as puncture resistance and tensile strength, varied about a factor of two, while the differences in elongation at break were considerably higher. Plasticized PVC showed properties somewhere in the middle. The water vapour transmission was highest for PVC, while its permeability to oxygen was the lowest...

  8. Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture

    Science.gov (United States)

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-01-01

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation. PMID:23712218

  9. Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture.

    Science.gov (United States)

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-05-10

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.

  10. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film.

    Science.gov (United States)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-09-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg(-1) with a median value of 1.70 mg kg(-1), and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Plasticity margin recovery during annealing after cold deformation

    International Nuclear Information System (INIS)

    Bogatov, A.A.; Smirnov, S.V.; Kolmogorov, V.L.

    1978-01-01

    Restoration of the plasticity margin in steel 20 after cold deformation and annealing at 550 - 750 C and soaking for 5 - 300 min was investigated. The conditions of cold deformation under which the metal acquires microdefects unhealed by subsequent annealing were determined. It was established that if the degree of utilization of the plasticity margin is psi < 0.5, the plasticity margin in steel 20 can be completely restored by annealing. A mathematical model of restoration of the plasticity margin by annealing after cold deformation was constructed. A statistical analysis showed good agreement between model and experiment

  12. Effect of Sorbitol Plasticizer on the Structure and Properties of Melt Processed Polyvinyl Alcohol Films.

    Science.gov (United States)

    Tian, Huafeng; Liu, Di; Yao, Yuanyuan; Ma, Songbai; Zhang, Xing; Xiang, Aimin

    2017-12-01

    Poly (vinyl alcohol) (PVA) possesses wide applications as food packaging materials, but is difficult to melt process for its strong inter/intra hydrogen bonding. In this work, flexible PVA films with different content of sorbitol plasticizers were prepared by melt processing with the assistance of water. And the influence of sorbitol plasticizer content on the crystallinity, optical transparency, water-retaining capability, mechanical properties, thermal stability and oxygen and water permeability were investigated. The results indicated that sorbitol dramatically improved the melt processing ability of PVA. Sorbitol could interact with PVA to form strong hydrogen bonding interactions, which would decrease the original hydrogen bonding of the matrix, resulting in the decrease of crystallinity degrees. The glass transition, melting and crystallization peak temperatures decreased with the increase of sorbitol. All the films exhibited fine optical transparency. The water retaining capability were improved with the increase of sorbitol. Especially, an increase in elongation at break and decrease in Young's modulus and tensile strength were observed indicating good plasticizing effect of sorbitol on PVA films. In addition, the PVA films prepared in this work exhibited fine barrier properties against oxygen and water, suggesting wide application potential as packaging materials. © 2017 Institute of Food Technologists®.

  13. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  14. A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater

    Science.gov (United States)

    Ye, Yewei; Jia, Shujuan; Zhang, Dawei; Liu, Wei; Zhao, Haichao

    2018-03-01

    The thin and thick diamond-like carbon (DLC) films were prepared by unbalanced magnetron sputtering technique on 304L stainless steels and (100) silicon wafers. Microstructure, mechanical, corrosion and tribological properties were systematically investigated by SEM, Raman, nanoindenter, scratch tester, modulab electrochemical workstation and R-tec multifunctional tribological tester. Results showed that the adhesion force presented a descending trend with the growth in soaking time. The adhesion force of the thin DLC film with high residual compressive stress (‑3.72 GPa) was higher than that of the thick DLC film (‑2.96 GPa). During the corrosion test, the thick DLC film showed a higher impendence and a lower corrosion current density than the thin DLC film, which is attributed to the barrier action of large thickness. Compared to bare 304L substrate, the friction coefficients and wear rates of DLC films in seawater were obviously decreased. Meanwhile, the thin DLC film with ideal residual compressive stress, super adhesion force and good plastic deformation resistance revealed an excellent anti-wear ability in seawater.

  15. Specific migration of di-(2-ethylhexyl)adipate (DEHA) from plasticized PVC film: results from an enforcement campaign

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Breindahl, T.

    1998-01-01

    Units. Initially, all films were screened for the migration into isooctane (exposed 2 h at 40 degrees C) of DEHA and other potentially present low molecular weight plasticizers using full scanning mass spectrometry. Films showing a substantial migration of DEHA were further tested with olive oil...... according to the declared field of application (exposed for 10 days at 40 degrees C). In 47 of the 49 films the migrate contained a substantial amount of DEHA. In 46 films the migration exceeded the specific migration limit of 3 mg/dm(2) after use of the relevant reduction factor given in legislation......) and these films were deemed to be illegal according to their present declared field of application as given by their labelling. In a few cases, some migration of the plasticizer di-n-butyl phthalate was seen....

  16. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    OpenAIRE

    SU Yong-zhong; ZHANG Ke; LIU Ting-na; WANG Ting

    2016-01-01

    A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP) in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different texture...

  17. Biocompatibility of acrylic resin after being soaked in sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Nike Hendrijatini

    2009-06-01

    Full Text Available Background: Acrylic resin as basic material for denture will stay on oral mucosa for a very long time. The polymerization of acrylic resin can be performed by conventional method and microwave, both produce different residual monomer at different toxicity. Acrylic resin can absorb solution, porous and possibly absorb disinfectantt as well, that may have toxic reaction with the tissue. Sodium Hypochlorite as removable denture disinfectant can be expected to be biocompatible to human body. The problem is how biocompatible acrylic resin which has been processed by conventional method and microwave method after being soaked in sodium hypochlorite solution. Purpose: The aim of this study was to understand in vitro biocompatibility of acrylic resin which has polimerated by conventional method and microwave after being soaked in sodium hypochlorite using tissue culture. Methods: Four groups of acrylic resin plate were produced, the first group was acrylic resin plate with microwave polymeration and soaked in sodium hypochlorite, the second group was acrylic resin plate with microwave polymeration but not soaked, the thirdwas one with conventional method and soaked and the last group was one with conventional method but not soaked, and in 1 control group. Each group consists of 7 plates. Biocompatibility test was performed in-vitro on each material using fibroblast tissue culture (BHK-21 cell-line. Result: The percentage between living cells and dead cells from materials which was given acrylic plate was wounted. The data was analyzed statistically with T test. Conclusion: The average value of living cells is higher in acrylic resin poimerization using microwave method compared to conventional method, in both soaked and non soaked (by sodium hypochlorite group. This means that sodium hypochlorite 0.5% was biocompatible to the mouth mucosa as removable denture disinfectant for 10 minutes soaking and washing afterwards.

  18. Towards a new thickness-independent gamma radiation plastic film dosimeter

    International Nuclear Information System (INIS)

    Vieira, Marli Barbosa; Araujo, Patricia L.; Araujo, Elma S.

    2013-01-01

    A 100% national single-use gamma radiation plastic film dosimeter is presented in this work. A new approach for the development of this material allowed a step forward in the performance of poly (methyl metacrylate) films (PMMA) colored with bromothymol blue (BTB) acid-base indicator. We manage to improve dosimeter performance by introducing a gamma radiation insensitive dye to compensate film thickness variations. By doing so, we were able to obtain consistent dose-response correlations within a set of samples presenting 46 to 110 micrometers in thickness. Hence, our PMMA/BTB-P film dosimeter is suitable to measure absorbed dose in the 2-100kGy range even when film thickness undergoes more than 100% of variation. In addition, dose response data remain practically unaltered for four months after the exposure, when dosimeter films are kept in dark conditions and under refrigeration. The radiation effects on the optical properties were evaluated for Ultraviolet-Visible (UV-Vis) spectrophotometric analysis. Data of characteristic dose-response correlation in terms of changes in the maximum UV-Vis absorption due to radiation, and stability in time are also described. This potential new product is a promising tool for industrial radiation facilities, especially in gamma sterilization of medical supplies. (author)

  19. Sintering effect on the optoelectronic characteristics of HgSe nanoparticle films on plastic substrates

    International Nuclear Information System (INIS)

    Byun, Kwangsub; Cho, Kyoungah; Kim, Sangsig

    2010-01-01

    The optoelectronic characteristics of HgSe nanoparticle films spin-coated on flexible plastic substrates are investigated under the illumination of 1.3 μm wavelength light. The sintering process improves the optoelectronic characteristics of the HgSe nanoparticle films. The photocurrent of the sintered HgSe nanoparticle films under the illumination of 1.3 μm wavelength light is approximately 20 times larger in magnitude than that of the non-sintered films in air at room temperature. Moreover, the endurance of the flexible optoelectronic device investigated by the continuous substrate bending test reveals that the photocurrent efficiency changes negligibly up to 250 cycles.

  20. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Directory of Open Access Journals (Sweden)

    Vodnar Dan C

    2012-07-01

    Full Text Available Abstract Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C for 10 days and at refrigerated temperature (4°C for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea

  1. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer

    Science.gov (United States)

    Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.

    2018-01-01

    A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).

  2. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    Science.gov (United States)

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  4. Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films

    Science.gov (United States)

    Poly (vinyl alcohol) (PVA)/chitosan (CS) blended films plasticized by glycerol were investigated using mechanical testing, atomic force microscopy (AFM), differential scanning calorimetry (DSC) and FTIR spectroscopy, with primary emphasis on the effects of the glycerol content and the molecular weig...

  5. Preparation of the Crosslinked Polyethersulfone Films by High Temperature Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Li, J.

    2006-01-01

    The aromatic polymers, mainly so called engineering plastics, were famed for the good stability under irradiation. However, high temperature irradiation of the aromatic polymers can result the crosslinked structure, due to the improved molecular mobility. Polyethersulfone (PES) is a wide used engineering plastic because of the high performance and high thermal stability. PES films were irradiated by electron-beam under nitrogen atmosphere above the glass transition temperature and then the covalently crosslinked PES (RX-PES) films were obtained. The irradiations were also performed at ambient temperature for comparison. The network structure formation of the RX-PES films was confirmed by the appearance of the gel, which were measured by soaking the irradiated PES films in the N,N-dimethylformamide (DMF) at room temperature. When the PES films were irradiated to 300 kGy, there was gel appeared. The gel percent increased with the increasing in the absorbed dose, and saturated when the absorbed dose exceeded 1200 kGy. However, there was no gel formed for the PES films irradiated at ambient temperature even to 2250 kGy. The G(S) and G(X) were calculated according to the Y-crosslinking mechanism. The results values are consistent in error range. G(S) of 0.10 and G(X) of 0.23 were obtained. As calculated, almost all the macromolecular radicals produced by chain scission were used for crosslinking. Also, the glass transition temperature of the RX-PES films increased with the increasing in the absorbed doses, while the glass transition temperature of the PES films irradiated at ambient temperature decreased with the increasing in the absorbed doses. The blending films of the PES with FEP or ETFE were prepared and the high temperature irradiation effects were also studies

  6. A Sustainable Performance Assessment Framework for Plastic Film Supply Chain Management from a Chinese Perspective

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2016-10-01

    Full Text Available Academics’ and practitioners’ interest in sustainable supply chain management has received great concern in recent years. The application of biaxially-oriented polypropylene (BOPP plastic film has had a significant influence on the economic, environmental and social performance of supply chain management. However, research on the integration of these three sustainable dimensions is still rare in this field. In this paper, we identify sustainability criteria based on a triple bottom line approach (economic benefit, environmental protection and social responsibility from the supply chain perspective, develop a hybrid multi-criteria decision making framework to evaluate the criteria and select alternatives and apply the proposed approach to a real case study at a focal BOPP plastic film company in China. In the framework, a fuzzy analytical hierarchy process (FAHP is used to determine the performance criteria weights and a fuzzy technique for order performance by similarity to ideal solution (FTOPSIS is applied to rank the alternatives. The case study finds that the economic dimension was the most important aspect with environmental second and social third. The results also verify the effectiveness of the proposed framework. This paper develops an effective and systematic approach for decision makers to conduct evaluations and select optimal alternatives for focal plastic film companies.

  7. Poly-crystallinity of indium-tin-oxide films improved by using simultaneous ion beam and heat treatment of the plastic substrate

    International Nuclear Information System (INIS)

    Son, Phil Kook; Kim, Tae Hyung; Choi, Suk Won; Gwag, Jin Seog

    2012-01-01

    The combined treatment effects of an ion beam with directionality and heat of a low temperature on a plastic substrate was investigated as a method to increase the electrical conductivity of indium tinoxide (ITO) films deposited on plastic substrate surfaces at low temperatures. Polyethylene terephthalate (PET) surface treatment by using an ion beam at low temperature (120 .deg. C), which can be applied to plastic substrates, improves the conductivity of ITO films. X-ray diffraction indicates that ITO films deposited on PET surfaces treated simultaneously by using an ion beam and heat of a low temperature have an almost polycrystalline structure even though they have small amorphous party on. As a supplementary measurement, the contact angle showed that the polycrystalline structure was due to a self-assembly effect at the PET surfaces. Consequently, the electrical conductivity of an ITO film deposited by using the proposed technique is three times higher than that of an ITO film treated only with heat of low temperature due to the improved polycrystalline structure.

  8. Poly-crystallinity of indium-tin-oxide films improved by using simultaneous ion beam and heat treatment of the plastic substrate

    Science.gov (United States)

    Son, Phil Kook; Kim, Taehyung; Choi, Suk-Won; Gwag, Jin Seog

    2012-08-01

    The combined treatment effects of an ion beam with directionality and heat of a low temperature on a plastic substrate was investigated as a method to increase the electrical conductivity of indiumtin-oxide (ITO) films deposited on plastic substrate surfaces at low temperatures. Polyethylene terephthalate (PET) surface treatment by using an ion beam at low temperature (120 °C), which can be applied to plastic substrates, improves the conductivity of ITO films. X-ray diffraction indicates that ITO films deposited on PET surfaces treated simultaneously by using an ion beam and heat of a low temperature have an almost polycrystalline structure even though they have small amorphous party on. As a supplementary measurement, the contact angle showed that the polycrystalline structure was due to a self-assembly effect at the PET surfaces. Consequently, the electrical conductivity of an ITO film deposited by using the proposed technique is three times higher than that of an ITO film treated only with heat of low temperature due to the improved polycrystalline structure.

  9. Rats demonstrate helping behavior toward a soaked conspecific.

    Science.gov (United States)

    Sato, Nobuya; Tan, Ling; Tate, Kazushi; Okada, Maya

    2015-09-01

    Helping behavior is a prosocial behavior whereby an individual helps another irrespective of disadvantages to him or herself. In the present study, we examined whether rats would help distressed, conspecific rats that had been soaked with water. In Experiment 1, rats quickly learned to liberate a soaked cagemate from the water area by opening the door to allow the trapped rat into a safe area. Additional tests showed that the presentation of a distressed cagemate was necessary to induce rapid door-opening behavior. In addition, it was shown that rats dislike soaking and that rats that had previously experienced a soaking were quicker to learn how to help a cagemate than those that had never been soaked. In Experiment 2, the results indicated that rats did not open the door to a cagemate that was not distressed. In Experiment 3, we tested behavior when rats were forced to choose between opening the door to help a distressed cagemate and opening a different door to obtain a food reward. Irrespective of how they learned to open the door, in most test trials, rats chose to help the cagemate before obtaining a food reward, suggesting that the relative value of helping others is greater than the value of a food reward. These results suggest that rats can behave prosocially and that helper rats may be motivated by empathy-like feelings toward their distressed cagemate.

  10. Plastic flow and preferred orientation in molybdenum and zirconium films

    International Nuclear Information System (INIS)

    Window, B.

    1989-01-01

    X-ray diffraction measurements on samples of molybdenum and zirconium growth with ion assistance at low temperatures support the occurrence of plastic flow during growth, provided the level of bombardment is high enough. As the energy of the argon ions was increased, the lattice strain in the growth direction increased to a maximum before decreasing slowly. That this is a plastic flow transition is shown by the independence of the maximum strain on preparation conditions and by the changes in microstructure. In particular, the grain size in the growth direction decreased and the preferred orientation favored the usual wire drawing textures of these metals. For the zirconium films this involved a change in preferred orientation from a (00.2) to a (10.0) texture. A reduction in strain is observed at high bombardment levels

  11. Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid

    OpenAIRE

    Burgos, Nuria; Martino, Verónica P.; Jiménez, Alfonso

    2013-01-01

    Poly(lactic acid) (PLA) was melt-blended with a bio-based oligomeric lactic acid (OLA) plasticizer at different concentrations between 15 wt% and 25 wt% in order to enhance PLA ductility and to get a fully biodegradable material with potential application in films manufacturing. OLA was an efficient plasticizer for PLA, as it caused a significant decrease on glass transition temperature (Tg) while improving considerably ductile properties. Only one Tg value was observed in all cases and no ap...

  12. Effect of plastic strain on shape memory characteristics in sputter-deposited Ti-Ni thin films

    International Nuclear Information System (INIS)

    Nomura, K.

    1995-01-01

    The plastic strain which is introduced during cooling and heating under a constant stress has an influence upon the transformation and deformation characteristics of sputter-deposited Ti-Ni shape memory alloy thin films. With increasing the accumulated plastic strain, Ms rises and recovery strain increases. The changes in such characteristics are due to the internal stress field that is formed by plastic deformation. However, the change in Ms in Ti-50.5at%Ni is larger than that in Ti-48.9at%Ni, although the plastic strain in the former is lower than that in the latter. In order to understand this point, the effective internal stresses were estimated in both alloys; the internal stress in the former is more effectively created by the introduction of plastic strain than in the latter. (orig.)

  13. Formation of sterilized edible-films based on caseinates: Effects of calcium and plasticizers

    International Nuclear Information System (INIS)

    Mezgheni, E.; D'Aprano, G.; Lacroix, M.

    1998-01-01

    Gamma-irradiation was used to produce free-standing sterilized edible films based on caseinate. The effect of calcium ions (Ca 2+ ) and two plasticizers, namely propylene glycol (PG) and triethylene glycol (TEG) were investigated, as well as the effect of the irradiation on both the gel formation and mechanical properties of the resulting films. Gamma-irradiation provoked formation of bityrosine, i.e. crosslinks, accounting for the increase of the puncture strength of films. The presence of PG or TEG enhanced the formation of crosslinks, leading to an improved mechanical strength of films. TEG was found to interact more favorably with the caseinate than PG, being responsible for the improved film extensibility. Addition of CA 2+ caused the formation of gels. The breaking strength of gels was directly related to the concentration of Ca 2+ , while the puncture strength of films was found to be almost independent. Moreover, high irradiation dose seemed to affect the protein structure, accounting for the decrease of the breaking strength of gels and for the depreciation of the mechanical behavior of films

  14. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants

    OpenAIRE

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-01-01

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth ind...

  15. Gentle, fast and effective crystal soaking by acoustic dispensing.

    Science.gov (United States)

    Collins, Patrick M; Ng, Jia Tsing; Talon, Romain; Nekrosiute, Karolina; Krojer, Tobias; Douangamath, Alice; Brandao-Neto, Jose; Wright, Nathan; Pearce, Nicholas M; von Delft, Frank

    2017-03-01

    The steady expansion in the capacity of modern beamlines for high-throughput data collection, enabled by increasing X-ray brightness, capacity of robotics and detector speeds, has pushed the bottleneck upstream towards sample preparation. Even in ligand-binding studies using crystal soaking, the experiment best able to exploit beamline capacity, a primary limitation is the need for gentle and nontrivial soaking regimens such as stepwise concentration increases, even for robust and well characterized crystals. Here, the use of acoustic droplet ejection for the soaking of protein crystals with small molecules is described, and it is shown that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 min. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables the targeted placement of the compound/solvent away from crystals and towards drop edges, allowing gradual diffusion of solvent across the drop. This ensures both an improvement in the reproducibility of X-ray diffraction and increased solvent tolerance of the crystals, thus enabling higher effective compound-soaking concentrations. The technique is detailed here with examples from the protein target JMJD2D, a histone lysine demethylase with roles in cancer and the focus of active structure-based drug-design efforts.

  16. Study of Seed Germination by Soaking Methode of Cacao (Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    Sulistyani Pancaningtyas

    2014-12-01

    Full Text Available Study of germination methods conduct to get information about seed viability based on germination rate, percentage of germination and vigority. Germination methods was studied to get the efficiency and effectivity of germination, easy to handle, low costs with high vigority. Sand and gunny sack methods  for germination, need extensive place  and 3-4 days germination period after planting. This research will study the alternative of germination method with soaking. This method can be accelerating  germination rate and effectively place usage without decreasing the quality of cacao seedling.The research was done at Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institue. This research consist of two experiment was arranged based on factorial completely random design. First experiment will observed to compared germination rate and the second experiment will observed seedling quality between soaking and wet gunny sack germination method.The results showed that length of radicel on soaking method longer than wet gunny sack method. Growth of radicel started from 2 hours after soaking, moreover length of radicel at 4 hours after soaking have significant different value with gunny sack method. On 24 hours after soaking have 3,69 mm and 0,681 mm on wet gunny sack treatment. Except lengt of hipocotyl, there is not different condition between seedling that out came  from soaking and wet gunny sack method. Length of hipocotyl on 36 hours after soaking have 9,15 cm and significant different between wet gunny sack germination method that have 5,40 cm. Keywords : seed germination, soaking method, Theobroma cacao L., cocoa seedlings

  17. [The effect of disinfectant soaking on dental gypsum model size].

    Science.gov (United States)

    Zhu, Cao-yun; Xu, Yun-wen; Xu, Kan

    2012-12-01

    To study the influence of disinfectant soaking on the dimensional stability of three kinds of dental gypsum model. Three commonly used gypsums ( type III,IV,Vtype) in clinic were used to make 24 specimens for 50 mm×15 mm×10 mm in size. One hour after release, the specimens were placed for 24 h. A digital caliper was used to measure the size of the gypsum model. Distilled water immersion was as used control, glutaraldehyde disinfectant and Metrix CaviCide disinfectant soaking were used for the experimental group. After soaking for 0.5h, the gypsum models were removed and placed for 0.5 h, 1 h, 2 h, 24 h. The size of the models was measured again using the same method. The data was analyzed with SPSS10.0 software package. The initial gypsum model length was (50.07±0.017) mm, (50.048±0.015) mm and (50.027±0.015) mm. After soaking for different times, the size of the model changed little, and the dimensions changed less than 0.01%. The results show that disinfectant soaking has no significant effect on dental model dimensions.

  18. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses.

    Science.gov (United States)

    Wang, Jun; Chen, Gangcai; Christie, Peter; Zhang, Manyun; Luo, Yongming; Teng, Ying

    2015-08-01

    Phthalate esters (PAEs) are suspected of having adverse effects on human health and have been frequently detected in soils and vegetables. The present study investigated their occurrence and composition in plastic film greenhouse soil-vegetable systems and assessed their potential health risks to farmers exposed to these widespread pollutants. Six priority control phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP), were determined in 44 plastic film greenhouse vegetables and corresponding soils. Total PAEs ranged from 0.51 to 7.16mgkg(-1) in vegetables and 0.40 to 6.20mgkg(-1) in soils with average concentrations of 2.56 and 2.23mgkg(-1), respectively. DnBP, DEHP and DnOP contributed more than 90% of the total PAEs in both vegetables and soils but the proportions of DnBP and DnOP in vegetables were significantly (p3.00mgkg(-1) but were plastic film greenhouses. Health risks were mainly by exposure through vegetable consumption and soil ingestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of soaking and acidification on physicochemical properties of calcium-fortified rice.

    Science.gov (United States)

    Sirisoontaralak, Porntip; Limboon, Pailin; Jatuwong, Sujitra; Chavanalikit, Arusa

    2016-06-01

    Calcium-fortified rice was prepared by soaking milled rice in calcium lactate solution, steaming and drying, and physicochemical properties were determined to evaluate effects of calcium concentration (0, 30, 50 g L(-1) ), soaking temperature (ambient temperature, 40 °C, 60 °C) and acidification. Calcium-fortified rice had less lightness. More total solid loss was observed, especially at high soaking temperature. Harder texture was detected with increased calcium concentration. Calcium fortification lowered pasting viscosity of milled rice. Panelists accepted all fortified rice; however, only rice soaked at 50 g L(-1) concentration could be claimed as a good source of calcium. Increasing of soaking temperature induced more penetration of calcium to rice kernels but calcium was lost more easily after washing. With addition of acetic acid to the soaking solution, enriched calcium content was comparable to that of high soaking temperature but with better retention after washing and calcium solubility was improved. Acid induced reduction of lightness and cooked rice hardness but increased total solid loss and pasting viscosity. Although the taste of acetic acid remained, panelists still accepted the fortified rice. Calcium-fortified rice (190.47-194.3 mg 100 g(-1) ) could be successfully produced by soaking milled rice in 50 g L(-1) calcium lactate solution at 40 °C or at ambient temperature with acidification. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Preparation of Polyvinyl Alcohol/Xylan Blending Films with 1,2,3,4-Butane Tetracarboxylic Acid as a New Plasticizer

    Directory of Open Access Journals (Sweden)

    Cun-dian Gao

    2014-01-01

    Full Text Available Miscible, biodegradable polyvinyl alcohol (PVA/xylan blending films were firstly prepared in the range of the PVA/xylan weight ratio from 1 : 2 to 3 : 1 by casting method using 1,2,3,4-butane tetracarboxylic acid (BTCA as a new plasticizer. The properties of blending films as functions of PVA/xylan weight ratio and BTCA amount were discussed. XRD and FT-IR were applied to characterize the blending films. Experimental results indicated that tensile strength (TS and elongation at break (EAB of blending films decreased along with the decrease of the PVA/xylan weight ratio. Both of TS and EAB firstly increased and then decreased as the amount of BTCA was increased. More importantly, blending films were biodegraded almost by 41% with an addition of 10% BTCA in blending films within 30 days in soil. For all hydroxyl functionalized polymers (xylan and PVA, their molecular interactions and miscibility with BTCA endowed blending films with the biocompatibility and biodegradability. Therefore, these blending films are environmentally friendly materials which could be applied as biodegradable plastics for food packaging and agricultural applications.

  1. Effect of Static Soaking Under Different Temperatures on the Lime Stabilized Gypseous Soil

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al-Zubaydi

    2013-04-01

    Full Text Available This study concerns with the effect of long-term soaking on the unconfined compressive strength, loss in weight and gypsum dissolution of gypseous soil stabilized with (4% lime, take into account the following variables: initial water content, water temperature, soaking duration. The results reveals that, the unconfined compressive strength was dropped, and the reduction in values was different according to the initial water content and water temperature, so that the reduction of the unconfined compressive strength of samples soaked in water at low temperatures (50 and 250 C was greater than those soaked in water temperatures  at (490 and 600 C. The results obtained shows that the increase in soaking period decreases the percentage amount of gypsum and loss in weight for all water temperatures and soaking durations.

  2. Use of plastic films for weed control during field establishment of micropropagated hardwoods

    Science.gov (United States)

    J. W. Van Sambeek; John E. Preece; Carl A. Huetteman; Paul L. Roth

    1995-01-01

    This study compares the use of plastic films to conventional methods for establishing hardwoods on a recently cultivated old field site using 1-year-old micropropagated plantlets of white ash (Fraxinus americana L.) and silver maple (Acer saccharinum L.). After one growing season in the field, height of plantlets with all weed...

  3. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so

  4. Plastic-Film Mulching for Enhanced Water-Use Efficiency and Economic Returns from Maize Fields in Semiarid China

    OpenAIRE

    Zhang, Peng; Wei, Ting; Cai, Tie; Ali, Shahzad; Han, Qingfang; Ren, Xiaolong; Jia, Zhikuan

    2017-01-01

    Film mulch has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid areas of Northwest China. To find more sustainable and economic film mulch methods for alleviating drought stress in semiarid region, it is necessary to test optimum planting methods in same cultivation conditions. A field experiment was conducted during 2013 and 2014 to evaluate the effects of different plastic film mulch methods on soil wate...

  5. Soaking grapevine cuttings in water: a potential source of cross contamination by micro-organisms

    Directory of Open Access Journals (Sweden)

    Helen WAITE

    2013-09-01

    Full Text Available Grapevine nurseries soak cuttings in water during propagation to compensate for dehydration and promote root initiation. However, trunk disease pathogens have been isolated from soaking water, indicating cross contamination. Cuttings of Vitis vinifera cv. Sunmuscat and V. berlandieri x V. rupestris rootstock cv. 140 Ruggeri were immersed in sterilized, deionised water for 1, 2, 4, 8 and 16 h. The soaking water was cultured (25°C for 3 days on non-specific and specific media for fungi and bacteria. The base of each cutting was debarked and trimmed and three 3 mm thick, contiguous, transverse slices of wood cultured at 25°C for 3 days. The soaking water for both cultivars became contaminated with microorganisms within the first hour. Numbers of fungi iso-lated from the wood slices soaked for one hour were significantly greater than those from non-soaked cuttings. The number of bacterial colonies growing from the wood slices increased after soaking for 2‒4 h in Sunmuscat. In a second experiment Shiraz cuttings were soaked for 1, 2, 4, 8 and 24 h. The soaking water became contaminated within the first hour but only the bacterial count increased significantly over time. Microorganisms also established on the container surfaces within the first hour although there were no significant increases over 24 h. These results confirm that soaking cuttings is a potential cause of cross contamination and demonstrate contamination of cuttings occurs after relatively short periods of soaking. Avoiding exposing cuttings to water will reduce the transmission of trunk diseases in propagation.

  6. Yeast population dynamics during prefermentative cold soak of Cabernet Sauvignon and Malbec wines.

    Science.gov (United States)

    Maturano, Y Paola; Mestre, M Victoria; Esteve-Zarzoso, Braulio; Nally, María Cristina; Lerena, María Cecilia; Toro, María Eugenia; Vazquez, Fabio; Combina, Mariana

    2015-04-16

    Prefermentative cold soak is a widely used technique in red wine production, but the impact on the development of native yeast species is hardly described. The aim of this work was to analyse the dynamics and diversity of yeast populations during prefermentative cold soak in red wines. Three different temperatures (14 ± 1 °C; 8 ± 1 °C and 2.5 ± 1 °C) were used for prefermentative cold soak in Cabernet Sauvignon and Malbec grape musts. Saccharomyces and non-Saccharomyces populations during cold soak and alcoholic fermentation were analysed. In addition, the impact on chemical and sensory properties of the wines was examined. Yeast dynamics during prefermentative cold soak were temperature dependent. At 14 ± 1 °C, the total yeast population progressively increased throughout the cold soak period. Conversely, at 2.5 ± 1 °C, the yeast populations maintained stable during the same period. Prefermentative cold soak conducted at 14±1°C favoured development of Hanseniospora uvarum and Candida zemplinina, whereas cold soak conducted at 8 ± 1 °C favoured growth of Saccharomyces cerevisiae. At 2.5 ± 1 °C, no changes in yeast species were recorded. Acidity and bitterness, two sensory descriptors, appear to be related to wines produced with prefermentative cold soak carried out at 14 ± 1 °C. This fact could be associated with the increase in non-Saccharomyces during the prefermentation stage. Our results emphasise the importance of the temperature as a determinant factor to allow an increase in non-Saccharomyces population during prefermentative cold soak and consequently to modify sensorial attributes of wines as well as their sensorial impact. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: An in situ TEM study

    International Nuclear Information System (INIS)

    Mompiou, F.; Legros, M.; Boé, A.; Coulombier, M.; Raskin, J.-P.; Pardoen, T.

    2013-01-01

    The nature of the elementary deformation mechanisms in small-grained metals has been the subject of numerous recent studies. In the submicron range, mechanisms other than intragranular dislocation mechanisms, such as grain boundary (GB)-based mechanisms, are active and can explain the deviations from the Hall–Petch law. Here, we report observations performed during in situ transmission electron microscopy (TEM) tensile tests on initially dislocation-free Al thin films with a mean grain size around 250 nm prepared by microfabrication techniques. Intergranular plasticity is activated at the onset of plasticity. It consists of the motion of dislocations in the GB plane irrespective of the GB character. Surface imperfections, such as GB grooves, are supposed to trigger intergranular plasticity. At larger deformations, the motion of the intergranular dislocations leads to GB sliding and eventually cavitation. In the meantime, GB stress-assisted migration and dislocation emission inside the grain from GB sources have also been observed. The observation of these different mechanisms during the deformation provides an important insight into the understanding of the mechanical properties of metallic thin films.

  8. THE INFLUENCE OF PRE-HEAT TREATMENT ON WHITE CAST IRONS PLASTICITY

    Directory of Open Access Journals (Sweden)

    T. M. Myronova

    2013-11-01

    Full Text Available Purpose. The development of heat treatment modes of white cast irons for structure changes in their eutectic constituent, namely in disturbing the monolithic structure of ledeburite colonies cementite structure and eutectic net continuity. Also the mentioned heat treatment modes are targeted to the eutectic net shift for the most suitable position from the point of plastic deforming. Methodology. The hypoeutectic white cast irons with 2.92…3.35 % carbon content and additionally alloyed by 3.18 % vanadium have been used as the research materials. The mentioned alloys have been pre-heat treated and hot twist tested. Findings. The research results showed that the carbide net breaking by plastic deforming leads to cast irons mechanical properties increasing but has difficulties in implementation due to the white cast irons low plasticity. The influence of different pre-heat treatment modes on structure and plasticity of white hypoeutectic cast irons have been investigated. They include the isotherm soaking under the different temperatures as well as multiply soakings and thermo-cycling. The influence of eutectic level, as well as pre heat treatment modes on different composition white cast irons hot plasticity have been investigated. Originality. It was determined that the heat treatment, which leads to double α→γ recrystallization under 860 – 950 °С and reperlitization under 720-680 °С results in significant increase of plasticity, as well as in un-alloyed and alloyed by vanadium white cast irons. It takes place due to carbide matrix phase separation in ledeburite colonies by new phase boundaries forming especially due to carbide transformations under vanadium alloying. Practical value. The implementation of pre-heat treatment with phase recrystallization resulted in hypoeutectic white cast irons plasticity increasing. The obtained level of cast iron plasticity corresponds to the one of carbide class steels, which ensures the successful

  9. Effect of Soaking Time on Proximate and Mineral Compositions and ...

    African Journals Online (AJOL)

    Effect of soaking time on some composition of yellow maize was investigated. Yellow maize seeds (Zea mays) were soaked in deionized water for 12, 24, 36 and 48 hours respectively followed by draining, drying and milling. The unsoaked seeds were milled and served as the control. Proximate and mineral compositions ...

  10. Effect of soaking seeds of flax on the ultimate strength of flaxes

    Directory of Open Access Journals (Sweden)

    E. I. Ponomareva

    2017-01-01

    Full Text Available There are one of ways to save peoples heath is eating food, what rich in fiber. To the recovery of polyunsarurated fatty acids, protein, mineral substances, fibers it recommended to eat flax seeds and its products. One of these products are flaxes. The purpose of the work was a rational choice of the duration of soaking seeds, providing strong reception of finished products. Founds that when hydrated of 10 to 30 minutes of the study setting almost unchanged. After 30 minutes soaking the tensile strength increased, and then decreased. The maximum value observed in the samples in which lasted 40 minutes soaking. Probably, due to the fact that upon contact with water 30 minutes before the moisture is adsorbed on the surface of flax seed are thus formed in a small amount of mucus. From 30 to 40 minutes soaking carbohydrates undergo hydrolysis inner layers of the endosperm and seed shell. While the water absorption capacity of flax reaches limits. Also increases the amount of mucus, and after 40 minutes soaking becomes excessive, resulting in reduced tensile strength of the finished product. Therefore, rational while soaking flax 40 minutes, providing the maximum value of the parameter under study. Flux thus, thanks to the ability of flax seed soaking and store slime forming after drying alpha-linolenic acid is a source of polyunsaturated fatty acids, dietary fibers, vitamins, minerals.

  11. Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques

    International Nuclear Information System (INIS)

    Doerner, M.F.; Gardner, D.S.; Nix, W.D.

    1986-01-01

    Substrate curvature and submicron indentation measurements have been used recently to study plastic deformation in thin films on substrates. In the present work both of these techniques have been employed to study the strength of aluminum and tungsten thin films on silicon substrates. In the case of aluminum films on silicon substrates, the film strength is found to increase with decreasing thickness. Grain size variations with film thickness do not account for the variations in strength. Wafer curvature measurements give strengths higher than those predicted from hardness measurements suggesting the substrate plays a role in strengthening the film. The observed strengthening effect with decreased thickness may be due to image forces on dislocations in the film due to the elastically stiffer silicon substrate. For sputtered tungsten films, where the substrate is less stiff than the film, the film strength decreases with decreasing film thickness

  12. Eruptive furunculosis following the soak and smear regimen.

    Science.gov (United States)

    Martires, Kathryn; Sukhdeo, Kumar; Meinhardt, Eric

    2015-02-18

    The 'soak and smear' regimen is a highly effective method for localised topical therapy employed by dermatologists for widespread inflammatory skin conditions. The regimen involves application of topical medication under occlusion after soaking in water. Complications from this treatment method are rare. We present a case of multiple, generalised methicillin-resistant Staphylococcus aureus (MRSA)-positive furuncles arising in a patient as an unexpected consequence of therapy. The case highlights an unanticipated risk of a commonly employed treatment amid an epidemic of MRSA in the community. 2015 BMJ Publishing Group Ltd.

  13. Influence of enriched soaking water on shiitake (Lentinus edodes (Berk. Singer mushroom yield and properties

    Directory of Open Access Journals (Sweden)

    Mohammad Ebrahim RANJBAR

    2017-12-01

    Full Text Available Shiitake is an edible mushroom native to East Asia. In the present research, the soaking water was targeted as the vehicle to enrich the substrate. The amount of nutrients in the substrate is severely reduced by mycelium growth and development during spawn running and browning period. Some part of this reduction can be compensated by soaking the substrate in the enriched soaking water. In this study, soaking water was enriched by some complement materials and enrichment effects on some important properties of shiitake mushroom were evaluated. The highest biological efficiency (69.88 % was gained with soaking the blocks in wheat bran extraction suspension. The highest dry matter of mushroom was obtained by rice bran extraction suspension as the enriched soaking water. The results of this research showed that some important properties of shiitake mushroom can be improved by soaking the blocks with enriched soaking water. According to the results, wheat bran extraction suspension was the best enriched solution to increase productivity of shiitake mushrooms and rice bran extraction suspension was suitable to improve quality of mushrooms.

  14. Microbial contamination of water-soaked cotton gauze and its cause.

    Science.gov (United States)

    Oie, S; Yoshida, H; Kamiya, A

    2001-01-01

    Seven in-use cotton gauze samples and three cotton balls soaked in sterile distilled water in canisters were investigated 7 days after they were prepared in hospital. All samples were contaminated with bacteria including 10(6) to 10(7) colony forming units/ml of Pseudomonas aeruginosa. In vitro viability tests using cotton gauze and cotton balls soaked in sterile distilled water revealed rapid proliferation of P. aeruginosa, Serratia marcescens and Candida albicans. Since the cotton gauze and the cotton balls were soaked in water containing nutrients, such as protein and glucose, these materials may be readily contaminated with bacteria including P. aeruginosa. Thus, when using cotton gauze and cotton balls containing water, microbial contamination should be expected.

  15. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    Science.gov (United States)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  16. Composition of legume soaking water and emulsifying properties in gluten-free bread.

    Science.gov (United States)

    Huang, San; Liu, Yuling; Zhang, Weihan; Dale, Kylie J; Liu, Silu; Zhu, Jingnan; Serventi, Luca

    2018-04-01

    Soaking of legumes results in the loss of macronutrients, micronutrients and phytochemicals. Fibre, protein and phytochemicals found in legumes exert emulsifying activity that may improve the structure and texture of gluten-free bread. The legume soaking water of haricot beans, garbanzo chickpeas, whole green lentils, split yellow peas and yellow soybeans were tested in this study for functional properties and use as food ingredients. Composition, physicochemical properties and effect on the quality of gluten-free bread were determined for each legume soaking water. Haricot beans and split yellow peas released the highest amount of solids in the legume soaking water: 1.89 and 2.38 g/100 g, respectively. Insoluble fibre was the main constituent of haricot beans legume soaking water, while water-soluble carbohydrates and protein were the major fraction of split yellow peas. High quantities of phenolics (∼400 µg/g) and saponins (∼3 mg/g) were found in the legume soaking water of haricot beans, whole green lentils and split yellow peas. High emulsifying activity (46 and 50%) was found for the legume soaking water of garbanzo chickpeas and split yellow peas, probably due to their protein content and high ratio of water-soluble carbohydrates to dry matter. Such activity resulted in softer texture of the gluten-free bread. A homogeneous structure of crumb pores was found for split yellow peas, opposing that of whole green lentils. A balance between the contents of yeast nutrients and antinutrients was the likely basis of the different appearances.

  17. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  18. [Effects of plastic film mulching and nitrogen application rate on net global warming potential in semiarid rain-fed maize cropland].

    Science.gov (United States)

    Liu, Jian Can; Wang, Ze Lin; Yue, Shan Chao; Li, Shi Qing

    2018-04-01

    A one-year field experiment was conducted to evaluate the effects of plastic film mulching (FM) and nitrogen application rates applied to rain-fed maize fields on net global warming potential (Net GWP) and greenhouse gas intensity (GHGI) at the Changwu Agricultural and Ecological Experimental Station. Both GWP and GHGI were affected by the plastic film mulching and nitrogen application rate. Under the FM treatment, maize yield ranged from 1643 to 16699 kg·hm -2 , the net GWP (CO 2 -eq) ranged from 595 to 4376 kg·hm -2 ·a -1 , and the GHGI (CO 2 -eq) ranged from 213 to 358 kg·t -1 . The grain yield of maize, net GWP and GHGI for the UM (no mulching) treatment were 956 to 8821 kg·hm -2 , 342 to 4004 kg·hm -2 ·a -1 and 204 to 520 kg·t -1 , respectively. The results suggested that plastic film mulching could simultaneously improve grain yield and decrease GHGI in rain-fed cropland along with nitrogen fertilizer of 250 kg·hm -2 .

  19. Waxes and plastic film in relation to the shelf life of yellow passion fruit

    Directory of Open Access Journals (Sweden)

    Mota Wagner Ferreira da

    2003-01-01

    Full Text Available The high perishability of the yellow passion fruit (Passiflora edulis f. flavicarpa reduces its postharvest conservation and availability, mainly for in natura consumption. These losses of quality and commercial value occur due to the high respiration and loss of water. This work aimed to evaluate the influence of a modified atmosphere - wax emulsions and plastic film - on the shelf life of the yellow passion fruit. Plastic film (Cryovac D-955, 15 mum thickness reduced fresh weight loss and fruit wilting, kept higher fruit and rind weight and higher pulp osmotic potential over the storage period. However, it was not efficient in the control of rottenness. Sparcitrus wax (22-23% polyethylene/maleyc resin caused injury to the fruit, high fruit weight losses and wilting and resulted in lower pulp osmotic potential; this wax lead to a higher concentration of acid and a lower relation of soluble solids/acidity. Among the tested waxes, Fruit Wax (18-21% carnauba wax was the best, promoting reduced weight loss, wilting and rottenness.

  20. [Effects of illumination and seed-soaking reagent on seed germination of Solanum nigrum].

    Science.gov (United States)

    Yang, Chuan-Jie; Wei, Shu-He; Zhou, Qi-Xing; Hu, Ya-Hu; Niu, Rong-Cheng

    2009-05-01

    To explore a rapid seed germination method for hyperaccumulator Solanum nigrum, a germination experiment with different illumination and seed-soaking treatments was conducted in constant temperature box and greenhouse, with filter as burgeon base. Under illumination, the germination rate was about 5 times high of that without illumination (P seed germination of S. nigrum. All test seed-soaking reagents could significantly improve the germination rate of S. nigrum (P seeds treated with H2O2 had the shortest germination time. The germination rate of seeds soaked but without cleaning was 2-3 times as high as that of seeds soaked and cleaned with water.

  1. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    Science.gov (United States)

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®

  2. Reduction of radioactive caesium in meat and fish by soaking

    International Nuclear Information System (INIS)

    Petaejae, E.; Puolanne, E.

    1992-01-01

    The removal of radioactive caesium from meat by soaking in brine or water and the effect of injection curing, temperature, size of meat piece and cooking on this removal were studied. The availability of the brined meat for the manufacture of cured, smoked and cooked meat, oven-cooked meat and cooked sausages was also investigated. The soaking method was also tested on fish. (Author)

  3. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited Onto the Plastic Substrate

    Directory of Open Access Journals (Sweden)

    Shao-Kai Lu

    2014-03-01

    Full Text Available In this study, we utilize the RF magnetron sputtering system to deposit the indium tin oxide (ITO conductive transparent film with low resistivity and high light transmittance to the polyethylene tetephthalate (PET plastic substrate and measure the film’s bending property and reliability at different tensile/compressive strain bending curvatures as well as the flexibility after cycling bending. The results show that the critical curvatures corresponded to the significant increase in the resistance of the 150 nm-thick ITO film deposited onto the PET substrate under tensile and compressive stress areO 14.1 mm and 5.4 mm, respectively. By observing the film’s surface crack and morphology, we can further discover that the critical curvature of the crack generated when the film is bent is quite consistent with the critical curvature at which the conductivity property degrades, and the film can withstand a higher compressive strain bending. In addition, the resistance and adhesion behavior of the film almost is unchanged after cycling bent for 1000 times with the curvature below the critical curvature.

  4. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.

    Science.gov (United States)

    Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad; Kulkarni, Jaydeep P; Wang, Congjun; Shim, Moonsub; Roy, Kaushik; Alam, Muhammad A; Rogers, John A

    2008-07-24

    The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2) V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (approximately 100-microm) device geometries, and good mechanical flexibility-all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of

  5. Soak Up the Rain Customizable Outreach Tools

    Science.gov (United States)

    Get customizable Soak Up the Rain business card, posters, & a banner that can be downloaded & copied for use by citizens, municipalities, watershed & planning organizations & others in their stormwater/green infrastructure education & outreach efforts.

  6. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    Hori, Y.; Yoshikawa, N.; Ohmori, S.

    1975-01-01

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  7. Synthesis of indium nanoclusters and formation of thin film contacts on plastic substrates for organic and flexible electronics applications

    International Nuclear Information System (INIS)

    Shi, Frank F; Bulkowski, Michal; Hsieh, K C

    2007-01-01

    In this work, we described the processes of synthesizing free-standing indium nanoclusters using inverse micelles and microemulsions as well as synthesizing organic-encapsulated indium nanoclusters using alkanethiols as the organic encapsulants. The synthesized organic-encapsulated indium nanoclusters have demonstrated the feasibilities to be used as plastic compatible soft metal contacts for emerging organic devices. The homogeneously distributed indium nanoclusters with sizes of 10-30 nm have been fabricated on a few different plastic substrates. By changing the alkanethiol carbon chain length and the sizes of the indium nanoclusters, the annealing temperature required to form low-resistance indium thin film conductors has been reduced to 80-100 deg. C, which is acceptable for a variety of organic thin films

  8. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    Science.gov (United States)

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other

  9. Mechanisms of oxygen permeation through plastic films and barrier coatings

    Science.gov (United States)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian

    2017-10-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.

  10. Soaking morselized allograft in bisphosphonate can impair implant fixation

    DEFF Research Database (Denmark)

    Jakobsen, Thomas; Baas, Jørgen; Bechtold, Joan E

    2007-01-01

    biomechanical implant fixation and graft incorporation. In 10 dogs, a pair of titanium implants surrounded by a 2.5-mm gap was inserted into the proximal part of each humerus during two separate surgeries to allow two observation periods. The gap was filled with impacted, morselized allograft soaked in either...... of implants was observed for 12 weeks and the second pair for 4 weeks. Implants were evaluated by histomorphometry and biomechanical pushout test. We found substantially decreased biomechanical implant fixation for all implants surrounded by impacted, morselized allograft that had been soaked in alendronate...

  11. Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C. A.; del Cueto, J. A.; Albin, D. S.; Rummel, S. R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65 degrees C; exposed in the dark under forward bias at 65 degrees C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  12. Soaking in tapes: the haptic voice of global Pentecostal pedagogy in Ghana

    NARCIS (Netherlands)

    Reinhardt, Bruno

    Can a voice touch? This possibility is indeed what underlies ‘soaking in tapes’, a devotional practice performed in Anagkazo Bible and Ministry Training Center, a Pentecostal seminary based in Accra, Ghana. Soaking in tapes is a form of impartation, or grace transmission, homologous to the biblical

  13. Solvent-assisted microstructural evolution and enhanced performance of porous ZnO films for plastic dye-sensitized solar cells

    Science.gov (United States)

    Ohashi, Hitomi; Hagiwara, Manabu; Fujihara, Shinobu

    2017-02-01

    A low-temperature process for fabricating porous ZnO films on plastic, indium tin oxide-coated polyethylene naphthalate substrates is developed for their use in dye-sensitized solar cells. A special attention is paid to modification of microscopic morphologies for enhancing interparticle connection. ZnO films having two kinds of macroscopic morphologies (flower-like particles and densely packed nanoparticles) are fabricated at temperatures below the heatproof temperature of the substrate, and subsequently immersed in mixed solvents composed of water and ethanol at 90 °C. The immersion leads to the growth of constituting ZnO particles and also the evolution of interparticle connection, depending on solvent compositions. The cell performance is largely improved especially in a short-circuit current density and a power conversion efficiency. The immersion effect is more remarkable for the cell using the densely packed ZnO film, with a 62% increase in the current density and an 84% increase in the conversion efficiency. In consequence, our plastic N719-sensitized ZnO cell shows the conversion efficiency as high as 4.1%.

  14. Pentiptycene-based polyurethane with enhanced mechanical properties and CO2-plasticization resistance for thin film gas separation membranes.

    Science.gov (United States)

    Pournaghshband Isfahani, Ali; Sadeghi, Morteza; Wakimoto, Kazuki; Shrestha, Binod Babu; Bagheri, Rouhollah; Sivaniah, Easan; Ghalei, Behnam

    2018-04-30

    Development of thin film composite (TFC) membranes offers an opportunity to achieve the permeability/selectivity requirements for optimum CO2 separation performance. However, the durability and performance of thin film gas separation membranes are mostly challenged by weak mechanical properties and high CO2 plasticization. Here, we designed new polyurethane (PU) structures with bulky aromatic chain extenders that afford preferred mechanical properties for ultra-thin film formation. An improvement of about 1500% in Young's modulus and 600% in hardness was observed for pentiptycene-based PUs compared to typical PU membranes. Single (CO2, H2, CH4, and N2) and mixed (CO2/N2 and CO2/CH4) gas permeability tests were performed on the PU membranes. The resulting TFC membranes showed a high CO2 permeance up to 1400 GPU (10-6 cm3(STP) cm-2s-1 cmHg-1) and the CO2/N2 and CO2/H2 selectivities of about 22 and 2.1, respectively. The enhanced mechanical properties of pentiptycene-based PUs results in high performance thin membranes with the similar selectivity of the bulk polymer. The thin film membranes prepared from pentiptycene-based PUs also showed a two-fold enhanced plasticization resistance compared to non-pentiptycene containing PU membranes.

  15. Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging

    OpenAIRE

    Burgos, Nuria; Armentano, Ilaria; Fortunati, Elena; Dominici, Franco; Luzi, Francesca; Fiori, Stefano; Cristofaro, Francesco; Visai, Livia; Jiménez, Alfonso; Kenny, José María

    2017-01-01

    Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous f...

  16. Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ikegami, M.; Miyoshi, K.; Miyasaka, T.; Teshima, K.; Wei, T. C.; Wan, C. C.; Wang, Y. Y.

    2007-01-01

    A surface-rich platinum/titanium bilayer was deposited on poly(ethylene naphthalate) film by vacuum sputtering as counterelectrode for plastic dye-sensitized solar cells (DSSCs). Compared to the electrodes made of pure Pt layer, this electrode maintained similar electrochemical catalytic effect at relative low Pt usage. Current-voltage characteristics of the plastic DSSC at this stage stand at 0.69 V on V OC , 9.97 mA/cm 2 on I SC , 0.69 on fill factor, and 4.31% cell efficiency under AM1.5, 100 mW/cm 2 illumination

  17. Ultrathin film, high specific power InP solar cells on flexible plastic substrates

    International Nuclear Information System (INIS)

    Shiu, K.-T.; Zimmerman, Jeramy; Wang Hongyu; Forrest, Stephen R.

    2009-01-01

    We demonstrate ultrathin-film, single-crystal InP Schottky-type solar cells mounted on flexible plastic substrates. The lightly p-doped InP cell is grown epitaxially on an InP substrate via gas source molecular beam epitaxy. The InP substrate is removed via selective chemical wet-etching after the epitaxial layers are cold-welded to a 25 μm thick Kapton sheet, followed by the deposition of an indium tin oxide top contact that forms the Schottky barrier with InP. The power conversion efficiency under 1 sun is 10.2±1.0%, and its specific power is 2.0±0.2 kW/kg. The ultrathin-film solar cells can tolerate both tensile and compressive stress by bending over a <1 cm radius without damage.

  18. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    International Nuclear Information System (INIS)

    Idrissi, Hosni; Kobler, Aaron; Amin-Ahmadi, Behnam; Schryvers, Dominique; Coulombier, Michael; Pardoen, Thomas; Galceran, Montserrat; Godet, Stéphane; Raskin, Jean-Pierre; Kübel, Christian

    2014-01-01

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected

  19. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Idrissi, Hosni, E-mail: hosni.idrissi@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Kobler, Aaron [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD), Petersenstr. 32, 64287 Darmstadt (Germany); Amin-Ahmadi, Behnam; Schryvers, Dominique [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coulombier, Michael; Pardoen, Thomas [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Galceran, Montserrat; Godet, Stéphane [Matters and Materials Department, Université Libre de Bruxelles, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Raskin, Jean-Pierre [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Université catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Kübel, Christian [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-03-10

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected.

  20. Plastic relaxation of GeSi/Si(001) films grown by molecular-beam epitaxy in the presence of the Sb surfactant

    International Nuclear Information System (INIS)

    Bolkhovityanov, Yu. B.; Deryabin, A. S.; Gutakovskii, A. K.; Kolesnikov, A. V.; Sokolov, L. V.

    2007-01-01

    Plastically relaxed GeSi films with the Ge fraction equal to 0.29-0.42 and thickness as large as 0.5 μm were grown on Si (001) substrates using the low-temperature (350 deg. C) buffer Si layer and Sb as a surfactant. It is shown that introduction of Sb that smoothens the film surface at the stage of pseudomorphic growth lowers the density of threading dislocations in the plastically relaxed heterostructure by 1-1.5 orders of magnitude and also reduces the final roughness of the surface. The root-mean-square value of roughness smaller than 1 nm was obtained for a film with the Ge content of 0.29 and the density of threading dislocations of about 10 6 cm -2 . It is assumed that the effect of surfactant is based on the fact that the activity of surface sources of dislocations is reduced in the presence of Sb

  1. Mechanisms of oxygen permeation through plastic films and barrier coatings

    International Nuclear Information System (INIS)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Dahlmann, Rainer; Hopmann, Christian; Mitschker, Felix; Awakowicz, Peter

    2017-01-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µ m) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities. (paper)

  2. Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process.

    Science.gov (United States)

    Wei, Xiao Lu; Liu, Shuang Ping; Yu, Jian Shen; Yu, Yong Jian; Zhu, Sheng Hu; Zhou, Zhi Lei; Hu, Jian; Mao, Jian

    2017-04-01

    As a traditional fermented alcoholic beverage of China, Chinese rice wine (CRW) had a long history of more than 5000 years. Rice soaking process was the most crucial step during CRW brewing process, because rice soaking quality directly determined the quality of CRW. However, rice soaking water would cause the eutrophication of water bodies and waste of water. The longer time of rice soaking, the higher the content of biogenic amine, and it would have a huge impact on human health. An innovation brewing technology was carried out to exclude the rice soaking process and the Lactobacillus was added to make up for the total acid. Compared to the traditional brewing technology, the new technology saved water resources and reduced environmental pollution. The concentration of biogenic amine was also decreased by 27.16%, which improving the security of the CRW. The esters increased led to more soft-tasted CRW and less aging time; the quality of CRW would be improved with less alcohol. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    Science.gov (United States)

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  4. Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors.

    Science.gov (United States)

    Yang, Yi; Wen, Juan; Guo, Liqiang; Wan, Xiang; Du, Peifu; Feng, Ping; Shi, Yi; Wan, Qing

    2016-11-09

    Emulating neural behaviors at the synaptic level is of great significance for building neuromorphic computational systems and realizing artificial intelligence. Here, oxide-based electric double-layer (EDL) thin-film transistors were fabricated using 3-triethoxysilylpropylamine modified graphene oxide (KH550-GO) electrolyte as the gate dielectrics. Resulting from the EDL effect and electrochemical doping between mobile protons and the indium-zinc-oxide channel layer, long-term synaptic plasticity was emulated in our devices. Synaptic functions including long-term memory, synaptic temporal integration, and dynamic filters were successfully reproduced. In particular, spike rate-dependent plasticity (SRDP), one of the basic learning rules of long-term plasticity in the neural network where the synaptic weight changes according to the rate of presynaptic spikes, was emulated in our devices. Our results may facilitate the development of neuromorphic computational systems.

  5. Dextrose modified flexible tasar and muga fibroin films for wound healing applications

    International Nuclear Information System (INIS)

    Srivastava, Chandra Mohan; Purwar, Roli; Gupta, Anuradha; Sharma, Deepak

    2017-01-01

    This paper is focused on preparation and characterization of regenerated muga and tasar fibroin flexible films from cocoon using ionic liquid. These flexible muga and tasar fibroin films were prepared by incorporating dextrose (5 to 15% w/w) as plasticizer. The mechanical, thermal, physical, morphological and biological properties of dextrose plasticized muga and tasar fibroin films were characterized. These plasticized films showed higher elongation at break as well as water holding capacity as compared to the un-plasticized films. The surface roughness and water absorbance capacity of the dextrose plasticized films were higher than un-plasticized films, which results in improved adherence and proliferation of L929 fibroblast cells. Gentamicin loaded plasticized muga and tasar fibroin films showed slightly higher rate of release as compared to un-plasticized films. The biodegradability of dextrose plasticized films was significantly higher as compared to their respective counterpart. The regeneration of flexible muga and tasar silk fibroin films pave the way to expand potential use of non-mulberry in the field of biomedical such as wound dressing. - Highlights: • Cocoon extracted muga and tasar fibroin have regenerated as flexible films. • Dextrose acts as plasticizer in muga and tasar fibroin films. • Films show good mechanical integrity, water absorption, biocompatibility over the un-plasticized films. • These flexible films are found to be promising candidates for wound healing.

  6. Dextrose modified flexible tasar and muga fibroin films for wound healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Chandra Mohan [Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Shahbad, Daulatpur Bawana Road, Delhi 110042 (India); Purwar, Roli, E-mail: roli.purwar@dce.edu [Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Shahbad, Daulatpur Bawana Road, Delhi 110042 (India); Gupta, Anuradha; Sharma, Deepak [Department of Pharmaceutics, Central Drug Research Institute, Lucknow 226031 (India)

    2017-06-01

    This paper is focused on preparation and characterization of regenerated muga and tasar fibroin flexible films from cocoon using ionic liquid. These flexible muga and tasar fibroin films were prepared by incorporating dextrose (5 to 15% w/w) as plasticizer. The mechanical, thermal, physical, morphological and biological properties of dextrose plasticized muga and tasar fibroin films were characterized. These plasticized films showed higher elongation at break as well as water holding capacity as compared to the un-plasticized films. The surface roughness and water absorbance capacity of the dextrose plasticized films were higher than un-plasticized films, which results in improved adherence and proliferation of L929 fibroblast cells. Gentamicin loaded plasticized muga and tasar fibroin films showed slightly higher rate of release as compared to un-plasticized films. The biodegradability of dextrose plasticized films was significantly higher as compared to their respective counterpart. The regeneration of flexible muga and tasar silk fibroin films pave the way to expand potential use of non-mulberry in the field of biomedical such as wound dressing. - Highlights: • Cocoon extracted muga and tasar fibroin have regenerated as flexible films. • Dextrose acts as plasticizer in muga and tasar fibroin films. • Films show good mechanical integrity, water absorption, biocompatibility over the un-plasticized films. • These flexible films are found to be promising candidates for wound healing.

  7. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    Science.gov (United States)

    Naito, K.; Matsuishi, K.

    2009-04-01

    Well-uniformed C60 nanotubes were grown at -20 °C with irradiation of red light using C60-saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 °C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  8. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    International Nuclear Information System (INIS)

    Naito, K; Matsuishi, K

    2009-01-01

    Well-uniformed C 60 nanotubes were grown at -20 deg. C with irradiation of red light using C 60 -saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C 60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 deg. C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C 60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  9. Treatment of soak liquor and bioelectricity generation in dual chamber microbial fuel cell.

    Science.gov (United States)

    Sathishkumar, Kuppusamy; Narenkumar, Jayaraman; Selvi, Adikesavan; Murugan, Kadarkarai; Babujanarthanam, Ranganathan; Rajasekar, Aruliah

    2018-02-08

    The discharge of untreated soak liquor from tannery industry causes severe environmental pollution. This study is characterizing the soak liquor as a substrate in the microbial fuel cell (MFC) for remediation along with electricity generation. The dual chamber MFC was constructed and operated. Potassium permanganate was used as cathode solution and carbon felt electrode as anodic and cathodic material, respectively. The soak liquor was characterized by electrochemical studies viz., cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and polarization studies, respectively. The removal percentage of protein, lipid, and chemical oxygen demand (COD) were measured before and after treatment with MFC. The results of MFC showed a highest current density of 300 mA/cm 2 and a power density of 92 mW/m 2 . The removal of COD, protein, and lipid were noted as 96, 81, and 97% respectively during MFC process. This MFC can be used in tannery industries for treating soak liquor and simultaneous electricity generation.

  10. Review of Agricultural Plastic Mulching and Its Residual Pollution and Prevention Measures In China

    Directory of Open Access Journals (Sweden)

    YAN Chang-rong

    2014-04-01

    Full Text Available Agricultural plastic film mulching is one of important technologies, but the plastic film pollution has been a serious issue for agri-cultural sustainable development in China. System analysis of this technique and its residue pollution and control ways have vital practicalsignificance for rational application of agricultural plastil film. In this paper, on the basis of our previous work,agricultural plastic filmmulching, its residue pollution and control technologies were concluded. Some important conclusions were found that, the amount of plasticfilm and mulching area had kept increasing with annual increasing rate about 8% since the 80s of the 20th century. From 1991 to 2011, thedensity of plastic film utilized increased 3-10 times, but it has very sharply different spatial pattern in different province. In general, the northand west China has high value, and the increase rate is also huge in the past 20 years. The crops of utilized mulching plastic film have extendedfrom cash crops to grain crops, and the order of crop area is followed by maize, vegetable, cotton, tobacco and peanut. The main functions ofmulching plastic film are keeping soil moisture and increasing soil temperature, against weeds and insect. At the same time, its side effectsappear with continuous utilization. The main problems are residues left in soil to destroy soil structure, impress soil permeability, impede seedgermination as well as water and nutrients uptaking, and block crop root system development. It has very serious pollution for the field utilizedplastic mulching film for long term. The residual amount in soil is about 71.9-259.1 kg·hm-2, and has sharply spatial difference. The residualamount in soil. In Northwest China, is more serious than that in North China and Southwest China. Because of difference of tillage and appli-canon ways, there are great differences on the area and shape of the plastic film piece left in soil. The main types of shapes are flaky

  11. Ge-on-Si films obtained by epitaxial growing: edge dislocations and their participation in plastic relaxation

    International Nuclear Information System (INIS)

    Bolkhovityanov, Yu B; Sokolov, L V

    2012-01-01

    Pure edge 90° misfit dislocations (MDs) are the most effective linear defects that combine the substrate and the film with different lattice parameters. A system consisting of a nonstressed film and a substrate approaches the perfect case in terms of the structural transition from one lattice parameter to the other if imperfections in the form of an ordered network of edge MDs are located exclusively at the interface, while threading dislocations are practically absent. The path to this perfect case goes through studying the possibilities of creating such an ordered network of edge MDs. The mechanism of formation of edge MDs proposed previously by Kvam et al (1990 J. Mater. Res. 5 1900) is discussed. This mechanism involves induced formation of a complementary pair of 60° MDs whose coalescence at the interface creates an edge MD. Some publications are presented, which demonstrate on the basis of experimental data that this mechanism under certain conditions can be the basic mechanism responsible for plastic relaxation of Ge-on-Si films. A cardinal method for decreasing the number of defects at the initial stages of growth of Ge/Si heterosystems is a set of procedures that allow a specified number of MDs to be inserted into the stressed film earlier than conditions of spontaneous nucleation of MDs from the film surface in the 2D–3D transition occur. When the low-temperature/high-temperature strategy of growth is used, the low-temperature GeSi seed layer tuned with respect to the growth temperature, composition and thickness can serve as a source of 60° dislocations, which facilitate earlier formation of edge MDs at the initial stage of plastic relaxation of the GeSi or Ge main layer. Results of some recent publications that report reaching high structural perfection of thin (∼1 µm and less) Ge-on-Si films are discussed. The proposed explanation of these results is based on postulates of controlled insertion of MDs and formation of edge MDs by the model of

  12. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  13. Solarização do solo com filmes plásticos com e sem aditivo estabilizador de luz ultravioleta Soil solarization with plastic films with and without UV light stabilizers

    Directory of Open Access Journals (Sweden)

    Benedito C. Barros

    2004-06-01

    menor nos tratamentos com plástico contendo aditivo. A viabilidade de P. aphanidermatum foi reduzida em todos os tratamentos solarizados, independente do plástico utilizado. Houve aumento no pH, na saturação por bases (V% e nos teores de NH4+ (190%, Mn (94,6% e Mg2+ (18%, dos solos solarizados. Também as plantas de alface colhidas nessas parcelas apresentaram maiores teores de Zn (43%, Mg2+ (12% e K+ (4%. Em Mogi das Cruzes foram observados aumentos nos teores de Mn (236% e Cu (18% nos solos solarizados e nas plantas colhidas nesses tratamentos (aumento de 99% para Mn e de 27% para Cu. A incidência da podridão de esclerotínia foi reduzida de 27,7% na testemunha para índices inferiores a 1% nas parcelas solarizadas com os diferentes filmes plásticos. O plástico sem aditivo estabilizador de luz ultravioleta partiu-se durante ambos os experimentos, após 60 e 90 dias de exposição ao ambiente, sendo considerado inadequado para a solarização, mas não houve diferença entre os plásticos para nenhum atributo avaliado.Three plastic films [low-density polyethylene (LDPE plastic films, 100 mm thick, produced by Nortène Plásticos Ltda] were evaluated in their adequacy for soil solarization:. a LDPE with UV light stabilizer additive, based on hindered amine; b LDPE with half load of the same additive, c without additive, and d a control treatment without plastic mulch. Two experiments were set up from January to February 2000, in Mogi das Cruzes and Piracicaba, São Paulo State, Brazil. After solarization, a lettuce crop was grown in both experiments. Chemical analyses were performed in soil samples and in the harvested lettuce heads of all plots. Weed infestation and the fresh weight of the harvested lettuce heads were assessed. In Piracicaba the soils were analyzed for microbiological properties and the viability of Pythium aphanidermatum was evaluated. In Mogi das Cruzes incidence of lettuce drop, caused by Sclerotinia minor, was assessed. The mean soil

  14. ANALISA FAKTOR PENYEBAB KEGAGALAN MESIN GRINDER PADA PROSES PRODUKSI PLASTIC FILM DI PT. MUTIARA HEXAGON

    Directory of Open Access Journals (Sweden)

    Imam Hidayat

    2013-10-01

    Full Text Available Bila suatu mesin memiliki tingkat kegagalan yang tinggi, maka perlu dilakukan analisis mengenai  penyebab  –  penyebab  kegagalan  tersebut  hingga  ke  akar  permasalahannya sehingga dapat menentukan tindakan yang sesuai untuk meningkatkan kinerja suatu mesin. PT. Mutiara Hexagon merupakan sebuah perusahaan yang bergerak dibidang industri pembuatan plastik  kemasan.  Dalam  line  pembuatan lembaran film  diperlukan mesin  CPP  (Cast  Poly Propylene Machine dan mesin grinder dalam prosesnya. Pada penelitian yang dilakukan di PT. Mutiara Hexagon, terdapat beberapa kegagalan yang terjadi pada mesin grinder pada proses produksi plastic film, sehingga menyebabkan seluruh line pada divisi film mengalami downtime. Tujuan dari penelitian ini adalah untuk melakukan analisa mengenai faktor penyebab kegagalan mesin grinder, penulis melakukan observasi secara langsung dan melihat proses produksi plastic film.Penulis menggunakan metode Failure Effect and Mode Analysis (FMEA dan Fault Tree Analysis (FTA. Penerapan analisis Failure Effect and  Mode Analysis (FMEA dapat menentukan sejauh mana tingkat kegagalan terjadi. Dari hasil analisis FMEA kemudian dapat dilanjutkan dengan menggunakan Fault Tree Analysis (FTA guna mengetahui lebih lanjut penyebab-penyebab dasar suatu kegagalan.Dari hasil perhitungan nilai Risk Priority Number (RPN pada tiap-tiap kegagalan yang terjadi  diantaranya yang  paling  tinggi  adalah kegagalan mesin  grinder rusak  dengan nilai kegagalannya mencapai 120. Kemudian dianalisa penyebab kegagalan tersebut dengan menggunakan metode FTA di dapatkan minimal cut sets yaitu: as grinder patah, katup hisap blower terbuka terlalu besar, kegagalan pada motor blower, baut pada dudukan pisau patah, pisau tumpul dan human error. Berdasarkan nilai probabilitas masing-masing cut set didapatkan nilai probabilitas kegagalan grinder periode 1 Juni 2012 -1 Juni 2013 mencapai 60%.

  15. A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films

    International Nuclear Information System (INIS)

    Miller, Ronald E.; Shilkrot, L.E.; Curtin, William A.

    2004-01-01

    The phenomenon of 2D nanoindentation of circular 'Brinell' indenter into a single crystal metal thin film bonded to a rigid substrate is investigated. The simulation method is the coupled atomistics and discrete dislocation (CADD) model recently developed by the authors. The CADD model couples a continuum region containing any number of discrete dislocations to an atomistic region, and permits accurate, automatic detection and passing of dislocations between the atomistic and continuum regions. The CADD model allows for a detailed study of nanoindentation to large penetration depths (up to 60 A here) using only a small region of atoms just underneath the indenter where dislocation nucleation, cross-slip, and annihilation occur. Indentation of a model hexagonal aluminum crystal shows: (i) the onset of homogeneous dislocation nucleation at points away from the points of maximum resolved shear stress; (ii) size-dependence of the material hardness, (iii) the role of dislocation dissociation on deformation; (iv) reverse plasticity, including nucleation of dislocations on unloading and annihilation; (v) permanent deformation, including surface uplift, after full unloading; (vi) the effects of film thickness on the load-displacement response; and (vii) the differences between displacement and force controlled loading. This application demonstrates the power of the CADD method in capturing both long-range dislocation plasticity and short-range atomistic phenomena. The use of CADD permits for a clear study of the physical and mechanical influence of both complex plastic flow and non-continuum atomistic-level processes on the macroscopic response of material under indentation loading

  16. Fabrication and characterization of silk fibroin/bioactive glass composite films

    International Nuclear Information System (INIS)

    Zhu Hailin; Liu Na; Feng Xinxing; Chen Jianyong

    2012-01-01

    Composite films of silk fibroin (SF) with nano bioactive glass (NBG) were prepared by the solvent casting method, and the structures and properties of the composite films were characterized. Fourier transform infrared (FT-IR) spectroscopy analysis shows that the random coil and β-sheet structure co-exist in the SF films. Results of field emission scanning electron microscope (FESEM) indicate that the NBG particles are uniformly dispersed in the SF films. The measurements of the water contact angles suggest that the incorporation of NBG into SF can improve the hydrophilicity of the composites. The bioactivity of the composite films was evaluated by soaking in 1.5 times simulated body fluid (1.5 × SBF), and formation of a hydroxycarbonate apatite (HCA) layer was determined by XRD and FESEM. The results show that the SF/NBG composite film is bioactive as it induces the formation of HCA on the surface of the composite film after soaking in 1.5 × SBF for 7 days. In vitro osteoblasts attachment and proliferation tests show that the composite film is a good matrix for the growth of osteoblasts. Consequently, the incorporation of NBG into the SF film can enhance both the bioactivity and biocompatibility of the film, which suggests that the SF/NBG composite film may be a potential biomaterial for bone tissue engineering. - Highlights: ► The incorporation of NBG into SF can improve the hydrophilicity of the SF/NBG composite films. ► The SF/NBG composite films show the better bioactivity than the pure SF film. ► The SF/NBG composite films facilitate cell growth and promote cell proliferation and differentiation.

  17. Influence of morphology and topography on potentiometric response of magnesium and calcium sensitive PEDOT films doped with adenosine triphosphate (ATP)

    International Nuclear Information System (INIS)

    Paczosa-Bator, B.; Peltonen, J.; Bobacka, J.; Lewenstam, A.

    2006-01-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with adenosine triphosphate (ATP) are used to study the biologically relevant competitive magnesium and calcium ion-exchange at ATP membrane sites. It is shown, by atomic force microscopy (AFM) and scanning electron microscopy (SEM), that the surface topography and morphology of the PEDOT-ATP films determines the quality of their potentiometric response. More smooth and less rough films result in better potentiometric characteristics, particularly in a faster response. The topography/morphology of the PEDOT-ATP films is influenced by conditions during electrodeposition (electrochemical method of deposition, pH, concentration of electrolytes) and post-deposition soaking (including net-time of soaking), as evidenced by X-ray photoelectron spectroscopy (XPS) and energy dispersive analysis of X-rays (EDAX)

  18. Optical absorption properties of Ag/SiO sub 2 composite films induced by gamma irradiation

    CERN Document Server

    Pan, A L; Yang, Z P; Liu, F X; Ding, Z J; Qian, Y T

    2003-01-01

    Mesoporous SiO sub 2 composite films with small Ag particles or clusters dispersed in them were prepared by a new method: first the matrix SiO sub 2 films were prepared by the sol-gel process combined with the dip-coating technique; then they were soaked in AgNO sub 3 solutions; this was followed by irradiation with gamma-rays at room temperature and ambient pressure. The structure of these films was examined by high-resolution transmission electron microscopy, and their optical absorption spectra were examined. It has been shown that the Ag particles grown within the porous SiO sub 2 films are very small and are highly dispersed. On increasing the soaking concentration and subjecting the samples to an additional annealing, a different peak-shift effect for the surface plasmon resonance was observed in the optical absorption measurement. Possible mechanisms of this behaviour are discussed in this paper.

  19. Effects of water soaking and/or sodium polystyrene sulfonate addition on potassium content of foods

    OpenAIRE

    Picq, Christian; Asplanato, M.; Bernillon, N.; Fabre, C.; Roubeix, M.; Ricort, J. M.

    2014-01-01

    In this study, we determined, by atomic absorption spectrophotometry, the potassium amount leached by soaking or boiling foods identified by children suffering from chronic renal failure as "pleasure food'' and that they cannot eat because of their low-potassium diet, and evaluated whether addition of sodium polystyrene sulfonate resin (i.e. Kayexalate (R)) during soaking or boiling modulated potassium loss. A significant amount of potassium content was removed by soaking (16% for chocolate a...

  20. Investigation into Plastic Cards

    Directory of Open Access Journals (Sweden)

    Neringa Stašelytė

    2015-03-01

    Full Text Available The article examines the strength of laminating plastic cards at different lamination temperatures. For investigation purposes, two types of plastic substrate and films have been used. Laminate strength has been tested (CMYK to establish the impact of colours on the strength of laminate. The paper compares inks supplied by two different producers. The colour characteristics of CIE L*a*b* space before and after the lamination process have been found. According to lamination strength and characteristics of the colours, the most suitable inks, temperature and films have been chosen.

  1. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  2. Dextrose modified flexible tasar and muga fibroin films for wound healing applications.

    Science.gov (United States)

    Srivastava, Chandra Mohan; Purwar, Roli; Gupta, Anuradha; Sharma, Deepak

    2017-06-01

    This paper is focused on preparation and characterization of regenerated muga and tasar fibroin flexible films from cocoon using ionic liquid. These flexible muga and tasar fibroin films were prepared by incorporating dextrose (5 to 15% w/w) as plasticizer. The mechanical, thermal, physical, morphological and biological properties of dextrose plasticized muga and tasar fibroin films were characterized. These plasticized films showed higher elongation at break as well as water holding capacity as compared to the un-plasticized films. The surface roughness and water absorbance capacity of the dextrose plasticized films were higher than un-plasticized films, which results in improved adherence and proliferation of L929 fibroblast cells. Gentamicin loaded plasticized muga and tasar fibroin films showed slightly higher rate of release as compared to un-plasticized films. The biodegradability of dextrose plasticized films was significantly higher as compared to their respective counterpart. The regeneration of flexible muga and tasar silk fibroin films pave the way to expand potential use of non-mulberry in the field of biomedical such as wound dressing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Extraction of Collagen from Chicken Feet with Various Acidic Solutions and Soaking Time

    Directory of Open Access Journals (Sweden)

    Prayitno Prayitno

    2007-05-01

    Full Text Available The objective of this research was to know the ability of various acidic solutions on dissolving collagen  chicken feet, with different soaked time.  Each acid 5 percent (v/v, collagen extraction was done by washing chicken feet and then cutted into small pieces and finally grinded.  Every 100 gram treatment was soaked in acetic acid (a1, citric acid (a2, lactic acid (a3 and hydrochloric acid (a4, for 12, 24 and 36 hours.  Precipitated collagen in the filtrate was 5 percent NaOH to reach the neutral pH (pH 7.  Collagen precipitate was separated by filtration usingfilter paper and then  rendement was calculated, HPLC was used to determin amino acid composition, and SDS-PAGE was use determin the type of collagen.  This experiment use factorial completely randomized design (CRD 4 x 3 and three time replication.   Result showed that lactic acid has highest capability to dissolve collagen, while citric acid the lowest.  Combination of acid solution and soaking time had significant (P<0.01 effect on dissolving collagen of chicken feet.  Extracted collagen in all acid solution, hassame amino acid, composition but different in percentage of amino acid molecules.  Collagen type in treatment combination was the same, but for soaking time of 36 hours revealed some peptide band.  Lactic acid had highest capability of collagen extraction in chicken feet than citric acid, acetic acid and hydrochloric acid with soaking time of 12, 24 and 36 hours.  It was estimated that extracted collagen can be grouped to type I consisted of two chain of a1. (Animal Production 9(2: 99-104 (2007   Key Words : Chicken feet, acids, soaking time, collagen

  4. Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties

    Science.gov (United States)

    Afify, Abd El-Moneim M. R.; El-Beltagi, Hossam S.; Abd El-Salam, Samiha M.; Omran, Azza A.

    2011-01-01

    The changes in phytate, phytase activity and in vitro bioavailability of iron and zinc during soaking and germination of three white sorghum varieties (Sorghum bicolor L. Moench), named Dorado, Shandweel-6, and Giza-15 were investigated. Sorghum varieties were soaked for 20 h and germinated for 72 h after soaking for 20 h to reduce phytate content and increase iron and zinc in vitro bioavailability. The results revealed that iron and zinc content was significantly reduced from 28.16 to 32.16% and 13.78 to 26.69% for soaking treatment and 38.43 to 39.18% and 21.80 to 31.27% for germination treatments, respectively. Phytate content was significantly reduced from 23.59 to 32.40% for soaking treatment and 24.92 to 35.27% for germination treatments, respectively. Phytase enzymes will be activated during drying in equal form in all varieties. The results proved that the main distinct point is the change of phytase activity as well as specific activity during different treatment which showed no significant differences between the varieties used. The in vitro bioavailability of iron and zinc were significantly improved as a result of soaking and germination treatments. PMID:22003395

  5. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    International Nuclear Information System (INIS)

    Mustatea, Gabriel; Vidal, Loïc; Calinescu, Ioan; Dobre, Alina; Ionescu, Mariana; Balan, Lavinia

    2015-01-01

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3–11 nm) were generated from hydroalcoholic AgNO 3 solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text

  6. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    Energy Technology Data Exchange (ETDEWEB)

    Mustatea, Gabriel [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Vidal, Loïc [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France); Calinescu, Ioan [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Dobre, Alina; Ionescu, Mariana [National Research and Development Institute for Food Bioresources – IBA Bucharest (Romania); Balan, Lavinia, E-mail: lavinia.balan@uha.fr [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France)

    2015-01-15

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3–11 nm) were generated from hydroalcoholic AgNO{sub 3} solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  7. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    Science.gov (United States)

    Mustatea, Gabriel; Vidal, Loïc; Calinescu, Ioan; Dobre, Alina; Ionescu, Mariana; Balan, Lavinia

    2015-01-01

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3-11 nm) were generated from hydroalcoholic AgNO3 solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria ( Escherichia coli) and gram-positive bacteria ( Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  8. Modeling Soak-Time Distribution of Trips for Mobile Source Emissions Forecasting: Techniques and Applications

    Science.gov (United States)

    2000-08-01

    The soak-time of vehicle trip starts is defined as the duration of time in which the vehicle's engine is not operating and that precedes a successful vehicle start. The temporal distribution of the soak-time in an area is an important determinant of ...

  9. Starch/polyester films: simultaneous optimisation of the properties for the production of biodegradable plastic bags

    Directory of Open Access Journals (Sweden)

    J. B. Olivato

    2013-01-01

    Full Text Available Blends of starch/polyester have been of great interest in the development of biodegradable packaging. A method based on multiple responses optimisation (Desirability was used to evaluate the properties of tensile strength, perforation force, elongation and seal strength of cassava starch/poly(butylene adipate-co-terephthalate (PBAT blown films produced via a one-step reactive extrusion using tartaric acid (TA as a compatibiliser. Maximum results for all the properties were set as more desirable, with an optimal formulation being obtained which contained (55:45 starch/PBAT (88.2 wt. (%, glycerol (11.0 wt. (% and TA (0.8 wt. (%. Biodegradable plastic bags were produced using the film with this formulation, and analysed according to the standard method of the Associação Brasileira de Normas Técnicas (ABNT. The bags exhibited a 45% failure rate in free-falling dart impact tests, a 10% of failure rate in dynamic load tests and no failure in static load tests. These results meet the specifications set by the standard. Thus, the biodegradable plastic bags fabricated with an optimised formulation could be useful as an alternative to those made from non-biodegradable materials if the nominal capacity declared for this material is considered.

  10. Effects of Hull Scratching, Soaking, and Boiling on Antinutrients in Japanese Red Sword Bean (Canavalia gladiata).

    Science.gov (United States)

    Une, Satsuki; Nonaka, Koji; Akiyama, Junich

    2016-10-01

    The effects of hull processing, soaking, and boiling on the content or activity of antinutrients in the red sword bean (RSB; Canavalia gladiata) were investigated. RSB seeds were compared with kidney bean (KB; Phaseolus vulgaris) seeds that are starch based and often used as processed products in Japan. RSB seeds had higher weight, thicker hull, and higher protein content, but lower moisture content compared with KB seeds. Because of the strong and thick hull, the relative water absorption of untreated RSB seeds was very low after soaking. Seeds were soaked after dehulling, scratching, and roasting. The results showed that hull scratching was the optimal method for increasing water absorption during soaking compared with dehulling and roasting. After soaking, the water used for soaking was discarded, since it had a high content of polyphenols and bitter taste, and RSB seeds were boiled in fresh water for 20, 40, and 60 min. The results showed that polyphenol and tannin contents, antioxidant activity, and hemagglutinating activity, as well as maltase, sucrase, and trypsin inhibitor activities in scratched RSB seeds decreased significantly after boiling compared with those in raw seeds, whereas amylase inhibitor activity showed no significant change. Overall, it was concluded that the combination of hull scratching, soaking, and boiling in fresh water can reduce thermal-stable or sensitive antinutrients in RSB and thus, significantly improve its nutritional value. © 2016 Institute of Food Technologists®.

  11. Effects of Adopting Different Kinds of Collecting Method for Years on Film Residual Coefficient and Maize Yields

    Directory of Open Access Journals (Sweden)

    TANG Wen-xue

    2017-03-01

    Full Text Available Wide usage of mulching technology has increased crop yields, but the large amounts of mulching film residue resulting from widespread use of plastic film in China has brought about a series of pollution hazards. Based on a 4-year (2011-2014 long-term experiment, the effects of different kinds of collecting mothod (zero plastic film residues, conventional plastic film residues, whole plastic film residues remainded on plastic film residues, residual coefficient and maize yield were explored. Plastic film residues mainly remained in 0~10 cm, 10~20 cm soil layers. In 0~30 cm soil layers, the two types of mulch residues (>25 cm2, 4~25 cm2 under zero plastic film residues treatment were much less than conventional plastic film residues and whole plastic film residues remainded treatments, no significant differences were observed in the mulch residues (2 among 3 treatments. After maize harvest, the amount of plastic film residues under zero plastic film residues, conventional plastic film residues and whole plastic film residues remainded treatments were 52.71, 80.85 kg·hm-2 and 152.65 kg·hm-2, respectively, the residual coefficient for zero plastic film residues, conventional plastic film residues and whole plastic film residues remainded treatments were -9.45%, 8.53% and 54.42%, respectively. The stem diameter, ear length, ear width, ear row number, grain number per row and 100-grain weight of maize decreased with the increase of residual film amount. Compared with the conventional plastic film residues, the mean grain yield of whole plastic film residues remainded treatment decreased by 15.08%, whereas the zero plastic film residues treatment increased by 4.70%. The plastic film residues, residual coefficient and maize yield were comprehensively analyzed, the conventional plastic film residues practice should be adopted currently without appropriate plastic film residues collector. But from the long-term development, we should speed up the

  12. 40 CFR 86.1238-96 - Hot soak test.

    Science.gov (United States)

    2010-07-01

    ....1238-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... as preparation for the hot soak test. (2) Gaseous-fueled vehicles. Since gaseous-fueled vehicles are.... (iii) Fresh impingers shall be installed in the methanol sample collection system immediately prior to...

  13. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China.

    Science.gov (United States)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-06-22

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  14. 40 CFR 86.138-96 - Hot soak test.

    Science.gov (United States)

    2010-07-01

    ....138-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... preparation for the hot soak test. (2) Gaseous-fueled vehicles. Since gaseous-fueled vehicles are not required.... (iii) Fresh impingers shall be installed in the methanol sample collection system immediately prior to...

  15. Experimental analysis of plastic materials containing radionuclides for decontamination viability

    International Nuclear Information System (INIS)

    Tazaki, Kazue; Nakano, Mikio; Takehara, Teruaki; Ishigaki, Yasuhito; Nakagawa, Hideaki

    2015-01-01

    After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on 11 March, 2011, the high radioactive dosage was found in polluted water for agriculture use at Baba, Haramachi, Minami-Soma, Fukushima Prefecture, Japan. Field experiment for decontamination of water had been studied by using commercial plastic materials. The agricultural water comes from Tetsuzan dam is full of radioactive-contaminated water. Experimental analysis showed that the plastic materials can take up radioactive elements for several months soaked in the polluted agricultural water. The quantitative analyses using X-ray fluorescence analysis, Ge semiconductor and scanning electron microscopy equipped with energy dispersive X-ray spectrometer (SEM-EDS), revealed the detection of the radionuclides on the plastic materials with diatom and clays. The results suggest the adsorption of radionuclides on the surface of plastic materials due to FDNPP accident. The plastic materials associated with clays and diatoms could be stronger carriers of radionuclides in the polluted water. Adherence of diatoms to the plastic fiber in the water for 7 months suggested that some plastic materials were taking up heavy metals (Zn, Ba, Pb, Sb) with radioactive elements (Cs etc.). Mechanisms by which radioactive pollutants and microorganisms are adsorbed onto and desorbed from clays at aqueous interface can be understood by combining chemical analysis with electron microscopy observation. (author)

  16. THE EFFECT OF PLASTICIZER CONTENT AND DISACCHARIDE TYPE ON THE MECHANICAL, BARRIER AND PHYSICAL PROPERTIES OF BOVINE GELATIN-BASED FILMS

    Directory of Open Access Journals (Sweden)

    PEDRO GUERRERO1

    2014-06-01

    Full Text Available Gelatins are regarded as alternative raw materials to prepare films for food packaging. However, the improvement of their mechanical and water barrier properties is necessary in order to obtain useful materials in service conditions. To improve these functional properties, two strategies have been carried out in this work. First, glycerol was added as plasticizer to increase the flexibility of the films. Second, lactose or sucrose was added to react with gelatin and increase water resistance of gelatin-based films. Commercial gelatin, glycerol and lactose or sucrose were employed in this work and processing of the films was carried out by solution casting. All gelatin films obtained were transparent and flexible. Moreover, the hydrophobic character of the films was increased and the film solubility was decreased by the addition of glycerol and disaccharides. As was observed via FTIR, the changes were due to the interactions between gelatin and glycerol and Maillard reaction between gelatin and disaccharides.

  17. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  18. A new approach to film dosimetry for high-energy photon beams using organic plastic scintillators

    International Nuclear Information System (INIS)

    Yeo, I.J.; Wang, C.-K.C.; Burch, S.E.

    1999-01-01

    Successful radiotherapy relies on accurate dose measurement. Traditional dosimeters such as ion chambers, TLDs and diodes have disadvantages such as relatively long measurement time and poor spatial resolution. These drawbacks become more serious problems for dynamic beams (i.e. with the use of dynamic wedges or even the intensity modulation technique). X-ray film, an integrating dosimeter, may not be associated with the above disadvantages and problems. However, there are several major issues regarding use of x-ray film for routine dosimetry, including the over-response of the film to low-energy photons, variations in the dose response curve (nonlinearity), lack of reproducibility due to variation in processing, etc. This paper addresses the first problem. That is, x-ray film over-responds to low-energy photons (energies below 400 keV), and thus generates unacceptably inaccurate dosimetric data compared with ion-chamber data. To overcome the over-response problem of x-ray film in a phantom, a scintillation method has been investigated. In this method, a film is sandwiched by two plastic scintillation screens to enhance the film response to upstream electrons, and therefore minimize the over-response caused by low-energy photons. The sandwiched system was tested with a 4 MV linac beam. The result shows that, depending on the uniformity of the scintillation screens, the depth-dose distribution obtained from the sandwich system can be made to agree well with that obtained from ion chambers. However, the required high degree of uniformity remains a challenge for the scintillation screen manufacturers. (author)

  19. Sol-gel antireflective coating on plastics

    Science.gov (United States)

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  20. Gamma radiation effects in packaging for sterilization of health products and their constituents paper and plastic film

    Science.gov (United States)

    B. G. Porto, Karina Meschini; Napolitano, Celia Marina; Borrely, Sueli Ivone

    2018-01-01

    The integrity of materials containing packaging (natural or synthetic polymers) is essential to keep the aseptic condition of commercialized products (health care products, food and pharmaceuticals). The objective of this paper was to study gamma radiation effects (25 kGy, 40 kGy and 50 kGy) on the main properties of paper and multilayer films (polyester and polyethylene). Paper and multilayer films are components of packaging (pouches) for radiation sterilization containing medical equipment or products. Paper was the more radiation sensitive among the studied materials and radiation effects were more pronounced at brightness, pH, tearing resistance, bursting strength and tensile strength. Concerning plastic film, no pinholes were induced by radiation and the effects on the tensile strength were not significant. Although the seal strength packaging (pouches) decreased according to increasing dose, the sealing integrity was preserved.

  1. High-conductance low-voltage organic thin film transistor with locally rearranged poly(3-hexylthiophene) domain by current annealing on plastic substrate

    Science.gov (United States)

    Pei, Zingway; Tsai, Hsing-Wang; Lai, Hsin-Cheng

    2016-02-01

    The organic material based thin film transistors (TFTs) are attractive for flexible optoelectronics applications due to the ability of lager area fabrication by solution and low temperature process on plastic substrate. Recently, the research of organic TFT focus on low operation voltage and high output current to achieve a low power organic logic circuit for optoelectronic device,such as e-paper or OLED displayer. To obtain low voltage and high output current, high gate capacitance and high channel mobility are key factors. The well-arranged polymer chain by a high temperature postannealing, leading enhancement conductivity of polymer film was a general method. However, the thermal annealing applying heat for all device on the substrate and may not applicable to plastic substrate. Therefore, in this work, the low operation voltage and high output current of polymer TFTs was demonstrated by locally electrical bias annealing. The poly(styrene-comethyl methacrylate) (PS-r-PMMA) with ultra-thin thickness is used as gate dielectric that the thickness is controlled by thermal treatment after spin coated on organic electrode. In electrical bias-annealing process, the PS-r- PMMA is acted a heating layer. After electrical bias-annealing, the polymer TFTs obtain high channel mobility at low voltage that lead high output current by a locally annealing of P3HT film. In the future, the locally electrical biasannealing method could be applied on plastic substrate for flexible optoelectronic application.

  2. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  3. Effects of water soaking and/or sodium polystyrene sulfonate addition on potassium content of foods.

    Science.gov (United States)

    Picq, Christian; Asplanato, Marion; Bernillon, Noémie; Fabre, Claudie; Roubeix, Mathilde; Ricort, Jean-Marc

    2014-09-01

    In this study, we determined, by atomic absorption spectrophotometry, the potassium amount leached by soaking or boiling foods identified by children suffering from chronic renal failure as "pleasure food" and that they cannot eat because of their low-potassium diet, and evaluated whether addition of sodium polystyrene sulfonate resin (i.e. Kayexalate®) during soaking or boiling modulated potassium loss. A significant amount of potassium content was removed by soaking (16% for chocolate and potato, 26% for apple, 37% for tomato and 41% for banana) or boiling in a large amount of water (73% for potato). Although Kayexalate® efficiently dose-dependently removed potassium from drinks (by 48% to 73%), resin addition during soaking or boiling did not eliminate more potassium from solid foods. Our results therefore provide useful information for dietitians who elaborate menus for people on potassium-restricted diets and would give an interesting alternative to the systematic elimination of all potassium-rich foods from their diet.

  4. Formation of conductive and reflective silver nanolayers on plastic films via ion doping and solid–liquid interfacial reduction at ambient temperature

    International Nuclear Information System (INIS)

    Cui, Guanghui; Wu, Dezhen; Zhao, Yuan; Liu, Wei; Wu, Zhanpeng

    2013-01-01

    Conductive and reflective silver layers on both sides of polyimide films have been prepared by doping silver–ammonia ions into the surfaces of polyimide film, and subsequent solid–liquid interfacial reduction, during which double diffusion of silver ions and newly formed silver crystals occurred between the interfaces of polyimide films and the aqueous reducing surroundings. The newly formed silver nanoparticles could migrate and aggregate onto both sides of substrate films, forming continuous and compact silver layers that result in excellent conductivity, i.e. ∼0.6 and 0.5 Ω/sq on the upside and downside surfaces, respectively. The surface reflectivity could be detected up to 80% on the downside and 90% on the upside surface as well. The effects of the silver contents and reducing conditions on the morphologies and properties have been investigated comprehensively, and the two-side properties differences were discussed. A convictive relationship between the morphologies and properties has been established, providing reliable and general guidance in terms of preparation of inorganic nanoparticles on plastic substrates. This novel and simple strategy can be extended to fabricate many other metal, metal oxide and metal sulfide nanoparticles on plastic substrates, using proper oxidants or sulfions to replace the diverse reductants. The films were characterized by inductively coupled plasma, contact angle measurement, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, four-point probe instrument and ultraviolet spectrophotometry

  5. The plasticity of clays

    Science.gov (United States)

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  6. Antireflection coatings on plastics deposited by plasma ...

    Indian Academy of Sciences (India)

    In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses ... Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. ... Bulletin of Materials Science | News.

  7. Advanced boron soaking procedure for steam generators

    International Nuclear Information System (INIS)

    Ueno, T.; Tsuge, A.; Kawanishi, K.; Ochi, T.; Kadokami, E.

    1991-01-01

    An experimental study on boric acid penetration into tube to tube-support-plate crevices and Inter-Granular-Attack (hereinafter called 'IGA') cracks in crevices has been performed to obtain the optimum boric acid soaking procedure in operating steam generators with IGA. The penetration rate into the crevice is closely related to various parameters such as heat flux, crevice gap, and porosity of the sludge deposited in crevices. Two experimental crevice models were set up. One was of the packed crevice type; crevice gap is completely packed by sludge, and the other was of the open crevice type; crevice gap is not packed, but reduced by sludge. The porosity of the crevice varied from 100% open porosity to the highly sludge packed porosity of 10∼20%. The relation between heat flux and boric acid penetration rate of the packed crevice type was investigated. For the open crevice type, from the viewpoint that boric acid penetration into the dryout region produces no effects, tube wall superheat in the crevice was measured in order to obtain the dryout heat flux. And it was investigated the boron in IGA cracks using Ion Micro Analysis in order to confirm existence of an anticorrosive film in IGA propagation. The optimum reactor power for effective boric acid penetration onto the tube surface and into the IGA cracks within the tube to tube-support-plate crevice was found to be about a 5% and 30% power level, which are applicable to both the packed and open crevice type. (author)

  8. Studies on adsorption-desorption of xenon on surface of BC-404 plastic scintillator based on soaking method

    Energy Technology Data Exchange (ETDEWEB)

    Yongchun, Xiang [Institute of Nuclear Physics and Chemistry, China and Academy of Engineer Physics, Mianyang 621900 (China); School of Physics, Peking University, Beijing 100080 (China); Tieshuan, Fan [School of Physics, Peking University, Beijing 100080 (China); Chuanfei, Zhang; Fei, Luo; Qian, Wang; Rende, Ze [Institute of Nuclear Physics and Chemistry, China and Academy of Engineer Physics, Mianyang 621900 (China); Qingpei, Xiang, E-mail: xiangqingpei@163.com [Institute of Nuclear Physics and Chemistry, China and Academy of Engineer Physics, Mianyang 621900 (China)

    2017-03-01

    The phoswich coincidence detector is used to verify the CTBT treaty by measuring radioxenon and as such needs to possess high detection sensitivity. However, residual xenon adsorbed onto the surface of β detectors greatly influences subsequent measurements of weak samples. In this study, we investigate the adsorption-desorption behavior of xenon on BC-404 scintillator surfaces with different coating thicknesses using the soaking method. The results present the desorption behavior of xenon on a BC-404 surface for the first time. The calculated adsorption capacity for an uncoated surface is consistent with that from previous studies. However, due to factors such as limitations in coating technology, the effectiveness of coating on reducing the “memory effect” of the detector was poor. The proposed method is suitable for studying the adsorption-desorption behavior of gases on solid surfaces due to its simplicity and flexibility. - Highlights: • We investigate the adsorption-desorption of xenon on coated BC-404 surfaces. • The calculated adsorption capacity on an uncoated surface agrees with other results. • The method can be used to simulate xenon adsorption in phoswich detectors.

  9. DNA synthesis time in germinating rice and pattern of diethylsulphate induced mutations in pre-soaked seeds

    International Nuclear Information System (INIS)

    Narahari, P.

    1978-01-01

    DNA synthesis pattern in germinating rice seeds, pre-soaked in water for varying periods upto 48 hr, was determined by following the pulse incorporation of 3 H-thymidine into the TCA-insoluble nucleoprotein. Synthesis of DNA commenced at 24 hr, progressively increased to a first peak at about 38 hr, thereafter showed a 1/3rd drop and subsequently increased to a 2nd and still higher peak at 46 to 48 hr of pre-soaking. Treatments of diethylsulphate (dES) at a low concentration (0.2%-2hr) administered at various progressing stages of DNA synthesis resulted in decrease in seedling height and survival, and increase in mutation frequency at 45 hr. pre-soaking, maximum mutation frequencies of 20, 10 and 2% on M 1 plants, M 1 spikes and M 2 seedling bases, respectively were observed. Higher dES concentration (0.3%-2hr) given at later periods of pre-soaking showed near lethal effects and consequently decreased mutation frequencies. Treatments of sodium fluoride given singly or in combination with dES did not show any substantially different results as compared to those of the respective controls. Mutation spectra observed after dES treatments to germinating seeds, at different pre-soaking periods, were quite dissimilar. Specific mutations of economic importance like semi-dwarf mutants were isolated from the treatment of germinating seeds pre-soaked for 37.5 hr or more when shoot apex cells were undergoing DNA synthesis. (author)

  10. Biodegradable plastics derived from micro-fibrillated cellulose fiber and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, M.; Hosokawa, J.; Yoshihara, K.; Kubo, T.; Kabeya, H.; Endo, T. [Shikoku National Industrial Research Inst., Kagawa (Japan)

    1995-12-25

    We have been carrying out studies to develop biodegradable plastics from natural polysaccharides. We have found that a combination of micro-fibrillated cellulose fiber and chitosan produces a useful material that can be used to form biodegradable film and moldings. Cellulose-chitosan composite film demonstrate higher strength than general purpose plastic films, and wet strength peaks when chitosan content is 10-20%. The relatively small amount of chitosan needed is economically convenient because chitosan is more expensive than cellulose. This film biodegrade well in soil, completely dissolving and disappearing in two months. Biodegradability is influenced by the temperature used in thermal treatment the film, the quantity of acid groups in the cellulose, and other factors. These characteristics will be used to control decomposition. Since cellulose-chitosan-plastics are not thermoplastics, we have been working on joint research with companies to produce films, nonwoven fabrics and foams. We discuss here the properties and application of these composite moldings. 4 refs., 3 figs., 3 tabs.

  11. Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate

    Directory of Open Access Journals (Sweden)

    Sánchez-Roldán, Z.

    2016-03-01

    Full Text Available Recycled aggregate (RA from construction and demolition waste is traditionally used for the manufacture of concrete for different applications. Due primarily to high water content required by RA, the quality of the concrete is determined by the amount of replacement RA. The aim of this study is to determine if RA pre-soaking enhances the properties of pre-cast concrete for street furniture, with low mechanical and structural requirements, in which 100% of the coarse fraction is replaced. The results of physical and mechanical tests performed on concrete specimens in which the RA was pre-soaked using five different methods applied are compared with a reference concrete sample and a concrete sample made with non-pre-soaked RA. The results show that non-pre-soaked RA offers improved physical-mechanical properties for pre-cast concrete, except for the workability; problems arising from poorer workability could be improved with the use of plasticizers, which can be easily included in the production process.El árido reciclado (AR procedente de residuos de construcción y demolición se utiliza tradicionalmente en la elaboración de hormigón para diferentes aplicaciones. Debido principalmente al mayor contenido en agua requerido por el AR, la calidad del hormigón está determinada por la cantidad de AR reemplazado. El objetivo de este estudio es determinar si el AR premojado mejora las propiedades del hormigón prefabricado para mobiliario urbano, con bajas exigencias mecánicas y estructurales, en el que se sustituye el 100% de la fracción gruesa. Los resultados de los ensayos físicos y mecánicos realizados sobre muestras de hormigón en las cuales el AR se ha premojado usando cinco métodos diferentes se han comparado con una muestra de hormigón de referencia y una muestra de hormigón fabricada con AR no premojado. Los resultados muestran que el AR no premojado proporciona propiedades físico-mecánicas mejoradas en el hormigón prefabricado

  12. Optimization of mass of plastic scintillator film for flow-cell based tritium monitoring: a Monte Carlo study

    International Nuclear Information System (INIS)

    Roy, Arup Singha; Palani Selvam, T.; Raman, Anand; Raja, V.; Chaudhury, Probal

    2014-01-01

    Over the years, various types of tritium-in-air monitors have been designed and developed based on different principles. Ionization chamber, proportional counter and scintillation detector systems are few among them. A plastic scintillator based, flow-cell type online tritium-in-air monitoring system was developed for online monitoring of tritium in air. The value of the scintillator mass inside the cell-volume, which maximizes the response of the detector system, should be obtained to get maximum efficiency. The present study is aimed to optimize the amount of mass of the plastic scintillator film for the flow-cell based tritium monitoring instrument so that maximum efficiency is achieved. The Monte Carlo based EGSnrc code system has been used for this purpose

  13. Effects of chopping, and soaking in water, hydrochloric acidic and calcium hydroxide solutions on the nutritional value of Acacia villosa for goats

    Energy Technology Data Exchange (ETDEWEB)

    Wina, E. [Research Institute for Animal Production, Bogor (Indonesia)]. E-mail: winabudi@yahoo.com; Tangendjaja, B.; Susana, I.W.R. [Research Institute for Animal Production, Bogor (Indonesia)

    2005-08-19

    Acacia villosa, a thornless shrub legume, has potential as a feed supplement for ruminants if anti-nutritional factors, especially tannins, can be overcome. The effects of chopping and soaking the leaves on the amounts of tannin in the extracting solution and that left in the recovered leaves were studied. The tannin and non-tannin phenolics were solubilized in the extracting solution and the amount was increased with the soaking time. Soaking in calcium hydroxide solution, hydrochloric acid or water removed 41-76% of tannin and total phenolics removed from the recovered leaves. Soaking of the leaves also removed fermentable materials and reduced the gas production. In the first of two digestibility experiments, three groups of goats received one of these diets, those were: (1) sugar cane tops: unsoaked Acacia leaves (7:3), (2) sugar cane tops: water soaked Acacia leaves (7:3) and (3) sugar cane tops: water soaked Acacia leaves (7:3) + 100 g/day of cassava flour. Live weight of goats was measured every 2 weeks and a large increase in average daily gain was obtained for goats fed diet containing water soaked leaves and cassava flour (71 g/day) compared to those fed diet containing unsoaked leaves and water soaked leaves (38.9 and 44.7 g/day, respectively) (P < 0.05). In the second digestibility experiment, the three diets were: (1) sugar cane tops: unsoaked Acacia (7:3), (2) sugar cane tops water soaked Acacia (7:3), (3) sugar cane tops: calcium hydroxide soaked Acacia (7:3). A supplement of 100 g/day of cassava flour was added to each of these three diets. In both digestibility experiments, soaking improved intake and digestibility of Acacia leaves, and cassava flour increased the intake, but when all the diets contained cassava flour, there was no significant difference (P > 0.05) found in intake or digestibility between unsoaked and soaked leaves. In conclusion, soaking reduced tannin in Acacia leaves, improved digestibility and intake of Acacia leaves. In the

  14. Effects of chopping, and soaking in water, hydrochloric acidic and calcium hydroxide solutions on the nutritional value of Acacia villosa for goats

    International Nuclear Information System (INIS)

    Wina, E.; Tangendjaja, B.; Susana, I.W.R.

    2005-01-01

    Acacia villosa, a thornless shrub legume, has potential as a feed supplement for ruminants if anti-nutritional factors, especially tannins, can be overcome. The effects of chopping and soaking the leaves on the amounts of tannin in the extracting solution and that left in the recovered leaves were studied. The tannin and non-tannin phenolics were solubilized in the extracting solution and the amount was increased with the soaking time. Soaking in calcium hydroxide solution, hydrochloric acid or water removed 41-76% of tannin and total phenolics removed from the recovered leaves. Soaking of the leaves also removed fermentable materials and reduced the gas production. In the first of two digestibility experiments, three groups of goats received one of these diets, those were: (1) sugar cane tops: unsoaked Acacia leaves (7:3), (2) sugar cane tops: water soaked Acacia leaves (7:3) and (3) sugar cane tops: water soaked Acacia leaves (7:3) + 100 g/day of cassava flour. Live weight of goats was measured every 2 weeks and a large increase in average daily gain was obtained for goats fed diet containing water soaked leaves and cassava flour (71 g/day) compared to those fed diet containing unsoaked leaves and water soaked leaves (38.9 and 44.7 g/day, respectively) (P 0.05) found in intake or digestibility between unsoaked and soaked leaves. In conclusion, soaking reduced tannin in Acacia leaves, improved digestibility and intake of Acacia leaves. In the presence of cassava flour, soaking improved average daily gain. Diets supplemented with water soaked Acacia leaves probably also need an energy supplement and cassava flour is one of the feed ingredients that is satisfactory. (author)

  15. Structural characterization of a Cu(II) thin-film aging in a Cu-nitrate solution

    International Nuclear Information System (INIS)

    Mear, F.O.; Essi, M.; Sistat, P.; Guimon, M.-F.; Gonbeau, D.; Pradel, A.

    2009-01-01

    The response of thin-film copper (II) ion-selective electrodes based on chalcogenide glassy Cu-Sb-Ge-Se is described according to the soaking time in a 10 -4 M copper (II) solution. The chalcogenide membrane/solution interface has been investigated by using electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) in order to understand the sensing properties. During the first month of the soaking, an alteration of the membrane by a chemical change without alteration of the sensor detection performance has been observed.

  16. To Enhance Performance of Light Soaking Process on ZnS/CuIn1-xGaxSe2 Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Jen Hsiao

    2013-01-01

    Full Text Available The ZnS/CuInGaSe2 heterojunction solar cell fabricated on Mo coated glass is studied. The crystallinity of the CIGS absorber layer is prepared by coevaporated method and the ZnS buffer layer with a band gap of 3.21 eV. The MoS2 phase was also found in the CuInGaSe2/Mo system form HRTEM. The light soaking effect of photoactive film for 10 min results in an increase in F.F. from 55.8 to 64%, but series resistivity from 7.4 to 3.8 Ω. The efficiency of the devices improved from 8.12 to 9.50%.

  17. Influence of Gamma Irradiation, Soaking and Cooking the Detoxification of Aflatoxin β1 and sensory characteristics of Cowpea

    International Nuclear Information System (INIS)

    Mahrous, S.R.

    2004-01-01

    The present work deals with the effect of gamma irradiation, soaking in water and cooking on reducing or removal of aflatoxin β 1 as well as on sensory characteristics of cow peas. Long-time soaking (12 h) of gamma irradiated (5-10 kGy) Cowpea caused remarkable reduction in the levels of aflatoxin β 1 by about 88.4 to 97.28% . Cooking under pressure of gamma irradiated cowpea was more effective in detoxifying aflatoxin β 1 than ordinary cooking under pressure of 6 hours pre-soaked 7.5 kGy irradiated cowpea detoxified aflatoxin β 1 by 95.92% and there was no aflatoxin β 1 in 10 kGy irradiated cowpea. The sensory evaluation of pre-soaked and cooking under pressure of 10 kGy irradiated cowpea improved the overall acceptability of cowpea. In general, gamma irradiation, soaking and cooking (ordinary or under pressure) detoxified aflatoxin β 1 and did not induce any significant effect on the sensory profile in the cowpea

  18. Uranium exploration in Pakistan using alpha sensitive plastic films (ASPF)

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, A.A.; Khan, H.A. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Health Physics Div.); Samad Beg, M.A.; Ahmed, Fazal (Atomic Energy Minerals Centre, Lahore (Pakistan))

    1988-01-01

    The Alpha Sensitive Plastic Film (ASPF) technique has been successfully developed in Pakistan. Studies concerning optimisation of tube size, exposure time, position of detector in tube, etching conditions, type of detector, etc. have been done in the laboratory. Some studies like effects of depth, size and grade of ore body and water table were carried out in the field. The application of this technique was fairly successful in sandstone areas. Based on this technique, subsurface uranium occurrences were established in D.G. Khan and Isa Khel. The ASPF-results were confirmed by subsequent drilling and other methods. The technique has been found to be workable and inexpensive. It has been found to supplement the conventional exploration methods, and if applied as a part of normal exploration programme may reduce overall project cost substantially. This paper briefly describes the methodology, parameters, applications and results of the ASPF technique in the field of uranium prospecting and exploration in Pakistan. (author).

  19. Effects of gamma radiation (60Co) on the main physical and chemical properties of health care packaging and their compounds paper and multilayer plastic film, used for health products sterilization

    International Nuclear Information System (INIS)

    Porto, Karina Meschini Batista Geribello

    2013-01-01

    Gamma radiation is one of the technologies applied for the sterilization of packaging systems containing products for health. During sterilization process it is critical that the properties of packages are maintained. In this study two samples of commercial pouch packaging comprised of surgical grade paper on one side and the other side multilayer plastic film were irradiated with gamma rays. The following doses were applied 25 kGy (1,57 kGy/h) and 50 kGy (1,48 kGy/h). One packaging sample was paper formed by softwood fibers and multilayer plastic film based on poly(ethylene terephthalate) (PET)/polyethylene (PE). The second type of paper sample was made by a mixture of softwood and hardwood fibers and multilayer plastic film based on polyethylene terephthalate (ethylene) (PET)/polypropylene (PP). The effects of radiation on the physical and chemical properties of papers and multilayer plastic films, as well as the properties of the package were studied. The paper was the more radiation sensitive among the studied materials and radiation effects were more pronounced at brightness, pH, tearing resistance, bursting strength and tensile strength. Nonetheless, worst comparatively effects were noted on the sample made by a mixture of softwood and hardwood fibers. The porosity of paper was enhanced by 50 kGy. In the case of plastic films, radiation effects on tensile strength was the most pronounced property for both samples. In the case of the packaging the sealing resistance decreased with radiation. The effects observed for the treatment at 50 kGy were more pronounced when compared to 25 kGy. This last is the dose which is usually applied to sterilize health products. A dosimetry study was performed during irradiation at 25 kGy, 40 kGy and 50 kGy and its importance may be reported by the average dose variation 20 %. (author)

  20. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Science.gov (United States)

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  1. Phyllosphere yeasts rapidly break down biodegradable plastics

    Science.gov (United States)

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  2. STUDY CONCERNING THE INFLUENCE OF CERTAIN HYDROPHILIC AUXILIARIES ON THE PROPERTIES OF THE PLASTICIZED POLYVINYL CHLORIDE POROUS FILMS Part II-HYGIENIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    BĂLĂU MÎNDRU Tudorel

    2015-05-01

    Full Text Available The purpose of this paper was to obtain certain PVC films with improved hygienic properties, with applications both in the artificial leather industry and in other domains. This was done by introducing certain hydrophilic auxiliaries with free chemical functions into the chemical structure of the PVC films, such as: collagen hydrolysates (CH, hydroxyl-terminated polydimethylsiloxane (HTPDMS and nonylphenol ethoxylate (NPE. The use of these hydrophilic auxiliaries combined with the action of the high frequency electric fields (H.F.E.F. allows the attainment of cellular structures where the walls of the cells obtained from the expanding process display an enhanced humidity absorption. The collagen hydrolysates used to obtain the plasticized PVC porous films was obtained by electrolytic hydrolysis starting from Chamois leather powder waste resulting from buffing operation, according to a methodology described in a previous paper. The first part of this study was concerned with the influence of the addition of hydrophilic agents upon the moisture sorption of the plasticized PVC porous films. In this paper, there was investigated the water vapour and air permeability as well as the water vapour absorption of the porous films expanded in the H.F.E.F. in correlation with the nature and the recipe variant of the hydrophilic auxiliaries. The results highlighted the fact that the use of certain combinations of hydrophilic agents led to obtaining materials with adequate hygienic properties.

  3. Effect of Polylactic Acid-Degradable Film Mulch on Soil Temperature and Cotton Yield

    Directory of Open Access Journals (Sweden)

    ZHANG Ni

    2016-03-01

    Full Text Available Concern on biodegradable plastic film is increasing because of pollution problems caused by the plastic films currently used. The objective of this field experiment is to evaluate the effect of two thicknesses of polyactic acid-degradable film on soil temperature and cotton yield. The results showed that small holes appeared in the polyactic acid-degradable film at 17~22 d after it was installed. Burst period appeared about 60 d after installation. Splits were observed in the polyactic acid-degradable film at 130 d after installation. Soil temperatures rose slowly under polyactic acid-degradable film during the cotton seedling stage. Daytime soil temperatures were 0.8℃ and 6.2℃ lower under 18μm and 15μm thick polyactic acid-degradable film than non-degradable plastic film(CK, respectively. Nighttime soil temperatures under the polyactic acid-degradable film were about 1℃ warmer than CK. There was no significant difference in cotton yields between the 18μm polyactic acid degradable film treatment and CK. In contrast, yields in the 15μm degradable plastic film treatment were 8.9% less than that in CK. This study indicated that 18μm polyactic acid degradable plastic film had good degradability and no negative effect on cotton growth. The 18μm polyactic acid degradable plastic film can replace ordinary plastic film in agricultural production.

  4. Soaking and drying of cassava roots reduced cyanogenic potential ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... Key words: Cassava flour, soaking, total hydrogen cyanide. INTRODUCTION. Cassava (Manihot esculenta Crantz) is one of the most important food crops ... vision, ataxia of gait, deafness and weakness (Howlett,. 1994; Cardoso et al., 2005). These medical conditions caused by cyanide overload could be ...

  5. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  6. The Bang-Soak Theory of Missile Attack and Terminal Defense

    National Research Council Canada - National Science Library

    Washburn, Alan

    2005-01-01

    .... This paper generalizes to the case where the attacking arsenal is mixed, the main motivation being that a mixed attacking arsenal can contain decoys that are harmless to targets, but which can still "soak up" defenders...

  7. Effect of radiation and soaking on trypsin inhibitor and protein content of chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Sattar, A.; Atta, S.; Akhtar, M.A.

    1990-01-01

    Composition of Ascochyta-blight resistant chickpea for proximate components, vitamins, energy and trypsin inhibitor, was determined. The influence of irradiation and soaking at ambient temperatures (25-35deg C) on trypsin inhibitor activity (TIA) and protein content of chickpea, was investigated. A significant linear relation (r = -0.960 to -0.987) was found between the loss of TIA and soaking time of irradiated and unirradiated seeds (p < 0.05) and the rate of loss increased with increasing radiation dose (0.25-1.00 kGy). However, effect of radiation alone was negligible. Maximum decrease (30.7%) in TIA (from 330.0 to 228.6 TiU/g) occurred during soaking for 12 h of 1.00 kGy sample. The protein contents increased from an initial value of 21.7% to 23.4% and 22.7% as a result of soaking for 12 h in tap and distilled waters, respectively. Radiation treatment exhibited little or no effect. (author)

  8. Influence of water-soaking time on the acoustic emission characteristics and spatial fractal dimensions of coal under uniaxial compression

    Directory of Open Access Journals (Sweden)

    Jia Zheqiang

    2017-01-01

    Full Text Available The water-soaking time affects the physical and mechanical properties of coals, and the temporal and spatial evolution of acoustic emissions reflects the fracture damage process of rock. This study conducted uniaxial compression acoustic emissions tests of coal samples with different water-soaking times to investigate the influence of water-soaking time on the acoustic emissions characteristics and spatial fractal dimensions during the deformation and failure process of coals. The results demonstrate that the acoustic emissions characteristics decrease with increases in the water-soaking time. The acoustic emissions spatial fractal dimension changes from a single dimensionality reduction model to a fluctuation dimensionality reduction model, and the stress level of the initial descending point of the fractal dimension increases. With increases in the water-soaking time, the destruction of coal transitions from continuous intense failure throughout the process to a lower release of energy concentrated near the peak strength.

  9. Available and unavailable carbohydrate content of black gram(Vigna Mungo) and chick-pea (Cicer Arietinum) as affected by soaking and cooking processes

    International Nuclear Information System (INIS)

    Zia-ur-Rehman; Rashid, M.; Salariya, A.M.

    2003-01-01

    The effects of soaking (Tap water, sodium bicarbonate solution) and cooking in tap water were investigated on available and unavailable carbohydrate contents and starch digestibility of black grams and chick-peas. Available carbohydrates including total soluble sugars, reducing sugars, non-reducing sugars and starch contents of these two legumes decreased to various extents as a result of soaking and cooking. From 3.43 - 25.63% total soluble sugars and 4.26 - 22.70% starch contents were lost on soaking black grams and chick-peas in tap water and sodium bicarbonate solution. Maximum amounts of total soluble sugars (28.43 - 59.64%) and starch contents (29.93 - 67.40%) were lost on cooking the water and alkali soaked legumes. However, these losses were comparatively less in case of water soaking process. Soaking and cooking processes also brought about some changes in the profile of unavailable carbohydrates of black grams and chick-peas. Soaking in sodium bicarbonate solution led to an appreciable increase of hemicellulose (42.50 - 54.31%) and NDF (28.69 - 30.68%) but not in legumes soaked in tap water. However, cooking process caused reduction in NDF (19.25 - 41.04%), ADF (5.48 - 25.31%), cellulose (12.88 - 28.42%) and hemicellulose (31.86 - 59.37%). Lignin contents of these legumes increased to some extents on cooking whereas it remained unchanged as a result of soaking. Starch digestibility of black grams and chick peas was markedly improved after cooking. However, no appreciable improvement in starch digestibility was observed after soaking these legumes in tap water or alkaline solution.(author)

  10. Field Experiment on Soaking Characteristics of Collapsible Loess

    Directory of Open Access Journals (Sweden)

    Zhichao Wang

    2017-01-01

    Full Text Available In collapsible loess area, migration of soil moisture often causes the temporal discontinuity and spatial nonuniformity of collapsibility, which leads to great damage for infrastructures. Therefore, the research on water infiltration is the key to solving the problem of collapsibility. The aim of this paper is to investigate the spatiotemporal evolution of infiltration characteristics of collapsible loess. A field soaking experiment was conducted on collapsible loess in western China, in which a soaking pool with diameter of 15 m was built. Time-Domain-Reflectometry (TDR system and soil sampling were employed to measure the water content within the depth of 12 m. Then the saturation isograms were drawn for visualization of the process of infiltration. Also, a pilot tunnel was excavated to investigate how the free face can affect the infiltration behaviors. The experimental results revealed the characteristics of infiltration in both horizontal and vertical directions. Moreover, the response of free face on infiltration behaviors was also found. These findings of research could provide the data for the infiltration laws of unsaturated loess and thereby provide the basis for integrated treatment of collapsible loess.

  11. Soaking assisted thermal pretreatment of cassava peels wastes for fermentable sugar production: Process modelling and optimization

    International Nuclear Information System (INIS)

    Aruwajoye, Gabriel S.; Faloye, Funmilayo D.; Kana, Evariste Gueguim

    2017-01-01

    Highlights: • Soaking Assisted Thermal Pretreatment (SATP) of Cassava Peels’ waste is reported. • Maximum fermentable sugar of 0.93 g/g and 90.90% sugar recovery was achieved. • This technique gave a 31% sugar yield improvement over enzymatic pretreatment. • SEM and FTIR analysis confirms the efficiency of SATP. - Abstract: This study reports a hybrid pretreatment strategy for optimum fermentable sugar (FS) release from cassava peels waste. The Response Surface design method was used to investigate the effect of soaking temperature, soaking duration, autoclave duration, acid concentration and solid loading on reducing sugar yield. The model gave a coefficient of determination (R 2 ) of 0.87. The optimum pretreatment conditions of 69.62 °C soaking temperature, 2.57 h soaking duration, 5 min autoclave duration, 3.68 v/v acid concentration and 9.65% w/v solid loading were obtained. Maximum reducing sugar of 89.80 ± 2.87 g/L corresponding to a fermentable sugar yield of 0.93 ± 0.03 g/g cassava peels was achieved upon model validation. A percentage sugar recovery of 90.79% was achieved with a 31% improvement in the FS yield from the enzyme pretreatment. The combined severity factor (CSF) of 0.77 and the low concentration of inhibitory compounds achieved further demonstrates the efficiency of this technique.

  12. Microbial diversity and dynamics of microbial communities during black-slop soaking of soybeans as determined by PCR-DGGE and molecular cloning

    NARCIS (Netherlands)

    Yan, Y.Z.; Wolkers-Rooijackers, J.C.M.; Nout, M.J.R.; Han, B.Z.

    2013-01-01

    Tempe is a traditional fermented food in Indonesia. The manufacture process is quite complex, which comprises two stages, preparatory soaking of soybeans and fungal solid state fermentation. Daily addition of previous soak water (back-slopping) during the soybean soaking step is considered to be

  13. Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay.

    Science.gov (United States)

    Nam, Sun-Hwa; Moon, Jongmin; Kim, Shin Woong; Kim, Hakyeong; Jeong, Seung-Woo; An, Youn-Joo

    2017-11-16

    The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.

  14. Morphology and thermal properties of PLA films plasticised with aliphatic oligoesters; Morfologia e propriedades termicas de filmes de PLA plastificados com oligoesteres alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Inacio, Erika M.; Dias, Marcos L., E-mail: erika.minacio@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Lima, Maria Celiana P. [Instituto Federal do Rio de Janeiro (IFRJ), Duque de Caxias, RJ (Brazil)

    2013-07-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  15. Effects of Adopting Different Kinds of Collecting Method for Years on Film Residual Coefficient and Maize Yields

    OpenAIRE

    TANG Wen-xue; MA Zhong-ming; WEI Tao

    2017-01-01

    Wide usage of mulching technology has increased crop yields, but the large amounts of mulching film residue resulting from widespread use of plastic film in China has brought about a series of pollution hazards. Based on a 4-year (2011-2014) long-term experiment, the effects of different kinds of collecting mothod (zero plastic film residues, conventional plastic film residues, whole plastic film residues remainded) on plastic film residues, residual coefficient and maize yield were explored....

  16. Determination of structural and mechanical properties, diffractometry, and thermal analysis of chitosan and hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol

    Directory of Open Access Journals (Sweden)

    Jefferson Rotta

    2011-06-01

    Full Text Available In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v in water and chitosan (2% w/v in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100 of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM, differential scanning calorimetry (DSC, and thermal gravimetric analysis (TGA. The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.

  17. Development of radiophotometric dosemeters with high sensitivity using plastic scintillators as a light intensifier

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Hamada, M.M.

    1987-01-01

    Rectangular plates of plastic scintillators are developed and their effect as light converter evaluated, when used as film-holder in conventional photography dosemeters. In this dosemeter, the radiation that not interacts in the photographic film can be detected by light photons generation in the plastic scintillators, sensitizing the film. (C.G.C.) [pt

  18. Effect of heating cast kafirin films on their functional properties

    CSIR Research Space (South Africa)

    Byaruhanga, YB

    2007-01-01

    Full Text Available of heated plasticized films showed more wrinkled structures compared to non-heated films, whereas the non-plasticized films appeared more brittle with heating. The results indicate that heat-induced intermolecular disulfide cross-linking was involved...

  19. Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese.

    Science.gov (United States)

    Wagh, Y R; Pushpadass, Heartwin A; Emerald, F Magdaline Eljeeva; Nath, B Surendra

    2014-12-01

    Casein and whey protein concentrate (WPC) films, plasticized with glycerol and sorbitol independently, were prepared by casting. The film thickness, water vapour and oxygen permeation and tensile and moisture sorption properties of the films were determined. The tensile strength (TS), tensile strain (TE) and elastic modulus (EM) of the films ranged from 0.71 to 4.58 MPa, 19.22 to 66.63 % and 2.05 to 6.93 MPa, respectively. The film properties were influenced by the type of biopolymer (casein and whey protein concentrate), plasticizer and its concentration. Increasing the plasticizer concentration, increased the film thickness, TE and water vapour permeability (WVP), but decreased the TS and EM. As the concentration of plasticizer increased to the highest level, the film thickness increased from 0.168 to 0.305 mm for glycerol-plasticized films and from 0.251 to 0.326 mm for sorbitol-plasticized films. The film thickness increased because the amount of plasticizer in the film network increased and the amount of biopolymer remained same. Casein films showed superior tensile properties as compared to WPC films. The WVP of both casein and WPC films lied between 3.87 and 13.97 g.mm./(m(2).h.kPa). The moisture sorption isotherms of both films were typical of high-protein material, and were adequately described by the GAB model. The oxygen permeability of casein films was relatively lower than that of WPC films, regardless of the plasticizer used. The sensory data revealed that the organoleptic quality of Cheddar cheese was unaffected by milk-protein film packaging.

  20. Characteristics of low-resistivity aluminum-doped zinc oxide films deposited at room temperature by off-axis radio-frequency sputtering on flexible plastic substrates

    Science.gov (United States)

    Wang, Li-Min; Wang, Chih-Yi; Jheng, Ciao-Ren; Wu, Syu-Jhan; Sai, Chen-Kai; Lee, Ya-Ju; Chiang, Ching-Yu; Shew, Bor-Yuan

    2016-08-01

    The crystalline structure, morphology, composition, electrical transport, and optical properties of aluminum-doped zinc oxide (AZO) films are studied for applications in transparent electronics and optoelectronic devices. AZO thin films of c-axis-oriented growth and with different thickness were deposited on PET flexible plastic substrates at room temperature by rf magnetron sputtering. A larger grain size with a decreased strain ɛ value is observed in a thicker film, while changes in composition for films with different thicknesses are insignificant. Moreover, the resistivity of film decreases with increasing thickness, and the low-temperature electrical transport properties can be described by the scenario of quantum corrections to conductivity. With the room-temperature growth conditions, the resistivity of 4.5 × 10-4 Ω cm, carrier concentration of 6.4 × 1020 cm-3, and transmittance of 80 % for the 1100-nm-thick film are obtained. In addition, the optical bandgap energy decreases with increasing film thickness, which can be attributed to the bandgap renormalization and crystallite size effects.

  1. Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization

    International Nuclear Information System (INIS)

    López, Olivia V.; García, María A.

    2012-01-01

    Biodegradable films from ahipa, cassava and corn native starches were developed by casting method and their physicochemical, mechanical and barrier properties were analyzed taking into account the different starch botanical sources. Filmogenic suspensions were prepared; their rheological behaviors were studied and all of them exhibited film-forming ability. However, mechanical assays demonstrated that unplasticized films were too rigid, limiting their technological applications. Thus, 1.5% w/w of glycerol as plasticizer was added to filmogenic suspensions and film flexibility and extensibility were improved, this effect was more significant for ahipa and cassava starch films. Furthermore, thickness, moisture content and water solubility of the developed films were increased when plasticizer was incorporated. Glycerol addition reduced film water vapor permeability and the lowest reduction corresponded to cassava starch films due to the high viscosity of its filmogenic suspensions. Plasticized starch films resulted to be UV radiation barriers; ahipa starch films had the lowest light absorption capacity and higher transparency than cassava and corn starch films. Dynamic-mechanical analysis indicated that plasticized films were partially miscible systems exhibiting two relaxations, one attributed to the starch-rich phase and the other to the glycerol-rich one. Likewise, it could be demonstrated that glycerol exerted a major plasticizing effect on ahipa starch matrixes. Highlights: ► Ahipa, cassava and corn starch films were developed by casting method. ► Glycerol effect on film mechanical behavior was major for tuberous starch films. ► Ahipa starch films resulted to be more transparent with lower UV absorption capacity. ► Plasticized films were partially miscible systems: with a glycerol-rich and a starch-rich phase. ► Glycerol exerted a major plasticizing effect on ahipa starch films.

  2. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry

    International Nuclear Information System (INIS)

    Boopathy, R.; Sekaran, G.

    2013-01-01

    Highlights: • Electrochemical treatment of evaporated residue of soak liquor (ERSL) generated in Tannery. • Copper coating on electrode surface and horizontal mounting of electrodes for ERSL treatment. • Electrochemical oxidation of organic pollutants under high saline condition. • The treated solution may be evaporated to dryness to get NaCl salt for hide/skin preservation. -- Abstract: The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (k m ) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm −2 was 0.41 kWh m −3 for the removal of COD and 2.57 kWh m −3 for the removal of TKN

  4. Degradation studies on plasticised PVC films submitted to gamma radiation

    International Nuclear Information System (INIS)

    Vinhas, Gloria Maria; Souto-Maior, Rosa Maria; Lapa, Camila Maria; Almeida, Yeda Medeiros Bastos de

    2003-01-01

    Poly (vinyl chloride), PVC, is a rigid polymer and for several of its applications must be compounded with plasticizing agents. The plasticizers minimize the dipolar interactions, which exist between the polymer's chains, promoting their mobility. In this work we studied the properties of PVC/plasticizer systems submitted to different doses of gamma radiation. We have used four commercial plasticizers among them di(2-ethylhexyl) phthalate, DEHP, which is present in a great number of commercial applications. The PVC/plasticizer systems have been studied as films made by the solvent evaporation technique. Irradiated and non-irradiated films have been characterized by viscosimetric analysis, mechanical essays and infrared spectroscopy. The results have shown that the rigid, non plasticized, PVC film presented the greatest degradation index, while among the plasticised films the one which presented the larger degradation index due to chain scission was the DEHP plasticised PVC. (author)

  5. Chemical, chromatic, and sensory attributes of 6 red wines produced with prefermentative cold soak.

    Science.gov (United States)

    Casassa, L Federico; Bolcato, Esteban A; Sari, Santiago E

    2015-05-01

    Six red grape cultivars, Barbera D'Asti, Cabernet Sauvignon, Malbec, Merlot, Pinot Noir and Syrah, were produced with or without prefermentative cold soak (CS). Cold soak had no effect on the basic chemical composition of the wines. At pressing, CS wines were more saturated and with a higher red component than control wines. After 1 year of bottle aging, CS wines retained 22% more anthocyanins than control wines, but tannins and total phenolics remained unaffected. Both saturation and the red component of colour were slightly higher in CS wines. From a sensory standpoint, CS only enhanced colour intensity in Barbera D'Asti and Cabernet Sauvignon wines, whereas it diminished colour intensity in Pinot Noir. Cold soak had no effect on perceived aroma, bitterness, astringency, and body of the wines. Principal Component Analysis suggested that the outcome of CS is contingent upon the specific cultivar to which the CS technique is applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. DORMANCY BREAKING OF OIL PALM SEED TENERA VARIETY BY SOAKING FOR A CERTAIN LENGTH OF TIME IN THE SULFURIC ACID SOLUTION

    Directory of Open Access Journals (Sweden)

    WAYAN SUENA

    2012-11-01

    Full Text Available The experiment aimed to know the effect of length of soaked time in sulfuric acid (H2SO4 solution to the dormancy breaking upon the oil palm seeds. The experiment show that soaking seeds for 12 and 10 minutes in the acid solution resulted dormancy breaking were reached after 61.3 days, while soaking seed for 2 minutes in the same solution breaking of dormancy was reached after 73.5 days. By soaked oil palm seeds in sulfuric acid solution gave highest germination percentage (80%, peak value of germination was 0.77%/day, by an average of 0.73%/day. So that, by soaked oil palm seed in sulfuric acid solution for 12 minutes was able to increase vigor, viability, rate of germination and growth uniformity.

  7. Lead contamination of inexpensive plastic jewelry

    Energy Technology Data Exchange (ETDEWEB)

    Yost, Jamie L. [Department of Chemistry, Ashland University, Ashland, Ohio (United States); Weidenhamer, Jeffrey D. [Department of Chemistry, Ashland University, Ashland, Ohio (United States)], E-mail: jweiden@ashland.edu

    2008-04-15

    The neurological hazards of lead to children are well-known. As a result of recent documented cases of lead poisoning, regulatory attention in the United States has focused on the lead content of children's metal jewelry. By contrast, little is known about the possible hazards of plastic jewelry items. The objective of this study was to determine whether inexpensive plastic jewelry is a possible source of toxic lead for children. Samples of more than 100 inexpensive plastic jewelry items were analyzed for lead content. Beads were screened by soaking in 1 M nitric acid. Nine items found to release more than 30 {mu}g of lead per bead were further tested for accessible lead, and scrapings of the bead coatings were analyzed for total lead content. The maximum accessible lead found was 49 {mu}g per bead, which is below the current US Consumer Product Safety Commission limit of 175 {mu}g. However, when the number of beads in each item was taken into account, six of the nine leaded samples contained more than 175 {mu}g accessible lead per item. The lead in these items appears to be associated with lead-based paints used to produce glossy coatings on imitation pearls and similar items. Coatings obtained by scraping individual beads contained 3.5-23% lead, which far exceeds the US regulatory limit of 0.06% lead in paints on items intended for children. Our results demonstrate that plastic jewelry items merit the attention of public health and consumer protection agencies seeking to limit the exposure of children to lead.

  8. Lead contamination of inexpensive plastic jewelry

    International Nuclear Information System (INIS)

    Yost, Jamie L.; Weidenhamer, Jeffrey D.

    2008-01-01

    The neurological hazards of lead to children are well-known. As a result of recent documented cases of lead poisoning, regulatory attention in the United States has focused on the lead content of children's metal jewelry. By contrast, little is known about the possible hazards of plastic jewelry items. The objective of this study was to determine whether inexpensive plastic jewelry is a possible source of toxic lead for children. Samples of more than 100 inexpensive plastic jewelry items were analyzed for lead content. Beads were screened by soaking in 1 M nitric acid. Nine items found to release more than 30 μg of lead per bead were further tested for accessible lead, and scrapings of the bead coatings were analyzed for total lead content. The maximum accessible lead found was 49 μg per bead, which is below the current US Consumer Product Safety Commission limit of 175 μg. However, when the number of beads in each item was taken into account, six of the nine leaded samples contained more than 175 μg accessible lead per item. The lead in these items appears to be associated with lead-based paints used to produce glossy coatings on imitation pearls and similar items. Coatings obtained by scraping individual beads contained 3.5-23% lead, which far exceeds the US regulatory limit of 0.06% lead in paints on items intended for children. Our results demonstrate that plastic jewelry items merit the attention of public health and consumer protection agencies seeking to limit the exposure of children to lead

  9. Development of starch biofilms using different carboxylic acids as plasticizers

    International Nuclear Information System (INIS)

    Cruz, L.C.; Miranda, C.S.; Santos, W.J. dos; Goncalves, A.P.B.; Oliveira, J.C.; Jose, N.M.

    2014-01-01

    Biodegradable films have become a widely exploited issue among scientists because of their positive environmental impact, besides their potential to promote better food conservation and an increase in shelf life. Starch has been studied in this field due to its availability, low cost and biodegradability. However, starch films tend to be brittle and they need addition of a plasticizer to enable their usage. In this work, starch films were synthesized with different carboxylic acids as plasticizers, aiming to observe the effect of the acids chain size in the final films properties. The acids used were: oxalic, succinic and adipic. The materials were produced by casting and characterized by DSC, TG, DRX e FTIR. It was observed that the acids chain size influenced on the thermal and structural properties of the films. (author)

  10. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2015-05-15

    Soaking is one of the important steps of the parboiling process. In this study, we investigated the effect of changes in different sodium chloride (NaCl) content (0%, 1.5% and 3.0% NaCl, w/v) of soaking media and soaking temperatures (30°C, 45°C and 60°C) on the phenolic compounds (α-tocopherol, γ-oryzanol) and on the fatty acids of glutinous rice, compared with unsoaked samples. Overall, the total phenolic content, total phenolic acids, γ-oryzanol, saturated fatty acid and mono-unsaturated fatty acid of the glutinous rice showed an increasing trend as NaCl content and soaking temperature increased, while α-tocopherol and polyunsaturated fatty acids decreased. Soaking at 3.0% NaCl provided the highest total phenolic content, total phenolic acids and γ-oryzanol (0.2mg GAE/g, 63.61 μg/g and 139.76 mg/100g, respectively) for the soaking treatments tested. Nevertheless, the amount of α-tocopherol and polyunsaturated fatty acid were found to be the highest (18.30/100g and 39.74%, respectively) in unsoaked rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. 20% Efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/Cu(In,Ga)(S,Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light-Soaking and Light-Soaking Processes.

    Science.gov (United States)

    Chantana, Jakapan; Kato, Takuya; Sugimoto, Hiroki; Minemoto, Takashi

    2018-04-04

    Development of Cd-free Cu(In,Ga)(S,Se) 2 (CIGSSe)-based thin-film solar cells fabricated by an all-dry process is intriguing to minimize optical loss at a wavelength shorter than 520 nm owing to absorption of the CdS buffer layer and to be easily integrated into an in-line process for cost reduction. Cd-free CIGSSe solar cells are therefore prepared by the all-dry process with a structure of Zn 0.9 Mg 0.1 O:Al/Zn 0.8 Mg 0.2 O/CIGSSe/Mo/glass. It is demonstrated that Zn 0.8 Mg 0.2 O and Zn 0.9 Mg 0.1 O:Al are appropriate as buffer and transparent conductive oxide layers with large optical band gap energy values of 3.75 and 3.80 eV, respectively. The conversion efficiency (η) of the Cd-free CIGSSe solar cell without K-treatment is consequently increased to 18.1%. To further increase the η, the Cd-free CIGSSe solar cell with K-treatment is next fabricated and followed by posttreatment called the heat-light-soaking (HLS) + light-soaking (LS) process, including HLS at 110 °C followed by LS under AM 1.5G illumination. It is disclosed that the HLS + LS process gives rise to not only the enhancement of carrier density but also the decrease in the carrier recombination rate at the buffer/absorber interface. Ultimately, the η of the Cd-free CIGSSe solar cell with K-treatment prepared by the all-dry process is enhanced to the level of 20.0%.

  12. Large-area WSe2 electric double layer transistors on a plastic substrate

    KAUST Repository

    Funahashi, Kazuma; Pu, Jiang; Li, Ming Yang; Li, Lain-Jong; Iwasa, Yoshihiro; Takenobu, Taishi

    2015-01-01

    Due to the requirements for large-area, uniform films, currently transition metal dichalcogenides (TMDC) cannot be used in flexible transistor industrial applications. In this study, we first transferred chemically grown large-area WSe2 monolayer films from the as-grown sapphire substrates to the flexible plastic substrates. We also fabricated electric double layer transistors using the WSe2 films on the plastic substrates. These transistors exhibited ambipolar operation and an ON/OFF current ratio of ∼104, demonstrating chemically grown WSe2 transistors on plastic substrates for the first time. This achievement can be an important first step for the next-generation TMDC based flexible devices. © 2015 The Japan Society of Applied Physics.

  13. Large-area WSe2 electric double layer transistors on a plastic substrate

    KAUST Repository

    Funahashi, Kazuma

    2015-04-27

    Due to the requirements for large-area, uniform films, currently transition metal dichalcogenides (TMDC) cannot be used in flexible transistor industrial applications. In this study, we first transferred chemically grown large-area WSe2 monolayer films from the as-grown sapphire substrates to the flexible plastic substrates. We also fabricated electric double layer transistors using the WSe2 films on the plastic substrates. These transistors exhibited ambipolar operation and an ON/OFF current ratio of ∼104, demonstrating chemically grown WSe2 transistors on plastic substrates for the first time. This achievement can be an important first step for the next-generation TMDC based flexible devices. © 2015 The Japan Society of Applied Physics.

  14. Cherry tomato yield in greenhouses with different plastic covers

    Directory of Open Access Journals (Sweden)

    Ester Holcman

    2017-08-01

    Full Text Available ABSTRACT: The objective of the present study was to evaluate the influence of different plastic covers on microclimate and cherry tomato yield in greenhouses. The experiments were carried out in Piracicaba, state of São Paulo (Brazil, during three growing periods (2008/2009/2010. A greenhouse was divided in: Environment I (EI - covered with plastic film anti-UV and thermo-reflective shading screen, and Environment II (EII - covered with diffusive plastic film; monitored with automatic weather sensors; and cultivated with cherry tomato (‘Sweet Grape’ and ‘Sweet Million’. Use of diffusive plastic in greenhouses provides a better inside distribution of solar energy without causing major changes in air temperature and relative humidity, resulting in higher yield (kg plant-1, fruits quantity (number plant-1 and fruits average weight than those obtained under thermo-reflective shading screen.

  15. Thermal degradation and kinetic study for different waste/rejected plastic materials

    International Nuclear Information System (INIS)

    Rana, Srujal; Parikh, Jigisha Kamal; Mohanty, Pravakar

    2013-01-01

    A kinetic analysis based on thermal decomposition of rejected polypropylene, plastic film and plastic pellets collected from different industrial outlet has been carried out. Non-isothermal experiments using different heating rates of 5, 10, 20, 30, 40 and 50 .deg. C min"−"1 have been performed from ambient to 700 .deg. C in a thermo-balance with the objective of determining the kinetic parameters. The values of activation energy and frequency factor were found to be in the range of 107-322 kJ/mol, 85-331 kJ/mol, 140-375 kJ/mol and 3.49E+07-4.74E+22 min⌃(-1), 3.52E+06-2.88E+22min⌃(-1), 7.28E+13-1.17E+25 min⌃(-1) for rejected polypropylene, plastic film and plastic pellets, respectively, by Coats-Redfern and Ozawa methods including different models. Kissinger method, a model free analysis is also adopted to find the kinetic parameters. Activation energy and frequency factor were found to be 108 kJ/mol, 98 kJ/mol, 132 kJ/mol and 6.89E+03, 2.12E+02, 8.06E+05 min⌃(-1) for rejected polypropylene, plastic film and plastic pellets, respectively, by using the Kissinger method

  16. Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking

    KAUST Repository

    Kobayashi, Eiji

    2017-06-24

    Silicon heterojunction solar cells use crystalline silicon (c-Si) wafers as optical absorbers and employ bilayers of doped/intrinsic hydrogenated amorphous silicon (a-Si:H) to form passivating contacts. Recently, we demonstrated that such solar cells increase their operating voltages and thus their conversion efficiencies during light exposure. We found that this performance increase is due to improved passivation of the a-Si:H/c-Si interface and is induced by injected charge carriers (either by light soaking or forward-voltage biasing of the device). Here, we discuss this counterintuitive behavior and establish that: (i) the performance increase is observed in solar cells as well as modules; (ii) this phenomenon requires the presence of doped a-Si:H films, but is independent from whether light is incident from the a-Si:H(p) or the a-Si:H(n) side; (iii) UV and blue photons do not play a role in this effect; (iv) the performance increase can be observed under illumination intensities as low as 20Wm (0.02-sun) and appears to be almost identical in strength when under 1-sun (1000Wm); (v) the underlying physical mechanism likely differs from annealing-induced surface passivation.

  17. Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency.

    Science.gov (United States)

    García-Macías, Paulina; Ordidge, Matthew; Vysini, Eleni; Waroonphan, Saran; Battey, Nicholas H; Gordon, Michael H; Hadley, Paul; John, Philip; Lovegrove, Julie A; Wagstaffe, Alexandra

    2007-12-12

    Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxidant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxidant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 micromol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 micromol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 microg/g), quercetin (ranging from 196 to 880 microg/g), and luteolin (ranging from 19 to 152 microg/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

  18. Effect of Soaking Time in Sodium Metabisulfite Solution on the Physicochemical and Functional Properties of Durian Seed Flour

    Directory of Open Access Journals (Sweden)

    Kumoro Andri

    2018-01-01

    Full Text Available With regard to its high carbohydrate and gum contents, durian seed flour has been used as a substitute to wheat flour in butter cake and cookies manufactures. Unfortunately, processing of fruit seeds into flour may be hampered by discoloration, which may affect the nutrition and sensory quality of the food products. The objective of this study is to investigate the effect of soaking time on the physicochemical and functional properties of durian seed flour. Durian seed chips were soaked in 0.6% w/v sodium metabisulfite solution as anti-browning agent at 30°C for desired periods (40, 60, 80, 100, 120 minutes, followed by drying at 50°C for 17 hours, milling and sieving to obtain flour. The flour was analyzed for its moisture, ash, protein, fat and carbohydrate contents, sulfite residue, yield, gelatinization temperature, and water and oil absorption capacities (WAC and OAC. The results showed that longer soaking time reduced the moisture and ash content of durian seed flour, but increased most of the other studied parameters. The WAC, OAC and fat content were less affected by soaking time. It can be concluded that soaking of durian seed chips in sodium metabisulfite solution can improve the nutrition and functional properties of flour. Based on the residual sulfite content, durian seed flour obtained in this work is safe for consumption.

  19. Influences of Soaking Temperature and Storage Conditions on Hardening of Soybeans (Glycine max) and Red Kidney Beans (Phaseolus vulgaris).

    Science.gov (United States)

    Koriyama, Takako; Sato, Yoko; Iijima, Kumiko; Kasai, Midori

    2017-07-01

    The influences of soaking treatment and storage conditions on the softening of cooked beans, namely, soybeans and red kidney beans, were investigated. It was revealed that the softening of fresh soybeans and fresh red kidney beans was suppressed during subsequent boiling after soaking treatment at 50 and 60 °C. Furthermore, in treated aged soybeans and red kidney beans that were subjected to storage at 30 °C/75% relative humidity for 6 mo and soaking treatment at 50 to 60 °C, the hardness during cooking was further amplified. This suggested that the mechanism of softening suppression differs depending on the influences of soaking and storage. Analysis of the pectin fraction in alcohol insoluble solid showed insolubilization of metal ions upon storage at high temperature and high humidity in both soybeans and red kidney beans, which suggests interaction between Ca ions and hemicellulose or cellulose as cell wall polysaccharides. The results of differential scanning calorimetry (DSC) showed that aged soybeans exhibited a shift in the thermal transition temperature of glycinin-based protein to a higher temperature compared with fresh soybeans. From the results of DSC and scanning electron microscopy for aged red kidney beans, damaged starch is not conspicuous in the raw state after storage but is abundant upon soaking treatment. As for the influence of soaking at 60 °C, it can be suggested that its influence on cell wall crosslinking was large in soybeans and red kidney beans in both a fresh state and an aged state. © 2017 Institute of Food Technologists®.

  20. Mitomycin C-augmented trabeculectomy: subtenon injection versus soaked sponges: a randomised clinical trial.

    Science.gov (United States)

    Pakravan, Mohammad; Esfandiari, Hamed; Yazdani, Shahin; Douzandeh, Azadeh; Amouhashemi, Nassim; Yaseri, Mehdi; Pakravan, Parto

    2017-09-01

    To compare the efficacy and safety of subtenon injection of mitomycin C (MMC) with that of conventional application of MMC-soaked sponges in trabeculectomy. In this multicentre randomised clinical trial, 80 consecutive open-angle glaucoma cases were randomised into two groups; group 1 received a subtenon injection of 0.1 mL of 0.01% MMC, while group 2 received 0.02% MMC-soaked sponges. Primary outcome measure was intraocular pressure (IOP), and secondary outcome measures were endothelial cell count (ECC) changes and bleb morphology according to the Indiana Bleb Appearance Grading Scale. Outcome measures were compared at 1, 3 and 6 months postoperatively. Complete and qualified success was defined as IOP within 6-15 mm Hg without and with medications at month 6, respectively. Mean preoperative IOP was 21.8±5.1 in group 1, which reduced to 10.3±3.7 mm Hg at final visit (pinjection of MMC is a safe and effective alternative to the conventional soaked sponge method. This method produces more favourable bleb morphology after trabeculectomy. NCT02385370, Post-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Water-Triggered Dimensional Swelling of Cellulose Nanofibril Films: Instant Observation Using Optical Microscope

    International Nuclear Information System (INIS)

    Qing, Y.; Wu, Y.; Li, X.; Qing, Y.; Cai, Z.

    2013-01-01

    To understand the swelling behavior of cellulose nano fibril (CNF) films, the dimensional variation of untreated and phenol formaldehyde modified CNF (CNF/PF) films soaked in distilled water was examined in situ with microscopic image recording combined with pixel calculation. Results showed that a dramatic thickness increase exhibited in both CNF and CNF/PF films, despite being at different swelling levels. Compared to thickness swelling, however, the width expansion for these films is negligible. Such significant difference in dimensional swelling for CNF and PF modified films is mainly caused by nano fibril deposition and their meso structure. However, addition of PF modifier has a positive effect on the constraint of water absorption and thickness swelling, which is strongly dependent on PF loadings

  2. Effect of soaking of seeds in potassium silicate and uniconazole on ...

    African Journals Online (AJOL)

    ... by low concentration of uniconazole treatment as compared to the control and other treatments. The growth of tomato seedlings was efficiently regulated by uniconazole 50 mg L-1 (12 h soaking) treatment. Key words: Chlorophyll fluorescence, plant growth retardants, plug plants, potassium silicate, seed treatment, silicon, ...

  3. Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction

    International Nuclear Information System (INIS)

    Liu Yu-Xuan; Lü Long-Feng; Ning Yu; Lu Yun-Zhang; Lu Qi-Peng; Zhang Chun-Mei; Fang Yi; Hu Yu-Feng; Lou Zhi-Dong; Teng Feng; Hou Yan-Bing; Tang Ai-Wei

    2014-01-01

    The improvement of the acetone-soaking treatment to the performance of polymer solar cells based on the P3HT/PCBM bulk heterojunction is reported. Undergoing acetone-soaking, the PCBM does not distribute uniformly in the vertical direction, a PCBM enrichment layer forms on the top of the active layer, which is beneficial to the collection of the carriers and blocking the inverting diffusion carriers. X-ray photoelectron spectroscopy (XPS) analysis reveals that the PCBM weight ratio on the top of the active layer increases by 20% after the acetone-soaking treatment. Due to the nonuniform distribution of PCBM, the short-circuit current density, the open-circuit voltage, and the fill factor are enhanced significantly. Finally, the power conversion efficiency of the acetone-soaking device increases by 31% compared with the control device. (interdisciplinary physics and related areas of science and technology)

  4. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.

    Science.gov (United States)

    Boopathy, R; Sekaran, G

    2013-09-15

    The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Marine microbe with potential to adhere and degrade plastic structures

    Directory of Open Access Journals (Sweden)

    Alka Kumari

    2017-10-01

    Full Text Available Extensive usages of plastics have led to their accumulation as a contaminant in natural environment worldwide. Plastic is an inert and non-biodegradable material, due to its complex structure and hydrophobic backbone [1]. Conventional methods for reduction of plastic waste such as burning, land-filling release unwanted toxic chemicals to the environment and harming living organism of land as well as the ocean. There is growing interest in development of strategies for the degradation of plastic wastes to clean the environment [2]. Marine bacteria have evolved with the capability to adapt and grow in the diverse environmental conditions [3]. We studied the ability of marine bacteria for destabilization and utilization of different plastic films (LDPE, HDPE, PVC and PET as a sole source of carbon. An active bacterial strain AIIW2 was selected based on the triphenyl tetrazolium chloride reduction assay, and it was identified as Bacillus species based on 16S rRNA gene sequence. The viability of the strain over the plastic surface was studied and confirmed by bacLight assay with fluorescent probes. Scanning Electron Microscope and Atomic Force Microscope images suggested that bacterial interaction over the plastic surface is causing deterioration and roughness with increasing bacterial incubation time. In Fourier transform infrared spectra of treated plastic film evidenced stretching of the (-CH alkane rock chain and (-CO carbonyl region, suggested the oxidative activities of the bacteria. The results revealed that ability of bacterial strain for instigating their colonization over plastic films and deteriorating the polymeric structure in the absence of other carbon sources [4]. Moreover, production of extracellular enzymes such as esterase, laccase, and dehalogenase which are reported to support utilization of plastics was confirmed by plate assays. In concise, our results suggested that the marine bacterial strain AIIW2 have the ability to utilize

  6. Preparation and mechanical properties of edible rapeseed protein films.

    Science.gov (United States)

    Jang, Sung-Ae; Lim, Geum-Ok; Song, Kyung Bin

    2011-03-01

    Edible films were manufactured from rapeseed oil extraction residues. To prepare rapeseed protein (RP) films, various concentrations of plasticizers and emulsifiers were incorporated into the preparation of a film-forming solution. The optimal conditions for the preparation of the RP film were 2% sorbitol/0.5% sucrose as plasticizer and 1.5% polysorbate 20 as an emulsifier. In addition, RP blend films were prepared. Gelidium corneum or gelatin was added to improve the physical properties of the RP film, and the highest tensile strength value of the films was 53.45 MPa for the 3% RP/4% gelatin film. Our results suggest that the RP-gelatin blend film is suitable for applications in food packaging. Edible RP films prepared in the present investigation can be applied in food packaging.

  7. Mobile soak pits improve spray team mobility, productivity and safety of PMI malaria control programs.

    Science.gov (United States)

    Mitchell, David F; Brown, Annie S; Bouare, Sory Ibrahima; Belemvire, Allison; George, Kristen; Fornadel, Christen; Norris, Laura; Longhany, Rebecca; Chandonait, Peter J

    2016-09-15

    In the President's Malaria Initiative (PMI)-funded Africa Indoor Residual Spraying Project (AIRS), end-of-day clean-up operations require the safe disposal of wash water resulting from washing the exterior of spray tanks and spray operators' personal protective equipment. Indoor residual spraying (IRS) programs typically use soak pits - large, in-ground filters - to adsorb, filter and then safely degrade the traces of insecticide found in the wash water. Usually these soak pits are permanent installations serving 30 or more operators, located in a central area that is accessible to multiple spray teams at the end of their workday. However, in remote areas, it is often impractical for teams to return to a central soak pit location for cleanup. To increase operational efficiency and improve environmental compliance, the PMI AIRS Project developed and tested mobile soak pits (MSP) in the laboratory and in field applications in Madagascar, Mali, Senegal, and Ethiopia where the distance between villages can be substantial and the road conditions poor. Laboratory testing confirmed the ability of the easily-assembled MSP to reduce effluent concentrations of two insecticides (Actellic 300-CS and Ficam VC) used by the PMI AIRS Project, and to generate the minimal practicable environmental "footprint" in these remote areas. Field testing in the Mali 2014 IRS campaign demonstrated ease of installation and use, resulted in improved and more consistent standards of clean-up, decreased transportation requirements, improved spray team working conditions, and reduced potential for operator exposure to insecticide. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Nucleation of hydroxyapatite on Antheraea pernyi (A. pernyi) silk fibroin film.

    Science.gov (United States)

    Yang, Mingying; Shuai, Yajun; Zhou, Guanshan; Mandal, Namita; Zhu, Liangjun

    2014-01-01

    Antheraea pernyi (A. pernyi) silk fibroin, which is spun from a wild silkworm, has increasingly attracted interest in the field of tissue engineering. The aim of this study was to investigate the nucleation of hydroxyapatite (HAp) on A. pernyi fibroin film. Von Kossa staining proved that A. pernyi fibroin had Ca binding activity. The A. pernyi fibroin film was mineralized with HAp crystals by alternative soaking in calcium and phosphate solutions. Spherical crystals were nucleated on the A. pernyi fibroin film according to scanning electron microscopeimaging results. The FT-IR and X-ray diffraction spectra confirmed that these spherical crystals were HAp. The results of in vitro cell culture using MG-63 cells demonstrated that the mineralized A. pernyi fibroin film showed excellent cytocompatibility and sound improvement of the MG-63 cellviability.

  9. Cycling-induced degradation of LiCoO2 thin-film cathodes at elevated temperature

    International Nuclear Information System (INIS)

    Van Sluytman, J.S.; West, W.C.; Whitacre, J.F.; Alamgir, F.M.; Greenbaum, S.G.

    2006-01-01

    The cycle life of LiCoO 2 -based all solid-state thin-film cells has been studied at room temperature, and at elevated temperatures of 50, 100, and 150 deg. C. X-ray diffraction, as well as Raman analysis, has been used to complement the electrochemical data in examining structural and chemical changes. XRD and Raman spectroscopy data indicate that elevated temperature soaks of the thin-film batteries in the quiescent state causes no discernable changes in the LiCoO 2 cathode layer. However, when the thin-film batteries are cycled at elevated temperatures, decreases in average grain size of the LiCoO 2 film occur with dramatic concomitant charge and discharge capacity loss

  10. The Effect of Seed Soaking with Rhizobacteria Pseudomonas alcaligenes on the Growth of Swamp Cabbage (Ipomoea reptans Poir)

    Science.gov (United States)

    Widnyana, I. K.; Ngga, M.; Sapanca, P. L. Y.

    2018-01-01

    The research was conducted to determine the effect of seed soaking with suspense of P. alcaligenes isolate KtSl, TrN2, and TmAl to the growth of swamp cabbage. The research has been initially developed on tomatoes. In this research, Randomized Block Design was chosen as its model while the data analysis was performed by using SPSS v.17 for Windows. Three types of treatment were administered towards P. alcaligenes, namely isolating, soaking, and growing the medium. Some observed parameters were germination and growth. The results showed that seed soaking treatments with suspense P. alcaligenes fostered the germination 25% faster, enhanced the crop up to 24.4%, increased the number of leaves up until 23.15%, lengthen stems to 25%, lengthen the roots up to 46.90%, and increase the fresh weight of stems up until 67.07% and oven-dry weight of stem up to 84.21% compared to the control treatment. The best response of treatment for germination speed was soaking seeds with P. alcaligenes TrN2 for 20 minutes on both NB (Natrium Broth) and PDB (Potato Dextrose Broth) media.

  11. THE STUDY ON IN VITRO DIGESTIBILITY OF SOAKED PALM OIL FIBER BY FILTRATED PALM OIL FRUIT BUNCH ASH

    Directory of Open Access Journals (Sweden)

    Ari L. Darmawan

    2014-06-01

    Full Text Available Palm oil fiber has its potency as feed fiber source for ruminant, but contains high lignin and causes limited digestibility. This research was carried out to find the effect of soaking palm oil fiber in filtrated palm oil fruit bunch ash (FPOFBA on in vitro digestibility. This experiment used a completely randomized design that repeated for 4times. Palm oil fruit bunch ash was mixed in water and entered into container for 24 hours within concentrations, consists of: 50, 100, 150 and 200 g/L. Moreover, this filtrate used to soak palm oil fiber for 3 hours. The processed products were analyzed for their level of lignin and crude fiber. Meanwhile, in vitro test was used to measure digestibility. It showed that soaking in filtrated palm oil fruit bunch ash gave significant effect to decrease level of lignin and crude fiber (P0.05, such as 23.48 and 24.12% as well as 16.70 and 17.06 % in each. It can be concluded that soaked palm oil fiber with 150 g/L concentration of filtrated palm oil fruit bunch ash was more effective in improving digestibility.

  12. Cling film plastic wrap: An innovation for dead body packaging, preservation and transportation by first responders as a replacement for cadaver body bag in large scale disasters.

    Science.gov (United States)

    Khoo, Lay See; Lai, Poh Soon; Saidin, Mohd Hilmi; Noor, Zahari; Mahmood, Mohd Shah

    2018-04-01

    Cadaver body bags are the conventional method to contain a human body or human remains, which includes the use for storage and transportation of the deceased at any crime scene or disaster scene. During disasters, most often than not, the first responders including the police will be equipped with cadaver body bags to do scene processing of human remains and collection of personal belongings at the disaster site. However, in an unanticipated large scale disasters involving hundreds and thousands of fatalities, cadaver body bags supplies may be scarce. The authors have therefore innovated the cling film plastic wrap as an alternative for the cadaver body bag used at the disaster site. The plastic wrap was tested on six different experimental subjects, i.e. both adult and child mannequins; body parts of the mannequin figure (arm and hand); a human adult subject and an unknown dead body. The strengths of the cling film plastic wrap are discussed in comparison with the cadaver body bag in the aspects of costing, weight, duration of the wrap, water and body fluid resistant properties, visibility and other advantages. An average savings of more than 5000% are noted for both adult body wrap and child body wrap compared to the cadaver body wrap. This simply means that the authors can either wrap 25 adult dead bodies or 80 children dead bodies with the cost of 1 cadaver body bag. The cling film plastic wrap has proven to have significant innovation impact for dead body management particularly by the first responders in large scale disasters. With proper handling of dead bodies, first responders can manage the dead with dignity and respect in an overwhelmed situation to facilitate the humanitarian victim identification process later. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Plastic Deformation as a Means to Achieve Stretchable Polymer Semiconductors

    Science.gov (United States)

    O'Connor, Brendan

    Developing intrinsically stretchable semiconductors will seamlessly transition traditional devices into a stretchable platform. Polymer semiconductors are inherently soft materials due to the weak van der Waal intermolecular bonding allowing for flexible devices. However, these materials are not typically stretchable and when large strains are applied they either crack or plastically deform. Here, we study the use of repeated plastic deformation as a means of achieving stretchable films. In this talk, critical aspects of polymer semiconductor material selection, morphology and interface properties will be discussed that enable this approach of achieving stretchable films. We show that one can employ high performance donor-acceptor polymer semiconductors that are typically brittle through proper polymer blending to significantly increase ductility to achieve stretchable films. We demonstrate a polymer blend film that can be repeatedly deformed over 65%, while maintaining charge mobility consistently above 0.15 cm2/Vs. During the stretching process we show that the films follow a well-controlled repeated deformation pattern for over 100 stretching cycles.

  14. All-natural bio-plastics using starch-betaglucan composites.

    Science.gov (United States)

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Industrial Production of Food Plastic Packaging and the Use of Irradiation for Modifying Some Film Properties. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A. V.; Moura, E. A.B., [Nuclear and Energy Research Institute - IPEN - São Paulo (Brazil); Nuclear and Energy National Commission – CNEN, Rio de Janeiro (Brazil)

    2014-07-15

    The four main industrial processes needed to produce a plastic packaging structure are: cast extrusion, blown extrusion, injection moulding, and blown moulding. Since one polymer may not offer all the protection and marketing properties required for a specific food product, multilayer films can be produced. Each layer will be composed of a different polymer and additives to meet all the requirements. Ionizing radiation plays an important role in the packaging industry, especially in the heat shrinkable barrier film production process. In this process, irradiating the film structure is aimed mostly at the crosslinking of the polyolefin. Cross-linked polyolefin-based films can withstand higher stretching rates, be better stabilized, and will both have a high degree of shrinkage and higher shrinking forces. This leads to very thin structures with very well balanced cost-benefit ratios and better final packaging presentation. The use of ionizing radiation for cross-linking polymers is one of the most successful cases of irradiation used by the industry. Besides cross-linking, scission may also occur in the polymeric structure, and it may liberate toxic or unwanted substances that can be transferred to the food. Therefore, irradiated food packaging materials should be thoroughly assessed according to active legislation to guarantee that it will not harm the consumer’s health either in the short or the long term. (author)

  16. Tenderness, pH and Water Activity (Aw of Spices Dried Meat on Various Concentrate of Ginger Extract (Zingiber Officinale Roscoe and Different Soaking Time

    Directory of Open Access Journals (Sweden)

    Akhadiyah Afrila

    2012-09-01

    Full Text Available The objectives of current research were to find out the concentrate of Ginger extract (Zingiber officinale Roscoe and different soaking time of to tenderness, pH, and water activity (Aw, microbial count and sensory evaluation of spices dried meat. The result showed that higher the ginger extract (Zingiber officinale Roscoe concentrate and longer the soaking time, it would give more tenderness, pH, and water activity (Aw to spices dried meat with 15% ginger extract (Zingiber officinale Roscoe extract and 20 minutes length of soaking time. Key Words : Dendeng, ginger, soaking time, tenderness, pH and Aw

  17. Effect of heat-treatment, phytase, xylanase and soaking time on inositol phosphate degradation in vitro in wheat, soybean meal and rapeseed cake

    DEFF Research Database (Denmark)

    Blaabjerg, Karoline; Carlsson, N G; Hansen-Møller, Jens

    2010-01-01

    An in vitro method was used to evaluate the degradation of myo-inositol hexakisphosphate (InsP6) in non-heat-treated wheat (NHW), heat-treated wheat (HW), soybean meal (SBM) or rapeseed cake (RSC) soaked separately or in combination. The feedstuffs were soaked in water (20 °C) and samples were...... heat-treatment and soaking time (P≤0.001). This was mainly due to a smaller proportion of non-degraded InsP6-P at 24 h in HW compared with NHW (0.13 vs. 0.47) (P≤0.001) possibly caused by structural changes imposed by the heat-treatment. In SBM, RSC, SBM/NHW or RSC/NHW, the InsP6 degradation...... was affected by the interaction between phytase addition and soaking time (P≤0.001) as phytase reduced the proportion of non-degraded InsP6-P at 2, 4, 8 or 24 h. Soaking of NHW, SBM or RSC (without phytase) separately resulted in a limited InsP6 degradation, whereas a pronounced InsP6 degradation occurred when...

  18. Characterization of the adhesion of thin film by Cross-Sectional Nanoindentation. Analysis of the substrate edge chipping and the film delamination

    Science.gov (United States)

    Felder, Eric; Roy, Sébastien; Darque-Ceretti, Evelyne

    2011-07-01

    Cross-Sectional Nanoindentation (CSN) is a recent method for adhesion measurement of nanoscale thin films in Ultra-Large Scale Integrated circuits. In the case of ductile thin films, the motion of the substrate chip implies significant plastic deformation of the film and complex geometry of delaminated areas. This article recalls first the experimental procedure and the two main features observed in this test performed on various plane copper films deposited on silicon: the critical force producing silicon edge chipping increases linearly with the distance of the indenter to the interface; on the section the delaminated length of the film ( a-b) is proportional to the residual silicon chip displacement u and the ratio S=u/(a-b) depends on the manufacturing process of the film, and is so related to its adhesion to the substrate. One proposes a simple analysis of the silicon edge chipping. Then a model of pull-off of an elastic-strain hardening plastic film is developed, which suggests an explanation for the delamination process. Application of the model to experimental results starting from films plastic properties deduced from nanoindentation measurements provides plausible results. Some improvements for performing the CSN test are proposed in order to make easier its interpretation.

  19. Cratering Studies in Thin Plastic Films

    Science.gov (United States)

    Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J.; Horanyi, M.; Munsat, T. L.; Srama, R.

    2013-12-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can

  20. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species.

    Science.gov (United States)

    Lee, B; Pometto, A L; Fratzke, A; Bailey, T B

    1991-03-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70 degrees C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37 degrees C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30 degrees C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70 degrees C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in

  1. THE EFFECTS OF SEED SOAKING WITH PLANT GROWTH REGULATORS ON SEEDLING VIGOR OF WHEAT UNDER SALINITY STRESS

    Directory of Open Access Journals (Sweden)

    Afzal Irfan

    2005-08-01

    Full Text Available Effects of seed soaking with plant growth regulators (IAA, GA3, kinetin or prostart on wheat (Triticum aestivum cv. Auqab-2000 emergence and seedling growth under normal (4 dS/cm and saline (15 dS/cm conditions were studied to determine their usefulness in increasing relative salt-tolerance. During emergence test, emergence percentage and mean emergence time (MET were significantly affected by most of priming treatments, however, root and shoot length, fresh and dry weight of seedlings were significantly increased by 25 ppm kinetin followed by 1% prostart for 2 h treatments under both normal and saline conditions. All pre-sowing seed treatments decreased the electrolyte leakage of steep water as compared to that of non-primed seeds even after 12 h of soaking. Seed soaking with 25 ppm kinetin induced maximum decrease in electrolyte leakage while an increase in electrolyte leakage was observed by 25, 50 or 100 ppm IAA treatments. It is concluded that priming has reduced the severity of the effect of salinity but the amelioration was better due to 25 ppm kinetin and 1% prostart (2 h treatments as these showed best results on seedling growth, fresh and dry weights under non-saline and saline conditions whereas seed soaking with IAA and GA3 were not effective in inducing salt tolerance under present experimental material and conditions.

  2. Potential of bacteria isolated from landfill soil in degrading low density polyethylene plastic

    Science.gov (United States)

    Munir, E.; Sipayung, F. C.; Priyani, N.; Suryanto, D.

    2018-03-01

    Plastic is an important material and used for many purposes. It is returned to the environment as a waste which is recently considered as the second largest solid waste. The persistency of plastic in the environment has been attracted researchers from a different point of view. The study of the degradation of plastic using bacteria isolated from local landfill soil was conducted. Low density polyethylene (LDPE) plastic was used as tested material. Potential isolates were obtained by culturing the candidates in mineral salt medium broth containing LDPE powder. Two of ten exhibited better growth response in the selection media and were used in degradation study. Results showed that isolate SP2 and SP4 reduced the weight of LDPE film significantly to a weight loss of 10.16% and 12.06%, respectively after four weeks of incubation. Scanning electron micrograph analyses showed the surface of LDPE changed compared to the untreated film. It looked rough and cracked, and bacteria cells attached to the surface was also noticed. Fourier transform infrared spectroscopy analyses confirmed the degradation of LDPE film. These results indicated that bacteria isolated from landfill might play an important role in degrading plastic material in the landfill.

  3. Dynamical mechanism of the liquid film motor

    Science.gov (United States)

    Liu, Zhong-Qiang; Li, Ying-Jun; Zhang, Guang-Cai; Jiang, Su-Rong

    2011-02-01

    The paper presents a simple dynamical model to systemically explain the rotation mechanism of the liquid film motor reported by experiments. The field-induced-plasticity effect of the liquid film is introduced into our model, in which the liquid film in crossed electric fields is considered as a Bingham plastic fluid with equivalent electric dipole moment. Several analytic results involving the torque of rotation, the scaling relation of the threshold fields, and the dynamics equation of a square film and its solution are obtained. We find that the rotation of the liquid film motor originates from the continuous competition between the destruction and the reestablishment of the polarization equilibrium maintained by the external electric field, which is free from the boundary effects. Most experimental phenomena observed in direct current electric fields are interpreted well.

  4. Soil hydraulic characteristics and its influence on the design of soak ...

    African Journals Online (AJOL)

    The hydraulic characteristics of the soil profile in a plot of land designated for a residential purpose were studied to obtain dependable data for the design of efficient septic- soak-away system in the estate. In situ infiltration tests on three horizons above 400 cm depth were conducted, and soil samples taken from the same ...

  5. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    Science.gov (United States)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  6. Influence of the film thickness on the structure, optical and electrical properties of ITO coatings deposited by sputtering at room temperature on glass and plastic substrates

    International Nuclear Information System (INIS)

    Guillén, C; Herrero, J

    2008-01-01

    Transparent and conductive indium tin oxide (ITO) films with thickness between 0.2 and 0.7 µm were deposited by sputtering at room temperature on glass and polyethylene terephthalate (PET) substrates. All films were polycrystalline, with crystallite size increasing and lattice distortion decreasing when the film thickness was increased. Besides, transmission in the near-infrared region is found to be decreasing and carrier concentration increasing when the film thickness was increased. For the same thickness, the lattice distortion is slightly lower and the carrier concentration higher for the layers grown on PET substrates. A direct relationship between the lattice distortion and the free carrier concentration has been established, applying to the films grown on glass and plastic substrates. By adjusting ITO coating thickness, sheet resistance below 15 Ω sq −1 and average visible transmittance about 90% have been achieved by sputtering at room temperature

  7. Perhydropolysilazane-derived silica-polymethylmethacrylate hybrid thin films highly doped with spiropyran: Effects of polymethylmethacrylate on the hardness, chemical durability and photochromic properties

    International Nuclear Information System (INIS)

    Yamano, Akihiro; Kozuka, Hiromitsu

    2011-01-01

    Polymethylmethacrylate (PMMA)-perhydropolysilazane (PHPS) hybrid thin films doped with spiropyran were prepared by spin-coating, which were then converted into 0.26-1.7 μm thick, spiropyran-doped PMMA-silica hybrid films by exposure treatment over aqueous ammonia. The spiropyran/(spiropyran + PHPS + PMMA) mass ratio was fixed at a high value of 0.2 so that the films exhibit visual photochromic changes in color, while the PMMA/(PMMA + PHPS) mass ratio, r, was varied. The spiropyran molecules in the as-prepared films were in merocyanine (MC) and spiro (SP) forms, with and without an optical absorption at 500 nm, at low (r ≤ 0.2) and high (r ≥ 0.4) PMMA contents, respectively. When PMMA content r was increased from 0 to 0.2, the degree of the MC-to-SP conversion on vis light illumination was enhanced, while at higher r's the spiropyran molecules underwent photodegradation. When the silica film (r = 0) was soaked in xylene under vis light, the spiropyran molecules were almost totally leached out, while not on soaking in the dark. On the other hand, no leaching occurred for the film of r = 0.2 either in the presence or absence of vis light. These suggest that the introduction of PMMA is effective in improving the chemical durability of the films, while the silica film (r = 0) is an interesting material with a photoresponsive controlled-release ability. The pencil hardness of the films decreased with increasing PMMA content, but remained over 9H at r ≤ 0.4.

  8. Thin-film limit formalism applied to surface defect absorption.

    Science.gov (United States)

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  9. A preliminary study of the effects of plastic film-mulched raised beds on soil temperature and crop performance of early-sown short-season spring maize (Zea mays L. in the North China Plain

    Directory of Open Access Journals (Sweden)

    Jing Dang

    2016-08-01

    Full Text Available To identify a strategy for earlier sowing and harvesting of spring maize (Zea mays L. in an alternative maize–maize double cropping system, a 2-year field experiment was performed at Quzhou experimental station of China Agricultural University in 2014 and 2015. A short-season cultivar, Demeiya number 1 (KX7349, was used in the experiment. Soil temperature to 5 cm depth in the early crop growth stage, crop growth, crop yield, and water use of different treatments (plastic film-mulched raised bed (RF and flat field without plastic film mulching (CK in 2014; RF, plastic film-mulched flat field (FF, and CK in 2015 were measured or calculated and compared. Soil temperature in the film-mulched treatments was consistently higher than that in CK (1.6–3.5 °C in average during the early growth stage. Crops in plastic film-mulched treatments used 214 fewer growing-degree days (GDDs in 2014 and 262 fewer GDDs in 2015. In 2014, the RF treatment yielded 32.7% higher biomass than CK, although its 9.4% higher grain yield was not statistically significant. Also, RF used 17.9% less water and showed 33.1% higher water use efficiency (WUE than CK. In 2015, RF and FF showed 56.2% and 49.5% higher yield, 15.0% and 4.5% lower water use (ET, and 63.4% and 75.7% higher WUE, respectively, than CK. RF markedly increased soil temperature in the early crop season, accelerated crop growth, reduced ET, and greatly increased crop yield and WUE. Compared with FF, RF had no obvious effect on crop growth rate, although soil temperature during the period between sowing and stem elongation was slightly increased. However, RF resulted in lower ET and higher WUE than FF. Effects of RF on soil water dynamics as well as its cost-effectiveness remain topics for further study.

  10. Determination of the optimum concentration cellulose baggase in making film bioplastic

    Science.gov (United States)

    Chadijah, S.; Rustiah, W. O.; Munir, M. I. D.

    2018-03-01

    The hoarding rubbish synthetic plastic caused pollution and demage in life circles, to cope it can be done with synthesizing the plastic from agriculture substance or called biopolymer (bioplastic). It was that potentially as bioplastic was biopolymer from agriculture substance baggase that contain cellulose 40 %. This research aimed to determine the optimum concentration cellulose baggase in making bioplastic film with adding chitosan and sorbitol plasticizer and also to know the result of characterization film bioplastic. The steps in this research were; the extraction of cellulose, making film bioplastic, tensile strenght test and used characterization spectrofotometer FTIR. In this research showed that optimum concentration cellulose baggase in making film bioplastic was 2% with adding chitosan and sorbitol plasticizer. The optimal result of tensile strenght test was 0,089 Kgf/cm2 with elongation percent 15,90 %. The analyzing FTIR in all of variation that looked almost same with characterization with tapes -OH, -NH and C-O.

  11. Simulation of synaptic short-term plasticity using Ba(CF3SO3)2-doped polyethylene oxide electrolyte film.

    Science.gov (United States)

    Chang, C T; Zeng, F; Li, X J; Dong, W S; Lu, S H; Gao, S; Pan, F

    2016-01-07

    The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP.

  12. Nano-deformation behavior of silicon (100) film studied by depth sensing indentation and nanoscratch technique

    Science.gov (United States)

    Geetha, D.; Pratyank, R.; Kiran, P.

    2018-04-01

    Silicon being the most important material applied in microelectronic and photovoltaic technology, repeated investigation of the mechanical properties becomes essential. The nanoscale elastic-plastic deformation characteristics of Si (100) film were analyzed using nanoindentation and nanoscratch techniques. The hardness and elastic modulus values of the film obtained from nanoindentation tests were found to be consistent with the reported values. The load-displacement curves showed discontinuities and kinks which confirms the plastic behaviour of Si. The indentation induced plastic deformations were the consequences of the phase transformations. The critical shear stress, tensile strength and plastic zone size, of the Si film when subjected to nanoindentation were determined. The nanoscratch tests were performed to understand the tribological properties of the film. The SPM images of both the nanoindentation and nanoscratch profiles were useful in revealing the plastic character in terms of the piling up of matter in the vicinity of the dents. Conclusions were drawn in quantifying the plastic deformations and phase transformations.

  13. Reprint of: Cling film plastic wrap: An innovation for dead body packaging, preservation and transportation by first responders as a replacement for cadaver body bag in large scale disasters.

    Science.gov (United States)

    Khoo, Lay See; Lai, Poh Soon; Saidin, Mohd Hilmi; Noor, Zahari; Mahmood, Mohd Shah

    2018-07-01

    Cadaver body bags are the conventional method to contain a human body or human remains, which includes the use for storage and transportation of the deceased at any crime scene or disaster scene. During disasters, most often than not, the first responders including the police will be equipped with cadaver body bags to do scene processing of human remains and collection of personal belongings at the disaster site. However, in an unanticipated large scale disasters involving hundreds and thousands of fatalities, cadaver body bags supplies may be scarce. The authors have therefore innovated the cling film plastic wrap as an alternative for the cadaver body bag used at the disaster site. The plastic wrap was tested on six different experimental subjects, i.e. both adult and child mannequins; body parts of the mannequin figure (arm and hand); a human adult subject and an unknown dead body. The strengths of the cling film plastic wrap are discussed in comparison with the cadaver body bag in the aspects of costing, weight, duration of the wrap, water and body fluid resistant properties, visibility and other advantages. An average savings of more than 5000% are noted for both adult body wrap and child body wrap compared to the cadaver body wrap. This simply means that the authors can either wrap 25 adult dead bodies or 80 children dead bodies with the cost of 1 cadaver body bag. The cling film plastic wrap has proven to have significant innovation impact for dead body management particularly by the first responders in large scale disasters. With proper handling of dead bodies, first responders can manage the dead with dignity and respect in an overwhelmed situation to facilitate the humanitarian victim identification process later. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Species †

    Science.gov (United States)

    Lee, Byungtae; Pometto, Anthony L.; Fratzke, Alfred; Bailey, Theodore B.

    1991-01-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70°C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37°C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30°C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70°C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in pure culture. PMID:16348434

  15. Psoralen plus ultraviolet A (PUVA soaks and UVB TL01 treatment for chronic hand dermatoses

    Directory of Open Access Journals (Sweden)

    Lisbeth Jensen

    2012-02-01

    Full Text Available Chronic eczematous hand dermatoses with and without contact allergies are complex diseases, which makes it a challenge to select the best treatment and obtain an optimal patient experience and a satisfactory treatment result. The aim of this study was to evaluate retrospectively the clinical effect and patient experience of local treatment with psoralen plus ultraviolet A (PUVA soaks and TL01 phototherapy for severe chronic hand dermatoses, and also to evaluate the quality of life for the subgroup of patients with allergic contact dermatitis including Compositae allergy. A retrospective evaluation of results for 94 consecutive patients having received a total of 121 treatment courses with local PUVA soaks or TL01 phototherapy for one of the following diagnoses (n=number of treatment courses: psoriasis (n=19, hyperkeratotic hand eczema (n=27, Pustulosis Palmoplantaris (PPP (n=22, vesicular eczema (n=16, Compositae dermatitis (n=24, and allergic contact dermatitis (n=13. Moreover, semi-structured interviews with 6 selected patients having multiple contact allergies including Compositae allergy were used to evaluate quality of life. As a result, we found that PUVA soaks has good effect in patients with psoriasis and hyperkeratotic hand eczema and local phototherapy for chronic hand dermatoses is a useful treatment option in selected cases.

  16. Cycling-induced degradation of LiCoO{sub 2} thin-film cathodes at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Van Sluytman, J.S.; Alamgir, F.M.; Greenbaum, S.G. [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10021 (United States); West, W.C.; Whitacre, J.F. [Electrochemical Technologies Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2006-04-01

    The cycle life of LiCoO{sub 2}-based all solid-state thin-film cells has been studied at room temperature, and at elevated temperatures of 50, 100, and 150{sup o}C. X-ray diffraction, as well as Raman analysis, has been used to complement the electrochemical data in examining structural and chemical changes. XRD and Raman spectroscopy data indicate that elevated temperature soaks of the thin-film batteries in the quiescent state causes no discernible changes in the LiCoO{sub 2} cathode layer. However, when the thin-film batteries are cycled at elevated temperatures, decreases in average grain size of the LiCoO{sub 2} film occur with dramatic concomitant charge and discharge capacity loss. (author)

  17. Laser direct joining of metal and plastic

    International Nuclear Information System (INIS)

    Katayama, Seiji; Kawahito, Yousuke

    2008-01-01

    We have developed an innovative rapid laser direct joining process of metal and plastic lap plates without adhesives or glues. The joints made between a Type 304 stainless steel plate and a polyethylene terephthalate (PET) plastic sheet of 30 mm width possessed tensile shear loads of about 3000 N. Transmission electron microscope photographs of the joint demonstrated that Type 304 and the PET were bonded on the atomic, molecular or nanostructural level through a Cr oxide film

  18. Liquid crystal displays with plastic substrates

    Science.gov (United States)

    Lueder, Ernst H.

    1998-04-01

    Plastic substrates for the cells of displays exhibit only 1/6 of the weight of glass substrates; they are virtually unbreakable; their flexibility allows the designer to give them a shape suppressing reflections, to realize a display board on a curved surface or meeting the requirements for an appealing styling; displays with plastics are thinner which provides a wider viewing angle. These features render them attractive for displays in portable systems such as mobile phones, pagers, smart cards, personal digital assistants (PDAs) and portable computers. Reflective displays are especially attractive as they don't need a back light. The most important requirements are the protection of plastics against gas permeation and chemical agents, the prevention of layers on plastics to crack or peel off when the plastic is bent and the development of low temperature thin film processes because the plastics, as a rule, only tolerate temperatures below 150 degrees Celsius. Bistable reflective FLC- and PSCT-displays with plastic substrates will be introduced. Special sputtered SiO2-orientation layers preserve the displayed information even if pressure or torsion is applied. MIM-addressed PDLC-displays require additional Al- or Ti-layers which provide the necessary ductility. Sputtered or PECVD-generated TFTs can be fabricated on plastics at temperatures below 150 degrees Celsius.

  19. Povidone-iodine and hydrogen peroxide mixture soaked gauze pack: a novel hemostatic technique

    NARCIS (Netherlands)

    Arakeri, G.; Brennan, P.A.

    2013-01-01

    Persistent oozing of blood is a common occurrence in maxillofacial surgery, and occasionally it hampers visibility and delays or even prevents continuation of the procedure. This report describes a novel method of controlling blood ooze using swabs soaked with povidone-iodine and hydrogen peroxide

  20. Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan

    Science.gov (United States)

    Munir, E.; Harefa, R. S. M.; Priyani, N.; Suryanto, D.

    2018-03-01

    Plastic is a naturally recalcitrant polymer, once it enters the environment, it will remain there for many years. Accumulation of plastic as wastes in the environment poses a serious problem and causes an ecological threat. Alternative strategies to reduce accumulation of plastic wastes have been initiated and implemented from a different aspect including from microbiological view point. The study to obtain potential fungi in degrading plastic molecule has been initiated in our laboratory. Low density polyethylene (LDPE) plastic was used as a tested material. Candidate fungi were isolated from local landfill soil. The fungi were cultured in mineral salt medium broth containing LDPE powder. Two of nine isolates showed best growth response in broth media containing LDPE. These isolates (RH03 and RH06) were used in degradation test. Results showed that isolate RH03 and RH06 reduced the weight of LDPE film by 5.13% and 6.63%, respectively after 45 days of cultivation. The tensile strength of treated film even reduced significantly by 58% and 40% of each isolate. Analyses of electron micrograph exhibited grove ands rough were formed on the surface of LDPE film. These were not found in the untreated film. Furthermore, molecular analysis through polymerase chain reaction and DNA sequencing indicated that RH03 is Trichoderma viride and RH06 is Aspergillus nomius with 97% and 96% similarities, respectively.

  1. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    Science.gov (United States)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  2. Thin-Film Coated Plastic Wrap for Food Packaging

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2017-07-01

    Full Text Available In this study, the antimicrobial property and food package capability of polymethylpentene (PMP substrate with silicon oxdie (SiOx and organic silicon (SiCxHy stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The experimental results show that the stacked pair number of SiOx/SiCxHy on PMP is limited to three pairs, beyond which the films will crack and cause package failure. The three-pair SiOx/SiCxHy on PMP shows a low water vapor transmission rate of 0.57 g/m2/day and a high water contact angle of 102°. Three-pair thin-film coated PMP demonstrates no microbe adhesion and exhibits antibacterial properties within 24 h. Food shelf life testing performed at 28 °C and 80% humidity reports that the three-pair thin-film coated PMP can enhance the food shelf-life to 120 h. The results indicate that the silicon-based thin film may be a promising material for antibacterial food packaging applications to extend the shelf-life of food products.

  3. Overnight soaking or boiling of "Matooke" to reduce potassium content for patients with chronic kidney disease: does it really work?

    Science.gov (United States)

    Asiimwe, J; Sembajwe, L F; Senoga, A; Bakiika, E; Muwonge, H; Kalyesubula, R

    2013-09-01

    There is an increase in number of patients with chronic kidney disease (CKD) in Uganda's health facilities looking for different options of preparing matooke (bananas), their staple food. To establish and evaluate an effective method of removing potassium from bananas (matooke). Bananas were sampled from 5 markets in Kampala, Uganda. Deionized water was used to soak the bananas and the potassium concentration was determined using an atomic absorption spectrophotometer in both the bananas and water after soaking for varying time intervals. We also determined the potassium concentrations in the bananas and the water after boiling the bananas at 200 degrees Celsius at intervals of 10 minutes (for 60 minutes). The potassium concentration did not appear to change on soaking alone without boiling. However, on boiling, the concentration in the bananas decreased from about 1.4 ppm to approx. 1 ppm after 60 min; yet the concentration of potassium released into deionized water increased steadily from 0.0 ppm to about 1.2 ppm after 60 min of boiling. This study demonstrates that boiling the bananas is a more effective way of removing the potassium from bananas than simply soaking them.

  4. Effects of gamma radiation ({sup 60}Co) on the main physical and chemical properties of health care packaging and their compounds paper and multilayer plastic film, used for health products sterilization; Efeitos da radiacao gama (Cobalto-60) nas principais propriedades fisicas e quimicas da embalagens compostas por papel grau cirurgico e filme plastico laminado, destinadas a esterilizacao de produtos para saude

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Karina Meschini Batista Geribello

    2013-07-01

    Gamma radiation is one of the technologies applied for the sterilization of packaging systems containing products for health. During sterilization process it is critical that the properties of packages are maintained. In this study two samples of commercial pouch packaging comprised of surgical grade paper on one side and the other side multilayer plastic film were irradiated with gamma rays. The following doses were applied 25 kGy (1,57 kGy/h) and 50 kGy (1,48 kGy/h). One packaging sample was paper formed by softwood fibers and multilayer plastic film based on poly(ethylene terephthalate) (PET)/polyethylene (PE). The second type of paper sample was made by a mixture of softwood and hardwood fibers and multilayer plastic film based on polyethylene terephthalate (ethylene) (PET)/polypropylene (PP). The effects of radiation on the physical and chemical properties of papers and multilayer plastic films, as well as the properties of the package were studied. The paper was the more radiation sensitive among the studied materials and radiation effects were more pronounced at brightness, pH, tearing resistance, bursting strength and tensile strength. Nonetheless, worst comparatively effects were noted on the sample made by a mixture of softwood and hardwood fibers. The porosity of paper was enhanced by 50 kGy. In the case of plastic films, radiation effects on tensile strength was the most pronounced property for both samples. In the case of the packaging the sealing resistance decreased with radiation. The effects observed for the treatment at 50 kGy were more pronounced when compared to 25 kGy. This last is the dose which is usually applied to sterilize health products. A dosimetry study was performed during irradiation at 25 kGy, 40 kGy and 50 kGy and its importance may be reported by the average dose variation 20 %. (author)

  5. Filmes plásticos e ácido ascórbico na qualidade de araticum minimamente processado Plastic packaging film and ascorbic acid treatment on the quality of fresh cut araticum

    Directory of Open Access Journals (Sweden)

    Manoel Soares Soares Júnior

    2007-12-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos do ácido ascórbico e do tipo de filme plástico como embalagem na qualidade do araticum minimamente processado e mantido sob refrigeração. O ácido ascórbico não evitou o escurecimento do araticum minimamente processado. Independentemente do tipo de embalagem, a acidez titulável aumentou com o tempo. A embalagem de policloreto de vinila ou polietileno de baixa densidade promoveu uma significativa perda de massa se comparada com a a laminada a vácuo. A embalagem laminada a vácuo propiciou vida-de-prateleira mais longa ao produto, o qual permaneceu com aparência adequada e qualidade comercial até o sétimo dia do armazenamento. A vida-de-prateleira dos demais tratamentos alcançou somente três dias.This study was aimed at evaluating the effect of ascorbic acid and type of plastic packaging film on the quality of refrigerated fresh cut araticum. Ascorbic acid did not prevent fresh cut araticum from darkening. Regardless of the type of plastic packaging, the fruit titrable acidity increased with time. Packing with polyvynil chloride or with low density polyethylene promoted a significant mass loss compared to laminate vacuum packaging. Laminate vacuum packaging increased the shelf life of the product up 7 days, maintaining its commercial quality and appearance. The shelf life of the other treatments reached 3 days only.

  6. Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage.

    Science.gov (United States)

    Gong, Daozhi; Hao, Weiping; Mei, Xurong; Gao, Xiang; Liu, Qi; Caylor, Kelly

    2015-01-01

    Effects of agricultural practices on ecosystem carbon storage have acquired widespread concern due to its alleviation of rising atmospheric CO2 concentrations. Recently, combining of furrow-ridge with plastic film mulching in spring maize ecosystem was widely applied to boost crop water productivity in the semiarid regions of China. However, there is still limited information about the potentials for increased ecosystem carbon storage of this tillage method. The objective of this study was to quantify and contrast net carbon dioxide exchange, biomass accumulation and carbon budgets of maize (Zea maize L.) fields under the traditional non-mulching with flat tillage (CK) and partial plastic film mulching with furrow-ridge tillage (MFR) on the China Loess Plateau. Half-hourly net ecosystem CO2 exchange (NEE) of both treatments were synchronously measured with two eddy covariance systems during the growing seasons of 2011 through 2013. At same time green leaf area index (GLAI) and biomass were also measured biweekly. Compared with CK, the warmer and wetter (+1.3°C and +4.3%) top soil at MFR accelerated the rates of biomass accumulation, promoted greater green leaf area and thus shortened the growing seasons by an average value of 10.4 days for three years. MFR stimulated assimilation more than respiration during whole growing season, resulting in a higher carbon sequestration in terms of NEE of -79 gC/m2 than CK. However, after considering carbon in harvested grain (or aboveground biomass), there is a slight higher carbon sink (or a stronger carbon source) in MFR due to its greater difference of aboveground biomass than that of grain between both treatments. These results demonstrate that partial plastic film mulched furrow-ridge tillage with aboveground biomass exclusive of grain returned to the soil is an effective way to enhance simultaneously carbon sequestration and grain yield of maize in the semiarid regions.

  7. 75 FR 49893 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China...

    Science.gov (United States)

    2010-08-16

    ..., Stretch Wrap Film, Plastic Bag, Paper Plate, PE Foam using November 2008 through October 2009 weighted... Teijin Films, Mitsubishi Polyester Film, Inc., SKC, Inc., and Toray Plastics (America), Inc.... U.S. Price In accordance with section 772(a) of the Act, the Department used EP as the basis for U.S...

  8. Effect of Die Head Temperature at Compounding Stage on the Degradation of Linear Low Density Polyethylene/Plastic Film Waste Blends after Accelerated Weathering

    Directory of Open Access Journals (Sweden)

    S. M. Al-Salem

    2016-01-01

    Full Text Available Accelerated weathering test was performed on blends of linear low density polyethylene (LLDPE and plastic film waste constituting the following percentages of polyolefin polymers (wt.%: LLDPE (46%, low density polyethylene (LDPE, 51%, high density polyethylene (HDPE, 1%, and polypropylene (PP, 2%. Compounded blends were evaluated for their mechanical and physical (optical properties. The impact of photodegradation on the formulated blends was studied, and loss of mechanical integrity was apparent with respect to both the exposure duration to weathering and waste content. The effect of processing conditions, namely, the die head temperature (DHT of the blown-film assembly used, was investigated in this work. It was witnessed that surpassing the melting point of the blends constituting polymers did not always result in a synergistic behaviour between polymers. This was suspected to be due to the loss of amorphous region that polyolefin polymers get subjected to with UV exposure under weathering conditions and the effect of the plastic waste constituents. The total change in colour (ΔE did not change with respect to DHT or waste content due to rapid change degradation on the material’s surface. Haze (% and light transmission (% decreased with the increase in waste content which was attributed to lack of miscibility between constituting polymers.

  9. Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

    International Nuclear Information System (INIS)

    Sarker, Ashis K.; Hong, Jongdal

    2014-01-01

    In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layerby-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at 100 .deg. C, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-RGO 30 /PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-RGO 30 /PET electrode was found to be 529 F/cm 3 at a current density of 3 A/cm 3 , which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-RGO 30 /PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode

  10. Technological, physicochemical and sensory changes of upland rice in soaking step of the parboiling process

    Directory of Open Access Journals (Sweden)

    Flávia de Araújo Fonseca

    2014-09-01

    Full Text Available The aim of this study was to evaluate the effect of combinations of soaking temperature and time during the parboiling on the technological, physicochemical and sensory quality of two upland rice cultivars. The milling degree for BRS Primavera and BRS Sertaneja cultivars ranged from 7.11 to 8.89 g100 g-1 and 7.62 to 8.91 g 100 g-1and the head yield from 63.77 to 69.26 g 100 g-1 and from 73.22 to 75.40 g 100 g-1, respectively. The ash content for parboiled BRS Sertaneja increased up to 68%; regarding protein, the content increased up to 10% and for lipids, the values increased up to 86%, approximately, after processing. The higher the soaking temperature, the lower the milling degree and head yield. The parboiled rice BRS Primavera achieved higher contents of ash and lipid in relation to non-parboiled milled rice, while the BRS Sertaneja obtained higher ash, protein, lipid, and crude fiber contents. Parboiled rice samples had higher yield and cooking time than milled rice samples. The condition of soaking at 65°C for 60 min. and 60oC for 112 min. was sufficient for the acceptance of all sensory attributes evaluated in BRS Primavera, and 65oC for 420 min. in BRS Sertaneja.

  11. A time - zero detector based on thin film plastic scintillator

    International Nuclear Information System (INIS)

    Petrovici, M.; Simion, V.; Pagano, A.; Urso, S.; Geraci, E.

    1998-01-01

    Thin film scintillator used as a fast time-zero detector exhibits some advantages: fast response, small energy loss of transmitted particles, insensitivity to radiation damage, high efficiency and high counting rate capability. In order to increase the efficiency of the light collection, the scintillating plastic foil is housed in a reflecting body having an ellipsoidal geometry. A concave ellipsoidal mirror has the property that the geometrical foci are optically conjugate points and consequently, all optical path lengths from one focus to the other via a single reflection are equal. With the thin scintillator foil situated at one focal point and the PM's photocathode at the other one, an excellent light collection can be obtained. The principle of detector and the main components are presented. For our purposes we constructed the detector in two variants: glass mirror and polished aluminium mirror. The semi-axes of the ellipsoidal profile are: a 49.8 mm, b = 34.2 mm for the glass mirror and a = 35 mm, b = 26.5 mm for the aluminium mirror, respectively. The diameter of the beam access hole on the both mirrors is 12 mm. The detectors are foreseen to be used at 4π detecting system CHIMERA for experiments with heavy ion beams at intermediate energies delivered by Superconducting Cyclotron from LNS - Catania. Presently, the performance of these detectors are tested using alpha radioactive sources and in-beam measurements. (authors)

  12. Energy recycling of plastic and rubber wastes

    International Nuclear Information System (INIS)

    Hussain, R.

    2003-01-01

    Major areas for applications of plastics and rubbers are building and construction, packaging, transportation, automobiles, furniture, house wares, appliances, electrical and electronics. Approximately 20% of all the plastics produced are utilized by the building and construction industry/sup (1-3)/. Categories of polymers mostly used in the above industries include poly (vinyl chloride), polypropylene, polyethylene, polystyrene phenolics, acrylics and urethanes. Tyres and tubes are almost exclusively made up of rubbers. One third of total consumption of plastics finds applications, like films, bottles and packaging, in food-products that have a maximum life-span of two years, after which these find way to waste dumps. As the polymer industry in Pakistan is set to grow very rapidly in the near future the increase in utilization of plastic products in synchronous with the advent of computers and information technology. About 0.60 Kg per capita of waste generated daily in Lahore /(7.14)/ contains considerable quantity of plastics. (AB)

  13. Performance evaluation of cassava starch-zinc nanocomposite film for tomatoes packaging

    Directory of Open Access Journals (Sweden)

    Adeshina Fadeyibi

    2017-05-01

    Full Text Available Biodegradable nanocomposite films are novel materials for food packaging because of their potential to extend the shelf life of food. In this research, the performance of cassava starch-zincnanocomposite film was evaluated for tomatoes packaging. The films were developed by casting the solutions of 24 g cassava starch, 0-2% (w/w zinc nanoparticles and 55% (w/w glycerol in plastic mould of 12 mm depth. The permeability of the films, due to water and oxygen, was investigated at 27°C and 65% relative humidity while the mechanical properties were determined by nanoindentation technique. The average thickness of the dried nanocomposite films was found to be 17±0.13 μm. The performances of films for tomatoes packaging was evaluated in comparison with low density polyethylene (LDPE; 10 μm at the temperature and period ranges of 10-27°C and 0-9 days, respectively. The quality and microbial attributes of the packaged tomatoes, including ascorbic acid, β-carotene and total coliform were analysed at an interval of 3 days. The results revealed that the water vapour permeability increased while the oxygen permeability decreased with the nanoparticles (P<0.05. The hardness, creep, elastic and plastic works, which determined the plasticity index of the film, decreased generally with the nanoparticles. The films containing 1 and 2% of the nanoparticles suppressed the growth of microorganisms and retained the quality of tomatoes than the LDPE at 27°C and day-9 of packaging (P<0.05. The results implied that the film could effectively be used for tomatoes packaging due to their lower oxygen permeability, hardness, elastic and plastic works.

  14. Influência do armazenamento refrigerado em associação com atmosfera modificada por filmes plásticos na qualidade de mangas 'Tommy Atkins Influence of refrigerated storage associated with plastic film-modified atmosphere in quality of 'Tommy Atkins' mangoes

    Directory of Open Access Journals (Sweden)

    Joaci Pereira de Sousa

    2002-12-01

    Full Text Available Avaliou-se a qualidade de mangas Tommy Atkins, embaladas em filmes plásticos e armazenadas sob condição refrigerada. Utilizaram-se frutos da safra 2000 obtidos na Fazenda Paulicéia Empreendimentos Ltda., situada no Pólo Agrícola Mossoró-Assu. Os frutos foram colhidos no estádio 2 (Brix 7 º e 75% verde e 25% vermelha e selecionados de acordo com o tipo 12 (12 frutos/caixa e tratados com fungicida para evitar podridões. No laboratório, os frutos foram submetidos aos seguintes tratamentos: 1 - frutos não embalados; 2 - frutos embalados individualmente em cloreto de polivinila (PVC; 3 - frutos embalados em sacola de polietileno de alta densidade (PEAD; 4 - frutos embalados em sacola de polietileno de baixa densidade (PEBD. Os frutos foram armazenados por 42 dias em condição controlada (11 ± 1°C; 85-90% UR. O armazenamento dos frutos sob condição controlada, associada à atmosfera modificada pelos filmes plásticos, reduziu-lhes a perda de matéria fresca e proporcionou-lhes a manutenção dos teores de sólidos solúveis totais, açúcares solúveis totais e acidez total titulável. A atmosfera modificada pelos filmes plásticos manteve mais regular as perdas na firmeza da polpa, possibilitando uma vida útil pós-colheita de 42 dias em ralação à testemunha. Até o final do armazenamento, o uso de PEAD promoveu o desenvolvimento da coloração da casca e da polpa dos frutos, porém o uso de PVC e PEBD reteve a coloração da casca.The quality of mangoes cv Tommy Atkins enclosed in plastic films and stored under refrigerated conditions were evaluated. Mangoes from the 2000 crop harvested at the Fazenda Paulicéia Empreendimentos Ltda., located in the Mossoró-Assu Agropole were used as experimental unity. The fruits were harvested in stage 2 ( 7º brix and 75% green, 25% red and selected for the type 12 (12 fruits/box, then treated with fungicide to prevent rots. The fruits were submited to the following treatments in the

  15. Radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Saunders, C.B.

    1988-01-01

    The interaction of ionizing radiation with organic substrates to produce useful physical and chemical changes is the basis of the radiation processing industry for plastics. Electron beam (EB) accelerators dominate the industry; however, there are a few small applications that use gamma radiation. The five general product categories that account for over 95% of the worldwide EB capacity used for plastics production are the following: wire and cable insulation; heat-shrinkable film, tubes and pipes; radiation-curable coatings; rubber products; and polyolefin foam. A total of 6.1% of the yearly production of these products in the United States is EB treated. The United States accounts for 59% of the total worldwide EB capacity of 20.5 MW (1984), followed by Europe (16%) and Japan (15%). There are 469 to 479 individual EB units worldwide used for the production of plastics and rubber. The average annual rate of growth (AARG) for the EB processing of plastics in Japan, from 1977 to 1987, was 13.3%. The AARG for Japan has decreased from 20% for 1977 to 198, to 6.4% for 1984 to 1987. Radiation cross-linking, of power cable insulation (cable rating ≥75 kV), thick polyolefin and rubber sheet (≥15 mm), and thick-walled tubing is one fo the potential applications for a 5- to 10-MeV EB system. Other products such as coatings, films and wire insulation may be economically EB-treated using a 5 to 10 MeV accelerator, if several layers of the product could be irradiated simultaneously. Two general product categories that require more study to determine the potential of high-energy EB processing are moulded plastics and composite materials. 32 refs

  16. The Effect of Aqueous Ammonia Soaking Pretreatment on Methane Generation Using Different Lignocellulosic Biomasses

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2015-01-01

    In the present study aqueous ammonia soaking (AAS) has been tested as a pretreatment method for the anaerobic digestion of three lignocellulosic biomasses of different origin: one agricultural residue: sunflower straw, one perennial crop: grass and a hardwood: poplar sawdust.The methane production...

  17. The effect of washing and soaking on decreasing heavy metals (Pb, Cd and As in the rice distributed in Kermanshah in 2011

    Directory of Open Access Journals (Sweden)

    Hadi Adibi

    2014-01-01

    Full Text Available Background: Heavy metal pollution has always been a major cause of environmental contamination and considered a concern for food health. Rice is the most popular food among Iranians and the presence of heavy metals in rice as trace level has received special attention because they are directly related to health. In Iran, it is customary for people to wash and soak the rice before cooking. The aim of this research was to investigate the contents of heavy metals (Pb, Cd and As in Iranian and imported rice after washing and soaking in Kermanshah in 2011. Methods: 21 samples of the most widely consumed brands of Iranian and imported rice were purchased from local supermarkets in Kermanshah, Iran. 3 samples of each brand were collected and specific volumes of each sample were digested with acid. Heavy metal contents in the digested samples were determined by atomic absorption spectrometry. Results: The results showed that the concentration means of Pb, Cd and As in the Iranian rice samples were 275.17 µg/kg, 13.28 µg/kg, 53.69 µg/kg, respectively before washing and concentration means after washing and soaking were 236.96 µg/kg, 12.31 µg/kg, 44.06 µg/kg, respectively. The concentration means of Pb, Cd, As in imported rice samples were 215.71 µg/kg, 8.17 µg/kg, 45.92 µg/kg, respectively before washing and 183.59 µg/kg, 7.16 µg/kg, 37.61 µg/kg, respectively after washing and soaking. Conclusion: Results showed that washing and soaking decreased contents of Pb, Cd and As (15%, 7.2% and 18%, respectively. It should be noted that washing and soaking are important factors for decreasing heavy metals in the rice distributed in Kermanshah.

  18. Nutrient utilisation and blood chemistry of Red Sokoto bucks fed on diets with different inclusion levels of raw and soaked roselle (Hibiscus sabdariffa L. seeds

    Directory of Open Access Journals (Sweden)

    Taofik Adam Ibrahim

    2018-04-01

    Full Text Available This study evaluated nutrient utilisation and blood chemistry of Red Sokoto bucks fed a 10 and 20 % inclusion level of raw, water- and lime-soaked Hibiscus sabdariffa L. seeds in rice bran based diets. 21 Red Sokoto bucks aged 8–10 months and weighing 9–13 kg were randomly allotted into six treatments with three bucks each, while a seventh dietary treatment with zero inclusion of seeds served as control in a 2 × 3 factorial arrangement using a complete randomised design. The results indicated that increase in dietary inclusion levels of soaked H. sabdariffa seeds increased (P < 0.05 the nutrient utilisation of bucks as compared to the control, while a decrease was observed with increasing dietary inclusion levels of raw seeds. Dietary inclusion of both raw and water-soaked H. sabdariffa seeds increased (P < 0.05 the packed cell volume. Soaking also influenced the white blood cell value which increased with increasing inclusion levels of H. sabdariffa seeds. However, values of haemoglobin and red blood cells were only affected by 20 % inclusion of raw and water-soaked H. sabdariffa seeds (P < 0.05 compared to control. Inclusion of H. sabdariffa seeds furthermore reduced serum protein, albumin, globulin, glucose and urea levels compared to control. It is therefore concluded that H. sabdariffa seeds support haematopoiesis in Red Sokoto bucks. While both inclusion levels of water-soaked and 10 % raw H. sabdariffa seeds improved nutrient utilisation compared to control and 20 % inclusion of raw seeds, the 20 % inclusion of water-soaked H. sabdariffa seeds recorded the best nitrogen utilisation efficiency.

  19. Plastic consumption and diet of Glaucous-winged Gulls (Larus glaucescens).

    Science.gov (United States)

    Lindborg, Valerie A; Ledbetter, Julia F; Walat, Jean M; Moffett, Cinamon

    2012-11-01

    We analyzed dietary habits and presence of plastic in 589 boluses of Glaucous-winged Gulls (Larus glaucescens) as one of two studies on the impact of plastics on marine life in the US Salish Sea. Volunteers dissected boluses collected (2007-2010) from Protection Island, Washington. Components were separated into 23 food and non-food categories. Plastic was found in 12.2% of boluses, with plastic film being the most common plastic form. No diet specialization was observed. Vegetation was the most abundant component, found in 91.3% of boluses. No relationship was observed between any dietary items and occurrence or type of plastic found. Load and potential ecological impact in the marine environment can be expected to increase concurrently with increasing plastic use and number and variety of plastic sources. Future studies are necessary to understand the impacts of plastic ingestion on this species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  1. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yanqing [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340 (United States); Xu, Shuozhi, E-mail: shuozhixu@gatech.edu [GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2016-12-15

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  2. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    International Nuclear Information System (INIS)

    Su, Yanqing; Xu, Shuozhi

    2016-01-01

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  3. Growth Performance of Clarias Gariepinus Fed Soaked Moringa Oleifera Leaf Meal

    OpenAIRE

    Ayegba, E. O

    2016-01-01

    The present study evaluates the nutritional potential of soaked-dried Moringa oleifera leaf meal in the diet of Clarias gariepinus. Four isonitrogenous (35% crude protein) diets were formulated with Moringa leaf replacing soybean meal at 0%, 10%, 20% and 30%. Result obtained revealed declined in weight gain, specific growth rate, feed conversion efficiency, protein efficiency ratio and apparent net protein utilization as dietary replacement of Moringa leaf meal increased beyond 10%. It is con...

  4. Effect of soaking in noni (Morinda citrifolia) juice on the microbiological and color behavior of Haden minimally processed mango.

    Science.gov (United States)

    Ulloa, José Armando; González Tapia, Noemí T; Rosas Ulloa, Petra; Ramírez Ramírez, José Carmen; Ulloa Rangel, Blanca E

    2015-05-01

    The purpose of this study was to evaluate the effect of soaking in noni juice on the microbiological and color behavior of minimally processed mango. Two batches of Haden mango cubes were treated by immersion in noni juice for 2.5 or 5.0 min. Each batch was packed in polypropylene boxes and stored at 6 °C for up to 15 days; in addition, a control group of mango cubes was prepared by immersion in sterile water for the same duration. According to the results, the soaking of mango cubes in noni juice had an antimicrobial effect on mesophilic aerobic bacteria, molds and yeasts during storage at 6 °C for 15 days, without significantly (P < 0.05) affecting the CIE L*, a*, b*, chroma and hue angle values, in comparison with the control after 12 days of storage. The noni juice soaking treatment was demonstrated to be a potentially valuable technology for decontamination of fresh-cut fruit surfaces.

  5. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M.

    2007-01-01

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion

  6. Effect of concentrations of plasticizers on the sol-gel properties developed from alkoxides precursors

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, Sandra Raquel; Longhi, Marielen; Zini, Lucas Pandolphi [Universidade de Caxias do Sul (CCET/UCS), Caxias do Sul, RS (Brazil). Centro de Ciências Exatas e Tecnologia; Beltrami, Lilian Vanessa Rossa; Boniatti, Rosiana; Cardoso, Henrique Ribeiro Piaggio; Vega, Maria Rita Ortega; Malfatti, Célia de Fraga, E-mail: lvrossa@yahoo.com.br [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Pesquisa em Corrosão

    2017-07-01

    Coatings developed through sol-gel method is presented as an interesting replacement to chromium coating. Sol-gel method present advantages as high purity and excellent distribution of the components. The objective of this work is to synthesize and characterize a film obtained by sol-gel route. The film was prepared with 3-(trimethoxysilylpropyl) methacrylate (TMSPMA), tetraethoxysilane (TEOS) and cerium nitrate, using water and ethanol as solvents. Polyethyleneglycol (PEG) plasticizer was added at four different concentrations. The sol was characterized by techniques of viscosity, thermogravimetric analysis (TGA), X-ray diffraction (XRD) nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR). The results showed that tetrafunctional alkoxides condensation was retarded by the plasticizer, forming a compact film. The film with 20 g.L-1 of PEG showed the best electrochemical behavior. (author)

  7. Evaluation of plastic packaging materials used in radiation sterilized medical products and food

    International Nuclear Information System (INIS)

    Li Fengmei; Wang Ying; Liu Xiaoguang; Yang Baoyu

    2000-01-01

    This paper studied the results of evaluation on resistance to radiation, moisture permeability, bacteria permeability, tensile strength, elongation at break and sealing ability for several plastic films available on the market. The result shows that nylon, sarin, and polyethylene complex films, high and low density polyethylene films are applicable for packing of radiation sterilized products. (author)

  8. Stress relaxation in tempered glass caused by heat soak testing

    DEFF Research Database (Denmark)

    Schneider, Jens; Hilcken, Jonas; Aronen, Antti

    2016-01-01

    Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so-called "spont...... of commercial soda-lime-silica glass, it causes stress relaxation in tempered glass and the fracture pattern of the glass changes accordingly, especially thin glasses are affected. Based on the Tool-Narayanaswamy-Model, this paper comprises the theoretical background of the stress...

  9. Temperature dependence of broadline NMR spectra of water-soaked, epoxy-graphite composites

    Science.gov (United States)

    Lawing, David; Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1981-10-01

    Water-soaked, epoxy resin-graphite fiber composites show a waterline in their broadline proton NMR spectrum which indicates a state of intermediate mobility between the solid and free water liquid states. The line is still present at -42 °C, but shows a reversible decrease in amplitude with decreasing temperature. The line is isotropic upon rotation of the fiber axis with respect to the external magnetic field.

  10. Plastic response of thin films due to thermal cycling

    NARCIS (Netherlands)

    Nicola, L.; van der Giessen, E.; Needleman, A.; Ahzi, S; Cherkaoui, M; Khaleel, MA; Zbib, HM; Zikry, MA; Lamatina, B

    2004-01-01

    Discrete dislocation simulations of thin films on semi-infinite substrates under cyclic thermal loading are presented. The thin film is modelled as a two-dimensional single crystal under plane strain conditions. Dislocations of edge character can be generated from initially present sources and glide

  11. Testing the effect of soak time on catch damage in a coastal gillnetter and the consequences on processed fish quality

    DEFF Research Database (Denmark)

    Savina, Esther; Karlsen, Junita Diana; Frandsen, Rikke

    2016-01-01

    This study aims at testing how to improve catch quality aboard a coastal gillnetter by looking at an easily controllable parameter known to have an effect on the degree of fish damage, soak time, and investigating if the registered damages on whole fish have an effect on processed products...... plaice processed at a land-based factory. Cumulative link mixed modelling allowed the estimation of the size of effects. Damage in fish was significantly more likely for longer soak times but effects were comparable to those of fish length and between-sets, making a change in soak time not so substantial...... for improving plaice quality in coastal gillnetting. Damage in fish was significantly more likely for whole than filleted fish, but there was substantial heterogeneity among fish. Severe damage in whole fish may not matter in filleted fish whereas some damage may only be visible at the fillet level...

  12. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches

    Directory of Open Access Journals (Sweden)

    Huiming Zhou

    2010-08-01

    Full Text Available Starches were isolated from soaked and malted sorghum and studied to understand their physicochemical and functional properties. The swelling power (SP and the water solubility index (WSI of both starches were nearly similar at temperatures below 50 °C, but at more than 50 °C, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA showed that malted sorghum starch had a lower viscosity peak value (86 BU/RVU than raw sorghum starch (454 BU/RVU. For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp at 78.06 °C and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22 °C and gelatinization enthalpies of 2.06 J/g. Storage modulus (G′ and loss modulus (G″ of all starch suspensions increased steeply to a maximum at 70 °C and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule’s surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods.

  13. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO

  14. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Melikhova, O., E-mail: oksivmel@yahoo.com [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Čížek, J.; Lukáč, F.; Vlček, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Novotný, M.; Bulíř, J.; Lančok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Anwand, W.; Brauer, G. [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510 119, D-01314 Dresden (Germany); Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P. [National Centre for Plasma Science and Technology, School of Physical Sciences, Glasnevin, Dublin 9 (Ireland)

    2013-12-15

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO.

  15. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide

    International Nuclear Information System (INIS)

    Sekhar, Vini C.; Nampoothiri, K. Madhavan; Mohan, Arya J.; Nair, Nimisha R.; Bhaskar, Thallada; Pandey, Ashok

    2016-01-01

    Highlights: • Biodegradation of a high impact polystyrene e − plastic. • 12.4% (w/w) e plastic film lost using an isolate, Enterobacter sp. • Noted changes in the physico-chemical characteristics of degraded e-plastic film. • Polystyrene intermediates were detected in the degradation medium. • e-plastic degrading microbes displayed extracellular depolymerase activity. - Abstract: Accumulation of electronic waste has increased catastrophically and out of that various plastic resins constitute one of the leading thrown out materials in the electronic machinery. Enrichment medium, containing high impact polystyrene (HIPS) with decabromodiphenyl oxide and antimony trioxide as sole carbon source, was used to isolate microbial cultures. The viability of these cultures in the e-plastic containing mineral medium was further confirmed by triphenyl tetrazolium chloride (TTC) reduction test. Four cultures were identified by 16S rRNA sequencing as Enterobacter sp., Citrobacter sedlakii, Alcaligenes sp. and Brevundimonas diminuta. Biodegradation experiments were carried out in flask level and gelatin supplementation (0.1% w/v) along with HIPS had increased the degradation rate to a maximum of 12.4% (w/w) within 30 days. This is the first report for this kind of material. The comparison of FTIR, NMR, and TGA analysis of original and degraded e-plastic films revealed structural changes under microbial treatment. Polystyrene degradation intermediates in the culture supernatant were also detected using HPLC analysis. The gravity of biodegradation was validated by morphological changes under scanning electron microscope. All isolates displayed depolymerase activity to substantiate enzymatic degradation of e-plastic.

  16. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Sekhar, Vini C. [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India); Nampoothiri, K. Madhavan, E-mail: madhavan85@hotmail.com [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India); Mohan, Arya J.; Nair, Nimisha R. [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India); Bhaskar, Thallada [Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun, Uttarakhand 248005 (India); Pandey, Ashok [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India)

    2016-11-15

    Highlights: • Biodegradation of a high impact polystyrene e − plastic. • 12.4% (w/w) e plastic film lost using an isolate, Enterobacter sp. • Noted changes in the physico-chemical characteristics of degraded e-plastic film. • Polystyrene intermediates were detected in the degradation medium. • e-plastic degrading microbes displayed extracellular depolymerase activity. - Abstract: Accumulation of electronic waste has increased catastrophically and out of that various plastic resins constitute one of the leading thrown out materials in the electronic machinery. Enrichment medium, containing high impact polystyrene (HIPS) with decabromodiphenyl oxide and antimony trioxide as sole carbon source, was used to isolate microbial cultures. The viability of these cultures in the e-plastic containing mineral medium was further confirmed by triphenyl tetrazolium chloride (TTC) reduction test. Four cultures were identified by 16S rRNA sequencing as Enterobacter sp., Citrobacter sedlakii, Alcaligenes sp. and Brevundimonas diminuta. Biodegradation experiments were carried out in flask level and gelatin supplementation (0.1% w/v) along with HIPS had increased the degradation rate to a maximum of 12.4% (w/w) within 30 days. This is the first report for this kind of material. The comparison of FTIR, NMR, and TGA analysis of original and degraded e-plastic films revealed structural changes under microbial treatment. Polystyrene degradation intermediates in the culture supernatant were also detected using HPLC analysis. The gravity of biodegradation was validated by morphological changes under scanning electron microscope. All isolates displayed depolymerase activity to substantiate enzymatic degradation of e-plastic.

  17. Effect of UV-Blocking Plastic Films on Take-Off and Host Plant Finding Ability of Diaphorina citri (Hemiptera: Liviidae).

    Science.gov (United States)

    Miranda, M P; Dos Santos, F L; Felippe, M R; Moreno, A; Fereres, A

    2015-02-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major pest of citrus worldwide due to its ability to transmit the bacteria associated with huanglongbing. Vision, behavior, and performance of insect pests can be manipulated by using ultraviolet (UV)-blocking materials. Thus, the aim of our study was to evaluate how UV-blocking plastic films may affect the take-off and host plant finding ability of D. citri. To assess the effect of a UV-deficient environment on take-off, adult psyllids were released from a vial inside a screenhouse covered by a UV-blocking or standard (control) film and the number of insects remaining on each vial under each treatment was counted at different time intervals. Moreover, to assess the ability of D. citri to find citrus plants under a UV-deficient environment, two independent no-choice host plant finding assays with different plant arrangements were conducted. In each treatment, the number of psyllids per plant at different time intervals was counted. Both D. citri take-off and host plant finding ability was clearly disrupted under a UV-deficient environment. The number of psyllids remaining in the vials was significantly higher under UV-blocking than standard film in all periods recorded. Furthermore, psyllids were present in significantly higher number on citrus plants under standard film than under UV-blocking film in all of the periods assessed and experiments conducted. Our results showed that UV-blocking materials could become a valuable strategy for integrated management of D. citri and huanglongbing in citrus grown in enclosed environments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Improvement of food packaging related properties in whey protein isolate‑based nanocomposite films and coatings by addition of montmorillonite nanoplatelets

    Science.gov (United States)

    Schmid, Markus; Merzbacher, Sarah; Brzoska, Nicola; Müller, Kerstin; Jesdinszki, Marius

    2017-11-01

    In the present study the effects of the addition of montmorillonite (MMT) nanoplatelets on whey protein isolate (WPI)-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT-nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast-films and coatings were prepared by dispersing 0 % (reference sample), 3 %, 6 %, 9 % (w/w protein) MMT, or, depending on the protein concentration, also 12 % and 15 % (w/w protein) MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15 % (w/w protein) MMT into 10 % (w/w dispersion) WPI-based cast-films or coatings, the oxygen permeability (OP) was reduced by 91 % for glycerol-plasticized and 84 % for sorbitol-plasticized coatings, water vapor transmission rate (WVTR) was reduced by 58 % for sorbitol-plasticized cast-films. Due to the addition of MMT- nanofillers the Young’s modulus and tensile strength improved by 315 % and 129 %, respectively, whereas elongation at break declined by 77 % for glycerol-plasticized cast-films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast-films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast-films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high nanofiller-loadings. These results suggest that the addition of natural MMT- nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of

  19. Oral epithelial cell reaction after exposure to Invisalign plastic material.

    Science.gov (United States)

    Premaraj, Thyagaseely; Simet, Samantha; Beatty, Mark; Premaraj, Sundaralingam

    2014-01-01

    Invisalign plastic aligners (Align Technology, Santa Clara, Calif) are used to correct malocclusions. The aligners wrap around the teeth and are in contact with gingival epithelium during treatment. The purpose of this study was to evaluate the cellular responses of oral epithelium exposed to Invisalign plastic in vitro. Oral epithelial cells were exposed to eluate obtained by soaking Invisalign plastic in either saline solution or artificial saliva for 2, 4, and 8 weeks. Cells grown in media containing saline solution or saliva served as controls. Morphologic changes were assessed by light microscopy. The 3-[4, 5-dimethythiazol- 2-yl]-2, 5-diphenyl tetrazolium bromide assay and flow cytometry were used to determine cell viability and membrane integrity, respectively. Cellular adhesion and micromotion of epithelial cells were measured in real time by electrical cell-substrate impedance sensing. Cells exposed to saline-solution eluate appeared rounded, were lifted from the culture plates, and demonstrated significantly increased metabolic inactivity or cell death (P <0.05). Saliva eluates did not induce significant changes in cell viability compared with untreated cells. Flow cytometry and electric cell-substrate impedance sensing showed that cells treated with saline-solution eluate exhibited compromised membrane integrity, and reduced cell-to-cell contact and mobility when compared with saliva-eluate treatment. Exposure to Invisalign plastic caused changes in viability, membrane permeability, and adhesion of epithelial cells in a saline-solution environment. Microleakage and hapten formation secondary to compromised epithelial integrity might lead to isocyanate allergy, which could be systemic or localized to gingiva. However, these results suggest that saliva might offer protection. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. Effect of concentrations of plasticizers on the sol-gel properties developed from alkoxides precursors

    Directory of Open Access Journals (Sweden)

    Sandra Raquel Kunst

    Full Text Available Abstract Coatings developed through sol-gel method is presented as an interesting replacement to chromium coating. Sol-gel method present advantages as high purity and excellent distribution of the components. The objective of this work is to synthesize and characterize a film obtained by sol-gel route. The film was prepared with 3-(trimethoxysilylpropyl methacrylate (TMSPMA, tetraethoxysilane (TEOS and cerium nitrate, using water and ethanol as solvents. Polyethyleneglycol (PEG plasticizer was added at four different concentrations. The sol was characterized by techniques of viscosity, thermogravimetric analysis (TGA, X-ray diffraction (XRD nuclear magnetic resonance spectroscopy (NMR and Fourier transform infrared spectroscopy (FT-IR. The results showed that tetrafunctional alkoxides condensation was retarded by the plasticizer, forming a compact film. The film with 20 g.L-1 of PEG showed the best electrochemical behavior.

  1. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  2. PLASTIC MATERIALS IN EUROPEAN AGRICULTURE: ACTUAL USE AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Giacomo Scarascia-Mugnozza

    2012-06-01

    Full Text Available The world consumption of plastics in agriculture amounts yearly to 6.5 million tons. In addition to conventional polymers used in agriculture for greenhouses and mulches such as PE, PVC, EVA, photo-selective and luminescent polymers have been used, in order to improve the quality of crops. For the same reason plastic nets are used mainly in countries with tropical and Mediterranean climates. For an environmentally friendly agricultural activity, an alternative strategy can be represented by bio-based agricultural raw materials. For low environmental impact applications, biodegradable materials for agricultural films are nowadays produced. An overview of the main methods for the disposal and recycling of plastic materials are presented with the results of mechanical and radiometric tests on recycled plastics. The strategies to reduce the burden of plastics in agriculture are: a correct procedure for the collection, disposal and recycling of post-consumption plastics; the increase of lifetime duration and performance; and the introduction and promotion of bio-based materials.

  3. Dye film dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Humphreys, J.C.; McLaughlin, W.L.

    1981-01-01

    Commercially available plastic films containing dyes or dye precursors are convenient dosimeters and imaging media for electron beams or photons used for industrial radiation processing. As ''grainless'' imaging systems having thicknesses down to a few micrometers, they provide high spatial resolution for determining detailed absorbed dose distributions through microdensitometric analysis. The radiation absorption properties of these systems are adjusted by changing film composition so that the dosimeter materials can be made to simulate the material of interest undergoing irradiation. Other advantages include long-term stability, dose-rate independence, and ease of use and calibration. Radiochromic dye films with thicknesses varying from 0.005 to 1 mm are presently used to monitor electron-beam or gamma-ray doses from 10 to 10 5 Gy (10 3 to 10 7 rad), typical of those encountered in medical applications, radiation curing of polymeric composites, wire and cable insulation, shrinkable plastic tubing and film, as well as sterilization of medical supplies and treatment of municipal and industrial wastes. An NBS calibration service to industry involves the traceability of standard 60 Co gamma ray absorbed dose measurements by means of these films employed as transfer standards

  4. Effect of pH and Recombinant Barley (Hordeum vulgare L.) Endoprotease B2 on Degradation of Proteins in Soaked Barley

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerg; Dionisio, Giuseppe; Poulsen, Hanne Damgaard

    2014-01-01

    .3. Solubilized and degraded proteins evaluated by biuret, SDS-PAGE, and differential proteomics revealed that pH 4.3 had the greatest impact on both solubilization and degradation. In order to boost proteolysis, the recombinant barley endoprotease B2 (rec-HvEP-B2) was included after 8 h using the pH 4.3 regime......Nonfermented soaking of barley feedstuff has been established as an in vitro procedure prior to the feeding of pigs as it can increase protein digestibility. In the current study, two feed cultivars of barley (Finlissa and Zephyr) were soaked in vitro either nonbuffered or buffered at pH 3.6 and 4....... Proteolysis evaluated by SDS-PAGE and differential proteomics confirmed a powerful effect of adding rec-HvEP-B2 to the soaked barley, regardless of the genotype. Our study addresses the use of rec-HvEP-B2 as an effective feed enzyme protease. HvEP-B2 has the potential to increase the digestibility of protein...

  5. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum.

    Science.gov (United States)

    Khazaei, Naimeh; Esmaiili, Mohsen; Djomeh, Zahra Emam; Ghasemlou, Mehran; Jouki, Mohammad

    2014-02-15

    It is well known that the market for edible films is experiencing remarkable growth and expected to continue. This study investigated the using of basil seed gum (BSG) as a new film-forming material under the influence of addition of glycerol (GLY) as plasticizer. Edible films based on BSG and three different concentrations of GLY (25%, 35%, and 50% w/w BSG) were developed, and their water vapor permeability (WVP), as well as physical, thermal and mechanical properties were measured. The addition of glycerol significantly increased water vapor permeability and solubility of the film (p<0.05). As expected, the increase in GLY concentration from 25% to 50% (w/w) increased the extensibility, but decreased tensile strength. This suggests weaker mechanical strength and higher mobility of polymer chains by plasticizing effect of GLY. The color measurement values showed that increasing the glycerol concentration in polymer matrix caused the b and L values increased while ΔE value decreased. The electron scanning micrograph showed plasticized films as smooth, and uniform which lacked pores or cracks compared with those were not plasticized. This study revealed that the BSG had a good potential to be used in producing edible films for various food applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A comparison between DACC with chlorhexidine acetate-soaked paraffin gauze and foam dressing for skin graft donor sites.

    Science.gov (United States)

    Lee, Jun Won; Park, Seong Hoon; Suh, In Suck; Jeong, Hii Sun

    2018-01-02

    Retrograde infections often occur with excessive or incomplete drainage of exudate, or as a result of adherence of dressings to wounds. Dialkylcarbamoyl chloride (DACC) irreversibly binds to bacterial surfaces and physically removes bacteria when dressings are changed. Chlorhexidine acetate-soaked paraffin gauze provides a moist wound-healing environment. We hypothesise that when DACC is combined with chlorhexidine acetate-soaked paraffin gauze, wound healing times decrease. From January 2013 to June 2015, medical records were retrospectively evaluated in 60 patients who underwent split-thickness skin grafts (STSG). Patients were divided into two groups: a 'thick skin group' and a 'thin skin group'. These two groups were further subdivided into a control group, where conventional foam dressings were applied to wounds, and an experimental group, where chlorhexidine acetate-soaked paraffin gauze with DACC was applied (DACC group). We compared the wound healing time between these subgroups. Differences in infected wound healing times were also compared. The Mann-Whitney test was applied to compare wound healing times between groups. Epithelialisation duration was significantly shorter in the DACC group. The control group had longer wound healing times, regardless of wound size. In the thick skin group, the median healing duration was 12 days in the control subgroup, compared with 9.5 days in the DACC subgroup (p=0.049). In the thin skin subgroup, the median healing duration in the control group was 18 days, compared with 10 days in the DACC subgroup (p=0.013). Application of DACC and chlorhexidine acetate-soaked paraffin gauze to skin graft donor sites can shorten healing times and is effective in treating infected wounds.

  7. Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage.

    Directory of Open Access Journals (Sweden)

    Daozhi Gong

    Full Text Available Effects of agricultural practices on ecosystem carbon storage have acquired widespread concern due to its alleviation of rising atmospheric CO2 concentrations. Recently, combining of furrow-ridge with plastic film mulching in spring maize ecosystem was widely applied to boost crop water productivity in the semiarid regions of China. However, there is still limited information about the potentials for increased ecosystem carbon storage of this tillage method. The objective of this study was to quantify and contrast net carbon dioxide exchange, biomass accumulation and carbon budgets of maize (Zea maize L. fields under the traditional non-mulching with flat tillage (CK and partial plastic film mulching with furrow-ridge tillage (MFR on the China Loess Plateau. Half-hourly net ecosystem CO2 exchange (NEE of both treatments were synchronously measured with two eddy covariance systems during the growing seasons of 2011 through 2013. At same time green leaf area index (GLAI and biomass were also measured biweekly. Compared with CK, the warmer and wetter (+1.3°C and +4.3% top soil at MFR accelerated the rates of biomass accumulation, promoted greater green leaf area and thus shortened the growing seasons by an average value of 10.4 days for three years. MFR stimulated assimilation more than respiration during whole growing season, resulting in a higher carbon sequestration in terms of NEE of -79 gC/m2 than CK. However, after considering carbon in harvested grain (or aboveground biomass, there is a slight higher carbon sink (or a stronger carbon source in MFR due to its greater difference of aboveground biomass than that of grain between both treatments. These results demonstrate that partial plastic film mulched furrow-ridge tillage with aboveground biomass exclusive of grain returned to the soil is an effective way to enhance simultaneously carbon sequestration and grain yield of maize in the semiarid regions.

  8. Nitrapyrin addition mitigates nitrous oxide emissions and raises nitrogen use efficiency in plastic-film-mulched drip-fertigated cotton field.

    Science.gov (United States)

    Liu, Tao; Liang, Yongchao; Chu, Guixin

    2017-01-01

    Nitrification inhibitors (NIs) have been used extensively to reduce nitrogen losses and increase crop nitrogen nutrition. However, information is still scant regarding the influence of NIs on nitrogen transformation, nitrous oxide (N2O) emission and nitrogen utilization in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. Therefore, a field trial was conducted to evaluate the effect of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine) on soil mineral nitrogen (N) transformation, N2O emission and nitrogen use efficiency (NUE) in a drip-fertigated cotton-growing calcareous field. Three treatments were established: control (no N fertilizer), urea (225 kg N ha-1) and urea+nitrapyrin (225 kg N ha-1+2.25 kg nitrapyrin ha-1). Compared with urea alone, urea plus nitrapyrin decreased the average N2O emission fluxes by 6.6-21.8% in June, July and August significantly in a drip-fertigation cycle. Urea application increased the seasonal cumulative N2O emission by 2.4 kg N ha-1 compared with control, and nitrapyrin addition significantly mitigated the seasonal N2O emission by 14.3% compared with urea only. During the main growing season, the average soil ammonium nitrogen (NH4+-N) concentration was 28.0% greater and soil nitrate nitrogen (NO3--N) concentration was 13.8% less in the urea+nitrapyrin treatment than in the urea treatment. Soil NO3--N and water-filled pore space (WFPS) were more closely correlated than soil NH4+-N with soil N2O fluxes under drip-fertigated condition (Puse efficiency by 10.7%. The results demonstrated that nitrapyrin addition significantly inhibited soil nitrification and maintained more NH4+-N in soil, mitigated N2O losses and improved nitrogen use efficiency in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition.

  9. Plastic debris in the coastal environment: The invincible threat? Abundance of buried plastic debris on Malaysian beaches.

    Science.gov (United States)

    Fauziah, S H; Liyana, I A; Agamuthu, P

    2015-09-01

    Studies on marine debris have gained worldwide attention since many types of debris have found their way into the food chain of higher organisms. Thus, it is crucial that more focus is given to this area in order to curb contaminations in sea food. This study was conducted to quantify plastic debris buried in sand at selected beaches in Malaysia. Marine debris was identified according to size range and distribution, and this information was related to preventive actions to improve marine waste issues. For the purpose of this study, comparison of plastic waste abundance between a recreational beach and fish-landing beaches was also carried out, since the different beach types represent different activities that produce debris. Six beaches along the Malaysian coastline were selected for this study. The plastic types in this study were related to the functions of the beach. While recreational beaches have abundant quantities of plastic film, foamed plastic including polystyrene, and plastic fragment, fish-landing beaches accumulated line and foamed plastic. A total of 2542 pieces (265.30 g m(-2)) of small plastic debris were collected from all six beaches, with the highest number from Kuala Terengganu, at 879 items m(-2) on Seberang Takir Beach, followed by Batu Burok Beach with 780 items m(-2). Findings from studies of Malaysian beaches have provided a clearer understanding of the distribution of plastic debris. This demonstrates that commitments and actions, such as practices of the 'reduce, reuse, recycle' (3R) approach, supporting public awareness programmes and beach clean-up activities, are essential in order to reduce and prevent plastic debris pollution. © The Author(s) 2015.

  10. Soaking RNAi in Bombyx mori BmN4-SID1 Cells Arrests Cell Cycle Progression

    Science.gov (United States)

    Mon, Hiroaki; Li, Zhiqing; Kobayashi, Isao; Tomita, Shuichiro; Lee, JaeMan; Sezutsu, Hideki; Tamura, Toshiki; Kusakabe, Takahiro

    2013-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Previously, the BmN4-SID1 cell expressing Caenorhabditis ele gans SID-1 was established, in which soaking RNAi could induce effective gene silencing. To establish its utility, 6 cell cycle progression related cDNAs, CDK1, MYC, MYB, RNRS, CDT1, and GEMININ, were isolated from the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), and their expressions were further silenced by soaking RNAi in the BmN4-SID1 cells. The cell cycle progression analysis using flow cytometer demonstrated that the small amount of double stranded RNA was enough to arrest cell cycle progression at the specific cell phases. These data suggest that RNAi in the BmN4-SID1 cells can be used as a powerful tool for loss-of-function analysis of B. mori genes. PMID:24773378

  11. Effects of storage and soaking on wheat seeds exposed to gamma rays

    International Nuclear Information System (INIS)

    Ajayi, N.O.

    1975-07-01

    Wheat seeds, variety Starke II, of water content 11,5 per cent of dry weight, irradiated with 60 Co gamma rays over a wide range of absorbed doses were sowed in wet sand. When analysed after eight days, seedling growth was found to have decreased with increasing dose, very rapidly within the first 40 krad and more slowly thereafter until that dose, 500 krad, which made the shoot and the root fail to develop. Storage over three weeks was found to produce greater reduction in the seelding growth at doses below 40 krad, and lowering of the dose at which the seedling failed to develop from about 500 krad to 300 krad. Soaking the irradiated seeds immediately after irradiation for one hour before planting was found to improve the seedling growth in the low dose region compared to when seeds were immediately sowed. It is suggested that the water absorbed during soaking permits the free radicals to recombine and DNA-damage to be repaired. It is thought that radiation seriously affects cellular multiplication and the production of growth promoting homones of the embryo. On the other hand elongation of surviving, presumably non-mitotic cells, is apparently taking place even at high doses, in fact up to 500 krad. (author)

  12. Internal friction study of microplasticity of aluminum thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Y.; Tanahashi, K.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-12-01

    Internal friction in aluminum thin films 0.2 to 2.0 {mu}m thick on silicon substrates has been investigated between 180 and 360 K as a function of strain amplitude by means of a free-decay method of flexural vibration. According to the constitutive equation, the internal friction in the film alone can be evaluated separately from the data on the film/substrate composite. The amplitude-dependent part of internal friction in aluminum films is found in the strain range approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction can be converted into the plastic strain as a function of the effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 in creases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of the microplastic deformation. At all temperatures examined, the microflow stress at a constant level of the plastic strain varies inversely with the film thickness, which qualitatively agrees with the variation in macroscopic yield stress. 36 refs., 7 figs.

  13. Transport of organic solutes through amorphous teflon AF films.

    Science.gov (United States)

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  14. Characterisation of a chimeric Phanerochaete chrysosporium ...

    African Journals Online (AJOL)

    Fred

    soaked tissue paper, the lid of the plastic box was closed and the reaction were incubated at 37oC for 3–4 days. The plastic box with soaked tissue paper provided a humid environment that prevented the media from drying-out. After incubation, the plates were ... cbhI.1 when it was cloned into a pET vector to generate.

  15. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste

    International Nuclear Information System (INIS)

    Adrados, A.; Marco, I. de; Caballero, B.M.; López, A.; Laresgoiti, M.F.; Torres, A.

    2012-01-01

    Highlights: ► Pyrolysis of plastic waste. ► Comparison of different samples: real waste, simulated and real waste + catalyst. ► Study of the effects of inorganic components in the pyrolysis products. - Abstract: Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  16. Plastic ingestion by a generalist seabird on the coast of Uruguay.

    Science.gov (United States)

    Lenzi, Javier; Burgues, María Fernanda; Carrizo, Daniel; Machín, Emanuel; Teixeira-de Mello, Franco

    2016-06-15

    We analyzed plastic ingestion by Kelp Gull (Larus dominicanus) from 806 pellets collected between 2011 and 2013. Employing a Raman spectroscopy, we characterized those polymers used to produce the plastics ingested. Debris was recorded in 143 pellets (%FO=17.7%, n=202, 92.58g). Plastic was found in 119 pellets (%FO=83%) and non-plastic occurred in 56 pellets (%FO=39%). The most important debris category was plastic film with 55.3% (n=79). Plastic bags were observed in 19 pellets (%FO=2.4%, weight=25.02g). Glass was the second most important component (%FO=18.9%) followed by plastic fragments (%FO=17.8%). Plastic debris represented the 65.3% of the debris fragments (n=132, weight=58.84g), and was composed by polyethylene (52%), polypropylene (26%), polyamide (12%), polystyrene (6%), polyvinyl chloride (2%), and polyethylene terephthalate (2%). How plastics were obtained by gulls and the effects on individuals are discussed, as well as environmental considerations about plastic pollution on coastal environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Microclimatic changes caused by different plastic coverings in greenhouses cultivated with cherry tomato in southern Brazil

    Directory of Open Access Journals (Sweden)

    Ester Holcman

    2015-06-01

    Full Text Available In regions with intense solar radiation it is common the use of aluminated covers in greenhouses, with the aim of reducing the inside temperature. However, the use of these covers reduces photosynthetic active radiation (PAR transmitted into the greenhouse. The objective of the present study was to evaluate the influence of different covers on microclimate in greenhouses cultivated with cherry tomato during three growing seasons. The environment I was covered with plastic film anti-UV and with thermo-reflective screen (40% disposed internally. The environment II was covered with diffusive plastic film (55%. The transmitted solar radiation to the interior of covered environments was, on average, 5.5 MJ m-2 day-1 in the environment I and 8.2 MJ m-2 day-1 in environment II. The air temperature in environment II was, on average, 1°C higher than external conditions. The highest difference for the relative humidity (RH was also observed between environment II and the outside conditions, with 10.7% for the minimum RH during the first growing period. Considering all growing periods, the diffusive plastic film provided higher solar energy availability inside the greenhouse than the plastic film with thermo-reflective screen, without causing major changes in air temperature and relative humidity, and promoting greater productivity of tomato grown under this environment for the three periods evaluated.

  18. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. The effects of duration of pre-soaking treatments on the frequency and spectrum of mutations induced by sodium azide in CES 14 Mungbean variety

    International Nuclear Information System (INIS)

    Asencion, A.B.

    1982-04-01

    Seeds of mungbean variety CES 14 were treated with 10 - 3 sodium azide for 2 hours buffered at pH 3 after various pre-soaking treatment durations of 0, 4, 6, 8, 10, 12, 14 and 16 hours. The biological parameters that were significantly affected by the treatments in the M 1 were germination, seedling height and survival. The chlorophyll and other morphological mutations in the M 2 gradually increased with increasing pre-soaking time. The treatment that had the lowest mutation rate was the 16-hour pre-soaked seeds. No chlorophyll mutation was noted in both the water and buffer control. One variant was noted, however, in the buffer control. (author)

  20. The strength limits of ultra-thin copper films

    Energy Technology Data Exchange (ETDEWEB)

    Wiederhirn, Guillaume

    2007-07-02

    Elucidating size effects in ultra-thin films is essential to ensure the performance and reliability of MEMS and electronic devices. In this dissertation, the influence of a capping layer on the mechanical behavior of copper (Cu) films was analyzed. Passivation is expected to shut down surface diffusion and thus to alter the contributions of dislocation- and diffusion-based plasticity in thin films. Experiments were carried out on 25 nm to 2 {mu}m thick Cu films magnetron-sputtered onto amorphous-silicon nitride coated silicon (111) substrates. These films were capped with 10 nm of aluminum oxide or silicon nitride passivation without breaking vacuum either directly after Cu deposition or after a 500 C anneal. The evolution of thermal stresses in these films was investigated mainly by the substrate curvature method between -160 C and 500 C. Negligible differences were detected for the silicon nitride vs. the aluminum oxide passivated Cu films. The processing parameters associated with the passivation deposition also had no noticeable effect on the stress-temperature behavior of the Cu. However, the thermomechanical behavior of passivated Cu films strongly depended on the Cu film thickness. For films in the micrometer range, the influence of the passivation layer was not significant, which suggests that the Cu deformed mainly by dislocation plasticity. However, diffusional creep plays an increasing role with decreasing film thickness since it becomes increasingly difficult to nucleate dislocations in smaller grains. Size effects were investigated by plotting the stress at room temperature after thermal cycling as a function of the inverse film thickness. Between 2 {mu}m and 200 nm, the room temperature stress was inversely proportional to the film thickness. The passivation exerted a strong effect on Cu films thinner than 100 nm by effectively shutting down surface diffusion mechanisms. Since dislocation processes were also shut off in these ultra-thin films, they

  1. Patterning of metallic electrodes on flexible substrates for organic thin-film transistors using a laser thermal printing method

    International Nuclear Information System (INIS)

    Chen, Kun-Tso; Lin, Yu-Hsuan; Ho, Jeng-Rong; Chen, Chih-Kant; Liu, Sung-Ho; Liao, Jin-Long; Cheng, Hua-Chi

    2011-01-01

    We report on a laser thermal printing method for transferring patterned metallic thin films on flexible plastic substrates using a pulsed CO 2 laser. Aluminium and silver line patterns, with micrometre scale resolution on poly(ethylene terephthalate) substrates, are shown. The printed electrodes demonstrate good conductivity and fulfil the properties for bottom-contact organic thin-film transistors. In addition to providing the energy for transferring the film, the absorption of laser light results in a rise in the temperature of the film and the substrate. This also further anneals the film and softens the plastic substrate. Consequently, it is possible to obtain a film with better surface morphology and with its film thickness implanted in part into the plastic surface. This implantation reveals excellent characteristics in adhesion and flexure resistance. Being feasible to various substrates and executable at ambient temperatures renders this approach a potential alternative for patterning metallic electrodes.

  2. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  3. Precipitation alters plastic film mulching impacts on soil respiration in an arid area of northwest China

    Science.gov (United States)

    Ming, Guanghui; Hu, Hongchang; Tian, Fuqiang; Peng, Zhenyang; Yang, Pengju; Luo, Yiqi

    2018-05-01

    Plastic film mulching (PFM) has widely been used around the world to save water and improve crop yield. However, the effect of PFM on soil respiration (Rs) remains unclear and could be further confounded by irrigation and precipitation. To address these topics, controlled experiments were conducted in mulched and non-mulched fields under drip irrigation from 2014 to 2016 in an arid area of the Xinjiang Uygur Autonomous Region, northwest China. The spatio-temporal pattern of soil surface CO2 flux as an index of soil respiration under drip irrigation with PFM was investigated, and the confounded effects of PFM and irrigation/precipitation on soil respiration were explored. The main findings were as follows. (1) Furrows, planting holes, and plastic mulch are three important pathways of soil CO2 emissions in mulched fields, of which the planting hole efflux outweighs that from the furrow, with the largest values of 8.0 and 6.6 µmol m-2 s-1, respectively, and the plastic mulch itself can emit up to 3.6 µmol m-2 s-1 of CO2. (2) The frequent application of water (i.e. through irrigation and precipitation) elevates soil moisture and soil respiration and enhances their variation. The resultant higher variation of soil moisture further alleviates the sensitivity of soil respiration to soil temperature, leading to a weak correlation and lower Q10 values. (3) Soil CO2 effluxes from furrows and ridges in mulched fields outweigh the corresponding values in non-mulched fields in arid areas. However, this outweighing relation attenuates with increasing precipitation. Furthermore, by combining our results with those from the literature, we show that the difference in soil CO2 effluxes between non-mulched and mulched fields presents a linear relation with the amount of precipitation, which results in negative values in arid areas and positive values in humid areas. Therefore, whether PFM increases soil respiration or not depends on the amount of precipitation during the crop

  4. Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Jin Seop Bak

    2014-12-01

    Full Text Available In order to overcome the limitation of commercial electron beam irradiation (EBI, lignocellulosic rice straw (RS was pretreated using water soaking-based electron beam irradiation (WEBI. This environment-friendly pretreatment, without the formation (or release of inhibitory compounds (especially hydroxymethylfurfural and furfural, significantly increased the enzymatic hydrolysis and fermentation yields of RS. Specifically, when water-soaked RS (solid:liquid ratio of 100% was treated with WEBI doses of 1 MeV at 80 kGy, 0.12 mA, the glucose yield after 120 h of hydrolysis was 70.4% of the theoretical maximum. This value was predominantly higher than the 29.5% and 52.1% measured from untreated and EBI-treated RS, respectively. Furthermore, after simultaneous saccharification and fermentation for 48 h, the ethanol concentration, production yield, and productivity were 9.3 g/L, 57.0% of the theoretical maximum, and 0.19 g/L h, respectively. Finally, scanning electron microscopy images revealed that WEBI induced significant ultrastructural changes to the surface of lignocellulosic fibers.

  5. The role of proteins on the thermal oxidative aging of radiation vulcanized natural rubber latex

    International Nuclear Information System (INIS)

    Abad, L.V.; Rosa, A. de la; Keizo Makuuchi; Fumio Yoshii

    1996-01-01

    The effect of Hevea latex proteins on the aging properties of radiation vulcanized natural rubber latex (RVNRL) was investigated. Unpurified RVNRL films exhibited better aging properties than the purified RVNRL films. A sharp decrease in tensile strength was observed after aging when RVNRL films were leached in 1% NH sub 4 OH. However, when these films were soaked in ethanol prior to leaching, the aging properties approximated those of the unleached samples. Kjeldahl and FT-IR analyses of the leached and unleached RVNRL films indicated a higher protein content for both the unleached and ethanol-soaked films than for leached films. Electrophoretic analysis of the proteins present in the NH, extracts of leached RVNRL films showed a high concentration of hevein. This protein was not found in the ATH, extracts of ethanol soaked films. Hevein was shown to improve the aging properties of RVNRL

  6. Wet etching rates of InGaZnO for the fabrication of transparent thin-film transistors on plastic substrates

    International Nuclear Information System (INIS)

    Lee, Chi-Yuan; Chang, Chienliu; Shih, Wen-Pin; Dai, Ching-Liang

    2010-01-01

    The wet etch process for amorphous indium gallium zinc oxide (a-IGZO or a-InGaZnO) by using various etchants is reported. The etch rates of a-IGZO, compared to another indium-based oxides including indium gallium oxide (IGO), indium zinc oxide (IZO), and indium tin oxide (ITO), are measured by using acetic acid, citric acid, hydrochloric acid, perchloric acid, and aqua ammonia as etchants, respectively. In our experimental results, the etch rate of the transparent oxide semiconductor (TOS) films by using acid solutions ranked accordingly from high to low are IZO, IGZO, IGO and ITO. Comparatively, the etch rate of the TOS films by using alkaline ammonia solution ranked from high to low are IGZO, IZO, IGO and ITO, in that order. Using the proposed wet etching process with high etch selectivity, bottom-gate-type thin-film transistors (TFTs) based on a-IGZO channels and Y 2 O 3 gate-insulators were fabricated by radio-frequency sputtering on plastic substrates. The wet etch processed TFT with 30 μm gate length and 120 μm gate width exhibits a saturation mobility of 46.25 cm 2 V -1 s -1 , a threshold voltage of 1.3 V, a drain current on-off ratio > 10 6 , and subthreshold gate voltage swing of 0.29 V decade -1 . The performance of the TFTs ensures the applicability of the wet etching process for IGZO to electronic devices on organic polymer substrates.

  7. Coatings and Biodegradable and Bioabsorbable Films

    National Research Council Canada - National Science Library

    Thames, Shelby F; Rawlins, James W

    2006-01-01

    .... Specifically focusing on the plasticizing effects of vegetable oil macromonomers as incorporated into emulsion polymers for efficient almost zero VOC film formation and the additional benefit of auto...

  8. Coatings and Biodegradable and Bioasorbable Films

    National Research Council Canada - National Science Library

    Thames, Shelby F; Rawlins, James W

    2006-01-01

    .... Specifically focusing on the plasticizing effects of vegetable oil macromonomers as incorporated into emulsion polymers for efficient almost zero VOC film formation and the additional benefit of auto...

  9. Exploring the Q-marker of "sweat soaking method" processed radix Wikstroemia indica: Based on the "effect-toxicity-chemicals" study.

    Science.gov (United States)

    Feng, Guo; Chen, Yun-Long; Li, Wei; Li, Lai-Lai; Wu, Zeng-Guang; Wu, Zi-Jun; Hai, Yue; Zhang, Si-Chao; Zheng, Chuan-Qi; Liu, Chang-Xiao; He, Xin

    2018-06-01

    Radix Wikstroemia indica (RWI), named "Liao Ge Wang" in Chinese, is a kind of toxic Chinese herbal medicine (CHM) commonly used in Miao nationality of South China. "Sweat soaking method" processed RWI could effectively decrease its toxicity and preserve therapeutic effect. However, the underlying mechanism of processing is still not clear, and the Q-markers database for processed RWI has not been established. Our study is to investigate and establish the quality evaluation system and potential Q-markers based on "effect-toxicity-chemicals" relationship of RWI for quality/safety assessment of "sweat soaking method" processing. The variation of RWI in efficacy and toxicity before and after processing was investigated by pharmacological and toxicological studies. Cytotoxicity test was used to screen the cytotoxicity of components in RWI. The material basis in ethanol extract of raw and processed RWI was studied by UPLC-Q-TOF/MS. And the potential Q-markers were analyzed and predicted according to "effect-toxicity-chemical" relationship. RWI was processed by "sweat soaking method", which could preserve efficacy and reduce toxicity. Raw RWI and processed RWI did not show significant difference on the antinociceptive and anti-inflammatory effect, however, the injury of liver and kidney by processed RWI was much weaker than that by raw RWI. The 20 compounds were identified from the ethanol extract of raw product and processed product of RWI using UPLC-Q-TOF/MS, including daphnoretin, emodin, triumbelletin, dibutyl phthalate, Methyl Paraben, YH-10 + OH and matairesinol, arctigenin, kaempferol and physcion. Furthermore, 3 diterpenoids (YH-10, YH-12 and YH-15) were proved to possess the high toxicity and decreased by 48%, 44% and 65%, respectively, which could be regarded as the potential Q-markers for quality/safety assessment of "sweat soaking method" processed RWI. A Q-marker database of processed RWI by "sweat soaking method" was established according to the results

  10. Solid-phase photocatalytic degradation of polyethylene-goethite composite film under UV-light irradiation

    International Nuclear Information System (INIS)

    Liu, G.L.; Zhu, D.W.; Liao, S.J.; Ren, L.Y.; Cui, J.Z.; Zhou, W.B.

    2009-01-01

    A novel photodegradable polyethylene-goethite (PE-goethite) composite film was prepared by embedding the goethite into the commercial polyethylene. The degradation of PE-goethite composite films was investigated under ultraviolet light irradiation. The photodegradation activity of the PE plastic was determined by monitoring its weight loss, scanning electron microscopic (SEM) analysis and FT-IR spectroscopy. The weight of PE-goethite (1 wt%) sample steadily decreased and led to the total 16% reduction in 300 h under UV-light intensity for 1 mW/cm 2 . Through SEM observation there were some cavities around the goethite powder in the composite films, but there were few changes except some surface chalking phenomenon in pure PE film. The degradation rate could be controlled by changing the concentration of goethite particles in PE plastic. The degradation of composite plastic initiated on PE-goethite interface and then extended into polymer matrix induced by the diffusion of the reactive oxygen species generated on goethite particle surface. The photocatalytic degradation mechanism of the composite films was briefly discussed.

  11. Effect of irradiation and soaking in BHT and sodium pyrophosphate on meat proteins and lipids during cold storage

    International Nuclear Information System (INIS)

    Hassan, I.M.; Emam, O.A.

    1988-01-01

    The effect of irradiation treatments up to 10 KGy, soaking in a solution containing 0.5% Na-pyrophosphate and 250 ppm butylated hydroxy toluene (BHT) and a combination of both treatments on the nitrogen content and solubility, protein fractions and lipids stability in beef steaks during cold storage at 4 ± 1°C was followed until the samples were rejected by sensory evaluation. The least effective radiation doses for soluble protein nitrogen (SPN), total soluble nitrogen (TSN) and total nitrogen (TN) were 2, 5 and 10 KGy, respectively. Such effects were proportionally related to the applied dose. The loss in nitrogen compounds and/or their solubility which occurred upon irradiation appeared to be retarded by soaking treatment. Irradiation treatments induced additional protein fraction which seems to be originated from the sarcoplasmic proteins. After the resolution of rigor mortis, the incremental rate of nitrogen extractability was inversely related to the irradiation dose. Another protein fraction was detected only in the 10 KGy irradiated samples after 14 days of cold storage which might be originating from fibrillar proteins as a result of its interaction with some lipid oxidation products. However, soaking treatment itself caused extensive changes in protein fractions, in contrast, protection from radiation and radiation after-effects were observed

  12. Substrate effects on the characteristics of (In2O3)1-x (ZnO)x films

    International Nuclear Information System (INIS)

    Park, J. M.; Kim, J. J.; Kim, H. M.; Kim, J. H.; Ryu, S. W.; Park, S. H.; Ahn, J. S.

    2006-01-01

    The electrical and the optical properties of (In 2 O 3 ) 1-x (ZnO) x (IZO) films deposited by the rf magnetron sputtering on plastic substrates, such as polyethylene terephthalate (PET) and poly carbonate (PC), were investigated. The results are compared with those of IZO films deposited on a conventional coring glass (CG) substrate. The average transmittance of the IZO films deposited on plastic substrates is over 80 %, irrespective of the substrate, which is comparable to that of IZO films deposited on CG substrates. IZO films deposited on PC or PET substrates show larger resistivities than those deposited on CG substrates. This may be attributed to the fact that compositions, such as H 2 O or the organic solvent contained in the plastic substrates, are adsorbed into the IZO layer during sputtering. The surface resistance of the IZO films is nearly independent of the substrate and decreases with increasing deposition time. Compared to the IZO films deposited on PET substrates without hard coatings, those deposited on PET substrates with hard coatings show superior electrical stability for thermal environments.

  13. Studies on performance evaluation of a green plasticizer made by enzymatic esterification of furfuryl alcohol and castor oil fatty acid.

    Science.gov (United States)

    Mukherjee, Sohini; Ghosh, Mahua

    2017-02-10

    The esterification of furfuryl alcohol (FA) and castor oil fatty acid (COFA) at 3:1 molar ratio, by immobilized Candida antarctica Lipase B (NS 435 from Novozyme) in a solvent free system gave a maximum yield of 88.64% (%w/w) at 5h. Performance of the FA-COFA ester plasticized Ethyl Cellulose (EC) films were evaluated by surface morphologies, XRD analysis, mechanical properties,thermal properties, water vapor permeability and migration stability test. It was an effective plasticizer with better mechanical properties and thermal stability at the increasing concentration of FA-COFA ester (15-25%) containing EC film, than the traditional plasticizer, i.e; dibutyl phthalate (DBP) in producing good quality films. Chemical structure and the intermolecular interactions between FA-COFA ester and ethyl cellulose chains were the causative agents of these outstanding performances. Therefore, this FA-COFA ester, with significant plasticizing property, at a certain concentration, can be a substitute of DBP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Atomic force microscopy indentation of fluorocarbon thin films fabricated by plasma enhanced chemical deposition at low radio frequency power

    International Nuclear Information System (INIS)

    Sirghi, L.; Ruiz, A.; Colpo, P.; Rossi, F.

    2009-01-01

    Atomic force microscopy (AFM) indentation technique is used for characterization of mechanical properties of fluorocarbon (CF x ) thin films obtained from C 4 F 8 gas by plasma enhanced chemical vapour deposition at low r.f. power (5-30 W) and d.c. bias potential (10-80 V). This particular deposition method renders films with good hydrophobic property and high plastic compliance. Commercially available AFM probes with stiff cantilevers (10-20 N/m) and silicon sharpened tips (tip radius < 10 nm) are used for indentations and imaging of the resulted indentation imprints. Force depth curves and imprint characteristics are used for determination of film hardness, elasticity modulus and plasticity index. The measurements show that the decrease of the discharge power results in deposition of films with decreased hardness and stiffness and increased plasticity index. Nanolithography based on AFM indentation is demonstrated on thin films (thickness of 40 nm) with good plastic compliance.

  15. Global plastic surgeons images depicted in motion pictures.

    Science.gov (United States)

    Hwang, Se Jin; Park, Sowhey; Hwang, Kun

    2013-03-01

    Motion pictures are made to entertain and enlighten people, but they are viewed differently by different people. What one considers to be a tearjerker may induce giggles in another. We have gained added interest in this because our professional pictures contain plastic surgery in their venue. We have recently reviewed 21 motion pictures that were made from 1928 to 2006 and that includes plastic surgical procedures in their content. As a habit, we tried to analyze them from a surgical point of view. About one third (35.7%) of the patients were criminals, whereas 14.3% of them were spies. One third of the procedures were done by illegitimate "surgeons," whereas a quarter of the procedures (25%) were performed by renowned surgeons. Surgeons who were in love with the patients did the rest (25%) of the operations. The complication rate was 14.3%; the surgery was successful in 85.7% of cases, but were the patients happy with the results? This was not the case in the movies. Only 7.7% were happy; 14.5 % of them were eminently unhappy. Why the discrepancy? It is difficult to analyze the minds of the people in the film, but considering that the majority of the characters in the films were rather unsavory, one may deduce that a crooked mind functions differently. Motion pictures have advanced greatly in the past several decades with the advent of improved mechanical and electronic devices, and plastic surgery as also advanced in tandem. This surgical field has become a common procedure in our daily life. It is readily available and mostly painless. However, the public sees it in only one way, that is, that the performing physicians are highly compensated. Very few consider the efforts and the suffering that accompanies each and every surgical procedure as it is performed. Perhaps, it is too much to hope for a day that will come when we will see a film that portrays the mental anguish that accompanies each and every procedure the plastic surgeon makes.

  16. Resistance to moist conditions of whey protein isolate and pea starch biodegradable films and low density polyethylene nondegradable films: a comparative study

    Science.gov (United States)

    Mehyar, G. F.; Bawab, A. Al

    2015-10-01

    Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs ( 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.

  17. GREENHOUSE PLASTIC FILMS CAPABLE OF MODIFYING THE SPECTRAL DISTRIBUTION OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2010-03-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of innovative covering films for protected cultivation capable of modifying the spectral distribution of the transmitted radiation and thus the vegetative activity. Two photoselective films, three photoluminescent films and one low-density polyethylene film were used as greenhouse coverings for cherry trees and peach trees, grown in pots. The photoselective films were characterised by a reduction of the R/FR ratio in comparison to the natural solar radiation. Tree growth parameters, such as the apical shoot of cherry trees and the shoot of peach trees, were monitored. Different responses to vegetative activities were observed under the films, depending on the species, with a higher shoots growth rate in the peach with respect to the cherry. The photoselective film characterised by the lowest R/FR ratio significantly enhanced the growth of cherry and peach trees in comparison to the trees cultivated under the other greenhouse films

  18. Ftir study of gamma irradiation LDPE film in air

    International Nuclear Information System (INIS)

    Moura, Esperidiana A.B.; Silva, Andre L.A.; Gouvea, Paulo H.D.; Silva, Leonardo G. Andrade e; Gouvea, Douglas; Castro, Ricardo H.R.; Wiebeck, Helio; Kawano, Yoshio

    2003-01-01

    The use of the ionizing radiation for application in plastic packaging, to improve some of properties and for radiation sterilization, has been gaining popularity in the packaging industry. As a consequence of the irradiation, plastic packaging materials can undergo some chemical and physical alterations in their basic function, mainly concerning the protection characteristics. Since changes in physical properties of irradiated packaging films reflect radiation-induced chemical changes in molecular structure, in this work, an investigation was performed by Ftir analysis of LDPE film before and after radiation. Film samples were irradiated with doses between 0 Gy and 100 kGy, at room temperature and in the presence of air. The results showed alterations in the molecular structure, according to the absorbed radiation dose. (author)

  19. Stress evolution in elastic-plastic electrodes during electrochemical processes: A numerical method and its applications

    Science.gov (United States)

    Wen, Jici; Wei, Yujie; Cheng, Yang-Tse

    2018-07-01

    Monitoring in real time the stress state in high capacity electrodes during charge-discharge processes is pivotal to the performance assessment and structural optimization of advanced batteries. The wafer curvature measurement technique broadly employed in thin-film industry, together with stress analysis using the Stoney equation, has been successfully adopted to measure in situ the stress in thin film electrodes. How large plastic deformation or interfacial delamination during electrochemical cycles in such electrodes affects the applicability of Stoney equation remains unclear. Here we develop a robust electrochemical-mechanical coupled numerical procedure to investigate the influence of large plastic deformation and interfacial failure on the measured stress in thin film electrodes. We identify how the constitutive behavior of electrode materials and film-substrate interfacial properties affect the measured stress-capacity curves of electrodes, and hence establish the relationship of electrode material parameters with the characteristics of stress-capacity curves. Using Li-ions batteries as examples, we show that plastic deformation and interfacial delamination account for the asymmetric stress-capacity loops seen in in situ stress measurements. The methods used here, along with the finite-element code in the supplementary material, may be used to model the electrode behavior as a function of the state of charge.

  20. How Do Organic Vapors Swell Ultra-Thin PIM-1 Films?

    KAUST Repository

    Ogieglo, Wojciech

    2017-06-22

    Dynamic sorption of ethanol and toluene vapor into ultra-thin supported PIM-1 films down to 6 nm are studied with a combination of in-situ spectroscopic ellipsometry and in-situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to thicker films. Second, at low penetrant activities (below 0.3 p/p0) films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite similar swelling magnitude. Third, for the ultra-thin films the onset of the dynamic penetrant-induced glass transition Pg has been found to shift to higher values indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the super-glassy PIM-1 at the substrate surface leads to an arrested, even more rigid and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant\\'s diffusion the surface seems to plasticize earlier than the bulk and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.

  1. TEM study of the indentation behaviour of thin Au film on GaAs

    International Nuclear Information System (INIS)

    Patriarche, G.; Le Bourhis, E.; Faurie, D.; Renault, P.O.

    2004-01-01

    Au films of 8.9 nm thickness have been sputter deposited onto a (001) GaAs substrate at room temperature. An average grain size of 10 nm and no texture were obtained. Subsequent, nanoindentation tests were performed on the coated specimens and the mechanical response was compared to that of a bulk GaAs sample with the same crystallographic orientation. Furthermore, the loading-unloading curves were analysed in view of transmission electron microscopy plan-view images obtained on the deformed substrate-film specimens and compared to results previously reported in the literature for bulk sample. Constrained plasticity of the films was observed to occur for residual depth to thickness ratio below 0.67. Further, plastic deformation of the substrate happened on coated specimens at loads less than those required to plastically deform bare substrate

  2. PEMBUATAN DAN KAJIAN SIFAT-SIFAT FISIKOKIMIA, MEKANIKAL, DAN FUNGSIONAL EDIBLE FILM DARI KITOSAN UDANG WINDU

    Directory of Open Access Journals (Sweden)

    Irwan Sofia

    2016-12-01

    Full Text Available This research aims to develop bioplastic as primary packaging or edible film of chitosan biopolymer derived from tiger prawn shells (Penaeus monodon, and to perform physicochemical and mechanical characteristics. An evaluation of the physicochemical properties of plastic films made from chitosan, by modifying the order of the different treatment processes, namely: a DPMA (deproteination, demineralization, deacetylation, b DMKA (demineralization, decoloration, and deacetylation has conducted. The results of scanning FT-IR of the product shows that chitosan has identical spectrum compare of standard compound. Chitosan product from tiger prawn shells was the used as raw material for the manufacture of bioplastics. Experiments variable on the manufacture of edible film is a study of the effect of the use of different plasticizers (glycerol and sorbitol and carboxylmethylcelullose (CMC additives to the physicochemical, mechanical characteristics, and edible film functional. The results showed that all the edible film produced has a clear coat with a thickness between 0.05 to 0.3 mm. Meanwhile, the film density is highest at the DPMA + chitosan edible film sorbitol + CMC with a value of 1.7300 g/cm3. The use of plasticizer sorbitol provides great tensile strength but not too elastic, compared to the glycerol, while an increase in the average CMC can increase tensile strength and %Elongation. The use of different plasticizers and additives CMC does not significantly affect its functional properties, where the value of WVTR (water vapor transmission rate is relatively the same on both types of edible films, ranging from 3.2409 to 4.8858 g /hr.m2.

  3. Physical Evaluation of PVA/Chitosan Film Blends with Glycerine and Calcium Chloride

    Science.gov (United States)

    Nugraheni, A. D.; Purnawati, D.; Kusumaatmaja, A.

    2018-04-01

    PVA/chitosan film has been fabricated by using drop casting method. PVA/chitosan film is produced by dissolving 2% (w/v) PVA solution and 2% (w/v) chitosan solution. PVA/chitosan film is produced with weight ratio variation (w/w) 100/0, 75/25, 50/50 and 0/100. The film is fabricated using drop casting method in Petry dish with diameter 11 cm at room temperature and RH 50%–60% during seven days. The mechanical properties were characterized by using Universal Technical Machine (UTM) and UV-Vis to understand the physical properties of weight ratio (w/w) of PVA/Chitosan film by addition of plasticizer and calcium chloride. The film thickness tends to decrease with PVA content. The addition of chitosan will increase film thickness, and it will decrease swelling index, elongation (%), and transmittance of UV rays. The additions of plasticizer to PVA/Chitosan film will increase film thickness and elongation (%), and it will decrease swelling index, tensile strength and transmittance of UV rays. The crosslink of PVA/Chitosan film with calcium chloride will decrease film thickness, swelling index, elongation (%) and transmittance of UV rays, and increase tensile strength.

  4. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  5. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  6. Impact of plastic mulching on nitrous oxide emissions in China's arid agricultural region under climate change conditions

    Science.gov (United States)

    Yu, Yongxiang; Tao, Hui; Jia, Hongtao; Zhao, Chengyi

    2017-06-01

    The denitrification-decomposition (DNDC) model is a useful tool for integrating the effects of agricultural practices and climate change on soil nitrous oxide (N2O) emissions from agricultural ecosystems. In this study, the DNDC model was evaluated against observations and used to simulate the effect of plastic mulching on soil N2O emissions and crop growth. The DNDC model performed well in simulating temporal variations in N2O emissions and plant growth during the observation period, although it slightly underestimated the cumulative N2O emissions, and was able to simulate the effects of plastic mulching on N2O emissions and crop yield. Both the observations and simulations demonstrated that the application of plastic film increased cumulative N2O emissions and cotton lint yield compared with the non-mulched treatment. The sensitivity test showed that the N2O emissions and lint yield were sensitive to changes in climate and management practices, and the application of plastic film made the N2O emissions and lint yield less sensitive to changes in temperature and irrigation. Although the simulations showed that the beneficial impacts of plastic mulching on N2O emissions were not gained under high fertilizer and irrigation scenarios, our simulations suggest that the application of plastic film effectively reduced soil N2O emissions while promoting yields under suitable fertilizer rates and irrigation. Compared with the baseline scenario, future climate change significantly increased N2O emissions by 15-17% without significantly influencing the lint yields in the non-mulched treatment; in the mulched treatment, climate change significantly promoted the lint yield by 5-6% and significantly reduced N2O emissions by 14% in the RCP4.5 and RCP8.5 scenarios. Overall, our results demonstrate that the application of plastic film is an efficient way to address increased N2O emissions and simultaneously enhance crop yield in the future.

  7. The Size Spectrum as Tool for Analyzing Marine Plastic Pollution

    KAUST Repository

    Martí , E.; Duarte, Carlos M.; Có zar, A.

    2016-01-01

    to abundance, color (129 tons), polymer type, and category (rigid fragments, films, threads, foam, pellets, and microbeads). Using GPSS database, we show for instance the dependence of plastic composition on the item size, with high diversity of categories

  8. Migration of dioctyladipate plasticizer from food-grade PVC film into chicken meat products: effect of gamma-radiation

    International Nuclear Information System (INIS)

    Goulas, A.E.; Kontominas, M.G.

    1996-01-01

    Food-grade PVC film containing 28.3% dioctyladipate (DOA) plasticizer was used to wrap chicken meat samples, with and without skin, contained in a polystyrene tray. Samples were then irradiated with gamma-radiation [60Co] at doses equal to 4 kGy and 9 kGy corresponding to ''cold pasteurization''. Irraddiation was carried out at 8-10 degrees C and samples were subsequently stored at 4-5 degrees C. Contaminated chicken meat samples were analysed for DOA at intervals between 7 h and 240 h of contact, using an indirect GC method. Identical non-irradiated (control) samples were also analysed for their DOA content. Results showed no statistically significant differences in migrated amounts of DOA between irradiated and non-irradiated samples. Neither were differences observed between samples irradiated at 4 kGy and 9 kGy. This was supported by identical IR spectra recorded for irradiated and non-irradiated samples and leads to the conclusion that, at such intermediate radiation doses ( < or = kGy), the migration characteristics of PVC film are not affected. DOA migration was found to be time dependent, approaching equilibrium after approximately 170 h for the chicken flesh plus skin samples and 120 h for the chicken flesh samples. The amount of DOA migrated into chicken flesh plus skin samples was significantly greater (3.2-22.3 mg/dm2) than that for chicken flesh samples (0.9-8.9 mg/dm2). After 240 h of sample/film contact under refrigeration, loss of DOA was approximately 35.6% for chicken flesh plus skin samples and 14.3% for chicken flesh samples. Sample spoilage, as demonstrated by off-odour development, occurred after approximately 120 h of refrigerated storage. Diffusion coefficients for DOA were calculated and were found to be lower for chicken flesh (1 x 10(-13) than for flesh plus skin (4.4 x 10(-13)) samples

  9. Bending behaviour of polypyrrole films with anisotropy for artificial muscles

    International Nuclear Information System (INIS)

    Onoda, Mitsuyoshi; Shonaka, Hirokazu; Tada, Kazuya

    2006-01-01

    A polypyrrole (PPy) film electrochemically grown in a thin slab vessel consisting of poly(tetrafluoroethylene) walls exhibits a notable anisotropy along the thickness direction. This anisotropy allows the film to bend in a regular direction upon electrochemical undoping and revert upon doping. In this study, the size effect, i.e. the length dependence of reduction current, of the actuator has been studied. The length was changed by trimming the tip of the actuator, 12 mm of which was initially soaked in an electrolyte. It has been clarified that current saturates when the actuator exceeds a certain length. This may reflect the reduction in the conductivity of PPy upon undoping, which makes the tip of the actuator almost insulated from the power source. It is also found that the width of the actuator and the electrolyte do not influence the size effect

  10. Near infrared reflectance spectroscopy for the fast identification of PVC-based films.

    Science.gov (United States)

    Laasonen, M; Rantanen, J; Harmia-Pulkkinen, T; Michiels, E; Hiltunen, R; Räsänen, M; Vuorela, H

    2001-07-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a non-destructive and rapid qualitative method for the analysis of plastic films used by the pharmaceutical industry for blistering. Three types of films were investigated: 250 microm PVC [poly(vinyl chloride)] films, 250 microm PVC films coated with 40 g m(-2) of PVDC [poly(vinylidene dichloride)] and 250 microm PVC films coated with 5 g m(-2) of TE (Thermoelast) and 90 g m(-2) of PVDC. Three analyses were carried out using different pre-treatment options and a PLS (partial least squares) algorithm. Each analysis was aimed at identifying one type of film and rejecting all types of false sample (different thickness, colour or layer). True and false samples from four plastics manufacturers were included in the calibration sets in order to obtain robust methods that were suitable regardless of the supplier. Specificity was demonstrated by testing validation sets against the methods. The tests showed 0% of type I (false negative identification) and 1% of type II errors (false positive identification) for the PVC method, 13 and 3%, respectively, for the PVC-PVDC method and no error for the PVC-TE-PVDC method. Type II errors, mostly due to the slight sensitivity of the methods to film thickness, are easily corrected by simple thickness measurements. This study demonstrates that NIR spectroscopy is an excellent tool for the identification of PVC-based films. The three methods can be used by the pharmaceutical industry or plastics manufacturers for the quality control of films used in blister packaging.

  11. Filmes de amidos de mandioca modificados para recobrimento e conservação de uvas

    Directory of Open Access Journals (Sweden)

    Suellen Laís Vicentino

    2011-01-01

    Full Text Available In this article, films were produced with six types of cassava's starch mixed with gelatin and plasticized with sorbitol. These films were used in covering of grapes 'Benitaka' (Vitis vinifera L. as biodegradable packaging. The acetylated starch film showed the best results in solubility, thickness and homogeneity, besides the less water loss the fruit, resulting in better coverage, increasing the shelf life fruits in 12 days. These results demonstrate the great potential of using films in food conservation, adding value to agricultural activity and helping to reduce non-biodegradable plastics in the environment.

  12. Film Sensor Device Fabricated by a Piezoelectric Poly(L-lactic acid) Film

    Science.gov (United States)

    Ando, Masamichi; Kawamura, Hideki; Kageyama, Keisuke; Tajitsu, Yoshiro

    2012-09-01

    Synthetic piezoelectric polymer films produced from petroleum feedstock have long been used as thin-film sensors and actuators. However, the fossil fuel requirements for synthetic polymer production and carbon dioxide emission from its combustion have raised concern about the environmental impact of its continued use. Eco-friendly biomass polymers, such as poly(L-lactic acid) (PLLA), are made from plant-based (vegetable starch) plastics and, thus, have a much smaller carbon footprint. Additionally, PLLA does not exhibit pyroelectricity or unnecessary poling. This suggests the usefulness of PLLA films for the human-machine interface (HMI). As an example of a new HMI, we have produced a TV remote control using a PLLA film. The intuitive operation provided by this PLLA device suggests that it is useful for the elderly or handicapped.

  13. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chao-Kuang; Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw

    2015-06-01

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoS{sub x}) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoS{sub x} thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoS{sub x} thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoS{sub x} samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoS{sub x} thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoS{sub x} thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoS{sub x} thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSC with the MoS{sub x} flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm{sup −2}). Thus, we report that the MoS{sub x} thin films are active catalysts for triiodide reduction. The MoS{sub x} thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoS{sub x

  14. Stress relaxation and hillock growth in thin films

    International Nuclear Information System (INIS)

    Jackson, M.S.; Li, C.Y.

    1978-01-01

    The relaxation of thermal stress in a thin film adhering to a substrate of differing expansion coefficient is discussed. Good agreement is found between literature data on relaxation during isothermal anneals of Pb films at up to 350 0 K and model calculations based on a state variable description of plastic flow. The stress system during relaxation is explored, and the absence of diffusional creep is explained. The plasticity-dominated relaxation process suggested by this analysis is shown to be in good qualitative agreement with data on rapid relaxation over the course of a cycle between room and cryogenic temperatures. The implications of this for long-range material transport in the film are discussed. It is shown that hillock volume should increase over the course of a temperature cycle. Finally, a mechanism for hillock nucleation based on grain boundary sliding is suggested

  15. 16 CFR 1611.35 - Testing certain classes of fabric and film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Testing certain classes of fabric and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.35 Testing certain classes of fabric and film. (a) Fabric not customarily washed or dry cleaned. (1) Except as...

  16. 16 CFR 1611.33 - Test procedures for textile fabrics and film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...

  17. Karakteristik Edible Film dari Pektin Hasil Ekstraksi Kulit Pisang

    Directory of Open Access Journals (Sweden)

    Muhammad Sudirman Akili

    2012-04-01

    Full Text Available Banana peel is a waste of banana processing industries which is obviously uneconomy and unfriendly to the environment. However, this material could be used as a source of important natural compounds, such as pectin. Owing to the fact that pectin has good gelling properties, it can be used to make edible film. The objectives of this research were to extract and characterize pectin from banana peel and to make edible film from the obtained pectin by using glycerol as plasticizer. Characterization of edible films were conducted in terms of color, thickness, elongation, tensile strength and water vapor transmission. The research used factorial completely randomized design. The results showed that yield of pectin made from ambon banana peel ripeness level one was 8.42% with the characteristics werewater content : 11.27% (<12%, ash content : 1.70%, low methoxil content : 4.15% (<7% and galacturonat content : 25.86% (65%. The addition of glycerol significantly increased elongation and decreased tensile strength of edible film. Based on edible film result, the recomended treatment is the addition with glycerol 20% as plasticizer of pectin based edible film.

  18. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil.

    Science.gov (United States)

    Knobelspies, Stefan; Bierer, Benedikt; Daus, Alwin; Takabayashi, Alain; Salvatore, Giovanni Antonio; Cantarella, Giuseppe; Ortiz Perez, Alvaro; Wöllenstein, Jürgen; Palzer, Stefan; Tröster, Gerhard

    2018-01-26

    We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  20. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil

    Directory of Open Access Journals (Sweden)

    Stefan Knobelspies

    2018-01-01

    Full Text Available We present a gas sensitive thin-film transistor (TFT based on an amorphous Indium–Gallium–Zinc–Oxide (a-IGZO semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO2 gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  1. Optimization of soaking stage in technological process of wheat germination by hydroponic method when objective function is defined implicitly

    Science.gov (United States)

    Koneva, M. S.; Rudenko, O. V.; Usatikov, S. V.; Bugayets, N. A.; Tamova, M. Yu; Fedorova, M. A.

    2018-05-01

    The increase in the efficiency of the "numerical" technology for solving computational problems of parametric optimization of the technological process of hydroponic germination of wheat grains is considered. In this situation, the quality criteria are contradictory and a part of them is given by implicit functions of many variables. One of the main stages, soaking, determining the time and quality of germinated wheat grain is studied, when grain receives the required amount of moisture and air oxygen for germination and subsequently accumulates enzymes. A solution algorithm for this problem is suggested implemented by means of software packages Statistica v.10 and MathCAD v.15. The use of the proposed mathematical models describing the processes of hydroponic soaking of spring soft wheat varieties made it possible to determine optimal conditions of germination. The results of investigations show that the type of aquatic environment used for soaking has a great influence on the process of water absorption, especially the chemical composition of the germinated material. The use of the anolyte of electrochemically activated water (ECHA-water) intensifies the process from 5.83 to 4 hours for wheat variety «Altayskaya 105» and from 13 to 8.8 hours - for «Pobla Runo».

  2. Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability.

    Science.gov (United States)

    Rompothi, Onjira; Pradipasena, Pasawadee; Tananuwong, Kanitha; Somwangthanaroj, Anongnat; Janjarasskul, Theeranun

    2017-02-10

    This research determined the effects of starch concentration (3.5-5.0%w/w), and plasticizer [glycerol (0-30%w/w) or sorbitol (0-60%w/w)] on properties of mung bean starch (MBS) films. The result showed that increasing plasticizer concentration tended to decrease tensile strength (TS), elastic modulus (EM) and oxygen permeability (OP); but increase elongation (%E), solubility, water vapor permeability (WVP) and seal strength. The extent of those changes also depended on starch concentration. Glycerol provided better plasticizer efficiency than sorbitol. A bimodal melting endotherm of retrograded structure was evident in non-plasticized film. However, only a low temperature endotherm was observed in polyol-plasticized films, indicating a plasticizer-induced structural modification. The developed ductile MBS films, (TS of 7.14±0.95 to 46.30±3.09MPa, %E of 2.46±0.21 to 56.95±4.34% and EM of 16.29±3.40 to 1428.45±148.72MPa) with an OP of 0.2397±0.0365 to 1.1520±0.1782 ccmm/m 2 daykPa and seal strength up to 422.36±7.93N/m, demonstrated in this study indicate the potential for food packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  4. 16 CFR 1610.33 - Test procedures for textile fabrics and film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...

  5. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    Science.gov (United States)

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion

  6. Method of determining local distribution of water or aqueous solutions penetrated into plastics

    International Nuclear Information System (INIS)

    Krejci, M.; Joks, Z.

    1983-01-01

    Penetrating water is labelled with tritium and the distribution is autoradiographically monitored. The discovery consists in that the plastic with the penetrating water or aqueous solution is cooled with liquid nitrogen and under the stream of liquid nitrogen the plastic is cut and exposed on the autoradiographic film in the freezer at temperatures from -15 to -30 degC. The autoradiogram will show the distribution of water in the whole area of the section. The described method may be used to detect water distribution also in filled plastics. (J.P.)

  7. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.

    Science.gov (United States)

    Park, Kwi-Il; Son, Jung Hwan; Hwang, Geon-Tae; Jeong, Chang Kyu; Ryu, Jungho; Koo, Min; Choi, Insung; Lee, Seung Hyun; Byun, Myunghwan; Wang, Zhong Lin; Lee, Keon Jae

    2014-04-23

    A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 μA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate over 100 LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  9. Povidone-iodine and hydrogen peroxide mixture soaked gauze pack: a novel hemostatic technique.

    Science.gov (United States)

    Arakeri, Gururaj; Brennan, Peter A

    2013-11-01

    Persistent oozing of blood is a common occurrence in maxillofacial surgery, and occasionally it hampers visibility and delays or even prevents continuation of the procedure. This report describes a novel method of controlling blood ooze using swabs soaked with povidone-iodine and hydrogen peroxide (PI-HP pack) that is particularly useful in relatively inaccessible areas of the maxillofacial region. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative

    NARCIS (Netherlands)

    Shao, Shuyan; Abdu-Aguye, Mustapha; Qiu, Li; Lai, Lai-Hung; Liu, Jian; Adjokatse, Sampson; Jahani Bahnamiri, Fatemeh; Kamminga, Machteld E.; Brink, ten Gert; Palstra, Thomas T. M.; Kooi, Bart J.; Hummelen, Jan C.; Loi, Maria Antonietta

    2016-01-01

    In this work, we investigate how electron extraction layers (EELs) with different dielectric constants affect the device performance and the light-soaking phenomenon in hybrid perovskite solar cells (HPSCs). Fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) having a

  11. Tailoring the wettability of nanocrystalline TiO 2 films

    Science.gov (United States)

    Liang, Qiyu; Chen, Yan; Fan, Yuzun; Hu, Yong; Wu, Yuedong; Zhao, Ziqiang; Meng, Qingbo

    2012-01-01

    The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.

  12. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems

    Directory of Open Access Journals (Sweden)

    I. Armentano

    2015-07-01

    Full Text Available Blends of poly(lactic acid (PLA and poly(3-hydroxybutyrate (PHB plasticized with a lactic acid oligomer (OLA added at three different concentrations (15, 20 and 30 wt% by weight, were prepared by an optimized extrusion process to improve the processability and mechanical properties of these biopolymers for flexible film manufacturing. Morphological, chemical, thermal, mechanical, barrier and migration properties were investigated and formulations with desired performance in eco-friendly films were selected. The efficiency of OLA as plasticizer for PLA_PHB blends was demonstrated by the significant decrease of their glass transition temperatures and a considerable improvement of their ductile properties. The measured improvements in the barrier properties are related to the higher crystallinity of the plasticized PLA_PHB blends, while the overall migration test underlined that all the proposed formulations maintained migration levels below admitted levels. The PLA_PHB blend with 30 wt% OLA was selected as the optimum formulation for food packaging, since it offered the best compromise between ductility and oxygen and water vapor barrier properties with practically no migration.

  13. Development of starch biofilms using different carboxylic acids as plasticizers; Desenvolvimento de biofilmes de amido utilizando como plastificantes diferentes acidos carboxilicos

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, L.C.; Miranda, C.S.; Santos, W.J. dos; Goncalves, A.P.B.; Oliveira, J.C.; Jose, N.M., E-mail: uanaconceicaocruz@gmail.com [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Grupo de Energia e Ciencias dos Materiais

    2014-07-01

    Biodegradable films have become a widely exploited issue among scientists because of their positive environmental impact, besides their potential to promote better food conservation and an increase in shelf life. Starch has been studied in this field due to its availability, low cost and biodegradability. However, starch films tend to be brittle and they need addition of a plasticizer to enable their usage. In this work, starch films were synthesized with different carboxylic acids as plasticizers, aiming to observe the effect of the acids chain size in the final films properties. The acids used were: oxalic, succinic and adipic. The materials were produced by casting and characterized by DSC, TG, DRX e FTIR. It was observed that the acids chain size influenced on the thermal and structural properties of the films. (author)

  14. Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films.

    Science.gov (United States)

    Fortunati, Elena; Puglia, Debora; Iannoni, Antonio; Terenzi, Andrea; Kenny, José Maria; Torre, Luigi

    2017-07-16

    Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) based films containing two different plasticizers [Acetyl Tributyl Citrate (ATBC) and isosorbide diester (ISE)] at three different contents (15 wt %, 20 wt % and 30 wt %) were produced by extrusion method. Thermal, morphological, mechanical and wettability behavior of produced materials was investigated as a function of plasticizer content. Filmature parameters were also adjusted and optimized for different formulations, in order to obtain similar thickness for different systems. Differential scanning calorimeter (DSC) results and evaluation of solubility parameter confirmed that similar miscibility was obtained for ATBC and ISE in PLA, while the two selected plasticizers resulted as not efficient for plasticization of PBS, to the limit that the PBS-30ATBC resulted as not processable. On the basis of these results, isosorbide-based plasticizer was considered a suitable agent for modification of a selected blend (PLA/PBS 80:20) and two mixing approaches were used to identify the role of ISE in the plasticization process: results from mechanical analysis confirmed that both produced PLA-PBS blends (PLA85-ISE15)-PBS20 and (PLA80-PBS20)-ISE15 could guarantee advantages in terms of deformability, with respect to the PLA80-PBS20 reference film, suggesting that the promising use of these stretchable PLA-PBS based films plasticized with isosorbide can provide novel solutions for food packaging applications.

  15. Determination of the migration of a plasticizer by 14C-labelled compounds

    International Nuclear Information System (INIS)

    Troparevsky, Alejandro; Pisarello de Troparevsky, M.L.; Mitta, A.E.A.

    1975-05-01

    The migration rate of a plasticizer (dioctyl phthlate 14 C) from a P.V.C. film, with different media in contact with it, was determined by measurements of radioactivity in the extraction liquids. Mineral oil, vegetal, oil aliphatic hidrocarbon and detergent solution were used for this purpose. The resulting figures were compared to those obtained from weight loss determinations and in some cases the percentage of ''swelling'' of the plastic could be established. (author)

  16. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  17. Mechanical properties of molybdenum coated with titanium carbide film

    International Nuclear Information System (INIS)

    Shikama, T.; Shinno, H.; Fukutomi, M.; Fujitsuka, M.; Okada, M.

    1983-01-01

    TiC-coated molybdenum is mechanically tensile tested. The 6 μm thick TiC-coated molybdenum has a higher 0.2% proof strength with a slight decrease in uniform and rupture elongation than the uncoated one. This strengthening effect of the TiC coating can be explained by the constrained effect of the high strength TiC film. The 1.2 μm thick TiC-coated molybdenum starts its plastic deformation at a lower stress than the uncoated one. Also, the coating makes the stress-strain curve more smooth. These effects are attributed to the surface effect, namely, that the interface between the molybdenum substrate and the strong and brittle TiC film acts as a strong dislocation source. The compressive stress in the TiC film will also help the start of plastic deformation at lower external stresses. (author)

  18. Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings.

    Science.gov (United States)

    Heinämäki, Jyrki; Halenius, Anna; Paavo, Maaja; Alakurtti, Sami; Pitkänen, Pauliina; Pirttimaa, Minni; Paaver, Urve; Kirsimäe, Kalle; Kogermann, Karin; Yliruusi, Jouko

    2015-07-15

    We showed that the addition of suberin fatty acids (SFAs) even at small concentrations significantly improves the water vapor barrier properties of hydroxypropyl methylcellulose (HPMC) films. SFAs were isolated from the outer birch bark using extractive hydrolysis. The effects of SFAs on the film formation of aqueous HPMC were investigated with free films plasticized with polyethylene glycol (PEG 400). Special attention was paid on the physical solid-state, moisture barrier and mechanical stress-strain properties of films intended for tablet film coatings. Topography and surface morphology, glass transition temperature (Tg), tensile strength, Young's modulus, and water vapor permeation (WVP) of films were studied. The addition of SFAs lowered the Tg of films suggesting partial enhancement in film plasticization. The WVP of films decreased with increasing SFAs concentration up to 15% (calculated as a % w/w from a polymer weight). The WVP value for a non-suberized reference film and suberized film plasticized with PEG 400 was 2.13×10(-6) and 0.69[×10(-6) g/(mm(2)×h)×mm/Pa], respectively. The addition of SFAs impaired the mechanical stress-strain properties of HPMC films by reducing the deformation capacity of film. In conclusion, the film properties and performance of aqueous HPMC can be modified by including SFAs in the films. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Modification of plastic by ionizing radiation

    International Nuclear Information System (INIS)

    Dalager, P.

    1974-01-01

    Very few of the modifications of plastic materials have got industrial status. Nearly all of the succesful industrial irradiations processes are performed with polyethylene. Irradiated polyethylene has been used in industries and products such as wire, cables, foams and heat shrinkable products, i.e. films, tubings and molded parts. Also the irradiation of finished products, i.e. improvement on a thermoplastic material into thermosetting material, has been developed in this field. (M.S.)

  20. Film holder for radiographing tubing

    International Nuclear Information System (INIS)

    Davis, E.V.; Foster, B.E.

    1976-01-01

    A film cassette is described which may be easily placed about tubing or piping and readily held in place while radiographic inspection is performed. A pair of precurved light-impervious semi-rigid plastic sheets, hinged at one edge, enclose sheet film together with any metallic foils or screens. Other edges are made light-tight with removable caps, and the entire unit is held securely about the object to be radiographed with a releasable fastener such as a strip of Velcro

  1. Film holder for radiographing tubing

    Science.gov (United States)

    Davis, Earl V.; Foster, Billy E.

    1976-01-01

    A film cassette is provided which may be easily placed about tubing or piping and readily held in place while radiographic inspection is performed. A pair of precurved light-impervious semi-rigid plastic sheets, hinged at one edge, enclose sheet film together with any metallic foils or screens. Other edges are made light-tight with removable caps, and the entire unit is held securely about the object to be radiographed with a releasable fastener such as a strip of Velcro.

  2. Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator

    International Nuclear Information System (INIS)

    Aitola, Kerttu; Halme, Janne; Feldt, Sandra; Lohse, Peter; Borghei, Maryam; Kaskela, Antti; Nasibulin, Albert G.; Kauppinen, Esko I.; Lund, Peter D.; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    A flexible, slightly transparent and metal-free random network of single-walled carbon nanotubes (SWCNTs) on plain polyethylene terephthalate (PET) plastic substrate outperformed platinum on conductive glass and on plastic as the counter electrode (CE) of a dye solar cell employing a Co(II/III)tris(2,2′-bipyridyl) complex redox mediator in 3-methoxypropionitrile solvent. The CE charge-transfer resistance of the SWCNT film was 0.60 Ω cm 2 , 4.0 Ω cm 2 for sputtered platinum on indium tin oxide-PET substrate and 1.7 Ω cm 2 for thermally deposited Pt on fluorine-doped tin oxide glass, respectively. The solar cell efficiencies were in the same range, thus proving that an entirely carbon-based SWCNT film on plastic is as good CE candidate for the Co electrolyte

  3. Ultra-low temperature process by ion shower doping technique for poly-Si TFTs on plastics

    International Nuclear Information System (INIS)

    Kim, Jong-Man; Lim, Huck; Kim, Do-Young; Jung, Ji-Sim; Kwon, Jang-Yeon; Hong, Wan-Shick; Noguchi, Takashi

    2006-01-01

    An ion doping process was performed by using a basic ion shower system. After ion doping and subsequent activation of the dopants in the Si film by excimer laser annealing (ELA), we studied the crystallinity of the Si surface using UV-reflectance spectroscopy and the sheet resistance by using 4-point probe measurements. To prevent excessive temperature increase on the plastic substrate during ion shower doping, the plasma shower was applied in a series of short pulses. As a result, dopant ions were efficiently incorporated and were activated into the a-Si film on plastic substrate after ELA. The sheet resistance decreased with increase of actual doping time, which corresponds to the incorporated dose. Also, we confirmed a distinct relationship between the crystallinity and the sheet resistance. This work shows that pulsed ion shower doping is a promising technique for ultra-low-temperature poly-Si TFTs on plastic substrates.

  4. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Havens, John (San Diego, CA); Jones, Phil (Marlborough, GB)

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  5. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces.

    Science.gov (United States)

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-12-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  6. Efficacy of collagen silver-coated polyester and rifampin-soaked vascular grafts to resist infection from MRSA and Escherichia coli in a dog model.

    Science.gov (United States)

    Schneider, Fabrice; O'Connor, Stephen; Becquemin, Jean Pierre

    2008-11-01

    The primary objective of this study was to compare the efficacy of a collagen silver-coated polyester graft, InterGard, with a gelatin-sealed graft, Gelsoft, both soaked in rifampin, for resistance to direct bacterial contamination in an animal model. The second objective was to confirm the lack of inflammation from silver acetate. Vascular grafts, 6 mm in diameter, were implanted in the infrarenal aorta of 28 dogs. Intravenous cefamandole (20 mg/kg) was injected intraoperatively in all dogs. The dogs were divided into three groups. Group I included 12 dogs. Six dogs received silver grafts and six dogs received gelatin-sealed grafts, all soaked with rifampin. Grafts implanted in group I were directly infected with methicillin-resistant Staphylococcus aureus (MRSA). Group II included also six silver grafts and six gelatin-sealed grafts, all soaked with rifampin. Dogs of group II were directly infected with Escherichia coli. Group III comprised four dogs, which received gelatin unsealed grafts, directly infected with MRSA, the control group. All dogs were followed by regular clinical examination, including blood cultures. Grafts in groups I and III and in group II were harvested at 30 days and 10 days, respectively. Bacterial analyses were performed on the explanted grafts. Histology was performed on both the tissue samples and the anastomotic sites of the harvested grafts. In group I, no grafts were infected with MRSA, irrespective of graft type. In group II, no silver grafts were infected with E. coli, whereas one (16.6%) of six gelatin-sealed grafts was infected (p = 0.317). In group III, three (75%) of the four grafts were infected with MRSA. The infection rate in the silver grafts and the gelatin-sealed grafts soaked in rifampin in group I compared with the unsealed gelatin grafts in group III was statistically significantly different (p anastomoses in three (25%) gelsoft grafts of 12 in groups I and II. There were no clinical or biological signs of inflammation

  7. Ftir study of gamma irradiation LDPE film in air; Estudo por FTIR de filme de polietileno de baixa densidade submetido a radiacao gama na presenca de oxigenio

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Esperidiana A.B.; Silva, Andre L.A.; Gouvea, Paulo H.D.; Silva, Leonardo G. Andrade e [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes]. E-mail: eabmoura@ipen.br, andrebarra@mackenzie.com.br, paulohdg@hotmail.com, lgasilva@ipen.br; Ortiz, Angel V. [Unipac Embalagens Ltda., Sao Paulo, SP (Brazil)]. E-mail: angelv@unipac-pack.com.br; Gouvea, Douglas; Castro, Ricardo H.R.; Wiebeck, Helio [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais]. E-mails: dgouvea@usp.br; rhrcastro@hotmail.com; hwiebeck@usp.br; Rossini, Edvaldo L. [Universidade Metodista de Sao Paulo, SP (Brazil)]. E-mail: didirossini@yahoo.com.br; Kawano, Yoshio [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    2003-07-01

    The use of the ionizing radiation for application in plastic packaging, to improve some of properties and for radiation sterilization, has been gaining popularity in the packaging industry. As a consequence of the irradiation, plastic packaging materials can undergo some chemical and physical alterations in their basic function, mainly concerning the protection characteristics. Since changes in physical properties of irradiated packaging films reflect radiation-induced chemical changes in molecular structure, in this work, an investigation was performed by Ftir analysis of LDPE film before and after radiation. Film samples were irradiated with doses between 0 Gy and 100 kGy, at room temperature and in the presence of air. The results showed alterations in the molecular structure, according to the absorbed radiation dose. (author)

  8. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  9. Effect of soaking and phytase treatment on phytic acid, calcium, iron and zinc in rice fractions

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2009-01-01

    With the aim to maximise phytic acid removal and minimise losses of dry matter and minerals (Ca, Fe, Zn) in rice, three products (whole kernels and flour milled from white and brown rice; and bran, all from the same batch of variety Kenjian 90-31) were soaked in demineralized water at 10 °C (SDW),

  10. Biodegradation of weathered polystyrene films in seawater microcosms.

    Science.gov (United States)

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Franchini, Martina; Repouskou, Eftychia; Kaliva, Maria; Vamvakaki, Maria; Kolvenbach, Boris; Fava, Fabio; Corvini, Philippe F-X; Kalogerakis, Nicolas

    2017-12-21

    A microcosm experiment was conducted at two phases in order to investigate the ability of indigenous consortia alone or bioaugmented to degrade weathered polystyrene (PS) films under simulated marine conditions. Viable populations were developed on PS surfaces in a time dependent way towards convergent biofilm communities, enriched with hydrocarbon and xenobiotics degradation genes. Members of Alphaproteobacteria and Gammaproteobacteria were highly enriched in the acclimated plastic associated assemblages while the abundance of plastic associated genera was significantly increased in the acclimated indigenous communities. Both tailored consortia efficiently reduced the weight of PS films. Concerning the molecular weight distribution, a decrease in the number-average molecular weight of films subjected to microbial treatment was observed. Moreover, alteration in the intensity of functional groups was noticed with Fourier transform infrared spectrophotometry (FTIR) along with signs of bio-erosion on the PS surface. The results suggest that acclimated marine populations are capable of degrading weathered PS pieces.

  11. XRay Study of Transfer Printed Pentacene Thin Films

    International Nuclear Information System (INIS)

    Shao, Y.; Solin, S. A.; Hines, D. R.; Williams, E. D.

    2007-01-01

    We investigated the structural properties and transfer properties of pentacene thin films fabricated by thermal deposition and transfer printing onto SiO2 and plastic substrates, respectively. The dependence of the crystallite size on the printing time, temperature and pressure were measured. The increases of crystalline size were observed when pentacene thin films were printed under specific conditions, e.g. 120 deg. C and 600 psi and can be correlated with the improvement of the field effect mobility of pentacene thin-film transistors

  12. The effect of natural weathering on irradiated polyethylene films

    International Nuclear Information System (INIS)

    Khoylou, F.; Hassan Pour, S.

    2002-01-01

    Polyethylene is one of the extensive used plastics in outdoor uses. Outdoor durability of PE in modem agriculture is very important because of large scale food production. UV radiations contained in solar spectrum are the main cause of degradation in outdoor uses of plastics. So, light stabilization of PE has made considerable progress since the early years of its outdoor use. Radiation crosslinking of PE films for improving UV stability is one of the new research fields. In this work,the effect of UV stabilizers on the chemical and mechanical stability of PE have been compared with UV stabilizers and radiation crosslinking together. For this reason two low density polyethylene films were prepared.One film contained 3% of photostabilizers and antioxidant,and the other film was free of additives. The films were irradiated by EB at doses of 30-300 kGy, these crosslinked PE films were exposed to the outdoor condition for 2 years. Determination of the gel content shows that significant crosslinking yields are obtained at high doses. Effect of crosslinking and outdoor exposure on the degradation of stabilized and unstabilized PE films have been studied by FTIR. Data of FTIR show that outdoor degradation of unstabilized PE promote rapidly after irradiation and cause to distortion of samples after 4 months. While, stabilized PE samples show low changes during 2 years outdoor exposure. Mechanical properties of stabilized and unstabilized crosslinked PE films are also presented in this paper. (Author)

  13. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    CERN Document Server

    Tanaka, T; Shinohara, M; Takagi, T

    2002-01-01

    Application of pulsed high negative voltage (approx 10 mu s pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N sub 2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N sub 2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron mic...

  14. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging.

    Science.gov (United States)

    Moghimi, Roya; Aliahmadi, Atousa; Rafati, Hasan

    2017-11-01

    Edible films containing essential oils (EO) as natural antibacterial agents are promising systems for food preservation. In this work, nanoemulsions of Thymus daenensis EO (wild; F1 and cultivated; F2) were loaded in hydroxyl propyl methyl cellulose (HPMC) films and the effect of different parameters (polymer, plasticizer, and EO concentration) on the film properties were analyzed and optimized. Prepared HPMC films were characterized in terms of EO loading, morphology, mechanical properties, and the antibacterial activity. The results of SEM showed uniform incorporation of nanoemulsions into the edible film. Investigation of the mechanical properties of two edible films revealed a plasticizing effect of T. daenensis EO on the films. Also, edible films had noticeable antimicrobial activity against selected microorganisms, i.e. 47.0±2.5mm and 22.6±0.5mm zone of inhibition against S. aureus for films containing F1 and F2, respectively. Incorporation of nanoemulsions into the HPMC films can be used for active food preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Development of plastic elongation in nanocrystalline and amorphous Ni–W dual phase alloys by brushing technique

    International Nuclear Information System (INIS)

    Nakayama, S.; Adachi, H.; Yamasaki, T.

    2015-01-01

    Highlights: • A novel agitation technique called the brushing technique is proposed. • A homogeneous material can be obtained with the brushing technique. • The brushed material exhibits large plastic elongation with work hardening. - Abstract: A novel agitation technique, referred to as the “brushing technique” is proposed to treat the surface of a Ni–W alloy film during electrodeposition. This technique was developed to directly remove hydrogen bubbles on the film surface and to apply Ni ions to the interfacial layer with the substrate. The intrinsic mechanical properties of the Ni–W electrodeposits are then evaluated with respect to application. High resolution transmission electron microscopy observations revealed that both treated and untreated films have nanocrystallites of approximately 5 nm in diameter and an amorphous phase. There was a compositional difference of about. 1.4 at% W between the face side and the reverse side of the film that was not subjected to the brushing technique, whereas this difference was absent in the film subjected to the brushing technique. In addition, the brushing technique reduced the surface roughness of the film and decreased the number of defects. As a result, a large plastic strain of about. 2.9% was observed with work hardening under tensile testing

  16. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    International Nuclear Information System (INIS)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-01-01

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented

  17. Antibacterial activities of leave extracts as bactericides for soaking of skin or hide

    Science.gov (United States)

    Suparno, Ono; Panandita, Tania; Afifah, Amalia; Marimin; Purnawati, Rini

    2018-03-01

    Antibacteria, a subtance inhibiting the growth of bacteria, can be obtained from tropical-almond (Terminalia catappa), morinda (Morinda citrifolia), and white leadtree (Leucaena leucocephala) plants, since the plants have phytochemical content functioning as antibacterial agent. Commonly, part of plant that contains higher antibacterial substances is its leaf. The objectives of this study were to determine antibacterial activity of tropical-almond, morinda, and white leadtree leaves extracts, and to analyse the potency of the three extracts as natural bactericide for soaking of skin or hide. The responses measured in this study were phytochemical contents, total flavonoid, tannin content, the inhibition zone, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Phytochemical contents containing the three leaves extracts were alkaloid, flavonoid, tannin, saponin, phenolic, and glycoside. Total flavonoid and tannin contents of the three extracts were tropical-almond extract of 1.14 % and 1.51 %, respectively; morinda extract of 0.61 % and 0.36 %, respectively; and white leadtree extract of 0.60 % and 4.82 %, respectively. White leadtree leaf extract gave the highest inhibition zone against B. subtilis, S. aureus and E. coli, i.e. 1.50, 1.3, and 1.65 cm, respectively; and the lowest MIC and MBC against B. subtilis, S. aureus and E. coli, i.e. 1500, 3000, and 1500 μg/ml, respectively. Therefore, the white leadtree leave extract had more potential as bactericide for soaking of skin or hide compared to those of the tropical-almond and morinda leaves extracts.

  18. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  19. Determination of natamycin in rabbit cornea by high-performance liquid chromatography-tandem mass spectrometry with protective soaking extraction technology.

    Science.gov (United States)

    Tianyang, Zhou; Ling, Zhu; Huiyun, Xia; Jijun, He; Junjie, Zhang

    2014-10-15

    A new selective and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the quantification of natamycin (NAT) in rabbit corneas with amphotericin B as the internal standard (IS). The cornea samples were processed by a simple and protective methanol soaking extraction technology. The NAT could be extracted completely from rabbit cornea after 24h of soaking with methanol under a mild condition. Chromatographic separation was performed on a C18 column (2.1mm×50mm, 3.5μm) using mobile phase with ammonium acetate buffer (pH 4.5; 4.0mM):acetonitrile (40:60, v/v) at a flow rate of 0.25ml/min. Quantification was performed using the transitions 666.2→503.2 m/z for NAT and 924.5→906.6 m/z for IS by positive ion electrospray ionization in multiple reaction monitoring mode. The assay was validated over a concentration range of 8.64ng/ml to 843ng/ml with lower limit of detection of 4.32ng/ml. The method was validated with respect to linearity, accuracy, precision, recovery, stability and extracting efficiency. The extraction recovery of NAT from cornea samples was approximately 100% with the new methanol soaking extraction procedure. The method has been successfully applied to the ocular pharmacokinetic studies of NAT eye drops in the cornea of Japanese white rabbit. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Characterization of Citrus pectin edible films containing transglutaminase-modified phaseolin.

    Science.gov (United States)

    Giosafatto, C Valeria L; Di Pierro, Prospero; Gunning, Patrick; Mackie, Alan; Porta, Raffaele; Mariniello, Loredana

    2014-06-15

    The growing social and economic consequences of pollution derived from plastics are focusing attention on the need to produce novel bioprocesses for enhancing food shelf-life. As a consequence, in recent years the use of edible films for food packaging is generating a huge scientific interest. In this work we report the production of an edible hydrocolloid film made by using Citrus pectin and the protein phaseolin crosslinked by microbial transglutaminase, an enzyme able to covalently modify proteins by formation of isopeptide bonds between glutamine and lysine residues. The films were characterized and their morphology was evaluated by both atomic force microscopy and scanning electron microscopy. Mechanical properties and barrier properties to CO2, O2 and water vapor have demonstrated that these films possess technological features comparable to those possessed by commercial plastics. It is worth noting that these characteristics are maintained even following storage of the films at 4°C or -20°C, suggesting that our bioplastics can be tailored to protect food at low temperature. Moreover, gastric and duodenal digestion studies conducted under the same conditions found in the human digestion system have demonstrated that transglutaminase-containing films are regularly digested encouraging an application of the proposed materials as food coatings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2016-08-01

    Full Text Available Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH3NH3PbI3−xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices.

  2. Combating oil spill problem using plastic waste

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Junaid, E-mail: junaidupm@gmail.com [Department of Chemical Engineering, University of Karachi (Pakistan); Ning, Chao; Barford, John [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); McKay, Gordon [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  3. Combating oil spill problem using plastic waste

    International Nuclear Information System (INIS)

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-01-01

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy

  4. Analysis of Adipate Ester Contents in PVC Plastics

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2006-01-01

    Plasticizers are needed in flexible PVC (PolyVinylChloride) products. There is serious concern that commonly used phthalate esters may harm life reproduction systems. To avoid the problems, instead adipate di-esters (AEs) of C8 to C10 alcohols are used as higher prized alternatives; e.g. di-2......-ethylhexyl adipate or DEHA [103-23-1], also known as Adimoll® or di-octyl adipate, DOA, see Fig. 1. A widely used plasticizer in food (cling) films is DEHA, often in combination with polymers, epoxidized soya-bean oil, etcetera. DEHA also occurs in children toys. We have previously shown that the presence...... of phthalate esters in PVC can be rapidly analyzed by Fourier transform (FT-) Raman spectroscopy excited with a 1064 nm laser. Here in this project we report a similar study. The aim was to find out whether FT-Raman spectroscopy can be used to determine the presence of adipate esters (AEs) as plasticizers...

  5. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review.

    Science.gov (United States)

    Harrison, Jesse P; Boardman, Carl; O'Callaghan, Kenneth; Delort, Anne-Marie; Song, Jim

    2018-05-01

    Plastic litter is encountered in aquatic ecosystems across the globe, including polar environments and the deep sea. To mitigate the adverse societal and ecological impacts of this waste, there has been debate on whether 'biodegradable' materials should be granted exemptions from plastic bag bans and levies. However, great care must be exercised when attempting to define this term, due to the broad and complex range of physical and chemical conditions encountered within natural ecosystems. Here, we review existing international industry standards and regional test methods for evaluating the biodegradability of plastics within aquatic environments (wastewater, unmanaged freshwater and marine habitats). We argue that current standards and test methods are insufficient in their ability to realistically predict the biodegradability of carrier bags in these environments, due to several shortcomings in experimental procedures and a paucity of information in the scientific literature. Moreover, existing biodegradability standards and test methods for aquatic environments do not involve toxicity testing or account for the potentially adverse ecological impacts of carrier bags, plastic additives, polymer degradation products or small (microscopic) plastic particles that can arise via fragmentation. Successfully addressing these knowledge gaps is a key requirement for developing new biodegradability standard(s) for lightweight carrier bags.

  6. Recyclability assessment of nano-reinforced plastic packaging.

    Science.gov (United States)

    Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A

    2014-12-01

    Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more

  7. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  8. Fragrant starch-based films with limonene

    Directory of Open Access Journals (Sweden)

    Adrian K. Antosik

    2017-02-01

    Full Text Available Novel fragrant starch-based films with limonene were successfully prepared. Biodegradable materials of natural origin were used and the process was relatively simple and inexpensive. The effect of limonene on physicochemical properties of starch-based films (moisture absorption, solubility in water, wettability, mechanical properties were compared to glycerol plasticized system. Taking into consideration that the obtained materials could also exhibit bactericidal and fungicidal properties, the studies with Escherichia coli, Candida albicans and Aspergillus niger were performed. Such a material could potentially find application in food packaging (e.g. masking unpleasant odors, hydrophilic starch film would prevent food drying, or in agriculture (e.g. for seed encapsulated tapes.

  9. Effects of flexible substrate thickness on Al-induced crystallization of amorphous Ge thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Naoki [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Toko, Kaoru, E-mail: toko@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, Noriyuki; Yoshizawa, Noriko [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan); Suemasu, Takashi [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-05-29

    Amorphous germanium (a-Ge) thin films were directly crystallized on flexible plastic substrates at 325 °C using Al-induced crystallization. The thickness of the plastic substrate strongly influenced the crystal quality of the resulting polycrystalline Ge layers. Using a thicker substrate lowered the stress on the a-Ge layer during annealing, which increased the grain size and fraction of (111)-oriented grains within the Ge layer. Employing a 125-μm-thick substrate led to 95% (111)-oriented Ge with grains having an average size of 100 μm. Transmission electron microscopy demonstrated that the Ge grains had a low-defect density. Production of high-quality Ge films on plastic substrates allows for the possibility for developing Ge-based electronic and optical devices on inexpensive flexible substrates. - Highlights: • Polycrystalline Ge thin films are directly formed on flexible plastic substrates. • Al-induced crystallization allows the low-temperature growth (325 °C) of amorphous Ge. • The substrate bending during annealing strongly influences the crystal quality of poly-Ge. • A thick substrate (125 μm) leads to 95% (111)-oriented Ge with grains 100 μm in size.

  10. The Size Spectrum as Tool for Analyzing Marine Plastic Pollution

    KAUST Repository

    Martí, E.

    2016-12-02

    Marine plastic debris spans over six orders of magnitude in lineal size, from microns to meters. The broad range of plastic sizes mainly arises from the continuous photodegradation and fragmentation affecting the plastic objects. Interestingly, this time-dependent process links, to some degree, the size to the age of the debris. The variety of plastic sizes gives the possibility to marine biota to interact and possible take up microplastics through numerous pathways. Physical processes such as sinking and wind-induced transport or the chemical adsorption of contaminants are also closely related to the size and shape of the plastic items. Likewise, available sampling techniques should be considered as partial views of the marine plastic size range. This being so and given that the size is one of the most easily measurable plastic traits, the size spectrum appears as an ideal frame to arrange, integrate, and analyze plastic data of diverse nature. In this work, we examined tens of thousands of plastic items sampled from across the world with the aim of (1) developing and standardizing the size-spectrum tool to study marine plastics, and (2) assembling a global plastic size spectrum (GPSS) database, relating individual size measurements to abundance, color (129 tons), polymer type, and category (rigid fragments, films, threads, foam, pellets, and microbeads). Using GPSS database, we show for instance the dependence of plastic composition on the item size, with high diversity of categories for items larger than 1 cm and a clear dominance (~90%) of hard fragments below, except for the size interval corresponding to microbeads (around 0.5 mm). GPSS database depicts a comprehensive size-based framework for analyzing the marine plastic pollution, enabling the comparison of size-related studies or the testing of hypothesis.

  11. Low-cost solar collectors using thin-film plastics absorbers and glazings

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1980-01-01

    The design, fabrication, performance, cost, and marketing of flat plate solar collectors using plastic absorbers and glazings are described. Manufacturing cost breakdowns are given for single-glazed and double-glazed collectors. (WHK)

  12. Dose distributions in electron irradiated plastic tubing

    International Nuclear Information System (INIS)

    Miller, A.; Pederson, W.B.

    1981-01-01

    Plastic tubes have been crosslinked by irradiation at a 10 MeV linear electron accelerator and at a 400 keV DC electron accelerator at different irradiation geometries. The diameter of the different tubes was 20, 33 and 110 millimeters. Dose distributions have been measured with thin radiochromic dye films, indicating that in all cases irradiation from two sides is a necessary and sufficient condition for obtaining a satisfactory dose distribution. (author)

  13. Quality by Design approach for studying the impact of formulation and process variables on product quality of oral disintegrating films.

    Science.gov (United States)

    Mazumder, Sonal; Pavurala, Naresh; Manda, Prashanth; Xu, Xiaoming; Cruz, Celia N; Krishnaiah, Yellela S R

    2017-07-15

    The present investigation was carried out to understand the impact of formulation and process variables on the quality of oral disintegrating films (ODF) using Quality by Design (QbD) approach. Lamotrigine (LMT) was used as a model drug. Formulation variable was plasticizer to film former ratio and process variables were drying temperature, air flow rate in the drying chamber, drying time and wet coat thickness of the film. A Definitive Screening Design of Experiments (DoE) was used to identify and classify the critical formulation and process variables impacting critical quality attributes (CQA). A total of 14 laboratory-scale DoE formulations were prepared and evaluated for mechanical properties (%elongation at break, yield stress, Young's modulus, folding endurance) and other CQA (dry thickness, disintegration time, dissolution rate, moisture content, moisture uptake, drug assay and drug content uniformity). The main factors affecting mechanical properties were plasticizer to film former ratio and drying temperature. Dissolution rate was found to be sensitive to air flow rate during drying and plasticizer to film former ratio. Data were analyzed for elucidating interactions between different variables, rank ordering the critical materials attributes (CMA) and critical process parameters (CPP), and for providing a predictive model for the process. Results suggested that plasticizer to film former ratio and process controls on drying are critical to manufacture LMT ODF with the desired CQA. Published by Elsevier B.V.

  14. Development of radiophotometric dosemeters of high sensitivity using plastic scintillators as light intensifiers

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Hamada, M.M.

    1987-01-01

    The use of rectangular plates of plastic scintillators as film holders in conventional photographic dosemeters is reported. The efficiency of their use as light converters for increase the sensitivity of these dosemeters are studied. (M.A.C.) [pt

  15. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven; Mason, Sherri A.

    2016-01-01

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m3 and a median of 1.9 particles/m3. Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  16. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology.

    Science.gov (United States)

    Baldwin, Austin K; Corsi, Steven R; Mason, Sherri A

    2016-10-04

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m 3 and a median of 1.9 particles/m 3 . Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  17. Mechanical and thermal properties of physically-blended-plastic films

    International Nuclear Information System (INIS)

    Abu Issa, M. S.

    1983-10-01

    Low density polyethylene (LDPE) and isotactic polypropylene (PP) blend were produced in film form and were characterized by a number of techniques such as wide-angle x-ray diffraction (WAXD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and instron tensile testing. Results of WAXD and DTA showed conclusively that the two components in the blend are incompatible. SEM micrographs indicated that the 60/40 and 40/60 PP/PE blends show approximately fine homogeneous dispersion of the minor component into the matrix of the major component. The mechanical properties of the blend films improved with respect to the PE homo polymer. The improvement was more remarkable with the increase of the PP component in the blend. Results obtained in this work were explained in terms of crystallinity and the crystallite orientation. 28 refs., 29 figs., 5 tabs. (A.M.H.)

  18. Effect of high-pressure food processing on the physical properties of synthetic and biopolymer films.

    Science.gov (United States)

    Galotto, M J; Ulloa, P A; Guarda, A; Gavara, R; Miltz, J

    2009-08-01

    The effect of high-pressure processing on 2 plastic food packaging films, a biopolymer (PLASiOx/PLA) and a synthetic polymer (PET-AlOx), was studied. Samples in direct contact with olive oil, as a fatty food simulant, and distilled water, as an aqueous simulant, were subjected to a pressure of 500MPa for 15 min at 50 degrees C. The mechanical, thermal, and gas barrier properties of both films were evaluated after the high-pressure processing (HPP) and compared to control samples that have not undergone this treatment. Significant changes in all properties were observed in both films after the HPP treatment and in contact with the food simulants. In both films an induced crystallization was noticed. In the PLASiOx/PLA film the changes were larger when in contact with water that probably acted as a plasticizer. In the PET-AlOx film the changes in properties were attributed to the formation of pinholes and cracks during the HPP treatment. In this film, most of the properties changed more in the presence of oil as the food simulant.

  19. Electrochemical and chemical methods of metallizing plastic films

    OpenAIRE

    Chapples, J.

    1991-01-01

    This thesis describes two novel techniques for the metallization of non-electroactive polymer films and thicker sectioned polyethylene and nylon substrates. In the first approach, non-electroactive polymer substrates were impregnated with surface layers of polypyrrole and polyaniline, using electrochemical and chemical methods of polymerization. The relative merits of both these approaches are discussed and compared with other methods in the literature. The resultant composi...

  20. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.

    Science.gov (United States)

    Borreani, Giorgio; Tabacco, Ernesto

    2015-01-01

    The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Growth and Analysis of Highly Oriented (11n) BCSCO Films for Device Research

    Science.gov (United States)

    Raina, K. K.; Pandey, R. K.

    1995-01-01

    Films of BCSCO superconductor of the type Bi2CaSr2Cu2O(x), have been grown by liquid phase epitaxy method (LPE), using a partially closed growth chamber. The films were grown on (001) and (110) NdGaO3 substrates by slow cooling process in an optimized temperature range below the peritectic melting point (880 C) of Bi2CaSr2Cu2O8. Optimization of parameters, such as seed rotation, soak of initial growth temperature and growth period results in the formation of 2122 phase BCSCO films. The films grown at rotation rates of less than 30 and more than 70 rpm are observed to be associated with the second phase of Sr-Ca-Cu-O system. Higher growth temperatures (greater than 860 C) also encourage to the formation of this phase. XRD measurements show that the films grown on (110) NdGaO3 have a preferred (11n)-orientation. It is pertinent to mention here that in our earlier results published elsewhere we obtained c-axis oriented Bi2CaSr2Cu2O8 phase films on (001) NdGaO3 substrate. Critical current density is found to be higher for the films grown on (110) than (001) NdGaO3 substrate orientation. The best values, zero resistance (T(sab co)) and critical current density obtained are 87 K and 10(exp 5) A/sq cm respectively.

  2. Growth and analysis of highly oriented (11n) BCSCO films for device research

    International Nuclear Information System (INIS)

    Raina, K.K.; Pandey, R.K.

    1994-01-01

    Films of BCSCO superconductor of the type Bi 2 CaSr 2 Cu 2 O x have been grown by liquid phase epitaxy method (LPE), using a partially closed growth chamber. The films were grown on (001) and (110) NdGaO 3 substrates by slow cooling process in an optimized temperature range below the peritectic melting point (880 degrees C) of Bi 2 CaSr 2 Cu 2 O 8 . Optimization of parameters, such as seed rotation, soak of initial growth temperature and growth period results in the formation of 2122 phase BCSCO films. The films grown at rotation rates of less than 30 and more than 70 rpm are observed to be associated with the second phase of Sr-Ca-Cu-O system. Higher growth temperatures (>860 degrees C) also encourage to the formation of this phase. XRD measurements show that the films grown on (110) NdGaO 3 have a preferred (11n)-orientation. It is pertinent to mention here that in our earlier results published elsewhere we obtained c-axis oriented Bi 2 CaSr 2 Cu 2 O 8 phase films on (001) NdGaO 3 substrate. Critical current density is found to be higher for the films grown on (110) than (001) NdGaO 3 substrate orientation. The best values of zero resistance (T co ) and critical current density obtained are 87 K and 10 5 A/cm 2 , respectively

  3. The growth of hydroxyapatite on alkaline treated Ti-6Al-4V soaking in higher temperature with concentrated Ca2+/HPO42- simulated body fluid

    International Nuclear Information System (INIS)

    Lin, F.-H.; Hsu, Y.-S.; Lin, S.-H.; Chen, T.-M.

    2004-01-01

    In this study, calcium and phosphorous ions in the simulated body fluid (SBF) was be increased to increase the rate of precipitation of hydroxyapatite (HA). The soaking temperature in concentrated calcium and phosphorous ion-SBF (CP-SBF) was increased to reduce the nucleation energy of the HA, which lead to an early precipitation to shorten the treatment process. When the metallic substrates treated with 10 M NaOH aqueous solution and subsequently heated at 600 deg. C, a thin sodium titanium oxide layer was formed on the surfaces as the linking layer for HA and Ti-6Al-4V alloys. After Ti-6Al-4V alloys treated with alkali solution, it would soak into a simulated body fluid with higher concentration of calcium and phosphorous ions (CP-SBF) to increase the possibility of nucleation of HA. When Ti-6Al-4V alloys treated with alkali solution, subsequently heated at 600 deg. C, and then soaked into CP-SBF at a temperature of 80 deg. C, it could form a dense and thick (50 μm) bone-like hydroxyapatite layer on the surface. The HA layer was appeared on the surface of the Ti-alloy at the first week soaking, which was greatly shorten the coating process. In the research, the characteristics of the coating layer will be analyzed by the results of X-ray diffractometer (XRD), scanning electron microscope (SEM), and Fourier transformation infrared (FT-IR)

  4. Mechanical, structural and thermal properties of Ag-Cu and ZnO reinforced polylactide nanocomposite films.

    Science.gov (United States)

    Ahmed, Jasim; Arfat, Yasir Ali; Castro-Aguirre, Edgar; Auras, Rafael

    2016-05-01

    Plasticized polylactic acid (PLA) based nanocomposite films were prepared by incorporating polyethylene glycol (PEG) and two selected nanoparticles (NPs) [silver-copper (Ag-Cu) alloy (film matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    Science.gov (United States)

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  6. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Jonuzaj, Suela; Gavala, Hariklia N.

    2014-01-01

    Lignocellulosic biomass including agricultural and forestry residues, perennial crops, softwoods and hardwoods, can be used as feedstock for methane production. Although being abundant and almost zero cost feedstocks, the main obstacles of their use are the low efficiencies and yields attained, d...... methane potential of switchgrass. Transactions of the ASABE. 53, 1921-1927 (2010) [3] Jurado, E., Gavala., H.N., Skiadas, I.V., :Enhancement of methane yield from wheat straw, miscanthus and willow using aqueous ammonia soaking. Environmental Tecnology. 34(13-14), 2069-2075 (2013)...

  7. Opportunities for cellulose nanomaterials in packaging films: a review and future trends

    Science.gov (United States)

    Nicole M. Stark

    2016-01-01

    Performance requirements for packaging films may include barrier properties, transparency, flexibility, and tensile strength. Conventional packaging materials such as plastic films and laminates, are typically made from petroleum-based polymers. Currently, there is a drive to develop sustainable packaging materials. These alternative materials must be able to be...

  8. Low-cost rapid prototyping of flexible plastic paper based microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels was carefully studied for various laser powers and scanning speeds. After laser ablation of the microchannels on the plastic paper, a transparent poly (methyl methacrylate)(PMMA) film was thermally bonded to the plastic paper to enclose the channels. After connection of tubing, the device was ready to use. An example microfluidic device (droplet generator) was also fabricated using this technique. Due to the flexibility of the fabricated device, this technique can be used to fabricate 3D microfluidic devices. The fabrication process was simple and rapid without any requirement of cleanroom facilities. © 2013 IEEE.

  9. Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag-Cu Nanoparticles and Essential Oil.

    Science.gov (United States)

    Ahmed, Jasim; Arfat, Yasir Ali; Bher, Anibal; Mulla, Mehrajfatema; Jacob, Harsha; Auras, Rafael

    2018-04-16

    Plasticized polylactide (PLA) composite films with multifunctional properties were created by loading bimetallic silver-copper (Ag-Cu) nanoparticles (NPs) and cinnamon essential oil (CEO) into polymer matrix via compression molding technique. Rheological, structural, thermal, barrier, and antimicrobial properties of the produced films, and its utilization in the packaging of chicken meat were investigated. PLA/PEG/Ag-Cu/CEO composites showed a very complex rheological system where both plasticizing and antiplasticizing effects were evident. Thermal properties of plasticized PLA film with polyethylene glycol (PEG) enhanced considerably with the reinforcement of NPs whereas loading of CEO decreased glass transition, melting, and crystallization temperature. The barrier properties of the composite films were reduced with the increase of CEO loading (P films were visualized by FTIR spectra. Rough and porous surfaces of the films were evident by scanning electron microscopy. The effectiveness of composite films was tested against Salmonella Typhimurium, Campylobacter jejuni and Listeria monocytogenes inoculated in chicken samples, and it was found that the films loaded with Ag-Cu NPs and 50% CEO showed maximum antibacterial action during 21 days at the refrigerated condition. The produced PLA/Ag-Cu/CEO composite films can be applied to active food packaging. The nanoparticles and essential oil loaded PLA composite films are capable of exhibiting antimicrobial effects against Gram (+) and (-) bacteria, and extend the shelf-life of chicken meat. The bionanocomposite films showed the potential to be manufactured commercially because of the thermal stability of the active components during the hot-press compression molding process. The developed bionanocomposites could have practical importance and open a new direction for the active food packaging to control the spoilage and the pathogenic bacteria associated with the fresh chicken meat. © 2018 Institute of Food

  10. Determination of gel content and SEM morphology for sago-PVA blends film

    International Nuclear Information System (INIS)

    Sarada Idris; Zulkafli Ghazali; Kamarudin Hashim

    2006-01-01

    Blends of polyvinyl alcohol and sago starch have been prepared to evaluate the potential of producing biodegradable products. Glycerol was introduced in the blends to improve the flexibility of the films as plasticizer in order more flexible film. These blends have been subjected to electron beam irradiation to evaluate and characterized radiation effect on the blends. Subsequently films were produced from this blend. The gel content of un-irradiated and irradiated films as evidence of cross linking was measured and discussed. This paper also discuss the films morphology from Scanning Electron Microscopy(SEM) observation. (Author)

  11. Understanding the extremely low fracture toughness of freestanding gold thin films by in-situ bulge testing in an AFM

    Energy Technology Data Exchange (ETDEWEB)

    Preiß, Eva I., E-mail: eva.preiss@fau.de; Merle, Benoit; Göken, Mathias

    2017-04-13

    The fracture toughness of freestanding gold films with thicknesses between 60 nm and 320 nm was determined by bulge testing to be around 2 MPa m{sup 1/2}. This surprisingly low value confirms the trend also observed for other metals that thin films exhibit only a fraction of the bulk fracture toughness. In order to understand this behavior, the fracture process of freestanding gold films with a crack introduced by focused ion beam (FIB) milling was observed in-situ in an atomic force microscope (AFM). AFM scans of the crack tip region show stable crack growth mainly along grain boundaries. Plastic deformation is localized in a narrow corridor in front of the crack tip. A large plastic zone, as one would typically expect under plane stress, is not observed. Instead, strong local necking is evidenced. We conclude that the spatial confinement of the plastic deformation is the primary reason for the low fracture toughness of metallic thin films.

  12. Biodegradable films and spray coatings as eco-friendly alternative to petro-chemical derived mulching films

    Directory of Open Access Journals (Sweden)

    G. Vox

    2013-09-01

    Full Text Available The use of plastic mulching films in horticulture causes the serious drawback of huge amount of wastes to be disposed of at the end of their lifetime. Several pre-competitive research products based on raw materials coming from renewable sources were recently developed to be used as biodegradable materials for soil mulching. Biodegradable materials are designed in order both to retain their mechanical and physical properties during their using time and to degrade at the end of their lifetime. These materials can be integrated directly in the soil in order to biodegrade because the bacterial flora transforms them in carbon dioxide or methane, water and biomass. The innovative materials can be obtained using natural polymers, such as starch, cellulose, chitosan, alginate and glucomannan. Biodegradable extruded mulching films were performed by means of thermo-plasticizing process. Spray mulch coatings were realized directly in field, by spraying water solutions based on natural polysaccharides, thus covering the cultivated soil with a protective thin geo-membrane. In this paper an overview on the formulation development, processing understanding, field performance, mechanical and radiometric properties of these innovative materials for soil mulching is presented. In field the biodegradable mulching films showed suitable mechanical properties if compared to the low density polyethylene films. The radiometric properties and their effect on the temperature condition and on weed control in the mulched soil were evaluated too. At the end of their lifetime the biodegradable materials were shattered and buried into the soil together with plants.

  13. Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics

    Science.gov (United States)

    Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  14. Quality changes of 'Sanguinello' oranges wrapped with different plastic films under simulated marketing conditions.

    Science.gov (United States)

    D'Aquino, S; Malinconico, M; Avella, M; Di Lorenzo, M L; Mura; Palma, A

    2013-01-01

    Chemical and eating quality of citrus fruit changes slowly after harvest, and quality alteration is mainly due to shrinkage, loss of firmness, excessive weight loss and decay rather than a reduction of nutritional value and taste features. Film wrapping may be a suitable means to reduce transpiration and preserve market quality provided film permeability to gases does not lead to: 1) a reduction of in-package O2 partial pressure at a point that would induce anaerobic respiration; 2) an increase of CO2 concentration to toxic levels. This experiment was carried out to study quality changes of 'Sanguinello' oranges treated or not treated with 500 mg/L imazalil (IMZ) and wrapped with continuous, macro- or micro-perforated polyolefinic films. Wrapped and no-wrapped fruit were stored at 20 degrees C and 60% RH for 20 or 30 days. In-package gas composition of the macro-perforated film showed no significant difference compared to air composition, while in-package partial pressure of CO2 and O2 ranged between 4 (continuous film) and 9.8 kPa (micro-perforated films), and 14.8 (continuous film) and 5 kPa (micro-perforated films), respectively. After 30 days of storage weight loss in fruit wrapped with the macro-perforated film was (4.3%) slightly lowerthan un-packed fruit (5%), while in all other packages weight loss never exceeded 0.7%.Quality changes were quite stable over storage in all treatments, although slight but significantly lower levels of total soluble solids and ascorbic acid were detected in micro-perforated films with the lowest degree of perforation. However, the sensory analysis denoted a remarkable decrease of firmness in un-wrapped or wrapped fruit with macro-perforated film, while a moderate build-up of off-flavour, which reduced the eating quality, developed in micro-perforated films. Decay ranged between 6 and 12% in not treated fruit, with the lowest incidence detected in un-wrapped fruit, whereas differences among the different films were not

  15. How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1?

    Science.gov (United States)

    Ogieglo, Wojciech; Rahimi, Khosorov; Rauer, Sebastian Bernhard; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-07-27

    Dynamic sorption of ethanol and toluene vapor into ultrathin supported films of polymer of intrinsic microporosity PIM-1 down to a thickness of 6 nm are studied with a combination of in situ spectroscopic ellipsometry and in situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm, three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to that of thicker films. Second, at low penetrant activities (below 0.3p/p 0 ), films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite a similar swelling magnitude. Third, for the ultrathin films, the onset of the dynamic penetrant-induced glass transition P g has been found to shift to higher values, indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the superglassy PIM-1 at the substrate surface leads to an arrested, even more rigid, and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics, and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant's diffusion, the surface seems to plasticize earlier than the bulk, and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.

  16. Microcrystalline silicon growth by low laser energy crystallization on a plastic substrate

    International Nuclear Information System (INIS)

    Kim, D. Y.; Seo, C. K.; Shim, M. S.; Kim, C. H.; Yi, J.

    2004-01-01

    We are reporting the crystallization of amorphous silicon (a-Si) using a XeCl excimer laser treatment. Although polycarbonate (PC) plastic substrates are very weak at high temperatures of more than 150 .deg. C, they are very useful for applications to microelectronics because of light weight, high transmittance, and flexibility. In order to crystallize a-Si films on plastic substrates, we suggest that a CeO 2 seed layer will be very helpful at a low laser energy density. The seed layer is deposited at room temperature by rf using magnetron sputtering. A seed layer deposition method will be also presented in detail in this article. We compare a-Si crytallization without a seed layer with one with a seed layer deposited between the a-Si and the plastic substrate. The a-Si was deposited on the plastic substrate by using inductively coupled plasma Chemical-Vapor Deposition (ICPCVD) at the room temperature. In this paper, we will present the crystallization properties of a-Si with and without a CeO 2 seed layer on the plastic substrate.

  17. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  18. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.; Masuzawa, T.

    2011-01-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO 2 ) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO 2 films and DLC/TiO 2 /DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO 2 -coated and the DLC/TiO 2 /DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO 2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO 2 /DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO 2 /DLC film had a photocatalytic effect even though the TiO 2 film was covered with the DLC film.

  19. A new radiochromic film for radiation processing

    International Nuclear Information System (INIS)

    Sidney, L.N.; Lynch, D.C.; Willett, P.S.; Englund, W.J.

    1990-01-01

    Acid-sensitive leuco dyes in combination with a chlorine-containing polymer have been used to make a new kind of radiochromic film for radiation processing. When exposed to gamma, electron beam, or high intensity ultraviolet radiation, these films undergo a color change from colorless to royal blue, fuschia, or black, depending on the dye. The dose response for gamma and electron beam radiation has been characterized using reflection and transmission spectrophotometry over an adsorbed dose range of 1 to 100 kGy. The primary features of the films include improved color stability before and after irradiation and improved moisture resistance. The response and stability of the films make them useful for indicator (qualitative) or dosimeter (quantitative) films or labels for sterilization of medical products, food (especially meat, poultry, and spices), pharmaceuticals, and cosmetics, and the crosslinking of plastics, and the curing of polymer coatings. Large pieces of the film could be used in dose mapping when setting up and validating radiation processes and medical treatments

  20. Thermal math model analysis of FRSI test article subjected to cold soak and entry environments. [Flexible Reuseable Surface Insulation in Space Shuttle Orbiter

    Science.gov (United States)

    Gallegos, J. J.

    1978-01-01

    A multi-objective test program was conducted at the NASA/JSC Radiant Heat Test Facility in which an aluminum skin/stringer test panel insulated with FRSI (Flexible Reusable Surface Insulation) was subjected to 24 simulated Space Shuttle Orbiter ascent/entry heating cycles with a cold soak in between in the 10th and 20th cycles. A two-dimensional thermal math model was developed and utilized to predict the thermal performance of the FRSI. Results are presented which indicate that the modeling techniques and property values have been proven adequate in predicting peak structure temperatures and entry thermal responses from both an ambient and cold soak condition of an FRSI covered aluminum structure.

  1. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.

    Science.gov (United States)

    Ro, Kyoung S; Hunt, Patrick G; Jackson, Michael A; Compton, David L; Yates, Scott R; Cantrell, Keri; Chang, SeChin

    2014-08-01

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25%m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the (1)H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations. Published by Elsevier Ltd.

  2. Capturing Plastic Surgery on Film—Making Reconstruction Visible

    Science.gov (United States)

    Ismail, Tarek; Sarraf, Namita; Epple, Christian; Schaefer, Kristin Marit; Schaefer, Dirk J.

    2017-01-01

    Summary: The Swiss Plastic Surgery Association (https://plasticsurgery.ch/en/) decided to produce a corporate video to illustrate the concept of "plastic surgery of confidence" to the public. We show the diversity of specializations and the vast range of tasks that surgeons passionately handle day in and day out. We wanted to convey 2 main messages: first, that plastic surgery is more than just cosmetic surgery, and second, that plastic surgery in Switzerland is synonymous with quality and confidence. We selected 17 topics that we felt had good filmic potential and would best explain to the public what plastic surgery is about. This included the selection of appropriate patients, experts, and locations from all over the country. We thought it crucial to show the initial preoperative situation, as only in this case would the achievement of reconstruction be evident and comprehensive to the layman audience. The actual production was filmed in 5 different locations and took 5 days of shooting. We recorded 17 surgeons, 9 patients, and about 30 voluntary background actors. From 23 hours of footage, we created a 7 minute, 22 second corporate video, recorded in 3 of the Swiss national languages. The video was presented to the public online in June 2016, on the same day as the National Open Day of Plastic Surgery in Switzerland. The video is available online. We evaluated the impact of the video using a questionnaire for lay people and observed that it could substantially improve the perception of our specialty, especially regarding the reconstructive aspect. We feel that a freely available corporate video is a very useful means to promote plastic surgery and help patients better understand what it is all about. PMID:29062635

  3. Capturing Plastic Surgery on Film—Making Reconstruction Visible

    Directory of Open Access Journals (Sweden)

    Alexander Lunger, MD

    2017-09-01

    Full Text Available Summary:. The Swiss Plastic Surgery Association (https://plasticsurgery.ch/en/ decided to produce a corporate video to illustrate the concept of "plastic surgery of confidence" to the public. We show the diversity of specializations and the vast range of tasks that surgeons passionately handle day in and day out. We wanted to convey 2 main messages: first, that plastic surgery is more than just cosmetic surgery, and second, that plastic surgery in Switzerland is synonymous with quality and confidence. We selected 17 topics that we felt had good filmic potential and would best explain to the public what plastic surgery is about. This included the selection of appropriate patients, experts, and locations from all over the country. We thought it crucial to show the initial preoperative situation, as only in this case would the achievement of reconstruction be evident and comprehensive to the layman audience. The actual production was filmed in 5 different locations and took 5 days of shooting. We recorded 17 surgeons, 9 patients, and about 30 voluntary background actors. From 23 hours of footage, we created a 7 minute, 22 second corporate video, recorded in 3 of the Swiss national languages. The video was presented to the public online in June 2016, on the same day as the National Open Day of Plastic Surgery in Switzerland. The video is available online. We evaluated the impact of the video using a questionnaire for lay people and observed that it could substantially improve the perception of our specialty, especially regarding the reconstructive aspect. We feel that a freely available corporate video is a very useful means to promote plastic surgery and help patients better understand what it is all about.

  4. Properties of sericin films crosslinking with dimethylolurea

    International Nuclear Information System (INIS)

    Turbiani, Franciele R.B.; Stroher, Gylles Ricardo; Tomadon Junior, Jose; Seixas, Fernanda L.; Stroher, Gylles Ricardo; Gimenes, Marcelino L.

    2011-01-01

    Sericin is a natural silk protein which is removed from silk in a process called degumming. Thus, finding a use for the extracted sericin as a bio polymer film will create added value product which will benefit both the economy and society. The films were manufactured with silk sericin, using different dimethylolurea (DMU) concentrations as cross-linking agent and glycerol as plasticizer. Sericin films produced by crosslinking method were light yellow, homogeneous, transparent and visually attractive. The average film thickness was 0.10 ± 0.02 mm. The bio films show low water solubility (up to 30% of total dry mass), good tension strength and high elongation ability. The water vapor permeability is moderate, typical of highly hydrophilic films. Structural transformations in silk sericin films were analyzed using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and X-ray diffraction. This resulted in aggregated β-sheet structure (peak at 1616 cm-1 in the amide I absorption) by FTIR studies and increasing the DMU concentration in film decreased the peak intensity at 2θ = 20 degree. Sericin-based film properties are dependent on components used to form film, which can used to tailor the desired film flexibility and minimize permeability of films. (author)

  5. Properties of sericin films crosslinking with dimethylolurea

    Energy Technology Data Exchange (ETDEWEB)

    Turbiani, Franciele R.B.; Stroher, Gylles Ricardo [Federal Technology University - UTFPR, Campus Apucarana, PR (Brazil); Tomadon, Junior, Jose; Seixas, Fernanda L; Stroher, Gylles Ricardo; Gimenes, Marcelino L., E-mail: francieler@utfpr.edu.br [State University of Maringa. UEM, Campus Maringa, PR (Brazil)

    2011-07-01

    Sericin is a natural silk protein which is removed from silk in a process called degumming. Thus, finding a use for the extracted sericin as a bio polymer film will create added value product which will benefit both the economy and society. The films were manufactured with silk sericin, using different dimethylolurea (DMU) concentrations as cross-linking agent and glycerol as plasticizer. Sericin films produced by crosslinking method were light yellow, homogeneous, transparent and visually attractive. The average film thickness was 0.10 {+-} 0.02 mm. The bio films show low water solubility (up to 30% of total dry mass), good tension strength and high elongation ability. The water vapor permeability is moderate, typical of highly hydrophilic films. Structural transformations in silk sericin films were analyzed using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and X-ray diffraction. This resulted in aggregated {beta}-sheet structure (peak at 1616 cm-1 in the amide I absorption) by FTIR studies and increasing the DMU concentration in film decreased the peak intensity at 2{theta} = 20 degree. Sericin-based film properties are dependent on components used to form film, which can used to tailor the desired film flexibility and minimize permeability of films. (author)

  6. Aroma barrier properties of sodium caseinate-based films.

    Science.gov (United States)

    Fabra, Maria José; Hambleton, Alicia; Talens, Pau; Debeaufort, Fréderic; Chiralt, Amparo; Voilley, Andrée

    2008-05-01

    The mass transport of six different aroma compounds (ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol, and cis-3-hexenol) through sodium caseinate-based films with different oleic acid (OA)/beeswax (BW) ratio has been studied. OA is less efficient than BW in reducing aroma permeability, which can be attributed to its greater polarity. Control film (without lipid) and films prepared with 0:100 OA/BW ratio show the lowest permeability. OA involves a decrease in aroma barrier properties of the sodium caseinate-based films due to its plasticization ability. Preferential sorption and diffusion occurs through OA instead of caseinate matrix and/or BW. The efficiency of sodium caseinate-based films to retain or limit aroma compound transfers depend on the affinity of the volatile compound to the films, which relates physicochemical interaction between volatile compound and film. Specific interactions (aroma compound-hydrocolloid and aroma compound-lipid) induce structural changes during mass transfer.

  7. Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Barrier Properties

    DEFF Research Database (Denmark)

    Sárossy, Zsuzsa; Blomfeldt, J.O.; Hedenqvist, Mikael S.

    2012-01-01

    (ethylene glycol) methyl ether (mPEG) plasticizer addition. Incorporation of sepiolite did not significantly influence the thermal degradation or the gas barrier properties of arabinoxylan films, which is likely a consequence of sepiolite fiber morphology. In summary, sepiolite was shown to have potential...... as an additive to obtain stronger hemicellulose films although other approaches, possibly in combination with the use of sepiolite, would be needed if enhanced film barrier properties are required for specific applications....

  8. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  9. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    Directory of Open Access Journals (Sweden)

    Pouria Falamarzpour

    2017-02-01

    Full Text Available Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR. The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured, chemically cross-linked (cured, and uncross-linked (prepared by acetic acid films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  10. Evaluation of tensile properties and water absortion of cassava starch film

    Science.gov (United States)

    Walster, R. Justin; Rozyanty, A. R.; Kahar, A. W. M.; Musa, L.; Shahnaz, S. B. S.

    2017-09-01

    Casava Starch film was prepared by casting method with different percentage of glycerol (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) as plasticizer. The effect of glycerol content in starch film on mechanical and water absorption properties was studied. Results shows that the increase of glycerol content in cassava starch film had decrease the tensile strength, tensile modulus and increase the elongation of break properties. The result of water absorbency tended to increase for starch film with higher percentage of glycerol content. The incorporation of glycerol in cassava starch film had increase the water absorption ability due to increase of hydroxyl content contributed by glycerol.

  11. Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation

    International Nuclear Information System (INIS)

    Chen, J.; Wang, W.; Qian, L.H.; Lu, K.

    2003-01-01

    The plastic deformation behavior was investigated by using nanoindentation in a magneto-sputtered nanocrystalline (nc) Cu film with an average grain size of 14 nm. The determined critical shear stress to initiate plasticity in the nc-Cu sample (about 8.3 GPa) is identical to that for nucleation of lattice dislocations in an annealed coarse-grained Cu (8.5 GPa), and both values are close to the theoretical shear strength in the dislocation-free single crystal. This observation, in agreement with the atomistic simulation results, supports the argument that the onset of plasticity of the nc-Cu is associated with initiation of dislocation activities at grain boundaries

  12. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    Directory of Open Access Journals (Sweden)

    Sriburi Pensiri

    2011-02-01

    Full Text Available Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v based films plasticized with glycerol (30 g/100 g starch were characterized with respect to the effect of carboxymethyl cellulose (CMC concentrations (0, 10, 20, 30 and 40%w/w total solid and relative humidity (34 and 54%RH on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR, melting temperature by differential scanning calorimetry (DSC, and morphology by scanning electron microscopy (SEM. Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products.

  13. Necking of anisotropic micro-films with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2008-01-01

    Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco......-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening...... exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress....

  14. Metastability of a-SiO{sub x}:H thin films for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Serenelli, L., E-mail: luca.serenelli@enea.it [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Martini, L. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Imbimbo, L. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Asquini, R. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Menchini, F.; Izzi, M.; Tucci, M. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy)

    2017-01-15

    Highlights: • a-SiO{sub x}:H film deposition by RF-PECVD is optimized from SiH{sub 4}, CO{sub 2} and H{sub 2} gas mixture. • Metastability of a-SiO{sub x}:H/c-Si passivation is investigated under thermal annealing and UV exposure. • A correlation between passivation metastability and Si−H bonds is found by FTIR spectra. • A metastability model is proposed. - Abstract: The adoption of a-SiO{sub x}:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiN{sub x} on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiO{sub x}:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Si−H and Si−O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm{sup 2}. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiO{sub x}:H/c-Si/a-SiO{sub x}:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiO{sub x} passivation properties, was furthermore considered. In

  15. Growth and analysis of highly oriented (11n) BCSCO films for device research

    Energy Technology Data Exchange (ETDEWEB)

    Raina, K.K.; Pandey, R.K. [Texas A& M Univ., College Station, TX (United States)

    1994-12-31

    Films of BCSCO superconductor of the type Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub x} have been grown by liquid phase epitaxy method (LPE), using a partially closed growth chamber. The films were grown on (001) and (110) NdGaO{sub 3} substrates by slow cooling process in an optimized temperature range below the peritectic melting point (880{degrees}C) of Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub 8}. Optimization of parameters, such as seed rotation, soak of initial growth temperature and growth period results in the formation of 2122 phase BCSCO films. The films grown at rotation rates of less than 30 and more than 70 rpm are observed to be associated with the second phase of Sr-Ca-Cu-O system. Higher growth temperatures (>860{degrees}C) also encourage to the formation of this phase. XRD measurements show that the films grown on (110) NdGaO{sub 3} have a preferred (11n)-orientation. It is pertinent to mention here that in our earlier results published elsewhere we obtained c-axis oriented Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub 8} phase films on (001) NdGaO{sub 3} substrate. Critical current density is found to be higher for the films grown on (110) than (001) NdGaO{sub 3} substrate orientation. The best values of zero resistance (T{sub co}) and critical current density obtained are 87 K and 10{sup 5} A/cm{sup 2}, respectively.

  16. Fracture properties of hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; King, S.W.; Bielefeld, J.; Xu, J.; Dauskardt, R.H.

    2012-01-01

    The cohesive fracture properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films in moist environments are reported. Films with stoichiometric compositions (C/Si ≈ 1) exhibited a decreasing cohesive fracture energy with decreasing film density similar to other silica-based hybrid organic–inorganic films. However, lower density a-SiC:H films with non-stoichiometric compositions (C/Si ≈ 5) exhibited much higher cohesive fracture energy than the films with higher density stoichiometric compositions. One of the non-stoichiometric films exhibited fracture energy (∼9.5 J m −2 ) greater than that of dense silica glasses. The increased fracture energy was due to crack-tip plasticity, as demonstrated by significant pileup formation during nanoindentation and a fracture energy dependence on film thickness. The a-SiC:H films also exhibited a very low sensitivity to moisture-assisted cracking compared with other silica-based hybrid films. A new atomistic fracture model is presented to describe the observed moisture-assisted cracking in terms of the limited Si-O-Si suboxide bond formation that occurs in the films.

  17. The Potential of Lignolytic Trichoderma Isolates in LDPE (Low Density Polyethylene) Plastic Biodegradation

    Science.gov (United States)

    Hikmah, M.; Setyaningsih, R.; Pangastuti, A.

    2018-03-01

    Plastic is experiencing buildup in the environment. Biodegradation process can be used as an alternative for LDPE plastic degradation because the process is environmentally friendly. Some fungi of the genus Trichoderma are known to have a role in plastic biodegradation. This study aims to find out how the potential of that lignolytic Trichoderma spp. isolates in LDPE biodegradation. Five isolates were screened by growing on MSMB (mineral salt medium broth) emulsified LDPE powder, with 35 days incubation at 30°C and shaking at 80 rpm. TL1, TL4, and TL5 are the three most potential isolates, indicated by the growth marked by increasing colony size on screening media. They were then tested for biodegradability by growing the isolates in MSMA (mineral salt medium agar) which then inoculated by 4 sheets of sterile LDPE 1x3 cm2 above the colony surface, incubated for 5, 15, 25 and 35 days. The degredability assessment is done by measuring the weight loss of LDPE sheets after biodegradation treatment. The obtained degradability percentage of TL1, TL4, and TL5 are 4.87%, 7.12%, and 7,51% respectively. The visual micrograph of LDPE film by SEM showed the appearance of damage and unevenness on the surface of the post-degradation film.

  18. Application of gamma irradiation on forming protein-based edible films; Aplicacao da irradiacao na formacao de filmes comestiveis proteicos

    Energy Technology Data Exchange (ETDEWEB)

    Sabato, Susy Frey

    2000-07-01

    In the last decade considerable interest has been addressed to the development of protein-based edible films due to their application in the food industry, as a substitute to traditional plastic films. The use of soy and whey proteins to form those films has been investigated, using heat, chemical and enzymatic processes. Gamma irradiation was recently reported to form caseinate-based edible films, due to the increase of the cohesive strength of the proteins by the formation of cross-links. This work aimed to verify the role of the gamma irradiation in the process of forming edible films from soy protein isolate (SPI) alone and in complex mixtures, that is, mixed with whey protein isolate (WPI), with carbethoxymethyl cellulose (CMC) and with poly(vinyl)alcohol (PVA). Gamma irradiation treatment improved significantly the mechanical properties for all films. The mechanical behavior is strongly related to the formulation, showing synergy between the gamma irradiation and the CMC, mainly for SPI-based films. SPI-based films presented a trend to decrease the water vapor permeability values when irradiated. The CMC addition showed significant improvements on the permeability for films from SPI and from the mixture of SPI with WPI. (author)

  19. Deep-freezing of boar semen in plastic film 'cochettes'.

    Science.gov (United States)

    Eriksson, B M; Rodriguez-Martinez, H

    2000-03-01

    The motility and membrane integrity of spermatozoa from nine boars frozen with a programmable freezing machine in plastic bags, 'cochettes', and in 'maxi-straws', in total doses of 5 x 10(9) spermatozoa/5 ml with glycerol (3%) used as cryoprotectant, were assessed after thawing. A computer-based cell motion analyser was used to evaluate sperm motility, while the integrity of the plasmalemma was assessed with fluorescent supravital dyes (C-FDA/PI). The fertilizing capacity of the semen frozen in the two containers was investigated by inseminating (AI) gilts. Pregnancy was monitored by Doppler-ultrasound, and the numbers of corpora lutea and viable embryos counted at slaughter, between days 30 and 38 after AI. The cochettes sustained the overall procedure of freezing/thawing (FT), with 30 min post-thaw (PT) sperm motility being significantly higher than for straws, 46.9 vs. 39.5%. The only significant difference in motility patterns detected when comparing the packages was a higher sperm velocity (VCL) in cochettes at 30 min PT. However, percentages of FT-spermatozoa with intact membranes, detected with the supravital probes, were higher in maxi-straws than in cochettes, 46.8 vs. 43.0% (P straws and those frozen in cochettes. The results indicate that although the deep-freezing of AI-doses of boar semen in large plastic bags is feasible, problems such as their inconvenient size for storage and inconsistent thawing must be solved before this type of container can be used for the commercial cryopreservation of boar semen.

  20. Aluminum-doped zinc oxide thin films grown on various substrates using facing target sputtering system

    Science.gov (United States)

    Kim, Hwa-Min; Lee, Chang Hyun; Shon, Sun Young; Kim, Bong Hwan

    2017-11-01

    Aluminum-doped zinc oxide (AZO) films were fabricated on various substrates, such as glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET), at room temperature using a facing target sputtering (FTS) system with hetero ZnO and Al2O3 targets, and their electrical and optical properties were investigated. The AZO film on glass exhibited compressive stress while the films on the plastic substrates showed tensile stress. These stresses negatively affected the crystalline quality of the AZO films, and it is suggested that the poor crystalline quality of the films may be related to the neutral Al-based defect complexes formed in the films; these complexes act as neutral impurity scattering centers. AZO films with good optoelectronic properties could be formed on the glass and plastic substrates by the FTS technique using the hetero targets. The AZO films deposited on the glass, PEN, and PET substrates showed very low resistivities, of 5.0 × 10-4 Ω cm, 7.0 × 10-4 Ω cm, and 7.4 × 10-4 Ω cm, respectively. Further, the figure merit of the AZO film formed on the PEN substrate in the visible range (400-700 nm) was significantly higher than that of the AZO film on PET and similar to that of the AZO film on glass. Finally, the average transmittances of the films in the visible range (400-700 nm) were 83.16% (on glass), 76.3% (on PEN), and 78.16% (on PET).