WorldWideScience

Sample records for plastic film packages

  1. Thin-Film Coated Plastic Wrap for Food Packaging

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2017-07-01

    Full Text Available In this study, the antimicrobial property and food package capability of polymethylpentene (PMP substrate with silicon oxdie (SiOx and organic silicon (SiCxHy stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The experimental results show that the stacked pair number of SiOx/SiCxHy on PMP is limited to three pairs, beyond which the films will crack and cause package failure. The three-pair SiOx/SiCxHy on PMP shows a low water vapor transmission rate of 0.57 g/m2/day and a high water contact angle of 102°. Three-pair thin-film coated PMP demonstrates no microbe adhesion and exhibits antibacterial properties within 24 h. Food shelf life testing performed at 28 °C and 80% humidity reports that the three-pair thin-film coated PMP can enhance the food shelf-life to 120 h. The results indicate that the silicon-based thin film may be a promising material for antibacterial food packaging applications to extend the shelf-life of food products.

  2. Thin-Film Coated Plastic Wrap for Food Packaging.

    Science.gov (United States)

    Wu, Hsin-Yu; Liu, Ting-Xuan; Hsu, Chia-Hsun; Cho, Yun-Shao; Xu, Zhi-Jia; Liao, Shu-Chuan; Zeng, Bo-Han; Jiang, Yeu-Long; Lien, Shui-Yang

    2017-07-18

    In this study, the antimicrobial property and food package capability of polymethylpentene (PMP) substrate with silicon oxdie (SiOx) and organic silicon (SiCxHy) stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The experimental results show that the stacked pair number of SiOx/SiCxHy on PMP is limited to three pairs, beyond which the films will crack and cause package failure. The three-pair SiOx/SiCxHy on PMP shows a low water vapor transmission rate of 0.57 g/m²/day and a high water contact angle of 102°. Three-pair thin-film coated PMP demonstrates no microbe adhesion and exhibits antibacterial properties within 24 h. Food shelf life testing performed at 28 °C and 80% humidity reports that the three-pair thin-film coated PMP can enhance the food shelf-life to 120 h. The results indicate that the silicon-based thin film may be a promising material for antibacterial food packaging applications to extend the shelf-life of food products.

  3. Identification of fatty foods with contamination possibilities by plasticizers when stored in PVC film packaging

    Directory of Open Access Journals (Sweden)

    Hilda Duval Barros

    2011-06-01

    Full Text Available Poly-(vinyl chloride (PVC requires the addition of plasticizers - additives that give flexibility and malleability for its processing into flexible film. The most used ones are: di-(2-ethylhexyl adipate (DEHA and di-(2-ethylhexyl phthalate (DEHP. Toxic effects of DEHP have been observed by several authors. Phthalates are being replaced by alternative substances in PVC flexible products, because of their possible toxicological effects. DEHA is a substitute for phthalates widely used as a plasticizer in PVC materials for involving food. Some authors have shown that the exposure to DEHA also induces toxicity. A cross-sectional study was performed to identify which fatty foods carry the possibility of contamination by DEHP and DEHA. Eighteen different foods with at least 3% (m/m fat and the possibility of being wrapped in plastic film were determined. This study suggested that all foods were subject to contamination by DEHP and DEHA in those conditions - in decreasing consumption order of 96 to 22% in the convenience sample. New guidelines on the limits of DEHA and DEHP established by the Brazilian legislation, as additives in PVC film for packaging fatty food, are still relevant to ensure human health.

  4. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging.

    Science.gov (United States)

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-01-01

    In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.

  5. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  6. Effect of different types of plastic packaging films on the moisture and aflatoxin contents of pistachio nuts during storage.

    Science.gov (United States)

    Shakerardekani, Ahmad; Karim, Roselina

    2013-04-01

    Pistachio nut (Pistacia vera L.) is one of the popular tree nuts in the world. Proper selection of packaging materials is necessary to prevent absorption of moisture and aflatoxin formation which will influence the overall product quality and safety. This research is undertaken to study the effect of different type of flexible packaging films on the moisture and aflatoxin contents of whole pistachio nuts during storage at ambient temperature (22-28 °C) and relative humidity of 85-100%. Five types of plastic films tested were low density polyethylene (LDPE) which serves as the control, food-grade polyvinyl chloride (PVC), nylon (LDPE/PA), polyamide/polypropylene (PA/PP) and polyethylene terephthalate (PET). The moisture content and aflatoxin content of pistachio nuts were measured using oven drying method and HPLC, respectively. Sample were analysed at 0, 2, 4, 6, 8 and 10 months during the storage period. Results showed that there was an increase in moisture content with the increase in storage time of pistachio nuts. The increase in moisture content was associated with the aflatoxin level of pistachio nuts during storage time. All the packaging materials except LDPE delayed the moisture absorption and aflatoxin formation of the product. The most suitable packaging materials for maintaining the quality and safety of pistachio nuts is PET films followed by nylon, PA/PP and PVC. The shelf-life of pistachio can be extended from 2 months (Control) to 5 months when PET is used as the packaging material.

  7. Tracer aroma compound transfer from a solid and complex-flavored food matrix packed in treated papers or plastic packaging film.

    Science.gov (United States)

    Dury-Brun, Cécile; Lequin, Sonia; Chalier, Pascale; Desobry, Stéphane; Voilley, Andrée

    2007-02-21

    The objective of this work was to study the transfer of four aroma compounds (ethyl butyrate, ethyl hexanoate, cis-3-hexenol, and benzaldehyde) from a solid and complex-flavored food matrix (sponge cake) toward and through packaging films placed in indirect contact during storage in accelerated aging conditions (38 degrees C and 86% relative humidity gradient). The efficiency of treated papers relative to that of standard paper and plastic as barrier was tested. Before storage, aroma compound volatility in the sponge cake was measured, and similar values were found between aroma compounds, due to the fat content of the sponge cake. Whatever the aroma compound, permeability values during storage were similar for the same packaging film. The plastic film was the highest barrier, whereas calendering and coating treatments applied to treated papers decreased effectively their permeability. An opposite trend was observed for aroma compound sorption into packaging films during storage.

  8. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  9. 49 CFR 178.519 - Standards for plastic film bags.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for plastic film bags. 178.519 Section... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.519 Standards for plastic film bags. (a) The identification code for a plastic film bag is 5H4. (b) Construction requirements for plastic...

  10. Microelectronics plastic molded packaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R. [Ktech Corp., Albuquerque, NM (United States); Palmer, D.W.; Peterson, D.W. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  11. Evaluation of retail fresh meat packagings covered with stretch films of plasticized PVC and non-PVC alternatives

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Togeskov, P.; Hallas, J.

    2004-01-01

    The characteristics and performance of several non-PVC stretch films were compared to those of plasticized PVC. Initially the main polymer components Of the film were identified by infrared spectrometry and differential scanning calorimetry. The differences between films in mechanical properties,...... (thiobarbituric acid reactive substances) through a prolonged shelf-life test. No differences in meat quality during normal shelf-life were seen as a function of the film used....... to legislation. The potential for specific migration was investigated by solvent extraction followed by gas chromatography. Twenty-four components were identified, of which 11 could be compared to relevant migration limits based on evaluations of the EU Scientific Committee for Food. The release of solvents...... was estimated by direct thermal desorption at 100degreesC. Four films of different composition were used in a storage experiment with fresh beef. The meat quality was followed by measurements of colour, microbiological quality (total colony forming units and lactic acid bacteria) and lipid oxidation...

  12. Printing Technologies and Environmentally-friendly Measures of Plastic Flexible Packaging Film%塑料软包装薄膜的印刷技术及环保措施

    Institute of Scientific and Technical Information of China (English)

    庄树贵; 龚伟兵

    2011-01-01

    The printing and compounding technologies of plastic flexible packaging film were introduced.The environmentally-friendly measures in plastic flexible packaging film were expounded from the aspects of printing ink, raw material, waste material treatment, etc. The development direction of the plastic flexible packaging film was also predicted.%介绍了塑料软包装薄膜的印刷和复合工艺,从油墨、塑料原料及废弃物处理等方面阐述了塑料软包装薄膜印刷工业中采取的环保措施,并指出了塑料软包装薄质印刷工业的发展方向.

  13. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging

    OpenAIRE

    Sanyang, M. L.; Sapuan, S. M.; Jawaid, M.; M. R. Ishak; J. Sahari

    2015-01-01

    In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water...

  14. DEHA-plasticized PVC for retail packaging of fresh meat

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Naamansen, Ebbe Tubæk

    1998-01-01

    A selection of frequently consumed meat products were packed in two commercial types of plasticized PVC film with declared plasticizer compositions of 11 and 21% di-(ethylhexyl)adipate (DEHA), respectively. The meat products were analysed for DEHA after packaging and storage until their "use by......" date. Pretreatment of the meat, including cutting, chopping, cooking and packaging, was performed according to normal practice in a Danish supermarket. All samples contained DEHA, in general the investigation showed that a high fat content in or at the surface of the meat and/or a high storage...

  15. Filmes plásticos e ácido ascórbico na qualidade de araticum minimamente processado Plastic packaging film and ascorbic acid treatment on the quality of fresh cut araticum

    Directory of Open Access Journals (Sweden)

    Manoel Soares Soares Júnior

    2007-12-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos do ácido ascórbico e do tipo de filme plástico como embalagem na qualidade do araticum minimamente processado e mantido sob refrigeração. O ácido ascórbico não evitou o escurecimento do araticum minimamente processado. Independentemente do tipo de embalagem, a acidez titulável aumentou com o tempo. A embalagem de policloreto de vinila ou polietileno de baixa densidade promoveu uma significativa perda de massa se comparada com a a laminada a vácuo. A embalagem laminada a vácuo propiciou vida-de-prateleira mais longa ao produto, o qual permaneceu com aparência adequada e qualidade comercial até o sétimo dia do armazenamento. A vida-de-prateleira dos demais tratamentos alcançou somente três dias.This study was aimed at evaluating the effect of ascorbic acid and type of plastic packaging film on the quality of refrigerated fresh cut araticum. Ascorbic acid did not prevent fresh cut araticum from darkening. Regardless of the type of plastic packaging, the fruit titrable acidity increased with time. Packing with polyvynil chloride or with low density polyethylene promoted a significant mass loss compared to laminate vacuum packaging. Laminate vacuum packaging increased the shelf life of the product up 7 days, maintaining its commercial quality and appearance. The shelf life of the other treatments reached 3 days only.

  16. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  17. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  18. 纤维素膜降解性能及其在切分蔬菜保鲜中的应用研究%Application of Biodegradable Plastic Packaging Film on Preservation of Fresh-cut Vegetables

    Institute of Scientific and Technical Information of China (English)

    胡云峰; 杨秋月; 宋慧颖; 郭红莲

    2012-01-01

    The degradation of cellulose membrane, and the application of cellulose membrane in fresh vegetables are mainly investigated through studying its permeability, moisture permeability, and preservation. The results show that: 1 ) Different microbial has different degradation rate to cellulose membranes; 2 ) Cellulose packaging film's degradation performance is the best that it can be depredated fully after three days by inoculating Penicillium; 3 ) Cellulose packaging film's permeability is better than plastic film, resulting in the poor effects of green color and anti- browning when preserving fresh vegetables; 4 ) Cellulose membrane has so strong water vapor permeability that it's water retention is worse than the plastic packaging film.%主要研究了纤维素膜的降解性能,并通过其透气性、透湿性和保鲜效果三方面的实验来研究纤维素膜在蔬菜保鲜中的应用.结果表明:1)不同微生物对纤维素膜的降解速度有很大差异;2)纤维素保鲜包装膜降解性能好,采用接种青霉的方法,3天后膜达到全部降解;3)纤维素保鲜包装膜的透气性能优于塑料膜,导致保鲜蔬菜时护绿和防褐变效果差;4)纤维素保鲜包装膜的透湿性能较强,对包装的蔬菜保水性较塑料包装膜差.

  19. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so th

  20. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so

  1. Plasticizers effect on native biodegradable package materials

    Science.gov (United States)

    Cozar, Onuc; Cioica, Nicolae; Coţa, Constantin; Nagy, Elena Mihaela; Fechete, Radu

    2017-01-01

    Changes in intensity of some IR and Raman bands suggest the plasticizing - antiplasticizing effects of water and glycerol contents and a small increase of amorphous/crystalline ratio, too. The nuclear magnetic relaxation data show that the amorphous/crystalline ratio depends on amylose/amylopectin mobility and also by the place of their polymer chain segments. Thus the distributions of spin-spin (T2) relaxation times and the shift toward higher values of some T2 characteristic peaks show that the increasing of water and glycerol content in the starch package materials lead to the more mobile amylose and amylopectin polymer chain segments and the prevalence of amorphous regions in the prepared native corn starch samples.

  2. Effect of Ultra-high Pressure Processing on the Properties of Plastic Packaging Films%超高压对塑料包装薄膜性能的影响

    Institute of Scientific and Technical Information of China (English)

    彭珍; 赵国华

    2011-01-01

    超高压灭菌被认为是国际上食品领域的高新技术,其作为一种新兴的保藏技术能够最大限度保持食品的营养成分和自然的感官特性.但研究表明,由于超高压处理过程中强大的机械力所致的处理体系体积的缩小和温度的升高,可能会对塑料包装薄膜的结构、透性等产生一定的影响,从而影响包装食品的货架期和质量.文中综述了超高压对食品塑料包装薄膜结构和理化特性等方面的影响.%Recently, ultra-high pressure processing has been introduced and suggested as a food preservation technology, and it could maintain the nutritional attributes and authentic sensory properties. However, some studies have shown that as a result of the strong mechanical force formed during the high-pressure treatment, the reducing of volume and increasing of temperature of the system may have impact on the structure and permeability of the plastic packaging films, and then affect the self-life and quality of the packaged food. In the light of published literatures,the effect of UHP on structure and physicochemical properties of plastic packaging films will be reviewed.

  3. Development of Green Banana (Musa paradisiaca as Potential Food Packaging Films and Coatings

    Directory of Open Access Journals (Sweden)

    Nur Hanani Z. A.

    2016-02-01

    Full Text Available The aim of this study was to develop biodegradable packaging films based on a unripe green banana (Musa paradisiaca L. with different plasticizers; glycerol, polyethylene glycol (PEG and sorbitol at various concentrations (10-50%. Banana films were produced by using casting method and physical properties of these films were determined. Banana films with 10% of PEG showed the lowest water solubility (P≤0.05 followed by films with glycerol and sorbitol. Banana films with 40% plasticizers possessed the lowest water vapor permeability (WVP whereas films with 30% glycerol exhibited higher values of tensile strength (P≤0.05 compared to films with PEG and sorbitol. However, types of plasticizers did not influence the thickness of the films. Also, used of higher concentrations of plasticizers had increased the solubility values. These findings reveal that concentrations and types of plasticizers have significant roles to provide banana film or coating with good physical properties. The aim of this study was to develop biodegradable packaging films based on a unripe green banana (Musa paradisiaca L. with different plasticizers; glycerol, polyethylene glycol (PEG and sorbitol at various concentrations (10-50%. Banana films were produced by using casting method and physical properties of these films were determined. Banana films with 10% of PEG showed the lowest water solubility (P≤0.05 followed by films with glycerol and sorbitol. Banana films with 40% plasticizers possessed the lowest water vapour permeability (WVP whereas films with 30% glycerol exhibited higher values of tensile strength (P≤0.05 compared to films with PEG and sorbitol. However, types of plasticizers did not influence the thickness of the films. Also, used of higher concentrations of plasticizers had increased the solubility values. These findings reveal that concentrations and types of plasticizers have significant roles to provide banana film or coating with good physical

  4. Recyclability assessment of nano-reinforced plastic packaging

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, C., E-mail: csanchez@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Hortal, M., E-mail: mhortal@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Aliaga, C., E-mail: caliaga@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Devis, A., E-mail: adevis@itene.com [Sustainability Divison, Packaging, Transport and Logistics Research Institute, Albert Einstein 1, 46980 Paterna, Valencia (Spain); Cloquell-Ballester, V.A., E-mail: cloquell@dpi.upv.es [Dpto. Proyectos de Ingeniería, Universitat Politècnica de València, Camino de Vera, 46022 Valencia (Spain)

    2014-12-15

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a

  5. Recyclability assessment of nano-reinforced plastic packaging.

    Science.gov (United States)

    Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A

    2014-12-01

    Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more

  6. 塑杯包装封口盖膜揭开力的测试方法%The Test Method for Opening Force on Sealing Cover Film of Plastic Cup Packaging

    Institute of Scientific and Technical Information of China (English)

    张雅君; 王兴; 宋利君

    2014-01-01

    A common open force testing method of plastic cup sealing film was designed based on 10 kinds of plastic cup packagings of jelly and yogurt sample by Electronic universal tensile testing machine,the result betweens 3N to 70N.Finally,the method can be used by researcher in factory and research institute.%通过对10种市售果冻、酸奶塑杯包装类样品设计统一的杯体裁剪方法,对样品进行裁剪处理,利用电子万能拉力试验机进行盖膜揭开力的测试,测试结果集中在3~70N之间,最终建立了果冻、酸奶等盖膜封口形式的塑杯包装开口力的测试方法,为生产厂家、研究机构提供了一种测试盖膜揭开力的方法依据。

  7. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  8. Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol

    Directory of Open Access Journals (Sweden)

    H. Somashekarappa

    2013-01-01

    Full Text Available The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC and Polyvinylpyrrolidone (PVP blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.

  9. Correlation between plastic films properties and flexographic prints quality

    Directory of Open Access Journals (Sweden)

    Joanna Izdebska

    2015-12-01

    Full Text Available The article presents a preliminary study of the correlation between films properties and flexographic print quality defined as the optical density of full tone. It is also an attempt to answer the question whether traditional plastic films can be replaced by biodegradable and compostable films as printing substrates and as materials for packaging. Four kinds of films were used in the experiments – two plastic films (PP and PET and two biodegradable films (PLA and cellulose. The permeability to water vapour and oxygen, as well as the tensile strength and elongation at break of the material were investigated for all samples. The measurements of the contact angle with water, diiodomethane and printing ink were also conducted for these films, and their surface free energy was determined. All samples were printed on laboratory equipment by a flexographic technique using water-based inks and the optical density of copies was measured. It has been found that the print quality was determined by the type of film used. Furthermore, the correlation between optical density and wettability defined as the contact angle between film and water or printing ink turned out to be significant. Other important parameter is surface free energy, albeit to a little lesser extent. The barrier and mechanical properties of the material have an even weaker impact on optical density. In addition, it is possible to choose the biodegradable film with properties corresponding to conventional, commonly used films which enable high quality prints.

  10. Chitosan films and blends for packaging material.

    Science.gov (United States)

    van den Broek, Lambertus A M; Knoop, Rutger J I; Kappen, Frans H J; Boeriu, Carmen G

    2015-02-13

    An increased interest for hygiene in everyday life as well as in food, feed and medical issues lead to a strong interest in films and blends to prevent the growth and accumulation of harmful bacteria. A growing trend is to use synthetic and natural antimicrobial polymers, to provide non-migratory and non-depleting protection agents for application in films, coatings and packaging. In food packaging, antimicrobial effects add up to the barrier properties of the materials, to increase the shelf life and product quality. Chitosan is a natural bioactive polysaccharide with intrinsic antimicrobial activity and, due to its exceptional physicochemical properties imparted by the polysaccharide backbone, has been recognized as a natural alternative to chemically synthesized antimicrobial polymers. This, associated with the increasing preference for biofunctional materials from renewable resources, resulted in a significant interest on the potential for application of chitosan in packaging materials. In this review we describe the latest developments of chitosan films and blends as packaging material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic inst

  12. IC chip stress during plastic package molding

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, D.W.; Benson, D.A.; Peterson, D.W.; Sweet, J.N.

    1998-02-01

    Approximately 95% of the world`s integrated chips are packaged using a hot, high pressure transfer molding process. The stress created by the flow of silica powder loaded epoxy can displace the fine bonding wires and can even distort the metalization patterns under the protective chip passivation layer. In this study the authors developed a technique to measure the mechanical stress over the surface of an integrated circuit during the molding process. A CMOS test chip with 25 diffused resistor stress sensors was applied to a commercial lead frame. Both compression and shear stresses were measured at all 25 locations on the surface of the chip every 50 milliseconds during molding. These measurements have a fine time and stress resolution which should allow comparison with computer simulation of the molding process, thus allowing optimization of both the manufacturing process and mold geometry.

  13. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  14. High reliability plastic packaging for microelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, J.N.; Peterson, D.W.; Hsia, A.H.; Tuck, M.

    1997-07-01

    Goal was Assembly Test Chips (ATCs) which could be used for evaluating plastic encapsulation technologies. Circuits were demonstrated for measuring Au-Al wirebond and Al metal corrosion failure rates during accelerated temperature and humidity testing. The test circuits on the ATC02.5 chip were very sensitive to extrinsic or processing induced failure rates. Accelerated aging experiments were conducted with unpassivated triple track Al structures on the ATC02.6 chip; the unpassivated tracks were found to be very sensitive to particulate contamination. Some modifications to existing circuitry were suggested. The piezoresistive stress sensing circuitry designed for the ATC04 test chip was found suitable for determining the change in the state of mechanical stress at the die when both initial and final measurements were made near room temperature (RT). Attempt to measure thermal stress between RT and a typical polymer glass transition temperature failed because of excessive die resistor- substrate leakage currents at the high temperature end; suitable circuitry changes were developed to overcome this problem. One temperature and humidity experiment was conducted with Sandia developed static radom access memory parts to examine non-corrosion CMOS failures; this objective was not achieved, but corrosion failure at the metal to Si contacts on the die surface could be detected. This 2-year effort resulted in new designs for test circuits which could be used on an advanced ATC for reliability assessment in Defense Programs electronics development projects.

  15. A review of the recent advances in starch as active and nanocomposite packaging films

    Directory of Open Access Journals (Sweden)

    Umar Shah

    2015-12-01

    Full Text Available Technological advances have led to increased constraints regarding food packaging due to environmental issues, consumer health concerns, and economic restrictions associated therewith. Hence, food scientists and technologists are now more focused on developing biopolymer packages. Starch satisfies all the principle aspects, making it a promising raw material for edible coatings/films. Starch as a package material has grabbed much attention both at academic as well as industrial levels. Besides this, the role of various plasticizers, polys, sugars, and wetting agents are discussed and their importance in packaging industries. Herein, the role of starch as packaging material and nanofillers/composites is discussed in detail. The review summons a comprehensive and current overview of the widely available information and recent advances in starch film packaging.

  16. 49 CFR 178.522 - Standards for composite packagings with inner plastic receptacles.

    Science.gov (United States)

    2010-10-01

    ... plastic receptacles. 178.522 Section 178.522 Transportation Other Regulations Relating to Transportation... Standards for composite packagings with inner plastic receptacles. (a) The following are the identification codes for composite packagings with inner plastic receptacles: (1) 6HA1 for a plastic receptacle...

  17. Taking plastics packaging to the future through improving barrier properties

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2011-11-01

    Full Text Available the Manufacturing and Materials Industry in it quest for global competitiveness CSIR Manufacturing and Materials Technology Permeability Thermodynamic component of gas transport = solubility coefficient, S (in mol m-3 Pa-1) Kinetic component of gas transport... the Manufacturing and Materials Industry in its quest for global competitiveness orting the Manufacturing and Materials Industry in it quest for global competitiveness CSIR Manufacturing and Materials Technology Taking Plastics Packaging to the Future Through...

  18. Effect of Activated Plastic Films on Inactivation of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Belén Soriano Cuadrado

    2016-07-01

    Full Text Available In the present study, low density polyethylene films were activated by co-extrusion with zinc oxide, zinc acetate or potassium sorbate. Films were also surface-activated with tyrosol singly or in combination with lactic acid or p-hydroxybenzoic acid. Activated films were tested on Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enterica and Pseudomonas fluorescens. The combinations showing greatest inhibition zones and broadest inhibitory spectrum were the films activated with tyrosol plus p-hydroxybenzoic acid. A small delay in growth of Listeria innocua was observed on seabream packed in ZnO-activated films during refrigerated storage for 7 days. When films activated with 2.5% tyrosol or with 1.5% tyrosol plus 0.5 p-hydroxybenzoic acid were used for vacuum packaging of smoked salmon and smoked tuna challenged with cocktails of S. enterica and L. monocytogenes strains, the combination of tyrosol and p-hydroxybenzoic acid improved inactivation of both pathogens during chill storage compared to films singly activated with tyrosol. The best results were obtained in smoked salmon, since no viable pathogens were detected after 7 days of chill storage for the activated film. Results from the study highlight the potential of plastic films surface-activated with tyrosol and p-hydroxybenzoic acid in the control of foodborne pathogens in smoked seafood.

  19. EMBALAGEM INDIVIDUAL DE MANGAS CV. TOMMY ATKINS EM FILME PLÁSTICO: EFEITO SOBRE A VIDA DE PRATELEIRA INDIVIDUAL PACKAGING OF MANGOS CV. TOMMY ATKINS IN PLASTIC FILM: EFFECT ON SHELF LIFE

    Directory of Open Access Journals (Sweden)

    FÁBIO YAMASHITA

    2001-08-01

    Full Text Available Estudou-se o efeito da embalagem de policloreto de vinila (PVC sobre a vida de prateleira de mangas cv. Tommy Atkins armazenadas sob refrigeração. Mangas no estádio de maturidade fisiológica, com casca verde ou levemente avermelhada, foram embaladas individualmente, com filme de 10mm de espessura, e armazenadas por 28 dias a 12ºC (80-90% UR. Frutos sem embalagem serviram de controle. Durante o período de armazenagem, foram feitas avaliações sensoriais utilizando o método de escala hedônica não estruturada para aceitação da aparência e do sabor, utilizando-se de 30 provadores não treinados por sessão. Determinou-se também a perda de massa, a acidez titulável e os teores de sólidos solúveis e vitamina C ao longo da armazenagem. As mangas embaladas apresentaram uma vida de prateleira de 21 dias contra 6 dias das não embaladas, e uma taxa de perda de massa 3,5 vezes menor que as não embaladas. Em relação à taxa de degradação de vitamina C, não houve diferença entre os tratamentos. A combinação da embalagem com a armazenagem a 12ºC aumentou a vida de prateleira do produto pela redução da atividade metabólica e do desenvolvimento de podridão.Effects of packaging in polyvinyl chloride (PVC film on postharvest shelf-life of mango cv. Tommy Atkins stored under refrigeration were studied. Mangos at mature green color stage were individually sealed in 10mm thick film and stored for 28 days at 12ºC (80-90% RH. Non-sealed fruits served as control. During the storage period, sensory evaluation was carried out using an unstructured hedonic scale for overall acceptance of appearance and flavor, with 30 untrained assessors per session. Mangos were also analyzed for weight loss, titratable acidity, total soluble solids and vitamin C during storage time. The packed mangos had a shelf life of 21 days against 6 days of the control ones, and weight loss rates 3.5 times smaller than the control ones. There was no difference in

  20. Long-Term Physical Stability of Plasticized Hemicellulose Films

    Directory of Open Access Journals (Sweden)

    Susanna L. Heikkinen

    2013-12-01

    Full Text Available Oat spelt arabinoxylan (OsAX and spruce galactoglucomannan (GGM are hemicelluloses that can be extracted in large quantities from side-streams of the agriculture and forest industries. They both form self-standing films, making them potential future packaging materials. This systematic study focuses on the effect of long-term storage on the physical stability of hemicellulose-based films. OsAX and GGM films were plasticized with 40% (w/w of the polysaccharide of glycerol, sorbitol, or their blends, and their stability was followed for four months. Ageing especially affected the glycerol-containing films, in which the tensile strength and Young’s modulus increased and elongation at break decreased. Although the mechanical properties were altered, storage did not affect crystallinity of the films. Oxygen gas permeability (OP and water vapor permeability (WVP properties were monitored in OsAX films. Interestingly WVP decreased during storage; more than a 40% decrease was seen when plasticizer blends contained 50% or more glycerol. In contrast, there were no drastic changes in the OP during storage; all the OPs obtained were between 3.7 and 8.9 [cm3 µm/ (m2 d kPa].

  1. Influence of RFID tags on recyclability of plastic packaging.

    Science.gov (United States)

    Aliaga, César; Ferreira, Beatriz; Hortal, Mercedes; Pancorbo, María Ángeles; López, José Manuel; Navas, Francisco Javier

    2011-06-01

    The use of Radio Frequency IDentification Technology (RFID) in the packaging sector is an important logistical improvement regarding the advantages offered by this technology in comparison with barcodes. Nevertheless, the presence of these devices in plastic packaging, and consequently in plastic waste, can cause several problems in the recycling plants due to the materials included in these devices. In this study, the mentioned recycling constraints have been experimentally identified in a pilot scale recycling study consisting in three recycling tests with an increasing presence of RFID tags. Differences in each test were evaluated. Furthermore, the quality of the recycled material of each test was studied through the injection and testing of tests probes. The results of the pilot scale recycling tests did not show a decrease in the quality of the recycled plastic due to the presence of RFID tags. Nevertheless, several operational problems during the recycling process were observed such as the obstruction of the screens, which lessened the process yield and created process interruptions, as well as the loss of extruded plastic during the process. These recycling constraints cannot be directly extrapolated to the industrial plants due to the different working scales. Nevertheless, technological solutions are proposed in order to avoid these recycling constraints if they appear.

  2. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Experiment and optimal design of a collection device for a residual plastic film baler

    Directory of Open Access Journals (Sweden)

    Qi NIU,Xuegeng CHEN,Chao JI,Jie WU

    2015-12-01

    Full Text Available It is imperative to carry out research on residual plastic film collection technology to solve the serious problem of farmland pollution. The residual plastic film baler was designed as a package for film strip collection, cleaning and baling. The collection device is a core component of the baler. Response surface analysis was used in this study to optimize the structure and working parameters for improving the collection efficiency of residual film and the impurity of film package. The results show that the factors affecting the collection rate of residual film and the impurity of the film package are the speed ratio (k between the trash removal roller and eccentric collection mechanism, the number (z and the mounting angle (θ of spring teeth in the same revolution plane. For the collection rate, the importance of the three factors are in the order, k>z>θ. Meanwhile, for the impurity, the importance of three factors are in the order, z>k>θ. When the speed ratio, the mounting angle and the number of spring teeth was set at 1.6º, 45º, and 8º, respectively, the collection rate of residual film was 88.9% and the impurity of residual film package was 14.2% for the baler.

  4. DESIGNING OF POLYMERIC PACKAGING FILM MATERIALS WITH THE BARRIER PROPERTIES

    OpenAIRE

    Колосов, Олександр Євгенович; Сідоров, Дмитро Едуардович; Малецький, Сергій Віталійович

    2016-01-01

    The basic types of interactions for packaged food product and packaging that may occur between the polymer film packaging material and the produc are analyzed. It is noted that the most simple to implement isolation of the internal space of the polymer film packaging from the environment. In this package of the insulated space can be removed by air, in particular, evacuation, or replaced with an inert gas or inert gas mixture. It is noted that the permeability of gases and gas mixtures by non...

  5. Effect of Packaging Films on the Quality of Canola Oil under Photooxidation Conditions

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2015-01-01

    Full Text Available The objective of this study was to evaluate the influence of packaging films on the quality of canola oil which contains high concentration of fat under photooxidation condition and get the oxidation kinetics based on measuring the oxidation intensities including peroxide value, hexanal, and photosensitizer (chlorophyll. The canola oil was packaged by PET/CPP; KPET/PE was used for experiments. The change of light and oxygen transmission rate (OTR of PET/CPP which was considered as the typical fatty foods packaging film under different light intensities was also tested. The results show that the peroxide value increased rapidly under light conditions and fitted the zero order kinetics; also the oxygen transmission rate had great impact on it; hexanal fitted the zero order kinetic in oil whose package of low OTR generated a lot; however package in high OTR films changed very slowly that might be dependent on the performance of hexanal through plastic films. The degradation of chlorophyll fitted the first order kinetic and decreased quickly under light but was almost independent of OTR of transparent packaging material. Light reduced the oxygen barrier properties of the films, which should be considered as the photooxidation condition (and the photooxidation condition thus should be considered.

  6. Desempenho de filmes multicamadas em embalagens termoformadas Performance of multilayer films of thermoformed packages

    Directory of Open Access Journals (Sweden)

    Agnaldo Crippa

    2007-09-01

    Full Text Available Filmes plásticos flexíveis multicamadas podem ser utilizados como embalagens termoformadas de produtos alimentícios à base de carne, sendo que para esta aplicação, necessitam apresentar especificações técnicas de média ou alta barreira ao oxigênio, dependendo das características do produto a ser embalado, de forma a evitar sua contaminação e risco à saúde humana durante seu tempo-de-prateleira. No entanto, o processo de termoformação altera as características dos filmes planos originais. O processamento pode fazê-los não mais atender às especificações exigidas, principalmente nos cantos das embalagens, que são os pontos críticos. Neste trabalho, foram avaliados os efeitos da termoformação em propriedades de filmes plásticos multicamadas denominados de média barreira, compostos de PP/Adesivo/PA6/Adesivo/ PA6/Adesivo/PEBD, e de alta barreira, onde a camada intermediária de adesivo foi substituída por uma camada de copolímero de etileno-álcool vinílico (EVOH. A caracterização dos filmes incluiu investigações de espessura e taxa de permeabilidade ao oxigênio, além das propriedades mecânicas e óticas.Flexible multilayer plastic films may be used for the thermoforming of packages for meat products. In this case, the packages must meet the technical requirements of medium or high barrier to oxygen, depending on the characteristics of the food product, in order to avoid contamination during its shelf-life and consequently risk to human health. However, the thermoforming process alters the original characteristics of the plain films, which could render them inadequate to use, especially in the deepest corners of the packages, which are the critical points. This work addressed the thermoforming effects on the properties of two multi-layered plastic films, called medium barrier (MB, comprising PP/tie/PA6/tie/PA6/tie/LDPE, and high barrier (HB, where the central adhesive (tie layer was replaced by a layer of

  7. Mechanical characterization of commercial biodegradable plastic films

    Science.gov (United States)

    Vanstrom, Joseph R.

    Polylactic acid (PLA) is a biodegradable plastic that is relatively new compared to other plastics in use throughout industry. The material is produced by the polymerization of lactic acid which is produced by the fermentation of starches derived from renewable feedstocks such as corn. Polylactic acid can be manufactured to fit a wide variety of applications. This study details the mechanical and morphological properties of selected commercially available PLA film products. Testing was conducted at Iowa State University and in conjunction with the United States Department of Agriculture (USDA) BioPreferred ProgramRTM. Results acquired by Iowa State were compared to a similar study performed by the Cortec Corporation in 2006. The PLA films tested at Iowa State were acquired in 2009 and 2010. In addition to these two studies at ISU, the films that were acquired in 2009 were aged for a year in a controlled environment and then re-tested to determine effects of time (ageing) on the mechanical properties. All films displayed anisotropic properties which were confirmed by inspection of the films with polarized light. The mechanical testing of the films followed American Society for Testing and Materials (ASTM) standards. Mechanical characteristics included: tensile strength (ASTM D882), elongation of material at failure (ASTM D882), impact resistance (ASTM D1922), and tear resistance (ASTM D4272). The observed values amongst all the films ranged as followed: tensile strength 33.65--8.54 MPa; elongation at failure 1,665.1%--47.2%; tear resistance 3.61--0.46 N; and puncture resistance 2.22--0.28 J. There were significant differences between the observed data for a number of films and the reported data published by the Cortec Corp. In addition, there were significant differences between the newly acquired material from 2009 and 2010, as well as the newly acquired materials in 2009 and the aged 2009 materials, suggesting that ageing and manufacturing date had an effect on

  8. Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates

    Science.gov (United States)

    Garofalo, E.; Claro, M.; Scarfato, P.; Di Maio, L.; Incarnato, L.

    2015-12-01

    Currently, the growing consumption of polymer products creates large quantities of waste materials resulting in public concern in the environment and people life. The efficient treatment of polymer wastes is still a difficult challenge and the recycling process represents the best way to manage them. Recently, many researchers have tried to develop nanotechnology for polymer recycling. The products prepared through the addition of nanoparticles to post-used plastics could offer the combination of improved properties, low weight, easy of processing and low cost which is not easily and concurrently found by other methods of plastic recycling. In this study materials, obtained by the separation and mechanical recycling of post-consumer packaging films of small size (organic modifier, were melt compounded with the recycled materials in a twin-screw extruder. The morphological, thermal, rheological and mechanical properties of the prepared nanocomposites were extensively discussed.

  9. Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages.

    Science.gov (United States)

    Yang, Hyun-Ju; Song, Kyung Bin

    2016-01-01

    Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging.

  10. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Science.gov (United States)

    2010-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and...

  11. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology

  12. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata Starch

    Directory of Open Access Journals (Sweden)

    Muhammed L. Sanyang

    2015-06-01

    Full Text Available The use of starch based films as a potential alternative choice to petroleum derived plastics is imperative for environmental waste management. This study presents a new biopolymer (sugar palm starch for the preparation of biodegradable packaging films using a solution casting technique. The effect of different plasticizer types (glycerol (G, sorbitol (S and glycerol-sorbitol (GS combination with varying concentrations (0, 15, 30 and 45, w/w% on the tensile, thermal and barrier properties of sugar palm starch (SPS films was evaluated. Regardless of plasticizer types, the tensile strength of plasticized SPS films decreased, whereas their elongation at break (E% increased as the plasticizer concentrations were raised. However, the E% for G and GS-plasticized films significantly decreased at a higher plasticizer concentration (45% w/w due to the anti-plasticization effect of plasticizers. Change in plasticizer concentration showed an insignificant effect on the thermal properties of S-plasticized films. The glass transition temperature of SPS films slightly decreased as the plasticizer concentration increased from 15% to 45%. The plasticized films exhibited increased water vapor permeability values from 4.855 × 10−10 to 8.70 × 10−10 g·m−1·s−1·Pa−1, irrespective of plasticizer types. Overall, the current study manifested that plasticized sugar palm starch can be regarded as a promising biopolymer for biodegradable films.

  13. 塑料食品包装的安全性分析%Security analysis of plastic food packaging

    Institute of Scientific and Technical Information of China (English)

    黎盛; 徐丹; 徐毅; 吴习宇

    2011-01-01

    台湾发生的塑化剂事件,再次引发了人们对食品安全的高度关注,同时也引发了人们对塑料食品包装安全的关心。塑料食品包装主要在材料本身、粘合剂和印刷油墨等三个方面对食品安全构成隐形威胁。塑料包装材料内部残留的有毒、有害物质,通过迁移、溶出影响所盛装食品的品质,从而导致食品安全问题。软包装复合薄膜的生产过程中所必须使用的溶剂型聚氨酯粘合剂存在一定的安全隐患,包装印刷油墨存在的色迁移和色渗透对食品安全存在危害等问题。对塑料食品包装的安全性进行分析,以期引发人们对绿色包装的重视和研究。%Taiwan plasticizing agent event had caused great concerns for food safety again,particularly for the safety of plastic food packaging. Plastic food packaging posed invisible threat to food security mainly from three aspects including the plastic food packaging materials themselves,the adhesives’ and the printing inks of plastic packaging. First,the residual toxic and hazardous substances migrating and dissoluting from the plastic packaging affected the food quality,resulting in food security issues. Second,the solvent-based polyurethane adhesives’ which had to be used in the production process of flexible packaging composite films bring risks in food security. And last,the color migration and penetration of packaging printing ink threaten the food security. Therefore,the safety of plastic food packaging was analyzed,in order to call more attention to green packaging.

  14. Degradation studies on plasticized PVC films submited to gamma radiation

    Directory of Open Access Journals (Sweden)

    Vinhas Glória Maria

    2003-01-01

    Full Text Available Poly (vinyl chloride, PVC, is a rigid polymer and for several of its applications must be compounded with plasticizing agents. The plasticizers minimize the dipolar interactions, which exist between the polymer's chains, promoting their mobility. In this work we studied the properties of PVC/plasticizer systems submitted to different doses of gamma radiation. We have used four commercial plasticizers amongt them di(2-ethylhexyl phthalate, DEHP, which is present in a great number of commercial applications. The PVC/plasticizer systems have been studied as films made by the solvent evaporation technique. Irradiated and non-irradiated films have been characterized by viscosimetric analysis, mechanical essays and infrared spectroscopy. The results have shown that the rigid, non plasticized, PVC film presented the greatest degradation index, while among the plasticized films the one which presented the larger degradation index due to chain scission was the DEHP plasticized PVC.

  15. Structure-property relation in HPMC polymer films plasticized with Sorbitol

    Science.gov (United States)

    Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.

    2013-06-01

    A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.

  16. Development of Multifunctional Active Film and Its Application in Modified Atmosphere Packaging of Shiitake Mushrooms.

    Science.gov (United States)

    Wang, Hong Jiang; An, Duck Soon; Lee, Dong Sun

    2016-09-01

    Agar-based films with multiple functions (CO2 absorption, water vapor absorption, and antimicrobial activity) were developed, tested for their properties, and then applied to the packaging of fresh shiitake mushrooms as an insert label. The films were cast from an agar-based aqueous solution containing a dissolving plasticizer (glycerol), a CO2 absorbent (sodium carbonate [SC] alone or a combination of SC and sodium glycinate [SC-SG]), and a volatile antimicrobial agent (carvacrol [CRV]). The agar of the film matrix is designed to serve as a water vapor absorbent. The multifunctional films tended to have poor mechanical properties, with a hard texture and an opaque and yellowish color. The CO2 absorbent, either SC alone or SC-SG, affected CRV retention and release along with the CO2 and water vapor absorption behavior. Both films (SC-CRV and SC-SG-CRV films) showed good inhibitory effects against Pseudomonas fluorescens and Saccharomyces cerevisiae . SC-CRV film had a higher and faster CO2 absorption property, higher retention and extended release of CRV, and lower and slower water vapor absorption and was assessed to be better suited for use in shiitake mushroom packaging. The packaging in which the SC-CRV film with an appropriate amount of CRV was used as an insert label was able to generate the desired atmosphere and less moisture condensation inside the package, producing the best preservation of quality in terms of mushroom color, firmness, flavor score, and microbial counts after 6 days of storage at 10°C. A tailored modified atmosphere packaging system using multifunctional film would be useful in the preservation of CO2-sensitive fresh commodities.

  17. Advances in food packaging films from milk proteins

    Science.gov (United States)

    Most commercial petroleum-based food packaging films are poor oxygen barriers, do not biodegrade, and some are suspected to even leach compounds into the food product. For instance, three-perfluorinated coatings were banned from convenience food packaging earlier this year. These shortcomings are a ...

  18. Edible Film Making of Starch Canna Tuber (Canna Edulis Kerr and Aplication to Packaging Galamai

    Directory of Open Access Journals (Sweden)

    Hafnimardiyanti Hafnimardiyanti

    2014-01-01

    Full Text Available Canna (Canna edulis Kerr was a tuber that had a high carbohydrate content so canna had excellent prospects to develop into edible film. The purpose of this study was to make edible film of canna starch, knowing storability galamai was packed with edible film and determine the level of preference panelists through organoleptic tests. In this research, manufacture of edible films with various concentrations of canna starch 2%, 3%, 4% and the use of plasticizer (glycerol 1%, 2% and 3% with 100 ml of water as a solven and then applied to galamai as a packaging. Of research on edible film get the best that was produced with the use of starch canna tuber 3% with the addition of 1% glycerol, wherein the edible film produced slightly thick and easily opened from the mold. Of organoleptic test showed that galamai packed with edible films of canna tuber starch 3% was the highest scores of the panelists with categories like. From the Friedman test showed that all three variations of the edible film packaging galamai, provide diversity to the test variable organoleptic (color, aroma, texture and flavor. Galamai was packed with edible film could be stored for 1 month.

  19. Plastic packaging materials and environmental problems. Plastic hosozai to kankyo mondai

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, T. (Sekisui Plastics Co. Ltd., Osaka (Japan))

    1992-05-01

    This paper describes the recent trends in the environmental problems created from used plastic packaging materials. The 23 wards of the city of Tokyo produce refuses daily of 12,000 tons (1990), with plastics accounting for 15% by volume. Discussions to deal with plastic refuses that are bulky and standing out began as early as in 1971 when the disposal study meeting was inaugurated. As a result, wastes from polyvinyl chloride sheet for agricultural green houses had 40% recovered and recycled out of 100,000 tons generated annually, and styrofoam wastes at 10% of 150,000 tons. The wastes disposal law and the recycling law were established in 1991 aiming at reducing volume of wastes, promoting re-utilization, and assuring appropriate disposal methods and facilities. The Wastes Re-utilization Association was organized to handle styrofoam wastes that are attracting strong attention recently, the association having begun its activities with a good start. It is expected that styrofoam wastes will be molten thermally and regenerated into the same styrofoam products. Styrofoam could be more energy saving and resource saving material than paper cups. 6 refs., 10 figs., 5 tabs.

  20. Engineering functional nanothin multilayers on food packaging: ice-nucleating polyethylene films.

    Science.gov (United States)

    Gezgin, Zafer; Lee, Tung-Ching; Huang, Qingrong

    2013-05-29

    Polyethylene is the most prevalent plastic and is commonly used as a packaging material. Despite its common use, there are not many studies on imparting functionalities to those films which can make them more desirable for frozen food packaging. Here, commercial low-density polyethylene (LDPE) films were oxidized by UV-ozone (UVO) treatment to obtain a negatively charged hydrophilic surface to allow fabrication of functional multilayers. An increase in hydrophilicity was observed when films were exposed to UVO for 4 min and longer. Thin multilayers were formed by dipping the UVO-treated films into biopolymer solutions, and extracellular ice nucleators (ECINs) were immobilized onto the film surface to form a functional top layer. Polyelectrolyte adsorption was studied and confirmed on silicon wafers by measuring the water contact angles of the layers and investigating the surface morphology via atomic force microscopy. An up to 4-5 °C increase in ice nucleation temperatures and an up to 10 min decrease in freezing times were observed with high-purity deionized water samples frozen in ECIN-coated LDPE films. Films retained their ice nucleation activity up to 50 freeze-thaw cycles. Our results demonstrate the potential of using ECIN-coated polymer films for frozen food application.

  1. Effect of different film packaging on microbial growth in minimally processed cactus pear (Opuntia ficus-indica).

    Science.gov (United States)

    Palma, A; Mangia, N P; Fadda, A; Barberis, A; Schirra, M; D'Aquino, S

    2013-01-01

    Microorganisms are natural contaminants of fresh produce and minimally processed products, and contamination arises from a number of sources, including the environment, postharvest handling and processing. Fresh-cut products are particularly susceptible to microbial contaminations because of the changes occurring in the tissues during processing. In package gas composition of modified atmosphere packaging (MAP) in combination with low storage temperatures besides reducing physiological activity of packaged produce, can also delay pathogen growth. Present study investigated on the effect of MAPs, achieved with different plastic films, on microbial growth of minimally processed cactus pear (Opuntio ficus-indica) fruit. Five different plastic materials were used for packaging the manually peeled fruit. That is: a) polypropylene film (Termoplast MY 40 micron thickness, O2 transmission rate 300 cc/m2/24h); b) polyethylene film (Bolphane BHE, 11 micron thickness, O2 transmission rate 19000 cc/m2/24h); c) polypropylene laser-perforated films (Mach Packaging) with 8, 16 or 32 100-micron holes. Total aerobic psychrophilic, mesophilic microorganisms, Enterobacteriaceae, yeast, mould populations and in-package CO2, O2 and C2H4 were determined at each storage time. Different final gas compositions, ranging from 7.8 KPa to 17.1 KPa O2, and 12.7 KPa to 2.6 KPa CO2, were achieved with MY and micro perforated films, respectively. Differences were detected in the mesophilic, Enterobacteriaceae and yeast loads, while no difference was detected in psychrophilic microorganisms. At the end of storage, microbial load in fruits sealed with MY film was significantly lower than in those sealed with BHE and micro perforated films. Furthermore, fruits packed with micro-perforated films showed the highest microbial load. This occurrence may in part be related to in-package gas composition and in part to a continuous contamination of microorganisms through micro-holes.

  2. Influence of thickness on properties of plasticized oat starch films

    Directory of Open Access Journals (Sweden)

    Melicia Cintia Galdeano

    2013-08-01

    Full Text Available The aim of this study was to investigate the effect of thickness (between 80 and 120 µm on apparent opacity, water vapor permeability and mechanical properties (tensile and puncture of oat starch films plasticized with glycerol, sorbitol, glycerol:sorbitol mixture, urea and sucrose. Films were stored under 11, 57, 76 and 90% relative humidity (RH to study the mechanical properties. It was observed that the higher the thickness, the higher was the opacity values. Films without the plasticizer were more opaque in comparison with the plasticized ones. Glycerol:sorbitol films presented increased elongation with increasing thickness at all RH. Puncture force showed a strong dependence on the film thickness, except for the films plasticized with sucrose. In general, thickness did not affect the water permeability.

  3. Application of an Antimicrobial Protein Film in Beef Patties Packaging.

    Science.gov (United States)

    Lee, Ji-Hyun; Song, Kyung Bin

    2015-01-01

    This study was performed to apply a protein film containing a natural antimicrobial compound to meat packaging and determine quality change of meat during storage. Proteins obtained from the by-products of food processing have been utilized as biodegradable film sources. Porcine meat and bone meal (MBM) is obtained during meat processing, and proteins from the MBM can be extracted and used as a film base material. Previously, an antimicrobial MBM film containing coriander oil (CO) was prepared and its physical properties and antimicrobial activity were characterized. In this study, the antimicrobial MBM-CO film was applied to beef patties packaging, and the microbial population and the degree of lipid oxidation were determined during storage at 4℃ for 15 d. The population of inoculated E. coli O157:H7 in the samples wrapped with the MBM-CO film was 6.78 log colony forming unit (CFU)/g after 15 d of storage, whereas the control had 8.05 Log CFU/g, thus reducing the microbial population by 1.29 Log CFU/g. In addition, retardation of lipid oxidation in the patties was observed during storage for the samples packaged by the MBM-CO film, compared with the control samples. These results suggest that the MBM-CO film can be useful for enhancing the quality of beef patties during storage.

  4. Chitosan and gelatin based biodegradable packaging films with UV-light protection.

    Science.gov (United States)

    Ahmed, Shakeel; Ikram, Saiqa

    2016-10-01

    Biopolymers are polymers obtained from biological origins and used for various biological and industrial applications. A biopolymer should be non-toxic, non-antigenic, non-irritant, non-carcinogenic, sterilisable and adequately available for their widespread applications. In this study, chitosan (CS) and gelatin (GL) based films were prepared to be used as biodegradable packaging films. CS was blended with GL to improve various physicochemical properties. The blended CSGL films were crosslinked with boric acid (BA) to improve various properties viz. light barrier properties, Water Vapour Permeability (WVP), moisture content (%), Total Solubility Matter (TSM), most important to improve the strength. The studies of transparency, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and optical microscopy confirms that the synthesized films were found to be transparent and homogenous indicating good compatibility among different components. The synthesized CS and GL based films showed UV-light barrier properties as supported by data. The tensile strength of films increases, decreases water solubility, moisture content (%) and WVP on crosslinking. In order to make the crosslinked films more flexible, Polyethylene glycol was used as plasticizer, making the films more flexible and transparent. This study indicates that these biodegradable CS and GL based films are potent to be used as packing films.

  5. Quality and safety aspects of reusable plastic food packaging materials : influence of reuse on intrinsic properties

    NARCIS (Netherlands)

    Jetten, J.; Kruijf, N. de

    2002-01-01

    The aim of the project was to develop a comprehensive package of quality assurance criteria for use by the industry and by regulatory authorities to ensure the quality and safety-in-use (sensory, microbiological and chemical safety) of reused plastics for food packaging. The paper describes the

  6. Quality and safety aspects of reusable plastic food packaging materials : influence of reuse on intrinsic properties

    NARCIS (Netherlands)

    Jetten, J.; Kruijf, N. de

    2002-01-01

    The aim of the project was to develop a comprehensive package of quality assurance criteria for use by the industry and by regulatory authorities to ensure the quality and safety-in-use (sensory, microbiological and chemical safety) of reused plastics for food packaging. The paper describes the inve

  7. PENGARUH PLASTICIZER PADA KARAKTERISTIK EDIBLE FILM DARI PEKTIN

    Directory of Open Access Journals (Sweden)

    Sang Kompiang Wirawan

    2012-05-01

    Full Text Available EFFECT OF PLASTICIzER ON THE PECTINIC EDIBLE FILM CHARACTERISTICS. The peel of Balinese Citrus contains high concentration of pectin which can be further processed to be edible films. The edible films can be utilized as a food coating which protects the food from any external mass transports such as humid, oxygen, and soluble material and can be served as a carrier to improve the mechanical-handing properties of the food. Edible films made of organic polymers tend to be brittle and thus addition of a plasticizer is required during the process. The work studies the effect of the type and the concentration of plasticizers on the tensile strength, the elongation of break, and the water vapor permeabilty of the edible film. Sorbitol and glycerol were used as plasticizers. Albedo from the citrus was hydrolized with hydrochloride acid 0.1 N to get pectinate substance. Pectin was then dissolved in water dan mixed with the plasticizers and CaCl2.2H2O solution. The concentrations of the plasticizers were 0, 0.03, 0.05, 0.1, and 0.15 mL/mL of solution. The results showed that increasing the concentration of plasticizers will decrease the tensile strength, but increase the elongation and film permeability. Sorbitol-plasticized films are more brittle, however exhibited higher tensile strength and water vapor permeability than of glycerol-plasticized film. The results suggested that glycerol is better plasticizer than sorbitol.  Kulit jeruk bali banyak mengandung pektin yang dapat dimanfaatkan sebagai bahan baku edible film. Edible film bisa digunakan untuk melapisi bahan makanan, melindungi makanan dari transfer massa eksternal seperti kelembaban, oksigen, dan zat terlarut, serta dapat digunakan sebagai carrier untuk meningkatkan penanganan mekanik produk makanan. Film yang terbuat dari bahan polimer organik ini cenderung rapuh sehingga diperlukan penambahan plasticizer. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh kadar dan jenis

  8. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste

    NARCIS (Netherlands)

    Groot, J.J.; Bing, X.; Bos-Brouwers, H.E.J.; Bloemhof, J.M.

    2014-01-01

    Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are

  9. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste

    NARCIS (Netherlands)

    Groot, J.J.; Bing, X.; Bos-Brouwers, H.E.J.; Bloemhof, J.M.

    2014-01-01

    Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are

  10. Characterization of Jatropha curcas L. Protein Cast Films with respect to Packaging Relevant Properties

    Directory of Open Access Journals (Sweden)

    Gabriele Gofferje

    2015-01-01

    Full Text Available There is increasing research ongoing towards the substitution of petrochemical based plastics by more sustainable raw materials, especially in the field of bioplastics. Proteins of different types such as whey, casein, gelatine, or zein show potential beyond the food and feed industry as, for instance, the application in packaging. Protein based coatings provide different packaging relevant properties such as barrier against permanent gases, certain water vapour barrier, and mechanical resistance. The aim of this study was to explore the potential for packaging applications of proteins from Jatropha curcas L. and to compare the performance with literature data on cast films from whey protein isolate. As a by-product from oil extraction, high amounts of Jatropha meal are obtained requiring a concept for its sustainable utilization. Jatropha seed cake includes up to 40% (w/w of protein which is currently not utilized. The present study provides new data on the potential of Jatropha protein for packaging applications. It was shown that Jatropha protein cast films show suitable barrier and mechanical properties depending on the extraction and purification method as well as on the plasticiser content. Based on these findings Jatropha proteins own potential to be utilized as coating material for food packaging applications.

  11. Technical properties of packaging PVC films

    OpenAIRE

    V. A. Sedyh; A. V. Zhuchkov

    2013-01-01

    Dependence of thermal treatment of membrane PVC is set on a temperature. Influence of maintenance of plasticizer and heat treatment is shown on the physicomechanical parameters of membrane PVC. Influence of duration of mixing mixture components set on physicomechanical parameters membrane PVC.

  12. Technical properties of packaging PVC films

    Directory of Open Access Journals (Sweden)

    V. A. Sedyh

    2013-01-01

    Full Text Available Dependence of thermal treatment of membrane PVC is set on a temperature. Influence of maintenance of plasticizer and heat treatment is shown on the physicomechanical parameters of membrane PVC. Influence of duration of mixing mixture components set on physicomechanical parameters membrane PVC.

  13. Antimicrobial polymer films for food packaging

    Science.gov (United States)

    Concilio, S.; Piotto, S.; Sessa, L.; Iannelli, P.; Porta, A.; Calabrese, E. C.; Galdi, M. R.; Incarnato, L.

    2012-07-01

    New antimicrobial polymeric systems were realized introducing new antimicrobial azo compounds in PP and LDPE matrices. The polymeric materials containing different percentage of azo compounds were mold-casted and the obtained film were tested in vitro against Gram+ and Gram- bacteria and fungi. These results hold promise for the fabrication of bacteria-resistant polymer films by means of simple melt processing with antimicrobial azo-dyes.

  14. Films from Glyoxal-Crosslinked Spruce Galactoglucomannans Plasticized with Sorbitol

    Directory of Open Access Journals (Sweden)

    Kirsi S. Mikkonen

    2012-01-01

    Full Text Available Films were prepared from a renewable and biodegradable forest biorefinery product, spruce O-acetyl-galactoglucomannans (GGMs, crosslinked with glyoxal. For the first time, cohesive and self-standing films were obtained from GGM without the addition of polyol plasticizer. In addition, glyoxal-crosslinked films were prepared using sorbitol at 10, 20, 30, and 40% (wt.-% of GGM. Glyoxal clearly strengthened the GGM matrix, as detected by tensile testing and dynamic mechanical analysis. The elongation at break of films slightly increased, and Young's modulus decreased with increasing sorbitol content. Interestingly, the tensile strength of films was constant with the increased plasticizer content. The effect of sorbitol on water sorption and water vapor permeability (WVP depended on relative humidity (RH. At low RH, the addition of sorbitol significantly decreased the WVP of films. The glyoxal-crosslinked GGM films containing 20% sorbitol exhibited the lowest oxygen permeability (OP and WVP of the studied films and showed satisfactory mechanical performance.

  15. UV protective poly(lactic acid)/rosin films for sustainable packaging.

    Science.gov (United States)

    Narayanan, Meenu; Loganathan, Sravanthi; Valapa, Ravi Babu; Thomas, Sabu; Varghese, T O

    2017-06-01

    Recently, biopolymer based plastic materials are regarded as potential alternative for conventional plastics of fossil fuel origin in order to compensate depleting petroleum resources and address environmental pollution issues. Poly(lactic acid) (PLA) is one among the biopolymers which is rapidly commercialized for food packaging application. However, the demerits accompanied with PLA like brittle nature, slower crystallization rate, poor gas barrier and high ultraviolet radiation transmission properties confines its commercial application in food packaging sector. Studies on the improvement of ductility, crystallization rate and gas barrier properties are markedly reported. Much emphasis is not given in the literature on improving UV shielding properties which plays important role in preventing oxidation degradation of PLA. Therefore, the current work is focused on fabrication of eco-friendly poly(lactic acid)/rosin (RS) based biocomposite films with improved UV shielding along with ductility and oxygen barrier properties. The PLA-RS biocomposite films containing different loadings (1, 3, 5, 10 and 20wt%) of RS with an average thickness of 50μm are fabricated via solution casting technique. The PLA-RS film demonstrated noteworthy light barrier feature by shielding the passage of ∼98%, 92% and 53% in UV-B, UV-A and visible light regime, respectively. In case of UV-C region, complete blockage of UV transmission through the PLA-RS biocomposite film is noticed. In addition to this, the presence of RS in the PLA matrix brought considerable improvement in terms of ductility and oxygen barrier characteristics. This in turn indicates PLA-RS biocomposite films hold significant potential for sustainable food packaging application.

  16. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    were addressed by a resin type-based sorting analysis and a washing test for plastic packaging material from Danish household waste. Preliminary results show that, for a quarter of the hand sorted material, no resin type could be identified and that Polypropylene and Polyethylene terephthalate were...... criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...... the dominating resin types in plastic packaging. The suggested washing procedure caused a decrease of 70% of the ash content of the plastic material. The analysed metals and nutrients were reduced by up to 24%...

  17. Chitosan films and blends for packaging material

    NARCIS (Netherlands)

    Broek, van den L.A.M.; Knoop, J.R.I.; Kappen, F.H.J.; Boeriu, C.G.

    2015-01-01

    An increased interest for hygiene in everyday life as well as in food, feed and medical issues lead to a strong interest in films and blends to prevent the growth and accumulation of harmful bacteria. A growing trend is to use synthetic and natural antimicrobial polymers, to provide non-migratory

  18. Chitosan films and blends for packaging material

    NARCIS (Netherlands)

    Broek, van den L.A.M.; Knoop, J.R.I.; Kappen, F.H.J.; Boeriu, C.G.

    2015-01-01

    An increased interest for hygiene in everyday life as well as in food, feed and medical issues lead to a strong interest in films and blends to prevent the growth and accumulation of harmful bacteria. A growing trend is to use synthetic and natural antimicrobial polymers, to provide non-migratory an

  19. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  20. Quality and safety aspects of reusable plastic food packaging materials: influence of reuse on intrinsic properties.

    Science.gov (United States)

    Jetten, J; de, Kruijf N

    2002-01-01

    The aim of the project was to develop a comprehensive package of quality assurance criteria for use by the industry and by regulatory authorities to ensure the quality and safety-in-use (sensory, microbiological and chemical safety) of reused plastics for food packaging. The paper describes the investigations into potential adulteration effects by reuse on the intrinsic properties of plastics in more detail. The plastic articles investigated were bottles of polyethylene terephthalate (PET) or polycarbonate (PC) and vending cups of polypropylene (PP). The influence of repeated use on the migration of plastic constituents, degradation products of plastic additives, barrier properties and surface characteristics were investigated. The overall conclusion was that the investigated intrinsic properties of the refillable articles were not significantly influenced by repeated use. Only the hydrophobicity of the refillable PC and PP articles seemed to be influenced by repeated washing. PC bottles washed 15 times were significantly less hydrophobic than unwashed bottles.

  1. Size effect in plastically deformed passivated thin films

    Institute of Scientific and Technical Information of China (English)

    HWANG; Keh-Chih

    2009-01-01

    The flow theory of mechanism-based strain gradient plasticity theory (MSG) developed by Qiu et al. (2003) is extended for incompressible material. The MSG flow theory is used to predict the increase of plastic work hardening for plane strain tension of surface-passivated Cu thin film. The theoretical predictions agree well with experiments for suitably chosen material parameters.

  2. Oxynitride Thin Film Barriers for PV Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  3. Enhancing the release of the antioxidant tocopherol from polypropylene films by incorporating the natural plasticizers lecithin, olive oil, or sunflower oil.

    Science.gov (United States)

    López de Dicastillo, Carol; Ares Pernas, Ana; Castro López, María del Mar; López Vilariño, José Manuel; González Rodríguez, María Victoria

    2013-12-01

    In this work, natural plasticizers-modified polypropylenes intended for food active packaging were developed. Sunflower oil, olive oil, and soy lecithin, without any known harmful effects or toxicity, were employed as natural plasticizers, also implementing the attractiveness of using synthetic plastics on active packaging developments. Their incorporation during the extrusion of polypropylene was tried as a means to obtain polymers with improved diffusion paths, allowing differences in antioxidant release rates for active packaging materials. Thermal and rheological characterization of the films showed that blending natural plasticizers do not significantly modify their thermal properties; however, small variations of viscoelastic properties were observed. Furthermore, the resulting release of tocopherol was highly dependent on the polymer formulation. Furthermore, it was clearly time-controlled by using those natural plasticizers, especially olive oil. Antioxidant activity results also showed that packaged foods are protected against oxidative degradation over time, resulting from the improved release of the antioxidants.

  4. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up...... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride...

  5. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)-agar biodegradable films.

    Science.gov (United States)

    Madera-Santana, T J; Freile-Pelegrín, Y; Azamar-Barrios, J A

    2014-08-01

    The effects of the addition of glycerol (GLY) on the physicochemical and morphological properties of poly(vinyl alcohol) (PVA)-agar films were reported. PVA-agar films were prepared by solution cast method, and the addition of GLY in PVA-agar films altered the optical properties, resulting in a decrease in opacity values and in the color difference (ΔE) of the films. Structural characterization using Fourier transformation infrared (FTIR) spectroscopy and X-ray diffraction (XRD) indicated that the presence of GLY altered the intensity of the bands (from 1200 to 800cm(-1)) and crystallinity. The characterization of the thermal properties indicated that an increase in the agar content produces a decrease in the melting temperature and augments the heat of fusion. Similar tendencies were observed in plasticized films, but at different magnification. The formulation that demonstrated the lowest mechanical properties contained 25wt.% agar, whereas the formulation that contained 75wt.% agar demonstrated a significant improvement. The water vapor transmission rate (WVTR) and surface morphology analysis demonstrated that the structure of PVA-agar films is reorganized upon GLY addition. The physicochemical properties of PVA-agar films using GLY as a plasticizer provide information for the application of this formulation as packaging material for specific food applications.

  6. Preservação da qualidade pós-colheita de araçá-vermelho através do tratamento com 1-metilciclopropeno e do acondicionamento em embalagens plásticas, sob refrigeração Postharvest quality preservation of red strawberry-guavas by treatment with 1-methylcyclopropene and fruit packaging in plastic films under refrigeration

    Directory of Open Access Journals (Sweden)

    Cassandro Vidal Talamini do Amarante

    2009-12-01

    Full Text Available O objetivo deste trabalho foi estudar o padrão respiratório e de produção de etileno, e os efeitos do tratamento com diferentes doses de 1-metilciclopropeno (1-MCP e do acondicionamento em diferentes embalagens plásticas, associado à refrigeração, na preservação da qualidade pós-colheita de araçá-vermelho. Os frutos apresentaram comportamento climatérico de respiração e produção de etileno. Frutos tratados com doses crescentes de 1-MCP (0; 100; 300; 600 e 1.200 nL L-1 e armazenados a 10±1C/90±5% UR, durante 10 dias, apresentaram retardo substancial no amadurecimento, através da preservação da textura e inibição na mudança de cor da epiderme. Frutos acondicionados com diferentes filmes (polietileno de baixa densidade, policloreto de vinila e à base de náilon apresentaram, em termos gerais, melhor preservação da textura e menores mudanças na cor da epiderme e perdas de massa fresca, durante armazenamento refrigerado (5C e 10C. Os resultados demonstram que os frutos de araçá-vermelho apresentam elevada perecibilidade, caracterizada pelas elevadas taxas respiratórias e de produção de etileno, sendo mais bem preservados quando refrigerados, e tratados com 1-MCP ou acondicionados em embalagens plásticas.This work was carried out to study respiration and ethylene production behavior of red strawberry-guavas and to assess the preservation of fruit postharvest quality by treatment with different doses of 1-methylcyclopropene (1-MCP and fruit packaging in plastic films, under refrigeration. Red strawberry-guavas exhibit a climacteric behavior of respiration and ethylene production. Fruits treated with increasing doses of 1-MCP (0, 100, 300, 600, and 1,200 nL L-1 and stored at 10±1C/90±5% RH for 10 days had a substantial delay in ripening, with a better retention of texture and inhibition in the change of the color of the skin. Fruits packed in different plastic films (low density polyethylene, vinyl polychloride, and

  7. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  8. PET based nanocomposite films for microwave packaging applications

    Science.gov (United States)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-12-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  9. PET based nanocomposite films for microwave packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Galdi, M. R., E-mail: mrgaldi@unisa.it; Olivieri, R.; Liguori, L.; Albanese, D., E-mail: dalbanese@unisa.it; Di Matteo, M.; Di Maio, L., E-mail: ldimaio@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  10. Inhibition of foodborne bacteria by antibacterial coatings printed onto food packaging films.

    Science.gov (United States)

    Widsten, P; Mesic, B B; Cruz, C D; Fletcher, G C; Chycka, M A

    2017-07-01

    Films containing antibacterial compounds could be used for packaging perishable foods such as fresh fish and meat for sea freighting over long distances. However, existing commercialised options (films with nanosilver zeolites or wasabi extract) are only permitted for food contact in certain regions and films containing alternative antibacterial ingredients are required e.g. for exports to Europe. Certain non-volatile phenolic plant extracts have shown promising antibacterial activity against a wide range of foodborne bacteria in in vitro assays and when integrated in coatings for perishable foods such as fish and meat. Extracts rich in gallotannins tend to show stronger antibacterial effects than other phenols such as flavonoids. Such extracts could be coated onto commercial barrier films by means of flexographic printing-a more industrially feasible option than rod coating or solvent casting typically used in antibacterial coating research. The goal of the present work was to investigate the antibacterial effect of printed latex coatings containing extracts rich in gallotannins and other types of phenolic compounds against 16 common spoilage and pathogenic bacteria of fish and meat. The largest zones of inhibition in disk diffusion assays were obtained with plastic films with coatings containing tannic acid alone, followed by tannic acid with phenolic-rich extracts of feijoa skin or mango seed. Significant inhibition was seen for all bacteria. This study shows that coatings with gallotannins as the main active ingredient can be printed onto commercial barrier films to control the bacteria that limit the shelf-life of fresh fish and meat.

  11. Application of fluidization to separate packaging waste plastics.

    Science.gov (United States)

    Carvalho, M Teresa; Ferreira, Célia; Portela, Antía; Santos, João Tiago

    2009-03-01

    The objective of the experimental work described in this paper is the study of the separation of PS (polystyrene) from PET (polyethylene terephthalate) and PVC (polyvinyl chloride) from drop-off points using a fluidized bed separator. This is a low-cost process commonly used in the hydro-classification of mineral ores. Firstly, experimental tests were carried out with artificial granulated samples with different grain sizes, types and sources of plastic ("separability tests"). The particle settling velocities were determined under different operating conditions. Then, based on the results, the laboratory tests continued with real mixtures of waste plastics ("separation tests") and the efficiency of the process was evaluated. From a PET-rich mixture, a concentrate of PS with a 75% grade in PS was produced while the underflow was quite clear from PS (grade less than 0.5% in PS).

  12. "Green" films from renewable resources: properties of epoxidized soybean oil plasticized ethyl cellulose films.

    Science.gov (United States)

    Yang, Dong; Peng, Xinwen; Zhong, Linxin; Cao, Xuefei; Chen, Wei; Zhang, Xueming; Liu, Shijie; Sun, Runcang

    2014-03-15

    Epoxidized soybean oil (ESO), which is a biomass-derived resource, was first used as a novel plasticizer for ethyl cellulose (EC) film preparation. Surface morphologies, mechanical performances, thermal properties, oxygen and water vapor permeabilities of plasticized EC films were detected in detail to evaluate the plasticizing effect of ESO and explore the plastication mechanisms. Results showed that ESO was an effective plasticizer that outstripped conventional plasticizers, i.e. dibutyl phthalate (DBP) and triethyl citrate (TEC) in producing high-quality films. Especially, at plasticizer concentrations of 15-25%, ESO-EC films had preferable mechanical properties and better thermal stability, as well as non-flammability. In addition, the water vapor permeability of ESO-EC films was lower than that of traditional plasticized films. Their oxygen permeability was also remained in a low level. These outstanding performances were related to the relatively high molecular weight, hydrophobicity, chemical structure of ESO, and the intermolecular interactions between ESO and EC chains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Gelatin films plasticized with a simulated biodiesel coproduct stream

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In order to explore the possibility of substituting an unrefined biodiesel coproduct stream (BCS for refined glycerol as a polymer plasticizer we have prepared cast gelatin films plasticized with a simulated BCS, i.e., mixtures of glycerol and some of the typical components found in BCS (methyl linoleate, methyl oleate, linoleic acid, and oleic acid. We measured the tensile properties as a function of plasticizer composition, and analyzed the specific effect of each individual component on tensile properties. We found that it is the unrecovered alkyl esters that largely determine the tensile properties, and that BCS can be successfully used to plasticize cast gelatin films as long as the BCS contains 11 parts by weight, or less, of unrecovered alkyl esters per 100 parts glycerol.

  14. The effect of glycerol from biodiesel production waste as a plasticizer on physical character edible film of chitosan

    Science.gov (United States)

    Rosyid, Fajar Abdul; Triastuti, Rr. Juni; Andriyono, Sapto

    2017-02-01

    Chitosan edible film is a thin layer of clear packaging made from chitosan edible and biodegradable. Edible chitosan films are stiffer and less elastic, so it should be added plasticizer glycerol. One source of glycerol is inexpensive and easily obtained is crude glycerol from biodiesel production. The purpose of this study was to determine the effect of various concentrations of crude glycerol plasticizer on the physical characteristics of chitosan edible film and determine the best concentration of crude glycerol plasticizer. This study used a completely randomized design (CRD) with five treatments and four replications. The Edible film using the g chitosan and some plasticizers concentration of crude glycerol (0.2, 0.4, 0.8, and 1 mL) and a control treatment that used 0.4 mL of pure glycerol was made. The results showed that the use of crude glycerol plasticizer had effect to the physical character of chitosan edible film. Increasing concentrations of crude glycerol plasticizer exhibits the lowers value of the thickness and tensile strength, however, can increase the value of percent elongation. The best concentration of this research is the treatment of B (0.2 ml crude glycerol) which resulted in 0.55 mm thickness, the tensile strength of 95.38 kgf/cm2 and a percent elongation of 2.13%.

  15. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...

  16. Estimation of packaged water consumption and associated plastic waste production from household budget surveys

    Science.gov (United States)

    Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim

    2017-08-01

    Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.

  17. An in-mold packaging process for plastic fluidic devices.

    Science.gov (United States)

    Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K

    2011-01-01

    Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes.

  18. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    Science.gov (United States)

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application.

  19. 75 FR 5375 - Hazardous Material; Miscellaneous Packaging Amendments

    Science.gov (United States)

    2010-02-02

    ... plastic bags, plastic film bags, textile bags, and paper bags. The purpose was to eliminate uncertainty in... in This Final Rule A. Definitions B. Plastic Packagings Used To Transport Poison Materials C... provisions to require plastic single and composite non-bulk packagings containing Division 6.1 material to...

  20. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA)

    Energy Technology Data Exchange (ETDEWEB)

    Kassouf, Amine, E-mail: amine.kassouf@agroparistech.fr [ER004 “Lebanese Food Packaging”, Faculty of Sciences II, Lebanese University, 90656 Jdeideth El Matn, Fanar (Lebanon); INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy (France); AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris (France); Maalouly, Jacqueline, E-mail: j_maalouly@hotmail.com [ER004 “Lebanese Food Packaging”, Faculty of Sciences II, Lebanese University, 90656 Jdeideth El Matn, Fanar (Lebanon); Rutledge, Douglas N., E-mail: douglas.rutledge@agroparistech.fr [INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy (France); AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris (France); Chebib, Hanna, E-mail: hchebib@hotmail.com [ER004 “Lebanese Food Packaging”, Faculty of Sciences II, Lebanese University, 90656 Jdeideth El Matn, Fanar (Lebanon); Ducruet, Violette, E-mail: violette.ducruet@agroparistech.fr [INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy (France); AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris (France)

    2014-11-15

    Highlights: • An innovative technique, MIR-ICA, was applied to plastic packaging separation. • This study was carried out on PE, PP, PS, PET and PLA plastic packaging materials. • ICA was applied to discriminate plastics and 100% separation rates were obtained. • Analyses performed on two spectrometers proved the reproducibility of the method. • MIR-ICA is a simple and fast technique allowing plastic identification/classification. - Abstract: Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of

  1. Development of antimicrobial films for microbiological control of packaged salad.

    Science.gov (United States)

    Muriel-Galet, Virginia; Cerisuelo, Josep P; López-Carballo, Gracia; Lara, Marta; Gavara, Rafael; Hernández-Muñoz, Pilar

    2012-07-02

    The aim of the present work was to characterize the antimicrobial efficiency of films consisting of PP/EVOH structures with oregano essential oil and citral. Both substances are known for their antimicrobial activity based on their interaction with the cell membrane. The films developed were used to pack minimally processed salads, combining modified atmosphere technology to extend shelf-life and active packaging technology to reduce possible microbiological risks. The antimicrobial activity of the films against the pathogenic microorganisms Escherichia coli, Salmonella enterica and Listeria monocytogenes and natural microflora was investigated "in vitro" and also on the food itself. The effect of release of the antimicrobial agent on the sensory characteristics of the salad was also studied. The results showed that antimicrobial activity reduced spoilage flora on the salad as well as inhibited the growth of pathogens in contaminated salads. This effect was greater against Gram-negative bacteria. Sensory studies showed that the package that was most effective and most accepted by customers was the one containing 5% oregano essential oil.

  2. Extension of the sorting instructions for household plastic packaging and changes in exposure to bioaerosols at materials recovery facilities.

    Science.gov (United States)

    Schlosser, O; Déportes, I Z; Facon, B; Fromont, E

    2015-12-01

    The aim of this study was to assess how extending the sorting instructions for plastic packaging would affect the exposure of workers working at materials recovery facility (MRF) to dust, endotoxins, fungi and bacteria, taking into consideration other factors that could have an influence on this exposure. Personal sampling was carried out at four MRFs during six sampling campaigns at each facility, both in sorting rooms and when the workers were involved in "mobile tasks" away from the rooms. The data was analysed by describing the extension of sorting instructions both using a qualitative variable (after vs before) and using data for the pots and trays recycling stream, including or excluding plastic film. Overall, before the extension of the sorting guidelines, the geometric mean of personal exposure levels in sorting rooms was 0.3mg/m(3) for dust, 27.7 EU/m(3) for endotoxins, 13,000 CFU/m(3) for fungi and 1800 CFU/m(3) for bacteria. When workers were involved in mobile tasks away from the rooms, these averages were 0.5mg/m(3), 25.7 EU/m(3), 28,000 CFU/m(3) and 5100 CFU/m(3) respectively.The application by households of instructions to include pots, trays and film with other recyclable plastic packaging led to an increase in exposure to endotoxins, fungi and bacteria at MRFs. For an increase of 0.5 kg per inhabitant per year in the pots, trays and film recycling stream, exposure in sorting rooms rose by a factor of 1.4-2.2, depending on the biological agent. Exposure during mobile tasks increased by a factor of 3.0-3.6. The age of the waste amplified the effect of the extension of sorting instructions on exposure to fungi, bacteria and endotoxins. Factors that had a significant influence on the exposure of workers to dust and/or bioaerosols included the presence of paper, newspapers and magazines in the sorted waste, the order in which incoming waste was treated and the quality of the ventilation system in the sorting rooms. The levels of exposure observed in

  3. Discrete dislocation plasticity analysis of the wedge indentation of films

    NARCIS (Netherlands)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-01-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at +/- 35.3 degrees and 90 degrees with respect to the indentation direction. The analyses are carried out for

  4. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    of the polyhalostyrenes have essentially rate-independent and moderately temperature-dependent responses to such large doses of ionizing radiation. While radiation-induced optical absorption in the ultraviolet for polystyrene is unstable following irradiation, thus leading to an intrinsic low-intensity rate dependence......Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up...... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride...

  5. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, Bryan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics; Lechman, Jeremy B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale and Reactive Processes

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  6. Effect of aging on the microstructure of plasticized cornstarch films

    Directory of Open Access Journals (Sweden)

    Rossana M.S.M. Thiré

    2005-06-01

    Full Text Available Aging of cornstarch films prepared by casting was investigated. Water and glycerol-plasticized cornstarch films were stored at 50% relative humidity over a period of 330 days. Aging was followed by X-ray diffraction (XRD and atomic force microscopy (AFM. XRD spectra indicated development of B-type crystallinity even for fresh films and that the crystallinity index increased from 0.06 to 0.28 as a function of storage time. AFM images of 270-day-old films revealed that the general morphology and the overall roughness have not changed due to aging. AFM phase contrast images at higher magnification showed an increasing number of ordered domains at the surface of these films, which may be attributed to recrystallization of amylose. No morphological change was observed at least at the surface of the granular region, which is enriched in amylopectin.

  7. ZrCoCe Getter Films for MEMS Vacuum Packaging

    Science.gov (United States)

    Xu, Yaohua; Cui, Jiandong; Cui, Hang; Zhou, Hao; Yang, Zhimin; Du, Jun

    2016-01-01

    In order to specifically support the technology trend of increased miniaturization of micro electro mechanical systems (MEMS) devices, highly porous ZrCoCe non-evaporable getter (NEG) film has been produced by direct current magnetron sputtering from a preformed ZrCoCe alloy target. Scanning electron microscopy and x-ray diffraction analysis indicated that the ZrCoCe film is constructed with porous columnar crystals, which are further built up with assembled ZrCoCe amorphous or nanocrystalline grains with an average grain size of 5 nm. Gas sorption investigation shows that this film can be activated at a low temperature of 300°C for 30 min and has excellent stable sorption characteristics. Sorption properties can be further improved with elevating activation temperatures due to nanocrystals growing and amorphous regions crystallizing. The capability of ZrCoCe films to withstand wafer physical or chemical cleaning processes is investigated, indicating their compatibility with MEMS vacuum packaging and the appropriate way to store them.

  8. Effect of Different Packaging Films on Storability of Mushroom (Agaricus bisporus

    Directory of Open Access Journals (Sweden)

    R. Aminzadeh

    2014-02-01

    Full Text Available The button mushroom is rich food full of nutrient but compared with other fruits and vegetables, mushroom has a higher respiration rate and due to the lack of protective layer to prevent water loss, decay occurs quickly. It seems that suitable coating film is the one way for increase the storage life of mushroom. Therefore present research was carried out as split plot design in farme of CRD to find the best coating film in order to increase the storage life. In this research, the treatments were: control (package with Selefon, Poly Ethylene (PE with 40 and 65 micron thickness, Biaxially Oriented Polypropylene (BOPP with 25, 35 and 40 micron thickness, Cast PolyPropylen (CPP with 25 and 40 micron thickness, Poly Ester (PET with 12 and 24 micron thickness and Poly Vinyl Chloride (PVC with 30 micron thickness. The samples were estimated after 0, 10, 15, 20 and 25 days storage at 1°C and 90 % RH in 3 replications. The results showed that the types of plastic coating had significant effects on all measured characteristics as campared to that of control. Highest firmness value, Soluble Solid Content (SSC, titratable acidity, acidity (pH, and lowest weight less and decay were observed in packet mushroom with the coating film: BOPP and CPP and the lowest amounts were observed in the mushroom packed with control, PVC, PET and PE films. The effects of time on all of the measured during the storage period, were significant too.

  9. Maillard reaction products as antimicrobial components for packaging films.

    Science.gov (United States)

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials.

  10. Strawberries packaged with Polyvinyl Chloride (PVC film/ Morangos embalados com filme de Ppolicloreto de Vinila (PVC

    Directory of Open Access Journals (Sweden)

    Sergio Ruffo Roberto

    2006-06-01

    Full Text Available Strawberries cv. Dover with approximately 75% of their surface with red color was packaged in disposable polyethylene terephthalate (PET container and sealed with PVC film of 15mm thick. Strawberries without film serves as control. The fruits were stored at 12°C for ten days and there were determined during storage time the titratable acidity, solid soluble and vitamin C contents, color, respiration rate, texture and weight loss. After 6 days the strawberries packaged without film had decayed while the fruits packaged with PVC film were in conditions of consumption and commercialization. After 10 days all fruits were inappropriate to consumption. Packages with PVC film extended the shelf life of strawberries preserving the color characteristic of the product and vitamin C content, reducing the respiration rate and weight loss, characterizing this packaging as being adequate to this kind of product.Foram utilizados morangos cv. Dover com aproximadamente 75% de sua superfície com coloração vermelha e embalados em potes de polietileno tereftalato (PET. No tratamento CONTROLE os morangos foram acondicionados sem filme e no tratamento FILME, as embalagens foram seladas com filme de PVC de 15mm de espessura. As frutas foram armazenadas a 12°C por dez dias e foram determinadas ao longo do tempo acidez titulável, sólidos solúveis, vitamina C, cor, taxa de respiração, textura e perda de massa. Após 6 dias de armazenagem os morangos CONTROLE estavam impróprios para consumo pois apresentavam deterioração visível por bolores enquanto que os embalados com PVC estavam em condições de consumo e comercialização. Após 10 dias todos os morangos estavam impróprios para consumo. A embalagem utilizando filme de PVC aumentou a vida de prateleira de morangos em relação aos sem embalagem pois preservou melhor a coloração característica do produto e teor de vitamina C e reduziu as taxas de respiração e de perda de massa, caracterizando a

  11. Eco-efficiency in Recycling Systems: Evaluation Methods & Case Studies for Plastic Packaging

    OpenAIRE

    Eik, Arne; Steinmo, Solveig; Solem, Håvard; Brattebø, Helge; Saugen, Bernt

    2002-01-01

    Focus on the so-called waste hierarchy, which claims that the prevention of waste is the most environmental friendly option, followed by reuse, remanufacturing, mechanical recycling, feedstock recycling, energy recovery, incineration and landfill, is considered to be an important strategy towards sustainable development. Increased use of plastic packaging for various products and the corresponding increase in waste generated are important challenges that must be dealt with from a waste-hierar...

  12. Plasticizing Effects of Polyamines in Protein-Based Films

    Directory of Open Access Journals (Sweden)

    Mohammed Sabbah

    2017-05-01

    Full Text Available Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins. At the same time, they enhanced the dimension of nanoparticles under pH 8.0 as a result of macromolecular aggregations. By using native protein solutions, handleable films were obtained only from samples containing either a minimum of 33 mM glycerol or 4 mM spermidine, or both compounds together at lower glycerol concentrations. However, 2 mM spermidine was sufficient to obtain handleable film by using heat-treated samples without glycerol. Conversely, brittle materials were obtained by spermine alone, thus indicating that only spermidine was able to act as an ionic plasticizer. Lastly, both polyamines, mainly spermine, were found able to act as “glycerol-like” plasticizers at concentrations higher than 5 mM under experimental conditions at which their amino groups are undissociated. Our findings open new perspectives in obtaining protein-based films by using aliphatic polycations as components.

  13. Stability Study of Sunscreens with Free and Encapsulated UV Filters Contained in Plastic Packaging

    Directory of Open Access Journals (Sweden)

    Benedetta Briasco

    2017-05-01

    Full Text Available Sunscreens play a fundamental role in skin cancer prevention and in protection against photo-aging. UV filters are often photo-unstable, especially in relation to their vehicles and, being lipophilic substances, they are able to interact with plastic packaging. Finally, UV filter stability can be significantly affected by the routine use of the product at high temperatures. This work aims to study the stability of sunscreen formulations in polyethylene packaging. Butyl methoxydibenzoylmethane and octocrylene, both in a free form and as encapsulated filters were chosen as UV filters. Stability evaluations were performed both in the packaging and on the formulations. Moreover, a further two non-destructive techniques, near-infrared (NIR spectroscopy and a multiple light scattering technique, were also used to evaluate the stability of the formulation. Results demonstrated clearly that all of the pack underwent significant changes in its elastic/plastic behavior and in external color after solar irradiation. From the evaluation of the extractable profile of untreated and treated packaging material an absorption of 2-phenoxyethanol and octocrylene were shown. In conclusion, the results highlighted clearly that a reduction of the UV filter in the formulation packed in high-density polyethylene/low-density polyethylene (HDPE/LDPE material can occur over time, reducing the protective effect of the product when applied to the skin.

  14. Stability Study of Sunscreens with Free and Encapsulated UV Filters Contained in Plastic Packaging.

    Science.gov (United States)

    Briasco, Benedetta; Capra, Priscilla; Mannucci, Barbara; Perugini, Paola

    2017-05-31

    Sunscreens play a fundamental role in skin cancer prevention and in protection against photo-aging. UV filters are often photo-unstable, especially in relation to their vehicles and, being lipophilic substances, they are able to interact with plastic packaging. Finally, UV filter stability can be significantly affected by the routine use of the product at high temperatures. This work aims to study the stability of sunscreen formulations in polyethylene packaging. Butyl methoxydibenzoylmethane and octocrylene, both in a free form and as encapsulated filters were chosen as UV filters. Stability evaluations were performed both in the packaging and on the formulations. Moreover, a further two non-destructive techniques, near-infrared (NIR) spectroscopy and a multiple light scattering technique, were also used to evaluate the stability of the formulation. Results demonstrated clearly that all of the pack underwent significant changes in its elastic/plastic behavior and in external color after solar irradiation. From the evaluation of the extractable profile of untreated and treated packaging material an absorption of 2-phenoxyethanol and octocrylene were shown. In conclusion, the results highlighted clearly that a reduction of the UV filter in the formulation packed in high-density polyethylene/low-density polyethylene (HDPE/LDPE) material can occur over time, reducing the protective effect of the product when applied to the skin.

  15. Effect of plasticizer on moisture sorption isotherm of sugar palm (Arenga Pinnata) starch film

    Science.gov (United States)

    Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Rosyida, Vita Taufika

    2016-02-01

    The effect of plasticizer type (glycerol, sorbitol) and plasticizer concentrations (30, 35, 40, 45% w/w polymer) on the moisture sorption isotherm characteristics of sugar palm (Arenga pinnata) starch films were investigated. Moisture affinity of sugar palm starch films was influenced by the plasticizer type and plasticizer concentration. The affinity of the glycerol plasticized film is stronger than that of sorbitol plasticized film. Sugar palm starch film with a higher concentration of glycerol absorbs more moisture with higher initial absorption rate than that of with sorbitol. Films with higher plasticizer concentration of glycerol and sorbitol show higher equilibrium moisture contents at the given relative humidity. The moisture sorption isotherm characteristic of sugar palm starch films can be described very well with the semi empirical 4 parameter Peleg's model.

  16. Screening adulteration of polypropylene bottles with postconsumer recycled plastics for oral drug package by near-infrared spectroscopy.

    Science.gov (United States)

    Xie, Lan-Gui; Sun, Hui-Min; Jin, Shao-Hong

    2011-11-14

    Adulteration of pharmaceutical packaging containers with postconsumer recycled plastic materials was considerably difficult to identify due to the similar chemical compositions of virgin and recycled plastics. In the present study, near-infrared (NIR) spectroscopy coupled with conformity test was proposed to screen the adulteration of pharmaceutical packaging containers. Two kinds of representative screening models were investigated on polypropylene (PP) bottles for oral drug package. The reliability of the screening models was validated through studying the identification reliability, specificity, and robustness of the methods. The minimum spiking level of two modeled adulterants at the proportion of 20% could be detected, and the unqualified sample from a domestic manufacturer was rejected by this developed method. This strategy represents a rapid and promising analytical method for screening the adulteration of pharmaceutical plastic packaging containers with postconsumer recycled plastics.

  17. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA).

    Science.gov (United States)

    Kassouf, Amine; Maalouly, Jacqueline; Rutledge, Douglas N; Chebib, Hanna; Ducruet, Violette

    2014-11-01

    Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied

  18. Gelatin-Based Films and Coatings for Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Marina Ramos

    2016-09-01

    Full Text Available This review discusses the latest advances in the composition of gelatin-based edible films and coatings, including nanoparticle addition, and their properties are reviewed along their potential for application in the food packaging industry. Gelatin is an important biopolymer derived from collagen and is extensively used by various industries because of its technological and functional properties. Nowadays, a very wide range of components are available to be included as additives to improve its properties, as well as its applications and future potential. Antimicrobials, antioxidants and other agents are detailed due to the fact that an increasing awareness among consumers regarding healthy lifestyle has promoted research into novel techniques and additives to prolong the shelf life of food products. Thanks to its ability to improve global food quality, gelatin has been particularly considered in food preservation of meat and fish products, among others.

  19. Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type

    Science.gov (United States)

    Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.

    2017-07-01

    In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.

  20. Quality and safety aspects of reusable plastic food packaging materials : a European study to underpin future legislation

    NARCIS (Netherlands)

    Jetten, J.; Kruijf, N. de; Castle, L.

    1999-01-01

    The objective of this study was to develop a comprehensive package of quality assurance criteria for use by industry and regulatory authorities for ensuring the quality and safety-in-use (sensory, microbiological and chemical) of reused plastics for food packaging. The study included thermal

  1. Quality and safety aspects of reusable plastic food packaging materials : a European study to underpin future legislation

    NARCIS (Netherlands)

    Jetten, J.; Kruijf, N. de; Castle, L.

    1999-01-01

    The objective of this study was to develop a comprehensive package of quality assurance criteria for use by industry and regulatory authorities for ensuring the quality and safety-in-use (sensory, microbiological and chemical) of reused plastics for food packaging. The study included thermal degrada

  2. Determination of plastic additives in packaging by liquid chromatography coupled to high resolution mass spectrometry.

    Science.gov (United States)

    Moreta, Cristina; Tena, María-Teresa

    2015-10-02

    A simple and sensitive analytical method for the determination of several plastic additives in multilayer packaging based on solid-liquid extraction (SLE) and ultra-high performance liquid chromatography (UHPLC) coupled to variable wavelength (VWD) and time of flight mass spectrometry (TOF-MS) detectors is presented. The proposed method allows the simultaneous determination of fourteen additives belonging to different families such as antioxidants, slip agents and light stabilizers, as well as two oxidation products in only 9min. The developed method was validated in terms of linearity, matrix effect error, detection and quantification limits, repeatability and intermediate precision. The instrumental method showed satisfactory repeatability and intermediate precision at concentrations closed to LOQ with RSDs less than 7 and 20%, respectively, and LODs until 5000 times more sensitive than other GC-FID and HPLC-VWD methods previously reported. Also, focused ultrasound solid-liquid extraction (FUSLE) was optimized and evaluated to extract plastic additives from packaging. Extraction results obtained by FUSLE and SLE were compared to those obtained by pressurized liquid extraction (PLE). All extraction methods showed excellent extraction efficiency for slip agents, however quantitative recovery of all analytes was achieved only by SLE with just 5ml of hexane for 10h. Finally, the selected method was applied to the analysis of packaging samples where erucamide, Irgafos 168, oxidized Irgafos 168, Irganox 1076 and Irganox 1010 were detected and quantified. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs.

    Science.gov (United States)

    Bott, Johannes; Störmer, Angela; Franz, Roland

    2014-01-01

    Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg⁻¹, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material.

  4. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  5. Practical and dosimetric implications of a new type of packaging for radiographic film

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, S; Wagter, C de [Department of Radiotherapy, Ghent University Hospital, De Pintelaan 185, 9000 Gent (Belgium)

    2005-04-21

    Recently, Kodak introduced new light-tight packages (vacuum packaging, aluminium layer under black polyethylene and different paper) for their oncology films (EDR-2, X-Omat V and PPL-2). In order to avoid additional uncertainty and to ensure transferability of previously published results, we assessed in this study the effect of the old and new packages on the dosimetric response of EDR-2 radiographic film. Therefore, sensitometric measurements were performed for different film assemblies (new envelope + new paper, old envelope + old paper, new envelope without paper and old envelope without paper). In addition, to assess possible effects of the package on the film depth-dose response, packaged films were irradiated in parallel geometry, and central depth-dose curves were retrieved. For the perpendicular geometry, on the other hand, the effect of the package was assessed at large depth for a high intensity-modulated inverse-pyramid beam. The results of the sensitometric measurements reveal no difference between the packages. However, the white colour of the paper in both the packages induces a dose-dependent increase in optical density (0-0.12) of the film. The depth-dose curves show better reproducibility for the new package and the new paper improves the accuracy of film dosimetry, but despite the company's effort to evacuate the air out of the new envelope, it remains necessary to clamp the films in the phantom for the parallel irradiation geometry. At 5 cm depth, the films irradiated in parallel geometry show an under-response of 3-5% compared to films irradiated perpendicularly. Finally, even at locations of large photon scatter, no filtration effect from the aluminium layer incorporated in the new envelope has been observed for perpendicular irradiation geometry. (note)

  6. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material.

  7. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Directory of Open Access Journals (Sweden)

    Vodnar Dan C

    2012-07-01

    Full Text Available Abstract Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C for 10 days and at refrigerated temperature (4°C for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea

  8. Effect of Plasticizers on Properties of Rice Straw Fiber Film

    Institute of Scientific and Technical Information of China (English)

    Chen Hong-rui; Chen Hai-tao; Liu Shuang; Dun Guo-qiang; Zhang Ying

    2014-01-01

    In order to improve the properties of rice straw fiber film, one factor contrast test method was employed. Plasticizer type was chosen as input variable, dry tension strength and elongation, wet tension strength and elongation, bursting strength and tearing strength were chosen as indexes. The results showed that there were significant differences among the means of dry tension strength, dry elongation and bursting strength of different plasticizers; there were not significant differences among the means of wet tension strength, wet elongation and tearing strength of different plasticizers; for dry tension strength and elongation, glycerol had a significant difference with sorbitol and PEG, no significant difference was observed between sorbitol and PEG, dry tension strength added glycerol had been reduced 6.8% compared with that added sorbitol, reduced 9.5% compared with that added PEG; elongation had been improved 6.1% and 9.4%, respectively; for bursting strength, sorbitol had a significant difference with glycerol and PEG, no significant difference was observed between glycerol and PEG; bursting strength added glycerol and added PEG had been improved 6.9% and 5.6%, respectively compared with that of the added sorbitol. The results provided a theoretical reference for further improving the straw fiber film manufacturing process.

  9. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols

    DEFF Research Database (Denmark)

    Cervera, Mirna Fernández; Karjalainen, Milja; Airaksinen, Sari

    2004-01-01

    The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer...... in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly...

  10. [Reducing nutrients loss by plastic film covering chemical fertilizers].

    Science.gov (United States)

    Chen, Huo-jun; Wei, Ze-bin; Wu, Qi-tang; Zeng, Shu-cai

    2010-03-01

    With the low utilization rate of fertilizers by crop and the growing amount of fertilizer usage,the agricultural non-point source pollution in China is becoming more and more serious. The field experiments planting corns were conducted, in which the applied chemical fertilizers were recovered with plastic film to realize the separation of fertilizers from rain water. In the experiments, the influences of different fertilizing treatments on the growing and production of sweet corn were observed. The fertilizer utilization rate and the nutrient contents in surface run-off water with and without the film covering were also determined. Results showed that, with only 70% of the normal amount of fertilizers,the sweet corn could already get high yield under the experimental soil conditions. Soil analysis after corn crops showed that the amounts of available N, P and K in the soil increased obviously with the film-covering, and the decreasing order was: 100% fertilizers with film-covering > 70% fertilizers with film-covering > 100% fertilizers, 70% fertilizers > no fertilizer. The average utilization coefficients of fertilizers by the crop were 42%-87%, 0%-3%, 5%-15% respectively for N, P and K. It was higher with film-covering than that without covering, especially for the high fertilization treatment. Analysis of water samples collected for eight run-off events showed that, without film-covering, N, P and K average concentrations in the runoff waters with fertilizations were 27.72, 2.70 and 7.07 mg x L(-1), respectively. And they were reduced respectively by 39.54%, 28.05%, 43.74% with the film-covering. This can give significant benefits to the decrease of agricultural non-point source pollution and water eutrophication.

  11. Antioxidant BHT Modelling Migration from Food Packaging of High Density Polyethylene Plastics into the Food Simulant

    Directory of Open Access Journals (Sweden)

    Chi Haitao

    2015-09-01

    Full Text Available Made of High Density Polyethylene (HDPE films containing antioxidant 2, 6-di-tert-butyl-p-cresol (BHT, film samples were manufactured by plastic extrusion equipment, 95% ethanol aqueous solution simulating liquid was used for stimulant, using High Performance Liquid Chromatography (HPLC for the long-term migration test of 4 kinds of HDPE films containing different concentrations of antioxidant BHT. The migration data were processed by using Weibull model and then the migration model was specific under experimental conditions. Migration model was setup using the migrating data by Weibull model to fitting real experimental data. Using empirical formula reported FDA model formula and the diffusion coefficient constant D, calculated by the FDA model. Two kinds of model numerical after compared according to FDA model transfer numerical literature that is far lower than the actual test migration value. According to the actual test migration value, Weibull model numerical and experimental tests that the migration software fitting values are consistent.

  12. Preparation of plastic and biopolymer multilayer films by plasma source ion implantation.

    Science.gov (United States)

    Shin, Gye Hwa; Lee, Yeon Hee; Lee, Jin Sil; Kim, Young Soo; Choi, Won Seok; Park, Hyun Jin

    2002-07-31

    The plasma source ion implantation (PSII) technique was used to improve the adhesion between linear low-density polyethylene (LLDPE) and biopolymer. LLDPE was treated with the PSII using O(2) or CF(4) gas to modify its surface. After modification, chitosan or corn zein was used for coating on LLDPE. Wettability of the LLDPE surface was evaluated with a contact angle meter by the sessile drop method. X-ray photoelectron spectroscopy (XPS) was used to analyze the LLDPE surface. Before and after treatment, in the case of LLDPE treated with O(2) PSII, oxygen-containing functional groups were formed on the implanted surface. In the CF(4) PSII treated LLDPE, it was observed that the fluorine concentration on the surface of LLDPE remarkably increased and hydrophobic groups were formed by chemical reaction. Bilayer films coated with chitosan or corn zein showed 10 times lower oxygen permeability. Tensile strength of multilayer films was decreased a little compared with that of LLDPE. The plastic and biopolymer multilayer films have potential for food packaging application because of their O(2) gas barrier property and easy recyclability of the multilayer film.

  13. Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage.

    Science.gov (United States)

    Jouki, Mohammad; Yazdi, Farideh Tabatabaei; Mortazavi, Seyed Ali; Koocheki, Arash

    2013-11-01

    In this study, we investigated the potential of quince seed mucilage (QSM) as a new source for preparation of edible films and determined the physical, mechanical, barrier, antioxidant, microstructural and thermal properties. QSM films were prepared by incorporation of three levels of glycerol (25-50%, w/w). As glycerol concentration increased, water vapor permeability (WVP), oxygen permeability (O2P), elongation at break (EB), water solubility and moisture content of QSM films increased while, tensile strength (TS), density and surface hydrophobicity decreased significantly. The measurement of color values showed that by the increasing of the glycerol concentration in polymer matrix, the b and L values increased while ΔE value decreased. Microscopic views indicated smooth and uniform surface morphology without obvious cracks, breaks, or openings on the surfaces after the incorporation of glycerol as a plasticizer. The results of the present study suggest that QSM as a new antioxidant edible film with interesting specifications can potentially be used for packaging of a wide range of food products.

  14. Analysis of Phthalate Esters in Air, Soil and Plants in Plastic Film Greenhouse

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The phthalate esters such as DMP, DEP, DBP and DEHP in air, soil and plant samples in plastic film greenhouse were clean up with fine silica gel column and determined with HPLC. It was found that the concentrations of PEs in air and soil samples in plastic film greenhouse are much higher than those of contrast samples. But concentrations of PEs in plants in plastic film greenhouse are not remarkably affected by the pollution of air and soil.

  15. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  16. Starch/polyester films: simultaneous optimisation of the properties for the production of biodegradable plastic bags

    Directory of Open Access Journals (Sweden)

    J. B. Olivato

    2013-01-01

    Full Text Available Blends of starch/polyester have been of great interest in the development of biodegradable packaging. A method based on multiple responses optimisation (Desirability was used to evaluate the properties of tensile strength, perforation force, elongation and seal strength of cassava starch/poly(butylene adipate-co-terephthalate (PBAT blown films produced via a one-step reactive extrusion using tartaric acid (TA as a compatibiliser. Maximum results for all the properties were set as more desirable, with an optimal formulation being obtained which contained (55:45 starch/PBAT (88.2 wt. (%, glycerol (11.0 wt. (% and TA (0.8 wt. (%. Biodegradable plastic bags were produced using the film with this formulation, and analysed according to the standard method of the Associação Brasileira de Normas Técnicas (ABNT. The bags exhibited a 45% failure rate in free-falling dart impact tests, a 10% of failure rate in dynamic load tests and no failure in static load tests. These results meet the specifications set by the standard. Thus, the biodegradable plastic bags fabricated with an optimised formulation could be useful as an alternative to those made from non-biodegradable materials if the nominal capacity declared for this material is considered.

  17. Surveillance as an innovative tool for furthering technological development as applied to the plastic packaging sector

    Directory of Open Access Journals (Sweden)

    Freddy Abel Vargas

    2010-04-01

    Full Text Available The demand for production process efficiency and quality has made it necessary to resort to new tools for development and technological innovation. Surveillance of the enviroment has thus bee identified as beign a priority, paying special attention to technology which (by its changing nature is a key factor in competitiveness. Surveillance is a routine activity in developed countries ' organisations; however, few suitable studies have been carried out in Colombia and few instruments produced for applying it to existing sectors of the economy. The present article attempts to define a methodology for technological awareness (based on transforming the information contained in databases by means of constructing technological maps contributing useful knowledge to production processes. This methodology has been applied to the flexible plastic packaging sector. The main trends in this industry's technological development were identified allowing strategies to be proposed for incorporating these advances and tendencies in national companies and research groups involved in flexible plastic packaging technological development and innovation. Technological mappiong's possibilities as an important instrument for producing technological development in a given sector are the analysed as are their possibilities for being used in other production processes.

  18. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    Science.gov (United States)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  19. Life Cycle Assessment of Common Plastic Packaging for Reducing Environmental Impact and Material Consumption

    Directory of Open Access Journals (Sweden)

    Visvaldas Varžinskas

    2009-12-01

    the Faculty of Design and Technologies, Kaunas University of Technology, together with packaging and environmental protection specialists of the University, and in cooperation with the Department of Printed Publications and Packaging of the Ukrainian Print Academy. The present paper analyses certain basic findings of the study on the possibilities of improving the ecological level of packaging within the framework of the project. It is stated that appropriate investigation of packaging, its production and application has to be performed in order to prove that the packaging was produced in compliance with preventive and other principles; this investigation is related to a wide variety of package testing, some of which has not yet got methodology acknowledged at a sufficient level (the EU or groups of countries. Therefore, one of the research directions in the above mentioned project, discussed in the present paper, is related to developing a single system, recognized throughout the EU, which would enable researchers to perform the required tests confirming the packaging quality compliance with the environmental requirements. The paper analyzes the EU prevention regulations for reducing the amount of raw material and the system of checking the realization of the requirements based on identification of critical areas, aimed at reaching the lowest possible package weight and/or volume, consequently, the minimum waste amount, without increasing the amount of faulty products and product waste. The paper presents the findings of the research obtained in assessing the life cycle, when applying the Ecoindicator'99 qualitative analysis, concerning the impact of common plastic packages and processes on the environment during manufacturing, usage and disposal. Compression test results of common type plastic packaging construction are presented, which allow us to assess the impact of the package shape and construction upon the packaging reliability and minimization of its mass.

  20. Physical evaluation of biodegradable films of calcium alginate plasticized with polyols

    Directory of Open Access Journals (Sweden)

    A. A. Santana

    2013-12-01

    Full Text Available The influence of different polyols as plasticizers of alginate films on their physical attributes like moisture content, soluble mass in water, water uptake, water vapor permeability, opacity and mechanical properties were determined and the results discussed based on scanning electron microscopy observations and glass transition temperature. The alginate films were obtained by casting, using three different gramatures. Calcium crosslinked and non-reticulated films were considered. The films plasticized with glycerol and xylitol were more hygroscopic than the films with mannitol. The lowest water vapor permeability values were found for films plasticized with mannitol, at all studied thicknesses. The films plasticized with glycerol and xylitol showed very similar functional attributes regarding their application as food wrappings. The Ca2+ crosslinked mannitol films showed the highest tensile strength at rupture (>140 MPa.

  1. [Analysis of phthalates in plastic food-packaging bags by thin layer chromatography].

    Science.gov (United States)

    Chen, Hui; Wang, Yuan; Zhu, Ruohua

    2006-01-01

    The method for simultaneous determination of four phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) in plastic food-packaging bags by thin layer chromatography (TLC) was developed. The plastic food-packaging bags were extracted with ethanol by ultrasonication, then the mixture was filtrated through membrane (0.45 microm). The mixture of ethyl acetate-anhydrous ether-isooctane (1 : 4 : 15, v/v) was used as developing agent on the TLC silica gel plate for development. The filtered liquid was spotted on the TLC plate dealt by acetone, and detected with scanning wavelength of 275 nm and reference wavelength of 340 nm. The qualitative analysis of the phthalates was performed using the R(f) values of the chromatogram. The quantitative analysis was performed with external standard method. Good linearities were obtained for DMP, DEP, DBP and DEHP. The detection limits were 2.1 ng for DMP, 2.4 ng for DEP, 3.4 ng for DBP and 4.0 ng for DEHP. The relative standard deviations (RSDs) of the four phthalates were 2.8% - 3.5%. The recoveries of the four phthalate standards in real sample were 78.58% - 111.04%. The method presented has the advantages of high precision, high sensitivity, small sample size, and simple pretreatment . The method was used to detect the four phthalates in the food-packaging bags. The contents in real samples were close to the results by gas chromatography.

  2. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    Science.gov (United States)

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®

  3. Development of antifungal films based on low-density polyethylene and thyme oil for avocado packaging

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2015-10-01

    Full Text Available gloeosporioides causal organism of “anthracnose” postharvest disease in avocados. The results indicated that the films have great potential as antifungal packaging materials for avocado fruits....

  4. A physicochemical study of sugar palm (Arenga Pinnata) starch films plasticized by glycerol and sorbitol

    Science.gov (United States)

    Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri

    2016-02-01

    The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.

  5. FINITE ELEMENT ANALYSIS OF SUBSTRATE LOCAL PLASTIC DEFORMATION INDUCED BY CRACKED THIN HARD FILM

    Institute of Scientific and Technical Information of China (English)

    Zhu Youli; Ro(z)niatowski K; Kurzydlowski K; Huang Yuanlin; Xu Binshi

    2004-01-01

    It has been postulated that, with tensile loading conditions, micro-cracks on thin hard film act as stress concentrators enhancing plastic deformation of the substrate material in their vicinity. Under favorable conditions the localized plastic flow near the cracks may turn into macroscopic plastic strain thus affects the plasticity behaviors of the substrate. This phenomenon is analyzed quantitatively with finite element method with special attention focused on the analysis and discussion of the effects of plastic work hardening rate, film thickness and crack depth on maximum plastic strain, critical loading stress and the size of the local plastic deformation zone. Results show that micro-cracks on thin hard film have unnegligible effects on the plasticity behaviors of the substrate material under tensile loading.

  6. Edible Film Making of Starch Canna Tuber (Canna Edulis Kerr) and Aplication to Packaging Galamai

    OpenAIRE

    Hafnimardiyanti Hafnimardiyanti; M.Ikhlas Armin; Martalius Martalius

    2014-01-01

    Canna (Canna edulis Kerr) was a tuber that had a high carbohydrate content so canna had excellent prospects to develop into edible film. The purpose of this study was to make edible film of canna starch, knowing storability galamai was packed with edible film and determine the level of preference panelists through organoleptic tests. In this research, manufacture of edible films with various concentrations of canna starch 2%, 3%, 4% and the use of plasticizer (glycerol) 1%, 2% and 3% with 100...

  7. Effect of plasticizer on surface of free films prepared from aqueous solutions of salts of cationic polymers with different plasticizers

    Science.gov (United States)

    Bajdik, János; Fehér, Máté; Pintye-Hódi, Klára

    2007-06-01

    Acquisition of a more detailed understanding of all technological processes is currently a relevant tendency in pharmaceutical technology and hence in industry. A knowledge of film formation from dispersion of polymers is very important during the coating of solid dosage forms. This process and the structure of the film can be influenced by different additives. In the present study, taste-masking films were prepared from aqueous citric acid solutions of a cationic polymer (Eudragit ® E PO) with various hydrophilic plasticizers (glycerol, propylene glycol and different poly(ethylene glycols)). The mechanical properties, film thickness, wetting properties and surface free energy of the free films were studied. The aim was to evaluate the properties of surface of free films to predict the arrangement of macromolecules in films formed from aqueous solutions of salts of cationic polymers. A high molecular weight of the plasticizer decreased the work of deformation. The surface free energy and the polarity were highest for the film without plasticizer; the hydrophilic additives decreased these parameters. The direction of the change in polarity (a hydrophilic component caused a decrease in the polarity) was unexpected. It can be explained by the change in orientation of the macromolecules, a hydrophobic surface being formed. Examination of the mechanical properties and film thickness can furnish additional results towards a knowledge of film formation by this not frequently applied type of polymer from aqueous solution.

  8. PP/clay nanocomposite films for food package; Filmes de nanocomposito PP/argila organofilica para embalagens de alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Arthur R.A.; Silva, Suedina M.L., E-mail: suedina@dema.ufcg.ed [Universidade Federal de Campina Grande (UAEMat/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Andrade, Daniela L.A.C.S. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Engenharia de Processos; Mesquita, Wandemberg B. [Felinto Industria e Comercio Ltda., Campina Grande, PB (Brazil)

    2009-07-01

    Small contents of organoclays (1 wt %) were incorporated to PP modified with maleic anhydride by melt intercalation, in order to prepare polymeric films for further applications in food package sector. The films were characterized by X-ray diffraction (XRD) and mechanical properties. The data indicates that the incorporation of organoclay to PP results in transparent films with intercalated morphology and highly. The mechanical properties of nanocomposites films were superior from those pristine films. The results evidences that the PP/PP-g-MA/organoclay nanocomposite films, prepared in this study might be promissory to the food package market and, in short time, be used like a new product by industries of this sector. (author)

  9. THE EFFECT OF PLASTICIZER CONTENT AND DISACCHARIDE TYPE ON THE MECHANICAL, BARRIER AND PHYSICAL PROPERTIES OF BOVINE GELATIN-BASED FILMS

    Directory of Open Access Journals (Sweden)

    PEDRO GUERRERO1

    2014-06-01

    Full Text Available Gelatins are regarded as alternative raw materials to prepare films for food packaging. However, the improvement of their mechanical and water barrier properties is necessary in order to obtain useful materials in service conditions. To improve these functional properties, two strategies have been carried out in this work. First, glycerol was added as plasticizer to increase the flexibility of the films. Second, lactose or sucrose was added to react with gelatin and increase water resistance of gelatin-based films. Commercial gelatin, glycerol and lactose or sucrose were employed in this work and processing of the films was carried out by solution casting. All gelatin films obtained were transparent and flexible. Moreover, the hydrophobic character of the films was increased and the film solubility was decreased by the addition of glycerol and disaccharides. As was observed via FTIR, the changes were due to the interactions between gelatin and glycerol and Maillard reaction between gelatin and disaccharides.

  10. Processing and Validation of Whey-Protein-Coated Films and Laminates at Semi-Industrial Scale as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    E. Bugnicourt

    2013-01-01

    Full Text Available A biopolymer coating for plastic films was formulated based on whey protein, and its potential to replace current synthetic oxygen barrier layers used in food packaging such as ethylene vinyl alcohol copolymers (EVOH was tested. The whey-coating application was performed at semi-industrial scale. High barrier to oxygen with transmission rate down to ranges of 1 cm3 (STP m−2 d−1 bar−1 at and 50% relative humidity (r.h. but interesting humidity barrier down to ranges of 3 g m−2 d−1 (both normalized to 100 μm thickness were reached, outperforming most existing biopolymers. Coated films were validated for storing various food products showing that the shelf life and sensory attributes were maintained similar to reference packaging films while complying with food safety regulations. The developed whey coating could be enzymatically removed within 2 hours and is therefore compatible with plastic recycling operations to allow multilayer films to become recyclable by separating the other combined layers. A life cycle assessment was performed showing a significant reduction in the environmental impact of the packaging thanks in particular to the possibility of recycling materials as opposed to incinerating those containing EVOH or polyamide (PA, but due to the use of biosourced raw materials.

  11. Effect of packaging with Chitosan biodegradable films formulated with Garlic essential oil (Allium sativum L. on the chemical properties of chicken fillet

    Directory of Open Access Journals (Sweden)

    E Molaee Aghaee

    2016-01-01

    Full Text Available Background and Objective: Considering the environmental problems raised from current plastic packaging, edible and biodegradable films could be developed and also be effective in controlling the chemical and microbial properties of food especially if their effect be strengthened by adding natural antioxidant and antimicrobial agents like herbal essential oils. This study aimed at assessing the effect of packaging with chitosan film containing garlic essential oil on the chemical changes of chicken fillet during storage at refrigeration temperature. Materials and Methods: Different levels of garlic essential oil (0, 0.5, 1 and 2% were used in chitosan film preparation. Through casting method and using glycerol as plasticizer and tween 80 as emulsifier, different films were prepared after homogenization and molding. Chemical tests were conducted in days 0, 2, 4, 7, 10, and 14 on chicken fillets covered with different films and stored at 4 °C. Statistical analysis was performed using SPSS software. Results: Samples covered with different films showed lower values for pH, total volatile nitrogen (TVN, Thiobarbituric acid-reactive substances (TBARs, and peroxide index (P.V compared with controls during the study (p &le 0.05. Generally, a dose-dependent trend was observed by essential oil addition. Conclusion: Chicken packaging with chitosan film especially by adding various levels of garlic essential oil could had a preventive effect on major chemical spoilage factors. Considering the relatively similar preventive effect of 1 and 2 % essential oil levels and also economic aspects, optimum dose for essential oil could be 1 % in the film.

  12. Preparation and characterization of biodegradable active PLA film for food packaging

    Science.gov (United States)

    Di Maio, L.; Scarfato, P.; Avallone, E.; Galdi, M. R.; Incarnato, L.

    2014-05-01

    In this work we report on the preparation and characterization of a biodegradable active PLA film (aPLA), intended for food packaging applications. The film was obtained by cast extrusion blending a commercial PLA matrix with an active system, developed in our laboratory and based on PLA microparticles containing a-tocopherol (aTCP) as natural antioxidant agent. In order to optimize the film composition and processing, the active microparticles were preliminarily characterized with the aim to evaluate their morphology (size and shape), thermal resistance and a-tocopherol content. The aPLA film, produced with a 5wt% of aTCP, was characterized in terms of performance and activity. The experimental results demonstrated that the aPLA film has mechanical, thermal, barrier and optical properties adequate for packaging applications and shows oxygen scavenging activity and prolonged exhaustion lag time, compared to pure PLA films.

  13. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    Energy Technology Data Exchange (ETDEWEB)

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

  14. Elastic stresses and plastic deformations in 'Santa Clara' tomato fruits caused by package dependent compression

    Directory of Open Access Journals (Sweden)

    PEREIRA ADRIANA VARGAS

    2000-01-01

    Full Text Available The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg, caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure, which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm. The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.

  15. Estrogenic potency of food-packaging-associated plasticizers and antioxidants as detected in ERa and ERb reporter gene cell lines

    NARCIS (Netherlands)

    Veld, ter M.G.R.; Schouten, B.; Louisse, J.; Es, van D.S.; Saag, van der P.T.; Rietjens, I.M.C.M.; Murk, A.J.

    2006-01-01

    This study presents the estrogenic potency of 21 food-packaging-associated compounds determined for the first time, using two transfected U2-OS (human osteoblasts devoid of endogenous estrogen receptors) estrogen receptor (ER) alpha and beta cell lines. Six plasticizers and three antioxidants were s

  16. Soluble soybean polysaccharide: a new carbohydrate to make a biodegradable film for sustainable green packaging.

    Science.gov (United States)

    Tajik, Sima; Maghsoudlou, Yahya; Khodaiyan, Faramarz; Jafari, Seid Mahdi; Ghasemlou, Mehran; Aalami, Mehran

    2013-09-12

    Biodegradable edible films based on soluble soybean polysaccharide (SSPS), a new film-forming material, and three levels of glycerol (20%, 30% and 40%, w/w) as plasticizer, were developed and evaluated in terms of physical, mechanical, barrier and optical properties as well as their microstructure. SSPS-based films with a concentration of 20% glycerol possessed the lowest water vapor permeability. Increasing the glycerol content increased (Ppackaging material.

  17. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2017-06-01

    Full Text Available Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol (PVA composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field.

  18. Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses.

    Science.gov (United States)

    Fu, Xiaowei; Du, Qizhen

    2011-11-09

    Uptake of di-(2-ethylhexyl) phthalate (DEHP) of nine vegetables including potherb mustard, bok choy, celery, spinach, cabbage, leaf of tube, lettuce, garlic, and edible amaranth in plastic film greenhouses with different plastic films, film thickness, greenhouse age, and greenhouse height was studied. The results showed that the higher the DEHP content of film, the thicker the film, the lower the height of the greenhouse, and the younger the age of the greenhouse were, the higher the DEHP concentration of vegetables was. The results afford significant information for production of safe vegetables with low level DEHP contamination.

  19. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China

    Science.gov (United States)

    Liu, E. K.; He, W. Q.; Yan, C. R.

    2014-09-01

    Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.

  20. EFFECT OF PLASTICIZERS ON MECHANICAL PROPERTIES OF EDIBLE FILM FROM JANENG STARCH – CHITOSAN

    Directory of Open Access Journals (Sweden)

    Narlis Juandi

    2016-10-01

    Full Text Available The interest in the development of edible and biodegradable films has increased because it is every day more evident that non degradable are doing much damage to the environment. In this research, edible films were based on blends of janeng starch in different proportions, added of palm oil or glycerol, which were used as plasticizers. The objective was to study the effect of two different plasticizers, palm oil and glycerol of edible film from janeng starch–chitosan on the mechanical properties and FTIR spectra. Increasing concentration of glycerol as plasticizer resulted tend to increased tensile strength and elongation at break. The tensile strength and elongation at break values for palm oil is higher than glycerol as plasticizer at the same concentration. FTIR spectra show the process of making edible film from janeng starch–chitosan with palm oil or glycerol as plasticizers are physically mixing in the presence of hydrogen interactions between chains.

  1. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    Science.gov (United States)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  2. Reliable liquid chromatography-mass spectrometry method for investigation of primary aromatic amines migration from food packaging and during industrial curing of multilayer plastic laminates.

    Science.gov (United States)

    Lambertini, Francesca; Di Lallo, Valentina; Catellani, Dante; Mattarozzi, Monica; Careri, Maria; Suman, Michele

    2014-09-01

    Primary aromatic amines (PAAs) can migrate from packaging into food from different sources such as polyurethanic adhesives used for the manufacture of multilayer films, which may contain residual aromatic isocyanates, or recycled paperboard, because of the presence of azo dyes in the printed paper massively used in the recycling process. In the present work, a reliable analytical method, exploiting a conventional high-performance liquid chromatography-(selected ion monitoring)-mass spectrometry system, for PAAs compliance assessment in food contact materials was developed as an effective alternative to the current standard spectrophotometric one, moving in this way from the screening to the accurate and selective quantitation perspective for the analysis of PAAs both in aqueous and acidic food simulants. The main validation parameters were verified achieving very satisfactory results in terms of linearity range, limit of detection (ranging from 0.1 to 1.0 µg kg(-1)) and quantitation (ranging from 0.1 to 3.6 µg kg(-1)), repeatability and accuracy. Suitability of the method was demonstrated for a wide range of commercial samples, chosen among different producers of the most common used food packaging plastic and paperboard categories and then analyzed to assess the risk related to PAAs migration. Finally, the method was also successfully exploited to monitor the evolution of potential PAAs migration during the industrial curing process of multilayer plastic laminates, prior to their release for delivery to the food industry end user.

  3. Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film.

    Science.gov (United States)

    Panda, Brajabihari; Parihar, Aditi Singh; Mallick, Subrata

    2014-06-01

    Effect of different hydrophilic plasticizers on drug crystallinity of hydroxypropyl methylcellulose (HPMC) matrix film was studied. HPMC films containing telmisartan using different plasticizers were prepared by casting method. Drug crystallinity in the films was examined using polarized light microscopy (PLM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) to describe their phase behavior/solid state miscibility/crystal growth and drug-polymer-plasticizer interaction. HPMC and plasticizer were compatible with the drug and no phase separation was observed upon solvent evaporation. Plasticized-HPMC contributed a major role in the significant inhibition of crystal growth of the drug in the film. The triethanolamine film produced a relatively smooth surface in comparison to the other films in the submicron level. The films have not shown any significant changes even after exposure to stress (40°C/75% RH, 6 w). Triethanolamine as plasticizer brought about amorphization of telmisartan to the maximum extent in the film which is technologically more advantageous than the others owing to its anticipated better bioavailability.

  4. Effect of different packaging films on postharvest quality and selected enzyme activities of Hypsizygus marmoreus mushrooms.

    Science.gov (United States)

    Xing, Zengtao; Wang, Yaosong; Feng, Zhiyong; Tan, Qi

    2008-12-24

    Freshly harvested Hypsizygus marmoreus mushrooms were packaged using different packaging films, and physiological changes associated with postharvest deterioration, together with the activities of selected enzymes thought to play a role in senescence, were monitored during subsequent storage for 16-24 days at 4 degrees C and 65-70% relative humidity. A biaxially oriented polypropylene film (BOPP) maintained the postharvest appearance of the mushrooms most effectively by significantly reducing the incidence of unsightly aerial hyphae on the pileal surface and restricting mushroom softening. These samples also exhibited smaller initial decreases in soluble protein, smaller increases in reducing sugar content, and lower levels of malondialdehyde accumulation during early storage. Smallest increases in proteinase activity were recorded in samples wrapped with BOPP and polyoletin packaging, and superoxide dismutase and polyphenol oxidase levels were significantly higher and lower, respectively, in the former. Choice of packaging can significantly affect postharvest quality loss in H. marmoreus and improve mushroom shelf life.

  5. The Effects of plasticizers and palmitic acid toward the properties of the carrageenan Film

    Science.gov (United States)

    Heru Wibowo, Atmanto; Listiyawati, Oktaviana; Purnawan, Candra

    2016-02-01

    Varied plasticizers and palmitic acid additive have been added in the carrageenan film. The film was made by mixing of the carrageenan and plasticizers (glycerol, polyethylene glycol, polyvinyl alcohol) with composition of 92:3, 90:6, 87:9, 84:12, 81:15(%w/w) and in the presence of palmitic acid as additive with 1%, 2%, 3%, 4%, 5% of total weight. Casting method was used for the film molding and drying at 60oC with the oven for 12 hours. To investigate the effects of plasticizers and additive, some mechanical tests on film were performed. The test result concludes that plasticizers in the film decreased the tensile strength and increased the elongation break of the carrageenan film. The additive of palmitic acid decreased the tensile strength of the carrageenan film and also decreased the-the water absorbance of the film. The highest tensile strength of films made was with the formulation of carrageenan: PEG with composition of 92:3 (% w/w). The highest elongation break of the film was for carrageenan:PVA with the composition of 81: 15 (%w/w) and carrageenan:palmitic acid:PEG with the composition of 92: 3: 1 (%w/w). The lowest water absorption of the film was achieved for carrageenan:PVA:palmitic acid with the composition of 87: 3: 5 (%w/w).

  6. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    Science.gov (United States)

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  7. Use of nanoporous columnar thin film in the wafer-level packaging of MEMS devices

    Science.gov (United States)

    Lee, Byung-Kee; Choi, Dong-Hoon; Yoon, Jun-Bo

    2010-04-01

    This paper presents a new packaging technology that uses a nanoporous columnar thin film to seal microelectromechanical system (MEMS) devices at the wafer level. In the proposed packaging process, the processing temperature is 350 °C. The process is relatively inexpensive compared to wafer level packaging processes, because the wafer-bonding step is eliminated and the die size is shrunk. In the suggested approach, a sputtered columnar thin film at room temperature forms vertical nanopores as etch holes, and an air cavity is formed by the removal of a sacrificial layer through the nanopores in the columnar membrane. Subsequent hermetic vacuum packaging of the cavity is achieved by depositing thin films over the membrane under low pressure. The hermeticity of the packaging was verified by using an optical surface morphology microscope to measure the deflection change of the sealing membrane before and after breaking of the vacuum through an interconnected membrane. The long-term hermeticity was monitored by measuring the maximum central deflection of the PECVD sealing layer over a period of 170 days. The precise pressure (0.7 Torr) and short-term (30 days) pressure change inside the cavity were measured by encapsulated Ni Pirani gauges, representing packaged freestanding MEMS devices.

  8. Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract.

    Science.gov (United States)

    Lopez de Dicastillo, Carol; Nerin, Cristina; Alfaro, Pilar; Catala, Ramon; Gavara, Rafael; Hernandez-Munoz, Pilar

    2011-07-27

    Ethylene vinyl alcohol copolymer (EVOH) films containing green tea extract were successfully produced by extrusion. The films were brown and translucent, and the addition of the extract increased the water and oxygen barrier at low relative humidity but increased the water sensitivity, the glass transition temperature, and the crystallinity of the films and improved their thermal resistance. An analysis by HPLC revealed that the antioxidant components of the extract suffered partial degradation during extrusion, reducing the content of catechin gallates and increasing the concentration of free gallic acid. Exposure of the films to various food simulants showed that the liquid simulants increased their capacity to reduce DPPH(•) and ABTS(•+) radicals. The release of green tea extract components into the simulant monitored by HPLC showed that all compounds present in the green tea extract were partially released, although the extent and kinetics of release were dependent on the type of food. In aqueous food simulants, gallic acid was the main antioxidant component released with partition coefficient values ca. 200. In 95% ethanol (fatty food simulant) the K value for gallic acid decreased to 8 and there was a substantial contribution of catechins (K in the 1000 range) to a greatly increased antioxidant efficiency. Kinetically, gallic acid was released more quickly than catechins, owing to its faster diffusivity in the polymer matrix as a consequence of its smaller molecular size, although the most relevant effect is the plasticization of the matrix by alcohol, increasing the diffusion coefficient >10-fold. Therefore, the materials here developed with the combination of antioxidant substances that constitute the green tea extract could be used in the design of antioxidant active packaging for all type of foods, from aqueous to fatty products, the compounds responsible for the protection being those with the higher compatibility with the packaged product.

  9. Greenhouse gas emissions from the treatment of household plastic containers and packaging: replacement with biomass-based materials.

    Science.gov (United States)

    Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun

    2014-04-01

    The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling methods. Five scenarios were considered: two for existing fossil-derived materials (the current approach in Japan) and the three for biomass-based materials. Production and waste disposal of 1 m(3) of plastic containers and packaging from households was defined as the functional unit. The results showed that replacement of fossil-derived materials with biomass-based materials could reduce life-cycle GHG emissions by 14-20%. Source separation and recycling should be promoted. When the separate collection ratio reached 100%, replacement with biomass-based materials could potentially reduce GHG emissions by 31.9%. Food containers are a priority for replacement, because they alone could reduce GHG emissions by 10%. A recycling system for biomass-based plastics must be carefully designed, considering aspects such as the transition period from fossil-derived plastics to biomass-based plastics.

  10. Adhesion of an Amylolytic Arthrobacter sp. to Starch-Containing Plastic Films

    OpenAIRE

    1990-01-01

    Cells of the amylolytic bacterium KB-1 (thought to be an Arthrobacter sp.) adhered (∼70%) to the surface of plastic films composed of starch-poly (methylacrylate) graft copolymer (starch-PMA), but did not adhere (

  11. Effects of UV-absorbing plastic films on greenhouse whitefly (Homoptera: Aleyrodidae).

    Science.gov (United States)

    Mutwiwa, Urbanus N; Borgemeister, Christian; von Elsner, Burkhard; Tantau, Hans-Juergen

    2005-08-01

    Studies were conducted to investigate the effects of ultraviolet (UV)-absorbing plastic films on the orientation and distribution behavior of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). In field experiments, small tunnels were constructed and covered with either an UV-transmitting (Thermilux) or UV-absorbing (K-Rose) plastic film. Results show that significantly more whiteflies were recorded in the tunnels with high compared with those with low UV intensities. Moreover, whitefly penetration and dispersion were less inside the UV-deficient tunnels. These results suggest that the type of plastic film used for greenhouse covers may have a significant influence on both the initial immigration and distribution of T. vaporariorum into greenhouses. The possibilities of using UV-absorbing plastic films for whitefly integrated pest management in greenhouses are discussed.

  12. Production and Characterization of Active Transparent PET Films for Oxygen Sensitive Foods Packaging

    Science.gov (United States)

    Rosaria Galdi, Maria; Incarnato, Loredana

    2010-06-01

    The aim of this work is to investigate possible solutions to realize active, transparent PET film suitable for packaging oxygen sensitive foods. At this purpose, monolayer active PET films at different oxygen scavenger concentrations and multilayer active ones were produced by cast extrusion laboratory scale equipments. To assess their activity and to verify the efficacy of such solutions, O2 absorption analyses were carried out in continuous by an innovative oxygen meter.

  13. Microbiological quality and production of botulinal toxin in film-packaged broccoli, carrots, and green beans.

    Science.gov (United States)

    Hao, Y Y; Brackett, R E; Beuchat, L R; Doyle, M P

    1999-05-01

    The production of toxin by a 10-strain mixture of proteolytic Clostridium botulinum in fresh produce packaged in polyethylene films with different oxygen permeability was determined. Broccoli florets, shredded carrots, and green beans inoculated with approximately 10(2) C. botulinum spores per g were placed in bags (1.4 kg per bag) composed of four films with different oxygen transmission rates (OTRs). Broccoli was packaged in bags with OTRs of 3 (7,000 cm3/m2/24 h) and 4 (16,000 cm3/m2/24 h), and green beans were packaged in bags with OTRs of 2 (6,000 cm3/m2/24 h) and 4. Broccoli and green beans in bags were compressed and heat-sealed. Shredded carrots were packaged in bags with OTRs of 1 (3,000 cm3/m2/24 h) and 3 and vacuum-sealed. Produce was stored at 4, 13, and 21 degrees C for up to 27 (broccoli) or 28 (carrots and green bean) days and analyzed periodically. At each sampling time, gas composition within the bags, pH of the produce microbial population (total aerobic and anaerobic microorganisms, lactic acid bacteria, psychrotrophic bacteria, yeasts, and molds), and the presence or absence of botulinal toxin were determined. Packaging material affected the quality of vegetables, especially broccoli stored at 4 and 13 degrees C. For example, broccoli was scored as "good" after 22 days at 4 degrees C when it was packaged in film with higher gas permeability (OTR of 4), whereas broccoli appeared to be in "poor" condition when packaged in film with lower gas permeability (OTR of 3). With the exception of lactic acid bacteria, packaging material did not noticeably influence the growth of microorganisms. Lactic acid bacteria grew better in broccoli packaged in bags with an OTR of 3 than in those with an OTR of 4 at all temperatures. Botulinal toxin was detected in broccoli packaged in bags with an OTR of 3 and stored at 13 degrees C for 21 days and in those with an OTR of 4 and 3 and stored at 21 degrees C for 10 days. All toxic samples were visibly spoiled. Toxin

  14. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  15. Characterization and antimicrobial properties of food packaging methylcellulose films containing stem extract of Ginja cherry.

    Science.gov (United States)

    Campos, Débora; Piccirillo, Clara; Pullar, Robert C; Castro, Paula Ml; Pintado, Maria M E

    2014-08-01

    Food contamination and spoilage is a problem causing growing concern. To avoid it, the use of food packaging with appropriate characteristics is essential; ideally, the packaging should protect food from external contamination and exhibit antibacterial properties. With this aim, methylcellulose (MC) films containing natural extracts from the stems of Ginja cherry, an agricultural by-product, were developed and characterized. The antibacterial activity of films was screened by the disc diffusion method and quantified using the viable cell count assay. The films inhibited the growth of both Gram-positive and Gram-negative strains (Listeria innocua, methicillin-sensitive Staphylococcus aureus, methicillin-resistant S. aureus, Salmonella Enteritidis, Escherichia coli). For the films with lower extract content, effectiveness against the microorganisms depended on the inoculum concentration. Scanning electron microscope images of the films showed that those containing the extracts had a smooth and continuous structure. UV-visible spectroscopy showed that these materials do not transmit light in the UV. This study shows that MC films containing agricultural by-products, in this case Ginja cherry stem extract, could be used to prevent food contamination by relevant bacterial strains and degradation by UV light. Using such materials in food packaging, the shelf life of food products could be extended while utilizing an otherwise wasted by-product. © 2013 Society of Chemical Industry.

  16. Greenhouse gas emissions from the treatment of household plastic containers and packaging: replacement with biomass-based materials.

    OpenAIRE

    Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun

    2014-01-01

    The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling metho...

  17. Preparation of Polyvinyl Alcohol/Xylan Blending Films with 1,2,3,4-Butane Tetracarboxylic Acid as a New Plasticizer

    Directory of Open Access Journals (Sweden)

    Cun-dian Gao

    2014-01-01

    Full Text Available Miscible, biodegradable polyvinyl alcohol (PVA/xylan blending films were firstly prepared in the range of the PVA/xylan weight ratio from 1 : 2 to 3 : 1 by casting method using 1,2,3,4-butane tetracarboxylic acid (BTCA as a new plasticizer. The properties of blending films as functions of PVA/xylan weight ratio and BTCA amount were discussed. XRD and FT-IR were applied to characterize the blending films. Experimental results indicated that tensile strength (TS and elongation at break (EAB of blending films decreased along with the decrease of the PVA/xylan weight ratio. Both of TS and EAB firstly increased and then decreased as the amount of BTCA was increased. More importantly, blending films were biodegraded almost by 41% with an addition of 10% BTCA in blending films within 30 days in soil. For all hydroxyl functionalized polymers (xylan and PVA, their molecular interactions and miscibility with BTCA endowed blending films with the biocompatibility and biodegradability. Therefore, these blending films are environmentally friendly materials which could be applied as biodegradable plastics for food packaging and agricultural applications.

  18. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    Science.gov (United States)

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables.

  19. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    Science.gov (United States)

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  20. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    Science.gov (United States)

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  1. Fabrication of antibacterial blend film from poly (vinyl alcohol) and quaternized chitosan for packaging

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongying; Wang, Lijuan, E-mail: donglinwlj@163.com

    2016-06-15

    Highlights: • HTCC/PVA blend films were prepared through a simple mixing method. • The blend films had greater elongation at break and good optical transmittance. • The blend films had low oxygen permeability and water vapor permeability. • The films had good activity against Escherichia coli and Staphylococcus aureus. - Abstract: Blend films from poly (vinyl alcohol) (PVA) containing N-(2-hydroxy) propyl-3-trimethyl ammonium chloride chitosan (HTCC) were prepared via a simple mixing and casting method. The films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction measurements (XRD), scanning electron microscopy and ultraviolet-visible measurements (UV–vis). The effects of HTCC amount on mechanical properties, oxygen permeability, water vapor permeation, and antibacterial properties against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) of the films were investigated. FTIR and XRD analysis show that HTCC and PVA in the blend films interacted by hydrogen bonding. SEM and UV–vis analysis reveal the good compatibility between HTCC and PVA. Compared with pure PVA film, the blend films had greater elongation at break, lower water permeability, and higher antibacterial activity. The HTCC addition decreased the tensile strength and the light transmittance. The results suggest that HTCC/PVA blend films have a potential as packaging materials.

  2. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Y.M. [Department of Mechanical Engineering, National University of Singapore (Singapore); Lim, S.H.; Tay, B.Y. [Forming Technology Group, Singapore Institute of Manufacturing Technology (Singapore); Lee, M.W. [Food Innovation and Resource Centre, Singapore Polytechnic (Singapore); Thian, E.S., E-mail: mpetes@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore (Singapore)

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  3. The Vinyl Acetate Content of Packaging Film: A Quantitative Infrared Experiment.

    Science.gov (United States)

    Allpress, K. N.; And Others

    1981-01-01

    Presents an experiment used in laboratory technician training courses to illustrate the quantitative use of infrared spectroscopy which is based on industrial and laboratory procedures for the determination of vinyl acetate levels in ethylene vinyl acetate packaging films. Includes three approaches to allow for varying path lengths (film…

  4. Photoelasticity analysis of thermal stresses in the plastic ICs. Hikari danseiho ni yoru IC package nai oryoku no keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Shibuya, Y. (Mitsubishi Electric Corp., Tokyo (Japan))

    1992-10-20

    Recent highly integrated semiconductors have tendencies of being finer patterns and larger silicon chip area. Plastic packages excellent in productivity have been proved to be highly reliable in moisture resistance due to improved sealing resin and have become the main part of IC packages. However, in such devices featuring larger chip area and finer circuit pattern as large capacity memories, the problem of internal stress due to sealing resin contraction has been highlighted as a new problem. In this study, a photoelasticity which is a relatively simple method is employed to evaluate stress within sealing resin, and the review on effects of stress on the interior of sealing resin and chip are reported. Further, the effect of a buffer coat formed on the chip to reduce the stress on a silicon chip, and the effect of package shape on the thermal stress has been examined by means of photoelasticity, and the result is also shown. 10 refs., 18 figs., 2 tabs.

  5. Application of a puffer fish skin gelatin film containing Moringa oleifera Lam. leaf extract to the packaging of Gouda cheese.

    Science.gov (United States)

    Lee, Ka-Yeon; Yang, Hyun-Ju; Song, Kyung Bin

    2016-11-01

    This study aims to develop a puffer fish skin gelatin (PSG) film that contains Moringa oleifera Lam. leaf extract (ME) as a new biodegradable film. With the increase in ME concentration, the tensile strength and elongation at break of the PSG film increased, whereas the oxygen permeability and water vapor permeability decreased. In addition, the PSG film with ME exhibited antimicrobial activity against Listeria monocytogenes and antioxidant activity. To apply the ME-containing PSG film to food packaging, Gouda cheese was wrapped with the ME-containing PSG film. During storage, the cheese packaging with the ME-containing PSG film effectively inhibited the microbial growth and retarded the lipid oxidation of cheese compared with the control sample. Thus, the ME-containing PSG film can be used as an antimicrobial and antioxidative packaging material to improve the quality of food products.

  6. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with High-Performance Liquid Chromatography.

    Science.gov (United States)

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei

    2015-07-01

    An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Controlled release of ethylene via polymeric films for food packaging

    Science.gov (United States)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  8. Application of Humidity-Controlled Dynamic Mechanical Analysis (DMA-RH to Moisture-Sensitive Edible Casein Films for Use in Food Packaging

    Directory of Open Access Journals (Sweden)

    Laetitia M. Bonnaillie

    2015-01-01

    Full Text Available Protein-based and other hydrophilic thin films are promising materials for the manufacture of edible food packaging and other food and non-food applications. Calcium caseinate (CaCas films are highly hygroscopic and physical characterization under broad environmental conditions is critical to application development and film optimization. A new technology, humidity-controlled dynamic mechanical analysis (DMA-RH was explored to characterize CaCas/glycerol films (3:1 ratio during isohume temperature (T ramps and steps, and isothermal RH ramps and steps, to determine their mechanical and moisture-sorption properties during extensive T and RH variations. When RH and/or T increased, CaCas/Gly films became strongly plasticized and underwent several primary and secondary humidity-dependent transition temperatures (or transition humidities; the CaCas/Gly network hypothetically rearranged itself to adapt to the increased water-content and heat-induced molecular mobility. Between 5–40 °C and 20%–61% RH, moisture-sorption was rapid and proportional to humidity between transition points and accelerated greatly during transitions. CaCas/Gly films seemed unsuitable for storage or utilization in warm/humid conditions as they lost their mechanical integrity around Tm ~ 40 °C at 50% RH and Tm decreased greatly with increased RH. However, below Tm, both moisture- and heat-induced structural changes in the films were fully reversible and casein films may withstand a variety of moderate abuse conditions.

  9. Migração específica de antioxidante de embalagens plásticas para alimentos Specific migration of antioxidant from plastic packages for food

    Directory of Open Access Journals (Sweden)

    Leda Coltro

    2011-01-01

    Full Text Available O uso de aditivos em materiais plásticos é essencial para o processamento e desempenho dos plásticos, uma vez que os aditivos conferem características desejadas aos polímeros. No entanto, há restrições determinadas pela Agência Nacional de Vigilância Sanitária (ANVISA para as embalagens plásticas de alimentos, as quais devem ser avaliadas por meio de ensaios físicos, realizados por laboratório acreditado, para verificar se os requisitos estabelecidos pela ANVISA são atendidos. Sendo assim, o objetivo desse trabalho foi desenvolver metodologia que permita a avaliação da migração de 3-(3,5-di-terc-butil-4-hidroxifenil propionato de n-octadecila, antioxidante de nome comercial Irganox 1076, CAS 2082-79-3, presente em embalagens plásticas para contato com alimentos, empregando cromatografia líquida de alta eficiência. Esse estudo também teve como finalidade comprovar se o conteúdo de Irganox 1076 de amostras comerciais de filmes plásticos atende ao requisito de limite de migração específica estabelecido pela ANVISA para este aditivo. Os resultados obtidos indicam que a metodologia utilizada para os simulantes aquoso, ácido e gorduroso é satisfatória e adequada para a análise da migração específica do Irganox 1076, uma vez que todos os parâmetros necessários para a validação do método foram atingidos. As amostras de filme de PEBD e de EVA analisadas atendem ao limite de migração específica do Irganox 1076 para todos os simulantes avaliados.The use of additives in plastics is essential for the processing and performance of plastic products since the additives enhance the desired characteristics of the polymers. Nevertheless, there are restrictions established by the Brazilian Agency of Sanitary Surveillance (ANVISA for plastic packages intended to be in contact with foodstuffs which must be submitted to analyses at a proper laboratory in order to check the compliance with the requirements established

  10. Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films.

    Science.gov (United States)

    Bonacucina, Giulia; Di Martino, Piera; Piombetti, Martina; Colombo, Angela; Roversi, Francesco; Palmieri, Giovanni F

    2006-04-26

    Film coating is a technique widely used in the pharmaceutical field to improve and modify technological and release characteristics of capsules, tablets and granules. In this paper physical and mechanical properties of free films of Amprac 01, obtained by the solvent cast method, were studied in order to investigate the film forming ability of this modified starch and the effects of the addition of different plasticizers. A morphological microscopical analysis (SEM) was performed to study surface properties of the films, while thermal analysis (DSC) was carried out to investigate the influence of different types of plasticizers on the glass transition temperature of the polymer. Then a mechanical characterization permitted to evaluate important parameters such as film crack resistance and deformation at break. Extensional creep/relaxation tests were also performed to investigate the viscoelastic characteristics. As clearly demonstrated by the T(g) values, the residual water present in the films acted as plasticizers, making possible the formation of free films characterised by good macroscopical and mechanical properties. Except glycerol, the kind and amount of the other tested plasticizers did not markedly improve the mechanical and crack resistance of the films.

  11. TECHNICAL CHARACTERIZATION OF ECO-COMPATIBLE PLASTIC FILMS FOR SOIL SOLARIZATION: FOUR YEARS OF EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Salvatore Margiotta

    2007-12-01

    Full Text Available Soil solarization relies on solar radiation being converted to heat for the killing of soilborne pathogens. On one hand, this technique can be considered as an environmentally-friendly way to manage soilborne pests, as an alternative of methyl bromide phased-out in 2005, than using chemicals. On the other hand, high employment of traditional plastic sheets in agriculture causes the production of enormous quantities of waste, whose inappropriate management might have negative effects on the environment. In order to determine a reduction of the charge of plastic waste and to facilitate the waste disposal, one of the most interesting approaches, from an environmental point of view, lies in the location of innovatory plastic films such as co-extruded ultrathin films, which are able to reduce the plastic quantity to be managed, and biodegradable laminates, which after a first usage, will spontaneously start up a degradation process that avoids their collection and their consequent disposal. Beside the ecological proprieties of these innovative films, it is necessary to study their technical and agronomical behavior in order to determine their efficiency and the possibility to be used in place of the traditional plastic films. This paper represents a review of the researches carrier out by the Technical Economics Department of the University of Basilicata (Italy in the last years (1999, 2000, 2002 and 2003 on the technical performances of some innovative plastic films used for soil solarization.

  12. Switching of the electrical conductivity of plasticized PVC films under uniaxial pressure

    Science.gov (United States)

    Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.

    2011-11-01

    The jumplike switching of the electrical conductivity in wide-band-gap polymer (antistatic plasticized polyvinylchloride) films under uniaxial pressure is studied. In various plasticized PVC materials, the uniaxial pressure inducing a conductivity jump by four orders of magnitude or higher changes from several to several hundreds of bars, and this effect is retained at a film thickness of several hundred microns, which is two orders of magnitude larger than the critical film thicknesses known for other wide-band-gap polymers. In addition to the earlier interpretation of the conductivity anomalies in plasticized PVC, we proposed a phenomenological electron-molecular dynamic nanotrap model, in which local charge transfer is provided by mobile molecule segments in a plasticized polymer.

  13. Direct writing patterns for electroless plated copper thin film on plastic substrates.

    Science.gov (United States)

    Liao, Ying-Chih; Kao, Zhen-Kai

    2012-10-24

    A simple and efficient method is developed to create conductive copper thin films on polymer surfaces. Instead of regular palladium colloid inks, micropatterns of silver nitrate inks, which serve as an activating agent for copper plating, were printed and dried on flexible plastic substrates. The printed plastic sheets were then immersed in an electroless copper plating bath at 55 °C for 2 min to create copper thin films on the printed patterns. The prepared copper films have an electrical conductivity as high as 83% of bulk copper and show good adhesion on PET or PI substrates.

  14. Strategies to improve the mechanical strength and water resistance of agar films for food packaging applications.

    Science.gov (United States)

    Sousa, Ana M M; Gonçalves, Maria P

    2015-11-05

    Agar films possess several properties adequate for food packaging applications. However, their high cost-production and quality variations caused by physiological and environmental factors affecting wild seaweeds make them less attractive for industries. In this work, native (NA) and alkali-modified (AA) agars obtained from sustainably grown seaweeds (integrated multi-trophic aquaculture) were mixed with locust bean gum (LBG) to make 'knife-coated' films with fixed final concentration (1 wt%) and variable agar/LBG ratios. Agar films were easier to process upon LBG addition (viscosity increase and gelling character decrease of the film-forming solutions observed by dynamic oscillatory and steady shear measurements). The mechanical properties and water resistance were optimal for films with 50 and/or 75% LBG contents and best in the case of NA (cheaper to extract). These findings can help reduce the cost-production of agar packaging films. Moreover, the controlled cultivation of seaweeds can provide continuous and reliable feedstock for transformation industries.

  15. An econometric analysis of regional differences in household waste collection: the case of plastic packaging waste in Sweden.

    Science.gov (United States)

    Hage, Olle; Söderholm, Patrik

    2008-01-01

    The Swedish producer responsibility ordinance mandates producers to collect and recycle packaging materials. This paper investigates the main determinants of collection rates of household plastic packaging waste in Swedish municipalities. This is done by the use of a regression analysis based on cross-sectional data for 252 Swedish municipalities. The results suggest that local policies, geographic/demographic variables, socio-economic factors and environmental preferences all help explain inter-municipality collection rates. For instance, the collection rate appears to be positively affected by increases in the unemployment rate, the share of private houses, and the presence of immigrants (unless newly arrived) in the municipality. The impacts of distance to recycling industry, urbanization rate and population density on collection outcomes turn out, though, to be both statistically and economically insignificant. A reasonable explanation for this is that the monetary compensation from the material companies to the collection entrepreneurs vary depending on region and is typically higher in high-cost regions. This implies that the plastic packaging collection in Sweden may be cost ineffective. Finally, the analysis also shows that municipalities that employ weight-based waste management fees generally experience higher collection rates than those municipalities in which flat and/or volume-based fees are used.

  16. [Study of relationship between consumption of potassium permanganate and total organic carbon on plastic kitchen utensils, food packages and toys].

    Science.gov (United States)

    Ohno, Hiroyuki; Suzuki, Masako; Mutsuga, Motoh; Kawamura, Yoko

    2009-10-01

    Consumption of potassium permanganate and total organic carbon (TOC) were investigated as indices of total organic matter migrated into water from plastic kitchen utensils, food packages and toys for children. The samples were soaked in water at 60 or 95 degrees C for 30 min for kitchen utensils and food packages, and at 40 degrees C for 30 min for toys and the eluates were examined, using the two indices. The quantitation limits were both 0.5 microg/mL. Among 97 kitchen utensils and food packages tested, consumption of potassium permanganate and TOC were 0.5-10.9 microg/mL and ND-18.9 microg/mL for polyvinyl chloride (PVC) tea-pot spouts and nylon kitchen utensils, respectively. Among 32 toys tested, the levels were 0.8-45.5 microg/mL and 0.5-8.9 microg/mL from PVC toys and block toys made by ethylene vinyl acetate resin. The levels for other samples were very low. There were large discrepancies between consumption of potassium permanganate and TOC for some PVC products and nylon kitchen utensils. The cause may be a marked difference of the oxidation decomposition rate by potassium permanganate, depending on the kind of organic matter that migrated from the plastics.

  17. Plasticization effect of triacetin on structure and properties of starch ester film.

    Science.gov (United States)

    Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin

    2013-05-15

    The aim of this work was to evaluate the plasticizing effect of triacetin on the structure and properties of starch ester film and further establish the structure-property relationships. The presence of triacetin resulted in multiple structure changes of the film. The mobility of macromolecular chain was increased to form scattered crystallite during the film formation process. The amorphous region was enlarged to contain more triacetin squeezed from crystalline region. The plasticization of triacetin and restriction of crystallite oppositely influenced the mobility of macromolecular chains in different regions. The thermal stability of triacetin changed along with its fluctuant interaction with macromolecules. Comparatively, the enhanced ether bond and the restriction from crystalline regions on the mobility of the amorphous chain consequently improved the thermal stability of the film matrix. The interaction between triacetin and starch ester was essential to film forming but unexpectedly lowered the triacetin stability.

  18. Quality changes of 'Sanguinello' oranges wrapped with different plastic films under simulated marketing conditions.

    Science.gov (United States)

    D'Aquino, S; Malinconico, M; Avella, M; Di Lorenzo, M L; Mura; Palma, A

    2013-01-01

    Chemical and eating quality of citrus fruit changes slowly after harvest, and quality alteration is mainly due to shrinkage, loss of firmness, excessive weight loss and decay rather than a reduction of nutritional value and taste features. Film wrapping may be a suitable means to reduce transpiration and preserve market quality provided film permeability to gases does not lead to: 1) a reduction of in-package O2 partial pressure at a point that would induce anaerobic respiration; 2) an increase of CO2 concentration to toxic levels. This experiment was carried out to study quality changes of 'Sanguinello' oranges treated or not treated with 500 mg/L imazalil (IMZ) and wrapped with continuous, macro- or micro-perforated polyolefinic films. Wrapped and no-wrapped fruit were stored at 20 degrees C and 60% RH for 20 or 30 days. In-package gas composition of the macro-perforated film showed no significant difference compared to air composition, while in-package partial pressure of CO2 and O2 ranged between 4 (continuous film) and 9.8 kPa (micro-perforated films), and 14.8 (continuous film) and 5 kPa (micro-perforated films), respectively. After 30 days of storage weight loss in fruit wrapped with the macro-perforated film was (4.3%) slightly lowerthan un-packed fruit (5%), while in all other packages weight loss never exceeded 0.7%.Quality changes were quite stable over storage in all treatments, although slight but significantly lower levels of total soluble solids and ascorbic acid were detected in micro-perforated films with the lowest degree of perforation. However, the sensory analysis denoted a remarkable decrease of firmness in un-wrapped or wrapped fruit with macro-perforated film, while a moderate build-up of off-flavour, which reduced the eating quality, developed in micro-perforated films. Decay ranged between 6 and 12% in not treated fruit, with the lowest incidence detected in un-wrapped fruit, whereas differences among the different films were not

  19. The impact of policy interactions on the recycling of plastic packaging waste in Germany

    OpenAIRE

    Gandenberger, Carsten; Orzanna, Robert; Klingenfuß, Sara; Sartorius, Christian

    2014-01-01

    Due to the environmental challenges associated with the strong growth of plastic waste worldwide, the EU Commission recently published a green paper on a European Strategy on Plastic Waste in the Environment (COM (2013), 123 final), which highlights the challenges and opportunities that arise from improving the management of plastic waste in the EU. The European Waste Directive (2008/98/EC) which was transposed into German law through the Kreislaufwirtschaftsgesetz (KrWG) established the so-c...

  20. Alternative plasticizers for the production of thermo-compressed agar films.

    Science.gov (United States)

    Sousa, Ana M M; Souza, Hiléia K S; Liu, LinShu; Gonçalves, Maria P

    2015-05-01

    Agar films were produced by thermo-compression using choline chloride (ChCl) as a plasticizer with urea. The three solid components were mixed together with the salt and urea (minor components) added to agar (main component) according to a fixed mass ratio of, respectively, 1.16:1:5. A central composite rotatable design (CCRD) with three parameters, 2(3), was used to evaluate the effects of temperature (X1; °C), time (X2; min) and applied load (X3; kN) of heat-pressing on the maximum tensile strength (TS) of the films (Y; MPa). Mixtures of urea and agar prepared at a mass ratio of 1:5 did not form homogeneous films suggesting the important plasticizing role of the salt. Heat-pressing the mixtures at more draconian conditions led to much darker and opaque films, with better mechanical resistance (higher values of TS). The most resistant film (∼ 15 MPa) was obtained at 140°C, 20 min and 176 kN. Selected films, including the optimal, showed similar water sorption profiles and close values of water vapor permeability (∼ 2.5-3.7 × 10(-9)gm(-1)s(-1)Pa(-1)). The fracture behavior and mechanical properties of the films were greatly affected by additional water plasticization when the films were stored at different conditions of relative humidity.

  1. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-07-01

    Carrageenan-based antimicrobial films were developed by incorporation of grape fruit seed extract (GSE) at different concentration into the polymer using a solvent casing method and their physical, mechanical, and antimicrobial properties were examined. The carrageenan/GSE composite films appeared yellowish tint due to the polyphenolic compounds in the GSE. SEM analysis showed rough surface with sponge like structures on the cross section of the films. FT-IR results indicated at GSE had good compatibility with carrageenan. The amorphous structure of polymer films was not changed by the incorporation of GSE. But, the addition of GSE increased moisture content, water vapor permeability, and surface hydrophilicity of the films. The tensile strength and elastic modulus decreased with increasing content of GSE, however, the elongation at break increased significantly up to 6.6μg/mL of GSE then decreased thereafter. Thermal stability of the films was not influenced by GSE incorporation. The carrageenan/GSE composite films exhibited great antibacterial activity against food borne pathogens. These results suggest that the carrageenan-based composite films have a high potential for being used as an antimicrobial or active food packaging applications.

  2. Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging.

    Science.gov (United States)

    Salarbashi, Davoud; Tajik, Sima; Ghasemlou, Mehran; Shojaee-Aliabadi, Saeedeh; Shahidi Noghabi, Mostafa; Khaksar, Ramin

    2013-10-15

    This study examines the development of new bio-active polysaccharide-based bioplastics through casting and solvent-evaporation. Soluble soybean polysaccharide (SSPS) films incorporated with Zataria multiflora Boiss (ZEO) or Mentha pulegium (MEO) at various concentrations were prepared and characterized. The presence of ZEO and MEO improved polysaccharide interactions, reducing the films' water solubility and water vapor barrier properties, but did not markedly modify their moisture content or thickness. Differing amounts of ZEO or MEO had no significant effect on mechanical behavior, with the exception of 3% oil concentration, which decreased tensile strength and significantly increased elongation at break. DMTA curves revealed a single Tg, which may indicate the compatibility of essential oil and SSPS. The electron scanning micrograph for the composite film was homogeneous, without signs of phase separation between the components. These results suggest that ZEO and MEO can potentially be directly incorporated into SSPS to prepare active biodegradable films for food-packaging applications.

  3. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  4. Toward 6 log10 pulsed electric field inactivation with conductive plastic packaging material

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Ferreira, J.A.; Coronel, P.; Wouters, P.C.; Hatt, V.

    2013-01-01

    Generally, high grade products such as pulsed electric field (PEF) treated fruit juices are packaged after their preservative treatment. However, PEF treatment after packaging could avoid recontamination of the product and becomes feasible when electric field pulses of sufficient magnitude can be ge

  5. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  6. Toward 6 log10 pulsed electric field inactivation with conductive plastic packaging material

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Ferreira, J.A.; Coronel, P.; Wouters, P.C.; Hatt, V.

    2013-01-01

    Generally, high grade products such as pulsed electric field (PEF) treated fruit juices are packaged after their preservative treatment. However, PEF treatment after packaging could avoid recontamination of the product and becomes feasible when electric field pulses of sufficient magnitude can be

  7. Determination of the thickness of plastic sheets used in blister packaging by near infrared spectroscopy: development and validation of the method.

    Science.gov (United States)

    Laasonen, Magali; Harmia-Pulkkinen, Tuulikki; Simard, Christine; Räsänen, Markku; Vuorela, Heikki

    2004-03-01

    A near infrared (NIR) quantitative analysis method was developed for determining the thickness of PVC-based plastic sheets used as pharmaceutical packs. Samples that can be analyzed are transparent films made of polyvinyl chloride (PVC), PVC coated with polyvinylidene dichloride (PVDC) or PVC coated with Thermoelast (TE) and PVDC. The method, based on a partial least squares (PLS) algorithm, is used together with a previously developed NIR identification method to acquire simultaneously qualitative and quantitative information about the samples. Validation of the quantitative method was conducted according to the very recent European Agency for the Evaluation of Medicinal Products (EMEA) guidance on the use of NIR spectroscopy. Suggestions were made for a better statistical evaluation of the calibration model prior to validation. Validation consisted of the study of specificity, accuracy (mean recovery from the reference values was 99.56%), precision (repeatability and intermediate precision were <0.6%), linearity, quantification limit (41 microm), and robustness of the method. This demonstration of the applicability of NIR spectroscopy as a validated quality control tool for pharmaceutical packaging films will hopefully facilitate the acceptance of NIR spectroscopy in pharmaceutical laboratories.

  8. Polylactic acid/zinc oxide biocomposite films for food packaging application.

    Science.gov (United States)

    Marra, Antonella; Silvestre, Clara; Duraccio, Donatella; Cimmino, Sossio

    2016-07-01

    Although PLA is much more expensive than polyolefins, such as PP and PE, there is a great interest to propose PLA based material as alternative films for food packaging being PLA derivable from natural source, compostable and biodegradable. For this purpose the research has the task to investigate and propose PLA materials with enhanced properties to be effectively and efficiently alternative to polyolefin films for food packaging application. In this contribution, biocomposite films of PLA with 1, 3 and 5wt% of ZnO have been investigated to determine mechanical, barrier and antimicrobial (against Escherichia coli) properties. It is found that the biocomposite films are characterized by a good dispersion of the ZnO particles in PLA matrix, although no previous treatment was performed on ZnO particles, such as silanization, to decrease its incompatibility with the polymer. The biocomposite films have shown good mechanical properties, decrease of permeability to CO2 and O2, and only a slight increase to water vapour. Particularly important is that, for the biocomposite with 5wt% of ZnO, the % Reduction for E. Coli test reached the value of 99.99 already after 24h.

  9. Investigation of conductivity switching upon action of monoaxial pressure on plasticized PVC films

    CERN Document Server

    Vlasov, D V; Krystob, V I; Vlasova, T V

    2010-01-01

    The effect of conductivity switching of wideband polymers -plasticized PVC films under the influence of mono axial pressure is experimentally investigated. For various plasticizers the value of monoaxial pressure, causing jumps of conductivity on four and more orders, changes from units to hundreds bars, and the effect remains at a thickness of films of an order of hundreds micron, that is on two orders more than critical thickness for others wideband polymers. In addition to the reasons stated earlier on the interpretation of anomalies of plastic compounds conductivity, the phenomenological electron-molecular model of dynamic traps is considered, in which local transfer of charges is carried out by mobile segments of the plasticized polymer molecules.

  10. Antimicrobial food packaging film based on the release of LAE from EVOH.

    Science.gov (United States)

    Muriel-Galet, Virginia; López-Carballo, Gracia; Gavara, Rafael; Hernández-Muñoz, Pilar

    2012-07-02

    The aim of this work was to develop antimicrobial films for active packaging applications containing the natural antimicrobial compound LAE (lauramide arginine ethyl ester) in EVOH copolymers with different mol % ethylene contents (i.e. EVOH-29 and EVOH-44). EVOH-29 and EVOH-44 films were made by casting and incorporating 0.25%, 1%, 5%, and 10% LAE in the film forming solution (w/w with respect to polymer weight). Previously, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of LAE against Listeria monocytogenes, Escherichia coli, and Salmonella enterica were determined by a microdilution assay. The antimicrobial activity of the resulting films was tested in vitro against these microorganisms in liquid culture media. The activity of the films was also evaluated over time. The results showed that films containing 5% and 10% LAE produced total growth inhibition and viable counts decreased with 0.25% and 1% LAE. Finally, the effectiveness of the films was tested by applying them to an infant formula milk inoculated with L. monocytogenes and S. enterica and stored for 6 days at 4°C. The application of films with LAE to infant formula milk inoculated with L. monocytogenes reduced at the end of storage period about 4 log in case of 10% LAE and with S. enterica reduced 3.74 log and 3.95 log with EVOH 29 5% and 10%, respectively, and EVOH-44 5% and 10% LAE reduced 1 log and 3.27 log, respectively, at the end of storage. The antimicrobial capacity of EVOH-29 films was greater than that of EVOH-44 films in all the cases tested. In general, the films were more effective in inhibiting the growth of L. monocytogenes than S. enterica, this inhibition being more acute at the end of the storage time.

  11. Effect of chitosan based active packaging film on the keeping quality of chilled stored barracuda fish.

    Science.gov (United States)

    Remya, S; Mohan, C O; Bindu, J; Sivaraman, G K; Venkateshwarlu, G; Ravishankar, C N

    2016-01-01

    In the present study, active antimicrobial (AM) packaging films were prepared from chitosan (CH) incorporated with ginger (Zingiber officinale) essential oil at different concentrations (0.1, 0.2 and 0.3 % v/v) and characterized. GC-MS analysis revealed zingiberene (22.54 ± 0.13), geranial (12.34 ± 0.33), β-sesquiphellandrene (8.14 ± 0.14), camphene (7.44 ± 0.54) and neral (5.45 ± 0.23) as the major components of essential oil extracted from ginger. Addition of ginger essential oil (GEO) improved the AM activity of the CH film against food borne pathogens, without significantly (p film. CH film with GEO was more effective against Gram-positive bacteria than Gram-negative bacteria and maximum antibacterial property against Staphylococcus aureus and Escherichia coli was shown by 0.3 % GEO added CH film. In a further experiment, steaks of barracuda (Sphyraena jello) fish were wrapped with the CH-GEO (0.3 %) film and stored at 2 °C for 20 days. Throughout the storage period, the total volatile basic nitrogen (TVB-N) value and total mesophilic count of fish steak wrapped with the CH-GEO film were significantly (p film of ethylene vinyl alcohol (EVOH) (nylon, EVOH and polyethylene). Sensorily, CH-GEO film wrapped sample was acceptable till the end of storage for 20 days compared to 12 days for unwrapped control and fish steak packed in EVOH film. The results indicate that the developed CH-GEO film is efficient in extending the storage life of fish.

  12. Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films.

    Science.gov (United States)

    Higueras, Laura; López-Carballo, Gracia; Hernández-Muñoz, Pilar; Catalá, Ramón; Gavara, Rafael

    2014-10-01

    Chitosan/cyclodextrin films (CS:CD) incorporating carvacrol were obtained by casting, and conditioned at 23°C and 75% relative humidity prior to being immersed in liquid carvacrol until they reached sorption equilibrium. In a previous work, the in vitro antimicrobial activity of these films was studied. In this work, active films were used to inhibit microbial growth in packaged chicken breast fillets. Samples of CS:CD films loaded with carvacrol, of different sizes and thus with different quantities of antimicrobial agent, were stuck to the aluminium lid used to seal PP/EVOH/PP cups containing 25g of chicken fillets. These samples were stored for 9days at 4°C. The packages were hermetically sealed and it was confirmed that they provided an infinite barrier to carvacrol. The partition of the antimicrobial agent within the food/packaging system was analysed. The antimicrobial devices rapidly released a large percentage of the agent load, amounts that were gained by the adhesive coating of the lid and especially by the chicken fillets. The latter were the main sorbent phase, with average concentrations ranging between 200 and 5000mg/Kg during the period of storage. The microbiota of the packaged fresh chicken fillets - mesophiles, psychrophiles, Pseudomonas spp., enterobacteria, lactic acid bacteria and yeasts and fungi - were analysed and monitored during storage. A general microbial inhibition was observed, increasing with the size of the active device. Inhibition with a 24cm(2) device ranged from 0.3 log reductions against lactic acid bacteria to 1.8logs against yeasts and fungi. However, the large amount of antimicrobial that was sorbed or that reacted with the fillet caused an unacceptable sensory deterioration. These high sorption values are probably due to a great chemical compatibility between chicken proteins and carvacrol.

  13. Influence of lubricant oil residual fraction on recycled high density polyethylene properties and plastic packaging reverse logistics proposal

    Directory of Open Access Journals (Sweden)

    Harley Moraes Martins

    2015-10-01

    Full Text Available Abstract To recycle post-consumer HDPE contaminated with waste lubricating oils, companies include prior washing and drying in the process. This consumes large amounts of water and energy, generates significant effluent requiring treatment. This study assesses lubricating oil influence on HDPE properties to evaluate the feasibility of its direct mechanical recycling without washing. The current lubricating oil packaging reverse logistics in Rio de Janeiro municipality is also analyzed. HDPE bottle samples were processed with seven oil contents ranging from 1.6-29.4 (wt%. The results indicated the possibility to reprocess the polymer with oily residue not exceeding 3.2%. At higher levels, the external oil lubricating action affects the plastic matrix processing in the extruder and injection, and the recycled material has a burnt oil odor and free oil on the surface. Small residual oil amounts retain the plastic properties comparable to the washed recycled polymer and exhibited benefits associated with the oil plasticizer action. However, oil presence above 7.7% significantly changes the properties and reduces the elasticity and flexural modulus and the plastic matrix crystallinity.

  14. Aging properties of films of plasticized vital wheat gluten cast from acidic and basic solutions.

    Science.gov (United States)

    Olabarrieta, Idoia; Cho, Sung-Woo; Gällstedt, Mikael; Sarasua, Jose-Ramon; Johansson, Eva; Hedenqvist, Mikael S

    2006-05-01

    In order to understand the mechanisms behind the undesired aging of films based on vital wheat gluten plasticized with glycerol, films cast from water/ethanol solutions were investigated. The effect of pH was studied by casting from solutions at pH 4 and pH 11. The films were aged for 120 days at 50% relative humidity and 23 degrees C, and the tensile properties and oxygen and water vapor permeabilities were measured as a function of aging time. The changes in the protein structure were determined by infrared spectroscopy and size-exclusion and reverse-phase high-performance liquid chromatography, and the film structure was revealed by optical and scanning electron microscopy. The pH 11 film was mechanically more stable with time than the pH 4 film, the latter being initially very ductile but turning brittle toward the end of the aging period. The protein solubility and infrared spectroscopy measurements indicated that the protein structure of the pH 4 film was initially significantly less polymerized/aggregated than that of the pH 11 film. The polymerization of the pH 4 film increased during storage but it did not reach the degree of aggregation of the pH 11 film. Reverse-phase chromatography indicated that the pH 11 films were to some extent deamidated and that this increased with aging. At the same time a large fraction of the aged pH 11 film was unaffected by reducing agents, suggesting that a time-induced isopeptide cross-linking had occurred. This isopeptide formation did not, however, change the overall degree of aggregation and consequently the mechanical properties of the film. During aging, the pH 4 films lost more mass than the pH 11 films mainly due to migration of glycerol but also due to some loss of volatile mass. Scanning electron and optical microscopy showed that the pH 11 film was more uniform in thickness and that the film structure was more homogeneous than that of the pH 4 film. The oxygen permeability was also lower for the pH 11 film. The

  15. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    Science.gov (United States)

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations.

  16. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    Directory of Open Access Journals (Sweden)

    Ana Rešček

    2015-12-01

    Full Text Available This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such materials was studied. The results show that, in comparison to the neat PE and PE/PCL films, some of PE/PCL bilayer films with additives exhibit improved barrier properties i.e. decreased water vapour permeability. Higher thermal stability of modified PE/PCL material is obtained due to a modified mechanism of thermal degradation. The samples with the additive nanoparticles homogeneously dispersed in the polymer matrix showed good mechanical properties. Addition of higher ZnO content contributes to the enhanced antibacterial activity of a material.

  17. Analysis of migrants from nylon 6 packaging films into boiling water.

    Science.gov (United States)

    Barkby, C T; Lawson, G

    1993-01-01

    Ultra-violet spectrophotometry (UV), high performance liquid chromatography (HPLC) and liquid chromatography coupled to mass spectroscopy (LC-MS) were used to identify and quantify oligomers extracted with boiling water from two different nylon 6 films used in boil-in-bag food packaging. The results indicated the loss of up to 1.5% of the original nylon film weight, into the boiling water, as caprolactam and cyclic oligomers up to the nonamer. Extraction time, thickness and type of film used, were found to be parameters which affected the levels of these migrants. These results will be relevant to situations in which food is cooked in the water used to heat the pouch contents.

  18. Thin plastic radiochromic dye films as ionizing radiation dosimeters

    Science.gov (United States)

    Buenfil-Burgos, A. E.; Uribe, R. M.; de la Piedad, A.; McLaughlin, W. L.; Miller, A.

    Radiochromic dye films were fabricated by casting polyvinyl butyral (PVB) in weakly acidic solution with the leucocyanide of pararosaniline. Calibrated films of 10-25 μm thickness were useful over a response range of about 10 3-10 5 Gy, by applying spectrophotometric analysis at the wavelength of the maximum of the radiation-induced absorption band (550 nm). The effects of temperature, pressure, and humidity during curing of the films pointed to the need for carefully controlling these parameters. For casting films at the high altitude of Mexico City (≈ 2500 meters), the optimum conditions are 45-75% r.h. and 20-25° C for a drying period of 72 to 92 hours, when the solvent is a mixture of ethanol and 2-methoxyethanol. The response of films fabricated in this way were compared with those of commercially available PVB and Nylon films. The effects of temperature, humidity, and period of storage on the response of these films were studied in the range from -5 to 60° C and from 11.8 to 96.6% r.h. for up to four months between irradiation and spectral analysis, and within nominal experimental uncertainty (≈ 10%), we found that all the radiochromic films studied can be stored for extended periods under steady-state conditions in the temperature range from -5 to 30° C and from 11.8-75.6% r.h. without correction factors for instability, but under extreme conditions of moisture at elevated temperatures the radiochromic image showed a fading effect on storage.

  19. Recycling of Plastic Packaging Wastes%塑料包装废弃物的再生利用

    Institute of Scientific and Technical Information of China (English)

    贺全国; 聂立波

    2011-01-01

    塑料包装在整个包装产业中占有极大比例,其废弃物的处理给国际社会减碳减排发展带来了巨大挑战。结合国内外对塑料包装废弃物的管理现状,分析了塑料包装废弃物的来源、分类和化学组成,阐述了国外塑料包装废弃物的回收分离技术和设备及国内相应研究现状;对塑料包装废弃物的再生利用途径进行深入解析,较全面地阐述了塑料包装废弃物再生利用的原理与研究现状;提出了塑料包装废弃物再生利用的基本策略建议。%The plastic packaging accounts for a very great proportion in the packaging industry,and the plastic packaging wastes(PPW) disposal brings great confrontation and challenge for global carbon emission reduction development.Based on the international practical PPW management,analyzes the source,classification and chemical composition for PPW and expounds the recycling separation technology and apparatus at aboard and the domestic research status;Resolves various PPW disposal approaches and elaborates comprehensively PPW regeneration principles and practices;Presents strategic suggestions on recycling and utilization of PPW.

  20. Numerical modeling and validation of squeezed-film damping in vacuum-packaged industrial MEMS

    Science.gov (United States)

    Syed, Wajih U.; Brimmo, Ayoola; Waheed, Owais; Bojesomo, Alabi; Hassan Ali, Mohamed; Ocak, Ilker; Chengliang, Sun; Chatterjee, Aveek; Elfadel, Ibrahim (Abe M.

    2017-07-01

    Several high-performance, industrial micro-electromechanical (MEM) devices, such as gyroscopes, magnetometers, high-Q resonators and piezoelectric energy harvesters, require wafer bonding and packaging under near-vacuum conditions. One very challenging aspect of the design, verification and characterisation of these devices is to predict their performance characteristics in the presence of any residual gases post-packaging. Such gases contribute to the energy losses resulting from device surfaces squeezing or sliding against the gas films within the device cavities. In this paper, we fully expose the modelling assumptions used in commercial FEM tools to estimate the squeezed-film damping (SFD) experienced by MEM devices that are packaged under near-vacuum conditions. We also explain the various meshing options to enable the extraction of the most accurate Q factors under existing SFD assumptions. In addition, we compare the computational results across a variety of commercial FEM codes against measurements obtained under realistic vacuum conditions for an industrial high-Q magnetometer. These measurements suggest that existing computational models may deviate by as much as 25% on Q factor values for gas flow regimes under operating cavity pressures of less than 1 Torr.

  1. Packaging solutions for MEMS/MOEMS using thin films as mechanical components

    Science.gov (United States)

    Boyle, P.; Syms, Richard R. A.; Moore, David F.

    2002-04-01

    Optoelectronic subsystems are becoming increasingly important to reduce the costs of assembly and packaging. The mechanical properties of vapor-deposited thin films can be used to advantage; for example three-micrometer thick silicon nitride microclips to hold single mode optic fibers in place in silicon V-shaped grooves. This paper describes the proposed use of pairs of thin film microcantilevers to precisely locate an optic component such as a filter or a mirror in an optical bench. In this configuration the precision of the lithographic process for the cantilevers determines the exact location of the component in the package, and to first order the etched shape in the substrate is unimportant. Simulation software based on variational principles has been developed to examine the behavior of structures undergoing large-scale elastic deflections. The design software consists of spreadsheet front end to enter parameters, and then Visual Basic (VBA) code and Frontline 'solver' software to run simulations. The fabrication process is described for 5 micrometers thick silicon carbide beams which are then tested by bending them using a surface profiler (such as a Dektak) to deflect the fifty micrometer wide silicon nitride cantilevers through large angles. The possible consequences for more efficient optoelectronic packaging are briefly assessed.

  2. Oxidized potato starch based thermoplastic films : Effect of combination of hydrophilic and amphiphilic plasticizers

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Broekhuis, Antonius A.

    2016-01-01

    Different combinations of hydrophilic (glycerol and water) and amphiphilic (isoleucine) plasticizers were studied in the production of thermoplastic starch (TPS) powders and films from oxidized potato starch. All powder samples had an irregular and shrivelled morphology. In all mixtures containing i

  3. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic subst

  4. Rapid and simple colorimetric assay for detecting the enzymatic degradation of biodegradable plastic films.

    Science.gov (United States)

    Shinozaki, Yukiko; Watanabe, Takashi; Nakajima-Kambe, Toshiaki; Kitamoto, Hiroko K

    2013-01-01

    We developed a rapid and simple method for evaluating the degradation of solid biodegradable plastics (BPs). Dye-containing BP films were used as substrates and the release of dye caused by the degradation of BPs was confirmed by a color change in the enzyme solution after a reaction time of 24 h.

  5. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  6. Size effects in single crystal thin films : nonlocal crystal plasticity simulations

    NARCIS (Netherlands)

    Yefimov, S; van der Giessen, E

    2005-01-01

    Stress relaxation in single crystalline thin films on substrates subjected to thermal loading is studied using a recently proposed nonlocal continuum crystal plasticity theory. The theory is founded on a statistical-mechanics description of the collective behaviour of dislocations in multiple slip,

  7. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.|info:eu-repo/dai/nl/325844208

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic subst

  8. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants

    OpenAIRE

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K.

    2012-01-01

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth ind...

  9. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  10. Recent Developments in Film and Gas Research in Modified Atmosphere Packaging of Fresh Foods.

    Science.gov (United States)

    Zhang, Min; Meng, Xiangyong; Bhandari, Bhesh; Fang, Zhongxiang

    2016-10-01

    Due to the rise of consumer's awareness of fresh foods to health, in the past few years, the consumption of fresh and fresh-cut produces has increased sturdily. Modified atmosphere packaging (MAP) possesses a potential to become one of the most appropriate technologies for packaging fresh and fresh-cut produces. The MAP has advantages of extending the shelf-life, preserving or stabilizing the desired properties of fresh produces, and convenience in handing and distribution. The success of MAP-fresh foods depends on many factors including types of fresh foods, storage temperature and humidity, gas composition, and the characteristics of package materials. This paper reviews the recent developments highlighting the most critical factors of film and gas on the quality of MAP fresh foods. Although the innovations and development of food packaging technology will continue to promote the development of novel MAP, concentrated research and endeavors from scientists and engineers are still important to the development of MAP that focuses on consumers' requirements, enhancing product quality, environmental friendly design, and cost-effective application.

  11. Development of PLA films containing oregano essential oil (Origanum vulgare L. virens) intended for use in food packaging.

    Science.gov (United States)

    Llana-Ruiz-Cabello, M; Pichardo, S; Bermúdez, J M; Baños, A; Núñez, C; Guillamón, E; Aucejo, S; Cameán, A M

    2016-08-01

    Consumers' concerns about the environment and health have led to the development of new food packaging materials avoiding petroleum-based matrices and synthetic additives. The present study has developed polylactic acid (PLA) films containing different concentrations of essential oil from Origanum vulgare L. virens (OEO). The effectiveness of this new active packaging was checked for use in ready-to-eat salads. A plasticising effect was observed when OEO was incorporated in PLA films. The rest of the mechanical and physical properties of developed films did not show much change when OEO was included in the film. An antioxidant effect was recorded only for films containing the highest percentages of the active agent (5% and 10%). In addition, films exhibited in vitro antibacterial activity against Staphylococcus aureus, Yersinia enterocolitica, Listeria monocytogenes, Enterococcus faecalis and Staphylococcus carnosus. Moreover, in ready-to-eat salads, antimicrobial activity was only observed against yeast and moulds, where 5% and 10% of OEO was the most effective.

  12. Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging.

    Science.gov (United States)

    Lantano, Claudia; Alfieri, Ilaria; Cavazza, Antonella; Corradini, Claudio; Lorenzi, Andrea; Zucchetto, Nicola; Montenero, Angelo

    2014-12-15

    In this work a comprehensive study on a new active packaging obtained by a hybrid organic-inorganic coating with antimicrobial properties was carried out. The packaging system based on polylactic acid was realised by sol-gel processing, employing tetraethoxysilane as a precursor of the inorganic phase and polyvinyl alcohol as the organic component, and incorporating natamycin as the active agent. Films with different organic-inorganic ratios (in a range between 1:19 and 1:4) were prepared, and the amount of antimycotic entrapped was found to be modulated by the sol composition, and was between 0.18 and 0.25mg/dm(2). FTIR microspectroscopic measurements were used to characterise the prepared coatings. The antifungal properties of the films were investigated against mould growth on the surface of commercial semi-soft cheese. The release of natamycin from the films to ethanol 50% (v/v) was studied by means of HPLC UV-DAD. The maximal level released was about 0.105 mg/dm(2), which is far below the value allowed by legislation.

  13. Qualidade sensorial da alface crespa minimamente processada embalada em diferentes filmes plásticos sob atmosfera modificada Packaging evaluation to conditioning of minimally processed lettuce

    Directory of Open Access Journals (Sweden)

    Rosana Mendes Roversi

    2005-08-01

    Full Text Available A alface crespa minimamente processada foi acondicionada em cinco tipos de sacos plásticos confeccionados com diferentes filmes (PEBD-50, PEBD-60, PEBD-100, BOPP - PEBD e Conservax, sob atmosfera ativamente modificada com 5% de O2 e 10% de CO2. Monitorou-se a atmosfera durante o armazenamento por meio da determinação das concentrações de O2 e CO2 no interior das embalagens. A determinação da vida útil baseou-se na avaliação da qualidade sensorial realizada por meio de Análise Descritiva Quantitativa ADQ, aplicando-se escala hedônica de nove pontos para aparência e cinco pontos para sabor, aroma e textura. Determinaram-se as taxas de permeabilidade ao O2 e CO2 e a espessura dos filmes. Nos filmes com baixas taxas de permeabilidade (BOPP-PEBD e Conservax ocorreu rápida degeneração dos tecidos celulares e perda da qualidade da alface. Os filmes com maiores taxas de permeabilidade (PEBD-50 e 60 propiciaram a rápida redução do CO2. Entretanto, todas as embalagens com atmosfera modificada proporcionaram os melhores resultados permitindo que a alface mantivesse características adequadas de consumo em até dez dias de armazenamento.The lettuce was packaged in five different plastic films in bags forms (LDPE-50, LDPE -60, LDPE -100, BOPP-LDPE and Conservax-trade mark, under active modified atmosphere of 5% O2 and 10% CO2. It was accompanied the atmosphere changes with the determination of the O2 and CO2 concentration inside the package during the storage. The shelf life was determined through sensorial evaluation whit Descriptive Quantitative Analyses using a nine points hedonic scale to visual quality and five points hedonic scale to taste, flavor, and texture. Permeability and thickness films characteristics were analyzed. In the films with lowers permeability rates (BOPP- LDPE and Conservax it was favored quickly cellular tissues degeneration and lettuce quality loss. The films with higher permeability rates (LDPE -50 and LDPE -60

  14. Polyamines as new cationic plasticizers for pectin-based edible films.

    Science.gov (United States)

    Esposito, Marilena; Di Pierro, Prospero; Regalado-Gonzales, Carlos; Mariniello, Loredana; Giosafatto, C Valeria L; Porta, Raffaele

    2016-11-20

    Zeta potential and particle size were determined on pectin aqueous solutions as a function of pH and the effects of calcium ions, putrescine and spermidine on pectin film forming solutions and derived films were studied. Ca(2+) and polyamines were found to differently influence pectin zeta potential as well as thickness and mechanical and barrier properties of pectin films prepared at pH 7.5 either in the presence or absence of the plasticizer glycerol. In particular, Ca(2+) was found to increase film tensile strength and elongation at break only in the presence of glycerol and did not affect film thickness and permeability to both water vapor and CO2. Conversely, increasing polyamine concentrations progressively reduced film tensile strength and markedly enhanced film thickness, elongation at break and permeability to water vapor and CO2, both in the presence and absence of glycerol. Our findings indicate that polyamines give rise to a structural organization of the heteropolysaccharide different from that determined by calcium ions, previously described as "egg box" model, and suggest their possible application as plasticizers to produce pectin-based "bioplastics" with different features.

  15. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs.

    Science.gov (United States)

    Balaguer, Mari Pau; Lopez-Carballo, Gracia; Catala, Ramon; Gavara, Rafael; Hernandez-Munoz, Pilar

    2013-09-16

    Gliadin films incorporating 1.5, 3 and 5% cinnamaldehyde (g/100g protein) were tested against food-spoilage fungi Penicillium expansum and Aspergillus niger in vitro, and were employed in an active food packaging system for sliced bread and cheese spread. Gliadin films incorporating cinnamaldehyde were highly effective against fungal growth. P. expansum and A. niger were completely inhibited after storage in vitro for 10 days in the presence of films incorporating 3% cinnamaldehyde. Indeed 1.5% cinnamaldehyde was sufficient in the case of P. expansum. The amount of cinnamaldehyde retained in films after storage for 45 days at 20 °C and 0% RH was also sufficient in most cases to prevent fungal growth in vitro. Active food packaging with gliadin films incorporating 5% cinnamaldehyde increased the shelf-life of both sliced bread and cheese spread. Mold growth was observed on sliced bread after 27 days of storage at 23 °C with active packaging, whereas in the control bread packaged without the active film fungal growth appeared around the fourth day. In the cheese spread, no fungi were observed after 26 days of storage at 4 °C when the product was packaged with the active film. However, growth of fungi was observed in control packaged cheese after 16 days of storage. This work demonstrates a noteworthy potential of these novel bioplastics incorporating natural antimicrobial compounds as innovative solutions to be used in active food packaging to extend shelf-life of food products. © 2013 Elsevier B.V. All rights reserved.

  16. Effect of gamma irradiation on physico-mechanical properties of spice packaging films

    Science.gov (United States)

    Mizani, Maryam; Sheikh, Nasrin; Ebrahimi, Samad N.; Gerami, Abas; Tavakoli, Farnaz A.

    2009-09-01

    Physico-mechanical properties of two types of laminated films, commercially used for spice packaging, are investigated after gamma irradiation at 8, 10 and 15 kGy. Data showed that polyethylene terephthalate/polyethylene terephthalate/linear low density polyethylene (PET/PET/LLDPE) was more resistant to radiation compared to biaxially oriented polypropylene/cast polypropylene (BOPP/CPP) and its barrier properties slightly improved up to 15 kGy. Oxygen transmission rate of BOPP/CPP was increased by 25%, and the melting peak temperature was decreased by 3.9% at 15 kGy, which may lead to oxidation of packaged spices and loss of their aroma/flavour, respectively.

  17. Effect of gamma irradiation on physico-mechanical properties of spice packaging films

    Energy Technology Data Exchange (ETDEWEB)

    Mizani, Maryam [Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, P.O. Box 14155-4933, Tehran (Iran, Islamic Republic of)], E-mail: mizani1_2000@yahoo.com; Sheikh, Nasrin [Nuclear Science and Technology Research Institute, Radiation Application Research School, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Ebrahimi, Samad N. [Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, P.O. Box 19835-389, Tehran (Iran, Islamic Republic of); Gerami, Abas [School of Mathematics, Statistics and Computer Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Tavakoli, Farnaz A. [Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, P.O. Box 14155-4933, Tehran (Iran, Islamic Republic of)

    2009-09-15

    Physico-mechanical properties of two types of laminated films, commercially used for spice packaging, are investigated after gamma irradiation at 8, 10 and 15 kGy. Data showed that polyethylene terephthalate/polyethylene terephthalate/linear low density polyethylene (PET/PET/LLDPE) was more resistant to radiation compared to biaxially oriented polypropylene/cast polypropylene (BOPP/CPP) and its barrier properties slightly improved up to 15 kGy. Oxygen transmission rate of BOPP/CPP was increased by 25%, and the melting peak temperature was decreased by 3.9% at 15 kGy, which may lead to oxidation of packaged spices and loss of their aroma/flavour, respectively.

  18. Independent components analysis coupled with 3D-front-face fluorescence spectroscopy to study the interaction between plastic food packaging and olive oil.

    Science.gov (United States)

    Kassouf, Amine; El Rakwe, Maria; Chebib, Hanna; Ducruet, Violette; Rutledge, Douglas N; Maalouly, Jacqueline

    2014-08-11

    Olive oil is one of the most valued sources of fats in the Mediterranean diet. Its storage was generally done using glass or metallic packaging materials. Nowadays, plastic packaging has gained worldwide spread for the storage of olive oil. However, plastics are not inert and interaction phenomena may occur between packaging materials and olive oil. In this study, extra virgin olive oil samples were submitted to accelerated interaction conditions, in contact with polypropylene (PP) and polylactide (PLA) plastic packaging materials. 3D-front-face fluorescence spectroscopy, being a simple, fast and non destructive analytical technique, was used to study this interaction. Independent components analysis (ICA) was used to analyze raw 3D-front-face fluorescence spectra of olive oil. ICA was able to highlight a probable effect of a migration of substances with antioxidant activity. The signals extracted by ICA corresponded to natural olive oil fluorophores (tocopherols and polyphenols) as well as newly formed ones which were tentatively identified as fluorescent oxidation products. Based on the extracted fluorescent signals, olive oil in contact with plastics had slower aging rates in comparison with reference oils. Peroxide and free acidity values validated the results obtained by ICA, related to olive oil oxidation rates. Sorbed olive oil in plastic was also quantified given that this sorption could induce a swelling of the polymer thus promoting migration.

  19. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  20. Deep Impact Delta II Launch Vehicle Cracked Thick Film Coating on Electronic Packages Technical Consultation Report

    Science.gov (United States)

    Cameron, Kenneth D.; Kichak, Robert A.; Piascik, Robert S.; Leidecker, Henning W.; Wilson, Timmy R.

    2009-01-01

    The Deep Impact spacecraft was launched on a Boeing Delta II rocket from Cape Canaveral Air Force Station (CCAFS) on January 12, 2005. Prior to the launch, the Director of the Office of Safety and Mission Assurance (OS&MA) requested the NASA Engineering and Safety Center (NESC) lead a team to render an independent opinion on the rationale for flight and the risk code assignments for the hazard of cracked Thick Film Assemblies (TFAs) in the E-packages of the Delta II launch vehicle for the Deep Impact Mission. The results of the evaluation are contained in this report.

  1. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    Energy Technology Data Exchange (ETDEWEB)

    Mustatea, Gabriel [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Vidal, Loïc [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France); Calinescu, Ioan [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Dobre, Alina; Ionescu, Mariana [National Research and Development Institute for Food Bioresources – IBA Bucharest (Romania); Balan, Lavinia, E-mail: lavinia.balan@uha.fr [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France)

    2015-01-15

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3–11 nm) were generated from hydroalcoholic AgNO{sub 3} solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  2. Empirical models for end-use properties prediction of LDPE: application in the flexible plastic packaging industry

    Directory of Open Access Journals (Sweden)

    Maria Carolina Burgos Costa

    2008-03-01

    Full Text Available The objective of this work is to develop empirical models to predict end use properties of low density polyethylene (LDPE resins as functions of two intrinsic properties easily measured in the polymers industry. The most important properties for application in the flexible plastic packaging industry were evaluated experimentally for seven commercial polymer grades. Statistical correlation analysis was performed for all variables and used as the basis for proper choice of inputs to each model output. Intrinsic properties selected for resin characterization are fluidity index (FI, which is essentially an indirect measurement of viscosity and weight average molecular weight (MW, and density. In general, models developed are able to reproduce and predict experimental data within experimental accuracy and show that a significant number of end use properties improve as the MW and density increase. Optical properties are mainly determined by the polymer morphology.

  3. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.

    Science.gov (United States)

    Ghaderi, Moein; Mousavi, Mohammad; Yousefi, Hossein; Labbafi, Mohsen

    2014-04-15

    All-cellulose nanocomposite (ACNC) film was produced from sugarcane bagasse nanofibers using N,N-dimethylacetamide/lithium chloride solvent. The average diameter of bagasse fibers (14 μm) was downsized to 39 nm after disk grinding process. X-ray diffraction showed that apparent crystallinity and crystallite size decreased relatively to an increased duration of dissolution time. Thermogravimetric analysis confirmed that thermal stability of the ACNC was slightly less than that of the pure cellulose nanofiber sheet. Tensile strength of the fiber sheet, nanofiber sheet and ACNC prepared with 10 min dissolution time were 8, 101 and 140 MPa, respectively. Water vapor permeability (WVP) of the ACNC film increased relatively to an increased duration of dissolution time. ACNC can be considered as a multi-performance material with potential for application in cellulose-based food packaging owing to its promising properties (tough, bio-based, biodegradable and acceptable levels of WVP).

  4. Buckling patterns of thin films on compliant substrates: the effect of plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Yin Jie; Chen Xi, E-mail: xichen@columbia.edu [Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027 (United States)

    2011-02-02

    Most previous studies on spontaneous buckling pattern formations in thin films on compliant substrates were limited to elastic deformation, where the herringbone mode is the most often observed under equi-biaxial compression. In practice, plastic deformation is often encountered in ductile metal and polymer films. The effect of plasticity on buckling patterns is explored in this paper using extensive finite element simulations, where the film is assumed to be elastic-perfectly plastic. It is found that upon equi-biaxial compression, depending on the competition among the yield strain, critical buckling strain and applied strain, three new types of patterns may emerge: the plastic diamond-like pattern, the elastoplastic square lattice pattern and the elastoplastic sharp herringbone pattern, and their characteristics are compared with the elastic herringbone mode. Moreover, unique features including the asymmetry in crests and troughs, the sharp saw-like undulation profile and varying wavelengths with applied strain are observed for some types of the new patterns. The study may find its potential applications in the design of stretchable electronics, fabrication of micro/nanofluid channels or channel networks, and morphogenesis of tissues and plants, among others.

  5. Fabrication of superhydrophobic film by microcellular plastic foaming method

    Science.gov (United States)

    Zhang, Zhen Xiu; Li, Ya Nan; Xia, Lin; Ma, Zhen Guo; Xin, Zhen Xiang; Kim, Jin Kuk

    2014-08-01

    To solve the complicated manufacturing operation and the usage of toxic solvent problems, a simple and novel method to fabricate superhydrophobic film by surface foaming method was introduced in this paper. The superhydrophobic property of the foamed material was obtained at a contact angle >150° and a rolling angle about 8°. The foamed material can instantly generate its superhydrophobicity via peeling process. The effects of blowing agent content, foaming time and peeling rate on the foam structure and superhydrophobicity were studied.

  6. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    Science.gov (United States)

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  7. Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth.

    Science.gov (United States)

    Rychter, Piotr; Kot, Marta; Bajer, Krzysztof; Rogacz, Diana; Šišková, Alena; Kapuśniak, Janusz

    2016-02-10

    The utilization of starch films, obtained by extrusion of potato starch with urea as plasticizer, for the fertilization of plants has been undertaken. Release rate of urea from the starch films was conducted in water conditions. The molecular weight distribution, surface erosion and weight loss of the starch samples have been determined. The evaluation of efficiency of urea as a fertilizer in the process of release from the starch films was performed under laboratory conditions based on the plant growth test proposed by OECD 208 Guideline and the PN-ISO International Standard using oat and common radish. Although among extruded starch-based films, those that contain the highest amount of fertilizer hold the most promise for a delayed release system, the time of release of fertilizer from obtained films in undertaken study was not satisfactory. All the same, in the present study effort has been made to utilize extruded samples as a fertilizer for agriculture or horticulture purposes. Urea-plasticized starch was successfully used as a fertilizer. Plant growth assessment, including determination of such parameters as fresh and dry matter of plants and their visual evaluation, has proved the stimulating effect of using extruded films on the growth and development of cultivated plants.

  8. Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access

    Directory of Open Access Journals (Sweden)

    Mohammed A. Mekewi

    2017-03-01

    Full Text Available Developing bio-renewable feedstock for polyurethane (PU manufacturing and polymer industry as a whole has become highly desirable for both economic and environmental reasons. In this work castor oil (CO and palm olein (PO polyols were synthesized and partially used as renewable feedstock for the manufacturing of polyurethane plasticizing resin for printing ink applications. The chemical structure of the prepared polyols and polyurethanes were characterized using IR spectra and GPC and their solubility in common solvents was tested. As well, properties such as flexibility, mechanical properties, optical properties, heat seal and freeze resistance of these prepared printing inks were determined. The results indicated that the prepared printing inks from 50% synthesized polyurethane have high thermal stability, adhesion and excellent freeze resistance. The net technical properties of the new ink formulations are relatively comparable to the printing ink prepared from standard polyurethane plasticizer.

  9. Understanding External Plasticization of Melt Extruded PHBV-Wheat Straw Fibers Biodegradable Composites for Food Packaging

    OpenAIRE

    Martino, Lucrezia; Berthet, Marie-Alix; Gontard, Nathalie

    2015-01-01

    The objective of this work is to get further knowledge on the external plasticization mechanisms of melt extruded polyhydroxyl-3-butyrate-co-3-valerate (PHBV) when combined with wheat straw fibers (WSF). Different types of biodegradable substances, all authorized for food contact according to the European regulation, i.e., acetyltributyl citrate (ATBC), glycerol triacetate (GTA) and (PEG) at different molecular weights, were tested at different percentages (5, 10 and 20 wt %). Thermal and mec...

  10. Evaluation of Standard Loose Plastic Packaging for the Management of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebriondiae).

    Science.gov (United States)

    Hassan, Muhammad Waqar; Gulraize; Ali, Usman; Ur Rehman, Fazal; Najeeb, Hafsa; Sohail, Maryam; Irsa, Bakhtawar; Muzaffar, Zubaria; Chaudhry, Muhammad Shafiq

    2016-01-01

    Three standard foodstuff plastic packaging namely polyethylene (PE), polypropylene (PP), and polyvinylchloride (PVC) were evaluated for management of lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Resistance parameters in packaging were recorded as punctures, holes, penetrations, sealing defects, and invasions with two thicknesses and tested for two lengths of time. Damages like punctures, holes and penetrations by both insects were more in PE packaging however R. dominica made more penetrations in PP than in PE. For both insects sealing defects and invasions were predominant in PVC than in others. Thickness did not affect significantly damage types but significantly more holes and penetrations by R. dominica were in less thickness. Punctures and holes by R. dominica were more after less time period but other damages in packaging were more after more time period. However for T. castaneum all sorts of damages were seen more after more time period. Overall categorization between two insects showed R. dominica made more penetrations and T. castaneum made more invasions compared with their counterparts. Pictures were taken under camera fitted microscope to magnify punctures and holes in different packaging and thicknesses. Insect mortality due to phosphine was more in PP and PE packaging and least in PVC packaging and thickness effect was marginal. T. castaneum mortality was significantly more after 48 h than after 24 h. Damages extent in packaging and fumigation results showed PP to be the best of three packaging materials to manage these insects.

  11. Evaluation of Standard Loose Plastic Packaging for the Management of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebriondiae)

    Science.gov (United States)

    Hassan, Muhammad Waqar; Gulraize; Ali, Usman; Ur Rehman, Fazal; Najeeb, Hafsa; Sohail, Maryam; Irsa, Bakhtawar; Muzaffar, Zubaria; Chaudhry, Muhammad Shafiq

    2016-01-01

    Three standard foodstuff plastic packaging namely polyethylene (PE), polypropylene (PP), and polyvinylchloride (PVC) were evaluated for management of lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Resistance parameters in packaging were recorded as punctures, holes, penetrations, sealing defects, and invasions with two thicknesses and tested for two lengths of time. Damages like punctures, holes and penetrations by both insects were more in PE packaging however R. dominica made more penetrations in PP than in PE. For both insects sealing defects and invasions were predominant in PVC than in others. Thickness did not affect significantly damage types but significantly more holes and penetrations by R. dominica were in less thickness. Punctures and holes by R. dominica were more after less time period but other damages in packaging were more after more time period. However for T. castaneum all sorts of damages were seen more after more time period. Overall categorization between two insects showed R. dominica made more penetrations and T. castaneum made more invasions compared with their counterparts. Pictures were taken under camera fitted microscope to magnify punctures and holes in different packaging and thicknesses. Insect mortality due to phosphine was more in PP and PE packaging and least in PVC packaging and thickness effect was marginal. T. castaneum mortality was significantly more after 48 h than after 24 h. Damages extent in packaging and fumigation results showed PP to be the best of three packaging materials to manage these insects. PMID:27638958

  12. Warpage Analysis of Electroplated Cu Films on Fiber-Reinforced Polymer Packaging Substrates

    Directory of Open Access Journals (Sweden)

    Cheolgyu Kim

    2015-06-01

    Full Text Available This paper presents a warpage analysis method that predicts the warpage behavior of electroplated Cu films on glass fiber-reinforced polymer (GFRP packaging substrates. The analysis method is performed using the following sequence: fabricate specimens for scanning 3D contours, transform 3D data into curvatures, compute the built-in stress of the film using a stress-curvature analytic model, and verify it through comparisons of the finite element method (FEM simulations with the measured data. The curvature is used to describe the deflection and warpage modes and orientations of the specimen. Two primary factors that affect the warpage behavior of the electroplated Cu film on FRP substrate specimens are investigated. The first factor is the built-in stress in a Cu film that explains the room temperature warpage of the specimen under no thermal process. The second factor is the misfit of the coefficient of thermal expansion (CTE between the Cu and FRP layer, which is a dominant factor during the temperature change. The calculated residual stress, and predicted curvatures using FEM simulation throughout the reflow process temperature range between 25 and 180 °C are proven to be accurate by the comparison of the FEM simulations and experiment measurements.

  13. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging.

    Science.gov (United States)

    Siqueira, Maria C; Coelho, Gustavo F; de Moura, Márcia R; Bresolin, Joana D; Hubinger, Silviane Z; Marconcini, José M; Mattoso, Luiz H C

    2014-07-01

    In this study, silver nanoparticles were prepared and incorporated into carboxymethylcellulose films to evaluate the antimicrobial activity for food packaging applications. The techniques carried out for material characterization were: infrared spectroscopy and thermal analysis for the silver nanoparticles and films, as well as particle size distribution for the nanoparticles and water vapor permeability for the films. The antimicrobial activity of silver nanoparticles prepared by casting method was investigated. The minimum inhibitory concentration (MIC) value of the silver nanoparticles to test Gram-positive (Enterococcus faecalis) and Gram-negative (Escherichia coli) microorganisms was carried out by the serial dilution technique, tested in triplicate to confirm the concentration used. The results were developed using the Mcfarland scale which indicates that the presence or absence of turbidity tube demonstrates the inhibition of bacteria in relation to the substance inoculated. It was found that the silver nanoparticles inhibited the growth of the tested microorganisms. The carboxymethylcellulose film embedded with silver nanoparticles showed the best antimicrobial effect against Gram-positive (E. faecalis) and Gram-negative (E. coli) bacteria (0.1 microg cm(-3)).

  14. Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications.

    Science.gov (United States)

    Muriel-Galet, V; Talbert, J N; Hernandez-Munoz, P; Gavara, R; Goddard, J M

    2013-07-10

    The objective of this study was to develop a new antimicrobial film, in which lysozyme was covalently attached onto two different ethylene vinyl alcohol copolymers (EVOH 29 and EVOH 44). The EVOH surface was modified with UV irradiation treatment to generate carboxylic acid groups, and lysozyme was covalently attached to the functionalized polymer surface. Surface characterization of control and modified films was performed using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and dye assay. The value of protein loading after attachment on the surface was 8.49 μg protein/cm(2) and 5.74 μg protein/cm(2) for EVOH 29 and EVOH 44, respectively, after 10 min UV irradiation and bioconjugation. The efficacy of the EVOH-lysozyme films was assessed using Micrococcus lysodeikticus. The antimicrobial activity of the films was tested against Listeria monocytogenes and was similar to an equivalent amount of free enzyme. The reduction was 1.08 log for EVOH 29-lysozyme, 0.95 log for EVOH 44-lysozyme, and 1.34 log for free lysozyme. This work confirmed the successful use of lysozyme immobilization on the EVOH surface for antimicrobial packaging.

  15. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.

    Science.gov (United States)

    Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas

    2015-12-01

    The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome.

  16. Effect of different packaging films on shelf life and quality of peach under super and ordinary market conditions.

    Science.gov (United States)

    Mahajan, B V C; Dhillon, W S; Kumar, Mahesh; Singh, Bikramjit

    2015-06-01

    Peach (Prunus persica L. Batsch) fruits of cultivar 'Shan-i-Punjab' were harvested at colour break stage and packed in paper moulded trays followed by wrapping with different packaging films viz. cryovac heat shrinkable RD-106, cling and low density polyethylene (LDPE) film. After packaging, the fruits were stored under two different conditions i.e. super-market conditions (18-20 °C; 90-95 % RH) and ordinary market conditions (28-30 °C; 60-65 % RH). The fruits were evaluated for various quality attributes periodically. The shrink film helped in reducing the loss in weight, firmness, decay incidence and maintained the various qualities attributes like total soluble solids, sugars, acidity and ascorbic acid content of the fruits during shelf-life better than unwrapped control fruits. The pectin methyl esterase enzyme activity was also found to be lower in shrink film packed fruits over the unwrapped control fruits. The in-package gaseous composition (O2 and CO2) in shrink film packed fruits was found to be at desired level which resulted in maintenance of pleasant flavour of the fruits. On the other hand LDPE film accumulated very high level of CO2, which led to formation of fermenting odour and decay of fruits in the package. The data revealed that RD-106 film proved quite effective in prolonging the shelf-life and maintaining the quality of peach fruits for 9 and 4 days under super market conditions (SMC) and ordinary market conditions (OMC), respectively as against 6 and 2 days only in case of unpacked control fruits under both the marketing conditions. The results suggest that shrink film could be used in packaging of peach without negative effects on quality.

  17. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ng, M H Andrew; Hartadi, Lysia T; Tan Huiwen; Poa, C H Patrick [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)], E-mail: patrick-poa@imre.a-star.edu.sg

    2008-05-21

    Optically transparent and electrically conductive single-walled carbon nanotube (SWNT) thin films were fabricated at room temperature using a dip-coating technique. The film transparency and sheet resistance can be easily tailored by controlling the number of coatings. Aminopropyltriethoxysilane (APTS) was used as an adhesion promoter and, together with surfactant Triton X-100, greatly improved the SWNTs coating. Only five coats were required to obtain a sheet resistance of 2.05 {omega}{open_square} and film transparency of 84 %T. The dip-coated film after post-deposition treatment with nitric acid has a sheet resistance as low as 130 {omega}{open_square} at 69 %T. This technique is suitable for large-scale SWNT coating at room temperature and can be used on different types of substrates such as glass and plastics. This paper will discuss the role of the adhesion promoter and surfactant in the coating process.

  18. ANALYTICAL SOLUTIONS OF THERMAL STRESS DISTRIBUTION IN PLASTIC ENCAPSULATED INTEGRATED CIRCUIT PACKAGES

    Institute of Scientific and Technical Information of China (English)

    刘玉岚; 王彪; 王殿富

    2003-01-01

    Due to the mismatch in the coefficients of thermal expansion of slicon chip and the surrounding plastic encapsulation materials, the induced thermal stress is the main cause for die and encapsulant rupture. The corner geometry is simplified as the semi-infinite wedge. Then the two-dimensional thermal stress distribution around the corner was obtained explicitly. Based on the stress calculation, the strain energy density factor criterion is used to evaluate the strength of the structure, which can not only give the critical condition for the stresses, but also determine the direction of fracture initiation around the corner.

  19. ANALYTICAL SOLUTIONS OF THERMAL STRESS DISTRIBUTION IN PLASTIC ENCAPSULATED INTEGRATED CIRCUIT PACKAGES

    Institute of Scientific and Technical Information of China (English)

    LIUYu-lan; WANGBiao; WANGDian-fu

    2003-01-01

    Due to the mismatch in the coefficients of thermal epansion of slicon chip and the surrounding plastic encapsulation materials,the induced thermal stress is the main cause for die and encapsulant rupture.The corner geometry is simplified as the semi-infinite wedge.The the two-dimensional thermal stress distribution around the coner was obtained explicitly.Based on the stress calculation,the strain energy density factor criterion is used to evaluate the strength of the structure,which can not only give the critical condition for the stresses,but also determine the direction of fracture iuntiation around the corner.

  20. Antimicrobial Active Packaging including Chitosan Films with Thymus vulgaris L. Essential Oil for Ready-to-Eat Meat.

    Science.gov (United States)

    Quesada, Jesús; Sendra, Esther; Navarro, Casilda; Sayas-Barberá, Estrella

    2016-08-29

    An active packaging system has been designed for the shelf life extension of ready to eat meat products. The package included an inner surface coated with a chitosan film with thyme essential oil (0%, 0.5%, 1%, and 2%) not in direct contact with the meat. Our aim was to reduce the impact of thyme essential oil (EO) on meat sensory properties by using a chemotype with low odor intensity. The pH, color parameters, microbial populations, and sensory properties were assessed during 4 weeks of refrigerated storage. The presence of EO films reduced yeast populations, whereas aerobic mesophilic bacteria, lactic acid bacteria, and enterobacteria were not affected by the presence of the EO in the films. Meat color preservation (a *) was enhanced in the presence of EO, giving a better appearance to the packaged meat. The presence of the chitosan-EO layer reduced water condensation inside the package, whereas packages containing only chitosan had evident water droplets. Thyme odor was perceived as desirable in cooked meat, and the typical product odor intensity decreased by increasing the EO concentration. Further studies should point towards developing oil blends or combinations with natural antimicrobial agents to be incorporated into the film to improve its antimicrobial properties.

  1. Antimicrobial Active Packaging including Chitosan Films with Thymus vulgaris L. Essential Oil for Ready-to-Eat Meat

    Directory of Open Access Journals (Sweden)

    Jesús Quesada

    2016-08-01

    Full Text Available An active packaging system has been designed for the shelf life extension of ready to eat meat products. The package included an inner surface coated with a chitosan film with thyme essential oil (0%, 0.5%, 1%, and 2% not in direct contact with the meat. Our aim was to reduce the impact of thyme essential oil (EO on meat sensory properties by using a chemotype with low odor intensity. The pH, color parameters, microbial populations, and sensory properties were assessed during 4 weeks of refrigerated storage. The presence of EO films reduced yeast populations, whereas aerobic mesophilic bacteria, lactic acid bacteria, and enterobacteria were not affected by the presence of the EO in the films. Meat color preservation (a * was enhanced in the presence of EO, giving a better appearance to the packaged meat. The presence of the chitosan-EO layer reduced water condensation inside the package, whereas packages containing only chitosan had evident water droplets. Thyme odor was perceived as desirable in cooked meat, and the typical product odor intensity decreased by increasing the EO concentration. Further studies should point towards developing oil blends or combinations with natural antimicrobial agents to be incorporated into the film to improve its antimicrobial properties.

  2. Antimicrobial Active Packaging including Chitosan Films with Thymus vulgaris L. Essential Oil for Ready-to-Eat Meat

    Science.gov (United States)

    Quesada, Jesús; Sendra, Esther; Navarro, Casilda; Sayas-Barberá, Estrella

    2016-01-01

    An active packaging system has been designed for the shelf life extension of ready to eat meat products. The package included an inner surface coated with a chitosan film with thyme essential oil (0%, 0.5%, 1%, and 2%) not in direct contact with the meat. Our aim was to reduce the impact of thyme essential oil (EO) on meat sensory properties by using a chemotype with low odor intensity. The pH, color parameters, microbial populations, and sensory properties were assessed during 4 weeks of refrigerated storage. The presence of EO films reduced yeast populations, whereas aerobic mesophilic bacteria, lactic acid bacteria, and enterobacteria were not affected by the presence of the EO in the films. Meat color preservation (a *) was enhanced in the presence of EO, giving a better appearance to the packaged meat. The presence of the chitosan-EO layer reduced water condensation inside the package, whereas packages containing only chitosan had evident water droplets. Thyme odor was perceived as desirable in cooked meat, and the typical product odor intensity decreased by increasing the EO concentration. Further studies should point towards developing oil blends or combinations with natural antimicrobial agents to be incorporated into the film to improve its antimicrobial properties. PMID:28231152

  3. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China.

    Science.gov (United States)

    Li, Kankan; Ma, Dong; Wu, Juan; Chai, Chao; Shi, Yanxi

    2016-12-01

    The content of phthalate esters (PAEs) was investigated in 36 vegetable fields with plastic film mulching in Shandong Peninsula, East China. Soils at depths of 0-10 cm, 10-20 cm, and 20-40 cm were collected, and 16 PAEs were analyzed by gas chromatography-mass spectrometry. PAEs were detected in all the analyzed samples. The total contents of the 16 PAEs (Σ16PAEs) ranged from 1.374 to 18.810 mg/kg, with an average of 6.470 mg/kg. Among the four areas of Shandong Peninsula, including Qingdao, Weihai, Weifang, and Yantai, the highest Σ16PAE in the soil was observed in Weifang district (9.786 mg/kg), which is famous for large-scale vegetable production. Despite the significant differences among the Σ16PAEs, the PAE compositions in soils with plastic film mulching in Shandong Peninsula were comparable. Diethyl phthalate (DEP), diisobutyl phthalate, and di(4-methyl-2-pentyl) phthalate were present in all the samples, whereas di-n-hexyl phthalate was detected only in Qingdao (∼1%) and dicyclohexyl phthalate was observed only in Weifang (5.7-8.2%) in low proportions. The ratios of dimethyl phthalate, DEP, and di-n-butyl phthalate, which exceeded allowable concentrations, were 63.9-100% at different soil depths, indicating high PAE pollution. The concentration of butyl benzyl phthalate detected only in Weifang exceeded the recommended allowable soil concentration. Overall, the high PAE content in the soil with plastic film mulching in Shandong Peninsula is an issue of concern because of the large amounts of plastic film used.

  4. Thermoplastic starch plasticized with alginate-glycerol mixtures: Melt-processing evaluation and film properties.

    Science.gov (United States)

    López, Olivia V; Ninago, Mario D; Lencina, M M Soledad; García, María A; Andreucetti, Noemí A; Ciolino, Andrés E; Villar, Marcelo A

    2015-08-01

    Corn starch melt-processing in the presence of a commonly used plasticizer mixture (water/glycerol) and a non-conventional alternative (alginate/glycerol) was evaluated. All assayed formulations were successfully processed by melt-mixing and injected in circular probes. It was determined that all samples presented a typical viscoelastic behavior, observing a decrease in storage and loss modulus with water and alginate concentration, which facilitated samples processability. Concerning to thermal stability, it was not affected neither for water nor alginate presence. From injected probes, flexible films were obtained by thermo-compression. Films with the highest assayed water content presented a sticky appearance, whereas those containing alginate were non-tacky. Plasticizing action of water and alginate was evidenced by the occurrence of homogeneous fracture surfaces, without the presence of unmelted starch granules. Besides, the shift of glass transition temperature to lower values also corroborated the plasticizing effect of both additives. In conclusion, obtained results demonstrated the well-plasticizing action of sodium alginate on starch matrix, turning this additive into a promissory alternative to replace water during melt-processing of thermoplastic corn-starch.

  5. Physical and biological treatments of polyethylene-rice starch plastic films

    Energy Technology Data Exchange (ETDEWEB)

    El-Naggar, Manal M.A., E-mail: mmelnaggar@yahoo.com [Microbiology Lab., National Institute of Oceanography and Fisheries, Alexandria (Egypt); Farag, Magdy Gh. [Development Plastic Center, Victoria, Alexandria (Egypt)

    2010-04-15

    This study aimed to produce an industrial applicable thermo-stable {alpha}-amylase from marine Bacillus amyloliquefaciens which isolated and selected according to its significant enzyme production. The effect of different pH values and temperatures on the bacterial growth and the enzyme production was estimated using an experimental statistical design; maximum amylase production and bacterial growth was obtained at pH 7.0 and 50 deg. C. Some biodegradable polyethylene rice starch plastic films (PERS-P) were manufactured using 0, 2.5, 5, 7.5 and 10% starch concentrations. The biodegradability (reduction in the plastic elongation%) was tested using the exposure to UV radiation at {lambda}{sub 300-400nm} (intensity of about 1000 W/m{sup 2}) and the produced B. amyloliquefaciens thermo-stable {alpha}-amylase. A significant reduction in the elongation% of these biodegradable plastics was observed in both cases especially on testing the 10% PERS-P; they showed a reduction of 26% and 20%, respectively, compared to the untreated plastic films (180 {+-} 5).

  6. A Sustainable Performance Assessment Framework for Plastic Film Supply Chain Management from a Chinese Perspective

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2016-10-01

    Full Text Available Academics’ and practitioners’ interest in sustainable supply chain management has received great concern in recent years. The application of biaxially-oriented polypropylene (BOPP plastic film has had a significant influence on the economic, environmental and social performance of supply chain management. However, research on the integration of these three sustainable dimensions is still rare in this field. In this paper, we identify sustainability criteria based on a triple bottom line approach (economic benefit, environmental protection and social responsibility from the supply chain perspective, develop a hybrid multi-criteria decision making framework to evaluate the criteria and select alternatives and apply the proposed approach to a real case study at a focal BOPP plastic film company in China. In the framework, a fuzzy analytical hierarchy process (FAHP is used to determine the performance criteria weights and a fuzzy technique for order performance by similarity to ideal solution (FTOPSIS is applied to rank the alternatives. The case study finds that the economic dimension was the most important aspect with environmental second and social third. The results also verify the effectiveness of the proposed framework. This paper develops an effective and systematic approach for decision makers to conduct evaluations and select optimal alternatives for focal plastic film companies.

  7. High-rate deposition of nano-crystalline silicon thin films on plastics

    Energy Technology Data Exchange (ETDEWEB)

    Marins, E.; Guduru, V.; Cerqueira, F.; Alpuim, P. [Centro de Fisica, Universidade do Minho, 4800-058 Guimaraes, 4710-057 Braga (Portugal); Ribeiro, M. [Centro de Nanotecnologia e Materiais Tecnicos, Funcionais e Inteligentes (CeNTI), 4760-034 Vila Nova de Famalicao (Portugal); Bouattour, A. [Institut fuer Physikalische Elektronik (ipe), Universitaet Stuttgart, 70569 Stuttgart (Germany)

    2011-03-15

    Nanocrystalline silicon (nc-Si:H) is commonly used in the bottom cell of tandem solar cells. With an indirect bandgap, nc-Si:H requires thicker ({proportional_to}1 {mu}m) films for efficient light harvesting than amorphous Si (a-Si:H) does. Therefore, thin-film high deposition rates are crucial for further cost reduction of highly efficient a-Si:H based photovoltaic technology. Plastic substrates allow for further cost reduction by enabling roll-to-roll inline deposition. In this work, high nc-Si:H deposition rates on plastic were achieved at low substrate temperature (150 C) by standard Radio-frequency (13.56 MHz) Plasma Enhanced Chemical Vapor Deposition. Focus was on the influence of deposition pressure, inter-electrode distance (1.2 cm) and high power coupled to the plasma, on the hydrogen-to-silane dilution ratios (HD) necessary to achieve the amorphous-to-nanocrystalline phase transition and on the resulting film deposition rate. For each pressure and rf-power, there is a value of HD for which the films start to exhibit a certain amount of crystalline fraction. For constant rf-power, this value increases with pressure. Within the parameter range studied the deposition rate was highest (0.38 nm/s) for nc-Si:H films deposited at 6 Torr, 700 mW/cm{sup 2} using HD of 98.5%. Decreasing the pressure to 3 Torr (1.5 Torr) and rf-power to 350 mW/cm{sup 2} using HD - 98.5% deposition rate is 0.12 nm/s (0.076 nm/s). Raman crystalline fraction of these films is 72, 62 and 53% for the 6, 3 and 1.5 Torr films, respectively (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture

    OpenAIRE

    2013-01-01

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles thr...

  9. Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture

    OpenAIRE

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-01-01

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles thr...

  10. A novel biobased plasticizer of epoxidized cardanol glycidylether: Synthesis and application in soft poly(vinyl chloride) films

    Science.gov (United States)

    A novel plasticizer derived from cardanol, epoxied cardanol glycidyl ether (ECGE), was synthesized and characterized by 1H-NMR and 13C-NMR. Effects of the ECGE combined with dioctyl phthalate (DOP), a commercial plasticizer, in soft poly(vinyl chloride) (PVC) films were studied. Dynamic mechanical a...

  11. Morphology and thermal properties of PLA films plasticized with aliphatic oligoesters; Morfologia e propriedades termicas de filmes de PLA plastificados com oligoesteres alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Inacio, Erika M.; Dias, Marcos L., E-mail: erika.minacio@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Lima, Maria Celiana P. [Instituto Federal do Rio de Janeiro (IFRJ), Duque de Caxias, RJ (Brazil)

    2015-07-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  12. High barrier multilayer packaging by the coextrusion method: The effect of nanocomposites and biodegradable polymers on flexible film properties

    Science.gov (United States)

    Thellen, Christopher T.

    The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.

  13. Effect assessment of "film coating and packaging" on the photo-stability of highly photo-labile antihypertensive products.

    Science.gov (United States)

    Mukharya, Amit; Patel, Paresh U; Chaudhary, Shivang

    2013-04-01

    Lacidipine (LCDP) is chemically a "1, 4-dihydropyridine derivative" Ca+(2) channel blocker used as an antihypertensive. Type and extent of packaging have a strong influence on the photo-stability of the 1,4-dihydropyridine derivatives. In standard, light protection of drug substance/drug product can be obtained either by use of an opaque additive in the formulation that competitively absorbs or reflects light reaching the sample and/or by blocking the access of light to the drug through external protection by packaging. External protection by covering tablets with an opaque film coating involving a light-reflecting inorganic pigment such as titanium dioxide and/or by using an opaque impermeable packaging material was an appropriate suitable option for establishing photo-stability. Thus, the main objective of the present study was to optimize the % level of film coating in LCDP core tablets, and selection of a final packaging material and its respective extent, that is, primary, secondary and/or tertiary packaging, for LCDP tablets. The main objective (% level of film coating) was optimized by directly exposing core tablets, 1% w/w, 2% w/w and 3% w/w film-coated tablets, to a light source as per Option-2 of ICH Q1B and its comparative analysis at the end of light exposure testing. The other objective (extent of drug product packaging) was established successfully by assessing whether or not an acceptable change has occurred at the end of the light exposure testing of the LCDP film-coated tablets in a direct exposure study or a primary immediate pack and/or secondary marketing pack.

  14. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  15. Development of flexible plasmonic plastic sensor using nanograting textured laminating film

    Science.gov (United States)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2017-02-01

    The work presented in this paper describes the development of a cost-effective, flexible plasmonic plastic sensor using gold-coated nanograting nanoimprinted on a laminating plastic. The fabrication of plasmonic plastic sensor involved the transfer of nanograting pattern from polydimethylsiloxane (PDMS) polymer stamp to laminating plastic via thermal nanoimprint lithography, and subsequent gold film deposition. Gold-coated nanograting sample acted as a plasmonic chip, which exhibited surface plasmon resonance (SPR) mode in reflectance spectra under the white light illumination. The theoretical calculation was performed to study and analyze the excited SPR mode on the plasmonic chip. Further, the bulk refractive index sensitivity was demonstrated with respect to changing surrounding dielectric medium giving a value about 800  ±  27 nm/RIU (refractive index unit). In addition, the surface binding sensitivity upon adsorption of bovine serum albumin protein on the sensor surface was approximately 4.605 nm/(ng/mm2).We believe that our proposed low-cost plastic based plasmonic sensing device could be a potential candidate for the label-free and high-throughput screening of biological molecules.

  16. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film.

  17. Nonlinear response and two stable electroconducting states in transparent plasticized PVC films

    Science.gov (United States)

    Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.

    2010-10-01

    The electric conductivity of transparent plasticized poly(vinyl chloride) (PVC) films with thicknesses about 30-50 μm has been studied in electric fields with strengths significantly below the breakdown level. It is established that the PVC films exhibit spontaneous reversible transitions between two stable states—with high and relatively low conductivities, in which the bulk resistivity amounts to ˜103 and 106 Ω m, respectively. Relaxation current-voltage characteristics have been measured in a continuous regime, which allowed the Debye relaxation processes to be taken into consideration and effects related to the nonlinearity and transitions between indicated states to be separated. A regime with deterministic switching between the two conducting states has been observed. A simple qualitative model that describes the anomalous character of conductivity in polymer films is proposed.

  18. Development of non-woven and plastic composite medical sterilization packaging bags%一种无纺布与塑料复合型医用灭菌包装袋的研制

    Institute of Scientific and Technical Information of China (English)

    赵筠; 易江陵; 马旭东; 周廷云

    2012-01-01

    目的 试研制一种新型的无纺布与塑料复合型灭菌包装袋,为医疗器材灭菌包装提供新材料和新方法.方法 以透明耐高温医用复合塑料膜和SMS无纺布为原料,采用热溶压合和黏合的方法,试研制无纺布与塑料复合型的管状包装袋和独立包装袋,并且对所试研制包装袋,实施具有挑战性的灭菌包装质量试验和储存质量试验,两组试验样本各60包次.结果 试研制的无纺布与塑料复合型包装袋,在60包次灭菌包装质量试验中,未发生包装袋破损和暴边现象,也未发现灭菌湿包;而在60包次储存质量试验中包装袋器材灭菌后,储存6个月后抽检结果全部为阴性无菌生长.结论 我们研制的无纺布与塑料复合型灭菌包装袋质量较可靠,灭菌兼容性较强,性价比也较高,具有推广应用价值.%OBJECTIVE To develop a kind of non-woven and plastic composite medical sterilization packaging bags so as to provide new materials and new approaches for sterilized packaging of the medical devices. METHODS The transparent high-temperature composite plastic film and non-woven SMS were selected as the material , by the means of hot melt lamination and bonding, non-woven and plastic composite tubular packaging bags and individually wrapped bags were developed, the sterilization and packaging quality and the storage quality were tested for the newly developed bags, all the tested samples were divided into two groups with 60 packages in each. RESULTS Of 60 newly developed non-woven and plastic composite medical sterilization packaging bags for the quality test, there were no bags of breakage or burst side or humidified sterilized bags; and there were no bacterial growth that occurred after the storage for 6 months. CONCLUSION The quality of non-woven and plastic composite medical sterilization packaging bags we developed is feasible with stronger sterilization compatibility and higher cost-effect,which is worthy of

  19. Highly Uniform Thin-Film Transistors Printed on Flexible Plastic Films with Morphology-Controlled Carbon Nanotube Network Channels

    Science.gov (United States)

    Numata, Hideaki; Ihara, Kazuki; Saito, Takeshi; Endoh, Hiroyuki; Nihey, Fumiyuki

    2012-05-01

    Carbon nanotube (CNT) transistor arrays were fabricated on plastic films by printing. All the device elements were directly patterned by maskless printing without any additional patterning process, and minimum materials were used. During fabrication, the morphology of the CNT random network was controlled by an adsorption mechanism on the surface to be printed, which resulted in excellent and uniform electrical properties. The field-effect mobility was further improved by post-treatment to modify the morphology of the CNT network. These results are promising for realizing printed electronics integrated with CNT transistors.

  20. 国内外塑料包装材料回收法律体系概况%The Overview of Legal System about Recycling Plastic Packaging Material at Home and Abroad

    Institute of Scientific and Technical Information of China (English)

    张玉霞; 张岩; 李东萱; 俞婧; 王洪涛

    2011-01-01

    介绍了中国和欧、美、日等发达国家塑料包装材料同收立法现状,其中包括同收塑料用于食品包装的概况.塑料包装T业要实现可持续发展,当务之急是加快包装材料回收立法,尤其是食品塑料包装回收立法工作.%This article described the legislative status of recycling of plastic packaging materials in China, Europe, America and Japan, including recycled plastics for food packaging profiles. To achieve sustainable development of plastic packaging industry, it is imperative to speed up packaging recycling legislation, in particular for food plastic packaging recycling legislation.

  1. Evaluation of the genotoxicity of chitosan nanoparticles for use in food packaging films.

    Science.gov (United States)

    De Lima, Renata; Feitosa, Leandro; do Espírito Santo Pereira, Anderson; de Moura, Márcia Regina; Ahmad Aouada, Fauze; Henrique Capparelli Mattoso, Luiz; Fernandes Fraceto, Leonardo

    2010-08-01

    The use of nanoparticles in food packaging has been proposed on the basis that it could improve protection of foods by, for example, reducing permeation of gases, minimizing odor loss, and increasing mechanical strength and thermal stability. Consequently, the impacts of such nanoparticles on organisms and on the environment need to be investigated to ensure their safe use. In an earlier study, Moura and others (2008a) described the effect of addition of chitosan (CS) and poly(methacrylic acid) (PMAA) nanoparticles on the mechanical properties, water vapor, and oxygen permeability of hydroxypropyl methylcellulose films used in food packaging. Here, the genotoxicity of different polymeric CS/PMAA nanoparticles (size 60, 82, and 111 nm) was evaluated at different concentration levels, using the Allium cepa chromosome damage test as well as cytogenetic tests employing human lymphocyte cultures. Test substrates were exposed to solutions containing nanoparticles at polymer mass concentrations of 1.8, 18, and 180 mg/L. Results showed no evidence of DNA damage caused by the nanoparticles (no significant numerical or structural changes were observed), however the 82 and 111 nm nanoparticles reduced mitotic index values at the highest concentration tested (180 mg/L), indicating that the nanoparticles were toxic to the cells used at this concentration. In the case of the 60 nm CS/PMAA nanoparticles, no significant changes in the mitotic index were observed at the concentration levels tested, indicating that these particles were not toxic. The techniques used show promising potential for application in tests of nanoparticle safety envisaging the future use of these materials in food packaging.

  2. Atomic-scale analysis of plastic deformation in thin-film forms of electronic materials

    Science.gov (United States)

    Kolluri, Kedarnath

    Nanometer-scale-thick films of metals and semiconductor heterostructures are used increasingly in modern technologies, from microelectronics to various areas of nanofabrication. Processing of such ultrathin-film materials generates structural defects, including voids and cracks, and may induce structural transformations. Furthermore, the mechanical behavior of these small-volume structures is very different from that of bulk materials. Improvement of the reliability, functionality, and performance of nano-scale devices requires a fundamental understanding of the atomistic mechanisms that govern the thin-film response to mechanical loading in order to establish links between the films' structural evolution and their mechanical behavior. Toward this end, a significant part of this study is focused on the analysis of atomic-scale mechanisms of plastic deformation in freestanding, ultrathin films of face-centered cubic (fcc) copper (Cu) that are subjected to biaxial tensile strain. The analysis is based on large-scale molecular-dynamics simulations. Elementary mechanisms of dislocation nucleation are studied and several problems involving the structural evolution of the thin films due to the glide of and interactions between dislocations are addressed. These problems include void nucleation, martensitic transformation, and the role of stacking faults in facilitating dislocation depletion in ultrathin films and other small-volume structures of fcc metals. Void nucleation is analyzed as a mechanism of strain relaxation in Cu thin films. The glide of multiple dislocations causes shearing of atomic planes and leads to formation of surface pits, while vacancies are generated due to the glide motion of jogged dislocations. Coalescence of vacancy clusters with surface pits leads to formation of voids. In addition, the phase transformation of fcc Cu films to hexagonal-close packed (hcp) ones is studied. The resulting martensite phase nucleates at the film's free surface and

  3. Latest improvements in microbolometer thin film packaging: paving the way for low-cost consumer applications

    Science.gov (United States)

    Yon, J. J.; Dumont, G.; Goudon, V.; Becker, S.; Arnaud, A.; Cortial, S.; Tisse, C. L.

    2014-06-01

    Silicon-based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) required by a promising mass market that shows momentum for some extensive consumer applications, such as automotive driving assistance, smart presence localization and building management. Among the various approaches studied worldwide, CEA, LETI in partnership with ULIS is committed to the development of a unique technology referred to as PLP (Pixel Level Packaging). In this PLP technology, each bolometer pixel is sealed under vacuum using a transparent thin film deposition on wafer. PLP operates as an array of hermetic micro caps above the focal plane, each enclosing a single microbolometer. In continuation of our on-going studies on PLP for regular QVGA IRFPAs, this paper emphasizes on the innate scalability of the technology which was successfully demonstrated through the development of an 80 × 80 pixel IRFPA. The relevance of the technology with regard to the two formats is discussed, considering both performance and cost issues. We show that the suboptimal fill factor inherent to the PLP arrangement is not so critical when considering smaller arrays preferably fitted for consumer applications. The discussion is supported with the electro-optical performance measurements of the PLP-based 80×80 demonstrator.

  4. 320 x 240 uncooled IRFPA with pixel wise thin film vacuum packaging

    Science.gov (United States)

    Yon, J.-J.; Dumont, G.; Rabaud, W.; Becker, S.; Carle, L.; Goudon, V.; Vialle, C.; Hamelin, A.; Arnaud, A.

    2012-10-01

    Silicon based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) as required by the promising mass market for very low cost IR applications, such as automotive driving assistance, energy loss monitoring in buildings, motion sensors… Among the various approaches studied worldwide, the CEA, LETI is developing a unique technology where each bolometer pixel is sealed under vacuum at the wafer level, using an IR transparent thin film deposition. This technology referred to as PLP (Pixel Level Packaging), leads to an array of hermetic micro-caps each containing a single microbolometer. Since the successful demonstration that the PLP technology, when applied on a single microbolometer pixel, can provide the required vacuum < 10-3 mbar, the authors have pushed forward the development of the technology on fully operational QVGA readout circuits CMOS base wafers (320 x 240 pixels). In this outlook, the article reports on the electro optical performance obtained from this preliminary PLP based QVGA demonstrator. Apart from the response, noise and NETD distributions, the paper also puts emphasis on additional key features such as thermal time constant, image quality, and ageing properties.

  5. Display life of beef packaged with an antioxidant active film as a function of the concentration of oregano extract.

    Science.gov (United States)

    Camo, Javier; Lorés, Alberto; Djenane, Djamel; Beltrán, José Antonio; Roncalés, Pedro

    2011-05-01

    Fresh beef steaks were packaged with a new antioxidant active system containing increasing concentrations (0.5, 1, 2 and 4%) of an oregano extract. Control samples were packaged without the active film. Additional samples were sprayed with the extract and packaged as the control samples. Packages were filled with a 80%O(2)/20%CO(2) atmosphere and displayed under illumination (14 h) at 1 ± 1 °C for 28 days. Metmyoglobin formation, lipid oxidation (TBARS), instrumental colour (CIE a*) and sensory colour, discoloration, off-odour and oregano smell were determined. Active packaging significantly (P oregano concentration of the active film. The display life of beef samples demonstrated that at least 1% oregano was needed for obtaining a significant increase of display life from 14 to 23 days. A concentration of 4% gave rise to unacceptable oregano smell. As a consequence, most suitable oregano extract concentrations for optimum active packaging in this system should be within the range 1-2%.

  6. Influence of polymer packaging films on hyperspectral imaging data in the visible-near-infrared (450-950 nm) wavelength range.

    Science.gov (United States)

    Gowen, A A; O'Donnell, C P; Esquerre, C; Downey, G

    2010-03-01

    Hyperspectral imaging (HSI) has recently emerged as a useful tool for quality analysis of consumer goods (e.g., food and pharmaceutical products). These products are typically packaged in polymeric film prior to distribution; however, HSI experiments are typically carried out on such samples ex-packaging (either prior to or after removal from packaging). This research examines the effects of polymer packaging films (polyvinyl chloride (PVC) and polyethylene terephthalate (PET)) on spectral and spatial features of HSI data in order to investigate the potential of HSI for quality evaluation of packaged goods. The effects of packaging film were studied for hyperspectral images of samples obtained in the visible-near-infrared (Vis-NIR, i.e., 450-950 nm) wavelength range, which is relevant to many food, agricultural, and pharmaceutical products. The dominant influence of the films tested in this wavelength range could be attributed to light scattering. Relative position of the light source, film, and detector were shown to be highly influential on the scattering effects observed. Detection of features on samples imaged through film was shown to be possible after some data preprocessing. This suggests that quality analysis of products packaged in polymer film is feasible using HSI. These findings would be useful in the development of quality monitoring tools for consumer products post-packaging using HSI.

  7. A RESEARCH ON THE EDIBLE PACKAGING FILM BASED ON THE PERSPECTIVE OF FOOD SAFETY%一种可食性包装膜的制备及研究

    Institute of Scientific and Technical Information of China (English)

    许月明; 张爽; 汤强

    2014-01-01

    Edible packaging films (Edible Packaging Films, hereinafter referred to as EPF) are a popular new packaging mate-rial at home and abroad, which is the first choice for packaging materials to achieve “green packaging” with “safety”, “envi-ronmental protection”, “low-carbon”, “biodegradation”, “economy”, “convenience” and many other advantages. In this paper, using a mixture of tofu-dregs, rice starch and potato starch as the substrate, guar gum as an adhesive, glycerol as a plasticizer, we select the best preparation programs, so that we can ensure that the film can meet the packaging requirements of the pow-dered, solid and fat food and at the same time can ensure the maximum retention of nutrients in the raw material.%可食性包装膜(Edible Packaging Films,以下简称EPF)是国内外研究较为流行的一种新型包装材料,该包装具备“安全”、“环保”、“低碳”、“可降解”、“节约”、“方便”等众多优点,是实现“绿色包装”的首选包装材料。本文以豆腐渣、大米淀粉和马铃薯淀粉的混合物为基材,瓜尔豆胶作为胶粘剂,甘油作为增塑剂,选择最佳制备方案,保证膜能满足粉末状、固体状、油脂类食品的包装要求,同时能最大程度保证原料中营养成分的保留。

  8. [Analysis of phthalate esters in plastic-packaging bags on-line sample stacking-microemulsion electrokinetic chromatography].

    Science.gov (United States)

    Xiao, Jia; Huang, Ying; Wang, Minyi; Chen, Guonan

    2012-09-01

    Two convenient, effective, and reproducible methods using microemulsion electrokinetic chromatography (MEEKC)-normal stacking mode (NSM) and reversed electrode polarity stacking mode (REPSM) were developed for the on-line sample stacking of phthalate esters (PAEs). REPSM coupled with MEEKC increased the sensitivity of 937.5 to 7,143 times for four PAEs compared to the conventional MEEKC. The separating conditions in the MEEKC method were studied, and many factors influencing the two sample stacking processes were investigated in detail. The optimum sample matrices for the two stacking methods were as follows: 30 mmol/L sodium cholate (SC) and 30.0 mmol/L borate (pH 8.5). Additionally, sample injections as large as 3.45 kPa x 40 s and 3.45 kPa x 90 s were applied for NSM-MEEKC and REPSM-MEEKC, respectively. The linear relationship and reproducibility were also examined. Under the optimum conditions, the detection limits (S/N = 3) of the PAEs were in the ranges of 0.021 - 0.33 mg/L and 0.7 - 4 microg/L for NSM-MEEKC and REPSM-MEEKC, respectively. The proposed REPSM-MEEKC has been successfully applied to determine PAEs in plastic-packaging bags, and the spiked recoveries were in the range of 89.1% - 105.6% with satisfactory results.

  9. A study on the radiometric method for evaluating element migration from plastic packagings to its contents; Estudo do metodo radiometrico para avaliacao da migracao de elementos de embalagens plasticas para o seu conteudo

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Eufemia Paez

    2008-07-01

    Over the past few years, problems related to food contamination by substances or elements that can be a risk to human health have became a concern, not only to government authorities, but to the general population as well. Within this context, plastic packaging can constitute a source of food contamination since plastic manufacturing processes involve the use of catalysts and different types of additives that may contain toxic elements. When food comes into contact with this packaging, components of the package may migrate to the food. In order to control the material used as food packaging, the National Health Surveillance Agency (ANVISA) in Brazil, has established boundary values of migrant substances and procedures to determine migration from plastic packagings to food. In this study the radiometric method was evaluated for element migration determination from plastic packaging to food simulating or to the food itself. This radiometric method consisted in irradiating plastic packaging samples with a thermal neutron flux from the IEA-R1 nuclear research reactor in order to produce radionuclides of elements present in the packagings. The irradiated plastic was then exposed to food simulant or food for element migration. Gamma ray spectrometry was used to measure radioactivity in the simulant or food in order to quantify the migration. The food simulating types and experimental conditions were established according to the ANVISA regulations. Element migration was studied for plastic packaging used for soft drinks, drinking water, milk, dairy products, juices and fatty foods. In the instrumental neutron activation analysis of these packagings the presence of As, Cd, Cr, Co and Sb II was verified. Results obtained from the migration experiments by the radiometric method indicated that Cd, Co, Cr and Sb present in these plastics migrated to the simulant or to the food. In some packagings, the migration of only some of these elements was observed. In these cases the

  10. Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging.

    Science.gov (United States)

    Song, Ah Young; Oh, Yoon Ah; Roh, Si Hyeon; Kim, Ji Hyeon; Min, Sea C

    2016-01-01

    The effects of cold plasma (CP) treatment on the physicochemical and biodegradable properties of polylactic acid (PLA) films were studied. The PLA films were exposed to CP for 40 min at 900 W and 667 Pa using oxygen as the plasma-forming gas. The tensile, optical, and dynamic mechanical thermal properties, surface morphology, printability, water contact angle, chemical structure, weight change, and biodegradability properties of the films were evaluated during storage for up to 56 d. The tensile and optical properties of the PLA films were not significantly affected by CP treatment (CPT; P > 0.05). The surface roughness and water contact angle of PLA films increased by CPT and further increased during storage for 56 d. The printability of the PLA films increased following CPT and remained stable throughout the storage period. CP-induced hydrophilicity was also sustained during the storage period. The PLA films lost 1.9% of their weight after CPT, but recovered 99.5% of this loss after 14 d in storage. Photodegradation, thermal, and microbial biodegradable properties of the films were significantly improved by CPT (P < 0.05). Accelerated biodegradation of CP-treated PLA sachets with and without cheese was observed in compost. These results demonstrate the potential of CPT for modifying the stiffness, water contact angle, and chemical structure of PLA films and improving the printability and biodegradability of the films for food packaging.

  11. Use of gamma-irradiation technology in the manufacture of biopolymer-based packaging films for shelf-stable foods

    Science.gov (United States)

    Parra, Duclerc F.; Rodrigues, Juliana A. F. R.; Lugão, Ademar B.

    2005-07-01

    Gamma irradiation is an alternative method for the manufacture of sterilized packaging with increased storage stability and microbiological safety. Biopolymer-based packaging films are a potential solution to many environmental problems that have emerged from the production and accumulation of significant amounts of synthetic polymeric waste. This work was undertaken to verify the effectiveness of low-dose gamma-irradiation in obtaining biopolymer-based packaging films for shelf-stable foods. PHB polyester poly(3-hydroxybutyrate) is an interesting biodegradable polymer that has been intensely investigated as cast and sheet films, with applications in the food industry and medicine. The films obtained are, however, typically brittle, and many scientists have attempted to reduce this brittleness by blending PHB with other polymers. In the present work, PHB was blended with PEG (polyethyleneglycol) to obtain films by the casting method that were then irradiated at a dose rate of 5.72 kGy/h with a 60Co source. Samples were melted at 200 °C and quenched to 0 °C in order to evaluate film crystallinity levels by differential scanning calorimetry (DSC). DSC analyses were performed with the samples (10 mg) under N2 atmosphere, heating from -50 to 200 °C (10 °C min-1), cooling from 200 to -50 °C (10 °C min-1); and heating from -50 to 200 °C (10 °C min-1). The thermal and mechanical resistances of the films after irradiation at low doses (5, 10, 20 kGy) are discussed. Water vapour transmission decreased with increasing irradiation dose, indicating that the films' performance as water vapour barrier had improved. Critical loss of the mechanical properties was observed at 40 kGy.

  12. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited Onto the Plastic Substrate

    Directory of Open Access Journals (Sweden)

    Shao-Kai Lu

    2014-03-01

    Full Text Available In this study, we utilize the RF magnetron sputtering system to deposit the indium tin oxide (ITO conductive transparent film with low resistivity and high light transmittance to the polyethylene tetephthalate (PET plastic substrate and measure the film’s bending property and reliability at different tensile/compressive strain bending curvatures as well as the flexibility after cycling bending. The results show that the critical curvatures corresponded to the significant increase in the resistance of the 150 nm-thick ITO film deposited onto the PET substrate under tensile and compressive stress areO 14.1 mm and 5.4 mm, respectively. By observing the film’s surface crack and morphology, we can further discover that the critical curvature of the crack generated when the film is bent is quite consistent with the critical curvature at which the conductivity property degrades, and the film can withstand a higher compressive strain bending. In addition, the resistance and adhesion behavior of the film almost is unchanged after cycling bent for 1000 times with the curvature below the critical curvature.

  13. 引线框架塑料封装集成电路分层及改善%Delamination and Its Countermeasures in IC Plastic Package

    Institute of Scientific and Technical Information of China (English)

    周朝峰; 周金成; 李习周

    2016-01-01

    Delamination is one of the common quality and reliability issues during the assembly processes and/or after reliability test in the field of IC plastic packages. How to resolve it is one of the popular researches by material suppliers, assembly process engineers and reliability engineers. The root causes of delamination and its impacts to IC plastic package are elaborated in this paper. A series of effective countermeasures against delamination are raised in this paper also, through deeply analyzing the product structure, materials and processes, which are using in IC plastic packages. One of the research results is to provide theoretical support to improve the reliability of IC plastic packages.%分层是塑料集成电路封装过程和可靠性试验后常见的问题,如何解决分层问题是封装材料供应商、封装工程师、可靠性试验工程师共同研究与改善的课题。通过对封装产品结构、材料、工艺方法等方面进行深入的解析,详细阐述了引线框架塑料封装集成电路分层产生机理,描述了分层对集成电路的危害以及如何预防分层的发生,进而提出了有效的改善措施。结果表明,这些措施的应用能够有效预防分层问题的发生,提高塑料封装集成电路的可靠性。

  14. Observing phthalate leaching from plasticized polymer films at the molecular level.

    Science.gov (United States)

    Zhang, Xiaoxian; Chen, Zhan

    2014-05-06

    Phthalates, the most widely used plasticizers in poly(vinyl chloride) (PVC), have been extensively studied. In this paper, a highly sensitive, easy, and effective method was developed to examine short-term phthalate leaching from PVC/phthalate films at the molecular level using sum frequency generation vibrational spectroscopy (SFG). Combining SFG and Fourier transform infrared spectroscopy (FTIR), surface and bulk molecular structures of PVC/phthalate films were also comprehensively evaluated during the phthalate leaching process under various environments. The leaching processes of two phthalates, diethyl phthalate (DEP) and dibutyl phthalate (DBP), from the PVC/phthalate films with various weight ratios were studied. Oxygen plasma was applied to treat the PVC/phthalate film surfaces to verify its efficacy on preventing/reducing phthalate leaching from PVC. Our results show that DBP is more stable than DEP in PVC/phthalate films. Even so, DBP molecules were still found to very slowly leach to the environment from PVC at 30 °C, at a rate much slower than DEP. Also, the bulk DBP content substantially influences the DBP leaching. Higher DBP bulk concentration yields less stable DBP molecules in the PVC matrix, allowing molecules to leach from the polymer film more easily. Additionally, DBP leaching is very sensitive to temperature changes; higher temperature can strongly enhance the leaching process. For most cases, the oxygen plasma treatment can effectively prevent phthalate leaching from PVC films (e.g., for samples with low bulk concentrations of DBP-5 and 30 wt %). It is also capable of reducing phthalate leaching from high DBP bulk concentration PVC samples (e.g., 70 wt % DBP in PVC/DBP mixture). This research develops a highly sensitive method to detect chemicals at the molecular level as well as provides surface and bulk molecular structural changes. The method developed here is general and can be applied to detect small amounts of chemical

  15. Progress of Plastic Food Packaging Safety Research%塑料食品包装材料安全性研究现状

    Institute of Scientific and Technical Information of China (English)

    秦蓓

    2011-01-01

    介绍了塑料食品包装材料中的污染物种类、污染物的分析方法以及污染物迁移到食品中的迁移模型。指出塑料包装带来的食品污染问题已经引起了世界各国的重视,各个国家纷纷制定了相应的法规以确保食品安全,最后指出了我国安全型塑料食品包装材料的研究方向。%The contaminations in plastic materials for food packaging,the analysis methods for contaminations,and the migration models of contaminations into foods were introduced.It was concluded that food pollution problems caused by plastic food packaging have already attracted attention around the world;legislations and safety regulations have been established to ensure food safety in each country.The research directions of safe plastic food packaging in our country were put forward.

  16. Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture.

    Science.gov (United States)

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-05-10

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.

  17. Increase the elongation at break of poly (lactic acid) composites for use in food packaging films

    Science.gov (United States)

    El-Hadi, Ahmed M.

    2017-05-01

    Poly (3-hydroxy butyrate) (PHB), cellulose nano crystal (CNC) and a plasticizer (TBC) are mixed together with PLLA with the aim to increase the elongation at break for use in the food packing sector. Spherical (CNC) and fibril nano crystal (CNF) were prepared by hydrolysis of microcrystalline cellulose (MCC) in distilled water, and then stirred using a magnetic stirrer for 15 days and ultrasonic treatment without using any acids as green method. The morphology, thermal, and mechanical properties were studied using POM, DSC, WAXD, SEM and tensile testing, respectively. DSC demonstrated that the addition of PHB, CNC and TBC to PLLA matrix lead to reduce Tg, TCC and Tm than pure PLLA. FT-IR verified that the carbonyl group C=O appeared broad and some peaks in the PLLA composites 5, 6 and 7 shifted from 3.98 × 108 to 4.07 × 108 Hz, at 3.54 × 108 to 3.44 × 108 Hz, at 3.19 × 108 to 3.13 × 108 Hz. Mechanical testing shows that pure PLLA is brittle, and the elongation at break of PLLA composites reaches up to 205%, making it suitable to use in food packaging.

  18. Increase the elongation at break of poly (lactic acid) composites for use in food packaging films

    Science.gov (United States)

    El-hadi, Ahmed M.

    2017-01-01

    Poly (3-hydroxy butyrate) (PHB), cellulose nano crystal (CNC) and a plasticizer (TBC) are mixed together with PLLA with the aim to increase the elongation at break for use in the food packing sector. Spherical (CNC) and fibril nano crystal (CNF) were prepared by hydrolysis of microcrystalline cellulose (MCC) in distilled water, and then stirred using a magnetic stirrer for 15 days and ultrasonic treatment without using any acids as green method. The morphology, thermal, and mechanical properties were studied using POM, DSC, WAXD, SEM and tensile testing, respectively. DSC demonstrated that the addition of PHB, CNC and TBC to PLLA matrix lead to reduce Tg, TCC and Tm than pure PLLA. FT-IR verified that the carbonyl group C=O appeared broad and some peaks in the PLLA composites 5, 6 and 7 shifted from 3.98 × 108 to 4.07 × 108 Hz, at 3.54 × 108 to 3.44 × 108 Hz, at 3.19 × 108 to 3.13 × 108 Hz. Mechanical testing shows that pure PLLA is brittle, and the elongation at break of PLLA composites reaches up to 205%, making it suitable to use in food packaging. PMID:28466854

  19. Broadband terahertz transmission within the symmetrical plastic film coated parallel-plate waveguide.

    Science.gov (United States)

    Liu, Jiamin; Liang, Huawei; Zhang, Min; Su, Hong

    2014-09-10

    We report on the broadband terahertz (THz) transmission within a symmetrical plastic film coated parallel-plate waveguide. We theoretically study the antiresonant reflecting mechanism of the waveguide, and we find that the broadband THz wave can transmit in this waveguide with ultralow loss. The loss of the TM mode in this waveguide can be 4 orders of magnitude lower than the uncoated parallel-plate waveguide. The transmission bandwidth of this waveguide is up to 5.12 THz. We further show the mode field distributions which explain the loss mechanism.

  20. Gas permeability and thermal behavior of polypropylene films used for packaging minimally processed fresh-cut potatoes: a case study.

    Science.gov (United States)

    Siracusa, Valentina; Blanco, Ignazio; Romani, Santina; Tylewicz, Urszula; Dalla Rosa, Marco

    2012-10-01

    This work reports an experimental study on the permeability and thermal behavior of commercial polypropylene (PP) film used for fresh-cut potatoes packaging. The permeability was tested using oxygen, carbon dioxide, nitrogen, mix of these 3 gases, normally used for modified atmosphere packaging (MAP) and Air, to understand if it would be possible to extend the shelf life of this food product designed for the catering field in respect to the packaging behavior. The temperature influence on permeability data, from 5 to 40 °C, was analyzed, before and after 4, 8, 12, 15, and 20 d of food contact, pointing out the dependence between temperature and gas transmission rate (GTR), solubility (S), diffusion coefficient (D), and time lag (t(L)) parameters. The activation energies (E) of the permeation process were determined with the different gases used in the experiments. The thermal behavior of PP film was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) to well understand its thermal stability. Fourier transformed-infrared with attenuated total reflectance (FT-IR/ATR) spectroscopy was also performed in order to study the influence of the food contact on the chemical characteristics of the polymer film. The results obtained were discussed and compared each other. Studied samples showed, for all investigated gases, an increase of gas permeability and S values at higher temperature. Heat resistance classification among the sample as it is and stored in modified atmospheres was made. Finally all performed experiments have showed good polymer stability for the shelf-life storage potatoes under study. Study of packaging material was performed in a range of temperature, which can simulate the service condition to assess the suitability of a commercial polymer film for modified atmosphere packaging of fresh-cut potatoes minimally processed designed for catering purpose. © 2012 Institute of Food Technologists®

  1. Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Blomfeldt, Thomas O. J.; Hedenqvist, Mikael S.

    2012-01-01

    Xylans, an important sub-class of hemicelluloses, represent a largely untapped resource for new renewable materials derived from biomass. As with other carbohydrates, nanocellulose reinforcement of xylans is interesting as a route to new bio-materials. With this in mind, birch wood xylan was comb......Xylans, an important sub-class of hemicelluloses, represent a largely untapped resource for new renewable materials derived from biomass. As with other carbohydrates, nanocellulose reinforcement of xylans is interesting as a route to new bio-materials. With this in mind, birch wood xylan...... was combined with nanofibrillated cellulose (NFC) and films were cast with and without glycerol, sorbitol or methoxypolyethylene glycol (MPEG) as plasticizers. Microscopy revealed some NFC agglomeration in the composite films as well as a layered nanocellulose structure. Equilibrium moisture content...

  2. [Determination of 46 plasticizers in food contact polyvinyl chloride packaging materials and their migration into food simulants by gas chromatography-mass spectrometry].

    Science.gov (United States)

    Guo, Chunhai; Bo, Haibo; Duan, Wenzhong; Jia, Haitao; Chen, Ruichun; Ma, Yusong; Ai, Lianfeng

    2011-01-01

    A gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of 46 plasticizers in food contact polyvinyl chloride (PVC) packaging materials and their migration into food simulants, i. e. water, 3% acetic acid, 10% ethanol and olive oil. Plasticizers in the PVC packaging materials, aqueous food simulants and olive oil food simulants were extracted by the dissolution-precipitation, liquid-liquid extraction and gel permeation chromatography (GPC) approaches, respectively. The extracts were analyzed by GC-MS in selective ion monitoring (SIM) mode and quantified using the external standard method. The cal-ibration curves were linear in the ranges of 0.1-2.0 mg/L with the correlation coefficients of 0.9910-0. 999 9. The limits of detection were from 0. 005 mg/kg to 0. 05 mg/kg ( S/N = 5 ). The recoveries at 3 spiked levels were 69.51%-107. 21% and the relative standard deviations (RSDs n = 6) ranged from 3.53% to 18.95%. These results show that this method is fast, sensitive and accurate for the qualitative and quantitative determination of plasticizers in food contact plastic products and 4 types of food simulants.

  3. Characterization of polymers and analysis of inorganic constituents in metallized plastic packages; Caracterizacao de polimeros e determinacao de constituintes inorganicos em embalangens plasticas metalizadas

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Eufemia P.; Nunes, Edilene de Cassia D. [Escola SENAI Mario Amato, Sao Paulo, SP (Brazil)]. E-mail: eufemia_paez@hotmail.com; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Wiebeck, Helio [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    2002-09-01

    This paper presents analytical results of metallized plastic materials obtained by neutron activation analysis (NAA) and the results of identification of polymers by infrared spectroscopy (IR) and differential scanning calorimetry (DSC). Metallized plastic samples were collected from packages of foodstuffs and cosmetics. Results of IR and DSC tests indicated that polyethylene, polypropylene, poly(ethylene terephthalate) and polystyrene are polymers used in metallized plastics. The NAA consisted of irradiating samples and standards with thermal neutron flux of the IEA-R1 nuclear reactor, followed by induced gamma ray activities measurements using a hyper pure germanium detector coupled to a gamma ray spectrometer. Toxic elements such as arsenic, cadmium, chromium, nickel and antimony as well as non-toxic elements as barium, calcium, cobalt,iron, scandium,, selenium and zinc were determined and their concentrations presented a large variability between the samples. The analyses of polymer and toxic elements are of great interest to develop adequate and safe processes for recycling or incineration of metallized plastic packages without causing damage to the environment. (author)

  4. ANALISA FAKTOR PENYEBAB KEGAGALAN MESIN GRINDER PADA PROSES PRODUKSI PLASTIC FILM DI PT. MUTIARA HEXAGON

    Directory of Open Access Journals (Sweden)

    Imam Hidayat

    2013-10-01

    Full Text Available Bila suatu mesin memiliki tingkat kegagalan yang tinggi, maka perlu dilakukan analisis mengenai  penyebab  –  penyebab  kegagalan  tersebut  hingga  ke  akar  permasalahannya sehingga dapat menentukan tindakan yang sesuai untuk meningkatkan kinerja suatu mesin. PT. Mutiara Hexagon merupakan sebuah perusahaan yang bergerak dibidang industri pembuatan plastik  kemasan.  Dalam  line  pembuatan lembaran film  diperlukan mesin  CPP  (Cast  Poly Propylene Machine dan mesin grinder dalam prosesnya. Pada penelitian yang dilakukan di PT. Mutiara Hexagon, terdapat beberapa kegagalan yang terjadi pada mesin grinder pada proses produksi plastic film, sehingga menyebabkan seluruh line pada divisi film mengalami downtime. Tujuan dari penelitian ini adalah untuk melakukan analisa mengenai faktor penyebab kegagalan mesin grinder, penulis melakukan observasi secara langsung dan melihat proses produksi plastic film.Penulis menggunakan metode Failure Effect and Mode Analysis (FMEA dan Fault Tree Analysis (FTA. Penerapan analisis Failure Effect and  Mode Analysis (FMEA dapat menentukan sejauh mana tingkat kegagalan terjadi. Dari hasil analisis FMEA kemudian dapat dilanjutkan dengan menggunakan Fault Tree Analysis (FTA guna mengetahui lebih lanjut penyebab-penyebab dasar suatu kegagalan.Dari hasil perhitungan nilai Risk Priority Number (RPN pada tiap-tiap kegagalan yang terjadi  diantaranya yang  paling  tinggi  adalah kegagalan mesin  grinder rusak  dengan nilai kegagalannya mencapai 120. Kemudian dianalisa penyebab kegagalan tersebut dengan menggunakan metode FTA di dapatkan minimal cut sets yaitu: as grinder patah, katup hisap blower terbuka terlalu besar, kegagalan pada motor blower, baut pada dudukan pisau patah, pisau tumpul dan human error. Berdasarkan nilai probabilitas masing-masing cut set didapatkan nilai probabilitas kegagalan grinder periode 1 Juni 2012 -1 Juni 2013 mencapai 60%.

  5. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    Science.gov (United States)

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  6. Characterization of Active Packaging Films Made from Poly(Lactic Acid/Poly(Trimethylene Carbonate Incorporated with Oregano Essential Oil

    Directory of Open Access Journals (Sweden)

    Dong Liu

    2016-05-01

    Full Text Available Antimicromial and antioxidant bioactive films based on poly(lactic acid/poly(trimenthylene carbonate films incorporated with different concentrations of oregano essential oil (OEO were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05. The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends.

  7. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  8. Waxes and plastic film in relation to the shelf life of yellow passion fruit

    Directory of Open Access Journals (Sweden)

    Mota Wagner Ferreira da

    2003-01-01

    Full Text Available The high perishability of the yellow passion fruit (Passiflora edulis f. flavicarpa reduces its postharvest conservation and availability, mainly for in natura consumption. These losses of quality and commercial value occur due to the high respiration and loss of water. This work aimed to evaluate the influence of a modified atmosphere - wax emulsions and plastic film - on the shelf life of the yellow passion fruit. Plastic film (Cryovac D-955, 15 mum thickness reduced fresh weight loss and fruit wilting, kept higher fruit and rind weight and higher pulp osmotic potential over the storage period. However, it was not efficient in the control of rottenness. Sparcitrus wax (22-23% polyethylene/maleyc resin caused injury to the fruit, high fruit weight losses and wilting and resulted in lower pulp osmotic potential; this wax lead to a higher concentration of acid and a lower relation of soluble solids/acidity. Among the tested waxes, Fruit Wax (18-21% carnauba wax was the best, promoting reduced weight loss, wilting and rottenness.

  9. The Optimum Sowing Time for Plastic-film Corn and the Application of Two Related Theories

    Institute of Scientific and Technical Information of China (English)

    WU Rui-xiang; WANG Xin-huan; LIU Rong-quan; LU Cui-ling; L(U) Yong-lai; LI Hua; ZHANG Li; LU Xiu-zhi; YU Shu-ping; WU Xiu-yan

    2002-01-01

    There are two main theories, the "temperature-raising" theory and the "precipitation-based regulation" theory, which guide the optimum sowing time of the plastic-film corn. The former was applied in the humid or semi-humid ecotope and on irrigated or half-shaded land in the arid and semi-arid ecotopes,while the latter was suitable for the dry-farming land in the semi-arid ecotope. The results of experiments and investigations for many years showed that the corn output was increased by 69.2% when the former theory was applied to guide the optimum sowing time for plastic-film corn in the semi-humid ecotope, and by 60.0%when the latter theory was applied in the semi-arid ecotope. In the semi-arid ecotope, however, the output was increased only by 15.7% when the former theory was applied, and even dropped by 14.4% when the latter theory was applied.

  10. Low temperature activation of Au/Ti getter film for application to wafer-level vacuum packaging

    Science.gov (United States)

    Wu, Ming; Moulin, Johan; Lani, Sébastien; Hallais, Géraldine; Renard, Charles; Bosseboeuf, Alain

    2015-03-01

    Non-evaporable getter (NEG) thin films based on alloys of transition metals have been studied by various authors for vacuum control in wafer-level packages of micro electro mechanical systems (MEMS). These materials have typically a relatively high activation temperature (300-450 °C) which is incompatible with some temperature sensitive MEMS devices. In this work we investigate the potential of Au/Ti system with a thin or ultrathin non oxidizable Au layer as a low activation temperature getter material. In this bilayer system, gettering activation is produced by thermal outdiffusion of titanium atoms through the gold film. The outdiffusion kinetics of titanium was modelled and characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS) at various temperatures. Results confirm that Au/Ti bilayer is a promising getter material for wafer-level packaging with an activation temperature below 300 °C for 1 h annealing time.

  11. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film.

    Science.gov (United States)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-09-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg(-1) with a median value of 1.70 mg kg(-1), and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film.

  12. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films

    NARCIS (Netherlands)

    Goh, Kunli; Heising, Jenneke K.; Yuan, Yang; Karahan, Huseyin E.; Wei, Li; Zhai, Shengli; Koh, Jia Xuan; Htin, Nanda M.; Zhang, Feimo; Wang, Rong; Fane, Anthony G.; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-01-01

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor

  13. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films

    NARCIS (Netherlands)

    Goh, Kunli; Heising, Jenneke K.; Yuan, Yang; Karahan, Huseyin E.; Wei, Li; Zhai, Shengli; Koh, Jia Xuan; Htin, Nanda M.; Zhang, Feimo; Wang, Rong; Fane, Anthony G.; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-01-01

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor

  14. The Use of Films as Suitable Packaging Materials for Minimally Processed Foods

    Science.gov (United States)

    1994-08-01

    Freshly Peeled citrus products combine pectinase solution, vacuum infusion technology, and a mechanized line to produce pre- peeled orange and...PROCESSED FOODS: MODIFIED ATMOSPHERE PACKAGING, SOUS-VIDE, MICHOWAVEABLE FOODS nwvKrrvE POOD PRESERVATION, VENTED FOODS, ANTIBACTERIAL OXYGEN...Vented Foods Antibacterial Packaging Materials Oxygen Absorbers Moisture Absorbers Packaging Design and Environmental Concern/Awareness Edible Barrier

  15. Volatile Organic Contaminants From Plastic Packaging: Development And Validation Of Analytical Methods [contaminantes Voláteis Provenientes De Embalagens Plásticas: Desenvolvimento E Validação De Métodos Analíticos

    OpenAIRE

    Maria Teresa de Alvarenga Freire; Carla Beatriz Grespan Bottoli; Samanta Fabris; Felix Guillermo Reyes Reyes

    2008-01-01

    Plastic packaging materials intended for use in food packaging is an area of great interest from the scientific and economic point of view due to the irreversible internationalization and globalization process of food products. Nevertheless, a debate related to food safety aspects has emerged within the scientific community. Therefore, the development of analytical methods that allow identifying and quantifying chemical substances of toxicological potential in the packaging is considered esse...

  16. 一次性纸塑包装在精神科临床的应用%Application of Disposable Plastic Packaging in Psychiatric Department

    Institute of Scientific and Technical Information of China (English)

    万雪梅

    2015-01-01

    目的探讨一次性纸塑包装经高压蒸汽灭菌后的临床应用。方法将临床常用的医疗器械采用一次性纸塑包装材料包装成30个试验包分别与灭菌后30~180d进行无菌试验。结果无菌试验结果无菌生长。结论通过将使用棉布包装的各类静切,缝合、胸穿包等改为纸塑包装,使临床利用率比较低的器械包经灭菌后保存相对长时间,便于日常使用,一方面节省人力和物力资源,将更多的时间还给了护士,另一方面大大减少灭菌工作量,有效保存无菌物品,节<了成本,增加了经济效益,确保医疗和护理安全,有效地防止医院感染的发生。%Objective To investigate the disposable the clinical application of paper-plastic packaging after high pressure steam sterilization.Methods Clinical commonly used medical devices using disposable paper-plastic packaging materials packaging into 30 test package respectively with 30~180 days after sterilization sterile test. Results The sterile sterile growth test results.Conclusion By using cot on packaging of al kinds of static cut ing, sewing,chest wear bag instead of paper-plastic packaging, such as the clinical utilization low instrument set relatively long time after sterilization, convenient for daily use,save manpower and material resources on the one hand, wil be more time returned to the nurse,on the other hand,greatly reduce the workload of sterilization,ef ectively keep sterile items,saving the cost and increase the economic ef iciency,to ensure that medical and nursing safety,ef ectively prevent hospital infection.

  17. Coatings and Biodegradable and Bioabsorbable Films

    Science.gov (United States)

    2006-09-01

    plasticizing effects of vegetable oil macromonomers as incorporated into emulsion polymers for efficient almost zero VOC film formation and the additional...packaging needs. Specifically focusing on the plasticizing effects of vegetable oil macromonomers as incorporated into emulsion polymers for efficient...research and development of environmentally responsible biobased technology such as vegetable oil derived monomers and cosolvent-free latexes produced via

  18. PROSPECTS OF POLYMER PACKAGING MATERIALS

    Directory of Open Access Journals (Sweden)

    V. A. Sedykh

    2012-01-01

    Full Text Available The main types of materials used in the manufacture of packaging. Analyzed trends in further development of packaging materials. Shows how to improve the quality of plastic packaging materials in today's market.

  19. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  20. Specific migration of di-(2-ethylhexyl)adipate (DEHA) from plasticized PVC film: results from an enforcement campaign

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Breindahl, T.

    1998-01-01

    Units. Initially, all films were screened for the migration into isooctane (exposed 2 h at 40 degrees C) of DEHA and other potentially present low molecular weight plasticizers using full scanning mass spectrometry. Films showing a substantial migration of DEHA were further tested with olive oil...... according to the declared field of application (exposed for 10 days at 40 degrees C). In 47 of the 49 films the migrate contained a substantial amount of DEHA. In 46 films the migration exceeded the specific migration limit of 3 mg/dm(2) after use of the relevant reduction factor given in legislation....... However, because of the general uncertainty of the analytical method and because the variation in the thickness of the films was calculated to be I mg/dm(2), the action limit in this campaign was 4 mg/cm(2). A migration higher than this action limit was found in 42 films (89% of the samples...

  1. Effects of drip irrigation under plastic film with saline water on cotton growth and yields

    Science.gov (United States)

    Wang, B.; Jin, M.; He, Y.; Zhou, J.; Brusseau, M. L.

    2012-12-01

    To study the influence of different irrigation system for drip irrigation under plastic film with saline water on cotton growth and yields, field experiments at key irrigation experiment station of water resources management division in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China were set up consist of different irrigation ratio (5250, 4500, 3750, 3000m3/hm2), different irrigation times (24, 12 and 8 times) and different rotation irrigation modes. The results show that: with the larger irrigation ratio, the cotton growth and yields was also better, and the significant influence on cotton growth and yields for irrigation ratio is between 3750-4500 m3/hm2. When the irrigation ratio is smaller (3000m3/hm2), cotton growth and yields for irrigation times of 8 times are higher, When the irrigation ratio is bigger (4500m3/hm2), cotton growth for irrigation times of 12 times are better and its cotton yields are higher correspondingly. According to the growth of cotton, yields and water productivity, the suitable irrigation system of cotton is the irrigation ratio of 4500-3750 m3/ hm2 and the irrigation times of 18 times for drip irrigation under plastic film with saline water. For different rotation drip irrigation experiments with saline water and fresh water, the cotton yields and irrigation water productivity is higher under the disposal of SF (rotation irrigation in first 6 times with saline water irrigation and then 6 times with fresh water irrigation) compared to FS (rotation irrigation in first 6 times with fresh water and then 6 times with saline water) and SSFA (rotation irrigation with twice saline water and once fresh water) compared to SFA (alternative irrigation with saline water and fresh water). Compared to the different alternate irrigation experiments, the cotton yields and water productivity for pure saline water irrigation is higher. In addition, the trend is the larger the irrigation ratio and the higher the yields. It maybe dues to the low

  2. 纸塑袋包装器械的灭菌质量研究%Study on sterilization quality of instruments with paper-plastic bag packaging

    Institute of Scientific and Technical Information of China (English)

    陈奕芳; 蒋景华; 罗耀菊; 雷燕斐

    2015-01-01

    OBJECTIVE To compare the effects of single and double paper‐plastic bag packaging on sterilization ef‐fectiveness ,incidence of wet bag and seal line cracking of instruments ,so as to explore the best way of packaging . METHODS A total of 720 pieces of instruments in need of paper‐plastic packaging from Nov .1 to Nov .30 ,2013 were randomly divided into the control group (362 pieces) and the experimental group (358 pieces) .The control group adopted single paper‐plastic bag packaging ,while the experimental group adopted double paper‐plastic bag packaging in way of paper in face of paper and plastic surface in face of plastic surface to seal .The sterilization rate ,the incidence of wet pack and the seal line cracking rate of instruments after sterilization were examined .The software SPSS13 .0 was used for statistical analysis .RESULTS The pass rate of sterilization was 100% and the sealing line cracking rate was 0 .28% in both groups ,the incidence of wet package rates were 0 .55 and 0 .84 re‐spectively for the control group and the experimental group .There were no significant differences .There were no obvious differences in the effect of packaged instruments on pressuresteam sterilization effectiveness ,the incidence of wet bag and sealing line cracking between the two groups .CONCLUSION Sterilization on instruments with double paper‐plastic packaging is reliable ,and the phenomenon of wet pack and seal line cracking is absent when sterilization .Thus ,double paper‐plastic packaging can be used as the packaging method for a single instrument , which can reduce packaging damage in the process of transportation and storage and effectively reduce the risk of hospital infections .%目的:比较单层与双层纸塑袋包装器械对灭菌包压力蒸汽灭菌的灭菌效果、湿包发生、灭菌时密封线开裂的影响,以探索最佳包装方式。方法选择2013年11月1-30日单件需纸塑包装的器械共720件,随机分成对

  3. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Clara Silvestre

    2016-01-01

    Full Text Available This study was aimed at developing new films based on isotactic polypropylene (iPP for food packaging applications using zinc oxide (ZnO with submicron dimension particles obtained by spray pyrolysis. To improve compatibility with iPP, the ZnO particles were coated with stearic acid (ZnOc. Composites based on iPP with 2 wt % and 5 wt % of ZnOc were prepared in a twin-screw extruder and then filmed by a calender. The effect of ZnOc on the properties of iPP were assessed and compared with those obtained in previous study on iPP/ZnO and iPP/iPPgMA/ZnO. For all composites, a homogeneous distribution and dispersion of ZnOc was obtained indicating that the coating with stearic acid of the ZnO particles reduces the surface polarity mismatch between iPP and ZnO. The iPP/ZnOc composite films have relevant zinc oxide with respect to E. coli, higher thermal stability and improved mechanical and impact properties than the pure polymer and the composites iPP/ZnO and iPP/iPPgMA/ZnO. This study demonstrated that iPP/ZnOc films are suitable materials for potential application in the active packaging field.

  4. Influence of storage Time and Temperature on Absorption of Flavour Compounds from Solutions by Plastic Packaging Materials

    NARCIS (Netherlands)

    Willige, R.; Schoolmeester, D.; Ooij, van A.; Linssen, J.P.H.; Voragen, A.G.J.

    2002-01-01

    Food packaging, although an integral part of the food chain, has a major drawback in that, often, the packaging material interacts with the flavor constituents of the food, causing either a selective or an extensive loss of desirable food flavors or absorption of undesirable off-flavors from the

  5. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    Science.gov (United States)

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the

  6. Advances of bio-plastics in food packaging application%食品包装用生物塑料研究进展

    Institute of Scientific and Technical Information of China (English)

    何江川; 张睿; 王颖

    2011-01-01

    在白色污染和石油危机日趋严重的今天,具有生态友好特征和可持续性的生物基质-生物分解塑料有望替代 部分石油基塑料成为一种新型基础原材料,在农业、包装、生物医用等领域已开始显示出巨大的市场潜力.本文介绍 了聚乳酸、淀粉基塑料、聚羟基烷酸酯等几类最有可能率先实现产业化并用于食品包装材料的生物基质-生物分解塑 料,对其在食品包装材料应用方面所具有的优势和存在的问题进行了评价,并对目前国内外在这几类材料的生产和应 用技术及产业化等方面的最新进展进行了归纳.%Biomass- based biodegradable plastics characteristic of ecological concern and sustainability are expected to become a novel category of basic raw materials in a wide range of potential applications such as agriculture, packaging and biomedical ,when white pollution and oil crisis are increasingly serious today. The main categories of biomass- based biodegradable plastics, including poly( lactic acid), starch-based plastics and poly hydroxylalkanoates were introduced,which may most probably take the lead to be commercialized and used for food packaging. Their advantage and shortage in the application of food packaging were commented. The latest development of the manufacturing and applying techniques of these materials together with their industrialization status throughout the world was overviewed.

  7. Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging.

    Science.gov (United States)

    Lu, Peng; Xiao, Huining; Zhang, Weiwei; Gong, Glen

    2014-10-13

    Nanofibrillated cellulose (NFC) easily forms a high strength film but is unable to withstand the influence of water vapor when used in high moisture situations. The water vapor transmission rate (WVTR) of a NFC film was as high as 5088 g/m(2)24h (38 °C, 90% RH). The addition of beeswax latex in a NFC casting film (NFX) lowered the WVTR to 3918 g/m(2)24h. To further reduce the WVTR, a coating agent comprised of acrylated epoxidized soybean oil (AESO) and 3-aminopropyltriethoxysilane (APTS) was applied onto the NFX film using a rod coater. A combination of the suitable AESO/APTS ratio, initiator dosing, curing time and temperature could reduce the WVTR to 188 g/m(2) 24h when the coat weight was 5 g/m(2). Moreover, the coated NFX film was highly hydrophobic along with the improved transparency and thermal stability. This biodegradable polymer-coated NFC film can be used as potential packaging barrier in certain areas.

  8. Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging.

    Science.gov (United States)

    Lei, Jieqiong; Yang, Lingxiao; Zhan, Yingfei; Wang, Yuntao; Ye, Ting; Li, Yan; Deng, Hongbing; Li, Bin

    2014-02-01

    In this study, polyethylene terephthalate/polypropylene (PET/PP) films were treated via atmospheric pressure plasma, assembled with chitosan and various preservatives and applied for antimicrobial food packaging. Surface properties of these obtained films were studied by contact angle measurement, atomic force microscopy (ATM), X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared spectroscopy (FT-IR) and dynamic laser scattering (DLS). The above results showed that the surface hydrophilicity and roughness of the films increased after the plasma treatment. Besides, chitosan and the preservatives were successfully assembled onto the surface of the films. In addition, the antimicrobial activities of the films against three kinds of microorganisms (Staphylococcus aureus, Bacillus subtilis and Escherichia coli) were investigated and the results indicated that the inhibition ratios against B. subtilis and E. coli reached almost 100% while the inhibition ratios against S. aureus were lower than 85%. Moreover, the accumulative release profiles of the antimicrobial substances migrating from the assembled films into the release solutions revealed that their release speed increased with the increment of temperature and acidity, but decreased with enhancing the ionic strength regulated by sodium chloride or with lowering the ionic mobility regulated by sucrose.

  9. Contaminantes voláteis provenientes de embalagens plásticas: desenvolvimento e validação de métodos analíticos Volatile organic contaminants from plastic packaging: development and validation of analytical methods

    Directory of Open Access Journals (Sweden)

    Maria Teresa de Alvarenga Freire

    2008-01-01

    Full Text Available Plastic packaging materials intended for use in food packaging is an area of great interest from the scientific and economic point of view due to the irreversible internationalization and globalization process of food products. Nevertheless, a debate related to food safety aspects has emerged within the scientific community. Therefore, the development of analytical methods that allow identifying and quantifying chemical substances of toxicological potential in the packaging is considered essential. This article focuses on the main analytical methods, including validation parameters, as well as extraction and quantification techniques for determination of volatile organic compounds from food packaging materials.

  10. 食品包装材料生态化发展下的非石油基降解塑料%Non-Petroleum Based Biodegradable Plastic with the Development of Ecologicalization in Food Packaging Materials

    Institute of Scientific and Technical Information of China (English)

    戴宏民; 戴佩燕

    2015-01-01

    目前常用的非石油基降解塑料可分为全淀粉型、化学(人工)合成型和天然高分子(以淀粉为主)与合成高分子共混型3种类型。淀粉基生物降解塑料能完全生物降解,制成的薄膜具有良好的透明度、柔韧性、抗张强度,不溶于水,无毒,故市场占有率高,被广泛应用于食品包装、食品容器和一次性餐饮具等;聚乳酸生物降解塑料力学性能与聚丙烯相似,并具有与聚苯乙烯相似的光泽度、清晰度和加工性,同时具有无毒、无刺激性、强度高、易加工成型和优良的生物相容性等特点,是一种能够真正实现生态和经济双重效益的、发展速度最快的生物降解塑料;聚丁二酸丁二醇酯生物降解塑料综合性能优良,性价比合理,故在食品包装、一次性餐具、药品包装瓶、生物医用高分子材料以及汽车零部件等领域均具有良好的应用前景。非石油基降解塑料作为包装材料是必然趋势,其得到广泛应用的关键在于提高材料的改性技术与控制成本,同时须保证其对人体无毒无害,强调个性化,并注重提高市场接受度。%The current non-petroleum based biodegradable plastics could be divided into three types of starch, chemical (artificial) synthetic and natural polymers (based on starch), and synthetic polymer blend. Starch based biodegrad-able plastics could be completely biodegradable and be made into thin film with the advantages of good transparency, flexibility, tensile strength, water-insoluble and non-toxic features. Therefore the market share of starch based biodegrad-able plastics is big, and it is widely used in food packaging as food containers and disposable tableware. The biodegradable plastic mechanical property of polylactic acid is similar to that of polypropylene, and it has the glossiness, clarity and workability similar to those of poly propylene with characteristics of non

  11. Preparation, characterization and mechanical properties of k-Carrageenan/SiO$_2$ nanocomposite films for antimicrobial food packaging

    Indian Academy of Sciences (India)

    R VENKATESAN; N RAJESWARI; T THENDRAL THIYAGU

    2017-06-01

    Kappa-Carrageenan (KCG) films have been formulated as a packaging material. This study has been conducted to investigate the effect of incorporating SiO$_2$ nanoparticles inside the KCG matrix, with the aim of enhancing the mechanical and antimicrobial properties of KCG for reinforcement purposes. Films were prepared by solution casting technique with 1.0, 3.0 and 5.0 wt% of SiO$_2$ nano-filler content taking neat KCG as the reference for the study. Structural characterizations of the prepared nanocomposite films were carried out by Fourier transform infrared, scanning electron microscope (SEM) andtransmission electron microscope (TEM) techniques. SEM and TEM showed homogeneous dispersion of SiO$_2$ nanoparticles in the KCG matrix. The tensile strength increased significantly by introducing the SiO$_2$ nanoparticles into the KCG matrix, in which KCG/SiO$_2$ films have greater tensile strength (53.9 MPa) when compared to the KCG polymer (46.8 MPa). The moisture uptake (MU) of nanocomposites decreased when SiO2 was introduced into the polymer matrix. The barrier property of the prepared KCG-based nanocomposite films decreased oxygen transmission rate with loading of different wt%of SiO$_2$. SiO$_2$ nanoparticle-loaded films produced higher zones of inhibition against Staphylococcus aureus and Escherichia coli strains compared to polymer film. This study was intended to find the applications for KCG films containing SiO$_2$ nanoparticles to enhance the shelf-life of foods in the form of biodegradable wrapper.

  12. Mechanical integrity and adhesion of thin films for applications in electronics packaging and cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jin; Wan Kaitak; Chian Kermsin

    2003-01-22

    A new theoretical model was developed for a pull-off adhesion test using an axisymmetric flat punch and a rectangular flat punch adhered to a thin polymer film interface. An elastic solution was derived to portray the mechanical integrity of the thin film. A mechanical energy release rate was calculated numerically. As the punch was pulled away from the adhered film, the film deformed under mixed bending and stretching. Both stiffness and thickness of the film were allowed to vary. The derived solid-film 'pull-off' events sharply contrast with the abrupt pull-off in solid-solid adhesion as predicted by the classical JKR theory.

  13. Flexible aluminum-doped zinc-oxide thin-film transistor fabricated on plastic substrates

    Science.gov (United States)

    Han, Dedong; Chen, Zhuofa; Zhao, Nannan; Wang, Wei; Huang, Fuqing; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2014-03-01

    We have studied processing and characteristics of flexible Aluminum-doped Zinc Oxide thin-film transistors (AZO TFTs) fabricated on plastic substrates using radio frequency (rf) magnetron sputtering. To improve the performance of flexible AZO TFT, we studied effects of device structures on characteristics of the aluminum-doped zinc oxide thin film transistors. The electrical properties of top-gate type and bottom-gate type AZO TFTs were investigated, respectively. The top-gate type AZO TFTs shows a threshold voltage of 1.4 V, a Ion/Ioff current ratio of 1.0×107, a field effect mobility of 28.2 cm2/ V•s, a subthreshold swing of 0.19 V/decade. And the bottom-gate type AZO TFTs shows a threshold voltage of 1.7 V, a Ion/Ioff ratio of 1.0×107, a field effect mobility of 209 cm2/ V•s, a subthreshold swing of 0.16 V/decade, and the off current of less than 10-11A at room temperature. Both TFTs show low threshold voltage, high Ion/Ioff ratio and high field effect mobility. By comparison, the bottom-gate type AZO TFTs shows better characteristics. The flexible AZO-TFT is a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics due to flexible, transparency, high mobility, and low-temperature processing.

  14. 基于食品安全的塑料食品包装设计研究%Plastic Food Packaging Design Research Based on Food Safety

    Institute of Scientific and Technical Information of China (English)

    张继斌

    2016-01-01

    Food packaging determines the food quality and safety in the circulation process condition. There-fore, the packaging material and technology can better guarantee food quality, which prolong its storage time in safety. This paper focused on the food safety issues based on the food is easy to be affected with damp. The food moisture-proof packaging storage time prediction model was proposed. The model was used for analyzing the damp time and the balance state of moisture absorption, which provd its feasibility. Finally according to the structure and function of the food plastic packaging design demand, proposed a kind of food packaging system software design and development methods.%食品包装决定了食品在流通过程中的质量及安全状况,因此研究包装材料及技术,能够更好的保障食品质量,延长其在安全范围内的存储时间.针对食品易受潮这一具有代表性的食品安全问题进行研究,提出了食品防潮包装的存储时间预测模型,并使用该模型对膨化食品受潮时间及吸湿平衡状态进行计算分析,证明该模型的可行性.最后根据食品塑料包装设计的结构及功能需求,提出一种食品包装系统软件设计及开发的方法.

  15. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  16. Transferability and Adhesion of Sol-Gel-Derived Crystalline TiO2 Thin Films to Different Types of Plastic Substrates.

    Science.gov (United States)

    Amano, Natsumi; Takahashi, Mitsuru; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-01-31

    Anatase thin films were prepared on various plastic substrates by our recently developed sol-gel transfer technique. Polycarbonate (PC), poly(methyl methacrylate) (PMMA), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyether ether ketone (PEEK), and polyvinylidene chloride (PVDC) were employed as plastic substrates. A Si(100) substrate was first coated with a polyimide (PI)/polyvinylpyrrolidone (PVP) mixture layer, and an alkoxide-derived titania gel film was deposited on it by spin-coating. The resulting titania gel film was heated to 600 °C, during which the PI/PVP layer decomposed and the gel film was converted into a 60 nm thick anatase film. The anatase film was then transferred from the Si(100) substrate to the plastic substrate. This was achieved by heating the plastic/anatase/Si(100) stack in a near-infrared image furnace to 120-350 °C, depending on the type of plastic substrate, under unidirectional pressure. The anatase film cracked during transfer to PE, PP, PEEK, and PVDC substrates but did not crack during transfer to PC, PMMA, and PET substrates. The fraction of the total film area that was successfully transferred was assessed with the aid of image analysis. This fraction tended to be large for plastics with C═O and C-O groups and small for those without these groups. The film/substrate adhesion assessed by cross-cut tape tests also tended to be high for plastics with C═O and C-O groups and low for those without these groups. The adhesion to plastics without C═O or C-O groups could be enhanced and their transfer area fraction increased by oxidizing the native plastic surface by ultraviolet-ozone treatment prior to transfer.

  17. Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol).

    Science.gov (United States)

    Wang, Hualin; Zhang, Ru; Zhang, Heng; Jiang, Suwei; Liu, Huan; Sun, Min; Jiang, Shaotong

    2015-01-01

    The aim of this study was to evaluate the kinetics and functional effectiveness of Nisin loaded chitosan/poly(vinyl alcohol) (Nisin-CS/PVA) as an antibacterial packaging film. The films were prepared by coating method and Staphylococcus aureus (S. aureus, ATCC6538) was used as test bacterium. The intermolecular hydrogen bonds between CS and PVA molecules were confirmed. The elasticity of films was significantly improved by the incorporation of PVA, and the film could also bear a relative high tensile strength at 26.7 MPa for CS/PVA=1/1. As CS/PVA ratio decreased, the water vapor permeability (WVP) decreased and reached its minimum value 0.983 × 10(-10)gm(-1)s(-1) at CS/PVA=1/1, meanwhile, oxygen permeability (OP) increased but still lower than 0.91 cm(3) μm m(-2)d(-1)kPa(-1) for CS/PVA=1/1 as the CS/PVA ratio was above 1:1. The initial diffusion of nisin (Mt/M ∞ nisin at pH below isoelectric point (pI, 8.8) and its increasing dissolubility in water as the pH reduced, the diffusion of nisin from the films strongly depended on pH and ionic strength besides CS/PVA ratio and temperature. Moreover, the thermodynamic parameters suggested the spontaneous and endothermic diffusion of nisin from the films. The resulting data can provide some valuable information for the design of film in structure and ingredient.

  18. Layer by layer assembly of a biocatalytic packaging film: lactase covalently bound to low-density polyethylene.

    Science.gov (United States)

    Wong, Dana E; Talbert, Joey N; Goddard, Julie M

    2013-06-01

    Active packaging is utilized to overcome limitations of traditional processing to enhance the health, safety, economics, and shelf life of foods. Active packaging employs active components to interact with food constituents to give a desired effect. Herein we describe the development of an active package in which lactase is covalently attached to low-density polyethylene (LDPE) for in-package production of lactose-free dairy products. The specific goal of this work is to increase the total protein content loading onto LDPE using layer by layer (LbL) deposition, alternating polyethylenimine, glutaraldehyde (GL), and lactase, to enhance the overall activity of covalently attached lactase. The films were successfully oxidized via ultraviolet light, functionalized with polyethylenimine and glutaraldehyde, and layered with immobilized purified lactase. The total protein content increased with each additional layer of conjugated lactase, the 5-layer sample reaching up to 1.3 μg/cm2 . However, the increase in total protein did not lend to an increase in overall lactase activity. Calculated apparent Km indicated the affinity of immobilized lactase to substrate remains unchanged when compared to free lactase. Calculated apparent turnover numbers (kcat ) showed with each layer of attached lactase, a decrease in substrate turnover was experienced when compared to free lactase; with a decrease from 128.43 to 4.76 s(-1) for a 5-layer conjugation. Our results indicate that while LbL attachment of lactase to LDPE successfully increases total protein mass of the bulk material, the adverse impact in enzyme efficiency may limit the application of LbL immobilization chemistry for bioactive packaging use.

  19. Shelf life of fresh-cut spinach as affected by chemical treatment and type of packaging film

    Directory of Open Access Journals (Sweden)

    A.M. Piagentini

    2002-12-01

    Full Text Available Fresh-cut vegetables are an important and rapidly developing class of convenience foods. Their storage life may be greatly reduced due to their high rates of respiration and transpiration and the possibility of enzymatic and microbiological deterioration. Consequently, the objective of this work was to determine the shelf life and the failure attribute that conditioned the shelf life of fresh-cut spinach treated with chemical solutions and packaged in bags with different permeabilities. The shelf life of fresh-cut vegetables was defined as the time of refrigerated storage at which any one of the sensory attributes scored below 7 or when the microbiological counts exceeded 5.10(7 CFU/g. Fresh-cut spinach was treated with citric acid and ascorbic acid solutions and packaged in mono-oriented polypropylene (OPP bags or low-density polyethylene (LDPE bags. Sensory attributes and total microbial counts were evaluated throughout refrigerated storage. Response surface methodology (RSM was used to study the simultaneous effect of chemical treatment and refrigerated storage time on sensory and microbiological quality of fresh-cut spinach. A quadratic polynomial regression model was assumed for predicting off-odor, general appearance, wilting, browning, color, and mesophilic aerobic population. Type of packaging film only influenced development of off-odor (p£0.001 and had no effect on visual sensory attributes or microbiological counts (p>0.05. Development of off-odor was the attribute that limited shelf life of fresh-cut spinach packaged in OPP bags. On the other hand, shelf life of samples packaged in LDPE bags was dependent on a decrease in general appearance or an increase in microbiological counts, depending on the chemical treatment used.

  20. Effects of mechanical tensile properties of plastic film on plastic recycling method%农田地膜拉伸性能变化对缠绕式回收的影响

    Institute of Scientific and Technical Information of China (English)

    张佳喜; 王学农; 张丽; 喻晨; 蒋永新; 张海春; 刘旋峰; 乔园园; 王祥金

    2015-01-01

    农田长期覆膜种植产生的大量地膜对农田土壤质量、作物生长及环境造成严重的影响,为解决这一问题,于 2014年3月至2014年10月在新疆库尔勒尉犁县达西村开展大田试验,对比不同厚度、不同时间及不同位置地膜拉伸性能的变化规律,并针对0.01 mm地膜进行缠绕式回收试验.结果表明:地膜铺放后的30~60 d期间,由于受到风和紫外线照射等因素,拉伸强度有明显的下降,下降幅度较大;当地膜回收的时候,0.01 mm地膜最大拉伸力在近株端和远株端分别为1.52 N和1.305 N,是0.008 mm地膜的1.4倍和1.22倍.显然0.01 mm地膜的拉伸性能较0.008 mm拉伸性能有了一定的提升,这对地膜回收有一定的积极作用,但是经过理论计算及田间试验0.01 mm地膜的拉伸性能还是不足以采用简单缠绕的方式进行回收.本研究揭示了地膜拉伸性能在不同时间、不同厚度及不同位置受到紫外线等影响的变化规律,为地膜回收机的研制提供了理论依据.%Plastic mulching technology has brought huge economic benefits, while the residual plastic film produced series of serious problems such as pollution on land. A large number of plastic recycling is becoming urgent and important task in our country. A large amount and long term of used plastic film on soil has caused great serious influence on the high quality of farmland planting, crop growth, the rural ecological environment and new rural construction, which has attracted more and more attention. Now, the research on the recovery mechanism is limited to equipment of plastic film enwinding recycling, and there are few studies on the variation rule of the tensile properties of used plastic film and the impact. During our practical research work, performance such as unstable recycling capability, low film recovery rate and work parts deformation often appears in the used plastic film recycling. To address these problems, we carried out some

  1. Effect of the ripening time under vacuum and packaging film permeability on processing and quality characteristics of low-fat fermented sausages.

    Science.gov (United States)

    Liaros, N G; Katsanidis, E; Bloukas, J G

    2009-12-01

    The effect of vacuum ripening of low-fat fermented sausages packaged in films with different permeabilities on their microbiological, physicochemical and sensorial characteristics was studied. High-fat control sausages were produced with 30% initial fat and low-fat sausages with 10% initial fat. The low-fat sausages were separated into: (a) non-packaged (control) and (b) packaged under vacuum on 7th, 12th and 17th day of processing, remaining under vacuum during the ripening period for 21, 16 and 11days, respectively, in three different oxygen (100, 38 and⩽5cm(3)/m(2)/24h/1atm) and water vapour (4.5, sausages, increased (p0.05) on the redness, compared to the control sausages. Packaging low-fat fermented sausages under vacuum for the last 11days of ripening in packaging film with high permeability increased (p0.05) hardness and overall acceptability as the high-fat control sausages. A ripening time of 11days and the medium packaging film permeability were the most appropriate conditions for the vacuum packaging of low-fat fermented sausages.

  2. Methodology for Evaluating the Insect Growth Regulator (IGR) Methoprene on Packaging Films

    Science.gov (United States)

    Arthur, Frank H.

    2016-01-01

    The insect growth regulator methoprene can be mixed into the matrix used to comprise bags and other packaging materials. Different methodologies were utilized to evaluate the efficacy of different types of methoprene-treated packaging towards Tribolium castaneum (Herbst), the red flour beetle, and T. confusum Jacquelin duVal, the confused flour beetle, two common insect species that infest stored products. Tests were conducted by creating arenas in which larvae were exposed on the packaging surface along with a flour food source, and assessments were made on adults emerging from the exposed progeny. Tests were also done by exposing adults, again with a flour food source, removing the adults after one week, and assessing adult emergence of progeny from those parental adults. In tests with larvae exposed on methoprene-treated birdseed bags, the outside surface had more activity compared to the inside surface, especially on T. confusum. In other studies with different types of packaging materials, there was generally 100% inhibition of adult emergence of exposed larvae or of progeny adults when parental adults were exposed on the methoprene-treated packaging. The best technique for evaluation was to expose late-stage larvae as the test life stage. Results show the potential of using methoprene-treated packaging for bagged storage of processed grains and grain products. PMID:27399784

  3. Methodology for Evaluating the Insect Growth Regulator (IGR Methoprene on Packaging Films

    Directory of Open Access Journals (Sweden)

    Frank H. Arthur

    2016-07-01

    Full Text Available The insect growth regulator methoprene can be mixed into the matrix used to comprise bags and other packaging materials. Different methodologies were utilized to evaluate the efficacy of different types of methoprene-treated packaging towards Tribolium castaneum (Herbst, the red flour beetle, and T. confusum Jacquelin duVal, the confused flour beetle, two common insect species that infest stored products. Tests were conducted by creating arenas in which larvae were exposed on the packaging surface along with a flour food source, and assessments were made on adults emerging from the exposed progeny. Tests were also done by exposing adults, again with a flour food source, removing the adults after one week, and assessing adult emergence of progeny from those parental adults. In tests with larvae exposed on methoprene-treated birdseed bags, the outside surface had more activity compared to the inside surface, especially on T. confusum. In other studies with different types of packaging materials, there was generally 100% inhibition of adult emergence of exposed larvae or of progeny adults when parental adults were exposed on the methoprene-treated packaging. The best technique for evaluation was to expose late-stage larvae as the test life stage. Results show the potential of using methoprene-treated packaging for bagged storage of processed grains and grain products.

  4. Determination of Thirteen Plasticizers in Food Plastic Packaging Materials by Capillary Column Gas Chromatography%食品包装材料中13种增塑剂的毛细管气相色谱法测定

    Institute of Scientific and Technical Information of China (English)

    马康; 汤福寿; 何雅娟; 刘菲

    2011-01-01

    A capillary column gas chromatographic method was developed for the separation and determination of thirteen plasticizers, including dimethyl phthalate acid ester(DMP), diethyl phthalate acid ester( DEP), dipropyl phthalate acid ester( DnPP), diisobutyl phthalate acid ester( DIBP), dibutyl phthalate acid ester( DBP), diamyl phthalate acid ester( DAP), bisphenol A( BIA), di-n-hexyl phthalate acid ester(DHP), butyl benzyl phthalate acid ester(BBP), di-2-ethylhexyl adipate (DEHA), di(2-ethylhexyl) phthalate acid ester(DEHP), dioctyl phthalate acid ester(DOP) and dinonyl phthalate acid ester(DNP) in plastic packaging materials for foodstuff. The analytes were extracted with hexane from samples by Soxhlet extraction technique, then purified by silica solid phase extraction. Three key factors such as rinse solvent, eluting solvent and eluting volume were optimized. Hexane and toluene ( 1: 1, by volume) were used as rinse solvents, 2 mL ethyl acetate was used as eluting solvent. After filtration, the eluate was determined by gas chromatography with flame ionization detector(GC/FID). The calibration curves of thirteen plasticizers were linear in the range of O. 1 - 1 000 mg/L with detection limits of 0. 005 - 0. 030 mg/L. The spiked recoveries ranged from 90% to 116% with relative standard deviations of 2. 2% -4. 9%. The method was successfully applied in the determination of plasticizers in plastic packaging materials for foodstuff.%建立了索氏提取、固相萃取净化浓缩、毛细管气相色谱法测定塑料食品包装材料中13种增塑剂的方法.优化了固相萃取淋洗剂、洗脱剂和洗脱剂体积等参数.样品经正己烷索氏提取后,用硅胶小柱净化浓缩.以正己烷-甲苯为淋洗剂,2 mL乙酸乙酯为洗脱剂.过滤后的洗脱液用气相色谱仪分析.结果显示,13种增塑剂在0.1~1000 mg/L范围内呈良好线性,检出限为0.005~O.030 mg/L.样品的加标回收率为90%~116%,相对标准偏差为2.2%~4.9%.

  5. Plasticizing effect of choline chloride/urea eutectic-based ionic liquid on physicochemical properties of agarose films

    Directory of Open Access Journals (Sweden)

    Ahmad Adlie Shamsuri

    2012-11-01

    Full Text Available Agarose films were formed with the addition of 30 to 70 wt% choline chloride/urea eutectic-based ionic liquid (ChCl/Urea. The ChCl/Urea was prepared through complexation at a 1:2 mole ratio. The films were prepared by dissolving ChCl/Urea in distilled water followed by dispersion of the agarose at 95 °C. The solution was gelled at room temperature, and the formed gel was dried in an oven overnight at 70 °C. Mechanical testing indicated that the agarose film containing 60 wt% ChCl/Urea had higher tensile extension and tensile strain at break compared to the pristine agarose film. The addition of ChCl/Urea also reduced the glass transition temperature (Tg of agarose films. Cross-section SEM images of the agarose films showed that surface roughness disappeared with the incorporation of ChCl/Urea. FTIR spectra confirmed the presence of intermolecular hydrogen bonding between agarose and ChCl/Urea. XRD patterns demonstrated that an amorphous phase was obtained when ChCl/Urea was added. Agarose films containing more ChCl/Urea exhibited higher transparency, as measured by a UV-Vis spectrometer. In summary, the physicochemical properties of agarose films were evidently affected by the incorporation of the ChCl/Urea as a plasticizing agent.

  6. Thin film CIGS photovoltaic modules: monolithic integration and advanced packaging for high performance, high reliability and low cost

    Science.gov (United States)

    Eldada, Louay

    2011-01-01

    In recent years, thin-film photovoltaic companies started realizing their low manufacturing cost potential, and have been grabbing an increasingly larger market share. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, and a fast high-quality CIGS reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable cover plates in the first stage, while in the second stage the CIGS layer is formed by rapid heating with Se confinement. HelioVolt also developed best-in-class packaging technologies that provide unparalleled environmental stability. High quality CIGS films with large grains were fabricated on the production line, and high-performance highreliability monolithic modules with a form factor of 120 cm × 60 cm are being produced at high yield and low cost. With conversion efficiency levels around 14% for cells and 12% for modules, HelioVolt is commercializing the process on its first production line with 20 MW capacity, and is planning its next GW-scale factory.

  7. Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films

    Directory of Open Access Journals (Sweden)

    Zhijun Wu

    2017-03-01

    Full Text Available Ternary blend films were prepared with different ratios of starch/polyvinyl alcohol (PVA/citric acid. The films were characterized by field emission scanning electron microscopy (FE-SEM, thermogravimetric analysis, as well as Fourier transform infrared (FTIR analysis. The influence of different ratios of starch/polyvinyl alcohol (PVA/citric acid and different drying times on the performance properties, transparency, tensile strength (TS, water vapor permeability (WVP, water solubility (WS, color difference (ΔE, and antimicrobial activity of the ternary blends films were investigated. The starch/polyvinyl alcohol/citric acid (S/P/C1:1:0, S/P/C3:1:0.08, and S/P/C3:3:0.08 films were all highly transparent. The S/P/C3:3:0.08 had a 54.31 times water-holding capacity of its own weight and its mechanical tensile strength was 46.45 MPa. In addition, its surface had good uniformity and compactness. The S/P/C3:1:0.08 and S/P/C3:3:0.08 showed strong antimicrobial activity to Listeria monocytogenes and Escherichia coli, which were the food-borne pathogenic bacteria used. The freshness test results of fresh figs showed that all of the blends prevented the formation of condensed water on the surface of the film, and the S/P/C3:1:0.08 and S/P/C3:3:0.08 prevented the deterioration of figs during storage. The films can be used as an active food packaging system due to their strong antibacterial effect.

  8. Specific migration of di-(2-ethylhexyl)adipate (DEHA) from plasticized PVC film: results from an enforcement campaign

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Breindahl, T.

    1998-01-01

    , olive oil, followed by clean-up using size exclusion chromatography and final determination of di-(2-ethylhexyl) adipate (DEHA) by combined capillary gas chromatography and mass spectrometry (GC-MS). In the initial screening, the samples were exposed to the alternative food simulant, isooctane, and DEHA...... Units. Initially, all films were screened for the migration into isooctane (exposed 2 h at 40 degrees C) of DEHA and other potentially present low molecular weight plasticizers using full scanning mass spectrometry. Films showing a substantial migration of DEHA were further tested with olive oil...

  9. Influence of non-migratory metal-chelating active packaging film on food quality: impact on physical and chemical stability of emulsions.

    Science.gov (United States)

    Tian, Fang; Decker, Eric A; McClements, D Julian; Goddard, Julie M

    2014-05-15

    Previously, we developed a novel metal-chelating packaging film (PP-g-PAA) by grafting acrylic acid (AA) monomer from polypropylene (PP) film surface, and demonstrated its potential in controlling iron-promoted lipid oxidation. Herein, we further established the industrial practicality of this active film. Specifically, the influence of film surface area-to-product volume ratio (SA/V) and product pH on the application of the film was investigated using an oil-in-water emulsion system. The films equally inhibited lipid oxidation throughout the range of SA/V ratios tested (2-8 cm(2)/ml). PP-g-PAA films were most effective at pH 7.0, and the activity decreased with decreasing pH. The particle size examination of emulsions indicated no adverse influence from the active film on the stability of this emulsion system. FTIR analysis suggested a non-migratory nature of PP-g-PAA films. These results provide fundamental knowledge that will facilitate the application of this effective and economical active packaging film in the food industry.

  10. 储存条件对塑料瓶装大豆油中塑化剂含量影响的研究%Influence of storage condition on the contents of plasticizers in soybean oil packaged in plastic bottle

    Institute of Scientific and Technical Information of China (English)

    刘玉兰; 张明明; 朱远坤; 杨书平

    2015-01-01

    The fresh soybean oils were stored respectively in PET plastic bottle and PE plastic bottle, and the influences of storage temperature, storage time and light on the contents of plasticizers in the soybean oil were investigated. The results showed that the contents of DBP and DEHP in soybean oils packaged in PE plastic bottle were obviously higher than those in PET plastic bottle when the storage temperature was above 27℃ and storage time was 20 d. The contents of DPP in soybean oils had no change when the tem-perature didn’t exceed 50℃, while it rose significantly when the temperature was above 50℃. Further-more, when stored at 65℃ for 90 d, the contents of DPP in the soybean oils packaged in PET and PE plastic bottles were up to 1 559. 3 μg/kg and 2 756. 8 μg/kg, respectively. In addition, when stored at 65℃ for 50 d, DMP could be detected in soybean oil packaged in PE plastic bottle, and its contents were 43. 7(50 d),128. 7(70 d),114. 3 μg/kg(90 d). When stored at 50℃ for 90 d, the content of DBP in soybean oil packaged in PE plastic bottle reached 452. 0μg/kg, 1. 5 times as high as the national standard limit for DBP. Compared with the lucifuge storage, light had no influence on DPP and small im-pacts on DBP and DEHP for a short time. Under the same storage temperature and light condition, as storage time prolonging, the content of DBP in soybean oils packaged in PET and PE plastic bottles were on a rise, and the content of DEHP presented a fluctuation trend.%以新鲜大豆油为原料,将其分别盛装于PET材质塑料瓶和PE材质塑料瓶中,研究不同储存温度、储存时间以及光照对大豆油中邻苯二甲酸酯类塑化剂含量变化的影响。结果表明:储存20 d且储存温度高于27℃时PE瓶装大豆油中DBP和DEHP含量明显高于PET瓶装大豆油的;大豆油中DPP含量在储存温度不超过50℃时基本无变化,但储存温度高于50℃时,其含量明显增加。65℃储存90 d后,PET、PE瓶

  11. Sustainable Materials Management (SMM) Web Academy Webinar: Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  12. Application of biotests for the determination of soil ecotoxicity after exposure to biodegradable plastics

    OpenAIRE

    2016-01-01

    Biodegradable plastics are mostly applied in packaging materials (e.g. shopping bags), waste collection bags, catering products, and agricultural applications. In this last case, degradation takes place directly in soil where biodegradable plastic products are intentionally left after use (e.g. mulch films for weeds control). Due to the growing volumes of biodegradable polymers and plastics, interest in their environmental safety is increasing and more research is carried out. Some attempt ha...

  13. 塑料食品包装中邻苯二甲酸酯类塑化剂含量调查%Investigation on the content of phthalate acid esters plasticizers in plastic food packaging

    Institute of Scientific and Technical Information of China (English)

    陈明; 商贵芹; 王红松

    2013-01-01

    Objective To understand the situation of 18 kinds of phthalic acid esters in plastic food packaging.Methods The contents of phthalic acid esters in 280 plastic food packaging of different materials were analyzed by gas chromatography-mass spectrometry (GC-MS) following standard GB/T 21928-2008.The samples were extracted ultrasonically with n-hexane,then separated by HP-5MS capillary column and detected by single quadrupole mass spectrometry.Retention time and characteristic ions were used as qualitative evidence,and external standard was used for quantification.Results The content of 18 kinds of phthalate in 95% of the 62 batches of PVC materials were qualified,all 82 batches of composite materials and 136 batches of other materials were qualified.Diethylhexylphthalate residues were detected,and seriously exceeded the standard limit in 3 polyvinyl chloride materials.Conclusion The phthalic acid esters exposure from plastic food packaging was low,while polyvinyl chloride materials put a potential health risk to human.Regulation and monitoring on phthalic acid esters in plastic food packaging should be strengthened.%目的 了解塑料食品包装中18种邻苯二甲酸酯的含量现状.方法 选取280批不同材质的塑料食品包装,依据GB/T 21928-2008《食品塑料包装材料中邻苯二甲酸酯的测定》采用气相色谱-质谱法进行检测.以正已烷为提取溶剂,超声波提取,采用HP-5MS石英毛细管柱(30 m×0.25 mm,0.25 μm)色谱柱程序升温分离,以保留时间和特征离子为定性依据,外标法定量.结果 62批聚氯乙烯材质的食品包装中18种邻苯二甲酸酯含量95%小于法规限量,82批复合材质和136批其它材质的食品包装中18种邻苯二甲酸酯含量100%小于法规限量,检出最多的是邻苯二甲酸二(2-乙基)己酯,3批聚氯乙烯材质的食品包装中邻苯二甲酸二(2-乙基)己酯严重超标.结论 塑料食品包装中邻苯二甲酸酯暴露水平较低,聚氯乙烯

  14. Methodology for evaluating the insect growth regulator (IGR) methoprene incorporated into packaging films

    Science.gov (United States)

    The insect growth regulator methoprene has been impregnated onto various packaging materials to control stored product insects, and is labeled for use in this manner in the United States. Different methodologies were utilized to evaluate efficacy towards Tribolium castaneum (Herbst), the red flour b...

  15. Functional barrier in two-layer recycled PP films for food packaging applications

    Science.gov (United States)

    Scarfato, P.; Di Maio, L.; Milana, M. R.; Feliciani, R.; Denaro, M.; Incarnato, L.

    2014-05-01

    A preliminary study on bi-layer virgin/contaminated polypropylene co-extruded films was performed in order to evaluate the possibility to realize an effective functional barrier in PP-based multi-layer systems. In particular, the specific migration in 10% v/v aqueous ethanol of two surrogate contaminants (phenyl-cyclohexane and benzophenone) contained in the contaminated layer across the PP functional barrier was measured at different times and the results were compared with those obtained from a contaminated mono-layer polypropylene film. Moreover, the thermal and mechanical performances of the produced films were investigated.

  16. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials.

    Science.gov (United States)

    Youssef, Ahmed M; Abdel-Aziz, Mohamed S; El-Sayed, Samah M

    2014-08-01

    Chitosan-silver (CS-Ag) and Chitosan-gold (CS-Au) nanocomposites films were synthesized by a simple chemical method. A local bacterial isolate identified as Bacillus subtilis ss subtilis was found to be capable to synthesize both silver nanoparticles (Ag-NP) and gold nanoparticles (Au-NP) from silver nitrate (AgNO3) and chloroauric acid (AuCl(4-)) solutions, respectively. The biosynthesis of both Ag-NP and Au-NP characterize using UV/vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and then added to chitosan by different ratios (0.5, 1 and 2%). The prepared chitosan nanocomposites films were characterize using UV, XRD, SEM and TEM. Moreover, the antibacterial activity of the prepared films was evaluated against gram positive (Staphylococcus aureus) and gram negative bacteria (Pseudomonas aerugenosa), fungi (Aspergillus niger) and yeast (Candida albicans). Therefore, these materials can be potential used as antimicrobial agents in packaging applications.

  17. Effects of reduced-rate methyl bromide applications under conventional and virtually impermeable plastic film in perennial crop field nurseries.

    Science.gov (United States)

    Hanson, Bradley D; Gerik, James S; Schneider, Sally M

    2010-08-01

    Producers of perennial crop nursery stock in California use preplant soil fumigation to meet state phytosanitary requirements. Although methyl bromide (MB) has been phased out in many agricultural industries, it is still the preferred treatment in the perennial nursery industry and is used under Critical Use Exemptions and Quarantine/Preshipment provisions of the Montreal Protocol. The present research was conducted to evaluate reduced-rate MB applications sealed with conventional and low-permeability plastic films compared with the primary alternative material. Reduced rates (100-260 kg ha(-1)) of MB applied in combination with chloropicrin (Pic) and sealed with a low-permeability plastic film provided weed and nematode control similar to the industry standard rate of 392 kg ha(-1) MB:Pic (98:2) sealed with high-density polyethylene (HDPE) film. However, the primary alternative chemical, 1,3-dichloropropene (1,3-D), tended to provide slightly lower pest control even on sites with relatively low plant parasitic nematode, soil-borne pathogen and weed pest pressure. If California regulations change to allow the use of low-permeability films in broadcast fumigant applications, the results of this research suggest that reduced rates of MB in perennial crop nurseries could serve as a bridge strategy until more technically, economically and environmentally acceptable alternatives are developed. Published 2010 by John Wiley & Sons, Ltd.

  18. Effect of plasticizer type and amount on hydroxypropyl methylcellulose-beeswax edible film properties and postharvest quality of coated plums (cv. Angeleno).

    Science.gov (United States)

    Navarro-Tarazaga, Maria Ll; Sothornvit, Rungsinee; Pérez-Gago, María B

    2008-10-22

    The effect of the composition of hydroxypropyl methylcellulose (HPMC)-beeswax (BW) edible coatings on stand-alone film properties and on postharvest quality of coated 'Angeleno' plums was studied. Glycerol (G) and mannitol (M) were tested as plasticizers at two different plasticizer/HPMC ratios (100:1 and 300:1 molar basis). BW content was 20 or 40% (dry basis). An increase in G content increased film flexibility and vapor permeability (WVP), whereas an increase in M content enhanced film brittleness without affecting WVP. An increase in BW content reduced film flexibility and reduced WVP of only G-plasticized films. Coatings reduced plum softening and bleeding, but were not effective in reducing plum weight loss. At low plasticizer content, coatings reduced texture loss effectively. Low BW also lowered plum bleeding. Plasticizer type affected only ethanol and acetaldehyde contents without affecting the remaining quality parameters. Therefore, HPMC-BW coatings have the potential to extend the shelf life of plums. However, this effect depends on coating composition. Differences between coating and film performance indicate that data from stand-alone films may be used as a preliminary screening, but coating performance should be analyzed on coated fruit.

  19. Effect of vacuum packaging on growth of Clostridium botulinum and Staphylococcus aureus in cured meats.

    Science.gov (United States)

    Christiansen, L N; Foster, E M

    1965-11-01

    Incrimination of vacuum-packaged smoked fish in outbreaks of botulism has raised questions about the safety of this process in comparison with other methods of packaging foods. It has been suggested, for example, that Clostridium botulinum may grow better in a vacuum-packaged product than in one that is packaged without vacuum. To evaluate this possibility, sliced bologna was inoculated with spores of C. botulinum type A, packaged in transparent plastic film with and without vacuum, and stored at temperatures within the growth range of the organism. There was no detectable difference in the rate of toxin development in the two types of packages. In contrast, vacuum packaging markedly inhibited the growth of Staphylococcus aureus on sliced ham. The results indicate that vacuum packaging has little if any effect on the ability of C. botulinum to grow in cured meats, but it may reduce the likelihood of staphylococcal food poisoning.

  20. Determination of structural and mechanical properties, diffractometry, and thermal analysis of chitosan and hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol

    Directory of Open Access Journals (Sweden)

    Jefferson Rotta

    2011-06-01

    Full Text Available In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v in water and chitosan (2% w/v in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100 of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM, differential scanning calorimetry (DSC, and thermal gravimetric analysis (TGA. The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.

  1. 纸包装油墨中增塑剂向食品模拟物Tenax的迁移%Migration of Plasticizers from Paper Packaging Inks to Tenax

    Institute of Scientific and Technical Information of China (English)

    高松; 王志伟; 胡长鹰

    2012-01-01

    通过纸张表印油墨的实验室印制方法,模拟真实纸包装油墨中四种增塑剂向食品模拟物Tenax的迁移,使用气相色谱法检测不同温度(50℃、70℃和100℃)、纸张克重(240g/m2和400g/m2)和增塑剂初始含量下的迁移量。结果表明,纸包装油墨中增塑剂的迁移行为由其扩散系数和分配系数决定,温度和纸张克重对增塑剂迁移行为影响较大,实际中要避免增塑剂的迁移对人体造成的危害。%A series of food safety incidents have caused widespread concern over the safety of plasticizer.Three phthalates(dibutyl phthalate(DBP),bis(2-ethylhexyl) phthalate(DEHP),di-n-octyl phthalate(DOP)) and a new environmental plasticizer acetyl tributyl citrate(ATBC) are commonly used in inks.Gas chromatography (GC) was used to measure the migration of four plasticizers from inks in lad-made printing paper to food stimulant(Tenax) at different temperature(50 ℃,70 ℃ and 100 ℃),different paper weight(240g/m2 and 400 g/m2) and the different initial content of plasticizers.The results show that the lab-made printing paper can stimulate the real paper packaging with inks and the migration of plasticizers from inks depends on the diffusion and partition coefficients.The migration behaviour is significantly affected by the temperature and paper weight. Maximum migration increases with increasing temperature and decreasing paper weight.

  2. Tendências e desafios da reciclagem de embalagens plásticas Trends and challenges in recycling plastic packages

    Directory of Open Access Journals (Sweden)

    Amélia S. F. Santos

    2004-12-01

    Full Text Available No gerenciamento do resíduo sólido urbano (RSU, a reciclagem surge como uma das vias para reduzir os resíduos sólidos aterrados em solo. Os plásticos constituem uma das classes de materiais com menor índice de reciclagem. Neste trabalho, as principais dificuldades encontradas em diversos países para aumentar os índices de reciclagem dos plásticos e as propostas que estão sendo utilizadas para mudar este cenário foram apresentadas. Por último, também foi apresentado um panorama geral sobre as exigências e limitações do retorno do plástico reciclado para alimentos. Este segmento representa todo um nicho de mercado que pode agregar valor e, principalmente, aumentar os índices de reciclagem de modo sustentável desde que haja investimentos em tecnologias inovadoras e economicamente viáveis.In the management of municipal solid waste (MSW, recycling emerges as one of the ways to reduce the solid wastes deposited in landfills. Plastics are one of the classes of materials with the lowest recycling index. The present study deals with the main difficulties encountered in different countries to increase plastics recycling and the procedures adopted to change this scenario. Additionally, the general requirements and the restrictions about the use of recycled plastic for food contact are presented. This application represents a whole market share to be explored, which could add value and increase the recycling indexes in a sustainable way, provided that investments in innovative technologies are made.

  3. Thermoforming and Its Application in Plastics Packaging of Two Way Radio%吸塑成型及其在手持机塑料包装中的应用

    Institute of Scientific and Technical Information of China (English)

    徐中亮

    2015-01-01

    吸塑成型是一种塑料制品快速成型的方法。本文以手持机的塑料包装为研究对象,阐述了吸塑成型技术的原理和工艺,并探讨了优选热塑性材料、最优化塑料包装的结构尺寸、吸塑模具设计加工对吸塑工艺影响。从而,提高塑料包装的可靠性,延长使用寿命,降低包装的成本,并广泛应用于手持机的塑料包装设计中。%Thermoforming is a kind of method that plastics products fast forming. The article is based on plastics packaging of handheld two way radio, elaborating theory and methods of plastics forming techniques, while researching on that selecting the priority material of thermoplastic. optimizing the configuration dimension of plastics packaging, designing and processing for blister mold what they are on the influence of blister-technics. Thereby, it can highly improve product reliability, increase service life, reduce the cost price of product, widely apply for plastics packaging of two way radio.

  4. 可生物降解塑料在绿色包装应用中的机遇与挑战%Opportunities and Challenges for Bio——degradable Plastics in Green Packaging

    Institute of Scientific and Technical Information of China (English)

    徐晓璇; 刘磊

    2011-01-01

    In this paper, the types of degradahle plastics which can be used in green packaging and their respective characteristics are introduced and the opportunities and challenges for their application in green packaging are discussed. After exposing the problems biodegradable plastics faces in application against the requirement of green packaging, the paper presents several attempts at solution.%介绍了用于绿色包装的可降解塑料种类及其特点,分析了目前生物降解塑料在绿色包装应用中的机遇和挑战,根据绿色包装的内在要求提出了目前可生物降解包装塑料面临的几个问题,并尝试提出了解决途径.

  5. 食品塑料包装材料中邻苯二甲酸二(2-乙基己)酯的暴露评估%Exposure Assessment of Di(2-ethylhexyl)phthalate of Plastic Food Packaging Materials

    Institute of Scientific and Technical Information of China (English)

    白艳红; 许珂; 赵电波

    2012-01-01

    This article mainly reviewed the nature, source, toxicity and hazard of di(2-ethylhexyl)phthalate, one of the phthalate plasticizers of food plastics packaging materials. Preventive measures and proposals for this reference were discussed to provide security for plastic food packaging materials, as well as for packed food security research.%文中主要综述了食品塑料包装材料所用邻苯二甲酸酯类增塑剂中,邻苯二甲酸二(2.乙基己)酯(DEHP)的性质、来源、毒性及危害.提出了预防措施和建议,为食品塑料包装材料的安全性以及包装食品的安全性的相关研究提供参考依据.

  6. Using ProModel as a simulation tools to assist plant layout design and planning: Case study plastic packaging factory

    Directory of Open Access Journals (Sweden)

    Pochamarn Tearwattanarattikal

    2008-01-01

    Full Text Available This study is about the application of a Simulation Model to assist decision making on expanding capacity and plant layout design and planning. The plant layout design concept is performed first to create the physical layouts then the simulation model used to test the capability of plant to meet various demand forecast scena. The study employed ProModel package as a tool, using the model to compare the performances in term of % utilization, characteristics of WIP and ability to meet due date. The verification and validation stages were perform before running the scenarios. The model runs daily production and then the capacity constraint resources defined by % utilization. The expanding capacity policy can be extra shift-working hours or increasing the number of machines. After expanding capacity solutions are found, the physical layout is selected based on the criterion of space available for WIP and easy flow of material.

  7. The reverse logistics importance in the management of residues of plastic packaging of lubricants and the program jogue limpo

    Directory of Open Access Journals (Sweden)

    Everaldo Francisco da Silva

    2017-07-01

    Full Text Available This article aims to demonstrate the importance of the Reverse Logistics in the management of solid residues through the Jogue Limpo program, an initiative dedicated to the destination and recycling of lubricant packaging. In the current context, where natural resources are scarce, the environmental issue is a factor of differentiation in business, so the destination of the waste we produce along the production chain and the possibility of reuse and mitigation of possible environmental impacts are extremely important for the society. The article seeks to show how the Reverse Logistics is the means to interconnect stakeholders for the correct destination and reuse of resources, as well as the benefits of this initiative for the society.

  8. The effects of packaging method (vacuum pouch vs. plastic tray) on spoilage in a cook-chill pork-based dish kept under refrigeration.

    Science.gov (United States)

    Díaz, Pedro; Garrido, María Dolores; Bañón, Sancho

    2010-03-01

    The effects of two packaging methods on the spoilage of a cook-chill pork-based dish kept under refrigeration were studied. Raw pork cuts and pre-cooked tomato sauce were packed under vacuum "sous vide" in polyamide-polypropylene pouches (SV) or into translucent polypropylene trays under modified atmosphere (80% N(2)+20% CO(2)) and sealed with a top film (PT). Samples were cooked inside the pack at an oven temperature/time of 70 degrees C/7h, chilled at 3 degrees C and stored at 2 degrees C for up to 90days. Microbial (psychrotrophs, lactic-acid bacteria, Enterobacteriaceae, moulds and yeasts), physical-chemical (pH, water activity and total acidity) and sensory (colour, odour, flavour, texture and acceptance) parameters were determined. Heat penetration was faster in SV (2 degrees C/min) than in PT (1 degrees C/min) (core temperature). Both packaging methods were equally effective in protecting against microbial spoilage for 90 day at 2 degrees C. Minor counts were only detected for lactic-acid bacteria and anaerobic psychrotrophs in SV. No Enterobacteriaceae growth was found. Slight differences between SV and PT in pH and total acidity were observed. SV and PT had similar effects on the sensory preservation of the dishes. A gradual loss of acceptance of the cooked pork and tomato sauce was observed. Rancid flavour in PT and warmed-over-flavour in SV were noted in the final stages of storage. According to acceptance scores, the shelf-life of both SV and PT was 56 days at 2 degrees C. Both packaging methods can be used to manufacture sous vide meat-based dishes subsequently stored under refrigeration for catering use. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. PVDC包装膜的辐射稳定性%Radiation Stability of PVDC Packaging Film

    Institute of Scientific and Technical Information of China (English)

    陈金周; 单爱国; 张征; 牛明军; 李新法; 田青亮

    2001-01-01

    Poly(vinylidene chloride)(PVDC) film has been widely used in meat food packa ging. Mechanical,thermal properties and solubility of γ-ray irradiated PVDC film were investigated. Results showed that w hen radiation dose R≥10 kGy, PVDC could be crosslinked and it had an ev ident effect on tensile, tearing, shrinkable properties and heat stability as we ll as colour of the film with the increasing of R; when R<10 kGy, it ha d littl e effect on properties of the film.%聚偏氯乙烯(PVDC)已广泛用于肉食品的包装。考察了γ-射 线辐照对PVDC薄膜的力学和热性能以及溶解性能等的影响。在辐照 剂量R≥10 kGy时,PVDC产生辐射交联,PVDC膜的拉伸性能、撕裂性能、热收 缩性能、热稳定性能和色泽受R的影响较明显;R<10 kGy时,PVDC膜受R 的影响甚微。

  10. The development of thermal nanoprobe methods as a means of characterizing and mapping plasticizer incorporation into ethylcellulose films.

    Science.gov (United States)

    Meng, Jin; Levina, Marina; Rajabi-Siahboomi, Ali R; Round, Andrew N; Reading, Mike; Craig, Duncan Q M

    2012-08-01

    The phase composition and distribution of ethylcellulose (EC) films containing varying amounts of the plasticizer fractionated coconut oil (FCO) were studied using a novel combination of thermal and mapping approaches. The thermal and thermomechanical properties of films containing up to 30% FCO were characterized using modulated temperature differential scanning calorimetry (MTDSC) and dynamic mechanical analysis (DMA). Film surfaces were mapped using atomic force microscopy (AFM; topographic and pulsed force modes) and the composition of specific regions identified using nanothermal probes. Clear evidence of distinct conjugate phases was obtained for the 20-30% FCO/EC film systems. We suggest a model whereby the composition of the distinct phases may be estimated via consideration of the glass transition temperatures observed using DSC and DMA. By combining pulsed force AFM and nano-thermal analysis we demonstrate that it is possible to map the two separated phases. In particular, the use of thermal probes allowed identification of the distinct regions via localized thermomechanical analysis, whereby nanoscale probe penetration is measured as a function of temperature. The study has indicated that by using thermal and imaging techniques in conjunction it is possible to both identify and map distinct regions in binary films.

  11. Enhancement of surface properties on commercial polymer packaging films using various surface treatment processes (fluorination and plasma)

    Energy Technology Data Exchange (ETDEWEB)

    Peyroux, Jérémy, E-mail: jeremy.peyroux@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Dubois, Marc, E-mail: marc.dubois@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Tomasella, Eric, E-mail: eric.tomasella@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Petit, Elodie, E-mail: elodie.petit@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, F-63171 Aubière (France); Flahaut, Delphine, E-mail: delphine.flahaut@univ-pau.fr [Université de Pau et des Pays de l’Adour, IPREM/ECP (UMR 5254), Hélioparc, 2 av. Pierre Angot, 64053 Pau cedex 9 (France)

    2014-10-01

    Graphical abstract: - Highlights: • Two different surface treatment processes were investigated in this work. • Both processes drastically change the composition induced on the surfaces. • Direct fluorination is identified as an efficient way to adjust surface properties. • Plasma processes result in a specific enhancement of the surface properties. • The pristine polymer surface has been successfully improved. - Abstract: Before considering their combination on commercial packaging films, two surface treatments processes were investigated. Indeed, direct fluorination and plasma processes are currently recognized as effective processes to improve polymer surface properties. The aim of this first work is to elucidate mechanisms that occur on the treated surface. The modifications of the surface layer were characterized using various complementary spectroscopy techniques such as Fourier Transform Infrared (FTIR) spectroscopy, high resolution solid state Nuclear Magnetic Resonance (NMR) with {sup 19}F nucleus which are suitable to determine the nature of bonding and specific groups formed during the process. X-ray Photoelectron Spectroscopy (XPS) was also achieved to extract the surface chemical compositions. In addition, surface properties of the treated films were studied by specific measurements of surface energy in order to reveal surface parameters such as rugosity and chemical composition which could be adjusted. All these results underline that the layer induced regardless of the two processes plays a key role in the enhancement of the surface properties.

  12. Laser transmission welding of polylactide to aluminium thin films for applications in the food-packaging industry

    Science.gov (United States)

    Pagano, Nunziante; Campana, Giampaolo; Fiorini, Maurizio; Morelli, Raffaele

    2017-06-01

    Laser transmission welding is a suitable technology to join thin films of similar or dissimilar materials without any addition of chemical solvents or adhesives. This process represents a very important opportunity in the case of packaging applications (for example in food and pharmaceutical sectors) where the realisation of strong welds by avoiding the contact between the thermal source and the processed materials and, furthermore, without using any third material that could contaminate the contents, is reliable and relevant. The aim of this paper is to prove the feasibility of the laser transmission welding of polylactide to aluminium thin films by means of laser transmission welding through the use of a low power pulsed wave fibre laser. Laser joint samples were realised, analysed by optical microscopy to reveal possible defects and to evaluate the weld width and tested to measure the mechanical tensile strength. An accurate relationship between the joint quality and both the welding speed and the k-factor, which represents the delivered energy per unit length and affects the bonding mechanism at the interface, was determined. The achieved feasibility area is extremely narrow and possible only for the higher value of the average power. The joint tensile strength was proven to be in a proportional relationship with the effective bonded area and reached satisfactory values.

  13. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films.

    Science.gov (United States)

    Alves, J S; dos Reis, K C; Menezes, E G T; Pereira, F V; Pereira, J

    2015-01-22

    Cellulose at the nanoparticle scale has been studied as a reinforcement for biodegradable matrices to improve film properties. The goal has been to investigate the properties of starch/gelatin/cellulose nanocrystals (CNC) films. Eleven treatments were considered using RCCD (rotatable central composite design), in addition to four control treatments. For each assay, the following dependent variables were measured: water vapor permeability (WVP), thickness, opacity and mechanical properties. The microstructure and thermal properties of the films were also assessed. Increases in gelatin and CNC concentrations lead to increases in film thickness, strength and elongation at break. The films containing only gelatin in their matrix displayed better results than the starch films, and the addition of CNC had a positive effect on the assessed response variables. The films exhibited homogeneous and cohesive structures, indicating strong interactions between the filler and matrix. Films with low levels of gelatin and CNC presented the maximum degradation temperature.

  14. GREENHOUSE PLASTIC FILMS CAPABLE OF MODIFYING THE SPECTRAL DISTRIBUTION OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2010-03-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of innovative covering films for protected cultivation capable of modifying the spectral distribution of the transmitted radiation and thus the vegetative activity. Two photoselective films, three photoluminescent films and one low-density polyethylene film were used as greenhouse coverings for cherry trees and peach trees, grown in pots. The photoselective films were characterised by a reduction of the R/FR ratio in comparison to the natural solar radiation. Tree growth parameters, such as the apical shoot of cherry trees and the shoot of peach trees, were monitored. Different responses to vegetative activities were observed under the films, depending on the species, with a higher shoots growth rate in the peach with respect to the cherry. The photoselective film characterised by the lowest R/FR ratio significantly enhanced the growth of cherry and peach trees in comparison to the trees cultivated under the other greenhouse films

  15. Reel Plastic Magic; A History of Films and Filmmaking in America.

    Science.gov (United States)

    Kardish, Laurence

    This topical history of American films begins with an explanation of how movies work and describes the earlier American films from the nickelodeons through D.W. Griffith. The development of the studios and the major American films of the 1920's through the 1950's is treated largely in terms of important stars, like Mary Pickford, Charlie Chaplin,…

  16. Design and Test of a Collecting Machine for the Plastic Film Residue%一种残膜检拾机的设计和试验

    Institute of Scientific and Technical Information of China (English)

    闫志鹏

    2015-01-01

    针对残膜对土地的带来的污染,人工检拾农田残留地膜劳动强度大、费时费力,检拾后的耕地需多次翻耕、松土等问题,设计了一种一次能完成捡膜、集膜、清膜及松土整地等作业工序的残膜检拾机械,并对该检拾机械进行了检拾作业研究,实验,对推广小型简易残膜检拾机械有着重要意义。%Aiming at the pollution of plastic film residue, the working intensity of collecting plastic films by hand is great and time-consuming, and the land is then need to be plowed and loosed repeatedly, a collecting machine for the plastic film resi-due which can collect plastic film residue and loosen the soil once for all is designed in this paper. The collecting work of this machine is researched and tested;the results show that it has great significance to generalize the small and simple machine for collecting plastic film residue.

  17. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    Science.gov (United States)

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  18. Gelatine-Based Antioxidant Packaging Containing Caesalpinia decapetala and Tara as a Coating for Ground Beef Patties

    OpenAIRE

    María Gabriela Gallego; Michael H. Gordon; Francisco Segovia; María Pilar Almajano Pablos

    2016-01-01

    The development of antioxidant-active packaging has numerous advantages, such as the reduction of synthetic additives in food, the reduction of plastic waste and food protection against oxidation reactions. Different concentrations of extracts of the plants Caesalpinia decapetala (CD) and Caesalpinia spinosa “Tara” (CS) were incorporated into gelatine films as natural antioxidants. The physical, mechanical and antioxidant properties of these films were studied. Films containing plant extracts...

  19. Effect of oil lamination between plasticized starch layers on film properties.

    Science.gov (United States)

    Basiak, Ewelina; Debeaufort, Frédéric; Lenart, Andrzej

    2016-03-15

    To reduce the hygroscopic character of biodegradable starch-based films, rapeseed oil was incorporated by lamination (starch-oil-starch 3-layers technique). The lipid lamination followed by starch solution casting step induced an emulsion type structure of dried films. Composite films are more opalescent and glossier than fatty free starch films. For all the films, structure is heterogeneous in the cross-section only. Adding fat induced a twice decrease of the tensile strength. Thermal gravimetry analysis did not show differences between films with and without oil. Lipid reduced the moisture absorption particularly at higher RH as well as the surface swelling index, when water droplet contact occurred. Addition of lipids always decreases the contact angle for all liquid tested, except for water. Surface affinity of films for liquids less polar that water increased with rapeseed oil addition. The addition of rapeseed oil significantly reduces water vapour and oxygen permeability.

  20. Flexible nickel-doped zinc oxide thin-film transistors fabricated on plastic substrates at low temperature

    Science.gov (United States)

    Huang, Lingling; Han, Dedong; Chen, Zhuofa; Cong, Yingying; Wu, Jing; Zhao, Nannan; Dong, Junchen; Zhao, Feilong; Liu, Lifeng; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2015-04-01

    High-performance nickel (Ni)-doped zinc oxide thin-film transistors (NZO TFTs) have been successfully fabricated on transparent flexible plastic substrates at a low temperature. The effect of different oxygen partial pressures during channel deposition on the electrical properties of NZO TFTs was studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant influence on the performance of NZO TFTs. Finally, it was demonstrated that a NZO film with 100% Ar sputtering gas during channel deposition exhibited the best electrical properties, with a drain current on/off ratio of 108, a positive threshold voltage of 2.59 V, a subthreshold swing of 233 mV/decade, and a saturation mobility of 118.9 cm2·V-1·s-1. The results show that Ni-doped ZnO is a promising candidate for flexible fully transparent displays.

  1. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles.

    Science.gov (United States)

    Chen, Haixin; Liu, Jingjing; Zhang, Afeng; Chen, Jing; Cheng, Gong; Sun, Benhua; Pi, Xiaomin; Dyck, Miles; Si, Bingcheng; Zhao, Ying; Feng, Hao

    2017-02-01

    Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L. cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000kgha(-1) wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO2 emission over both cycles, and straw mulching increased soil CH4 absorption over both cycles, but patterns of soil N2O emissions under straw or film mulching are not consistent. Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications.

  2. Migration from plasticized films into foods. 1. Migration of di-(2-ethylhexyl)adipate from PVC films during home-use and microwave cooking.

    Science.gov (United States)

    Startin, J R; Sharman, M; Rose, M D; Parker, I; Mercer, A J; Castle, L; Gilbert, J

    1987-01-01

    Migration of di-(2-ethylhexyl)adipate (DEHA) into a diverse range of foods arising from the domestic use of plasticized PVC films has been determined using a stable isotope dilution GC/MS procedure. Aspects of home use reported in this study include the wrapping and covering of foods such as cheese, cooked meats, sandwiches, cakes, fresh fruit and vegetables; the use of films during food preparation such as marinading; covering during microwave reheating of previously prepared foods, and covering during microwave cooking. Contact between film and foods was for differing temperatures and times, representative of the range of conditions likely to be experienced in practice in the home. Migration increased with both the length of contact time and temperature of exposure, with the highest levels observed where there was a direct contact between the film and food, and where the latter had a high fat content on the contact surface. Highest levels of migration were observed for cheese, cooked meats, cakes and for microwave-cooked foods, whilst lower levels were observed for wrapping of unfilled sandwiches, fruit and vegetables (except avocado), and for food preparation including microwave reheating where there was covering of the food in a container but little or no direct contact.

  3. Desenvolvimento de filmes de nananocompósitos polipropileno/argila organofílica para embalagens Development of polypropylene/organoclay nanocomposite films for packaging

    Directory of Open Access Journals (Sweden)

    Arthur R. A. Araújo

    2012-01-01

    , mechanical properties and barrier properties to water vapor of these films. X-ray diffraction data show that while the nanocomposite morphology was affected by the type of compatibilizer, it was relatively insensitive to its content. The morphologies and barrier properties to water vapor of the nanocomposites prepared with the two polypropylenes (PP H401 and PP H07D-00 were similar. However, except for the heat sealing properties, those prepared with PP H07D-00 showed better mechanical properties. The transparency of P715AMAPO nanocomposite was similar to that of the P715AM matrix. The results indicated that PP H07D-00 nanocomposite films compatibilized with 15% PP-g-AM and containing 1% APO organoclay may be promising for packaging applications.

  4. Mould Design and Material selection for Film Insert Moulding of Direct Methanol Fuel Cell Packaging

    DEFF Research Database (Denmark)

    Wöhner, Timo; Senkbeil, S.; Olesen, T. L.;

    2015-01-01

    of this container is to enable venting of CO2, which is produced during the use of the DMFC system. This attribute is realized by a functional film insert in the form of a microporous, oleophobic membrane, which covers a venting hole in the injection moulded part of the container. The mould was designed to allow......This paper presents the mould design for an injection moulding (IM) process for the production of a methanol container for the use in small, passive Direct Methanol Fuel Cell (DMFC) systems, which are intended to be used in behind-the-ear hearing aid systems. One of the crucial properties...

  5. Extension of the shelf life of guava by individual packaging with cling and shrink films.

    Science.gov (United States)

    Rana, Seema; Siddiqui, Saleem; Goyal, Ankit

    2015-12-01

    Guava is a climacteric fruit so physico-chemical changes continuously occur after harvest till fruit become unfit for consumption and suffers from post harvest losses. The main objective of this work was to assess the effectiveness of individual film in form of Shrink and Cling wrap on shelf life of guava. Fruits were individually packed in polythene bags (LDPE) of 200 gauge thickness by Shrink and Cling wrapping and stored at 7 ± 3 °C. Individual wrapping reduced the magnitude of changes during storage i.e., ripening process drastically as evident from lower total soluble solids, higher ascorbic acid, polyphenol content with lower polyphenol oxidase activity and physiological loss of weight (PLW) was less than 3.5 %. Film wrapping preserved freshness of wrapped fruits as they remained acceptable for whole storage time in contrast to control fruits which turned unacceptable by 15(th) day of storage. Control fruits showed significant compositional changes as well as in polyphenol content, ascorbic acid and reduced number of marketable fruits while Cling and Shrink wrapping enhanced the shelf life by 10 days.

  6. Numerical thermal analysis for leaded surface mounted plastic package%引脚式表面贴装元件的数值热分析

    Institute of Scientific and Technical Information of China (English)

    高红霞; 余建祖; 谢永奇

    2006-01-01

    建立了四边引线塑料扁平封装(PQFP, Plastic Quad Flat Package)数值热模拟的详细模型和简化模型,实验验证了这两种模型的模拟精度.对PQFP在机载恶劣环境下的稳态热性能进行了研究,分析了影响元件内、外热阻的各种因素.结果表明,内部采用多层结构设计是改善PQFP元件热性能的最佳方案,而在采用强迫空气冷却时,空气速度不应大于5 m/s.对承受脉冲形式热载荷和环境温度随时间变化两种情况下的PQFP元件进行了瞬态热特性研究,获得了芯片结点温度随时间变化的曲线,可用于研究元件因过热引起的热应变、热损坏和电信号失真,为改进和优化元件热设计提供科学依据.

  7. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Vicentini, Denice S. [Mechanical Engineering Department, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil); Smania, Arthur [Microbiology and Parasitology Department, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil); Laranjeira, Mauro C.M., E-mail: mauro@qmc.ufsc.br [Mechanical Engineering Department, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil); Chemistry Department, QUITECH, Federal University of Santa Catarina, University Campus, 88040-900 Florianopolis, Santa Catarina (Brazil)

    2010-05-10

    In this study ZnO nanoparticles were prepared by the Pechini method from a polyester by reacting citric acid with ethylene glycol in which the metal ions are dissolved, and incorporated into blend films of chitosan (CS) and poly (vinyl alcohol) (PVA) with different concentrations of polyoxyethylene sorbitan monooleate, Tween 80 (T80). These films were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), swelling degree, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the films was tested, and the films containing ZnO nanoparticles showed antibacterial activity toward the bacterial species Staphylococcus aureus. The observed antibacterial activity in the composite films prepared in this work suggests that they may be used as hydrophilic wound and burn dressings.

  8. Plasticity and Interfacial Dislocation Mechanisms in Epitaxial and Polycrystalline Al Films Constrained by Substrates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Stresses in epitaxial and textured Al films were determined by substrate-curvature measurements. It was found that in both cases the flow stresses increase with decreasing film thickness. The flow stresses in the epitaxial Al films are in agreement with a dislocation-based model, while the same model strongly underestimates the flow stresses of textured Al films. In-situ transmission electron microscopy studies indicate that dislocations channeling through epitaxial Al films on single-crystalline (0001) α-AI2O3 substrates frequently deposit dislocation segments adjacent to the interface. Furthermore, the AI/α-AI2O3 interface acted as a dislocation source. In this case, the interface is between two crystalline lattices. In contrast, the interface of textured Al films on oxidized silicon substrates is between the crystalline Al and the amorphous SiOx interlayer. It is speculated that the different nature of the interfaces changes dislocation mechanisms and thus influences the flow stresses.

  9. Discussion on the Harm of Plastic Film and Its Recycling Measures%地膜危害及其回收利用措施探讨

    Institute of Scientific and Technical Information of China (English)

    马永波

    2015-01-01

    介绍台安县的地膜使用及回收现状,探讨残留地膜对土壤理化性质、作物生长发育及环境的不利影响,根据台安县的生产实际,论述促进残膜回收的主要措施,为确保农业高产稳产提供有益借鉴。%The article introduces the application of plastic film and its recycling status in Tai'an county, discusses the harmful influence of residual plastic film to soil properties, crops growth and environment, and expounds main measures of promoting the recycling of residual plastic film based on the practice in Tai’an county, provides a beneficial reference for assuring stable and high yield for agri-culture.

  10. 册亨县水稻覆膜直播栽培试验%Experiment of Plastic Film Mulching Cultivation by Direct Seeding of Rice in Ceheng County

    Institute of Scientific and Technical Information of China (English)

    黄如泽

    2014-01-01

    册亨县水稻覆膜直播栽培试验研究结果表明,地膜覆盖直播栽培能耐干旱、没有杂草、病虫害少,只是开始时用工较多,但整体上分析,覆膜直播比旱育稀植移栽的效果好。%The results of experiment of plastic film mulching cultivation by direct seeding of rice in Ceheng County showed that plastic film mulching cultivation by direct seeding had drought tolerance,no weeds,fewer pests and diseases,just the employment was more at the beginning,but on the whole,plastic film mulching cultivation by direct seeding had better effect than dry nursery and sparse planting transplant.

  11. PENGARUH PENAMBAHAN PLASTICIZER TERHADAP SIFAT FISIK DAN MEKANIK EDIBLE FILM PATI JAGUNG

    OpenAIRE

    Adiansyah; Bastian, Februadi

    2008-01-01

    ABSTRAK AGROKOMPLEKS 2008 Edible film adalah lapisan tipis dan kontinyu yang dibuat dari bahan yang dapat dimakan, diletakkan diantara komponen makanan (film) yang berfungsi sebagai penghambat terhadap transfer massa (uap air, oksigen dan zat terlarut) dan sebagai carrier bahan makanan atau aditif. Penelitian ini dilaksanakan dalam dua tahap yaitu ekstraksi pati jagung. Pada tahap ini akan diperoleh pati jagung sebagai bahan dasar edible film. Parameter yang diukur pada pati jagung yaitu...

  12. EVALUASI KARAKTERISTIK FISIK EDIBLE FILM DARI GELATIN KULIT KAMBING BLIGON YANG MENGGUNAKAN GLISEROL SEBAGAI PLASTICIZER

    OpenAIRE

    Said, Muhammad Irfan; Triatmojo, Suharjono; Erwanto, Yuny; Fudholi, Achmad

    2013-01-01

    Bahan baku dalam pembuatan edible film dari golongan pati telah banyak digunakan, sedangkan golongan protein yang berasal dari ternak masih jarang digunakan. Gelatin merupakan salah satu jenis bahan yang digunakan dalam pembuatan edible film dari golongan protein asal ternak. Bahan ini diketahui memiliki sifat-sifat yang baik dan berpotensi untuk digunakan sebagai bahan baku dalam pembuatan edible film (Klahorst, 1999). Gelatin pada dasarnya adalah sebuah produk hidrokoloid yang merupa...

  13. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.

    Science.gov (United States)

    Park, Kwi-Il; Son, Jung Hwan; Hwang, Geon-Tae; Jeong, Chang Kyu; Ryu, Jungho; Koo, Min; Choi, Insung; Lee, Seung Hyun; Byun, Myunghwan; Wang, Zhong Lin; Lee, Keon Jae

    2014-04-23

    A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 μA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate over 100 LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses.

    Science.gov (United States)

    Wang, Jun; Chen, Gangcai; Christie, Peter; Zhang, Manyun; Luo, Yongming; Teng, Ying

    2015-08-01

    Phthalate esters (PAEs) are suspected of having adverse effects on human health and have been frequently detected in soils and vegetables. The present study investigated their occurrence and composition in plastic film greenhouse soil-vegetable systems and assessed their potential health risks to farmers exposed to these widespread pollutants. Six priority control phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP), were determined in 44 plastic film greenhouse vegetables and corresponding soils. Total PAEs ranged from 0.51 to 7.16mgkg(-1) in vegetables and 0.40 to 6.20mgkg(-1) in soils with average concentrations of 2.56 and 2.23mgkg(-1), respectively. DnBP, DEHP and DnOP contributed more than 90% of the total PAEs in both vegetables and soils but the proportions of DnBP and DnOP in vegetables were significantly (p3.00mgkg(-1) but were greenhouses. Health risks were mainly by exposure through vegetable consumption and soil ingestion.

  15. Influência da atmosfera modificada por filmes plásticos sobre a qualidade do mamão armazenado sob refrigeração Influence of a modified atmosphere by plastic film on the quality of papaya fruit stored in a refrigerator

    Directory of Open Access Journals (Sweden)

    Luciana Konda de Azevedo Pinto

    2006-12-01

    Full Text Available A utilização de embalagens constitui uma ferramenta importante no armazenamento de frutas. Neste trabalho foi avaliado o efeito dos filmes plásticos, Xtend® e PEBD, sobre a conservação do mamão. Frutos de mamoeiro "Golden", apresentando de 10 a 15% de coloração amarela na casca, após passarem por tratamentos térmicos e químicos, foram embalados individualmente e armazenados por 32 dias a 10 °C (90-95% UR. Frutos sem embalagem serviram de controle. Durante o período de armazenamento foram avaliadas as características de perda de massa, firmeza, sólidos solúveis totais, acidez titulável, pH, a razão SST/AT e a quantidade relativa de CO2 no interior das embalagens. Os resultados mostraram que os frutos embalados com o filme Xtend® apresentaram menor acúmulo de CO2 do que os frutos embalados com PEBD. Entretanto, a perda de massa foi minimizada pelo filme de PEBD, evitando o enrugamento da superfície durante os 32 dias de estocagem a 10 °C. Os dois tipos de filmes suprimiram o aumento de SST nos frutos ao final da estocagem, minimizando também a concentração de ácidos orgânicos. Os frutos embalados com o filme Xtend® apresentaram os maiores valores da razão SST/AT devido ao menor conteúdo final de acidez e de sólidos solúveis totais.The use of plastic packaging is an important tool for storing fruit. The aim of this work is to evaluate the effect of plastic film, Xtend® and PEBD on preserving papaya. Papaya fruit cv "Golden", showing 10 to 15% of yellowish peel and also having had chemical and thermal treatments, were wrapped individually in film and stored for 32 days at 10 °C (90-95% UR. Fruit without packaging served as a control. Throughout the storage period, the characteristics of mass loss, firmness, total soluble solids, titratable acidity, pH, SST/AT ratio and the relative amount of CO2 inside the packaging were evaluated. Results showed that fruit wrapped in Xtend® film presented lower CO2 accumulation

  16. Characterizations of plasticized polymeric film coatings for preparing multiple-unit floating drug delivery systems (muFDDSs with controlled-release characteristics.

    Directory of Open Access Journals (Sweden)

    Sheng-Feng Hung

    Full Text Available Effervescent multiple-unit floating drug delivery systems (muFDDSs consisting of drug (lorsartan- and effervescent (sodium bicarbonate-containing pellets were characterized in this study. The mechanical properties (stress and strain at rupture, Young's modulus, and toughness of these plasticized polymeric films of acrylic (Eudragit RS, RL, and NE and cellulosic materials (ethyl cellulose (EC, and Surelease were examined by a dynamic mechanical analyzer. Results demonstrated that polymeric films prepared from Surelease and EC were brittle with less elongation compared to acrylic films. Eudragit NE films were very flexible in both the dry and wet states. Because plasticizer leached from polymeric films during exposure to the aqueous medium, plasticization of wet Eudragit RS and RL films with 15% triethyl citrate (TEC or diethyl phthalate (DEP resulted in less elongation. DEP might be the plasticizer of choice among the plasticizers examined in this study for Eudragit RL to provide muFDDSs with a short time for all pellets to float (TPF and a longer period of floating. Eudragit RL and RS at a 1∶1 ratio plasticized with 15% DEP were optimally selected as the coating membrane for the floating system. Although the release of losartan from the pellets was still too fast as a result of losartan being freely soluble in water, muFDDSs coated with Eudragit RL and RS at a 1∶1 ratio might have potential use for the sustained release of water-insoluble or the un-ionized form of drugs from gastroretentive drug delivery systems.

  17. Eco-nano composite films containing copper as potential antimicrobial active packaging

    Energy Technology Data Exchange (ETDEWEB)

    Bruna, Julio E.; Gonzalez, Valeska; Rodriguez, Francisco; Guarda, Abel; Galotto, Maria Jose, E-mail: julio.bruna@usach.cl [Center for the Development of Nanoscience and Nanotechnology, Packaging Laboratory, University of Santiago de Chile. Santiago (Chile)

    2011-07-01

    The antimicrobial efficiency of Cellulose Acetate/MMTCu and Chitosan/MMTCu nano composites against Escherichia Coli 0157:H7 n/t has been studied in the present work. The MMT modified with copper were obtained using cation interchange in solution and the nano composites films were prepared using casting solution technique, being the biodegradable polymer (Cellulose Acetate or Chitosan) the main component and the montmorillonite modified with copper, the minority component. Characterization of MMTCu and the nano composites (CA/MMTCu and Ch/MMTCu), were carried out using XRD, AA, TGA, DSC and microbiological analysis. The nano composites showed to be more stable at higher temperature, resulting from the incorporation of MMTCu into the polymer. On the other hand, the results indicated that the antibacterial effect of nano composite increased with the proportion of MMTCu added. (author)

  18. Design guidelines for advanced LSI microcircuit packaging using thick film multilayer technology

    Science.gov (United States)

    Peckinpaugh, C. J.

    1974-01-01

    Ceramic multilayer circuitry results from the sequential build-up of two or more layers of pre-determined conductive interconnections separated by dielectric layers and fired at an elevated temperature to form a solidly fused structure. The resultant ceramic interconnect matrix is used as a base to mount active and passive devices and provide the necessary electrical interconnection to accomplish the desired electrical circuit. Many methods are known for developing multilevel conductor mechanisms such as multilayer printed circuits, welded wire matrices, flexible copper tape conductors, and thin and thick-film ceramic multilayers. Each method can be considered as a specialized field with each possessing its own particular set of benefits and problems. This design guide restricts itself to the art of design, fabrication and assembly of ceramic multilayer circuitry and the reliability of the end product.

  19. VACUUM PACKAGING IS EFFICIENT TO REMOVE ASTRINGENCY AND TO MAINTAIN THE FIRMNESS OF ‘GIOMBO’ PERSIMMON

    Directory of Open Access Journals (Sweden)

    MARIANA FERRAZ MONTEIRO

    Full Text Available ABSTRACT The aim of this study was to develop a simple technique to remove astringency and maintain the pulp firmness of ‘Giombo’ persimmons. Fruit were packaged in three different plastic packages: low-density polyethylene (LDPE, polypropylene (PP and polyethylene-polyamide (PE-PA. Packages with dimensions of 30 cm x 50 cm and 20 µm thickness were sealed under vacuum. Fruit uncovered in plastic film were used as control samples. After packaging, fruits were stored at ambient conditions (22°C and 70% RH for five days. After this period, fruits were removed from the package and kept at the same previous conditions for six days and evaluated every two days. All plastic packages showed effectiveness in removing astringency, but only PE-PA maintained pulp firmness during the six days after package removal. LDPE and PP films also caused reduction of astringency while pulp firmness was properly maintained until the fourth day. These two films did not succeed in obtaining vacuum, which was only achieved by PE-PA. PE-PA reduces astringency faster and maintains fruit firmness for a longer time at room temperature.

  20. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China

    OpenAIRE

    Qiaofei Liu; Yu Chen; Weiwei Li; Yang Liu; Juan Han; Xiaoxia Wen; Yuncheng Liao

    2016-01-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and...

  1. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  2. Two hardening mechanisms in single crystal thin films studied by discrete dislocation plasticity

    NARCIS (Netherlands)

    Nicola, L; Van der Giessen, E; Needleman, A

    2005-01-01

    thermal stress in single crystal thin films on a rigid substrate are used to study size effects. The relation between the residual stress and the dislocation structure in the films after cooling is analyzed using dislocation dynamics. A boundary layer characterized by a high stress gradient and a hi

  3. Active packaging using ethylene absorber to extend shelf-life

    Energy Technology Data Exchange (ETDEWEB)

    Ponce, Patricia; Carbonari, Guilherme L.R.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: patponce@iq.usp.br, e-mail: guilacaz@uol.com.br, e-mail: ablugao@ipen.br

    2009-07-01

    Ethylene gas is a plant hormone which is produced by fruits and vegetables during ripening and it is also found in the environment. It plays an essential role in normal ripening, but excessive exposure can radically reduce the shelf-life of the product, in some cases inducing undesirable reactions such as development of bitter flavors and loss of chlorophyll (yellowing of greens). The objectives of our work were: to test an active packaging of polyvinyl alcohol (PVA) for apple stored; to test the effect of ethylene absorber agent, impregnated in plastic film, to reduce decay of fresh apple; to study the influence of radiation on the barrier properties, mechanical properties and biodegradability of PVA films. This study evaluated the effect of coating produced from PVA and polyol (glycerol and sorbitol) as plasticizer on apple conservation (75 deg F (24 deg C); 70%RH). The coated product was analyzed for mass loss, color alterations and fungi. The PVA films were produced by casting process (dehydration of a filmogenic solution on Petriplastic dishes) and were irradiated at low doses of 2, 5 and 10 kGy, commonly used in food irradiation. The resulting films were transparent and homogeneous. The active packaged fruits presented higher acceptance, lower microbiological growth, less alterations in acidity, lower weight loss rate during the storage time and an extended shelf-life as compared to the control fruits (without plastic films). (author)

  4. Active film of poly(vinyl chloride)/silver: synthesis, characterization and evaluation as antimicrobial active packaging; Filme ativo de poli(cloreto de vinila)/prata: sintese, caracterizacao e avaliacao como embalagem ativa antimicrobiana

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Lilian R.; Rangel, Ellen T.; Machado, Fabricio, E-mail: lilianrodribraga@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF, (Brazil)

    2015-07-01

    The antimicrobial films based on poly(vinyl chloride) (PVC) mediated silver (1, 2, 4 and 8 wt%) were evaluated as antimicrobial active packaging using the casting method. The structure of the active films was characterized by SEM, EDX-XRF, XRD, FTIR and TG. FTIR spectra confirmed the PVC-Ag interaction due to the presence of new bands at 1745 cm{sup -1} and 1165 cm{sup -1} bands, which are absent in the PVC control. The FRX-EDX spectrum confirmed the presence of silver ions in all the films. TG and SEM results showed that the increased concentration of silver provided an improved thermal stability and presence of pores in the active films, respectively. Antimicrobial activity was evaluated by disk diffusion method for Bacillus subtilis, Fusarium solani and Apergillus niger, which proved the efficiency of the films active. (author)

  5. Deposition and thermal characterization of nano-structured aluminum nitride thin film on Cu-W substrate for high power light emitting diode package.

    Science.gov (United States)

    Cho, Hyun Min; Kim, Min-Sun

    2014-08-01

    In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.

  6. Roll-to-roll gravure with nanomaterials for printing smart packaging.

    Science.gov (United States)

    Jung, Minhun; Kim, Junseok; Koo, Hyunmo; Lee, Wookyu; Subramanian, Vivek; Cho, Gyoujin

    2014-02-01

    Roll-to-roll (R2R) gravure is considered one of the highest throughput tools for manufacturing inexpensive and flexible ubiquitous IT devices called "smart packaging" in which NFC (near-field communication) transponder, sensors, ADC (analog-to-digital converter), simple processor and signage are all integrated on paper or plastic foils. In this review, we show R2R gravure can be employed to print smart packaging, starting from printing simple electrodes, dielectrics, capacitors, diodes and thin film transistors with appropriate nanomaterial-based inks on plastic foils.

  7. Improvement of application properties of chitosan-based food packaging films by lavender essential oil%薰衣草精油改善壳聚糖基食品包装膜的应用品质

    Institute of Scientific and Technical Information of China (English)

    张赟彬; 王景文; 李月霞; 王一非; 姜萍萍; 刘笑宇

    2014-01-01

    为改善现有壳聚糖基食品包装膜的机械性能和防水性能,该文使用浇铸-蒸发-碱浸法制备了添加薰衣草精油的壳聚糖基复合膜。采用红外光谱、X 射线衍射对膜进行了表征,并分析了薰衣草精油添加量对膜的厚度、机械性质、可挥发物质量分数、接触角、水溶性、溶胀性等性质的影响。结果表明:薰衣草精油成分占据了壳聚糖骨架中的部分官能团的位置,降低了壳聚糖分子中共价键的振动强度,同时膜中可以与水形成亲水键的自由 H基团减少,膜的含水量降低。薰衣草精油的添加,增大了膜中壳聚糖乙酸盐的含量。膜的厚度和薰衣草精油添加量并不成线性关系,所得膜的厚度范围为(20.60±0.34)~(23.35±0.65)μm。随着薰衣草精油添加量的增加,膜的拉伸强度和断裂伸长率的变化趋势基本相同。当薰衣草精油添加量为8%时,拉伸强度和断裂伸长率都达到最大值,分别为(123.44±0.33) MPa和3.74%±0.02%。与壳聚糖膜相比,薰衣草精油/壳聚糖复合膜的的可挥发物质量分数较低,薰衣草精油添加量为2%时,可挥发物质量分数最低,为8.98%±0.05%。薰衣草精油的添加,增大了膜的溶解性,但膜在水中的溶解度均不大于(1.21±0.04) mg/100 g,属于难溶物质范畴。膜的接触角和溶胀指数都随薰衣草精油添加量的增加而减小,即当薰衣草精油添加量为10%时,膜的接触角和溶胀指数都达到最大值,分别为80.73°±0.32°和0.62±0.01。薰衣草精油的加入改善了由浇铸-蒸发-碱浸法制备的CS基复合膜的机械性质和物理性质。研究结果为薰衣草精油/壳聚糖复合膜的生产和应用提供了技术依据。%Ecological and environmental issues caused by traditional plastic packaging materials, and increasing food safety awareness have resulted in alternative packaging materials. Chitosan (CS) is a

  8. Clostridium botulinum Toxin Production in Relation to Spoilage of Atlantic Salmon (Salmo salar) Packaged in Films of Varying Oxygen Permeabilities and with Different Atmospheres.

    Science.gov (United States)

    Erickson, Marilyn C; Ma, Li M; Doyle, Michael P

    2015-11-01

    Shelf life of fish packaged under modified atmosphere (MA) is extended, but within the United States, commercial application of MA with impermeable packaging films is restricted due to concerns that botulinum toxin production would precede spoilage when contaminated fish are held at abusive storage temperatures. Use of semipermeable packaging films has been advocated; however, previous studies are inconclusive in determining the oxygen transmission rate (OTR) of a film that is needed to achieve an acceptable margin of safety (i.e., toxin production occurs only after spoilage). This study was conducted to determine the influence of OTR (target OTRs of 3 to 15,000) on the development of spoilage volatiles and toxin in salmon inoculated with type E Clostridium botulinum and subjected to air, vacuum, or 75:25 CO2:N2 MA and storage temperatures of 4, 8, 12, or 16°C. The most dominant headspace volatile peak that was produced during spoilage of samples at 4, 8 or 12°C was a peak, having a Kovats retention index (KI) of 753, and at which external standards of 2- or 3-methyl 1-butanol also eluted. Under anaerobic conditions, both the aerobic microbial populations and the size of the KI 753 spoilage peak were less in inoculated samples compared with uninoculated samples. C. botulinum-inoculated samples that were stored at 12 or 16°C under conditions favorable for anaerobic growth were also characterized by a KI 688 peak. Using a previously developed model that related the percentage of elderly consumers who would prepare a sample having the KI 753 spoilage peak of a specific size, it was determined that for salmon packaged with 3 or 3,000 OTR films under any atmosphere and stored at 12 or 16°C, 2 to 61% of the consumers could potentially prepare toxin-contaminated samples. Hence, when abusive storage conditions are suspected, the fish should not be consumed.

  9. Application of plastic trash sorting technology in separating waste plastic mulch films from impurities%塑料垃圾分选技术在废旧地膜与杂质分离中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    石鑫; 牛长河; 乔园园; 张海春; 王学农

    2016-01-01

    Plastic film mulching technique has been using widely in China because of it’s notable features such as raising temperature,inhibiting weed growth,promoting crop maturity and increasing production. A large number of used plastic mulch films which have not be recycled and accumulated in the soil year after year and results serious waste plastic mulch film pollution. Recycled waste plastic mulch films twined each other with other impurities and makes the mulch film utilization becomes difficult. Some recycled waste plastic mulch films has been stacked or burned on field ridge freely which leads secondary pollution.Thus, the waste plastic mulch film pollution problems should be cracked from it’s beginning.Agricultural waste plastic mulch film and impurities separation technology is key links during mechanized mulch films recycling and reusing. Waste plastic mulch film as a valuable renewable resource and be important part of plastic production which comes from waste plastic mulch film by separation process. Effective recycling and reusing of waste plastic mulch film can improve economic benefits and even what’s more is that it can decrease the secondary pollution probability which caused by improper waste plastic mulch film handling. Some documents shows that the thickness of plastic mulch film used in foreign countries is generally above 0.12mm which keep the tensile strength of plastic mulch film be good enough and promote the rolling recycling machine development.Waste plastic mulch film is clean and complete which recycled by rolling recycling machine and it can be reused directly.At present, there is no relevant report about technology and equipment for waste plastic mulch film separation at abroad.The thickness of the plastic mulch film used generally in China between 0.004-0.008mm which leads the tensile strength not good enough after harvesting season and can not be recycled by rolling way. The only way which can recycling waste plastic mulch film by

  10. 1,3-dichloropropene and chloropicrin emissions following simulated drip irrigation to raised beds under plastic films.

    Science.gov (United States)

    Ashworth, D J; Luo, L; Xuan, R; Yates, S R

    2010-08-01

    Using laboratory soil chambers a nonscaled representation of an agricultural raised bed was constructed. For a sandy loam soil, 1,3-dichloropropene (1,3-D) and chloropicrin (CP) were applied at 5 cm depth with an excess of water (simulated drip irrigation). Application was made under both high density polyethylene (HDPE) and virtually impermeable film (VIF) covering the soil bed (the furrow was left uncovered). Soil gas distribution of the fumigants, together with emissions into the headspace above the bed, sidewall and furrow were determined over time. Total emissions from the HDPE treatment were cis 1,3-D 28%, trans 1,3-D 24%, and CP 8%. Due to its lower permeability, the values for VIF were 13%, 7%, and 1.5%, respectively. With HDPE, the majority (86-93%) of the emissions occurred from the bed, while for VIF the majority (92-99%) of the emissions was from the furrow. Compared to a range of literature values for shank injection, the use of drip application appears to offer a benefit in reducing 1,3-D and CP emissions. However, the most meaningful comparison is with our previous data for simulated shank injection where the same soil was covered (completely) with the same plastic films (1). In this comparison, only 1,3-D emissions under HDPE were lower with drip application; 1,3-D emissions under VIF and CP emissions under both films were greater with the drip application.

  11. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly.

  12. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.

    Science.gov (United States)

    Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna

    2016-10-01

    The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

  13. Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit.

    Science.gov (United States)

    Miao, Lixiang; Zhang, Yuchao; Yang, Xiaofang; Xiao, Jinping; Zhang, Huiqin; Zhang, Zuofa; Wang, Yuezhi; Jiang, Guihua

    2016-09-15

    The influence of colored light-quality selective plastic films (red, yellow, green, blue, and white) on the content of anthocyanin, the activities of the related enzymes and the transcripts of the flavonoid gene was studied in developing strawberry fruit. The results indicated that colored films had highly significant effects on the total anthocyanin content (TAC) and proportions of individual anthocyanins. Compared with the white control film, the red and yellow films led to the significant increase of TAC, while the green and blue films caused a decrease of TAC. Colored film treatments also significantly affected the related enzyme activity and the expression of structural genes and transcription factor genes, which suggested that the enhancement of TAC by the red and yellow films might have resulted from the activation of related enzymes and transcription factor genes in the flavonoid pathway. Treatment with red and yellow light-quality selective plastic films might be useful as a supplemental cultivation practice for enhancing the anthocyanin content in developing strawberry fruit.

  14. 马铃薯大棚套黑膜覆盖栽培技术%Planting Potato Using Black Plastic Film Mulching in an Anti-fogging Agricultural Plastic Film Covered Tunnel

    Institute of Scientific and Technical Information of China (English)

    林长治

    2013-01-01

    Potato has become a main crop in winter cropping system in Changle, but due to differences in cultivation, management and variation in annual climate conditions, potato yield and quality vary to a large extent. Planting potato using black plastic film mulching combined with drip irrigation under the mulching for fertigation in an anti-fogging agricultural plastic film covered tunnel provides potato a stable entironments for growth, and thereby increasing yield and quality of potato. Also by using this technique, potato could be marketed more than a month earlier. Therefore, the profit could be increased for potato farmers.%马铃薯已成为长乐市冬季农业生产的主要作物,但由于栽培技术与管理水平差异,年际气候变化较大,产量和品质也大不相同。马铃薯大棚套黑膜覆盖栽培技术通过构建温室大棚覆盖塑料无滴膜,起垄播种后覆盖黑色地膜,膜下铺设灌溉和施肥用的滴灌带等方法,为马铃薯生长发育提供了一个相对稳定的生态环境,可有效地提高马铃薯的产量和品质,且比露地栽培提早一个多月上市,稳定增加农户种植效益。

  15. Paper-Thin Plastic Film Soaks Up Sun to Create Solar Energy

    Science.gov (United States)

    2006-01-01

    A non-crystallized silicon known as amorphous silicon is the semiconductor material most frequently chosen for deposition, because it is a strong absorber of light. According to the U.S. Department of Energy, amorphous silicon absorbs solar radiation 40 times more efficiently than single-crystal silicon, and a thin film only about 1-micrometer (one one-millionth of a meter) thick containing amorphous silicon can absorb 90 percent of the usable light energy shining on it. Peak efficiency and significant reduction in the use of semiconductor and thin film materials translate directly into time and money savings for manufacturers. Thanks in part to NASA, thin film solar cells derived from amorphous silicon are gaining more and more attention in a market that has otherwise been dominated by mono- and poly-crystalline silicon cells for years. At Glenn Research Center, the Photovoltaic & Space Environments Branch conducts research focused on developing this type of thin film solar cell for space applications. Placing solar cells on thin film materials provides NASA with an attractively priced solution to fabricating other types of solar cells, given that thin film solar cells require significantly less semiconductor material to generate power. Using the super-lightweight solar materials also affords NASA the opportunity to cut down on payload weight during vehicle launches, as well as the weight of spacecraft being sent into orbit.

  16. Filme plástico perfurado em túneis baixos cultivados com alface Perforated plastic film for low tunnels cultivated with lettuce

    Directory of Open Access Journals (Sweden)

    José E. B. A. Monteiro

    2002-12-01

    Full Text Available O objetivo deste trabalho foi avaliar as condições micrometeorológicas no interior de túneis baixos cultivados com alface, através da perfuração do filme plástico, técnica utilizada para melhorar a ventilação no interior dos túneis, porém ainda pouco conhecida. Assim, foram testados túneis sem e com cultura de alface, com 0, 5, 10, 15 e 20% de área de filme perfurada e, também, um canteiro sem túnel, durante a primavera. As variáveis meteorológicas utilizadas para a avaliação dos tratamentos foram temperatura e umidade relativa do ar, verificando-se que, quanto maior o percentual de perfuração, menor a elevação da temperatura no interior do ambiente protegido e maior a perda de umidade para o ambiente exterior. A produção obtida nos ambientes protegidos foi maior e de melhor qualidade.The present work was carried out with the objective to evaluate the micrometeorological conditions inside low tunnels cultivated with lettuce. A technique used to improve the ventilation inside the tunnels is the perforation of the plastic film, though still not very well known. Therefore, tunnels were tested without and with lettuce crop, with 0, 5, 10, 15 and 20% of perforated film area and in soil without tunnel, during spring. The meteorological variables used for the evaluation of the treatments were temperature and relative humidity of air. It was verified that the elevation of the temperature inside the protected atmosphere was inversely related to percentage of perforation contrary to the humidity loss for the external atmosphere. The production obtained under protected conditions was higher and of better quality.

  17. Plastic-film Mulching in Different Periods for Lanzhou Lily Production and Soil Temperature and Humidity Influence%不同时期覆膜对兰州百合产量及土壤温湿度的影响

    Institute of Scientific and Technical Information of China (English)

    徐学军; 魏桂琴

    2012-01-01

    在兰州百合种植区进行秋覆膜、顶凌覆膜和不覆膜3种栽培模式试验,结果表明,在兰州百合生长的每一个生育期,株高、茎粗、叶长、叶宽、根重均是秋覆膜(A)〉顶凌覆膜(B)〉不覆膜(CK);0~20cm土壤含水量、土壤温度不同生育时期秋覆膜、顶凌覆膜均高于传统不覆膜栽培;百合鳞茎产量秋覆膜栽培较传统不覆膜栽培高21.2%,顶凌覆膜栽培较传统不覆膜栽培高4.5%。%In autumn plastic-film mulching,plastic-film mulching topling and no plastic-film mulching three cultivation patterns test in Lanzhou lily growing areas,the experimental results show that the growth in Lanzhou lily every growth period,the plant height,stem diameter,leaf length,leaf width and weight of root,of all is an.autumn plastic-film mulching〉b.topling〉CK.No plastic-film mulching;0-20 cm soil moisture,soil temperature of plastic-film mulching topling and autumn plastic-film mulching are higher than the traditional non-plastic-film mulching cultivation in different growth periods.Lily bulb production with autumn plastic-film mulching with a more traditional cultivation no coated high 21.2%,plastic-film mulching top ling with a more traditional cultivation no laminating high 4.5%.

  18. 不同地膜覆盖方式在果树生产中的应用%Application of Different Plastic Film Mulching in Fruit Tree Production

    Institute of Scientific and Technical Information of China (English)

    李红波; 陶增姣; 李海东; 辛燕; 路瑾瑾; 祝秋平; 郑禾

    2016-01-01

    Aiming to investigate the application of different plastic film mulching methods in the production of fruit trees,in the paper, the author applied the application of different plastic film mulching (ordinary plastic film, non-woven cloth and cloth) is used as the material. The result showed that the ordinary plastic film mulching short-term cost savings, but to the pollution of the environment larger; non-woven cloth pollution automatic degradation, but actual service life is short;gardening cloth durable, long term saving production cost, the best overall performance.%本研究旨在探讨不同地膜覆盖方式在果树生产上的应用。以不同地膜覆盖(普通塑料地膜、无纺布地布和园艺地布)为材料,在果树生产上进行应用。结果表明:普通塑料地膜覆盖短期节约成本,但对环境污染较大;无纺布地布无污染可自动降解,但实际使用寿命较短;园艺地布经久耐用,长期来看节约生产成本,综合表现最好。

  19. Nano-Floating Gate Memory Devices Composed of ZnO Thin-Film Transistors on Flexible Plastics

    Directory of Open Access Journals (Sweden)

    Park Byoungjun

    2011-01-01

    Full Text Available Abstract Nano-floating gate memory devices were fabricated on a flexible plastic substrate by a low-temperature fabrication process. The memory characteristics of ZnO-based thin-film transistors with Al nanoparticles embedded in the gate oxides were investigated in this study. Their electron mobility was found to be 0.18 cm2/V·s and their on/off ratio was in the range of 104–105. The threshold voltages of the programmed and erased states were negligibly changed up to 103 cycles. The flexibility, memory properties, and low-temperature fabrication of the nano-floating gate memory devices described herein suggest that they have potential applications for future flexible integrated electronics.

  20. Flexible photodiodes constructed with CdTe nanoparticle thin films and single ZnO nanowires on plastics.

    Science.gov (United States)

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2011-10-14

    We construct a flexible pn heterostructured photodiode using a CdTe nanoparticle thin film and a single ZnO nanowire (NW) on a plastic substrate. The photocurrent characteristics of the flexible photodiode are examined under illumination with 325 nm wavelength light and the photocurrent efficiencies at bias voltages of ± 2.5 V are estimated to be 8.0 and 2.1 µA W(-1) under forward and reverse bias conditions, respectively. The photocurrent generation of the pn heterostructured photodiode is dominantly associated with the transport of the photogenerated charge carriers in the single ZnO NW. Furthermore, the operations of our flexible photodiode are investigated in the upwardly and downwardly bent states, as well as in the flat state.

  1. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.

    Science.gov (United States)

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2017-01-01

    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability.

  2. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  3. Prediction of water vapor transport rates across polyvinylchloride packaging systems using a novel radiotracer method

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.W.; Mulski, M.J.; Kuu, W.Y. (Baxter Healthcare Corporation, Round Lake, IL (USA))

    1990-09-01

    A radiotracer method is used to study the transport properties of water vapor in polyvinylchloride (PVC), a plastic commonly used in the packaging of parenteral solutions. Water vapor transport across a PVC film appears to be Fickian in nature. Using the steady-state solution of Fick's second law and the permeability coefficient of water vapor across the PVC film obtained using the described method, the predicted water vapor transport rate (WVTR) for a parenteral solution packaged in PVC is in reasonable agreement with actual WVTR as determined by weight loss under precisely controlled conditions.

  4. Post-annealing-free, room temperature processed nanocrystalline indium tin oxide thin films for plastic electronics

    Science.gov (United States)

    Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo

    2016-06-01

    In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.

  5. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    Science.gov (United States)

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  6. Incorporating Zataria multiflora Boiss. essential oil and sodium bentonite nano-clay open a new perspective to use zein films as bioactive packaging materials.

    Science.gov (United States)

    Kashiri, Mahboobeh; Maghsoudlo, Yahya; Khomeiri, Morteza

    2017-10-01

    Active zein films with different levels of Zataria multiflora Boiss. essential oil were produced successfully. To enhance properties of this biopolymer for food packaging applications, sodium bentonite clay was used at two levels (2 and 4%). The results indicated that the addition of Z. multiflora Boiss. essential oil caused a reduction in tensile strength and Young's modulus and slight increase in the percent of elongation at break of the films. Maximum solubility in water and water vapor permeability was observed by incorporation of 10% Z. multiflora Boiss. essential oil in the zein matrix. Transmission electron microscopy micrographs of zein film were verified by the exfoliation of the layers of sodium bentonite clay in the zein matrix. Stronger films with lower water vapor permeability and water solubility were evident of good distribution of sodium bentonite clay in the zein matrix. According to the results, 2% sodium bentonite clay was selected for evaluation of nano active film properties. Water vapor permeability, UV light barrier, tensile strength, and Young's modulus values of active films were improved by incorporation of 2% sodium bentonite clay. The antibacterial activity of different contents of Z. multiflora Boiss. essential oil in vapor phase demonstrated that use of Z. multiflora Boiss. essential oil in the liquid phase was more effective than in vapor phase. The antibacterial zein-based films showed that active zein film with 5 and 10% Z. multiflora Boiss. essential oil had reductions of 1.68 log and 2.99 log, respectively, against Listeria monocytogenes and 1.39 and 3.07 log against Escherichia coli. Nano active zein film containing 10% Z. multiflora Boiss. essential oil and 2% sodium bentonite clay showed better antibacterial properties against L. monocytogenes (3.23 log) and E. coli (3.17 log).

  7. 绿豆覆膜栽培效应研究%The Effect of Plastic Film Mulching on Mung Bean

    Institute of Scientific and Technical Information of China (English)

    赵雪英; 卢成达; 张泽燕; 张耀文

    2014-01-01

    在绿豆鼓粒期,选取晴朗无云天气,对不同覆膜方式处理下的绿豆进行光合指标采集,结合成熟期与绿豆产量有关的表型性状,研究不同地膜覆盖方式对绿豆产量的影响。结果表明:地膜覆盖能增温、保湿、保持养分、增加光效。用140 cm渗水地膜覆盖处理的绿豆持绿度高,叶片叶绿素含量明显高于露地平播(对照),净光合速率高,干物质积累时间长,绿豆产量有明显增加。140 cm渗水地膜覆盖绿豆产量2691 kg/hm2,较露地平播和窄幅地膜处理分别增加了20.9%和6.3%。%In order to study the effect of plastic film mulching dealt with different way on mung bean yield, the author chose the cloudless fine weather to measure the photosynthetic indexes in the seed filling period of mung bean, and measured the phenotypic traits relating to mung bean yield in the mature period. The results showed that the plastic film mulching could increase soil temperature, retain moisture, keep nutrient, and increase photosynthetic efficiency, the mung bean had higher green degree, net photosynthetic rate, and its chorophyll content was significantly higher than no-covered (contrast), so its photosynthetic matter accumulation time was long, the yield had obviously increased. The mung bean yield was 2691 kg/hm2 with 140 cm water-osmosis plastic membrane covered, which increased by 20.9%to no-covered and 6.3%to narrow membrane treatment.

  8. Water vapor permeability, mechanical, optical and sensorial properties of plasticized guar gumedible films

    Science.gov (United States)

    Edible films were prepared by casting method using guar gum and glycerol in different ratios. The concentration of guar gum was 1.0, 1.5 and 2.0% whereas glycerol concentration was 20, 30 and 40% (w/v). The water vapor permeability (WVP), mechanical properties (tensile strength and elongation), thic...

  9. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    CERN Document Server

    Tanaka, T; Shinohara, M; Takagi, T

    2002-01-01

    Application of pulsed high negative voltage (approx 10 mu s pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N sub 2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N sub 2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron mic...

  10. Utilização de diferentes filmes plásticos como cobertura de abrigos para cultivo protegido = Use of different greenhouses plastic film as cover

    Directory of Open Access Journals (Sweden)

    José Weselli de Sá Andrade

    2011-07-01

    Full Text Available O presente projeto foi desenvolvido na Faculdade de Engenharia – Unesp, Campus de Ilha Solteira, no município de Ilha Solteira, Estado de São Paulo. Estudou-se o comportamento do ambiente em duas condições de ambiente protegido, com cobertura plástica do solo e em solo nu. Avaliaram-se as médias, por quinquídio, dos valores médios,máximos e mínimos diários de temperatura e umidade relativa do ar. As médias, por quinquídio, dos: valores médios diários de déficit de saturação de vapor d’água; dos totais diários de densidade de fluxo de radiação; das transmitâncias à radiação, em cada abrigo e asregressões lineares para estimativa dos totais diários de radiação no interior dos abrigos, em função do total diário de radiação em campo aberto. O ambiente protegido reduziu em relação ao campo aberto a densidade de fluxo de radiação solar, com maior intensidade, no abrigo coberto com filme plástico térmico difusor de luz. O maior efeito dos abrigos ocorreu sobre as temperaturas máximas, tendo maiores valores a estufa coberta com filme de polietileno convencional. Não ocorreram diferenças para umidade relativa do ar entre as estufas. O mulching plástico preto aumentou a temperatura do solo a 6 e 12 cm de profundidade.This project was developed in the Faculty of Engineering - Unesp, Campus of Ilha Solteira, in the municipality of Ilha Solteira – São Paulo State. We studied the environmental behavior under two conditions of protected environment, with plastic covering the soil and bare soil. It was evaluated the quinquidial averages, averages values, maximum and minimum daily temperature and relative humidity; quinquidial averages of the daily average values of deficiency of saturation of water vapor; the density of total daily flow of radiation; from transmission to radiation in each shelter and the linear regressions to estimate the total daily radiation inside the shelter, according to the daily total

  11. Application of Quality by Design (QbD) Principles to Extractables/Leachables Assessment. Establishing a Design Space for Terminally Sterilized Aqueous Drug Products Stored in a Plastic Packaging System.

    Science.gov (United States)

    Jenke, Dennis

    2010-01-01

    The concept of quality by design (QbD) reflects the current global regulatory thinking related to pharmaceutical products. A cornerstone of the QbD paradigm is the concept of a design space, where the design space is a multidimensional combination of input variables and process parameters that have been demonstrated to provide the assurance of product quality. If a design space can be established for a pharmaceutical process or product, then operation within the design space confirms that the product or process output possesses the required quality attributes. This concept of design space can be applied to the safety (leachables) assessment of drug products manufactured and stored in packaging systems. Critical variables in such a design space would include those variables that affect the interaction of the drug product and its packaging, including (a) composition of the drug product, (b) composition of the packaging system, (c) configuration of the packaging system, and (d) the conditions of contact. This paper proposes and justifies such a leachables design space for aqueous drug products packaged in a specific plastic packaging system. Such a design space has the following boundaries:Aqueous drug products with a pH in the range of 2 to 8 and that contain no polarity-impacting agents such as organic solubilizers and stabilizers (addressing variable a). Packaging systems manufactured from materials that meet the system's existing material specifications (addressing variable b). Nominal fill volumes from 50 to 1000 mL (addressing variable c). Products subjected to terminal sterilization and then stored at room temperature for a period of up to 24 months (addressing variable d). The ramification of such a design space is that any drug product that falls within these boundaries is deemed to be compatible with the packaging system, from the perspective of safety, without the requirement of supporting drug product testing. When drug products are packaged in plastic

  12. Reciclagem de embalagens plásticas flexíveis: contribuição da identificação correta Flexible plastic packaging recycling: the contribution of the correct identification

    Directory of Open Access Journals (Sweden)

    Leda Coltro

    2013-01-01

    , folha de alumínio, é proposta a inclusão da identificação destes materiais na embalagem.Packages have high rotation as they become municipal solid waste just after the consumption of the product. Therefore, packages should be labeled with identification of the material they are made of in order to help the recycling chain. Many products made from plastics show a resin identification code - usually from 1 to 7 inside a three-arrow triangle above a monogram - aimed at identifying the type of plastic the product is made of, and help its separation and later recycling. In other words, one aims to facilitate recovery of plastics discarded with the municipal solid waste. In this study we collected data on the resin identification code in flexible plastic packages to assess whether the guidelines for material identification are being followed. The data collection was performed in a total of 509 flexible plastic packages used for packing food and non-food products available in the Brazilian market. Even though the NBR 13230 Brazilian standard is already in its second revision, the resin identification code in plastic packages is still used in a very heterogeneous fashion. Approximately 50% of the packages had the resin identification code. Up to 30% of some packages showed incorrect material identification code. Therefore, misinformation still occurs in the Brazilian market concerning the type of material for plastic packaging - including lack of the resin identification code and incorrect form of identification code in the plastic packaging. Both of these problems have negative effects on the plastic recycling chain. We propose that other materials used in flexible plastic packages, e.g. aluminum foil, should also be identified, in order to make the separation and recycling easier.

  13. Evaluation of element migration from food plastic packagings into simulated solutions using radiometric method; Avaliacao da migracao de elementos de embalagens plasticas de alimentos para solucoes simulantes pelo metodo radiometrico

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Eufemia Paez [Escola SENAI ' Fundacao Zerrenner' , Sao Paulo, SP (Brazil)]. E-mail: vlcastro@dialdata.com.br; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mitiko@ipen.br; Wiebeck, Helio [Sao Paulo Univ., SP (Brazil). Escola Politecnica]. E-mail: hwiebeck@usp.br

    2005-07-01

    In the present study a radiometric method was established to determine the migration of elements from food plastic packagings to a simulated acetic acid solution. This radiometric method consisted of irradiating plastic samples with neutrons at IEA-R1 nuclear reactor for a period of 16 hours under a neutron flux of 10{sup 12} n cm{sup -2} s{sup -1} and, then to expose them to the element migration into a simulated solution. The radioactivity of the activated elements transferred to the solutions was measured to evaluate the migration. The experimental conditions were: time of exposure of 10 days at 40 deg C and 3% acetic acid solution was used as simulated solution, according to the procedure established by the National Agency of Sanitary Monitoring (ANVISA). The migration study was applied for plastic samples from soft drink and juice packagings. The results obtained indicated the migration of elements Co, Cr and Sb. The advantage of this methodology was no need to analyse the blank of simulantes, as well as the use of high purity simulated solutions. Besides, the method allows to evaluate the migration of the elements into the food content instead of simulated solution. The detention limits indicated high sensitivity of the radiometric method. (author)

  14. 49 CFR 175.706 - Separation distances for undeveloped film from packages containing Class 7 (radioactive) materials.

    Science.gov (United States)

    2010-10-01

    ... packages containing Class 7 (radioactive) materials. 175.706 Section 175.706 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF... (radioactive) materials. No person may carry in an aircraft any package of Class 7 (radioactive)...

  15. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Characterization of integrated circuit packaging materials

    CERN Document Server

    Moore, Thomas

    1993-01-01

    Chapters in this volume address important characteristics of IC packages. Analytical techniques appropriate for IC package characterization are demonstrated through examples of the measurement of critical performance parameters and the analysis of key technological problems of IC packages. Issues are discussed which affect a variety of package types, including plastic surface-mount packages, hermetic packages, and advanced designs such as flip-chip, chip-on-board and multi-chip models.

  17. Processing and characterization of extruded zein-based biodegradable films

    Science.gov (United States)

    Wang, Ying

    The objectives of this study were to prepare biodegradable zein films by extrusion processing and to evaluate relevant physical properties of resulting films with respect to their potential as packaging materials. The manufacture of protein-based packaging films by extrusion has remained a challenge. In this study, a zein resin was prepared by combining zein and oleic acid. This resin was formed into films by blown extrusion at the bench-top scale. Resin moisture content and extruder barrel temperature profile were identified as major parameters controlling the process. The optimum temperature of the blowing head was determined to be 40--45°C, while optimum moisture at film collection was 14--15%. Physico-chemical properties of the extruded products were characterized. Extruded products exhibited plastic behavior and ductility. Morphology characterization by SEM showed micro voids in extruded zein sheets, caused by entrapped air bubbles or water droplets. DSC characterization showed that zein was effectively plasticized by oleic acid as evidenced by the lowered glass transition temperature of zein films. X-ray scattering was used to investigate changes in zein molecular aggregation during processing. It was observed that higher mechanical energy treatment progressively disrupted zein molecular aggregates, resulting in a more uniform distribution of individual zein molecules. With the incorporation of oleic acid as plasticizer and monoglycerides as emulsifier, zein formed structures with long-range periodicity which varied depending on the formulation and processing methods. Processing methods for film formation affected the binding of oleic acid to zein with higher mechanical energy treatment resulting in better interaction between the two components. The moisture sorption capacity of extruded zein films was reduced due to the compact morphology caused by extrusion. Plasticization with oleic acid further reduced moisture sorption of zein films. The overall

  18. Current Situation ,Problems and Solutions of Plastic Film Utility in Gansu Province%甘肃省农膜利用现状和存在问题及解决途径

    Institute of Scientific and Technical Information of China (English)

    冯海

    2012-01-01

      甘肃是一个地膜覆盖栽培大省,地膜已经覆盖不同农作区及不同作物,随着地膜应用量和使用年限不断增加,农用地膜大量残留于土壤中,地膜降解速度缓慢,加上残膜的回收利用率低,土壤中残膜不断增加,造成土壤污染,导致农作物产量下降,耕地质量变劣。通过对甘肃省农用地膜利用现状分析,指出残膜对农业生态环境和农作物产生的危害,提出了农田残膜回收的对策和措施。%  Gansu is a major province of plastic film mulching area ,where the different farming areas and crops had been covered with plastic film .With the increasing amount and years of plastic film applications ,a large number of agricultural plastic film remained in the soil ,while slow degradation and low utilization rate of plastic film caused the increasing of residual plastic film ,as a result ,soil was polluted and crop yield decreased .The harm of residual plastic film for agro-ecological environment and crops were pointed out ,and the countermeas-ures and advice of recycling residual plastic film were proposed through the analysis of utilization status of plas-tic film in Gansu province .

  19. Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates

    Science.gov (United States)

    Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad

    2015-02-03

    The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

  20. Evaluation of chemical elements migration from food packaging plastics into food; Avaliacao da migracao de elementos quimicos das embalagens plasticas para alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Adriana M.; Fulfaro, Roberto; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Supervisao de Radioquimica

    2000-07-01

    This work presents results of As, Cd, Co, Cr, Sb, Se, Sn, and Zn obtained in the analysis of plastics from food packing materials by instrumental neutron activation analysis. The radiometric method was also applied to evaluate the migration of Co and Sb from the plastic into the food simulant. The possible sources of the toxic elements in plastic materials and the advantages of radiometric method in the migration evaluation are discussed. (author)

  1. 邻苯二甲酸二(2-乙基己基)酯在广式腊肠中的迁移特性%Migration of plasticizer di-2-ethylhexyl phthalate from PVC packaging material into cured meat

    Institute of Scientific and Technical Information of China (English)

    陈海光; 肖乃玉; 刘朝霞; 谭贵良; 刘垚

    2011-01-01

    利用增塑剂DEHP的皂化反应,采用膜/肉接触的比色管模式和气相色谱法,研究了温度、时间、脂肪含量和加工方式等因素对PVC膜中的增塑剂DEHP向广式腊肠迁移的影响。结果表明:随着温度的升高,时间的延长,脂肪含量的增加,DEHP向肉中的迁移量均会增大;在紫外照射、微波辐射和高温蒸煮等条件下,DEHP的迁移量也会增加,其中微波辐射的作用较为明显,如微波照射18 s后,DEHP的迁移量高达189.3342 mg/kg,紫外光照射48 h后,迁移量是173.5921 mg/kg。同时研究了DEHP迁移溶出后,PVC%The migration of plasticizer di-2-ethylhexyl phthalate(DEHP)existing in food packaging PVC film into Guangdong style sausage(GSS),was studied by the saponification reaction of DEHP,and the influence of temperature,time,fat content and processing method was also investigated by using the model of colorimetric tube of film/meat contact.The results indicated that the higher the temperature,the longer the time and the more the fat content,the faster the migration was.It showed that ultraviolet irradiation and microwave heating could enhance the migration of DEHP from PVC film into meat.After microwave heating for 18 s,the amount of migration of DEHP was 189.3342 mg/kg,while the amount of migration of DEHP was 173.5921 mg/kg after ultraviolet irradiation for 48 h.PVC film mechanical properties,and penetration of oxygen and moisture were studied after migration of plasticizer DEHP from PVC into GSS.It was observed that with the transfer of DEHP the power of pulling and breaking changed in PVC film,and the transfer of air and moisture distinctly decreased.

  2. 残膜回收机械化技术在和静县的示范推广应用%Demonstration and application of plastic film recovery mechanization technology in Hejing County

    Institute of Scientific and Technical Information of China (English)

    冉亚平

    2013-01-01

      残膜对农业生产和生态环境造成了严重的污染,实施机械化回收残膜技术,减少“白色污染”,提出了残膜回收机在作业中存在的问题及措施建议。%  Plastic film for agricultural production and ecological environment caused serious pollution, the implemen-tation of mechanized recycling plastic film technology to reduce "white pollution", plastic film recycling machine existing problems in the job and measures recommended.

  3. Filmes de amidos de mandioca modificados para recobrimento e conservação de uvas

    Directory of Open Access Journals (Sweden)

    Suellen Laís Vicentino

    2011-01-01

    Full Text Available In this article, films were produced with six types of cassava's starch mixed with gelatin and plasticized with sorbitol. These films were used in covering of grapes 'Benitaka' (Vitis vinifera L. as biodegradable packaging. The acetylated starch film showed the best results in solubility, thickness and homogeneity, besides the less water loss the fruit, resulting in better coverage, increasing the shelf life fruits in 12 days. These results demonstrate the great potential of using films in food conservation, adding value to agricultural activity and helping to reduce non-biodegradable plastics in the environment.

  4. Comparison of surface emissions and subsurface distribution of cis- and trans-1,3-dichloropropene and chloropicrin in sandy field beds covered with four different plastic films.

    Science.gov (United States)

    Ou, Li-Tse; Thomas, John E; Allen, L Hartwell; Vu, Joseph C; Dickson, Donald W

    2008-06-01

    The purpose of this study was to conduct a field study at a Florida field site on surface emissions and subsurface distribution of cis-and trans-1,3-dichloropropene (1,3-D) and chloropicrin (CP) in raised beds injected with Telone C35 with four replications. A total of 16 beds were applied with Telone C35 by chisel injection and covered with four different plastic films, 4 beds for each film. Each bed was installed with five 20-cm long soil pore air probes and a surface air collection pan at arbitrarily locations along the length of each bed for sampling soil pore air and surface air, respectively, for analysis of the three biologically active compounds, cis- and trans-1,3-D and CP. We found that average concentrations of the three compounds at 20-cm depth among the beds covered with four different plastic films generally were not statistically different. Among the four beds covered with the same plastic film, average concentrations of the three compounds were statistically different only in the four metallic PE covered beds at 5 and 24 hours after injection. Volatilization rates of the three compounds among the beds covered with four different plastic films, with the exception of CP at 48 hours after injection, were not statistically different. It appeared that initial upward diffusion and volatilization flux were influenced by solar radiation. Initial subsurface concentrations of the three compounds and volatilization flux, especially cis-1,3-D, were greater in the beds on the east side of the field than that in the beds on the west side of the field. Whether or not difference in initial subsurface concentrations of the compounds between east side beds and west side beds may influence fumigant efficacy remains to be determined.

  5. Effect of Manufacturing Stresses to Die Attach Film Performance In Quad Flatpack No-Lead Stacked Die Packages

    Directory of Open Access Journals (Sweden)

    M. F. Rosle

    2009-01-01

    Full Text Available Problem statement: Repeated heat cure during assembly processes affected the Die Attach Film (DAF material properties and the effectiveness touched area that leads to weak die bonding and delamination. Suitable die attached condition and DAF material selection had been evaluated to achieve required reliability performance in the manufacturing of the 3D Quad Flat No-Lead (QFN stacked die package. Approach: During this study, special attention was given to the development of the residual stresses due to mismatch in the coefficients of thermal expansion of different DAF materials. Both experimental and finite element method were employed to gain a better understanding in a stress development induced between two different type of DAF, different die attach temperature and during the manufacturing process. Differential scanning calorimetry (DSC was used to measure the changes of heat flow characteristics for both types of DAF. The die bond strength results measured using shear testing machine were compared with the finite element method prediction. Results: Although both DAF samples achieved good reliability performance and passed the Moisture Sensitivity Level 3 test (MSL3 at reflow 260°C without any sign of delamination, numerical simulation had demonstrated that the stress development were increased exponentially as the die attach temperature increased. It showed that different DAF gave different values of stresses but presented the same trend which the lowest die attached temperature (100°C in comparison with 125°C and 150°C gave more stress to the die and possibility that the die will have weak adhesion to the substrate was high. Conclusions/Recommendations: Therefore for this case, stress can be relieved by having higher die attached temperature with an adequate bonding force and time, however die attached temperature for both DAF must be used above the glass transition temperature (128°C for DAF A and 165°C for DAF B and being controlled

  6. Design of Width Automatic Control System of Triple Extrusion Plastic Film%三层共挤农膜幅宽自动控制系统设计

    Institute of Scientific and Technical Information of China (English)

    苗汇静; 任益芳; 宋吉江; 徐秀美

    2012-01-01

    In order to improve the level of automation of large blow molding equipment, and to manufacture the production of Large width plastic film, the hreadth automatic control system of triple extrusion plastic film has been designed. The system uses a master-slave MCU control, mainly consisted of the ultrasonic distance measurement device and fan control devices. Ultrasonic sensors are used to measure the distance from the ultrasonic probe to the plastic bubble film. And the MCU is used to calculate the width of plastic film by programming. Then, by comparing the width reached by the MCU with the standard width, it controls the fan speed. By adjusting the speed of into fan and exhaust fan, achieve the purpose of controlling the width of plastic film. Using the method of ultrasonic cycle reflection measures the ultrasonic distance. Using humanoid intelligent control algorithm adjusts the fan speed. There are many control modes, for Plastic film of 10~ 20m in width. It achieves real-time control and precise width control. The test results show that the system control precision is high.%为提高大型吹塑设备自动化水平,实现大型幅宽农膜生产制备,设计了三层共挤农膜幅宽自动控制系统;该系统采用主从单片机控制,主要由超声波测距装置和风机控制装置组成;用超声波传感器测出超声探头至泡膜的距离,通过单片机编程算出农膜幅宽,和标准幅宽比较,去控制风机转速;通过调节进风机和排风机的转速,达到控制农膜幅宽的目的;超声波测距采用超声波循环反射测量法,风机调速采用仿人智能控制算法,将控制分为多个模态,以实现l0~20m农膜幅宽的实时控制和精确控制;试验结果表明,控制精度较高.

  7. The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale

    Directory of Open Access Journals (Sweden)

    Huang Yongli

    2011-01-01

    Full Text Available Abstract Nanoindentation creep and loading rate change tests were employed to examine the rate sensitivity (m and hardness of nanocrystalline tetragonal Ta films. Experimental results suggested that the m increased with the decrease of feature scale, such as grain size and indent depth. The magnitude of m is much less than the corresponding grain boundary (GB sliding deformation with m of 0.5. Hardness softening behavior was observed for smaller grain size, which supports the GB sliding mechanism. The rate-controlling deformation was interpreted by the GB-mediated processes involving atomic diffusion and the generation of dislocation at GB.

  8. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  9. Progress in the development of gas-impregnated lapped plastic film insulation

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E B; McNerney, A J; Muller, A C; Rigby, S J

    1977-01-01

    A flexible superconducting power transmission cable is under development. The electrical insulation consists of lapped polymeric film tapes impregnated with supercritical helium. Ways of satisfying the many constraints on the material were described. Although the cable is intended for low-temperature operation good electrical and mechanical characteristics are needed at room-temperature. Results are given for both small-sample tests and a model cable fabricated commercially. The results are compared with those obtained by other workers and the design of the next test cable is given.

  10. Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils.

    Science.gov (United States)

    Salarbashi, Davoud; Tajik, Sima; Shojaee-Aliabadi, Saeedeh; Ghasemlou, Mehran; Moayyed, Hamid; Khaksar, Ramin; Noghabi, Mostafa Shahidi

    2014-03-01

    An active edible film from soluble soybean polysaccharide (SSPS) incorporated with different concentrations of Zataria multiflora Boiss (ZEO) and Mentha pulegium (MEO) essential oils was developed, and the film's optical, wettability, thermal, total phenol and antioxidant characteristics were investigated, along with their antimicrobial effectiveness against Staphylococcus aureus, Bacillus cereus, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella typhimurium. The film's colour became darker and more yellowish and had a lower gloss as the levels of ZEO or MEO were increased. Antioxidant activity of the films was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric-reducing antioxidant power assays. DPPH was reduced in the range of 19.84-74.12% depending on the essential oil type and concentration. Film incorporated with 3% (v/v) ZEO showed the highest DPPH radical scavenging activity and ferric reducing antioxidant power (IC50=4188.60±21.73mg/l and EC50=8.86±0.09mg/ml, respectively), compared with the control and MEO added film. Films containing ZEO were more effective against the tested bacteria than those containing MEO. S. aureus was found to be the most sensitive bacterium to both ZEO or MEO, followed by B. cereus and E. coli. A highest inhibition zone of 387.05mm(2) was observed for S. aureus around the films incorporated with 3% (v/v) ZEO. The total inhibitory zone of 3% (v/v) MEO formulated films was 21.98 for S. typhimurium and 10.15mm(2) for P. aeruginosa. Differential scanning calorimetry (DSC) analysis revealed a single glass transition temperature (Tg) between 16 and 31°C. The contact angle increased up to 175% and 38% as 3% (v/v) of ZEO or MEO used: it clearly shows that films with ZEO were more hydrophobic than those with MEO. The results showed that these two essential oils could be incorporated into SSPS films for food packaging.

  11. The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications.

    Science.gov (United States)

    Azlin-Hasim, Shafrina; Cruz-Romero, Malco C; Cummins, Enda; Kerry, Joseph P; Morris, Michael A

    2016-01-01

    Commercial low-density polyethylene (LDPE) films were UV/ozone treated and coated using a layer-by-layer (LbL) technique by alternating the deposition of polyethyleneimine (PEI) and poly(acrylic acid) (PAA) polymer solutions and antimicrobial silver (Ag). The effects of the initial pH of the PEI/PAA polymer solutions alternating layers (pH 10.5/4 or 9/6.5) on the antimicrobial activity of the developed LbL coatings combined with Ag against Gram-negative and Gram-positive bacteria were investigated. The results from fourier transform infrared spectroscopy and toluidine blue O assay showed that LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 10.5/4 significantly increased the presence of carboxylic acid groups and after Ag attachment the coating had higher antimicrobial activity against both Gram-negative and Gram-positive bacteria compared to the LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 9/6.5. The LDPE LbL coated films using non-modified pH PEI/PAA polymer solutions decreased the water contact-angle indicating an increased hydrophilicity of the film, also increased the tensile strength and roughness of LDPE LbL coated films compared to uncoated LbL samples. The LDPE LbL coated films attached with Ag(+) were UV/ozone treated for 20 min to oxidise Ag(+) to Ag(0). The presence of Ag(0) (Ag nanoparticles (NPs)) on the LDPE LbL coated films was confirmed by XRD, UV-vis spectrophotometer and colour changes. The overall results demonstrated that the LbL technique has the potential to be used as a coating method containing antimicrobial Ag NPs and that the manufactured films could potentially be applied as antimicrobial packaging.

  12. Effect of compound plasticizer on zein films%复合增塑剂对玉米醇溶蛋白膜性能的影响

    Institute of Scientific and Technical Information of China (English)

    马立娜; 李桂娟; 李娜娜; 秦立福; 康海杨

    2012-01-01

    以木糖醇和甘油为复合增塑剂制备出木糖醇/甘油/玉米醇溶蛋白膜.通过TGA、扫描电镜、红外光谱及电子织物强力机研究玉米醇溶蛋白膜的热性能、微观结构及力学性能.结果表明:在160℃之前膜性能稳定,与纯玉米醇溶蛋白膜相比,添加复合增塑剂后玉米醇溶蛋白膜表面产生了多孔结构,随木糖醇含量增加孔洞结构有增大的趋势,抗拉强度略有下降,伸长率有所提高.%Xylitol/glycerol/zein film were produced with xylitol/glyc-erol as a compound plasticizer. Microstructure,mechanical properties and thermal stability of xylitol/glycerol/zein film were studied. The thermal properties of xylitol/zein film were stable below 160℃,there was holes in zein film which contained xylitol and glycerol. the tensile strength of xylitol/glycerot/zein film is lower than the tensile strength of pure zein film, but the elongation at break of the xylitol/ glycerol/zein film was higher than the elongation at break of pure zein film.

  13. STUDY CONCERNING THE INFLUENCE OF CERTAIN HYDROPHILIC AUXILIARIES ON THE PROPERTIES OF THE PLASTICIZED POLYVINYL CHLORIDE POROUS FILMS Part II-HYGIENIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    BĂLĂU MÎNDRU Tudorel

    2015-05-01

    Full Text Available The purpose of this paper was to obtain certain PVC films with improved hygienic properties, with applications both in the artificial leather industry and in other domains. This was done by introducing certain hydrophilic auxiliaries with free chemical functions into the chemical structure of the PVC films, such as: collagen hydrolysates (CH, hydroxyl-terminated polydimethylsiloxane (HTPDMS and nonylphenol ethoxylate (NPE. The use of these hydrophilic auxiliaries combined with the action of the high frequency electric fields (H.F.E.F. allows the attainment of cellular structures where the walls of the cells obtained from the expanding process display an enhanced humidity absorption. The collagen hydrolysates used to obtain the plasticized PVC porous films was obtained by electrolytic hydrolysis starting from Chamois leather powder waste resulting from buffing operation, according to a methodology described in a previous paper. The first part of this study was concerned with the influence of the addition of hydrophilic agents upon the moisture sorption of the plasticized PVC porous films. In this paper, there was investigated the water vapour and air permeability as well as the water vapour absorption of the porous films expanded in the H.F.E.F. in correlation with the nature and the recipe variant of the hydrophilic auxiliaries. The results highlighted the fact that the use of certain combinations of hydrophilic agents led to obtaining materials with adequate hygienic properties.

  14. Recent developments of ion beam induced luminescence: radiation hardness study of thin film plastic scintillators

    Science.gov (United States)

    Quaranta, Alberto

    2005-10-01

    Ion beam induced luminescence (IBIL) measurements have been performed on thin film scintillators based on polyvinyltoluene (PVT) and 6FDA-DAD and BPDA-3F polyimides with H+ (1.85 MeV) and He+ (1.8-2.2 MeV) ion beams. The radiation hardness of the undoped polymers has been verified to depend mainly on the deposited energy density, polyimides exhibiting a higher resistance with respect to PVT. In PVT a new fluorescence band, attributed to the radical precursors of the network crosslinking, has been observed. The efficiency of doped polymers degradates with a higher rate, depending on the dye intrinsic lability. At high radiation fluences, the relative efficiency to NE102 of doped polyimides scintillators increases owing to the intrinsic host improved resistance.

  15. Drying Mechanisms in Plasticized Latex Films: Role of Horizontal Drying Fronts.

    Science.gov (United States)

    Divry, V; Gromer, A; Nassar, M; Lambour, C; Collin, D; Holl, Y

    2016-07-14

    This article presents studies on the drying kinetics of latexes with particles made progressively softer by adding increasing amounts of a plasticizer, in relation to speeds of horizontal drying fronts and particle deformation mechanisms. Global drying rates were measured by gravimetry, and speeds of the horizontal fronts were recorded using a video camera and image processing. Particle deformation mechanisms were inferred using the deformation map established by Routh and Russel (RR). This required precise measurements of the rheological properties of the polymers using a piezorheometer. The results show that latexes with softer particles dry slowly, but in our systems, this is not due to skin formation. A correlation between global drying rates and speeds of horizontal fronts could be established and interpreted in terms of the evolution of mass transfer coefficients of water in different areas of the drying system. The speeds of the horizontal drying fronts were compared with the RR model. A remarkable qualitative agreement of the curve shapes was observed; however, the fit could not be considered good. These results call for further research efforts in modeling and simulation.

  16. Effects of plastic-film mulching and nitrogen application on forage-oriented maize in the agriculture-animal husbandry ecotone in North China

    Institute of Scientific and Technical Information of China (English)

    Xiong DU; Xiuju BIAN; Weihong ZHANG; Fucun YANG; Lifeng ZHANG

    2008-01-01

    To counter the actual problems of forage shortage and low quality existing in the agriculture-animal husbandry ecotone in North China,a research was conducted to study the effects of plastic-film mulching and nitrogen application on the production of forageoriented maize with the aim of producing water-saving forage with high-yield and good quality.Field experiments combined with laboratory experimental estimation and analysis was adopted.Plastic-film mulching increased the dry biomass of forage-oriented maize by 23.8% with effectively improving the maize's nitrogen absorption so that the apparent utilization ratio and output-input ratio of nitrogen were enhanced.The content of crude protein in maize plant was increased and thus,forage nutritive quality was improved.Plastic-film mulching remodeled the maize field water consumption scheduling pattern and increased the water use efficiency by over 10%.Nitrogen application to forage-oriented maize co-improved the biomass and the nutritive quality with the nutritive matter (percentage and yield) several times of the biomass.Nitrogen application increased maize biomass production by 36.1%-39.5% and it increased the contents of crude protein and crude fat in maize plant by 109% and 145%,respectively.The yields of the two nutritive matters increased by 160% and 210%.Nitrogen application at the were considered as the most proper rates to guarantee high yield and good quality of forage-oriented maize and were the rates to keep the available nitrogen balanced in the soil.Plastic-film mulching and nitrogen fertilizer application to forage-oriented maize was an effective way of producing forage with high yield and good quality,relieving the shortage of animal forage and acceleratingecological recovery and economic development in this ecotone in North China.

  17. Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package

    Science.gov (United States)

    Connolly, J.; Valdramidis, V. P.; Byrne, E.; Karatzas, K. A.; Cullen, P. J.; Keener, K. M.; Mosnier, J. P.

    2013-01-01

    A plasma source, sustained by the application of a floating high voltage (±15 kV) to parallel-plate electrodes at 50 Hz, has been achieved in a helium/air mixture at atmospheric pressure (P = 105 Pa) contained in a zip-locked plastic package placed in the electrode gap. Some of the physical and antimicrobial properties of this apparatus were established with a view to ascertain its performance as a prototype for the disinfection of fresh produce. The current-voltage (I-V) and charge-voltage (Q-V) characteristics of the system were measured as a function of gap distance d, in the range (3 × 103 ⩽ Pd ⩽ 1.0 × 104 Pa m). The electrical measurements showed this plasma source to exhibit the characteristic behaviour of a dielectric barrier discharge in the filamentary mode and its properties could be accurately interpreted by the two-capacitance in series model. The power consumed by the discharge and the reduced field strength were found to decrease quadratically from 12.0 W to 4.5 W and linearly from 140 Td to 50 Td, respectively, in the range studied. Emission spectra of the discharge were recorded on a relative intensity scale and the dominant spectral features could be assigned to strong vibrational bands in the 2+ and 1- systems of N2 and N_2^+ , respectively, with other weak signatures from the NO and OH radicals and the N+, He and O atomic species. Absolute spectral intensities were also recorded and interpreted by comparison with the non-equilibrium synthetic spectra generated by the computer code SPECAIR. At an inter-electrode gap of 0.04 m, this comparison yielded typical values for the electron, vibrational and translational (gas) temperatures of (4980 ± 100) K, (2700 ± 200) K and (300 ± 100) K, respectively and an electron density of 1.0 × 1017 m-3. A Boltzmann plot also provided a value of (3200 ± 200 K) for the vibrational temperature. The antimicrobial efficacy was assessed by studying the resistance of both Escherichia coli K12 its isogenic

  18. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau

    Science.gov (United States)

    Lin, Wen; Liu, Wenzhao; Xue, Qingwu

    2016-12-01

    To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage.

  19. [Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic film mulching cultivation].

    Science.gov (United States)

    Zhang, Yi; Lü, Shi-Hua; Ma, Jing; Xu, Hua; Yuan, Jiang; Dong, Yu-Jiao

    2014-03-01

    A field experiment was conducted to assess the effect of controlled release fertilizer on N2O emission in paddy field under plastic film mulching cultivation (PM) with water-saving irrigation. Results showed that in the rice growing season, cumulative N2O emissions from the plots applied with urea (PM+U) and with controlled release fertilizer (PM+CRF) were (38.2 +/- 4.4) and (21.5 +/- 5.2) mg N x m(-2), respectively. The N2O emission factors were 0.25% and 0.14% in the treatments PM+U and PM+CRF, respectively. The controlled release fertilizer decreased the total N2O emission by 43.6% compared with urea, of which 49.6% was reduced before the drying period. It also reduced the peak of N2O emission by 52.6%. However, it did not affect soil microbial biomass N and soil NH(4+)-N content at any rice growing stage, and grain yield either. No significant correlation was observed between N2O flux and soil Eh or soil temperature at the depth of 5 cm.

  20. Food packaging and radiation sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoko [Division of Food Additives, National Institute of Health Sciences, Tokyo (Japan)

    1998-12-31

    Radiation sterilization has several merits that it is a positively effective sterilization method, it can be used to sterilize low heat-resistant containers and high gas barrier films, and there is no possibility of residual chemicals being left in the packages. It has been commercially used in `Bag in a Box` and some food containers. The {gamma} ray and an electron beam are commonly used in radiation sterilization. The {gamma} ray can sterilize large size containers and containers with complex shapes or sealed containers due to its strong transmission capability. However, since the equipment tends to be large and expensive, it is generally used in off production lines. On the other hand, it is possible to install and electron beam system on food production lines since the food can be processed in a short time due to its high beam coefficient and its ease of maintenance, even though an electron beam has limited usage such as sterilizing relatively thin materials and surface sterilization due to the weak transmission. A typical sterilization dose is approximately 10-30 kGy. Direct effects impacting packaging materials, particularly plastics, include scission of polymer links, cross-linkage between polymers, and generating radiolysis products such as hydrogen, methane, aliphatic hydrocarbons, etc. Furthermore, under the existence of oxygen, the oxygen radicals generated by the radiation will oxidize and peroxidize polymer chains and will generate alcohol and carbonyl groups, which shear polymer links, and generate oxygen containing low molecular compounds. As a result, degradation of physical strength such as elongation and seal strength, generating foreign odor, and an increase in global migration values shown in an elution test are sometimes evident. The food packages have different shapes, materials, additives, number of microorganisms and purpose. Therefor the effects of radiation, the optimum dose and so on must be investigated on the individual package. (J.P.N.)

  1. Yield Potential of Soil Water and Its Sustainability for Dryland Spring Maize with Plastic Film Mulch on the Loess Plateau

    Science.gov (United States)

    Lin, Wen; Liu, Wenzhao

    2016-04-01

    Plastic film mulch(PM) is an agronomic measure widely used in the dryland spring maize production system on the Loess Plateau of China. The measure can greatly increase yield of dryland maize due to its significant effects on soil water conservation. Few researches have been done to investigate how the yield potential is impacted by PM. The yield-water use (ET) boundary equation raised by French and Schultz provides a simple approach to calculate crop water limited yield potential and gives a benchmark for farmers in managing their crops. However, method used in building the equation is somewhat arbitrary and has no strict principle, which leads to the uncertainty of equation when it is applied. Though using PM can increase crop yield, it increases soil temperature, promotes crop growth and increases the water transpired by crop, which further leads to high water consumption as compared with crops without PM. This means that PM may lead to the overuse of soil water and hence is unsustainable in a long run. This research is mainly focused on the yield potential and sustainability of PMing for spring maize on the Loess Plateau. A principle that may be utilized by any other researchers was proposed based on French & Schultz's boundary equation and on part of quantile regression theory. We used a data set built by collecting the experimental data from published papers and analyzed the water-limited yield potential of spring maize on the Loess Plateau. Moreover, maize yield and soil water dynamics under PM were investigated by a long-term site field experiment. Results show that on the Loess Plateau, the water limited yield potential can be calculated using the boundary equation y = 60.5×(x - 50), with a platform yield of 15954 kghm-2 after the water use exceeds 314 mm. Without PMing, the water limited yield potential can be estimated by the boundary equation y = 47.5×(x - 62.3) , with a platform yield of 12840 kghm-2 when the water use exceeds 325 mm, which

  2. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China.

    Science.gov (United States)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-01-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  3. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China

    Science.gov (United States)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-01-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions. PMID:27329934

  4. Energy balance analysis on the pyrolysis process of aluminum-plastic package waste%铝塑包装废物热解过程能量平衡分析

    Institute of Scientific and Technical Information of China (English)

    宋薇; 岳东北; 刘建国; 姚远; 聂永丰

    2012-01-01

    Pyrolysis is an efficient way in the separation of the organics and Al in aluminum-plastic packaging waste.The experiment was performed in a fixed bed reactor heated externally to investigate the trend of mass and energy transfer.The results show that:(1) the optimal temperature for the pyrolysis of aluminum-plastic packaging waste is 723~773 K;(2) the energy recycled is much more than that of pyrolysis required;(3) the net energy recycle rate is 62%~63%.%热解是实现铝塑包装废物中有机物和金属铝分离的有效方法。利用外热式固定床反应系统对其进行热解实验,研究热解时物质与能量流向的变化趋势。结果表明:(1)铝塑包装废物最佳热解温度为723~773 K;(2)热解产生的可回收能量远大于反应所需能量,可以实现热解系统的自供热;(3)铝塑包装废物热解的净能源回收效率为62%~63%。

  5. 我国残膜回收机研究现状及建议%Present Situation of Research on Plastic Film Residue Collector in China and Some Suggestions

    Institute of Scientific and Technical Information of China (English)

    李明洋; 马少辉

    2014-01-01

    Plastic film covers are important in the Chinese agricultural production .The coverage area has reached over ten millions hectares .Plastic film covers application greatly improves the production of crops , With the increase of plastic film application amounts , the residue of mulching plastic film in the field become more and more .These residual film has caused serious white pollution on cultivated land and villages .In order to recover the remnant film better and reduce the white pollution .This paper describes the present situation of plastic film residue collector in China and the working prin -ciple of several typical plastic film residue collector .At last put forward some suggestions on the future development of plastic film residue collector .%地膜已成为我国农业生产中广泛应用的物质材料之一,我国应用地膜技术的土地多达1000万 hm2多。地膜的应用大大提高了农作物的产量,但是随着废膜越来越多的残留,对耕地、村庄造成了严重的白色污染。为此,阐述了我国残膜回收机研究的现状和几种典型残膜回收机的工作原理,并对未来残膜回收机的发展提出了建议。

  6. Polysaccharide-Based Membranes in Food Packaging Applications.

    Science.gov (United States)

    Ferreira, Ana R V; Alves, Vítor D; Coelhoso, Isabel M

    2016-01-01

    Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.

  7. Polysaccharide-Based Membranes in Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Ana R. V. Ferreira

    2016-04-01

    Full Text Available Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.

  8. Polysaccharide-Based Membranes in Food Packaging Applications

    Science.gov (United States)

    Ferreira, Ana R. V.; Alves, Vítor D.; Coelhoso, Isabel M.

    2016-01-01

    Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications. PMID:27089372

  9. Method of forming a package for MEMS-based fuel cell

    Science.gov (United States)

    Morse, Jeffrey D; Jankowski, Alan F

    2013-05-21

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  10. Polyhydroxyalkanoates (PHA) Bioplastic Packaging Materials

    Science.gov (United States)

    2010-05-01

    Center CEFPACK - Center for Flexible Packaging CAEFF - Center for Advanced Engineering Films and Fibers T cr - recrystallization temperature...conditions. The tandem line has 1½” primary extruder with a Barr ET screw and a pineapple mixing tip. The gas inject is about 2/3 of the way down the...stretch and shrink film, the equipment at the Center for Flexible Packaging (CEFPACK) and the Center for Advanced Engineering Films and Fibers (CAEFF) at

  11. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    Energy Technology Data Exchange (ETDEWEB)

    Zemljic, Lidija Fras, E-mail: lidija.fras@uni-mb.si [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Tkavc, Tina [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Vesel, Alenka [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Sauperl, Olivera [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The adsorption/desorption of chitosan onto PET plastic film was studied. Black-Right-Pointing-Pointer Chitosan was reversible attached onto PET plastic films. Black-Right-Pointing-Pointer Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  12. 废旧无菌复合包装材料铝塑分离技术研究进展%Research Progress of Separation Technology of Aluminum-plastic in Aseptic Composite Packaging

    Institute of Scientific and Technical Information of China (English)

    张素风; 梅星贤; 张璐璐

    2012-01-01

    The amount of waste aluminum-plastic composite packaging, which contains a large number of high quality fibers and aluminumplastic materials increases year by year. In the present paper, separation technologies of aluminum-plastic composites in the world were reviewed. The principle and processes of various separation approaches, such as separation with solvent, electrical separation and Argon electrolysis were analyzed and compared. Finally the existing problem of efficient separation and recycling as well as future research directions of aluminum-plastic composite were discussed.%文章综述了国内外铝塑分离技术的研究进展,分析和比较了溶剂法、高压静电分离、氩气电解等技术的基本原理和工艺过程等特点;指出铝塑高效分离再利用存在的问题及铝塑分离技术的未来研究方向.

  13. Edible Film from Jack Bean Flour for Use as an Antioxidative Packaging Incorporating Extract of Green Tea

    Directory of Open Access Journals (Sweden)

    Triana Lindriati

    2015-01-01

    Full Text Available Addition of green tea’s extract in edible film’s matrix will improve film’s functionality. The film will has antioxidant properties and can protect food from rancidity and discoloration. In this research film based component was jack bean flour which has high content of carbohydrate and protein. The film had good mechanical and physical characters. The aim of this research was studying effect of green tea’s extract addition on phenolic, tannin concentration and antioxidant  activity of edible film. Extract of green tea was prepared with variation of temperature (28oC, 50oC and 100oC. The result showed that increasing of extraction temperature would increase phenolic content, tannin concentration and antioxidant  activity. When green tea extracted at 100oC phenolic concentration was 144.179 mg/g, tannin  was 50.345 mg/g and antioksidant activity was 58.8% (DPPH inhibition. After the extract was incorporated in to edible film, total phenolic concentration of film was 113.544 mg/g, tannin was 41.842 mg/g and antioxidant activity was 45.22%. Edible film with green tea addition, showed ability in inhibiting rancidity of peanut oil whereas peroxide value and TBA (Thio Barbituric Acid number of peanut oil was 11.5 meq O2/kg and 0.13 ml/g after edible film immersion in 5 days. Peroxide value and TBA number of peanut oil without edible film immersion was 20.3 meq O2/kg and 0.32 ml/g.

  14. 49 CFR 173.60 - General packaging requirements for explosives.

    Science.gov (United States)

    2010-10-01

    ...) through either design of the packaging or of the article, or both. (11) Plastic packagings may not be able... 49 Transportation 2 2010-10-01 2010-10-01 false General packaging requirements for explosives. 173...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1...

  15. Potential of polymeric materials for packaging; L'impiego dei materiali polimerici nell'imballaggio

    Energy Technology Data Exchange (ETDEWEB)

    Lanchi, M. [ENEA, Divisione Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    Packaging preserves different kind of materials, from raw materials, and it plays an important role in the presentation of the products to the market, too. That's why packaging should be in charge of responding to marketing requirements by means of a proper design, effective colour choice and material, etc. Nowadays packaging is becoming more and more important in different fields. In Italy, it is a rapid growth of the packaging market and the companies involved are very competitive and efficient, in particular in some market segments. Concerning the application fields it can be asserted that packaging is mostly exploited in the food market which represents the 65% of the whole packaging market. Nearly all types of packaging use plastics as a part of their construction: lightness, chemical inertness, corrosion resistance, molding attitude, the good transparency to light, sound and mechanical insulation, etc. Focusing the attention to the horticultural market, growth in South of Italy in particular, examples of promising research fields to date are: developing of good barrier performance films; developing of suitable modified atmosphere packaging; developing of active plastic films, such as antimicrobic films or antioxidant films. The large amount of plastic films used for packaging create a large waste problem. This can be reduced by: optimising packaging design, avoiding the excessive use of plastics; improvising strength, moisture and heat stability per unit weight in order to reduce plastic waste volume; developing blend of plastics and bio-based polymer in order to increase the biodegradability of packaging after use. [Italian] L'imballaggio e' un prodotto adibito a contenere e a proteggere determinate merci, dalle materie prime ai prodotti finiti, a consentire la loro manipolazione e ad assicurare la loro presentazione. E' una realta' importante del mondo della produzione, delle strutture distributive e della vita quotidiana. Nell

  16. 可食性甲基纤维素包装膜的制备及其应用%Preparation of edible methylcellulose packaging films and their applications

    Institute of Scientific and Technical Information of China (English)

    肖乃玉; 陈雪君; 庄永沐; 丘苑新; 柳建良

    2015-01-01

    以甲基纤维素(MC)为成膜基质,通过添加聚乙烯醇-400(PEG-400),并辅以氯化钙(CaCl2)等物料,利用甲基纤维素的分子结构特点以及其他添加物质的性能构效关系,流延制得可食性生物基甲基纤维素包装膜;在单因素试验的基础上,以甲基纤维素、PEG-400和 CaCl2添加量为试验因素,以包装膜的拉伸强度为响应指标,根据 Box-Benhnken 中心组合设计原理设计三因素三水平的响应面分析试验,探索出了甲基纤维素包装膜的最佳工艺配方。将所得膜用于鹰嘴桃保鲜中,通过定期对鹰嘴桃的维生素 C 值、酸度值、糖度值进行测定,并以鹰嘴桃感官评分为基础,进行鹰嘴桃的鲜度分析,与空白组和聚乙烯(PE)保鲜膜对照,结果发现,用甲基纤维素膜包裹鹰嘴桃时可将鹰嘴桃的货架期延长4.5天。%The biological and edible package film was prepared using methylcellulose as substrate,by adding PEG-400,supplemented with CaCl2 and other materials,utilizing methylcellulose molecular structure characteristics and the performance of the other additive substance structure-activity relationship. Response surface analysis test with three factors and three levels was designed according to Box-Benhnken center composite design principle using methylcellulose,PEG-400 and CaCl2 as test factors and tensile strength of the packaging film as response index on single factor experiment basis. The interaction between factors was discussed,and the optimum technical formula for methylcellulose packaging film was obtained. Furthermore,the Yingzui peach fresh-keeping effect using the resulted film was studied through regular of vitamin C ,sugar content,acidity value of the three fresh degree index,and the Yingzui peach sensory score based. The results showed that the methylcellulose packaging film can effectively isolate invasion pathways of external factor,exchang the respiratory gases

  17. INVESTIGATION OF SANITARY-HYGIENIC CHARACTERISTICS OF MULTILAYER POLYMER FILMS USED FOR VACUUM PACKAGING MODIFIED BY NATIVE ANTIMICROBIAL COMPONENTS

    Directory of Open Access Journals (Sweden)

    O. B. Fedotova

    2016-01-01

    Full Text Available The results of the research works related to investigation of sanitary-hygienic characteristics of multilayer polymer film materials where the inner layer contacting directly with food product is modified by native antimicrobial components.

  18. Functional properties of chitosan-based films.

    Science.gov (United States)

    Leceta, I; Guerrero, P; de la Caba, K

    2013-03-01

    Chitosan-based films plasticized with glycerol were prepared by casting with the aim to obtain environmentally friendly materials for packaging applications. Different contents of glycerol were incorporated into chitosan solutions to improve mechanical properties and all films obtained were flexible and transparent. It was observed that the transparency and good behaviour of the films against UV radiation were not affected by chitosan molecular weight or glycerol content. Moreover, chitosan-based films exhibited excellent barrier properties against water vapour and oxygen, even with the addition of glycerol. The effect of the plasticizer on the properties has been explained using Fourier transform infrared (FTIR) spectroscopic analysis. The changes observed in the intensity of the bands showed that glycerol interacts with chitosan, which could be confirmed by total soluble matter (TSM). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effect of plastic film mulching on the grain filling and hormonal changes of maize under different irrigation conditions.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Plastic film mulching (PM is widely utilized for maize production in China. However, the effect of PM on the grain yield of crops has not been established, and the biochemical mechanism underlying the increase or decrease in grain yield under PM is not yet understood. Grain filling markedly affects the grain yield. The objective of this study was to investigate the effects of PM on maize grain filling under different irrigation levels and the relationship of such effects with hormonal changes. In the present study, PM was compared with traditional nonmulching management (TN under 220 mm, 270 mm and 320 mm irrigation amount, and the grain filling characters of the grains located in various parts of the ear and the hormonal changes in the grains were measured. The results indicated that at 220 mm irrigation, PM significantly increased the grain filling rate of the middle and basal grains and decreased the grain filling rate of the upper grains. At 270 mm irrigation, the PM significantly increased the grain filling rate of the all grains. At 320 mm irrigation, the PM only significantly increased the grain filling rate of the upper grains. The IAA, Z+ZR and ABA content in the grains was positively correlated with the grain weight and grain-filling rates; however, the ETH evolution rate of the grains was negatively correlated with the grain weight and grain-filling rates. These results show that the effect of PM on maize grain filling is related to the irrigation amount and that the grain position on the ear and the grain filling of the upper grains was more sensitive to PM and irrigation than were the other grains. In addition, the PM and irrigation regulated the balance of hormones rather than the content of individual hormones to affect the maize grain filling.

  20. 果蔬保鲜膜的研究进展%Review of Preservative Film for Fruits and Vegetables

    Institute of Scientific and Technical Information of China (English)

    周斌

    2012-01-01

    果蔬保鲜应控制包装储存环境中O2和CO2的体积比,控制储存环境的相对湿度,及时排除果蔬在包装存储中释放的乙烯、乙醇等气体。果蔬保鲜膜主要有普通保鲜膜、微孔保鲜膜、防雾功能保鲜膜、可食性保鲜膜、硅窗调气保鲜膜和抗菌保鲜膜等。在果蔬保鲜的实际应用中,一般采用复合式保鲜法。多功能保鲜膜及可降解的无公害保鲜膜将是今后果蔬保鲜膜的发展趋势。%The volume ratio of 02 and CO2 and the relative humidity in the storage environment for fruit and vegetable packaging should be controlled in fruit and vegetable preservation process. Gases released in vegetable packaging storing such as ethylene, ethanol should be removed in time. The main types for preservation films for fruits and vegetables include ordinary plastic film, micro porous plastic film, anti-fog function plastic film, edible plastic film, silicon window plastic film, transfer gas and antibacterial film. In the practical application for fresh fruits and vegetables, composite preservation method is commonly used. Multifunction plastic film and biodegradable pollution-free plastic film will be the future trend in the development of the fruit and vegetable plastic film.

  1. Advance in Study of Transglutaminase Treatment Improving Properties of Protein Biological Packaging Films%谷氨酰胺转氨酶改性蛋白类生物包装膜研究进展

    Institute of Scientific and Technical Information of China (English)

    滑艳稳; 陈志周; 尹国平

    2013-01-01

    There is a wide variety of sources of transglutaminase, such as from microorganisms, animals and plants. It is widely used in the application in food, textile, pharmaceutical, leather and other fields. The impact of transglutaminase on the properties of plant protein biological packaging films of soybean protein isolate film, wheat gluten film, peanut protein isolate film, corn protein film and animal protein biological packaging films of gelatin film, whey protein film is reviewed. The study on the composite of protein biological packaging film with other materials is the trend of biodegradable film research in future.%谷氨酰胺转氨酶(TG)来源广泛,微生物、动物、植物体内都存在TG,其广泛应用于食品、纺织、医药、皮革等领域。综述了谷氨酰胺转氨酶对大豆分离蛋白膜、谷朊粉膜、花生分离蛋白膜、玉米蛋白膜等植物蛋白类生物包装膜和明胶膜、乳清蛋白膜等动物蛋白类生物包装膜性能的影响。蛋白类生物包装膜和其他材料的复合研究,将是未来可降解性膜的研究趋势之一。

  2. Packaging fluency

    DEFF Research Database (Denmark)

    Mocanu, Ana; Chrysochou, Polymeros; Bogomolova, Svetlana

    2011-01-01

    Research on packaging stresses the need for packaging design to read easily, presuming fast and accurate processing of product-related information. In this paper we define this property of packaging as “packaging fluency”. Based on the existing marketing and cognitive psychology literature...... on packaging design and processing fluency, our aim is to define and conceptualise packaging fluency. We stress the important role of packaging fluency since it is anticipated that a fluent package would influence the evaluative judgments for a product. We conclude this paper by setting the research agenda...

  3. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    Science.gov (United States)

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  4. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  5. Barrier properties of plastic films coated with an Al{sub 2}O{sub 3} layer by roll-to-toll atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: Terhi.Hirvikorpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Laine, Risto, E-mail: Risto.Laine@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vähä-Nissi, Mika, E-mail: Mika.Vaha-Nissi@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kilpi, Väinö, E-mail: Vaino.Kilpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Salo, Erkki, E-mail: Erkki.Salo@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Li, Wei-Min, E-mail: Wei-Min.Li@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Lindfors, Sven, E-mail: Sven.Lindfors@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vartiainen, Jari, E-mail: Jari.Vartiainen@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kenttä, Eija, E-mail: Eija.Kentta@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Nikkola, Juha, E-mail: Juha.Nikkola@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Harlin, Ali, E-mail: Ali.Harlin@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kostamo, Juhana, E-mail: Juhana.Kostamo@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland)

    2014-01-01

    Thin (30–40 nm) and highly uniform Al{sub 2}O{sub 3} coatings have been deposited at relatively low temperature of 100 °C onto various polymeric materials employing the atomic layer deposition (ALD) technique, both batch and roll-to-roll (R2R) mode. The applications for ALD have long been limited those feasible for batch processing. The work demonstrates that R2R ALD can deposit thin films with properties that are comparable to the film properties fabricated by in batch. This accelerates considerably the commercialization of many products, such as flexible, printed electronics, organic light-emitting diode lighting, third generation thin film photovoltaic devices, high energy density thin film batteries, smart textiles, organic sensors, organic/recyclable packaging materials, and flexible displays, to name a few. - Highlights: • Thin and uniform Al{sub 2}O{sub 3} coatings have been deposited onto polymers materials. • Batch and roll-to-roll (R2R) atomic layer deposition (ALD) have been employed. • Deposition with either process improved the barrier properties. • Sensitivity of coated films to defects affects barrier ob