WorldWideScience

Sample records for plasma-treated surfaces experiments

  1. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.

    Science.gov (United States)

    Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin

    2016-05-15

    Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces.

  2. SURFACE REARRANGEMENTS OF OXYGEN PLASMA TREATED POLYSTYRENE: SURFACE DYNAMICS AND HUMIDITY EFFECT

    Institute of Scientific and Technical Information of China (English)

    Junwei Li; Kyunghui Oh; Hyuk Yu

    2005-01-01

    The time evolution of oxygen plasma treated polystyrene (PS) surfaces was investigated upon storing them in the air under controlled humidity conditions. The methods of water contact angle, X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, and atomic force microscopy (AFM) were used to infer the surface properties and structure. Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS. The surface polarity decayed markedly on time, as assessed by steady increase in the water contact angle as a function of storage time, from zero to around 60°. The observed decay is interpreted as arising from surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces, which is in contact with air. On the other hand, XPS results show that the chemical composition in the first 3 nm surface layer is unaffected by the surface aging, and the depth profile of oxygen is essentially the same with time. A possible change of PS surface roughness was examined by AFM, and it showed that the increase of water contact angle during surface aging could not be attributed to surface roughness. Thus, it is concluded that surface aging is attributable to surface reorganization and the motion of oxygen containing groups is confined within the XPS probing depth. SFG spectroscopy, which is intrinsically interface-specific, was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows. During the aging of the plasma treated PS surfaces, the oxygen containing groups undergo reorientation processes toward the polymer bulk and/or parallel to the surface, while the CH2 moiety stands up on the PS surface. Our results indicate that the surface configuration changes do not require large length scale segmental motions or migration of macromolecules. Motions that are

  3. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface.

    Science.gov (United States)

    Wan, S J; Wang, L; Xu, X J; Zhao, C H; Liu, X D

    2014-02-14

    Surface modification by grafting polymers on solid materials is an important strategy used to improve surface properties. This article reports that under appropriate conditions, very thin layers with desired morphologies may be constructed on a plasma-treated substrate by feeding a small quantity of a monomer with a mist stream carrying droplets produced from monomer solutions. We investigate the effects of process parameters that affect layer morphology, including exposure time to the mist stream, concentration of the monomer solution, and solvent selectivity. For a methyl methacrylate solution in ethanol, nanoparticles are uniformly grown with increasing monomer concentration or exposure time and finally form a porous layer at 3.65 mol L(-1) for 30 min. Decreasing solvent polarity not only affects surface morphology, but also increases hydrophobicity of the resulting surface. With 2,2,3,4,4,4-hexafluorobutyl methacrylate as the monomer, SEM and AFM micrographs indicated that mist polymerization results in numerous microspheres on the activated surface. These experimental results were interpreted by a mechanism in terms of an in situ polymerization accompanied by a phase transformation of the resulting polymer. Specifically, plasma treatment provides highly active cations and radicals to initiate very rapid polymerization, and the resulting polymers are consequently deposited from the liquid onto the surface under phase transition mechanisms.

  4. Nanoscale mechanical and tribological properties of fluorocarbon films grafted onto plasma-treated low-density polyethylene surfaces

    Science.gov (United States)

    Cheng, Q.; Komvopoulos, K.

    2012-03-01

    Fluorocarbon (FC) films were grafted onto Ar plasma-treated low-density polyethylene (LDPE) surfaces by plasma polymerization and deposition. The evolution of the surface morphology of the grafted FC films was investigated at different scales with an atomic force microscope. Nanoscale sliding experiments performed with a surface force microscope provided insight into the nanotribological properties of Ar plasma-treated LDPE, with and without grafted FC films, in terms of applied normal load and number of sliding cycles. The observed trends are explained in the context of microstructure models accounting for morphological and structure changes at the LDPE surface due to the effects of plasma treatment (e.g., selective etching of amorphous phase, chain crosslinking and FC film grafting) and surface sliding (e.g., crystalline lamellae alignment along the sliding direction). Nanoindentation experiments elucidated the effect of plasma treatment on surface viscoelasticity and global contact stiffness. The results of this study demonstrate that plasma-assisted grafting of FC films is an effective surface modification method for tuning the nanomechanical/tribological properties of polymers.

  5. Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering.

    Science.gov (United States)

    Shimizu, Kazunori; Fujita, Hideaki; Nagamori, Eiji

    2010-06-01

    Although cell sheet tissue engineering is a potent and promising method for tissue engineering, an increase of mechanical strength of a cell sheet is needed for easy manipulation of it during transplantation or 3D tissue fabrication. Previously, we developed a cell sheet-polymer film complex that had enough mechanical strength that can be manipulated even by tweezers (Fujita et al., 2009. Biotechnol Bioeng 103(2): 370-377). We confirmed the polymer film involving a temperature sensitive polymer and extracellular matrix (ECM) proteins could be removed by lowering temperature after transplantation, and its potential use in regenerative medicine was demonstrated. However, the use of ECM proteins conflicted with high stability in long-term storage and low cost. In the present study, to overcome these drawbacks, we employed the oxygen plasma treatment instead of using the ECM proteins. A cast and dried film of thermoresponsive poly-N-isopropylacrylamide (PNIPAAm) was fabricated and treated with high-intensity oxygen plasma. The cells became possible to adhere to the oxygen plasma-treated PNIPAAm surface, whereas could not to the inherent surface of bulk PNIPAAm without treatment. Characterizations of the treated surface revealed the surface had high stability. The surface roughness, wettability, and composition were changed, depending on the plasma intensity. Interestingly, although bulk PNIPAAm layer had thermoresponsiveness and dissolved below lower critical solution temperature (LCST), it was found that the oxygen plasma-treated PNIPAAm surface lost its thermoresponsiveness and remained insoluble in water below LCST as a thin layer. Skeletal muscle C2C12 cells could be cultured on the oxygen plasma-treated PNIPAAm surface, a skeletal muscle cell sheet with the insoluble thin layer could be released in the medium, and thus the possibility of use of the cell sheet for transplantation was demonstrated.

  6. Adhesion of different bacterial strains to low-temperature plasma treated biomedical PVC catheter surfaces.

    Science.gov (United States)

    Yousefi Rad, A; Ayhan, H; Kisa, U; Pişkin, E

    1998-01-01

    In this study, firstly five different bacteria (i.e. Coagulase positive and negative staphylococcus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa) with their different strains were isolated and used. The contact angle, surface free energy, p-xylene adhesion, and zeta potential of these bacteria were in the range of 43-69 deg, 45.4-61.8 erg cm(-2), 2.3-80.3%, and from -650.2 to + 17.5 mV, respectively. Most of the bacteria were negatively charged. Attachment of these bacteria to PVC catheter and its DMAEMA- and AAc-plasma treated forms were investigated. Bacterial attachment to the hydrophobic PVC catheter was high. Both plasma treatments caused significant drops in bacterial attachment in most of the cases. The effects of AAc-plasma treatment was more significant.

  7. Surface composition XPS analysis of a plasma treated polystyrene: Evolution over long storage periods.

    Science.gov (United States)

    Ba, Ousmane M; Marmey, Pascal; Anselme, Karine; Duncan, Anthony C; Ponche, Arnaud

    2016-09-01

    A polystyrene surface (PS) was initially treated by cold nitrogen and oxygen plasma in order to incorporate in particular amine and hydroxyl functions, respectively. The evolution of the chemical nature of the surface was further monitored over a long time period (580 days) by chemical assay, XPS and contact angle measurements. Surface density quantification of primary amine groups was performed using three chemical amine assays: 4-nitrobenzaldehyde (4-NBZ), Sulfo succinimidyl 6-[3'(2 pyridyldithio)-pionamido] hexanoate (Sulfo-LC-SPDP) and iminothiolane (ITL). The results showed amine densities were in the range of 2 per square nanometer (comparable to the results described in the literature) after 5min of nitrogen plasma treatment. Over the time period investigated, chemical assays, XPS and contact angles suggest a drastic significant evolution of the chemical nature of the surface within the first two weeks. Beyond that time period and up to almost two years, nitrogen plasma modified substrates exhibits a slow and continuous oxidation whereas oxygen plasma modifed polystyrene surface is chemically stable after two weeks of storage. The latter appeared to "ease of" showing relatively mild changes within the one year period. Our results suggest that it may be preferable to wait for a chemical "stabilization" period of two weeks before subsequent covalent immobilization of proteins onto the surface. The originality of this work resides in the study of the plasma treated surface chemistry evolution over long periods of storage time (580 days) considerably exceeding those described in the literature.

  8. Preparative soft and reactive landing of gas-phase ions on plasma-treated metal surfaces.

    Science.gov (United States)

    Volný, Michael; Elam, W Timothy; Ratner, Buddy D; Turecek, Frantisek

    2005-08-01

    Soft landing of singly charged gas-phase ions on dry metal surfaces that were pretreated in situ by oxygen plasma results in 0.1-2% total yields of recovered intact compounds. Lysine, peptides, crystal violet dye, and a biotin conjugate are found to survive soft landing of hyperthermal ions of up to 50-eV kinetic energy. Soft landing at 40-50-eV ion kinetic energies of a fluorescence-labeled biotin conjugate results in an immobilized fraction that cannot be washed from the surface and is found to contain an intact biotin moiety. The present results represent an approximately 10(4) fold improvement in soft-landing efficiency and indicate that plasma-treated metal surfaces can be useful for preparative separation of organic and biological molecules by mass spectrometry. The substantial improvement in soft-landing yields results from a high transmission of electrosprayed ions into the vacuum system, efficient and nondestructive discharge of ions on the metal oxide surface, and facile analyte recovery in the absence of a matrix.

  9. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  10. Surface characterization of plasma treated polymers for applications as biocompatible carriers

    Directory of Open Access Journals (Sweden)

    L. Bacakova

    2013-06-01

    Full Text Available The objective of this work was to determine surface properties of polymer surfaces after plasma treatment with the aim of further cytocompatibility tests. Examined polymers were poly(ethyleneterephthalate (PET, high-density polyethylene (HDPE, poly(tetrafluoro-ethylene (PTFE and poly(L-lactic acid (PLLA. Goniometry has shown that the plasma treatment was immediately followed by a sharp decrease of contact angle of the surface. In the course of ageing the contact angle increased due to the reorientation of polar groups into the surface layer of polymer. Ablation of polymer surfaces was observed during the degradation. Decrease of weight of polymer samples was measured by gravimetry. Surface morphology and roughness was studied by atomic force microscopy (AFM. The PLLA samples exhibited saturation of wettability (aged surface after approximately 100 hours, while the PET and PTFE achieved constant values of contact angle after 336 hours. Irradiation by plasma leads to polymer ablation, the highest mass loss being observed for PLLA. The changes in the surface roughness and morphology were observed, a lamellar structure being induced on PTFE. Selected polymer samples were seeded with VSMC (vascular smooth muscle cells and the adhesion and proliferation of cells was studied. It was proved that certain combination of input treatment parameters led to improvement of polymer cytocompatibility. The plasma exposure was confirmed to significantly improve the PTFE biocompatibility.

  11. Microbiological investigations of oxygen plasma treated parylene C surfaces for metal implant coating.

    Science.gov (United States)

    Golda-Cepa, M; Brzychczy-Wloch, M; Engvall, K; Aminlashgari, N; Hakkarainen, M; Kotarba, A

    2015-01-01

    Parylene C surface was modified by the use of oxygen plasma treatment and characterized by microscopic and surface-sensitive techniques (E-SEM, AFM, XPS, LDI-TOF-MS, contact angle). The influence of the treatment on surface properties was investigated by calculations of surface free energy (Owens-Wendt method). Moreover, early adhesion (Culture Plate Method, Optical Microscopy Test) and biofilm formation ability (Cristal Violet Assay) on the parylene C surface was investigated. The bacteria strains which are common causative agents of medical device-associated infections (Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa--reference strains and clinical isolates) were used. It was concluded that chemical (oxygen insertion) and physical (nanotopography generation) changes, have a significant impact on the biocompatibility in terms of increased hydrophilicity (θ w of unmodified sample = 88° ± 2°, θ w of 60 min modified sample = 17.6° ± 0.8°) and surface free energy (SFE of unmodified sample = 42.4 mJ/m(2), and for 60 min modified sample = 70.1 mJ/m(2)). At the same time, no statistical effect on biofilm production and bacteria attachment to the modified surface of any of the tested strains was observed.

  12. Fibroblastic response and surface characterization of O(2)-plasma-treated thermoplastic polyetherurethane.

    Science.gov (United States)

    Schlicht, Henning; Haugen, Håvard J; Sabetrasekh, Roya; Wintermantel, Erich

    2010-04-01

    Injection-molded samples of thermoplastic polyetherurethane (TPU) were treated with low-temperature oxygen plasma for different processing times in order to enhance cellular attachment for a gastric implant. Its effects were investigated by contact angle measurement, surface topography, cytotoxicity and cell colonization tests. No significant changes were found in the surface roughness of plasma treatment with plasma treatment time of less than 5 min. Longer treatment showed significantly higher surface roughness. It seems that there was a link between the changes in contact angle and enhanced cell growth on the treated surface, although only for the range up to plasma treatment times of 3 min. Prolonged treatment times did not cause any major changes in the water contact angle, but strongly improved the number of growing cells on the surface. Plasma treatment for 3-7 min led to a twofold increase in the number of cells compared to untreated samples and did not significantly alter the WST-1 nor worsened the lactate dehydrogenase activity compared to the control. Thus, it appears that O(2) plasma treatment is a suitable surface modification method for a gastric implant made of TPU in order to improve surface cell attachment where 3-7 min is the recommended treatment time.

  13. Atomic force microscopy of surface topography of nitrogen plasma treated steel

    CERN Document Server

    Mahboubi, F

    2002-01-01

    Nitriding of steels, using plasma environments has been practiced for many years. A lot of efforts have been put on developing new methods, such as plasma immersion ion implantation (Pl sup 3) and radio frequency (RF) plasma nitriding, for mass transfer of nitrogen into the surface of the work piece. This article presents the results obtained from an in depth investigation of the surface morphology of the treated samples, carried out using an atomic force microscope. Samples from a microalloyed steel, were treated by both methods for 5 hours at different temperatures ranging from 350 to 550 sup d eg sup C in 75% N sub 2 -25% H sub 2 atmosphere. It has been found that the surface of the samples treated by PI sup 3 technique, although having more favorable properties, were rougher than the surfaces treated by RF plasma nitriding.

  14. The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces.

    Science.gov (United States)

    Chen, I-Jane; Lindner, Ernö

    2007-03-13

    Polydimethylsiloxane (PDMS) is a widely used material for manufacturing lab-on-chip devices. However, the hydrophobic nature of PDMS is a disadvantage in microfluidic systems. To transform the hydrophobic PDMS surface to hydrophilic, it was treated with radio-frequency (RF) air plasma at 150, 300, and 500 mTorr pressures for up to 30 min. Following the surface treatment, the PDMS specimens were stored in air, deionized water, or 0.14 M NaCl solution at 4 degrees C, 20 degrees C, and 70 degrees C. The change in the hydrophilicity (wettability) of the PDMS surfaces was followed by contact angle measurements and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of time. As an effect of the RF plasma treatment, the contact angles measured on PDMS surfaces dropped from 113 +/- 4 degrees to 9 +/- 3 degrees . The chamber pressure and the treatment time had no or negligible effect on the results. However, the PDMS surface gradually lost its hydrophilic properties in time. The rate of this process is influenced by the difference in the dielectric constants of the PDMS and its ambient environment. It was the smallest at low temperatures in deionized water and largest at high temperatures in air. Apparently, the OH groups generated on the PDMS surface during the plasma treatment tended toward a more hydrophilic/less hydrophobic environment during the relaxation processes. The correlation between the FTIR-ATR spectral information and the contact angle data supports this interpretation.

  15. Evaluation of blood compatibility of plasma deposited heparin-like films and SF6 plasma treated surfaces

    Directory of Open Access Journals (Sweden)

    Ivanira Antunes Perrenoud

    2010-03-01

    Full Text Available In devices used in open-heart surgery and dialysis, blood must be continuously processed using extracorporeal circuits composed of peristaltic pumps and active components such as specific filters and oxygenators. Several procedures have been employed to avoid blood coagulation induced by contact with the artificial surfaces of such devices. Often heparin, a bioactive protein able to prevent clot formation, is employed. In this work, we have used heparin-containing gas plasmas to evaluate the possibility of depositing adherent anticoagulant films onto PVC and glass surfaces. The films were produced by radiofrequency plasma enhanced chemical vapor deposition from heparin/isopropanol and heparin/hexamethyldisiloxane solutions. In addition, the effects of exposure to SF6 plasmas on the compatibility of such surfaces have also been investigated. The blood compatibility was evaluated through the determination of the density of platelets and fibrinogen and activated partial thromboplastin (APTT and prothrombin times (PT of human blood freshly collected and after contact for 2.5 hours with different surfaces. The deposited films were also characterized by infrared spectroscopy, contact angle and surface energy measurements. The coagulation time of blood, placed in contact with glass substrates coated by PECVD films of heparin/isopropanol mixtures, and in contact with SF6 plasma-treated PVC, increased by about 60 and 20%, respectively, compared to the values measured with untreated samples.

  16. Surface Functionalization of Plasma Treated Ultrananocrystalline Diamond/Amorphous Carbon Composite Films

    Science.gov (United States)

    Koch, Hermann; Popov, Cyril; Kulisch, Wilhelm; Spassov, G.; Reithmaier, Johann Peter

    Diamond possesses a number of outstanding properties which make it a perspective material as platform for preparation of biosensors. The diamond surface needs to be activated before the chemical attachment of crosslinkers with which biomolecules can interact. In the current work we have investigated the modification of ultrananocrystalline diamond/amorphous carbon (UNCD/a-C) films by oxygen and ammonia plasmas. Afterwards the layers were functionalized in a further step to obtain thiol-active maleimide groups on the surface. We studied the possibility for direct binding of maleimide to terminal OH-groups on the UNCD surface and for silanization with 3-aminopropyltriethoxysilane (APTES) to obtain NH2-groups for the following attachment of sulfosuccinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SSMCC). The thiol-bearing fluorescein-related dye 5-((2-(and-3)-S-(acetylmercapto) succinoyl) amino) fluorescein (SAMSA) was immobilized as an model biomolecule to evaluate the achieved thiol-activity by fluorescence microscopy. The results of the above mentioned surface modification and functionalization steps were investigated by Auger electron spectroscopy (AES) and contact angle measurements.

  17. Adhesive forces and surface properties of cold gas plasma treated UHMWPE.

    Science.gov (United States)

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L; Perni, Stefano; Prokopovich, Polina

    2014-10-20

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process.

  18. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    Science.gov (United States)

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.

  19. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO{sub 2}/PET film for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Mahendiran, R. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Su, Pi-G [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Yassitepe, Emre; Shah, Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Perni, Stefano [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Prokopovich, Polina [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Institute of Medical Engineering and Medical Physics, School of Engineering, Cardiff University (United Kingdom); Nadagouda, Mallikarjuna N., E-mail: Nadagouda.Mallikarjuna@epamail.epa.gov [The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, 26W. Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2014-03-01

    In this paper, a thin transparent titania (TiO{sub 2}) film was coated on the surface of flexible poly(ethylene terephthalate) (PET) film using the sol–gel method. The surface properties of the obtained TiO{sub 2}/PET film were further improved by RF glow discharge oxygen plasma as a function of exposure time and discharge power. The changes in hydrophilicity of TiO{sub 2}/PET films were analyzed by contact angle measurements and surface energy. The influence of plasma on the surface of the TiO{sub 2}/PET films was analyzed by atomic force microscopy (AFM) as well as the change in chemical state and composition that were investigated by X-ray photo electron spectroscopy (XPS). The cytotoxicity of the TiO{sub 2}/PET films was analyzed using human osteoblast cells and the bacterial eradication behaviors of TiO{sub 2}/PET films were also evaluated against Staphylococcus bacteria. It was found that the surface roughness and incorporation of oxygen containing polar functional groups of the plasma treated TiO{sub 2}/PET films increased substantially as compared to the untreated one. Moreover the increased concentration of Ti{sup 3+} on the surface of plasma treated TiO{sub 2}/PET films was due to the transformation of chemical states (Ti{sup 4+} → Ti{sup 3+}). These morphological and chemical changes are responsible for enhanced hydrophilicity of the TiO{sub 2}/PET films. Furthermore, the plasma treated TiO{sub 2}/PET film exhibited no citotoxicity against osteoblast cells and antibacterial activity against Staphylococcus bacteria which can find application in manufacturing of biomedical devices. - Graphical abstract: Mechanism of plasma treatment on the surface of TiO{sub 2}/PET films. - Highlights: • Investigated the surface properties of TiO{sub 2}/PET films modified by O{sub 2} plasma • Studied the effect of operating parameters on surface properties of TiO{sub 2}/PET films • Mechanism of the plasma treatment on TiO{sub 2}/PET was clearly investigated.

  20. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO₂/PET film for biomedical application.

    Science.gov (United States)

    Pandiyaraj, K Navaneetha; Deshmukh, R R; Mahendiran, R; Su, Pi-G; Yassitepe, Emre; Shah, Ismat; Perni, Stefano; Prokopovich, Polina; Nadagouda, Mallikarjuna N

    2014-03-01

    In this paper, a thin transparent titania (TiO2) film was coated on the surface of flexible poly(ethylene terephthalate) (PET) film using the sol-gel method. The surface properties of the obtained TiO2/PET film were further improved by RF glow discharge oxygen plasma as a function of exposure time and discharge power. The changes in hydrophilicity of TiO2/PET films were analyzed by contact angle measurements and surface energy. The influence of plasma on the surface of the TiO2/PET films was analyzed by atomic force microscopy (AFM) as well as the change in chemical state and composition that were investigated by X-ray photo electron spectroscopy (XPS). The cytotoxicity of the TiO2/PET films was analyzed using human osteoblast cells and the bacterial eradication behaviors of TiO2/PET films were also evaluated against Staphylococcus bacteria. It was found that the surface roughness and incorporation of oxygen containing polar functional groups of the plasma treated TiO2/PET films increased substantially as compared to the untreated one. Moreover the increased concentration of Ti(3+) on the surface of plasma treated TiO2/PET films was due to the transformation of chemical states (Ti(4+)→Ti(3+)). These morphological and chemical changes are responsible for enhanced hydrophilicity of the TiO2/PET films. Furthermore, the plasma treated TiO2/PET film exhibited no citotoxicity against osteoblast cells and antibacterial activity against Staphylococcus bacteria which can find application in manufacturing of biomedical devices.

  1. Surface physical-morphological and chemical changes leading to performance enhancement of atmospheric pressure plasma treated polyester fabrics for inkjet printing

    Science.gov (United States)

    Fang, Kuanjun; Zhang, Chunming

    2009-06-01

    Without any preprocessing, polyester fabric has lower ability to hold on water due to the smooth morphology and chemistry property of polyester fibers. Therefore, patterns directly printed with pigment inks have poor color yields and easily bleed. In this paper, atmospheric pressure plasma was used to pretreat polyester fabric in order to provide an active surface for the inkjet printing. The results showed that surface-modified polyester fabrics could obtain the effects of features with enhanced color yields and excellent pattern sharpness. SEM images indicated that the rough surface of plasma treated fibers could provide more capacities for the fabric to capture inks and also facilitate the penetration of colorant particles into the polyester fabric. XPS analysis revealed that air + 50%Ar plasma introduced more oxygen-containing groups onto the fabric surface than air plasma. Although AFM images indicated that etching effects generated by air plasma treatments were more evident, the air/Ar plasma treated sample has higher K/ S value and better color performance. These studies have also shown that the chemical modification of plasma appears to be relatively more significant for improving the effect of inkjet printing.

  2. Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates

    Directory of Open Access Journals (Sweden)

    Karin Stana-Kleinschek

    2013-10-01

    Full Text Available Protein adhesion and cell response to plasma-treated polymer surfaces were studied. The polymer polyethylene terephthalate (PET was treated in either an oxygen plasma to make the surface hydrophilic, or a tetrafluoromethane CF4 plasma to make the surface hydrophobic. The plasma source was radiofrequency (RF discharge. The adsorption of albumin and other proteins from a cell-culture medium onto these surfaces was studied using a quartz crystal microbalance (QCM, X-ray photoelectron spectroscopy (XPS and atomic force microscopy (AFM. The cellular response to plasma-treated surfaces was studied as well using an MTT assay and scanning electron microscopy (SEM. The fastest adsorption rate was found on the hydrophilic oxygen plasma-treated sample, and the lowest was found on the pristine untreated sample. Additionally, the amount of adsorbed proteins was higher for the oxygen-plasma-treated surface, and the adsorbed layer was more viscoelastic. In addition, cell adhesion studies support this finding because the best cell adhesion was observed on oxygen-plasma-treated substrates.

  3. XPS analysis of down stream plasma treated wool: Influence of the nature of the gas on the surface modification of wool

    Energy Technology Data Exchange (ETDEWEB)

    Molina, R. [Departamento de Tecnologia de Tensioactivos, IIQAB-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona (Spain)]. E-mail: rmmqst@iiqab.csic.es; Espinos, J.P. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla), Departamento de Quimica Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla), Departamento de Quimica Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Erra, P. [Departamento de Tecnologia de Tensioactivos, IIQAB-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Gonzalez-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla), Departamento de Quimica Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain)

    2005-12-15

    A microwave plasma treatment in a down stream configuration was used to modify the natural hydrophobocity of untreated wool fibers. This property is a consequence of the presence of a Fatty acid monolayer (F-layer) on the outermost part of the fiber surface. The wool fibers treated with plasma were analyzed by means of X-ray photoelectron spectroscopy (XPS) without previous exposure to the air. Experiments have been carried out with air, water vapor, oxygen and nitrogen as plasma gas. The 'in situ' analysis of the treated samples has permitted to differentiate between the plasma effects and those other linked to the exposure of the fibers to the air after their treatment. The results have evidenced the effects induced by the different active species generated by plasma from the different components of the air. In general, the intensity of C-C peaks decreases and that of the C-O, C=O and O-C=O increases when using a gas containing oxygen species. Simultaneously, the intensity of the S-S groups decreases and that of the sulphonate (SO{sub 3} {sup -}) increases. Other changes are also detected in the intensity of the N 1s level. The extent and characteristics of the oxidation and functionalisation of the hydrocarbon chains of the F-layer depend on the nature of gas. Thus, whereas treatments with plasmas of air and water vapor strongly affect the hydrocarbon chains of the F-layer, oxygen is less effective in the oxidation process. It has been also noted that the active species formed in the nitrogen plasma do not induce any significant change in the surface composition of the wool fibers.

  4. Influence of Operating Parameters on Surface Properties of RF Glow Discharge Oxygen Plasma Treated TiO2/PET Film for Biomedical Application

    Science.gov (United States)

    Thin transparent titania (TiO2) films were coated on the surface of flexible poly (ethylene terephthalate) (PET) surface using standard sol gel techniques. The TiO2/PET thin film surfaces were further modified by exposing the films to a RF glow discharge oxygen plasma. The exposu...

  5. Influence of Operating Parameters on Surface Properties of RF Glow Discharge Oxygen Plasma Treated TiO2/PET Film for Biomedical Application

    Science.gov (United States)

    Thin transparent titania (TiO2) films were coated on the surface of flexible poly (ethylene terephthalate) (PET) surface using standard sol gel techniques. The TiO2/PET thin film surfaces were further modified by exposing the films to a RF glow discharge oxygen plasma. The exposu...

  6. Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen plasma treated PDMS and oleic acid content.

    Science.gov (United States)

    Gezer, P Gizem; Brodsky, Serena; Hsiao, Austin; Liu, G Logan; Kokini, Jozef L

    2015-11-01

    Zein has been widely studied as a biopolymer due to its unique film-forming abilities. Surface properties are of high importance for certain applications which include microfluidics and tissue engineering, as they drastically affect the end result. It is important to develop techniques to modify zein surface properties without compromising bulk material properties. In this study, we developed a facile technique to change the water affinity of zein film surfaces, compatible with patterning techniques via soft lithography. This is achieved by a simple solvent casting technique onto a polydimethylsilohexane (PDMS) substrate that was exposed to oxygen plasma. Water contact angle measurements (WCA) were used to assess the hydrophillicity of zein surfaces and they reached as low as 20°. Atomic force microscopy, optical absorbance and light microscopy were used to study the characteristics of the film and its surface topography. Hydrophilic zein surfaces had higher roughness values compared to hydrophobic ones. Surface roughness, introduced by sandpaper and gratings does not have the same effect as surface chemistry. The amphiphilic nature of plasticizer oleic acid also contributed to the change in the water contact angle of the films. In conclusion, we demonstrated that zein film's surface properties can be controlled by its ability to self-assemble depending on the substrate that it is being cast on.

  7. Proliferation of endothelial cells on the plasma-treated segmented-polyurethane surface: attempt of construction of a small caliber hybrid vascular graft and antithrombogenicity.

    Science.gov (United States)

    Kaibara; Takahashi; Kurotobi; Suzuki

    2000-12-30

    To prepare a porous segmented-polyurethane (SPU) tube, a solution of SPU containing different concentrations of NaCl was coated on a glass rod and the coated SPU was immediately immersed in water. When the surface of the porous SPU, where bovine aortic endothelial cells are not normally capable of adhering and proliferating, was modified by plasma treatment, the proliferation of endothelial cells could be drastically improved. The cells proliferated confluently on the porous SPU surface prepared at low concentrations of NaCl below 10 g per 100 ml, but poorly on the porous surface prepared at high concentrations of NaCl. The construction of a hybrid vascular graft consisting of a porous SPU tube (2 mm in inner diameter, 5 cm in length) and endothelial cells was attempted. The cells cultured on the inner surface of the tube proliferated to confluency everywhere. From an in vitro antithrombogenic evaluation test, which involved the use of human blood, the present hybrid graft can be considered to provide an inert surface against thrombus formation and blood coagulation. Negligible changes in shape of human leukocytes in contact with bovine aortic endothelial cell surface occurred, suggesting that the bovine aortic endothelial cells used are immunologically less active against human blood.

  8. Evolution of Surface Properties for Plasma Treated Wood/Polyethylene Composites Under Water Soaking%水环境下等离子体处理聚乙烯木塑复合材料表面性质的演变

    Institute of Scientific and Technical Information of China (English)

    陶岩; 王辉; 邸明伟

    2012-01-01

    利用等离子体处理技术,对木粉/聚乙烯复合材料进行表面处理以改善其胶接性能.为探究胶接接头在水环境下的耐久失效机制,采用水浸实验,利用FTIR和XPS分析手段,研究了水对等离子体处理后的木塑复合材料表面性质的影响.红外光谱分析结果表明,经等离子体处理后,复合材料表面有-OH,C-O和C-O基团生成;随着水浸时间的延长,材料表面-OH,C-O和C=O基团的含量又会发生先降低而后增加的变化.XPS分析结果表明,经等离子体处理后,复合材料表面氧元素的含量增加;随着水浸时间的延长,材料表面的元素含量又会发生新的变化,C元素相对含量先增加而后降低,O元素相对含量先降低而后增加,O/C值先下降而后升高.水环境下等离子体处理木塑复合材料表面化学基团和化学元素的变化对材料胶接接头的耐久性会产生较大的影响.%The surface of wood/polyethylene (PE) composites was treated by low-pressure glow discharge of air plasma to improve its adhesion properties. To explore the failure mechanism in the condition of water for the bonding joint, the ATR-FTIR and XPS were employed in the soaking experiment to investigate the effect of water on the surface properties of plasma treated wood/PE composites. The ATR-FTIR analysis results showed that the polar groups such as -OH, C - O and C=O were formed on the surface of the composites after plasma treatment. And the number of -OH, C-O and C = O groups on the surface of plasma treated wood/PE composites decreased firstly and then increased with the soaking time extended. The XPS analysis results indicated that the content of oxygen element in the composition of surface element for Wood/PE composites increased after plasma treatment. And the content of carbon element in the treated wood/PE composites surface increased firstly and then decreased and the oxygen element decreased firstly and then increased with the soaking

  9. Surface electrical properties experiment

    Science.gov (United States)

    Simmons, Gene; Strangway, David; Annan, Peter; Baker, Richard G.; Bannister, Lawrence; Brown, Raymon; Cooper, William; Cubley, Dean; deBettencourt, Joseph; England, Anthony W.; Groener, John; Kong, Jin-Au; LaTorraca, Gerald; Meyer, James; Nanda, Ved; Redman, David; Rossiter, James; Tsang, Leung; Urner, Joseph; Watts, Raymond

    1973-01-01

    The surface electrical properties (SEP) experiment was used to explore the subsurface material of the Apollo 17 landing site by means of electromagnetic radiation. The experiment was designed to detect electrical layering, discrete scattering bodies, and the possible presence of water. From the analysis of the data, it was expected that values of the electrical properties (dielectric constant and loss tangent) of lunar material in situ would be obtained.

  10. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing

    OpenAIRE

    2015-01-01

    The interaction of plasma with liquid generates nitrogen species including nitrite (NO− 2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate ...

  11. Plasma-treated polyethylene film: A smart material applied for Salmonella Typhimurium detection

    Energy Technology Data Exchange (ETDEWEB)

    Peng-Ubol, Triranat [Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Phinyocheep, Pranee, E-mail: scppo@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Daniel, Philippe [Laboratoire de Physique de l' Etat Condense (LPEC-UMR CNRS 6087), Universite du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9 (France); Panbangred, Watanalai [Department of Biotechnology and Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Pilard, Jean-Francois [Unite de Chimie Organique Moleculaire et Macromoleculaire (UCO2M-UMR CNRS 6011), Universite du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Thouand, Gerald; Durand-Thouand, Marie-Jose [Genie des Procedes Environnement et Agroalimentaire (GEPEA UMR CNRS 6144), Departement Genie Biologique, IUT de la Roche/Yon, Universite de Nantes, 18 Bd G. Defferre, 85035 La Roche sur Yon (France)

    2012-12-01

    Salmonella is a major cause of foodborne illness worldwide and is not allowed to be present in any food in all countries. The purpose of this study is to develop a simple alternative method for the detection of Salmonella based on functionalized polyethylene (PE) surfaces. Salmonella Typhimurium was used as a model bacterium. PE film was treated using dielectric plasma in order to alter the wettability of the PE surface and consequently introduce functionality on the surface. The PE film characterized by ATR-FTIR spectroscopy revealed the presence of C=O stretching of ketones, aldehydes and carboxylic acids. The antibodies against O or H antigens of Salmonella and S. Typhimurium were then respectively immobilized on the PE surface after activation of the carboxylic group using NHS/EDC followed by protein A. The evidences from ATR-FTIR, scanning electron microscopy and optical microscopy showed the presence of S. Typhimurium attached to the plasma treated PE surfaces via the two types of anti-Salmonella antibody. The plasma treated PE film developed is simple and allows efficient association of bacterial cells on the treated surfaces without the necessity of time-consuming centrifugation and washing steps for isolation of the cells. This material is considered to be a smart material applicable for S. Typhimurium detection. Highlights: Black-Right-Pointing-Pointer We developed a functionalized polyethylene film for bacterial detection. Black-Right-Pointing-Pointer We modified the surface of polyethylene film by plasma treatment. Black-Right-Pointing-Pointer ATR-FTIR spectroscopy was used to analyze the functionality on the PE surface. Black-Right-Pointing-Pointer We introduced Salmonella Typhimurium on the modified PE film. Black-Right-Pointing-Pointer SEM revealed the presence of S. Typhimurium on the plasma treated PE film.

  12. Enhanced field emission of plasma treated multilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Ruchita T.; More, Mahendra A. [Department of Physics, Center for Advanced Studies in Material Science and Condensed Matter Physics, S P Pune University, Pune 411007 (India); Gelamo, Rogerio V. [Instituto de Ciências Tecnológicas e Exatas, UFTM, Uberaba, Minas Gerais 38025-180 (Brazil); Late, Dattatray J., E-mail: dj.late@ncl.res.in, E-mail: csrout@iitbbs.ac.in [Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra (India); Rout, Chandra Sekhar, E-mail: dj.late@ncl.res.in, E-mail: csrout@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013, Odisha (India)

    2015-09-21

    Electron emission properties of multilayer graphene (MLG) prepared by a facile exfoliation technique have been studied. Effect of CO{sub 2} Ar, N{sub 2}, plasma treatment was studied using Raman spectroscopy and investigated for field emission based application. The CO{sub 2} plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm{sup 2} at an applied field of 0.35 V/μm. Further the plasma treated MLG exhibits excellent current stability at a lower and higher emission current value.

  13. Deposition of LDH on plasma treated polylactic acid to reduce water permeability

    KAUST Repository

    Bugatti, Valeria

    2013-04-01

    A simple and scalable deposition process was developed to prepare polylactic acid (PLA) coatings with enhanced water barrier properties for food packaging applications. This method based on electrostatic interactions between the positively charged layers of layered double hydroxides (LDHs) modified with ionic liquids (ILs) and the negatively charged plasma treated polylactic acid leads to homogeneous, stable, and highly durable coatings. Deposition of the LDH coatings increases the surface hydrophobicity of the neat PLA, which results to a decrease in water permeability by about 35%. © 2013 Elsevier Inc.

  14. Ar plasma treated polytetrafluoroethylene films for a highly efficient triboelectric generator

    Science.gov (United States)

    Kim, Dong Yeong; Kim, Hyun Soo; Jung, Jong Hoon

    2016-12-01

    We report an Ar plasma treated polytetrafluoroethylene (PTFE) film based triboelectric device for a highly enhanced electric power generation. The plasma treatment of the PTFE in flowing Ar gas results in a sharp increase in surface roughness ( 46 nm), as compared with the as-received film ( 25 nm). In addition, the F ion content decreases whereas the O ion increases with increasing plasma reaction time. Because of the increased number of polar O ions, the surface becomes hydrophilic, as confirmed by water contact angle measurements. After the Ar plasma treatment, the PTFE based triboelectric device, which is periodically contacted with and separated from the ITO electrode, generates a 715 V open-circuit voltage and a 16 μA closed-circuit current, which are almost 79 and 32 times larger than those for as-received PTFE based device. Using the Ar plasma treated PTFE based triboelectric generator, we can turn on the 120 light emitting diodes (LEDs) without any batteries.

  15. Near-surface heater experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, L.D.; Cuderman, J.F.; Krumhansl, J.L.; Lappin, A.

    1978-12-31

    Full-scale near-surface heater experiments are presently being conducted by Sandia Laboratories in the Conasauga Formation at Oak Ridge, Tennessee, and in the Eleana Formation on the Nevada Test Site, Nevada. The purposes of these experiments are: (1) to determine if argillaceous media can withstand thermal loads characteristic of high level waste; (2) to provide data for improvement of themomechanical modeling of argillaceous rocks; (3) to identify instrumentation development needed for further in situ testing; and (4) to identify unexpected general types of behavior, if any. The basic instrumentation of these tests consists of a heater in a central hole, surrounded by arrays of holes containing various instrumentation. Temperatures, thermal profiles, vertical displacements, volatile pressurization, and changes in in situ stresses are measured in each experiment as a function of time, and compared with pretest modeling results. Results to date, though in general agreement with modeling results assuming conductive heat transfer within the rock, indicate that the presence of even small amounts of water can drastically affect heat transfer within the heater hole itself, and that small amounts of upward convection of water may be occurring in the higher temperature areas of the Conasauga experiments.

  16. ESR STUDY OF PLASMA-TREATED POLYTETRAFLUOROETHYLENE FILMS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Maotang; WANG Shicai; LIU Guizhen; CHEN Jie

    1990-01-01

    The plasma treatment of polytetrafluoroethylene (PTFE) films was carried out in a capacitively coupled reactor with external electrodes. The free radicals generated in the process of treatment were detected by ESR techniques. The ESR spectra tended to indicate that the free radicals of the plasma-treated PTFE film sample were turned into peroxy radicals on exposure to air. The extrema separation (W) of the ESR spectrum of the peroxy radical increased with the lowering temperature and underwent a sudden change within the temperature range of 170 to 190K. The ESR spectrum observed at 77K was quite different from that observed at room temperature. Finally, the effects of treatment time, input power and system pressure on radical concentration of the treated samples were studied. The attenuation of the peroxy radical at room temperature was also investigated.

  17. Wettability transition of plasma-treated polystyrene micro/nano pillars-aligned patterns

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available This paper reports the wettability transition of plasma-treated polystyrene (PS micro/nano pillars-aligned patterns. The micro/nano pillars were prepared using hot embossing on silicon microporous template and alumina nanoporous template, which were fabricated by ultraviolet (UV lithography and inductive coupled plasma (ICP etching, and two-step anodic oxidation, respectively. The results indicate that the combination of micro/nano patterning and plasma irradiation can easily regulate wettabilities of PS surfaces, i.e. from hydrophilicity to hydrophobicity, or from hydrophobicity to superhydrophilicity. During the wettability transition from hydrophobicity to hydrophilicity there is only mild hydrophilicity loss. After plasma irradiation, moreover, the wettability of PS micro/nano pillars-aligned patterns is more stable than that of flat PS surfaces. The observed wettability transition and wettability stability of PS micro/nano pillars-aligned patterns are new phenomena, which may have potential in creating programmable functional polymer surfaces.

  18. Comparison of the behavior of fibroblast and bone marrow-derived mesenchymal stem cell on nitrogen plasma-treated gelatin films

    Energy Technology Data Exchange (ETDEWEB)

    Prasertsung, I. [Chemical Engineering Program, Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000 (Thailand); Research Unit on Functionalized Material for Chemical, Biochemical and Biomedical Technology, Faculty of Engineering, Naresuan University, Phitsanulok 65000 (Thailand); Kanokpanont, S. [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Mongkolnavin, R. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok 10330 (Thailand); Wong, C.S. [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Panpranot, J. [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Damrongsakkul, S., E-mail: siriporn.d@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok 10330 (Thailand)

    2013-10-01

    The attachment and growth behavior of mouse fibroblast (L929) and rat bone marrow-derived mesenchymal stem cell (MSC) on nitrogen plasma-treated and untreated gelatin films was investigated and compared. The gelatin films were prepared by solution casting (0.05% w/v) and crosslinked using dehydrothermal treatment. The crosslinked gelatin films were treated with nitrogen alternating current (AC) 50 Hz plasma systems at various treatment time. The results on the attachment and growth of two cells; L929 and MSC, on plasma-treated gelatin film showed that the number of attached and proliferated cells on plasma-treated gelatin films was significantly increased compared to untreated samples. However, no significant difference between the number of attached L929 and MSC on plasma-treated gelatin was observed. The shorter population doubling time and higher growth rate of cells cultured on plasma-treated film indicated the greater growth of cells, compared to ones on untreated films. The greatest enhancement of cell attachment and growth were noticed when the film was treated with nitrogen plasma for 9 to 15 s. This suggested that the greater attachment and growth of both cells on gelatin films resulted from the change of surface properties, i.e. hydrophilicity, surface energy, and chemistry. The suitable water contact angle and oxygen/nitrogen ratio (O/N) of gelatin film for best L929 and MSC attachment were observed at 27–32° and 1.4, respectively. These conditions also provided the best proliferation of cells on plasma-treated gelatin films. - Highlights: • We compared the attachment and growth behavior of L929 and MSC. • The attachment of two cells on plasma-treated gelatin was significantly increased. • The shorter population doubling time and higher growth rate of cells were observed. • L929 fibroblast exhibited the greater proliferation, compared to MSC.

  19. In vitro human chondrocyte culture on plasma-treated poly(glycerol sebacate) scaffolds.

    Science.gov (United States)

    Theerathanagorn, Tharinee; Klangjorhor, Jeerawan; Sakulsombat, Morakot; Pothacharoen, Peraphan; Pruksakorn, Dumnoensun; Kongtawelert, Prachya; Janvikul, Wanida

    2015-01-01

    Porous poly(glycerol sebacate) (PGS) scaffolds were prepared using a salt leaching technique and subsequently surface modified by a low oxygen plasma treatment prior to the use in the in vitro culture of human chondrocytes. Condensation polymerization of glycerol and sebacic acid used at various mole ratios, i.e. 1:1, 1:1.25, and 1:1.5, was initially conducted to prepare PGS prepolymers. Porous elastomeric PGS scaffolds were directly fabricated from the mixtures of each prepolymer and 90% (w/w) NaCl particles and then subjected to the plasma treatment to enhance the surface hydrophilicity of the materials. The properties of both untreated and plasma-treated PGS scaffolds were comparatively evaluated, in terms of surface morphology, surface chemical composition, porosity, and storage modulus using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, micro-computed tomography, and dynamic mechanical analysis, respectively. The responses of chondrocytes cultured on individual PGS scaffolds were assessed, in terms of cell proliferation and ECM production. The results revealed that average pore sizes and porosity of the scaffolds were increased with an increasing sebacic acid concentration used. The storage moduli of the scaffolds were raised after the plasma treatment, possibly due to the further crosslinking of PGS upon treatment. Moreover, the scaffold prepared with a higher sebacic acid content demonstrated a greater capability of promoting cell infiltration, proliferation, and ECM production, especially when it was plasma-treated; the greatest HA, sGAG, uronic acid, and collagen contents were detected in matrix of this scaffold. The H & E and safranin O staining results also strongly supported this finding. The storage modulus of the scaffold was intensified after incubation with the chondrocytes for 21 days, indicating the accretion and retention of matrix ECM on the cell-cultured scaffold.

  20. Plasma-treated polystyrene film that enhances binding efficiency for sensitive and label-free protein biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bihong [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); Li, Shaopeng [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); Department of Chemistry, Tsinghua University, Beijing 100084 (China); Song, Lusheng [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); Yang, Mo; Zhou, Wenfei; Tyagi, Deependra [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China); University of Chinese Academy of Sciences, Yuquan Rd., 19(A), Beijing 100049 (China); Zhu, Jinsong, E-mail: jizhu88@gmail.com [National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190 (China)

    2015-08-01

    Highlights: • A simple and robust plasma-treated ultrathin polystyrene film surface was developed for protein biosensing. • The surface was optimized by evaluating up to 120 types of fabrication parameters with high-throughput analytical methods. • The optimized surface showed a 620% improvement of the protein detection signal and 210% protein binding per immobilized protein ligand compared with a self-assembled monolayer surface. - Abstract: A plasma-treated ultrathin polystyrene (PS) film surface was explored as a simple, robust, and low-cost surface chemistry solution for protein biosensing applications. This surface could dramatically improve the binding efficiency of the protein–protein interactions, which is defined as the binding signal per immobilized ligand. The PS-modified protein biosensor was readily fabricated by spin coating and plasma treatment. Various parameters for fabrication, including the concentration of the PS solution, rate of spin coating, and duration of plasma treatment, were systematically optimized based on the improvement of fluorescence signal yielded by the microfluidic network-aided fluorescence immunoassay. The performance of the label-free protein detection on the optimized surfaces was further evaluated by surface plasmon resonance imaging (SPRi). PS surfaces with optimal fabrication parameters exhibited up to an 620% enhancement of the protein binding response and approximately 210% of the protein binding per immobilized protein ligand compared with a self-assembled monolayer (SAM) surface of 11-mercapto undecanoic acid (MUA). The relationship between the fabrication parameters used and changes to the surface chemistry and the morphological properties were characterized with atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). It was revealed that the morphological changes observed in the plasma-treated PS film were the dominant factor for the

  1. Physicochemical properties of bactericidal plasma-treated water

    Science.gov (United States)

    Ikawa, Satoshi; Tani, Atsushi; Nakashima, Yoichi; Kitano, Katsuhisa

    2016-10-01

    Plasma-treated water (PTW), i.e. distilled water (DW) exposed to low-temperature atmospheric pressure helium plasma, exhibited strong bactericidal activity against Escherichia coli in suspension even within a few minutes of preparation. This effect was enhanced under acidic conditions. The bactericidal activity of PTW was attenuated according to first-order kinetics and the half-life was highly temperature dependent. The electron spin resonance (ESR) signal of an adduct of the superoxide anion radical (\\text{O}2-\\bullet ) was detected in an aqueous solution using a spin-trapping reagent mixed with PTW, and adding superoxide dismutase to the PTW resulted in a loss of the bactericidal activity and weakening of the ESR adduct signal of \\text{O}2-\\bullet in the spin-trapping. These results suggest that \\text{O}2-\\bullet plays an important role in imparting bactericidal activity to PTW. Moreover, molecular nitrogen was required both in the ambient gas and in the DW used to prepare the PTW. We, therefore, suggest that the reactive molecule in PTW with bactericidal effects is not a free reactive oxygen species but nitrogen atom(s)-containing molecules that release \\text{O}2-\\bullet , such as peroxynitrous acid (ONOOH) or peroxynitric acid (O2NOOH). Considering the activation energy for degradation of these species, we conclude that peroxynitric acid stored in PTW induces the bactericidal effect.

  2. Application of NiMoNb adhesion layer on plasma-treated polyimide substrate for flexible electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Bang, S.-H.; Kim, K.-K.; Jung, H.-Y.; Kim, T.-H.; Jeon, S.-H. [Metal and Material Technology Group, R and D Center, LS Mtron Ltd., Gyeonggi 431-080 (Korea, Republic of); Seol, Jae-Bok, E-mail: zptkfm20@hanmail.net [Max-Planck-Insititut für Eisenforschung, Max-Planck-Str. 1, D-40237 Düsseldorf (Germany)

    2014-05-02

    A thin film, NiMoNb, was introduced as an adhesion layer between the Cu metal and the insulator polyimide substrate in a flexible Cu-clad laminated structure. Using 90° peel test, we evaluated the peel strength of the system as a function of the thickness of the adhesion layer. An increase in the NiMoNb thickness from 7 to 40 nm enhanced the peel strength of the deposited systems. After plasma treatment by the roll-to-roll method, the multilayer structure showed an outstanding peel strength of ∼ 529 N/m, even after thermal annealing at 150 °C for 168 h. We also studied the role of plasma treatment of the polyimide substrate on the adhesion strength and microstructure of a flexible Cu-clad laminated structure by peel strength, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. These experimental observations showed that the plasma-treated polyimide substrate with the deposition of NiMoNb showed the enhanced adhesion of ∼ 656 N/m, because of the change of functional groups, which affected the bonding force and crystallinity of the thin films deposited on polyimide, rather than an increase in the surface roughness. - Highlights: • NiMoNb film on polyimide substrate was employed for higher peel strength. • Plasma-treated substrate enhances the peel strength of multilayer. • Even when annealed at 150 °C, plasma-treated films showed enhanced peel strength.

  3. Plasma-treated polystyrene film that enhances binding efficiency for sensitive and label-free protein biosensing

    Science.gov (United States)

    Guo, Bihong; Li, Shaopeng; Song, Lusheng; Yang, Mo; Zhou, Wenfei; Tyagi, Deependra; Zhu, Jinsong

    2015-08-01

    A plasma-treated ultrathin polystyrene (PS) film surface was explored as a simple, robust, and low-cost surface chemistry solution for protein biosensing applications. This surface could dramatically improve the binding efficiency of the protein-protein interactions, which is defined as the binding signal per immobilized ligand. The PS-modified protein biosensor was readily fabricated by spin coating and plasma treatment. Various parameters for fabrication, including the concentration of the PS solution, rate of spin coating, and duration of plasma treatment, were systematically optimized based on the improvement of fluorescence signal yielded by the microfluidic network-aided fluorescence immunoassay. The performance of the label-free protein detection on the optimized surfaces was further evaluated by surface plasmon resonance imaging (SPRi). PS surfaces with optimal fabrication parameters exhibited up to an 620% enhancement of the protein binding response and approximately 210% of the protein binding per immobilized protein ligand compared with a self-assembled monolayer (SAM) surface of 11-mercapto undecanoic acid (MUA). The relationship between the fabrication parameters used and changes to the surface chemistry and the morphological properties were characterized with atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). It was revealed that the morphological changes observed in the plasma-treated PS film were the dominant factor for the improvement of the protein bioassay performance, rather than the chemical changes.

  4. Tailored adhesion behavior of polyelectrolyte thin films deposited on plasma-treated poly(dimethylsiloxane) for functionalized membranes

    Science.gov (United States)

    Bassil, Joelle; Alem, Halima; Henrion, Gérard; Roizard, Denis

    2016-04-01

    Completely homogenous films formed via the layer-by-layer assembly of poly(diallyldimethylammonium chloride) (PDADMAC) and the poly(styrene sulfonate) were successfully obtained on plasma-treated poly(dimethylsiloxane) (PDMS) substrates. To modify the hydrophobicity of the PDMS surface, a cold plasma treatment was previously applied to the membrane, which led to the creation of hydrophilic groups on the surface of the membrane. PDMS wettability and surface morphology were successfully correlated with the plasma parameters. A combination of contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis was used to demonstrate that homogeneous and hydrophilic surfaces could be achieved on PDMS cold-plasma-treated membranes. The stability of the assembled PEL layer on the PDMS was evaluated using a combination of pull-off testing and X-ray photoelectron spectroscopy (XPS), which confirmed the relevance of a plasma pre-treatment as the adhesion of the polyelectrolyte multilayers was greatly enhanced when the deposition was completed on an activated PDMS surface at 80 W for 5 min.

  5. Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes

    Directory of Open Access Journals (Sweden)

    Zhang JX

    2009-01-01

    Full Text Available Abstract Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma treatment effectively removes amorphous coating and creates plenty of sub-tips at the surface of the nanoflakes, which are believed to contribute the enhancement of emission. This work suggests that plasma treatment technique could be a direct means to improve field-emission properties of nanostructures.

  6. Characterization of atmospheric pressure plasma treated pure cashmere and wool/cashmere textiles: Treatment in air/water vapor mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zanini, Stefano, E-mail: stefano.zanini@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Grimoldi, Elisa [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Citterio, Attilio [Politecnico di Milano, Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Via Mancinelli 7, I-20131 Milano (Italy); Riccardi, Claudia, E-mail: riccardi@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy)

    2015-09-15

    Highlights: • We treated cashmere and wool/cashmere textiles with atmospheric pressure plasma. • Wettability of the fabrics was increased. • The increment in wettability derived from a surface oxidation of the fibers. • Only minor etching effects were observed with scanning electron microscopy. - Abstract: We performed atmospheric pressure plasma treatments of pure cashmere and wool/cashmere textiles with a dielectric barrier discharge (DBD) in humid air (air/water vapor mixtures). Treatment parameters have been optimized in order to enhance the wettability of the fabrics without changing their bulk properties as well as their touch. A deep characterization has been performed to study the wettability, the surface morphologies, the chemical composition and the mechanical properties of the plasma treated textiles. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy and X-ray photoelectron microscopy (XPS). The analyses reveal a surface oxidation of the treated fabrics, which enhances their surface wettability. Morphological characterization of the treated fibers with scanning electron microscopy (SEM) reveals minor etching effects, an essential feature for the maintenance of the textile softness.

  7. Au-nanoparticles grafted on plasma treated PE

    Energy Technology Data Exchange (ETDEWEB)

    Svorcik, V., E-mail: vaclav.svorcik@vscht.c [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Chaloupka, A. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Rezanka, P. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Slepicka, P. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Kolska, Z. [Department of Chemistry, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Kasalkova, N.; Hubacek, T.; Siegel, J. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2010-03-15

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  8. Au-nanoparticles grafted on plasma treated PE

    Science.gov (United States)

    Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.

    2010-03-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  9. Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene

    Science.gov (United States)

    Chashmejahanbin, Mohammad. R.; Daemi, Hamed; Barikani, Mehdi; Salimi, Ali

    2014-10-01

    In present research, polypropylene (PP) was selected as a model nonpolar substrate for chemical modification using plasma. In the first step, the PP samples were treated using oxygen and argon atmospheres, individually. The prepared samples were analyzed using both FTIR and AFM techniques. The output of these techniques revealed that the carbonyl, carboxylic acid and its derivatives have been formed on the surface of PP. Afterward, a series of aqueous polyurethane-urea dispersions were synthesized as the novel polar coating for modified nonpolar polymers and characterized by different techniques including FTIR, DSC, TGA, mechanical properties and contact angle. Finally, the plasma treated samples were coated by prepared polyurethane ionomer. The results of pull-off analysis confirmed the significant role of the polyurethane as an extremely polar coating to create hydrogen bonding with functional groups on the surface of treated PP. The adhesion strength of polypropylenes increased from 0.04 MPa to 0.61 MPa for neat and oxygen-based plasma treated samples, respectively.

  10. Plasma Treated TiO2 Nanoparticles for Dispersion Enhancement

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; LI Chun; ZHANG Jing

    2009-01-01

    TiO2 nanoparticles were treated in a fluidized reactor by introducing Hexamethyldisiloxane(HMDSO)plasma monomer.The organic HMDSO-polymer vapor was condensed on the nanoparticles and lowered their surface energy.This plasma treatment was harmless to the crystal lattice of the TiO2 nanoparticles.The treated nanoparticles were mixed in glycol solutions and polymerized into TiO2-polyester composites for studying the effect of plasma deposition on dispersion.It Was found that the dispersion of the TiO2 nanoparticles in both glycol and the polyester matrix Was significantly improved due to lower surface energy and HMDSO plasma treatment, as from ultraviolet absorbency measurements and scanning electron microscopy observation.The theory of colloid stability successfully explained the dispersion enhancement of TiO2 nanoparticles in glycol.

  11. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer

    2012-09-01

    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  12. Surface Tension Driven Convection Experiment Completed

    Science.gov (United States)

    Jacobson, Thomas P.; Sedlak, Deborah A.

    1997-01-01

    The Surface Tension Driven Convection Experiment (STDCE) was designed to study basic fluid mechanics and heat transfer on thermocapillary flows generated by temperature variations along the free surfaces of liquids in microgravity. STDCE first flew on the USML-1 mission in July 1992 and was rebuilt for the USML-2 mission that was launched in October 1995. This was a collaborative project with principal investigators from Case Western Reserve University (CWRU), Professors Simon Ostrach and Yasuhiro Kamotani, along with a team from the NASA Lewis Research Center composed of civil servants and contractors from Aerospace Design & Fabrication, Inc. (ADF), Analex, and NYMA, Inc.

  13. S180 cell growth on low ion energy plasma treated TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dhayal, Marshal [Liquid Crystal and Self Assembled Monolayer Section, National Physical Laboratory, New Delhi (India)], E-mail: marshaldhayal@yahoo.com; Cho, Su-In [Department of Oriental Medicine, College of Medicine, Dongshin University, Naju (Korea, Republic of); Moon, Jun Young [Photonics Education Learning Center, Chonnam National University, Gawanju (Korea, Republic of); Cho, Su-Jin [Korea University Medical Center, 80 Guro-dong, Korea University, Seoul (Korea, Republic of); Zykova, Anna [Biomedical Research Laboratory, Institute of Surface Engineering, Kharkov (Ukraine)

    2008-03-30

    X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO{sub 2} thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO{sub 2} in a two-stage hybrid system had increased the proportion of surface states of TiO{sub 2} as Ti{sup 3+}. The proportion of carbon atoms as alcohol/ether (C-OX) was decreased with increase the RF power and carbon atoms as carbonyl (C=O) functionality had increased for low RF power treatment. The proportion of C(=O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO{sub 2} surfaces whereas small-localised cell free area can be seen on plasma treated TiO{sub 2} surfaces which may be due to decrease in C(=O)OX, increase in C=O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO{sub 2} surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO{sub 2} was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.

  14. Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge

    Science.gov (United States)

    Lu, P.; Boehm, D.; Cullen, P.; Bourke, P.

    2017-06-01

    Plasma treated liquids (PTLs) provide a means to convey a broad range of effects of relevance for food, environmental, or clinical decontamination, plant growth promotion, and therapeutic applications. Devising the reactive species ingredients and controlling the biological response of PTLs are of great interest. We demonstrate an approach by using an open-air hybrid mode discharge (HMD) to control the principal reactive species composition within plasma treated water (PTW), which is then demonstrated to regulate the cytotoxicity of PTW. The cytotoxicity of HMD produced PTW demonstrates a non-monotonic change over the discharge time. Although hydrogen peroxide and nitrite are not the sole effectors for cell death caused by PTW, using them as principal reactive species indicators, cytotoxicity can be removed and/or enhanced by formulating their concentrations and composition through adjusting the discharge mode and time on-line during PTW generation without the addition of additional working gas or chemical scavengers. This work demonstrates that a hybrid mode discharge can be employed to generate a PTW formulation to control a biological response such as cytotoxicity. This provides insights into how plasma treated liquids may be harnessed for biological applications in a specific and controllable manner.

  15. Mutagenicity and Immune Toxicity of Emulsion-type Sausage Cured with Plasma-treated Water.

    Science.gov (United States)

    Kim, Hyun-Joo; Sung, Nak-Yun; Yong, Hae In; Kim, Hanwool; Lim, Younggap; Ko, Kwang Hyun; Yun, Cheol-Heui; Jo, Cheorun

    2016-01-01

    Cold plasma has been developed to reduce microbial contamination and to improve safety of food and medical products. In addition, the technology can be used in the manufacture of sausages without addition of nitrite. To be applied in food industry commercially, the new technology should be safe and efficient. However, toxicological test of plasma-treated food is limited. Therefore, the purpose of this study was to determine the mutagenicity and immune toxicity of the meat products cured with plasma-treated water (PTW) as a nitrite source. Emulsion sausages were prepared with no nitrite (control), sodium nitrite (SCS), and PTW (SCP). For a mutagenicity test, the Ames test was performed with the sausage samples. For immune toxicity test, 8-wk-old female Balb/c mice were given free access to the sausages in order to evaluate the tumor necrosis factor (TNF)-α level. As a result, no mutagenicity was detected in the sausages by the Ames test. The serum TNF-α values were less than 10 pg/mL in mice after feeding control and treated samples for 32 d, indicating that no inflammatory response was occurred by feeding the sausages made by PTW. Therefore, the present study opens the possibility of using plasma-treated water as a nitrite source without any toxicity.

  16. Binding of human coronary artery endothelial cells to plasma-treated titanium dioxide nanotubes of different diameters.

    Science.gov (United States)

    Flašker, Ajda; Kulkarni, Mukta; Mrak-Poljšak, Katjuša; Junkar, Ita; Čučnik, Saša; Žigon, Polona; Mazare, Anca; Schmuki, Patrik; Iglič, Aleš; Sodin-Semrl, Snezna

    2016-05-01

    Nanoscale topography in improving vascular response in vitro was established previously on various titanium surfaces. In the present study different surface nanotopographies that is different diameters of titanium dioxide (TiO2 ) nanotubes (NTs) were fabricated by electrochemical anodization and conditioned with highly reactive gaseous oxygen plasma. The morphology of different diameter NTs was studied by scanning electron microscopy and atomic force microscopy, while changes in chemical composition on the surface before and after plasma treatment were determined by X-ray photoelectron spectroscopy. Performance of human coronary artery endothelial cells (HCAEC) on those conditioned surfaces was studied in regard to cell proliferation, released IL-6 protein and immunofluorescence microscopy (IFM). We show that HCAEC function is dependent on the diameter of the TiO2 NTs, functioning far less optimally when bound to 100 nm TiO2 NTs as compared to Ti foil, 15 nm NTs or 50 nm NTs. There were improved, morphological cell shape changes, observed with IFM, between HCAEC growing on oxygen-rich plasma-treated versus nontreated 100 nm NTs. These endothelialized conditioned Ti nanosurfaces could elucidate optimization conditions necessary for vascular implants in coronary arteries.

  17. Surface forces: Surface roughness in theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Drew F., E-mail: Drew.Parsons@anu.edu.au; Walsh, Rick B.; Craig, Vincent S. J. [Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-28

    A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height. A roughness-averaged force is determined by taking an average of the classic flat-surface force, weighing all possible separation distances against the probability distributions of surface heights. Second the model adds a repulsive contact force due to the elastic contact of asperities. We derive a simple analytic expression for the contact force. The general impact of roughness is to amplify the long range behaviour of noncontact (DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces. The model therefore provides a means of distinguishing between “true zero,” where the separation between the average centres of each surface is zero, and “apparent zero,” defined by the onset of the repulsive contact wall. A normal distribution may be assumed for the surface probability distribution, characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the probability distribution may be defined by the histogram of heights measured by AFM. Both methods of treating surface roughness are compared against the classic smooth surface calculation and experimental AFM measurement.

  18. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

    Science.gov (United States)

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-01-01

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving. PMID:28772719

  19. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2013-01-01

    Full Text Available Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.

  20. Theory and experiments on surface diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Silvestri, W.L.

    1998-11-01

    The following topics were dealt with: adatom formation and self-diffusion on the Ni(100) surface, helium atom scattering measurements, surface-diffusion parameter measurements, embedded atom method calculations.

  1. Experiences with Surface Dressings in Norway,

    Science.gov (United States)

    1980-12-01

    adhesiveness between he a LOe ,ates and the binder is absolutely necessary in surface treatments, also wO;, pur bitumen is used as a binder. To a certain...particle con- tent has the same effect in addition to preventing the adhesion of the binder to the aggregate surface. The requirements on the rock...conditions). Later damages may be due to erroneous dosage of quantities of binder and aggregate , too heavy traffic load and the geometric and physical

  2. Surface nanobubbles: Theory, numerics and experiments

    Science.gov (United States)

    Weijs, Joost H.

    2013-11-01

    When a solid is brought into contact with water, surface nanobubbles can be formed at the solid-liquid interface. These nanobubbles are small; their height is of order 10nm and their lateral sizes vary from 10-100 nm. Initially, the only proof of the existence of surface nanobubbles was delivered by atomic force microscopy. Later, additional techniques such as infrared attenuated total reflectance have confirmed the existence of gaseous domains on the solid-liquid interface. Before this overwhelming evidence, the existence of surface nanobubbles was controversial because they possess some unusual properties. For example, nanobubbles are surprisingly robust against dissolution by diffusion and Laplace pressure: Instead of the expected lifetime of about a microsecond, nanobubbles are found to survive for several hours and in some cases even several days. Additionally, surface nanobubbles are flatter than predicted by Young's law and are able to resist strong tensile stresses (~-6 MPa), rather than serving as a nucleation site for a macroscopic bubble. A deep understanding of surface nanobubbles is crucial for practical applications (e.g. drag reduction in microfluidic devices) but nanobubbles also pose fundamental questions on the validity of continuum models at the nanoscale. In this talk, we will discuss these open questions in detail by considering theoretical efforts and molecular dynamics simulations. Theoretically, we study the consequences of a pinned contact line. We find that the pinned contact line can explain the long lifetimes and many other nanobubble properties. From molecular dynamics results, we clarify the influence of the gas species on the contact angle. Finally, we will discuss some very recent experimental and theoretical work on the effects of an acoustic field on nanobubbles. We provide experimental data combined with a theoretical analysis and find that the acoustic driving can cause the nanobubbles to grow by rectified diffusion.

  3. XRF Experiment for Elementary Surface Analysis

    Science.gov (United States)

    Köhler, E.; Dreißigacker, A.; Fabel, O.; van Gasselt, S.; Meyer, M.

    2014-04-01

    The proposed X-Ray Fluorescence Instrument Package (XRF-X and XRF-E) is being designed to quantitatively measure the composition and map the distribution of rock-surface materials in order to support the target area selection process for exploration, sampling, and mining. While energydispersive X-Ray fluorescence (EDX) makes use of Solar X-Rays for excitation to probe materials over arbitrary distances (by XRF-X), electron-beam excitation can be used for proximity measurements (by XRF-E) over short-distance of up to about 10 - 20m. This design is targeted at observing and analyzing surface compositions from orbital platforms and it is in particular applicable to all atmosphereless solidsurface bodies. While the instrument design for observing objects in the outer solar system is challenging due to low count rates, the Moon and objects of the asteroid belt usually receive solar X-ray radiation that allows to integrate a statistically reliable data basis. Asteroids are attractive targets and have been visited using X-ray fluorescence instruments by orbiting spacecraft in the past (Itokawa, Eros). They are wellaccessible objects for determining elemental compositions and assessing potential mineral resources.

  4. Boston ocular surface prosthesis: An Indian experience

    Directory of Open Access Journals (Sweden)

    Varsha Madanlal Rathi

    2011-01-01

    Full Text Available Context: Boston ocular surface prosthesis (BOSP is a scleral contact lens used in the management of patients who are rigid gas permeable (RGP failures as with corneal ectasias such as keratoconus and in those patients who have ocular surface disease such as Stevens-Johnson syndrome (SJS. Aim: To report utilization of BOSP in a tertiary eye care center in India. Materials and Methods: We retrospectively reviewed charts of 32 patients who received BOSP from July 2008 to May 2009. Indications for fitting these lenses, improvement in visual acuity (VA before and after lens fitting and relief of symptoms of pain and photophobia were noted. Paired t-test was used for statistical analysis using SPSS version 16.0 for Windows. Results: Thirty-two patients (43 eyes received these lenses. These consisted of 23 eyes of 17 patients who failed RGP trials for irregular astigmatism and corneal ectasia such as keratoconus and post radial keratotomy and scar and 20 eyes of 15 patients with SJS. Mean age of RGP failures was 27.94 years. Pre- and post-BOSP wear mean LogMAR VA was 1.13 and 0.29, respectively, in RGP failures. The P value was statistically significant (P 2 lines in 7/20 eyes (35% with SJS, with improvement in symptoms. Conclusion: BOSP improves VA in patients who have irregular astigmatism as in ectasias and RGP failures and improves vision and symptoms in patients with SJS.

  5. NanoSIMS50 analyses of Ar/18O2 plasma-treated Escherichia coli bacteria

    Science.gov (United States)

    Clément, F.; Lecoq, E.; Duday, D.; Belmonte, T.; Audinot, J.-N.; Lentzen, E.; Penny, C.; Cauchie, H.-M.; Choquet, P.

    2011-11-01

    Reactive oxygen species (ROS) can be produced by electrical discharges and can be transported in uncharged regions by gas flows, in the so-called afterglows. These species are well known to have bactericidal effects but interaction mechanisms that occur with living micro-organisms remain misunderstood. In order to better understand these interactions, new analysis approaches are necessary. High-lateral-resolution secondary ion mass spectrometry (NanoSIMS) is one of the most promising ways of retrieving additional information on bacteria plasma inactivation mechanisms by combining isotopic imaging of plasma-treated bacteria and the use of 18O2 as process gas. Indeed, this technology combines a lateral resolution of a few tens of nanometres that is sufficient to image the interior of bacteria, and a high mass resolution allowing detection of isotopes present in low quantities (a few ppm or lower) within the bacteria. The present paper deals with Ar-18O2 (2%) plasma treatment, through low-pressure microwave late afterglows, of Escherichia coli bacteria and their elemental and isotopic imaging by NanoSIMS. E. coli bacteria have been exposed to this reactive medium for varying treatment duration while keeping all other parameters unchanged. Our main goal is to determine whether the quantity of 18O fixed in treated bacteria and the NanoSIMS50 lateral resolution are sufficient to give additional information on E. coli bacteria-plasma interaction.

  6. Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide

    Science.gov (United States)

    Jesuraj, P. Justin; Parameshwari, R.; Kanthasamy, K.; Koch, J.; Pfnür, H.; Jeganathan, K.

    2017-03-01

    The hole injection layer (HIL) with high work function (WF) is desirable to reduce the injection barrier between anode and hole transport layer in organic light emitting devices (OLED). Here, we report a novel approach to tune the WF of graphene oxide (GO) using oxygen and hydrogen plasma treatment and its hole injection properties in OLEDs. The mild exposure of oxygen plasma on GO (O2-GO) significantly reduces the injection barrier by increasing the WF of anode (4.98 eV) through expansion of Csbnd O bonds. In contrast, the hole injection barrier was drastically increased for hydrogen plasma treated GO (H2-GO) layers as the WF is lowered by the contraction of Csbnd O bond. By employing active O2-GO as HIL in OLEDs found to exhibit superior current efficiency of 4.2 cd/A as compared to 3.3 cd/A for pristine GO. Further, the high injection efficiency of O2-GO infused hole only device can be attributed to the improved energy level matching. Ultraviolet and X-ray photoelectron spectroscopy were used to correlate the WF of HIL infused anode towards the enhanced performance of OLEDs with their capricious content of Csbnd O in GO matrix.

  7. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  8. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  9. Experiments on buoyancy and surface tension following Galileo Galilei

    Science.gov (United States)

    Straulino, S.; Gambi, C. M. C.; Righini, A.

    2011-01-01

    We analyze passages of Galileo's writings on aspects of floating. Galileo encountered peculiar effects such as the "floating" of light objects made of dense material and the creation of large drops of water that were difficult to explain because they are related to our current understanding of surface tension. Even though Galileo could not understand the phenomenon, his proposed explanations and experiments are interesting from an educational point of view. We replicate the experiment on water and wine that was described by Galileo in his Two New Sciences.

  10. Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase.

    Science.gov (United States)

    Kourti, Ioanna; Devaraj, Amutha Rani; Bustos, Ana Guerrero; Deegan, David; Boccaccini, Aldo R; Cheeseman, Christopher R

    2011-11-30

    Air pollution control (APC) residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium aluminosilicate glass (APC glass). This has been used to form geopolymer-glass composites that exhibit high strength and density, low porosity, low water absorption, low leaching and high acid resistance. The composites have a microstructure consisting of un-reacted residual APC glass particles imbedded in a complex geopolymer and C-S-H gel binder phase, and behave as particle reinforced composites. The work demonstrates that materials prepared from DC plasma treated APC residues have potential to be used to form high quality pre-cast products.

  11. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-08-27

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.

  12. The physical and chemical properties of plasma treated ultra-high-molecular-weight polyethylene fibers

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Teodoru, Steluta; Hansen, Charles M.

    2011-01-01

    A uniform and smooth transfer of stresses across the polymer matrix/fiber interface is enhanced when adhesion between the matrix and fiber surface is optimized. In the absence of covalent bonds matching the Hansen solubility (cohesion) parameters (HSP) of the fiber surface with the HSP of a matri...

  13. Cytocompatibility of Ar{sup +} plasma treated and Au nanoparticle-grafted PE

    Energy Technology Data Exchange (ETDEWEB)

    Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)], E-mail: vaclav.svorcik@vscht.cz; Kasalkova, N.; Slepicka, P. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Zaruba, K.; Kral, V. [Department of Analytical Chemistry, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bacakova, L.; Parizek, M.; Lisa, V. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Ruml, T.; Gbelcova, H.; Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Mackova, A. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Department of Physics, J.E. Purkinje University, 400 96 Usti nad Labem (Czech Republic)

    2009-06-01

    Polyethylene (PE) was irradiated with inert Ar plasma, and the chemically active PE surface was grafted with Au nanoparticles. The composition and the structure of the modified PE surface were studied using X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectroscopy (RBS). Changes in the surface wettability were determined from the contact angle measured in a reflection goniometer. The changes in the surface roughness and morphology were followed by atomic force microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMC) or mouse NIH 3T3 fibroblasts, and their adhesion and proliferation were studied. We found that plasma discharge and Au grafting lead to dramatic changes in the surface morphology and roughness of PE. The Au nanoparticles were found not only on the sample surface, but also in the sample interior up to the depth of about 100 nm. In addition, plasma modification of the PE surface, followed with grafting Au-nanoparticles, significantly increased the attractiveness of the PE surface for the adhesion and growth of VSMC, and particularly for mouse embryonic 3T3 fibroblasts.

  14. Cytocompatibility of Ar + plasma treated and Au nanoparticle-grafted PE

    Science.gov (United States)

    Švorčík, V.; Kasálková, N.; Slepička, P.; Záruba, K.; Král, V.; Bačáková, L.; Pařízek, M.; Lisá, V.; Ruml, T.; Gbelcová, H.; Rimpelová, S.; Macková, A.

    2009-06-01

    Polyethylene (PE) was irradiated with inert Ar plasma, and the chemically active PE surface was grafted with Au nanoparticles. The composition and the structure of the modified PE surface were studied using X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectroscopy (RBS). Changes in the surface wettability were determined from the contact angle measured in a reflection goniometer. The changes in the surface roughness and morphology were followed by atomic force microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMC) or mouse NIH 3T3 fibroblasts, and their adhesion and proliferation were studied. We found that plasma discharge and Au grafting lead to dramatic changes in the surface morphology and roughness of PE. The Au nanoparticles were found not only on the sample surface, but also in the sample interior up to the depth of about 100 nm. In addition, plasma modification of the PE surface, followed with grafting Au-nanoparticles, significantly increased the attractiveness of the PE surface for the adhesion and growth of VSMC, and particularly for mouse embryonic 3T3 fibroblasts.

  15. Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells

    Science.gov (United States)

    Winter, J.; Wende, K.; Masur, K.; Iseni, S.; Dünnbier, M.; Hammer, M. U.; Tresp, H.; Weltmann, K.-D.; Reuter, S.

    2013-07-01

    In this study, the effect of feed gas humidity on the reactive component generation of an atmospheric-pressure argon plasma jet and its effect on human skin cells are investigated. Feed gas humidity is identified as one key parameter that strongly influences stability and reproducibility of plasma medical studies. The plasma jet is investigated by absorption spectroscopy in the ultraviolet and infrared spectral region for its ozone production depending on the humidity concentration in the feed gas. By optical emission spectroscopy the dependence of present excited plasma species such as hydroxyl radicals, molecular nitrogen, argon and atomic oxygen on the feed gas humidity is investigated. As an interface layer between the plasma jet effluent and the biological cell, a buffer solution is treated and the hydrogen peroxide (H2O2) production is studied with two independent colorimetric assays as a function of humidity admixture to the feed gas. Ultimately, the effect of varying feed gas humidity on the cell viability of indirect plasma treated adherent HaCAT cells is investigated. The highest viability is found for the driest feed gas condition. Furthermore, this work shows answers for the relevance of unwanted—or intended—feed gas humidity in plasma medical experiments and their comparatively large relevance with respect to ambient humidity. The findings will lead to more reproducible experiments in the field of plasma medicine.

  16. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    Science.gov (United States)

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  17. Influence of 60Co gamma radiation on fluorine plasma treated enhancement-mode highelectron-mobility transistor

    Institute of Scientific and Technical Information of China (English)

    Quan Si; Hao Yue; Ma Xiao-Hua; Yu Hui-You

    2011-01-01

    AlGaN/GaN depletion-mode high-electron-mobility transistor (D-HEMT) and fluorine (F) plasma treated enhancement-mode high-electron-mobility transistor (E-HEMT) are exposed to 60Co gamma radiation with a dose of 1.6 Mrad (Si). No degradation is observed in the performance of D-HEMT. However, the maximum transconductance of E-HEMT is increased after radiation. The 2DEG density and the mobility are calculated from the results of capacitance-voltage measurement. The electron mobility decreases after fluorine plasma treatment and recovers after radiation. Conductance measurements in a frequency range from 10 kHz to 1 MHz are used to characterize the trapping effects in the devices. A new type of trap is observed in the F plasma treated E-HEMT compared with the D-HEMT, but the density of the trap decreases by radiation. Fitting of Gp/ω data yields the trap densities DT = (1 - 3) × 1012 cm-2-·eV-1 and DT = (0.2 - 0.8) × 1012 cm-2·eV-1 before and after radiation, respectively.The time constant is 0.5 ms-6 ms. With F plasma treatment, the trap is introduced by etch damage and degrades the electronic mobility. After 60Co gamma radiation, the etch damage decreases and the electron mobility is improved. The gamma radiation can recover the etch damage caused by F plasma treatment.

  18. Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts.

    Science.gov (United States)

    Rimpelová, Silvie; Kasálková, Nikola Slepičková; Slepička, Petr; Lemerová, Helena; Švorčík, Václav; Ruml, Tomáš

    2013-04-01

    The cell-material interface plays a crucial role in the interaction of cells with synthetic materials for biomedical use. The application of plasma for tailoring polymer surfaces is of abiding interest and holds a great promise in biomedicine. In this paper, we describe polyethylene (PE) surface tuning by Ar plasma irradiating and subsequent grafting of the chemically active PE surface with adhesive proteins or motives to support cell attachment. These simple modifications resulted in changed polymer surface hydrophilicity, roughness and morphology, which we thoroughly characterized. The effect of our modifications on adhesion and growth was tested in vitro using mouse embryonic fibroblasts (NIH 3T3 cell line). We demonstrate that the plasma treatment of PE had a positive effect on the adhesion, spreading, homogeneity of distribution and moderately on proliferation activity of NIH 3T3 cells. This effect was even more pronounced on PE coated with biomolecules.

  19. Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rimpelová, Silvie [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic); Kasálková, Nikola Slepičková; Slepička, Petr [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic); Lemerová, Helena [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic); Švorčík, Václav [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic); Ruml, Tomáš, E-mail: tomas.ruml@vscht.cz [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, Prague 6, 166 28 (Czech Republic)

    2013-04-01

    The cell–material interface plays a crucial role in the interaction of cells with synthetic materials for biomedical use. The application of plasma for tailoring polymer surfaces is of abiding interest and holds a great promise in biomedicine. In this paper, we describe polyethylene (PE) surface tuning by Ar plasma irradiating and subsequent grafting of the chemically active PE surface with adhesive proteins or motives to support cell attachment. These simple modifications resulted in changed polymer surface hydrophilicity, roughness and morphology, which we thoroughly characterized. The effect of our modifications on adhesion and growth was tested in vitro using mouse embryonic fibroblasts (NIH 3T3 cell line). We demonstrate that the plasma treatment of PE had a positive effect on the adhesion, spreading, homogeneity of distribution and moderately on proliferation activity of NIH 3T3 cells. This effect was even more pronounced on PE coated with biomolecules. - Graphical abstract: High density polyethylene scaffolds (PE) were modified by deposition to Ar plasma. These surface reactive PE were further grafted with biomolecules to enhance cell attachment and proliferation. The changes in surface physico-chemical properties (hydrophilicity, morphology, roughness) of PE were measured. The effects of used substrates on the adhesion and growth of mouse embryonic fibroblasts were determined by a five-day cell culture study. The method for significant biocompatibility improvement was presented. Highlights: ► Argon plasma treatment altered polyethylene surface morphology and roughness ► Plasma treatment reduced contact angle of polyethylene ► Grafting of polyethylene with biomolecules further reduced contact angle ► Plasma treatment and peptide grafting increased polyethylene biocompatibility.

  20. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  1. The Effect of Oxygen-Plasma Treated Graphene Nanoplatelets upon the Properties of Multiwalled Carbon Nanotube and Polycarbonate Hybrid Nanocomposites Used for Electrostatic Dissipative Applications

    Directory of Open Access Journals (Sweden)

    Akkachai Poosala

    2015-01-01

    Full Text Available Oxygen-plasma treated graphene nanoplatelet (OGNP, multiwalled carbon nanotube (MWCNT and polycarbonate (PC hybrid nanocomposites were prepared via a melting process using a twin-screw extruder. The contents of the OGNPs were in the range of 0.0 to 5.0 parts per hundred resin (phr, whilst the dosage of MWCNTs was kept at a constant of 2.0 wt%. Nanocomposites containing 2.0 wt% of MWCNTs and mixtures of 2.0 wt% of MWCNTs at 1.5 to 5.0 phr of OGNPs had tribocharged voltages, surface resistivities, and decay times, all within the electrostatic discharge (ESD specification. The X-ray diffraction (XRD and scanning electron microscopy (SEM results revealed that the OGNPs slightly intercalated and distributed also within the PC matrix. The glass transition temperature Tg and heat capacity jump, at the glass transition stages of nanocomposite, slightly changed, as the contents of the OGNPs increased. The melt flow index (MFI of nanocomposites significantly decreased when MWCNTs were added to the PC resin and slightly changed as the dosage of OGNPs was increased. Tensile Young’s modulus of nanocomposites tended to increase, as the elongation at break and impact strength decreased, when OGNP concentrations were increased. This research work exhibited that OGNP/MWCNT/PC hybrid nanocomposites do indeed have the potential to be used in ESD applications.

  2. Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene

    NARCIS (Netherlands)

    Dekker, A.; Reitsma, K.; Beugeling, T.; Bantjes, A.; Feijen, J.; Aken, van W.G.

    1991-01-01

    From in vitro experiments it is known that human endothelial cells show poor adhesion to hydrophobic polymers. The hydrophobicity of vascular prostheses manufactured from Teflon® or Dacron® may be the reason why endothelialization of these grafts does not occur after implantation in humans. We modif

  3. Long-term Adhesion Study of Self-etching Systems to Plasma-treated Dentin.

    Science.gov (United States)

    Hirata, Ronaldo; Teixeira, Hellen; Ayres, Ana Paula Almeida; Machado, Lucas S; Coelho, Paulo G; Thompson, Van P; Giannini, Marcelo

    2015-06-01

    To determine the influence of atmospheric pressure plasma (APP) treatment on the microtensile dentin bond strength of two self-etching adhesive systems after one year of water storage as well as observe the contact angle changes of dentin treated with plasma and the micromorphology of resin/dentin interfaces using SEM. For contact angle measurements, 6 human molars were sectioned to remove the occlusal enamel surface, embedded in PMMA resin, and ground to expose a flat dentin surface. Teeth were divided into two groups: 1) argon APP treatment for 30 s, and 2) blown air (control). For the microtensile test, 28 human third molars were used and prepared similarly to contact angle measurements. Teeth were randomly divided into 4 groups (n = 7) according to two self-etching adhesives and APP treatment (with/without). After making the composite resin buildup, teeth were sectioned perpendicular to the bonded interface to obtain beam specimens. The specimens were tested after 24 h and one year of water storage until failure. Bond strength data were analyzed by three-way ANOVA and Tukey's post-hoc test (α = 0.05%). Three beam specimens per group that were not used in the bond strength test were prepared for interfacial SEM analysis. APP application decreased the contact angle, but increased the bond strength only for one adhesive tested. SEM evaluation found signs of degradation within interfacial structures following 1-year aging in water. APP increased the dentin surface energy, but the effects of APP and 1-year water storage on dentin bond strength were product dependent. APP increased the dentin surface energy. It also increased the bond strength for Scotchbond Universal, but storage for one year negated the positive effect of APP treatment.

  4. Plasma Treated Multi-Walled Carbon Nanotubes (MWCNTs for Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Jie Lian

    2011-12-01

    Full Text Available Plasma nanocoating of allylamine were deposited on the surfaces of multi-walled carbon nanotubes (MWCNTs to provide desirable functionalities and thus to tailor the surface characteristics of MWCNTs for improved dispersion and interfacial adhesion in epoxy matrices. Plasma nanocoated MWCNTs were characterized using scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HR-TEM, surface contact angle, and pH change measurements. Mechanical testing results showed that epoxy reinforced with 1.0 wt % plasma coated MWCNTs increased the tensile strength by 54% as compared with the pure epoxy control, while epoxy reinforced with untreated MWCNTs have lower tensile strength than the pure epoxy control. Optical and electron microscopic images show enhanced dispersion of plasma coated MWCNTs in epoxy compared to untreated MWCNTs. Plasma nanocoatings from allylamine on MWCNTs could significantly enhance their dispersion and interfacial adhesion in epoxy matrices. Simulation results based on the shear-lag model derived from micromechanics also confirmed that plasma nanocoating on MWCNTs significantly improved the epoxy/fillers interface bonding and as a result the increased composite strength.

  5. Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia.

    Directory of Open Access Journals (Sweden)

    Miao Zheng

    Full Text Available To evaluate whether atmospheric-pressure dielectric-barrier-discharge plasma treatment of zirconia enhances its biocompatibility with human gingival fibroblasts.The zirconia disks were divided into four groups and treated using helium atmospheric-pressure dielectric-barrier-discharge plasmas for 30, 60 or 90 s or left untreated. The surface morphology, wettability and chemical elements were analyzed. Fibroblasts density, morphology, morphometry and attachment-related genes expression were measured at different time points from 3 to 72 h.After plasma treatment, the surface morphology and roughness remained the same, while the contact angle decreased from 78.31° to 43.71°, and the surface C/O ratio decreased from 3.17 to 0.89. The surficial areas and perimeters of HGFs were increased two-fold in the treated groups at 3 h. Fibroblasts density increased on treated disks at all time points, especially the ones treated for 60 s. Attachment-related genes in the groups treated for 30 and 60 s were significantly higher at 3 and 24 h.The helium atmospheric-pressure dielectric-barrier-discharge plasma treatment enhances the biological behavior of fibroblasts on zirconia by increasing the expression of attachment-related genes within 24 h and promoting the cell density during longer culture times. Wettability of zirconia, an important physicochemical property, has a vital influence on the cell behaviors.

  6. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); Wang, C.X. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); Qiu, Y. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China)], E-mail: ypqiu@dhu.edu.cn

    2008-12-30

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick.

  7. Biodegradability of oxygen-plasma treated cellulose textile functionalized with ZnO nanoparticles as antibacterial treatment

    Science.gov (United States)

    Primc, Gregor; Tomšič, Brigita; Vesel, Alenka; Mozetič, Miran; Ercegović Ražić, Sanja; Gorjanc, Marija

    2016-08-01

    Samples of bleached cellulose fabric were treated with weakly ionized highly dissociated oxygen plasma in order to improve the binding of ZnO nanoparticles, antibacterial properties and biodegradability. Low specific discharge power of about 24 W l-1 was applied in order to minimize thermal effects following plasma treatment. Optical emission spectroscopy revealed weak etching of the fabric while x-ray photoelectron spectroscopy showed formation of oxygen-rich functional groups. Scanning electron microscopy revealed an improved uptake of ZnO nanoparticles and the standard transfer method highlighted excellent antimicrobial effects for Staphylococcus aureus and Escherichia coli. The biodegradability of all samples was determined using the standard ISO test and revealed excellent results for plasma-treated samples even in cases when they were functionalized using ZnO nanoparticles.

  8. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage.

    Science.gov (United States)

    Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; In Yong, Hae; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun

    2015-10-01

    We investigated the possible use of atmospheric pressure plasma-treated water (PTW) as a nitrite source in curing process. Emulsion-type sausages were manufactured with PTW, celery powder containing nitrite, and synthetic sodium nitrite at a concentration of nitrite ion 70mgkg(-1). In terms of sausage quality, there were no noticeable effects of PTW on the total aerobic bacterial counts, color, and peroxide values of sausages compared with those of celery powder and sodium nitrite throughout 28days of storage at 4°C. Sausage with added PTW had lower concentrations of residual nitrite compared to those of added celery powder and sodium nitrite during the storage period (Psausages were not different, whereas the sausage with added celery powder received the lowest scores in taste and acceptability. From the results, it is concluded that PTW can be used as a nitrite source equivalent to a natural curing agent.

  9. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    Science.gov (United States)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can

  10. Photoemission from Coated Surfaces A Comparison of Theory to Experiment

    CERN Document Server

    Jensen, K

    2005-01-01

    Photocathodes for FELs and accelerators will benefit from rugged and self-rejuvenating photocathodes with high QE at the longest possible wavelength. The needs of a high power FEL are not met at present by existing photocathode-drive laser combinations: requirements generally necessitate barrier-lowering coatings which are degraded by operation. We seek to develop a controlled porosity dispenser cathode, and shall report on our coordinated experimental and theoretical studies. Our models account for field, thermal, and surface effects of cesium monolayers on photoemission, and compare well with concurrent experiments examining the QE, patchiness, and evolution of the coatings. Field enhancement, thermal variation of specific heat and electron relaxation rates and their relation to high laser intensity and/or short pulse-to-pulse separation, variations in work function effects due to coating non-uniformity, and the dependence on the wavelength of the incident light are included. The status of methods by which ...

  11. Near surface geophysical techniques on subsoil contamination: laboratory experiments

    Science.gov (United States)

    Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo

    2016-04-01

    Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of

  12. Experiment on Physical Desalinisation of Uranium-contaminated Gravel Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Uk-Ryang; Kim, Gye-Nam; Kim, Seung-Soo; Han, Gyu-Seong; Moon, Jai-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    As a result, the method to wash uranium-contaminated gravels could not get satisfactory desalinization rate. During the long oxidization process it was judged that uranium penetrated inside the gravels, so we tried to increase the desalinization rate by fragmentizing them into pieces and then washing them. The desalinization rate after fragmentizing the gravels into pieces and washing them brought a satisfactory result.. However, we could obtain desired concentration for gravels with high uranium concentration by fragmentizing them and breaking them further into even smaller pieces. Likewise, desalinization using soil washing process is complicated and has to go through multiple washing steps, resulting in too much of waste fluid generated accordingly. The increase of waste fluid generated leads to the increase in by-products of the final disposal process later on, bringing a not good economic result. Furthermore, taking into account that the desalinization rate is 65% during soil washing process, it is expected that gravel washing will show a similar desalinization result; it is considered uneasy to have a perfect desalinization only by soil washing. The grinding method is actually used in the primary desalinization process in order to desalinize radioactivity-contaminated concrete. This method does desalinization by grinding the radioactivity-contaminated area of the concrete surface with desalinization equipment, which enables a near-to-perfect desalinization for relatively thinly contaminated surface. Likewise, this research verified the degree of desalinization by applying the grinding method and comparing it to the fragmentizing-washing method, and attempted to find a method to desalinize uranium-contaminated gravels more effectively. In order to desalinize uranium-contaminated gravels more effectively and compare to the existing washing-desalinization method, we conducted a desalinization experiment with grinding method that grinds gravel surface. As a

  13. Review of free-surface MHD experiments and modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Molokov, S.; Reed, C. B.

    2000-06-02

    This review paper was prepared to survey the present status of analytical and experimental work in the area of free surface MHD and thus provide a well informed starting point for further work by the Advanced Limiter-diverter Plasma-facing Systems (ALPS) program. ALPS were initiated to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/diverter systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2}, elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies.

  14. Review of free-surface MHD experiments and modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Molokov, S.; Reed, C. B.

    2000-06-02

    This review paper was prepared to survey the present status of analytical and experimental work in the area of free surface MHD and thus provide a well informed starting point for further work by the Advanced Limiter-diverter Plasma-facing Systems (ALPS) program. ALPS were initiated to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/diverter systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2}, elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies.

  15. Organic solvent wetting properties of UV and plasma treated ZnO nanorods: printed electronics approach

    KAUST Repository

    Sliz, Rafal

    2012-09-13

    Due to low manufacturing costs, printed organic solar cells are on the short-list of renewable and environmentally- friendly energy production technologies of the future. However, electrode materials and each photoactive layer require different techniques and approaches. Printing technologies have attracted considerable attention for organic electronics due to their potentially high volume and low cost processing. A case in point is the interface between the substrate and solution (ink) drop, which is a particularly critical issue for printing quality. In addition, methods such as UV, oxygen and argon plasma treatments have proven suitable to increasing the hydrophilicity of treated surfaces. Among several methods of measuring the ink-substrate interface, the simplest and most reliable is the contact angle method. In terms of nanoscale device applications, zinc oxide (ZnO) has gained popularity, owing to its physical and chemical properties. In particular, there is a growing interest in exploiting the unique properties that the so-called nanorod structure exhibits for future 1-dimensional opto-electronic devices. Applications, such as photodiodes, thin-film transistors, sensors and photo anodes in photovoltaic cells have already been demonstrated. This paper presents the wettability properties of ZnO nanorods treated with UV illumination, oxygen and argon plasma for various periods of time. Since this work concentrates on solar cell applications, four of the most common solutions used in organic solar cell manufacture were tested: P3HT:PCBM DCB, P3HT:PCBM CHB, PEDOT:PSS and water. The achieved results prove that different treatments change the contact angle differently. Moreover, solvent behaviour varied uniquely with the applied treatment. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Organic solvent wetting properties of UV and plasma treated ZnO nanorods: printed electronics approach

    Science.gov (United States)

    Sliz, Rafal; Suzuki, Yuji; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan

    2012-09-01

    Due to low manufacturing costs, printed organic solar cells are on the short-list of renewable and environmentally- friendly energy production technologies of the future. However, electrode materials and each photoactive layer require different techniques and approaches. Printing technologies have attracted considerable attention for organic electronics due to their potentially high volume and low cost processing. A case in point is the interface between the substrate and solution (ink) drop, which is a particularly critical issue for printing quality. In addition, methods such as UV, oxygen and argon plasma treatments have proven suitable to increasing the hydrophilicity of treated surfaces. Among several methods of measuring the ink-substrate interface, the simplest and most reliable is the contact angle method. In terms of nanoscale device applications, zinc oxide (ZnO) has gained popularity, owing to its physical and chemical properties. In particular, there is a growing interest in exploiting the unique properties that the so-called nanorod structure exhibits for future 1-dimensional opto-electronic devices. Applications, such as photodiodes, thin-film transistors, sensors and photo anodes in photovoltaic cells have already been demonstrated. This paper presents the wettability properties of ZnO nanorods treated with UV illumination, oxygen and argon plasma for various periods of time. Since this work concentrates on solar cell applications, four of the most common solutions used in organic solar cell manufacture were tested: P3HT:PCBM DCB, P3HT:PCBM CHB, PEDOT:PSS and water. The achieved results prove that different treatments change the contact angle differently. Moreover, solvent behaviour varied uniquely with the applied treatment.

  17. Eleana near-surface heater experiment final report

    Energy Technology Data Exchange (ETDEWEB)

    Lappin, A R; Thomas, R K; McVey, D F

    1981-04-01

    This report summarizes the results of a near-surface heater experiment operated at a depth of 23 m in argillite within the Eleana Formation on the Nevada Test Site (NTS). The test geometrically simulated emplacement of a single canister of High-Level Waste (HLW) and was operated at a power level of 2.5 kW for 21 days, followed by 3.8 kW to 250 days, when the power was turned off. Below 85 to 100{sup 0}C, there was good agreement between modeled and measured thermal results in the rock and in the emplacement hole, except for transient transport of water in the heater hole. Above 100{sup 0}C, modeled and measured thermal results increasingly diverged, indicating that the in-situ rock-mass thermal conductivity decreased as a result of dehydration more than expected on the basis of matrix properties. Correlation of thermomechanical modeling and field results suggests that this decrease was caused by strong coupling of thermal and mechanical behavior of the argillite at elevated temperatures. No hole-wall decrepitation was observed in the experiment; this fact and the codrrelation of modeled and measured results at lower temperatures indicate that there is no a priori reason to eliminate argillaceous rocks from further consideration as a host rock for nuclear wastes.

  18. Surface-wave capillary plasmas in helium: modeling and experiment

    Science.gov (United States)

    Santos, M.; Alves, L. L.; Noel, C.; Belmonte, T.

    2012-10-01

    In this paper we use both simulations and experiments to study helium discharges (99.999% purity) sustained by surface-waves (2.45 GHz frequency), in capillary tubes (3 mm radius) at atmospheric pressure. Simulations use a self-consistent homogeneous and stationary collisional-radiative model that solves the rate balance equations for the different species present in the plasma (electrons, the He^+ and He2^+ ions, the He(nexcimers) and the gas thermal balance equation, coupled to the two-term electron Boltzmann equation (including direct and stepwise collisions as well as electron-electron collisions). Experiments use optical emission spectroscopy diagnostics to measure the electron density (Hβ Stark broadening), the gas temperature (ro-vibrational transitions of OH, present at trace concentrations), and the populations of different excited states. Model predictions at 1.7x10^13 cm-3 electron density (within the range estimated experimentally) are in good agreement with measurements (deviations < 10%) of (i) the excitation spectrum and the excitation temperatures (2795 ± 115 K, obtained from the Boltzmann-plot of the excited state populations, with energies lying between 22.7 and 24.2 eV), (ii) the power coupled to the plasma (˜ 180 ± 10 W), and (iii) the gas temperature (˜ 1700 ± 100 K). We discuss the extreme dependence of model results (particularly the gas temperature) on the power coupled to the plasma.

  19. Hydromechanical Normal Deformation Experiments and Coupling to Fracture Surface Geometry

    Science.gov (United States)

    Thörn, J.; Fransson, A. M.

    2015-12-01

    Civil engineering structures founded in fractured crystalline rock, such as the Fennoscandian Shield (Norway-Sweden-Finland) requires allowance for both stability and/or deformations of the rock mass and groundwater ingress and groundwater pressure changes. Coupling these issues could be the key to solving the challenges that arise from construction of e.g. hydropower dams, road and railroad tunnels, and most certainly the construction of nuclear waste repositories within fractured crystalline rock, all of which are currently planned in Sweden. Excavation related deformation in fractures may cause groundwater leakage even from the most elaborate pre-excavation grouting works. A better understanding on hydraulically (or grouting) induced deformations in the near-field of tunnels, where the stress field is re-distributed due to the opening may both provide a basis for more accurate numerical modelling and grouting or excavation procedures that minimize the damage on the completed grouting fans. Subjects of this study were experiments conducted as measurement of deformations in boreholes close to tunnels due to stepwise injection tests, and laboratory hydromechanical experiments conducted as flow and normal deformation measurements in a permeameter during cycles of up to 2.5 MPa confining pressure, and subsequent surface scanning of the samples for coupling of HM-results to geometric appearance, aperture and contact geometry. When expressed in terms of hydraulic aperture (b) and fracture normal stiffness (kn) the results of both in situ and lab experiments support a previously suggested relationship based on field data where kn is inversely proportional to roughly b2. The relationship was assumed to be valid for low compressive stress across fractures with limited previous deformation. One important data set used to establish the relationship was transmissivity and storage coefficients from hydraulic interference tests previously performed at Äspö Hard Rock

  20. Bactericidal active ingredient in cryopreserved plasma-treated water with the reduced-pH method for plasma disinfection

    Science.gov (United States)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2016-09-01

    For the plasma disinfection of human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition. Physicochemical properties of PTW is discussed based on chemical kinetics. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. High performance PTW, corresponding to the disinfection power of 22 log reduction (B. subtilis spore), can be obtained by special plasma system equipped with cooling device. This is equivalent to 65% H2O2, 14% sodium hypochlorite and 0.33% peracetic acid, which are deadly poison for human. But, it is deactivated soon at higher temperature (4 sec. at body temperature), and toxicity to human body seems low. For dental application, PTW was effective on infected models of human extracted tooth. Although PTW has many chemical components, respective chemical components in PTW were isolated by ion chromatography. In addition to peaks of H2O2, NO2- and NO3-, a specific peak was detected. and only this fraction had bactericidal activity. Purified active ingredient of PTW is the precursor of HOO, and further details will be discussed in the presentation. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  1. Surface Characterization of Plasma-modified Poplar Veneer: Dynamic Wettability

    Directory of Open Access Journals (Sweden)

    Lijuan Tang

    2014-11-01

    Full Text Available The dynamic wettability of plasma-modified poplar veneer was investigated with sessile adhesive droplets using a wetting model. Dynamic contact angle, instantaneous and equilibrium contact angles, and their rates of change (K-value were used to illustrate the dynamic wetting process. The experiment consisted of selecting treatment parameters (type of gas, power that would lead to the increased wettability of wood. Three resin systems, urea-formaldehyde (UF, phenol-formaldehyde (PF, and diphenylmethylene diisocyanate (MDI, were evaluated. Based on the wetting model, the K-value was used to interpret the kinetics of wetting. The higher the K-value, the faster the contact angle reaches equilibrium, and the faster the liquid penetrates and spreads. Therefore, the model was helpful for characterizing the dynamic wettability of wood surfaces modified with different plasma treatments. The K-values of plasma-treated veneer surfaces at different plasma power levels and with different gases (such as O2, N2, Ar, air, and NH3 were 458% to 653% and 332% to 528% higher than those of untreated veneer surfaces, respectively. In addition, the K-values of the three resins on the oxygen plasma-treated veneer surfaces were 38% to 1204% higher than those on the untreated veneer surfaces. Therefore, this method was helpful for characterizing the dynamic wettability of veneer surfaces modified with plasma treatment.

  2. Supersonic molecular beam experiments on surface chemical reactions.

    Science.gov (United States)

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces.

  3. Surface meteorological conditions at benthic disturbance experiment site - INDEX area during austral winter 1997

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Murty, V.S.N.; RameshBabu, V.; Beena, B.S.

    Benthic Disturbance Experiment surveys in the Central Indian Ocean Basin yielded baseline data on surface meteorological conditions during June and August, 1997 together with sea surface temperature (SST) and could data to estimate the air-sea heat...

  4. Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration.

    Science.gov (United States)

    Unalan, Irem; Colpankan, Oylum; Albayrak, Aylin Ziylan; Gorgun, Cansu; Urkmez, Aylin Sendemir

    2016-11-01

    The objective of this study was to produce biocompatible plasma-treated and silk-fibroin (SF) modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofiber mats. The mats were plasma-treated using O2 or N2 gas to increase their hydrophilicity followed by SF immobilization for the improvement of biocompatibility. Contact angle measurements and SEM showed increased hydrophilicity and no disturbed morphology, respectively. Cell proliferation assay revealed that SF modification together with N2 plasma (PS/N2) promoted higher osteoblastic (SaOs-2) cell viability. Although, O2 plasma triggered more mineral formation on the mats, it showed poor cell viability. Consequently, the PS/N2 nanofiber mats would be a potential candidate for bone tissue engineering applications.

  5. Surface-directed capillary system; theory, experiments and applications.

    Science.gov (United States)

    Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques

    2005-08-01

    We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.

  6. OGO-6 gas-surface energy transfer experiment

    Science.gov (United States)

    Mckeown, D.; Dummer, R. S.; Bowyer, J. M., Jr.; Corbin, W. E., Jr.

    1973-01-01

    The kinetic energy flux of the upper atmosphere was analyzed using OGO-6 data. Energy transfer between 10 microwatts/sq cm and 0.1 W/sq cm was measured by short-term frequency changes of temperature-sensitive quartz crystals used in the energy transfer probe. The condition of the surfaces was continuously monitored by a quartz crystal microbalance to determine the effect surface contamination had on energy accommodation. Results are given on the computer analysis and laboratory tests performed to optimize the operation of the energy transfer probe. Data are also given on the bombardment of OGO-6 surfaces by high energy particles. The thermoelectrically-cooled quartz crystal microbalance is described in terms of its development and applications.

  7. Venus Surface Composition Constrained by Observation and Experiment

    Science.gov (United States)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-08-01

    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to

  8. Dynamic surface tension of surfactant TA: experiments and theory.

    Science.gov (United States)

    Otis, D R; Ingenito, E P; Kamm, R D; Johnson, M

    1994-12-01

    A bubble surfactometer was used to measure the surface tension of an aqueous suspension of surfactant TA as a function of bubble area over a range of cycling rates and surfactant bulk concentrations. Results of the surface tension-interfacial area loops exhibited a rich variety of phenomena, the character of which varied systematically with frequency and bulk concentration. A model was developed to interpret and explain these data and for use in describing the dynamics of surface layers under more general circumstances. Surfactant was modeled as a single component with surface tension taken to depend on only the interfacial surfactant concentration. Two distinct mechanisms were considered for the exchange of surfactant between the bulk phase and interface. The first is described by a simple kinetic relationship for adsorption and desorption that pertains only when the interfacial concentration is below its maximum equilibrium value. The second mechanism is "squeeze-out" by which surfactant molecules are expelled from an interface compressed past a maximum packing state. The model provided good agreement with experimental measurements for cycling rates from 1 to 100 cycles/min and for bulk concentrations between 0.0073 and 7.3 mg/ml.

  9. Ion Beam Textured and Coated Surfaces Experiment (IBEX)

    Science.gov (United States)

    Mirtich, Michael J.; Rutledge, Sharon K.; Stevens, Nicholas; Olle, Raymond; Merrow, James

    1992-01-01

    Ion beam textured and commercial materials suitable for use in space power systems were flown in low Earth orbit on the Long Duration Exposure Facility (LDEF) for 5.8 years. Because of their location on LDEF (98 deg from the ram direction), the 36 materials were primarily exposed to vacuum ultraviolet radiation, thermal cycling, the vacuum of space, the micrometeoroid environment, and grazing incidence atomic oxygen. Measurements of solar absorptance and thermal emittance (pre- and post-flight) showed no changes for almost all of the materials, except for the S-13G and Kapton and coated Kapton samples. The optical property stability of ion beam textured surfaces and most other surfaces indicates that they are functionally durable to the synergistic rigors of the space environment.

  10. Dropwise Condensation Experiments with Humid Air at a Polymer Surface

    Science.gov (United States)

    Götze, P.; Philipp, Ch; Gross, U.

    2012-11-01

    A new test facility has been developed to investigate dropwise condensation heat transfer in a humid air environment. It is designed as a closed loop system in which air is circulated by a fan, enabling investigations in the following parameter ranges: velocity up to 20 m/s; Reynolds number up to 20,000; temperature 20 to 100 °C relative humidity up to 100 %. Heat transfer measurements are done with a specifically designed micro sensor which is flush mounted at one of the vertical surfaces of a horizontal flow channel 12 mm × 32 mm (inner width and height, respectively) and covered at its air-side surface by a newly developed polymer layer containing 20 % of carbon nanotubes for improvement of the thermal conductivity. A total of 8 thermocouples is embedded inside the sensor. Their readings serve as input data to a numerical model which enables consideration of heat losses and evaluation of surface temperature and heat flux. The measuring system allows to analyse the effects of heat flux, air-to-wall temperature difference, absolute and relative humidity, and Reynolds number on the heat transfer coefficient. Single phase heat transfer results show excellent agreement with well established correlations for turbulent air flow. The onset of dropwise condensation was detected with very good repeatability. This paper covers details of the experimental device, measuring system and data evaluation including accuracy considerations. Single phase and preliminary dropwise condensation results with humid air are reported.

  11. Simulation Experiments of Land Surface Physical Processes and Ecological Effect over Different Underlying Surface

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...

  12. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe{sub 3}O{sub 4}) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Padil, Vinod Vellora Thekkae; Černík, Miroslav, E-mail: miroslav.cernik@tul.cz

    2015-04-28

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV–vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe{sub 3}O{sub 4}) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt > Au > Ag > CuO > Fe{sub 3}O{sub 4}. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles.

  13. Collisional Processing of Comet Surfaces: Impact Experiments into Olivine

    Science.gov (United States)

    Lederer, S. M.; Jensen, E. A.; Cintala, M. J.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Wooden, D. H.; Fernandez, Y. R.; Zolensky, M. E.

    2011-01-01

    A new paradigm has emerged where 3.9 Ga ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. In addition, objects in the Kuiper Belt are believed to undergo extensive collisional processing while in the Kuiper Belt. Physical manifestations of shock effects (e.g., planar dislocations) in minerals typically found in comets will be correlated with spectral changes (e.g. reddening, loss and shift of peaks, new signatures) to allow astronomers to better understand geophysical impact processing that has occurred on small bodies. Targets will include solid and granular olivine (forsterite), impacted over a range of impact speeds with the Experimental Impact Laboratory at NASA JSC. Analyses include quantification of the dependence of the spectral changes with respect to impact speed, texture of the target, and temperature.

  14. Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sounghee [Woosuk University, Jinchon (Korea, Republic of)

    2015-10-15

    A plasma surface modification of powders has been carried out in a circulating fluidized bed reactor under reduced pressure. Polystyrene (PS) particles treated by plasma are grafted with polyethylene glycol (PEG) on the surface. The virgin, plasma-treated and grafted powders were characterized by DPPH method, FTIR, SEM and contact angle meter. The plasma-treated PS powders have well formed peroxide on the surface, By PEG grafting polymerization, PEG is well grafted and dispersed on the surface of the plasma-treated PS powders. The PEG-g-PS particle was successfully synthesized using the plasma circulating fluidized bed reactor under reduced pressure.

  15. High Surface Area Ceria Nanoparticles via Hydrothermal Synthesis Experiment Design

    Directory of Open Access Journals (Sweden)

    Stanislav Kurajica

    2016-01-01

    Full Text Available Hydrothermal synthesis of CeO2 was optimized on two reactant concentrations and synthesis temperature and duration, in order to achieve material having the greatest specific surface area (SSA. Taguchi method of experimental design was employed in evaluation of the relative importance of synthesis parameters. CeO2 nanoparticles were characterized using X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy. Optimum conditions for obtaining particles with greater SSA were calculated according to Taguchi’s model “the-higher-the-better.” Synthesis temperature was found to be the only parameter significant for enabling nanoparticles with greater SSA. Mesoporous nanocrystalline ceria with SSA as great as 226 m2 g−1 was achieved, which is unprecedented for the hydrothermally synthesized ceria. The reason for this achievement was found in temperature dependence of the diffusion coefficient which, when low, favors nucleation yielding with fine particles, while when high it favors crystal growth and formation of one-dimensional structures. The occurrence of 1D-structure in sample exhibiting the smallest SSA was confirmed. Very fine crystallites with crystallite size as low as 5.9 nm have been obtained being roughly inverse proportional to SSA. Selected samples were tested as catalyst for soot oxidation. Catalyst morphology turned out to be decisive factor for catalytic activity.

  16. Conasauga near-surface heater experiment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385/sup 0/C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste.

  17. Surface enhanced second harmonic generation from macrocycle, catenane, and rotaxane thin films : Experiments and theory

    NARCIS (Netherlands)

    Arfaoui, [No Value; Bermudez, [No Value; Bottari, G; De Nadai, C; Jalkanen, JP; Kajzar, F; Leigh, DA; Lubomska, M; Mendoza, SM; Niziol, J; Rudolf, P; Zerbetto, F; Arfaoui, Imad; Bermúdez, Verónica; Jalkanen, Jukka-Pekka

    2006-01-01

    Surface enhanced second harmonic generation (SE SHG) experiments on molecular structures, macrocycles, catenanes, and rotaxanes, deposited as monolayers and multilayers by vacuum sublimation on silver, are reported. The measurements show that the molecules form ordered thin films, where the highest

  18. Surface Modification of Nanometre Silicon Carbide Powder with Polystyrene by Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    WEI Gang; MENG Yuedong; ZHONG Shaofeng; LIU Feng; JIANG Zhongqing; SHU Xingsheng; REN Zhaoxing; WANG Xiangke

    2008-01-01

    An investigation was made into polystyrene (PS) grafted onto nanometre sili-con carbide (SIC) particles. In our experiment, the grafting polymerization reaction was in-duced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanome-tre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spec-troscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.

  19. Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Li, Yimin

    2009-11-21

    Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.

  20. The "Chocolate Experiment"--A Demonstration of Radiation Absorption by Different Colored Surfaces

    Science.gov (United States)

    Fung, Dennis

    2015-01-01

    In the typical "cookbook" experiment comparing the radiation absorption rates of different colored surfaces, students' hands are commonly used as a measurement instrument to demonstrate that dull black and silvery surfaces are good and poor absorbers of radiation, respectively. However, college students are often skeptical about using…

  1. Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pratihar, Subha; Barnes, George L.; Laskin, Julia; Hase, William L.

    2016-08-18

    In this Perspective mass spectrometry experiments and chemical dynamics simulations are described which have explored the atomistic dynamics of protonated peptide ions, peptide-H+, colliding with organic surfaces. These studies have investigated surface-induced dissociation (SID) for which peptide-H+ fragments upon collision with the surface, peptide-H+ physisorption on the surface, soft landing (SL), and peptide-H+ reaction with the surface, reactive landing (RL). The simulations include QM+MM and QM/MM direct dynamics. For collisions with self-assembled monolayer (SAM) surfaces there is quite good agreement between experiment and simulation in the efficiency of energy transfer to the peptide-H+ ion’s internal degrees of freedom. Both the experiments and simulations show two mechanisms for peptide-H+ fragmentation, i.e. shattering and statistical, RRKM dynamics. Mechanisms for SL are probed in simulations of collisions of protonated dialanine with a perfluorinated SAM surface. RL has been studied experimentally for a number of peptide-H+ + surface systems, and qualitative agreement between simulation and experiment is found for two similar systems.

  2. The "Chocolate Experiment"--A Demonstration of Radiation Absorption by Different Colored Surfaces

    Science.gov (United States)

    Fung, Dennis

    2015-01-01

    In the typical "cookbook" experiment comparing the radiation absorption rates of different colored surfaces, students' hands are commonly used as a measurement instrument to demonstrate that dull black and silvery surfaces are good and poor absorbers of radiation, respectively. However, college students are often skeptical about using…

  3. Engineering support activities for the Apollo 17 Surface Electrical Properties Experiment.

    Science.gov (United States)

    Cubley, H. D.

    1972-01-01

    Description of the engineering support activities which were required to ensure fulfillment of objectives specified for the Apollo 17 SEP (Surface Electrical Properties) Experiment. Attention is given to procedural steps involving verification of hardware acceptability to the astronauts, computer simulation of the experiment hardware, field trials, receiver antenna pattern measurements, and the qualification test program.

  4. The surface detector array of the Telescope Array experiment to explore the highest energy cosmic rays

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Myers, I; Minamino, M; Miyata, K; Miyauchi, H; Murano, Y; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamaoka, H; Yamazaki, K; Yang, J; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah,USA, is designed for observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  5. Surface modification and biocompatible improvement of polystyrene film by Ar, O{sub 2} and Ar + O{sub 2} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yashao, E-mail: yschen@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, School of Chemistry and Chemical Engineering, Xi' an 710062 (China); Gao Qiang; Wan Haiyan; Yi Jinhong; Wei Yanlin [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, School of Chemistry and Chemical Engineering, Xi' an 710062 (China); Liu Peng [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing 400044 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer NVP is successfully grafted onto the different discharge gases (Ar, O{sub 2}, and Ar + O{sub 2}) plasma-treated PS film surface by Ar plasma induced graft polymerization. Black-Right-Pointing-Pointer Compare with Ar and O{sub 2} plasma, the Ar + O{sub 2} plasma-treated film surface introduced large amounts of NVP, as known from ATR-FTIR and XPS results. Black-Right-Pointing-Pointer According to SEM, the surface roughness increased at different levels after plasma treatment. Contact angle reveal that the hydrophilicity of the PS film surface was greatly improved. Black-Right-Pointing-Pointer Cellular compatibility tests indicate that Ar + O{sub 2} plasma is more capable of increasing cell adhesion and proliferation. - Abstract: This paper reports the surface modification of different discharge gases (Ar, O{sub 2}, and Ar + O{sub 2}) plasma-treated polystyrene (PS) film by Ar plasma induced graft polymerization, with biocompatible monomer N-vinyl-2-pyrrolidone (NVP) is carried out to improve biocompatibility. The films are characterized by attenuated total reflectance Fourier transfer infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Water contact angle measurement demonstrates the modified films possess a relatively hydrophilic surface. Furthermore, the films are also examined cell attachment and proliferation in vitro using mouse fibroblasts (L929 cells). The modified film surface shows a better cell distribution and growth than that of the pristine PS surface. From cell culture experiments, it is also observed that Ar + O{sub 2} plasma is more capable of increasing cell adhesion and proliferation. This method will provide a potential and effective solution for grafting useful component in future tissue-engineering applications.

  6. Attachment of Poly(l-lactide) Nanoparticles to Plasma-Treated Non-Woven Polymer Fabrics Using Inkjet Printing.

    Science.gov (United States)

    Ivanova, Tatiana V; Baier, Grit; Landfester, Katharina; Musin, Eduard; Al-Bataineh, Sameer A; Cameron, David C; Homola, Tomáš; Whittle, Jason D; Sillanpää, Mika

    2015-09-01

    Active dressings that based on fabric materials are an area of interest for the treatment of wounds. Poly(l-lactide) nanoparticles containing the antimicrobial agent octenidine can be controllably lysed by toxins released by pathogenic bacteria thus releasing antimicrobial material in response to the presence of the bacterial toxins and so counteracting the infection. We developed an integrated engineering solution that allows for the stable immobilisation of nanoparticles on non-woven fabrics. The process involves coating nanoparticles on non-woven polymer surfaces by using an inkjet printing process. In order to improve the adhesion and retention of the nanoparticles on the fabric, surface pretreatment of the non-woven fabric using plasma jet treatment can be applied to increase its surface energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces

    Science.gov (United States)

    Sharma, Rajesh; Holcomb, Edward; Trigwell, Steve

    2006-01-01

    Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The changes in surface chemistry due to plasma treatment have tendency to revert back. Thus stability of the plasma induced changes on polymer surfaces over desired time period is very important. The objective of this study was to examine the effect of ageing on atmospheric pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 minutes. Contact angle measurements were made to study surface energy changes. Modification of surface chemical structure was examined using, X-ray Photoelectron Spectroscopy (XPS). Contact angle measurements on untreated and plasma treated surfaces were made immediately, 24, 48, 72 and 96 hrs after treatment. Contact angle decreased from 93 deg for untreated sample to 30 deg for sample plasma treated for 10 minutes. After 10 days the contact angles for the 10 minute plasma treated sample increased to 67 deg, but it never reverted back to that of untreated surface. Similarly the O/C ratio increased from 0.136 for untreated sample to 0.321 for 10 minute plasma treated sample indication increase in surface energy.

  8. Plasma Treated High-Density Polyethylene (HDPE Medpor Implant Immobilized with rhBMP-2 for Improving the Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jin-Su Lim

    2014-01-01

    Full Text Available We investigate the bone generation capacity of recombinant human bone morphogenetic protein-2 (rhBMP-2 immobilized Medpor surface through acrylic acid plasma-polymerization. Plasma-polymerization was carried out at a 20 W at an acrylic acid flow rate of 7 sccm for 5 min. The plasma-polymerized Medpor surface showed hydrophilic properties and possessed a high density of carboxyl groups. The rhBMP-2 was immobilized with covalently attached carboxyl groups using 1-ethyl-3-(3-dimethylaminopropyl carbodiimide and N-hydroxysuccinimide. Carboxyl groups and rhBMP-2 immobilization on the Medpor surface were identified by Fourier transform infrared spectroscopy. The activity of Medpor with rhBMP-2 immobilized was examined using an alkaline phosphatase assay on MC3T3-E1 cultured Medpor. These results showed that the rhBMP-2 immobilized Medpor increased the level of MC3T3-E1 cell differentiation. These results demonstrated that plasma surface modification has the potential to immobilize rhBMP-2 on polymer implant such as Medpor and can be used for the binding of bioactive nanomolecules in bone tissue engineering.

  9. Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging.

    Science.gov (United States)

    Lei, Jieqiong; Yang, Lingxiao; Zhan, Yingfei; Wang, Yuntao; Ye, Ting; Li, Yan; Deng, Hongbing; Li, Bin

    2014-02-01

    In this study, polyethylene terephthalate/polypropylene (PET/PP) films were treated via atmospheric pressure plasma, assembled with chitosan and various preservatives and applied for antimicrobial food packaging. Surface properties of these obtained films were studied by contact angle measurement, atomic force microscopy (ATM), X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared spectroscopy (FT-IR) and dynamic laser scattering (DLS). The above results showed that the surface hydrophilicity and roughness of the films increased after the plasma treatment. Besides, chitosan and the preservatives were successfully assembled onto the surface of the films. In addition, the antimicrobial activities of the films against three kinds of microorganisms (Staphylococcus aureus, Bacillus subtilis and Escherichia coli) were investigated and the results indicated that the inhibition ratios against B. subtilis and E. coli reached almost 100% while the inhibition ratios against S. aureus were lower than 85%. Moreover, the accumulative release profiles of the antimicrobial substances migrating from the assembled films into the release solutions revealed that their release speed increased with the increment of temperature and acidity, but decreased with enhancing the ionic strength regulated by sodium chloride or with lowering the ionic mobility regulated by sucrose.

  10. Experimental evidence that microbial activity lowers the albedo of glacier surfaces: the cryoconite casserole experiment.

    Science.gov (United States)

    Musilova, M.; Tranter, M.; Takeuchi, N.; Anesio, A. M.

    2014-12-01

    Darkened glacier and ice sheet surfaces have lower albedos, absorb more solar radiation and consequently melt more rapidly. The increase in glacier surface darkening is an important positive feedback to warming global temperatures, leading to ever growing world-wide ice mass loss. Most studies focus primarily on glacial albedo darkening caused by the physical properties of snow and ice surfaces, and the deposition of dark impurities on glaciers. To date, however, the important effects of biological activity have not been included in most albedo reduction models. This study provides the first experimental evidence that microbial activity can significantly decrease the albedo of glacier surfaces. An original laboratory experiment, the cryoconite casserole, was designed to test the microbial darkening of glacier surface debris (cryoconite) under simulated Greenlandic summer conditions. It was found that minor fertilisation of the cryoconite (at nutrient concentrations typical of glacial ice melt) stimulated extensive microbial activity. Microbes intensified their organic carbon fixation and even mined phosphorous out of the glacier surface sediment. Furthermore, the microbial organic carbon production, accumulation and transformation caused the glacial debris to darken further by 17.3% reflectivity (albedo analogue). These experiments are consistent with the hypothesis that enhanced fertilisation by anthropogenic inputs results in substantial amounts of organic carbon fixation, debris darkening and ultimately to a considerable decrease in the ice albedo of glacier surfaces on global scales. The sizeable amounts of microbially produced glacier surface organic matter and nutrients can thus be a vital source of bioavailable nutrients for subglacial and downstream environments.

  11. Field experiment on coalmine heat disaster governance using cold source from surface water

    Institute of Scientific and Technical Information of China (English)

    Guo Pingye; Zhu Guolong; Liu Yuqing; Duan Mengmeng; Wu Junyin

    2014-01-01

    Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ?C after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection.

  12. Simulation and Experiment of Dynamic Properties of Joint Surfaces Based on Fractal Theory

    Directory of Open Access Journals (Sweden)

    Haitao Liu

    2015-01-01

    Full Text Available Dynamic properties of joint surfaces are researched, micro behavior is also analyzed and a mathematical model based on fractal theory is built, and the relationships between normal dynamic characteristics of joints and surface pressure, surface roughness, and real contact area were simulated. The contact pressure in joint, equivalent stiffness, and damping in joint were nonstrict proportional relationship, higher surface quality of the contact joint surface, can increase normal stiffness and reduce normal damping in joint. Experiments are arranged according to the theoretical model in order to analyze the share of every major factor that affects dynamic properties of joint surfaces. Two common materials HT200 and 2Cr13 under different processing methods, surface roughness, and surface areas are used, and law curves were built between the dynamic behavior of fixed joints and preload, processing method of contact surface, surface roughness; the correctness of the theory simulation results was confirmed. A spring-damping element joints finite model was built based on the pressure distribution contours. Based on the experimental data, we simulated the model of HT200 specimen by ANSYS, at the same time, compared our model, traditional model, and experimental result, and proved that the spring-damping distribution model based on pressure has a better simulative precision.

  13. Experiments to test theoretical models of the polarization of light by rough surfaces

    Science.gov (United States)

    Geake, J. E.; Geake, M.; Zellner, B. H.

    1984-01-01

    A number of attempts have been made to provide theoretical models of the physical processes involved in the polarization of light scattered by a rough surface, such as the regolith of an atmosphereless planet. Some laboratory experiments designed to test different aspects of these models are described. It is concluded that double Fresnel reflection is usually the dominant process in producing negative polarization, but that diffraction effects may play a significant part in double events involving small-scale surface features.

  14. Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments

    Science.gov (United States)

    Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.

    1999-02-01

    We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.

  15. [A geometrical analysis of the shape of the response surface in ecologico-toxicologic experiments].

    Science.gov (United States)

    Maksimov, V N; Kadomtsev, S V; Korsak, M N; Lifshits, A V

    1989-01-01

    A new method of working up results of factorial toxicological experiments is put forward and illustrated by a number of examples. It is based on the profound comparison of values of reactions as consequences of toxic influence and aimed at revealing the combinations of toxicant concentrations that break the monotonous character of a surface which graphically depicts the effect of pollutants. The geometrical analysis allows us to have a new vision of numerous results of factorial experiments, gives some complimentary possibilities for quantitative evaluation of impact of pollutants by mean of surface diagrams and for experimental assessment of environmental parameters of natural communities.

  16. Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces

    CERN Document Server

    Hattermann, H; Karlewski, F; Jessen, F; Cano, D; Fortágh, J

    2012-01-01

    We observe the shift of Rydberg levels of rubidium close to a copper surface when atomic clouds are repeatedly deposited on it. We measure transition frequencies of rubidium to S and D Rydberg states with principal quantum numbers n between 31 and 48 using the technique of electromagnetically induced transparency. The spectroscopic measurement shows a strong increase of electric fields towards the surface that evolves with the deposition of atoms. Starting with a clean surface, we measure the evolution of electrostatic fields in the range between 30 and 300 \\mum from the surface. We find that after the deposition of a few hundred atomic clouds, each containing ~10^6 atoms, the field of adsorbates reaches 1 V/cm for a distance of 30 \\mum from the surface. This evolution of the electrostatic field sets serious limitations on cavity QED experiments proposed for Rydberg atoms on atom chips.

  17. Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces

    Science.gov (United States)

    Hattermann, H.; Mack, M.; Karlewski, F.; Jessen, F.; Cano, D.; Fortágh, J.

    2012-08-01

    We observe the shift of Rydberg levels of rubidium close to a copper surface when atomic clouds are repeatedly deposited on it. We measure transition frequencies of rubidium to S and D Rydberg states with principal quantum numbers n between 31 and 48 using the technique of electromagnetically induced transparency. The spectroscopic measurement shows a strong increase of electric fields towards the surface that evolves with the deposition of atoms. Starting with a clean surface, we measure the evolution of electrostatic fields in the range between 30 and 300 μm from the surface. We find that after the deposition of a few hundred atomic clouds, each containing ˜106 atoms, the field of adsorbates reaches 1 V/cm for a distance of 30 μm from the surface. This evolution of the electrostatic field sets serious limitations on cavity QED experiments proposed for Rydberg atoms on atom chips.

  18. Changes in mechanical properties and structure of electrolytic plasma treated X 12 CrNi 18 10 Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanbekov, Sherzod; Baklanov, Viktor; Karakozov, Batyrzhan [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan). Inst. of Atomic Energy Branch; Skakov, Mazhyn [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan)

    2017-05-01

    The paper addresses findings regarding the influence of electrolytic plasma treatment on the mechanical properties as well as structural and phase states of X 12 CrNi 18 10 Ti steel. Electrolytic plasma treatment is based on carburizing of stainless steel heated in electrolytes. Treatment of steel samples has been performed as follows: the samples were heated up to a temperature between 850 and 950 C and then they were cured for 7 minutes in an electrolyte of an aqueous solution containing 10 % glycerol (C{sub 3}H{sub 8}O{sub 3}) and 15 % sodium carbonate (Na{sub 2}CO{sub 3}). It is found that, after plasma electrolytic treatment, the surface of X 12 CrNi 18 10 Ti steel had a modified structure and high hardness. Increasing wear resistance of X 12 CrNi 18 10 Ti steel has been observed after carburizing and the coefficient of friction has been reduced. X-ray analysis showed that retained austenite γ-Fe is a main phase, and there are some diffraction lines of orthorhombic Fe{sub 3}C phase as well as Fe{sub 3}O{sub 4} cubic phase. It has been determined, that, after plasma electrolytic treatment, a carbide phase in the modified surface layer, irrespective of the location in the steel structure has the chemical composition Fe{sub 3}C. High concentration of carbon atoms in a solid solution based on γ- and α-iron, a large dislocation density, presence of particles of carbide phase and retained austenite layers have been found.

  19. Rapid transport from the surface to wells in fractured rock: a unique infiltration tracer experiment.

    Science.gov (United States)

    Levison, Jana K; Novakowski, Kent S

    2012-04-01

    A unique infiltration tracer experiment was performed whereby a fluorescent dye was applied to the land surface in an agricultural field, near Perth, Ontario, Canada, to simulate the transport of solutes to two pumped monitoring wells drilled into the granitic gneiss aquifer. This experiment, interpreted using the discrete-fracture capability of the numerical model HydroGeoSphere, showed that solute transport from the surface through thin soil (less than 2m) to wells in fractured bedrock can be extremely rapid (on the order of hours). Also, it was demonstrated that maximum concentrations of contaminants originating from the ground surface will not necessarily be the highest in the shallow aquifer horizon. These are important considerations for both private and government-owned drinking water systems that draw water from shallow fractured bedrock aquifers. This research illustrates the extreme importance of protecting drinking water at the source.

  20. The `Chocolate Experiment' - A Demonstration of Radiation Absorption by Different Colored Surfaces

    Science.gov (United States)

    Fung, Dennis

    2015-12-01

    In the typical "cookbook" experiment comparing the radiation absorption rates of different colored surfaces, students' hands are commonly used as a measurement instrument to demonstrate that dull black and silvery surfaces are good and poor absorbers of radiation, respectively. However, college students are often skeptical about using their bare hands in this experiment because they learned in early science lessons that skin is not a reliable detector of heat transfer. Moreover, when the experiment is conducted in a school laboratory, it is often difficult for students to perceive the slight differences in heat transfer on the dull black and silvery aluminum leaves attached to their hands. Rather than replacing students' bare hands with such sophisticated apparatus as a data logger and temperature probe, I suggest using a simple (and delicious!) low-cost instrument, i.e., chocolate, which simply melts when it receives radiation.

  1. Internal Energy Dependence of Molecular Condensation Coefficients Determined from Molecular Beam Surface Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Lee, Y. T.

    1978-05-01

    An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.

  2. Effects of oxygen plasma treatment on the surface wettability and dissolution of furosemide compacts.

    Science.gov (United States)

    Naseem, A; Olliff, C J; Martini, L G; Lloyd, A W

    2003-11-01

    The plasma irradiation of furosemide (frusemide) was investigated as a possible technique for increasing the dissolution rate of this drug. Oxygen plasma was used to generate oxygen-containing functional groups on the surface of the compact to increase the wettability of the surface and the dissolution rate of the drug. Compacts of furosemide (300 mg) were produced using a stainless steel die and punch assembly, which was placed into a KBr press. The time of the plasma treatment was varied to assess the effect if any upon the dissolution rate and the wettability of the drug. Dissolution experiments of the plasma-treated and untreated compacts were carried out using the paddle apparatus method. Dissolution was carried out at 37 degrees C using 1 L of 0.1 M HCl and phosphate buffer (pH 6). The wettability was assessed by contact angle measurements using the sessile drop technique. Untreated and plasma-treated samples were analysed by scanning electron microscopy at x 5000 magnification. Plasma treatment was found to lower the equilibrium contact angle from approximately 50 to 35 degrees but the dissolution rate was not significantly affected. This was attributed to fusion of the surface by the plasma treatment.

  3. Impact of land surface conditions on 2004 North American monsoon in GCM experiments

    Science.gov (United States)

    Feng, X.; Bosilovich, M.; Houser, P.; Chern, J.-D.

    2013-01-01

    In this study, two sets of six-member ensemble simulations were performed for the boreal summer of 2004 using the Finite Volume General Circulation model to investigate the sensitivity of the North American monsoon (NAM) system to land surface conditions and further to identify the mechanisms by which land surface processes control the NAM precipitation. The control simulation uses a fully interactive land surface model, whereas the sensitivity experiment uses prescribed land surface fields from the Global Land Data Assimilation System.The response of the monsoon precipitation to land surface changes varies over different regions modulated by two different soil moisture-precipitation feedbacks. The vast northern NAM region, including most of Arizona and New Mexico, as well as the northwestern Mexico shows that soil moisture has a positive feedback with precipitation primarily due to local recycling mechanisms. The reduction of soil moisture decreases latent heat flux and increases sensible heat flux and consequently increases the Bowen ratio and surface temperature, leading to a deep (warm and dry) boundary layer, which suppresses convection and hence reduces precipitation. Over the west coast of Mexico near Sinaloa, a negative soil moisture-precipitation relationship is noted to be associated with a large-scale mechanism. The reduced soil moisture changes surface fluxes and hence boundary layer instability and ultimately low-level circulation. As a result, the changes in surface pressure and large scale wind field increase moisture flux convergence and consequently moisture content, leading to increased atmospheric instability and in turn enhancing convection and accordingly precipitation. These results further reinforce the important role of land surface conditions on surface process, boundary structure, atmospheric circulation, and rainfall during the NAM development.

  4. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  5. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces.

    Science.gov (United States)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; de los Arcos, Teresa; Benedikt, Jan; von Keudell, Achim

    2013-10-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).

  6. Cogging torque optimization in surface-mounted permanent-magnet motors by using design of experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbaszadeh, K., E-mail: Abbaszadeh@kntu.ac.ir [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Rezaee Alam, F.; Saied, S.A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Graphical abstract: Magnet segment arrangement in cross section view of one pole for PM machine. Display Omitted Highlights: {yields} Magnet segmentation is an effective method for the cogging torque reduction. {yields} We have used the magnet segmentation method based on the design of experiment. {yields} We have used the RSM design of the design of experiment method. {yields} We have solved optimization via surrogate models like the polynomial regression. {yields} A significant reduction of the cogging torque is obtained by using RSM. - Abstract: One of the important challenges in design of the PM electrical machines is to reduce the cogging torque. In this paper, in order to reduce the cogging torque, a new method for designing of the motor magnets is introduced to optimize of a six pole BLDC motor by using design of experiment (DOE) method. In this method the machine magnets consist of several identical segments which are shifted to a definite angle from each other. Design of experiment (DOE) methodology is used for a screening of the design space and for the generation of approximation models using response surface techniques. In this paper, optimization is often solved via surrogate models, that is, through the construction of response surface models (RSM) like polynomial regression. The experiments were performed based on the response surface methodology (RSM), as a statistical design of experiment approach, in order to investigate the effect of parameters on the response variations. In this investigation, the optimal shifting angles (factors) were identified to minimize the cogging torque. A significant reduction of cogging torque can be achieved with this approach after only a few evaluations of the coupled FE model.

  7. THE DEVELOPMENT AND EXPERIMENT OF ACOMPUTER-CONTROLLED TRUCK DISPATCHING SYSTEM IN SURFACE MINE

    Institute of Scientific and Technical Information of China (English)

    苏靖; 刘胜富; 赵铁林

    1996-01-01

    The development and experiment of a computer-controlled truck dispatching system insurface mine is presented in this paper. It includes the system overall design, the system workingmode design, the selection of the best truck travel path, the development of truck fleet program-ming, the development of database management system, and the development of truck real timedispatching, etc. The successful experiment is carried out in Huolinhe surface mine, and the sat-isfied results are obtained. Application of this system can improve the system production and themine management. This system is the first one in our country at present.

  8. Experimental evidence of wave chaos from a double slit experiment with water surface waves.

    Science.gov (United States)

    Tang, Yunfei; Shen, Yifeng; Yang, Jiong; Liu, Xiaohan; Zi, Jian; Li, Baowen

    2008-10-01

    In this paper, we report experimental evidence of wave chaos using the double slit water surface wave experiment. We demonstrate that classical dynamics of a domain manifests itself in the interference patterns after the diffraction behind the double slit. For a domain whose classical dynamics is integrable clear interference fringes can be observed behind the double slits; for a domain whose classical dynamics is chaotic, however, interference fringes can totally disappear. Our experimental results clearly demonstrate that the centuries-old double slit experiment can render an excellent tool to observe the manifestations of wave chaos.

  9. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, H...... temperature for a month the O/C ratio at the plasma treated surfaces decreased to 0.151, which is close to that of the untreated ones. It can be attributed to the adsorption of hydrocarbon contamination at the plasma treated surfaces....

  10. Whisker/Cone growth on the thermal control surfaces experiment no. S0069

    Science.gov (United States)

    Zwiener, James M.; Coston, James E., Jr.; Miller, Edgar R.; Mell, Richard J.; Wilkes, Donald R.

    1995-01-01

    An unusual surface 'growth' was found during scanning electron microscope (SEM) investigations of the Thermal Control Surface Experiment (TCSE) S0069 front thermal cover. This 'growth' is similar to the cone type whisker growth phenomena as studied by G. K. Wehner beginning in the 1960's. Extensive analysis has identified the most probable composition of the whiskers to be a silicate type glass. Sources of the growth material are outgassing products from the experiment and orbital atomic oxygen, which occurs naturally at the orbital altitudes of the LDEF mission in the form of neutral atomic oxygen. The highly ordered symmetry and directionality of the whiskers are attributed to the long term (5.8 year) stable flight orientation of the LDEF.

  11. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  12. Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    Science.gov (United States)

    Galli, A.; Vorburger, A.; Pommerol, A.; Wurz, P.; Jost, B.; Poch, O.; Brouet, Y.; Tulej, M.; Thomas, N.

    2016-07-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and discharging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.

  13. Effect of plasma surface modification on the biocompatibility of UHMWPE

    Energy Technology Data Exchange (ETDEWEB)

    Kaklamani, G; Chen, J; Dong, H; Stamboulis, A [School of Metallurgy and Materials, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Mehrban, N; Bowen, J; Grover, L, E-mail: a.stamboulis@bham.ac.u [School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2010-10-01

    In this paper active screen plasma nitriding (ASPN) is used to chemically modify the surface of UHMWPE. This is an unexplored and new area of research. ASPN allows the homogeneous treatment of any shape or surface at low temperature; therefore, it was thought that ASPN would be an effective technique to modify organic polymer surfaces. ASPN experiments were carried out at 120 {sup 0}C using a dc plasma nitriding unit with a 25% N{sub 2} and 75% H{sub 2} atmosphere at 2.5 mbar of pressure. UHMWPE samples treated for different time periods were characterized by nanoindentation, FTIR, XPS, interferometry and SEM. A 3T3 fibroblast cell line was used for in vitro cell culture experiments. Nanoindentation of UHMWPE showed that hardness and elastic modulus increased with ASPN treatment compared to the untreated material. FTIR spectra did not show significant differences between the untreated and treated samples; however, some changes were observed at 30 min of treatment in the range of 1500-1700 cm{sup -1} associated mainly with the presence of N-H groups. XPS studies showed that nitrogen was present on the surface and its amount increased with treatment time. Interferometry showed that no significant changes were observed on the surfaces after the treatment. Finally, cell culture experiments and SEM showed that fibroblasts attached and proliferated to a greater extent on the plasma-treated surfaces leading to the conclusion that ASPN surface treatment can potentially significantly improve the biocompatibility behaviour of polymeric materials.

  14. Effect of plasma surface modification on the biocompatibility of UHMWPE.

    Science.gov (United States)

    Kaklamani, G; Mehrban, N; Chen, J; Bowen, J; Dong, H; Grover, L; Stamboulis, A

    2010-10-01

    In this paper active screen plasma nitriding (ASPN) is used to chemically modify the surface of UHMWPE. This is an unexplored and new area of research. ASPN allows the homogeneous treatment of any shape or surface at low temperature; therefore, it was thought that ASPN would be an effective technique to modify organic polymer surfaces. ASPN experiments were carried out at 120 °C using a dc plasma nitriding unit with a 25% N(2) and 75% H(2) atmosphere at 2.5 mbar of pressure. UHMWPE samples treated for different time periods were characterized by nanoindentation, FTIR, XPS, interferometry and SEM. A 3T3 fibroblast cell line was used for in vitro cell culture experiments. Nanoindentation of UHMWPE showed that hardness and elastic modulus increased with ASPN treatment compared to the untreated material. FTIR spectra did not show significant differences between the untreated and treated samples; however, some changes were observed at 30 min of treatment in the range of 1500-1700 cm(-1) associated mainly with the presence of N-H groups. XPS studies showed that nitrogen was present on the surface and its amount increased with treatment time. Interferometry showed that no significant changes were observed on the surfaces after the treatment. Finally, cell culture experiments and SEM showed that fibroblasts attached and proliferated to a greater extent on the plasma-treated surfaces leading to the conclusion that ASPN surface treatment can potentially significantly improve the biocompatibility behaviour of polymeric materials.

  15. Generation of surface waves by an underwater moving bottom: Experiments and application to tsunami modelling

    CERN Document Server

    Jamin, Timothée; Ruiz-Chavarría, Gerardo; Berhanu, Michael; Falcon, Eric

    2014-01-01

    We report laboratory experiments on surface waves generated in a uniform fluid layer whose bottom undergoes a sudden upward motion. Simultaneous measurements of the free-surface deformation and the fluid velocity field are focused on the role of the bottom kinematics in wave generation. We observe that the fluid layer transfers bottom motion to the free surface as a temporal high-pass filter coupled with a spatial low-pass filter. Both filter effects are usually neglected in tsunami warning systems. Our results display good agreement with a prevailing linear theory without fitting parameter. Based on our experimental data, we provide a new theoretical approach for the rapid kinematics limit that is applicable even for non-flat bottoms: a key step since most approaches assume a uniform depth. This approach can be easily appended to tsunami simulations under arbitrary topography.

  16. Innovative Plasma Disinfection Technique with the Reduced-pH Method and the Plasma-Treated Water (PTW) -Safety and Powerful Disinfection with Cryopreserved PTW-

    Science.gov (United States)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2015-09-01

    Among the applications of the plasma disinfection to human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition and the half-lives of its activity depend on temperature. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. These physicochemical properties were in accordance with Arrhenius equation both in liquid and solid states. From the experimental results of ESR (Electron Spin Resonance) measurement of O2-in liquid against PTW with spin trapping method, half-lives of PTW were also in accordance with Arrhenius equation. It suggests that high concentration PTW as integrated value can be achieved by cooling of plasma apparatus. Pure PTW has disinfection power of 22 log reduction (B. subtilis). This corresponds to 65% H2O2, 14% hypochlorous acid and 0.33% peracetic acid, which are deadly poison for human. On the other hand, PTW is deactivated soon at body temperature. This indicates that toxicity to human body seems to be low. PTW, which is a sort of indirect plasma exposure, with pH and temperature controls could be applied for safety and powerful disinfection. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  17. Sensitivity of a general circulation model to land surface parameters in African tropical deforestation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, K.; Royer, J.F. [Meteo-France CNRM, 42 Avenue G. Coriolis, 31057, Toulouse Cedex 1 (France)

    2004-06-01

    During the last two decades, several land surface schemes for use in climate, regional and/or mesoscale, hydrological and ecological models have been designed. Incorrect parametrization of land-surface processes and prescription of the surface parameters in atmospheric modeling, can result in artificial changes of the horizontal gradient of the sensible heat flux. Thus, an error in horizontal temperature gradient within the lower atmosphere may be introduced. The reliability of the model depends on the quality of boundary layer scheme implemented and its sensitivity to the bare soil and vegetation parameters. In this study, a series of sensitivity experiments has been conducted over broad time scales, using a version of the ARPEGE Climate Model coupled to the ISBA land surface scheme in order to investigate model sensitivity to separate changes in land surface parameters over Africa. Effects of perturbing vegetation cover, distribution of soil depth, albedo of vegetation, roughness length, leaf area index and minimum stomatal resistance were explored by using a simple statistical analysis. Identifying which parameters are important in controlling turbulent energy fluxes, temperature and soil moisture is dependent on which variables are used to determine sensibility, which type of vegetation and climate regime is being simulated and the magnitude and sign of the parameter change. This study does not argue that a particular parameter is important in ISBA, rather it shows that no general ranking of parameters is possible. So, it is essential to specify all land surface parameters with greater precision when attempting to determine the climate response to modification of the land surface. The implication of ISBA being sensitive to parameters that cannot be validated suggests that there will always be considerable doubt over the predictive quality of land-surface schemes. (orig.)

  18. Experiment 5: Science and Technology of Surface Controlled Oscillations: Report on USML-2 Results

    Science.gov (United States)

    Apfel, Robert E.; Tian, Yuren; Jankovsky, Joseph; Chen, Xiaohui; Ketterling, Jeffrey; Croonquist, Arvid; Trinh, Eugene; Holt, R. Glynn

    1998-01-01

    Minuscule amounts (e.g., 1 part in 10,000) of a surface-active material in a liquid can drastically affect the surface behavior of the liquid, influencing how the material flows and mixes with other liquid and solid materials. In many respects, the science of surfactants has been empirical, with trial and error dominating over the ability to predict how surfactant type and concentration influence surface behavior. A program for the modeling of surfactant behavior has been established at Yale. This program combines experimental work performed both on the ground and in space, and theoretical and numerical modeling. By levitating a drop of liquid in air, away from solid container surfaces, and by manipulating the drop with acoustic radiation forces, we have been able to establish idealized conditions for surface behavior studies. The primary experiments involve the study of the free oscillations of initially deformed drops. In STS-73, the USML-2 mission of the Space Shuttle, we performed the following measurements: 1) the oscillation of a spherical drop in its quadrupole mode; 2) the oscillation of a drop about a deformed (oblate) shape; 3) the slow static squeezing of the drop from spherical to nearly flat; and 4) the superoscillations of drops when the radiation forces maintaining the drop in a flattened state are suddenly reduced. Analytic and numerical studies have enabled us to understand the physics of these oscillations and to extract material properties such as the dynamic surface tension and the surface viscosities (shear and dilatational). The relation to ground-based studies is essential, because the knowledge and understanding gleaned from our space studies enable us to interpret ground-based data.

  19. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    Science.gov (United States)

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  20. Method for analysis of showerhead film cooling experiments on highly curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.; Schneider, E.; Ott, P. [Laboratoire de Thermique Appliquee et de Turbomachines (LTT), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); von Wolfersdorf, J.; Weigand, B. [Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, D-70569 Stuttgart (Germany)

    2007-02-15

    The transient liquid crystal technique has been extensively used for measuring the heat transfer characteristics in gas turbine applications. Thereby, the time evolution of the surface temperature is usually evaluated using the model of a semi-infinite flat plate. For experiments on cylinders, Wagner et al. [G. Wagner, M. Kotulla, P. Ott, B. Weigand, J. von Wolfersdorf, The transient liquid crystal technique: influence of surface curvature and finite wall thickness, ASME Paper GT2004-53553, 2004] showed, that curvature and finite thickness effects can have an influence on the obtained heat transfer coefficients. The aim of this study is to develop a time effective data reduction method that accounts for curvature and that is applicable to film cooling experiments with time varying adiabatic wall temperatures. To verify this method, transient liquid crystal experiments have been carried out on a blunt body model with showerhead film cooling. The experimental data was evaluated with the traditional semi-infinite flat plate approach and with the curvature correction using regression analysis. (author)

  1. Impact of Surface Roughness on Capillary Trapping Using 2D-Micromodel Visualization Experiments

    Science.gov (United States)

    Geistlinger, Helmut; Attaei-Dadavi, Iman; Vogel, Hans-Jörg

    2016-04-01

    According to experimental observations, capillary trapping is strongly dependent on the roughness of the pore-solid interface. We performed imbibition experiments in the range of capillary numbers (Ca) from 10^-6 to 5x10^-5 using 2D-micromodels, which exhibit a rough surface. The microstructure comprises a double-porosity structure with pronounced macropores. The dynamics of precursor thin-film flow and its importance for capillary trapping is studied. For the first time Thin-Film Dynamics and the Complex Interplay of Thin Film- and Corner Flow for Snap-off Trapping is visualized using fluorescence microscopy. The experimental data for thin-film flow advancement show a square-root time dependence. Contrary to smooth surfaces, we prove by strict thermodynamical arguments that complete wetting is possible in a broad range of contact angles (0 - 90°). We develop a pore-scale model, which describes the front dynamics of thin-film flow on rough surfaces. Furthermore, contact angle hysteresis is considered for rough surfaces. We conduct a comprehensive cluster analysis, studying the influence of viscous forces (capillary number) and buoyancy forces (bond number) on cluster size distribution and comparing the results with predictions from percolation theory. We found that our experimental results agree with theoretical results of percolation theory for Ca = 10^-6: (i) a universal power-like cluster size distribution, (ii) the linear surface-volume relationship of trapped clusters, and (iii) the existence of the cut-off correlation length for the maximal cluster height. The good agreement is a strong argument that the experimental cluster size distribution is caused by a percolation-like trapping process (Ordinary Percolation). [1] H. Geistlinger, I. Ataei-Dadavi, S. Mohammadian, and H.-J. Vogel (2015) The Impact of Pore structure and Surface Roughness on Capillary Trapping for 2D- and 3D-porous media: Comparison with Percolation theory. Special issue: Applications of

  2. Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ and in situ transmission electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghica, C; Nistor, L C [National Institute of Materials Physics, Atomistilor 105 bis, 077125 Magurele-Bucharest (Romania); Vizireanu, S; Dinescu, G, E-mail: cghica@infim.ro [National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele-Bucharest (Romania)

    2011-07-27

    The smart-cut(TM) process is based on inducing and processing structural defects below the free surface of semiconductor wafers. The necessary defects are currently induced by implantation of light elements such as hydrogen or helium. An alternative softer way to induce shallow subsurface defects is by RF-plasma hydrogenation. To facilitate the smart-cut process, the wafers containing the induced defects need to be subjected to an appropriate thermal treatment. In our experiments, (0 0 1) Si wafers are submitted to 200 and 50 W hydrogen RF-plasma and are subsequently annealed. The samples are studied by transmission electron microscopy (TEM), before and after annealing. The plasma-introduced defects are {l_brace}1 1 1{r_brace} and {l_brace}1 0 0{r_brace} planar-like defects and nanocavities, all of them involving hydrogen. Many nanocavities are aligned into strings almost parallel to the wafer surface. The annealing is performed either by furnace thermal treatment at 550 deg. C, or by in situ heating in the electron microscope at 450, 650 and 800 deg. C during the TEM observations. The TEM microstructural studies indicate a partial healing of the planar defects and a size increase of the nanometric cavities by a coalescence process of the small neighbouring nanocavities. By annealing, the lined up nanometric voids forming chains in the as-hydrogenated sample coalesced into well-defined cracks, mostly parallel to the wafer surface.

  3. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  4. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  5. Morphotectonic evolution of passive margins undergoing active surface processes: large-scale experiments using numerical models.

    Science.gov (United States)

    Beucher, Romain; Huismans, Ritske S.

    2016-04-01

    Extension of the continental lithosphere can lead to the formation of a wide range of rifted margins styles with contrasting tectonic and geomorphological characteristics. It is now understood that many of these characteristics depend on the manner extension is distributed depending on (among others factors) rheology, structural inheritance, thermal structure and surface processes. The relative importance and the possible interactions of these controlling factors is still largely unknown. Here we investigate the feedbacks between tectonics and the transfers of material at the surface resulting from erosion, transport, and sedimentation. We use large-scale (1200 x 600 km) and high-resolution (~1km) numerical experiments coupling a 2D upper-mantle-scale thermo-mechanical model with a plan-form 2D surface processes model (SPM). We test the sensitivity of the coupled models to varying crust-lithosphere rheology and erosional efficiency ranging from no-erosion to very efficient erosion. We discuss how fast, when and how the topography of the continents evolves and how it can be compared to actual passive margins escarpment morphologies. We show that although tectonics is the main factor controlling the rift geometry, transfers of masses at the surface affect the timing of faulting and the initiation of sea-floor spreading. We discuss how such models may help to understand the evolution of high-elevated passive margins around the world.

  6. Sensitivity analysis and numerical experiments on transient test of compact heat exchanger surfaces

    Institute of Scientific and Technical Information of China (English)

    Hesheng REN; Lingjun LAI; Yongzheng CUI

    2008-01-01

    A single-blow transient testing technique con-sidering the effect of longitudinal heat conduction is sug-gested for determining the average convection heat transfer coefficient of compact heat exchanger surface. By matching the measured outlet fluid temperature vari-ation with similar theoretical curves, the dimensionless longitudinal conduction parameter λ1, the time constant of the inlet fluid temperature τ+, and the number of heat transfer units Ntu can be determined simultaneously using the Levenberg-Marquardt nonlinear parameter estima-tion method. Both sensitivity analysis and numerical experiments with simulated measurements containing random errors show that the method in the present invest-igation provides satisfactory accuracy of the estimated parameter Ntu, which characterizes the heat transfer per-formance of compact heat exchanger surfaces.

  7. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design

  8. The Lunar Ultraviolet Telescope Experiment (LUTE): Enabling technology for an early lunar surface payload

    Science.gov (United States)

    Nein, M. E.; Hilchey, J. D.

    1995-02-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-m aperture, fixed declination, optical telescope to be operated on the surface of the Moon. This autonomous science payload will provide an unprecedented ultraviolet stellar survey even before manned lunar missions are resumed. This paper very briefly summarizes the LUTE concept analyzed by the LUTE Task Team of NASA's Marshall Space Flight Center (MSFC). Scientific capabilities and the Reference Design Concept are identified, and the expected system characteristics are summarized. Technologies which will be required to enable the early development, deployment, and operation of the LUTE are identified, and the principle goals and approaches for their advancement are described.

  9. Plot-scale field experiment of surface hydrologic processes with EOS implications

    Science.gov (United States)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  10. Biodegradation of marine surface floating crude oil in a large-scale field simulated experiment.

    Science.gov (United States)

    Bao, Mutai; Sun, Peiyan; Yang, Xiaofei; Wang, Xinping; Wang, Lina; Cao, Lixin; Li, Fujuan

    2014-08-01

    Biodegradation of marine surface floating crude oil with hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients was carried out by a large-scale field simulated experiment in this paper. After a 103 day experiment, for n-alkanes, the maximum biodegradation rate reached 71% and the results showed hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients have a comprehensive effect. It also showed that rhamnolipid biosurfactants could shorten the biodegradation time through an emulsifying function; the nutrients could greatly increase the biodegradation rate by promoting HDB production. For PAHs, the chrysene series had higher weathering resistance. For the same series, the weathering resistance ability is C1- biodegradation was found for different n-alkanes in two pools which only had added rhamnolipid biosurfactants or nutrients, respectively. Except for C14, C15 and C16 sesquiterpanes, most of the steranes and terpanes had high antibiodegradability.

  11. Step density waves on growing vicinal crystal surfaces - Theory and experiment

    Science.gov (United States)

    Ranguelov, Bogdan; Müller, Pierre; Metois, Jean-Jacques; Stoyanov, Stoyan

    2017-01-01

    The Burton, Cabrera and Frank (BCF) theory plays a key conceptual role in understanding and modeling the crystal growth of vicinal surfaces. In BCF theory the adatom concentration on a vicinal surface obeys to a diffusion equation, generally solved within quasi-static approximation where the adatom concentration at a given distance x from a step has a steady state value n (x) . Recently, we show that going beyond this approximation (Ranguelov and Stoyanov, 2007) [6], for fast surface diffusion and slow attachment/detachment kinetics of adatoms at the steps, a train of fast-moving steps is unstable against the formation of steps density waves. More precisely, the step density waves are generated if the step velocity exceeds a critical value related to the strength of the step-step repulsion. This theoretical treatment corresponds to the case when the time to reach a steady state concentration of adatoms on a given terrace is comparable to the time for a non-negligible change of the step configuration leading to a terrace adatom concentration n (x , t) that depends not only on the terrace width, but also on its "past width". This formation of step density waves originates from the high velocity of step motion and has nothing to do with usual kinetic instabilities of step bunching induced by Ehrlich-Schwoebel effect, surface electromigration and/or the impact of impurities on the step rate. The so-predicted formation of step density waves is illustrated by numerical integration of the equations for step motion. In order to complete our previous theoretical treatment of the non-stationary BCF problem, we perform an in-situ reflection electron microscopy experiment at specific temperature interval and direction of the heating current, in which, for the first time, the step density waves instability is evidenced on Si(111) surface during highest possible Si adatoms deposition rates.

  12. Influence of manure application on surface energy and snow cover: field experiments.

    Science.gov (United States)

    Kongoli, C E; Bland, W L

    2002-01-01

    Application of manure to frozen and/or snow-covered soils of high-latitude, continental climate regions is associated with enhanced P losses to surface water bodies, but the practice is an essential part of most animal farming systems in these regions. Field experiments of the fates of winter-applied manure P are so difficult as to make them essentially impractical, so a mechanistic, modeling approach is required. Central to a mechanistic understanding of manure P snow-melt runoff is knowledge of snowpack disappearance (ablation) as affected by manure application. The objective of this study was to learn how solid manure applied to snow-covered fields modulates the surface energy balance and thereby snow cover ablation. Manure landspreading experiments were conducted in Arlington, WI during the winters of 1998 and 1999. Solid dairy manure was applied on top of snow at a rate of 70 Mg ha(-1) in 1998, and at 45 and 100 Mg ha(-1) in 1999. Results showed that the manure retarded melt, in proportion to the rate applied. The low-albedo manure increased absorption of shortwave radiation compared with snow, but this extra energy was lost in longwave radiation and turbulent flux of sensible and latent heat. These losses result in significant attenuation of melt peaks, retarding snowmelt. Lower snowmelt rates beneath manure may allow more infiltration of meltwater compared with bare snow. This infiltration and attenuated snowmelt runoff may partially mitigate the enhanced likelihood of P runoff from unincorporated winter-spread manure.

  13. A high efficiency spectrometer for reflection (e,2e) experiments at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liscio, A. [CNR - IMIP, Area della Ricerca di Roma, Via Salaria km 29.300, 00016 Monterotondo (Italy); Dip.to di Fisica Universita di Roma Tre, Via Vasca Navale 84, 00146 Roma (Italy); Ruocco, A.; Stefani, G. [Dip.to di Fisica Universita di Roma Tre, Via Vasca Navale 84, 00146 Roma (Italy); Iacobucci, S. [CNR - ISC, Area della Ricerca di Roma, Via Salaria km 29.300, 00016 Monterotondo (Italy)], E-mail: stefano.iacobucci@isc.cnr.it

    2007-10-15

    To study electron momentum densities in solids by grazing angle reflection kinematics has been shown to be feasible [S. Iacobucci, S. Rioual, A. Ruocco, M. Mastropietro, G. Stefani, Surf. Sci. 454 (2000) 1026], but development of this spectroscopy has been hampered by long acquisition time; to fully exploit potentialities of this method is mandatory to reduce duration of the experiment within times comparable with clean surface lifetimes in ultra-high vacuum. This paper reports on recent developments of the reflection (e,2e) spectrometer that make a sizeable step forward in attaining this goal. It operates in asymmetric kinematics and at small grazing angle, thus allowing to enhance the surface sensitivity. A drastic reduction in acquisition time has been achieved by implementing parallel acquisition, both in energy and angle, of the detected electron pairs. To achieve parallel acquisition in energy and momentum, each of the two electron analysers is equipped with a two-dimensional position sensitive detector. A custom-made electronic hardware and software have been developed for the automatic control of the experiment and for acquisition and storage of the coincidence events. After discussing in some details the relevant features of the new spectrometer, few examples of valence band mapping and electron momentum densities measured in highly oriented pyrolitic graphite with energy and momentum resolutions of 1.3 eV and 0.15 A{sup -1} are given.

  14. Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons

    Science.gov (United States)

    Brueckner, J.; Englert, P.; Reedy, R. C.; Waenke, H.

    1986-01-01

    The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron.

  15. DNA origami as biocompatible surface to match single-molecule and ensemble experiments.

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-08-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements.

  16. Sintering of CaF 2 pellets as nuclear fuel analog for surface stability experiments

    Science.gov (United States)

    Godinho, José R. A.; Piazolo, Sandra; Stennett, Martin C.; Hyatt, Neil C.

    2011-12-01

    To enable a detailed study of the influence of microstructure and surface properties on the stability of spent nuclear fuel, it is necessary to produce analogs that closely resemble nuclear fuel in terms of crystallography and microstructure. One such analog can be obtained by sintering CaF 2 powder. This paper reports the microstructures obtained after sintering CaF 2 powders at temperatures up to 1240 °C. Pellets with microstructure, density and pore structure similar to that of UO 2 spent nuclear fuel pellets were obtained in the temperature range between 900 °C and 1000 °C. When CaF 2 was sintered above 1100 °C the formation of CaO at the grain boundaries caused the disintegration of the pellet due to hydration occurring after sintering. First results from a novel set-up of dissolution experiments show that changes in roughness, dissolution rate and etch pit shape of fluorite surfaces are strongly dependent on the crystallographic orientation of the expose surface. Consequently, the differences observed for each orientation will affect the overall dissolution rate and will lead to uncertainties in the estimation of dissolution rates of spent nuclear fuel.

  17. Surface Wave Effects in the NEMO Ocean Model: Forced and Coupled Experiments

    CERN Document Server

    Breivik, Øyvind; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A E M

    2015-01-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wave field), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extra-tropics, but the sea-state dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total oce...

  18. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    Science.gov (United States)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  19. Surface studies and implanted helium measurements following NOVA high-yield DT experiments

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M.A.; Hudson, G.B.

    1997-02-18

    This paper presents the results of three March 6, 1996 direct-drive high-yield DT NOVA experiments and provides `proof-of-principal` results for the quantitative measurement of energetic He ions. Semiconductor quality Si wafers and an amorphous carbon wafer were exposed to NOVA high-yield implosions. Surface damage was sub-micron in general, although the surface ablation was slightly greater for the carbon wafer than for the Si wafers. Melting of a thin ({approx} 0.1{mu}) layer of Si was evident from microscopic investigation. Electron microscopy indicated melted blobs of many different metals (e.g. Al, Au, Ta, Fe alloys, Cu and even Cd) on the surfaces. The yield measured by determining the numbers of atoms of implanted {sup 4}He and {sup 3}He indicate the number of DT fusions to be 9.1({plus_minus}2.3) X 10{sup 12} and DD fusions to be 4.8({plus_minus}1.0) x 10{sup 10}, respectively. The helium DT fusion yield is slightly lower than that of the Cu activation measurement, which was 1.3({plus_minus}0.l) x 10{sup 13} DT fusions.

  20. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements. PMID:22523083

  1. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  2. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    Science.gov (United States)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  3. PPOOLEX experiments on the dynamics of free water surface in the blowdown pipe

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. [Lappeenranta Univ. of Technology, Lappeenranta (Finland)

    2013-04-15

    This report summarizes the results of the thermal stratification and mixing experiments carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the vertical DN200 blowdown pipe to the condensation pool filled with sub-cooled water. The main objective of the experiments was to obtain verification data for the development of the Effective Momentum Source (EMS) and Effective Heat Source (EHS) models to be implemented in GOTHIC code by KTH. A detailed test matrix and procedure put together on the basis of pre-test calculations was provided by KTH before the experiments. Altogether six experiments were carried out. The experiments consisted of a small steam flow rate stratification period and of a higher flow rate mixing period. The dry well structures were heated up to approximately 130 deg. C before the stratification period was initiated. The initial water bulk temperature in the condensation pool was 13-16 deg. C. During the low steam flow rate (85-105 g/s) period steam condensed mainly inside the blowdown pipe. As a result temperatures remained constant below the blowdown pipe outlet while they increased towards the pool surface layers indicating strong thermal stratification of the wet well pool water. In the end of the stratification period the temperature difference between the pool bottom and surface was 15-30 deg. C depending on the test parameters and the duration of the low flow rate period. In the beginning of the mixing phase the steam flow rate was increased rapidly to 300-425 g/s to mix the pool water totally. Depending on the used steam flow rate and initial pool water temperature it took 150-500 s to achieve total mixing. If the test was continued long enough the water pool began to stratify again after the water bulk temperature had reached {approx}50 deg. C despite of steam mass flux belonging to the chugging region

  4. Electron Microscopy Studies, Surface Analysis and Microbial Culturing Experiments on a Depth Profile Through Martian Meteorite Nakhla

    Science.gov (United States)

    Toporski, J. K. W.; Steele, A.; Westall, F.; Griffin, C.; Whitby, C.; Avci, R.; McKay, D. S.

    2000-01-01

    Combined electron microscopy studies and culturing experiments have shown that Nakhla became contaminated with recent terrestrial microorganisms. Additional surface analysis detected an as yet unknown organic species which may represent a biomarker.

  5. UO{sub 2} corrosion in high surface-area-to-volume batch experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J. K.; Finch, R. J.; Hanchar, J. M.; Wolf, S. F.

    1997-12-08

    Unsaturated drip tests have been used to investigate the alteration of unirradiated UO{sub 2} and spent UO{sub 2} fuel in an unsaturated environment such as may be expected in the proposed repository at Yucca Mountain. In these tests, simulated groundwater is periodically injected onto a sample at 90 C in a steel vessel. The solids react with the dripping groundwater and water condensed on surfaces to form a suite of U(VI) alteration phases. Solution chemistry is determined from leachate at the bottom of each vessel after the leachate stops interacting with the solids. A more detailed knowledge of the compositional evolution of the leachate is desirable. By providing just enough water to maintain a thin film of water on a small quantity of fuel in batch experiments, we can more closely monitor the compositional changes to the water as it reacts to form alteration phases.

  6. UO2 CORROSION IN HIGH SURFACE-AREA-TO-VOLUME BATCH EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Finch, Robert J.; Wolf, Stephen F.; Hanchar, John M.; Bates, John K.

    1998-05-11

    Unsaturated drip tests have been used to investigate the alteration of unirradiated UO{sub 2} and spent UO{sub 2} fuel in an unsaturated environment, such as may be expected in the proposed repository at Yucca Mountain. In these tests, simulated groundwater is periodically injected onto a sample at 90 C in a steel vessel. The solids react with the dripping groundwater and water condensed on surfaces to form a suite of U(VI) alteration phases. Solution chemistry is determined from leachate at the bottom of each vessel after the leachate stops interacting with the solids. A more detailed knowledge of the compositional evolution of the leachate is desirable. By providing just enough water to maintain a thin film of water on a small quantity of fuel in batch experiments, we can more closely monitor the compositional changes to the water as it reacts to form alteration phases.

  7. Development and hydrology of biological soil crusts -- first results from a surface inoculation experiment

    Science.gov (United States)

    Mykhailova, Larysa; Raab, Thomas; Gypser, Stella; Fischer, Thomas

    2016-04-01

    Representing a set of various micro-biocoenoses, biocrusts often reside in adjacent patches, which not necessarily relate to structural elements of the habitat, like (micro-) topography or vegetational patterns. Such biocrust patches may become more stable through the formation of mutually dependent ecohydrological regimes. For example, algal patches inhibiting infiltration and generating runoff alternate with runoff-receiving moss patches possessing high water holding capacities. Here, we preliminarily report on a lysimeter field experiment where natural biocrust isolates were used for surface inoculation to (I) prove stochastic vs. deterministic biocrust development and (II) to quantitatively relate biocrust development to soil hydrology. Lysimeter sand was collected from 3-4 m below surface at natural dune outcrops in south-eastern Brandenburg, Germany (Glashütte (GLA) and Neuer Lugteich (LUG)), where biocrust samples were collected at the respective dune bases. The lysimeters were designed to prevent runoff. In a completely randomized full-factorial design, three factors were considered. (A) Inocolum in three treatments (bare control, mosses, algae), (B) mineral substrate texture in two treatments (GLA: 55% and LUG: 79% particles >630 μm), and (C) surface compaction in two treatments (control, 41.5 kN m-2 for 30 seconds). The samples were kept dry and re-moistened to -60 hPa two days before inoculation. After a species inventory, the inoculate was isolated by gently washing off sand particles from the biocrust samples. Algal/lichen crusts were dominated by Zygogonium ericetorum and Cladonia sp. at both sites. All moss crusts were dominated by Polytrichum piliferum and Ceratodon purpureus, whereas Brachythecium albicans was present at GLA only. 20 g of homogenized moist inoculate were spread over the surface of each lysimeter (Ø 19 cm, 22 cm depth). We performed autochthonous inoculation, i.e. biocrust isolates collected from GLA were used for inoculation of

  8. Ion microprobe elemental analyses of impact features on interplanetary dust experiment sensor surfaces

    Science.gov (United States)

    Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.; Simon, Charles G.

    1991-01-01

    Hypervelocity impact features on several of the electro-active dust sensors utilized in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microprobe. The negatively biased dust sensor surfaces acted as ion traps for cations produced in the plasma plumes of impacting particles. Impactor residue surrounds most impact features to two or three feature diameters. After etching away a layer of carbonaceous/silicaceous surface contamination, low mass resolution elemental survey scans are used to tentatively identify the presence of impactor debris. High mass resolution two-dimensional elemental maps and three dimensional depth profiling of the feature and surrounding area show the distribution and relative composition of the debris. The location of these sensors on the six primary Long Duration Exposure Facility (LDEF) sides provides a unique opportunity to further define the debris environment. Researchers applied the same techniques to impact and contaminant features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on row 12 and exposed to the environment during the entire mission.

  9. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface.

    Science.gov (United States)

    Gu, Yun-Qing; Fan, Tian-Xing; Mou, Jie-Gang; Yu, Wei-Bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis.

  10. Modeling 1D structures on semiconductor surfaces: synergy of theory and experiment.

    Science.gov (United States)

    Vanpoucke, Danny E P

    2014-04-02

    Atomic scale nanowires attract enormous interest in a wide range of fields. On the one hand, due to their quasi-one-dimensional nature, they can act as an experimental testbed for exotic physics: Peierls instability, charge density waves, and Luttinger liquid behavior. On the other hand, due to their small size, they are of interest not only for future device applications in the micro-electronics industry, but also for applications regarding molecular electronics. This versatile nature makes them interesting systems to produce and study, but their size and growth conditions push both experimental production and theoretical modeling to their limits. In this review, modeling of atomic scale nanowires on semiconductor surfaces is discussed, focusing on the interplay between theory and experiment. The current state of modeling efforts on Pt- and Au-induced nanowires on Ge(001) is presented, indicating their similarities and differences. Recently discovered nanowire systems (Ir, Co, Sr) on the Ge(001) surface are also touched upon. The importance of scanning tunneling microscopy as a tool for direct comparison of theoretical and experimental data is shown, as is the power of density functional theory as an atomistic simulation approach. It becomes clear that complementary strengths of theoretical and experimental investigations are required for successful modeling of the atomistic nanowires, due to their complexity.

  11. Experiment of near surface layer parameters in ice camp over Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Estimates of near surface layer parameters over (78.) N drifting ice in ice camp over the Arctic ocean are made using bulk transfer methods with the data from the experiments operated by the Chinese Arctic Scientific Expedition in August 22 September 3, 2003.The results show that the net radiation received by the snow surface is only 3.6 W/m2, among which the main part transported into atmosphere in term of sensible heat and latent heat, which account for 52% and 31% respectively,and less part being transported to deep ice in the conductive process.The bulk transfer coefficient of momentum is about 1.16 x 10-3 in the near neutral layer, which is a little smaller than that obtained over (75.)N drifting ice.However, to compare with the results observed over 75°N drifting ice over the Arctic Ocean in 1999, it can be found that the thermodynamic and momentum of interactions between sea and air are significant different with latitudes, concentration and the scale of sea ice.It is very important on considering the effect of sea-air-ice interaction over the Arctic Ocean when studying climate modeling.

  12. Surface river plume in a large lake under wind forcing: Observations and laboratory experiments

    Science.gov (United States)

    Demchenko, Natalia; He, Cheng; Rao, Yerubandi R.; Valipour, Reza

    2017-10-01

    Observations of a small riverine plume (Grand River, ON) in the nearshore zones of Lake Erie were analyzed to describe its spatial variability and its thickness under different wind forcing conditions during late spring of 2012. Observational results reveal a well-marked frontal region in the vicinity of the river mouth, causing the plume to discharge into the lake in the surface layers (positive buoyant). Wind driven alongshore currents at the mid-depth had speeds of 2-9 cm/s, in comparison to those in the cross-shore 3-6 cm/s, which transported the plume along the shore during the measurement period. Series of laboratory experiments were conducted to obtain the propagation speed (U) of the buoyant plume in terms of buoyancy anomaly (Ba), Richardson number (Ri), dimensionless time (t‧), and aspect ratio (A). Based on our experiments, we developed two non-dimensional relationships describing the speed of propagation (U) as U/Ba1/2 = 8 Ri-1/2t‧1/3A and the plume thickness (h) as h/H = 0.8 Ri-1/4t‧1/2A in the water depth (H), which are in agreement with field observations.

  13. The articular surface replacement implant recall: a United Kingdom district hospital experience.

    Science.gov (United States)

    Whitwell, George S; Shine, Ashokan; Young, Steve K

    2012-01-01

    We present our experience of the articular surface replacement (ASR) hip and the implant recall process. One hundred and twenty-one ASR components were implanted (21 resurfacing hip arthroplasty (RHA) and 100 ASR/XL modular total hip replacements). At the time of the implant recall in August 2010 there were 111 surviving hips (92%) with a mean follow-up of 44 months. Nine hips had been revised and one had been listed for revision surgery. Ninety-two percent of surviving implants were reviewed in the recall clinics, and blood metal ion levels or ultrasound scans were indicated in 38 hips (34%). Immediately after the recall process seven hips (6 ASR/XL and 1 RHA) were listed for revision and a further 9 were kept under close surveillance. One year after completion of the recall process 23 hips (19 ASR/XL and 4 RHA's) had been revised. A diagnosis of adverse reaction to metal debris (ARMD) was made at surgery in all but two hips. Our current revision rate for ASR RHA is 19% (mean follow-up 62 months, range 29-80) and for the ASR/XL is 19% (mean follow-up 53 months, range 10-80). The 5-year cumulative survival rates with revision for any reason for the ASR/XL, was 80.8% (95% confidence interval 72.0 - 89.5). Given experience elsewhere we expect this rate may increase significantly with time.

  14. Effect of oxygen plasma treatment on surface charge and wettability of PVC blood bag—In vitro assay

    Science.gov (United States)

    Khorasani, M. T.; Mirzadeh, H.

    2007-06-01

    Wettability and zeta potential studies were performed to characterize the hydrophobicity and surface charge of PVC blood bag samples and evaluate the effect of these properties on fibroblast cells growth. The surface properties of PVC and plasma treated PVC were compared by water drop contact angle and zeta potential measurement. Light microscopy was used to study the behavior of cell attachment and growth on these surfaces. Water drop contact angle measurement shows that the plasma treated PVC becomes more hydrophilic and wettability increased. Zeta potential and in vitro cell culture measurements noticed that the plasma treated PVC surface is more negatively charge and consequently attachment of the L929 fibroblast cells decreased on this surface.

  15. Effect of oxygen plasma treatment on surface charge and wettability of PVC blood bag-In vitro assay

    Energy Technology Data Exchange (ETDEWEB)

    Khorasani, M.T. [Biomaterial Department of Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran (Iran, Islamic Republic of)]. E-mail: M.Khorasani@ippi.ac.ir; Mirzadeh, H. [Biomaterial Department of Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran (Iran, Islamic Republic of)

    2007-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity and surface charge of PVC blood bag samples and evaluate the effect of these properties on fibroblast cells growth. The surface properties of PVC and plasma treated PVC were compared by water drop contact angle and zeta potential measurement. Light microscopy was used to study the behavior of cell attachment and growth on these surfaces. Water drop contact angle measurement shows that the plasma treated PVC becomes more hydrophilic and wettability increased. Zeta potential and in vitro cell culture measurements noticed that the plasma treated PVC surface is more negatively charge and consequently attachment of the L929 fibroblast cells decreased on this surface.

  16. Empirical Results of a Surface-Level GNSS-R Experiment in a Wave Channel

    Directory of Open Access Journals (Sweden)

    Hugo Carreno-Luengo

    2015-06-01

    Full Text Available The scattering of GNSS signals over a water surface is studied when the receiver is at a low height, as in GNSS-R coastal altimetry. The precise determination of the local sea level and wave state from the coast will provide useful altimetry and wave information as “dry” tide and wave gauges. An experiment has been conducted at the Canal d'Investigació i Experimentació Marítima (CIEM wave channel for two simulated “sea” states. The GNSS-reflectometer used is the P(Y and C/A ReflectOmeter (PYCARO instrument, a closed-loop receiver with delay and Doppler tracking loops that uses the conventional GNSS-R technique for the GPS C/A code. After retracking of the scattered GPS signals, the coherent and incoherent components have been studied. To reproduce the transmitted GPS signals indoors, a Rohde and Schwarz signal generator is used. It is found that, despite the ratio of the coherent and incoherent components being ~1, the coherent component is strong enough that it can be tracked. The coherent component comes from clusters of points on the surface that approximately satisfy the specular reflection conditions (“roughed facet”. The Pearson’s linear correlation coefficients of the derived “sea” surface height with the wave gauge data are: 0.78, 0.85 and 0.81 for a SWH = 36 cm and 0.34, 0.74, and 0.72 for a SWH = 64 cm, respectively, for transmitter elevation angles of = 60°, 75° and 86°, respectively. Finally, the rms phase of the received signal before the retracking processing is used to estimate the effective rms surface height of the ‘facets’, where the waves get scattered. It is found to be between 2.5- and 4.1-times smaller than the theoretical values corresponding to the half of the coherent reflectivity decaying factor.

  17. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment

    Science.gov (United States)

    Williams, J.-P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.

    2017-02-01

    The Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter (LRO) has been acquiring solar reflectance and mid-infrared radiance measurements nearly continuously since July of 2009. Diviner is providing the most comprehensive view of how regoliths on airless bodies store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 h local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment. Our achievable map resolution, both spatially and temporally, will continue to improve with further data acquisition. Daytime maximum temperatures are sensitive to the albedo of the surface and are ∼387-397 K at the equator, dropping to ∼95 K just before sunrise, though anomalously warm areas characterized by high rock abundances can be > 50 K warmer than the zonal average nighttime temperatures. An asymmetry is observed between the morning and afternoon temperatures due to the thermal inertia of the lunar regolith with the dusk terminator ∼30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed decrease in temperatures with latitude. At incidence angles exceeding ∼40°, topography and surface roughness influence temperatures resulting in increasing scatter in temperatures and anisothermality between Diviner channels. Nighttime temperatures are sensitive to the thermophysical properties of the regolith. High thermal inertia (TI) materials such as large rocks, remain warmer during the long lunar night and result in anomalously warm nighttime temperatures and anisothermality in the Diviner channels. Anomalous maximum and minimum temperatures are

  18. Plasma functionalization of titanium surface for repulsion of blood platelets

    OpenAIRE

    Cvelbar, Uros; Modic, Martina; Kovac, J.; Lazovic, S; Filipic, G; Vujosevic, D; Junkar, Ita; Elersic, Kristina; Brühl, S.P.; Canal Barnils, Cristina; Belmonte, Thierry; Mozetic, Miran

    2012-01-01

    Thrombosis and restenosis are the most common problems during insertion of biocompatible implants like titanium stents into human blood, due to aggregation of platelets on their surfaces. Because of this reason, we studied the response of blood platelets to a plasma treated titanium surface. The aim was to design a functionalized surface which would repel blood platelets or prevent their adhesion. Therefore, we functionalized surfaces with low-temperature inductively coupled oxygen plasma tre...

  19. MoonRIDERS: NASA and Hawaiis Innovative Lunar Surface Flight Experiment for Landing in Late 2017

    Science.gov (United States)

    Kelso, R. M.; Romo, R.; Mackey, P. J.; Phillips, J. R., III; Cox, R. E.; Hogue, M. D.; Calle, C. I.

    2016-01-01

    Recently, NASA Kennedy Space Center, Hawaii's state aerospace agency PISCES, and two Hawaii high schools Iolani and Kealakehe have come together in a unique collaboration called MoonRIDERS. This strategic partnership will allow Hawaii students to participate directly in sending a science experiment to the surface of the moon. The MoonRIDERS project started in the spring of 2014, with each institution responsible for its own project costs and activities. PISCES, given its legislative direction in advancing planetary surface systems, saw this collaboration as an important opportunity to inspire a young generation and encourage STEM (Science, Technology, Engineering, and Mathematics) learning. Under the guidance of PISCES and NASA, the students will be involved hands-on from start to finish in the engineering, testing, and validation of a space technology called the Electrodynamic Dust Shield (EDS). Dust is a critical issue for space exploration, as evidenced by the Apollo lunar missions and Mars rovers and landers. Dust creates a number of problems for humans and hardware, including inhalation, mechanical interference, wear and tear on spacesuits, inhibition of heat transfer on radiators, and reduced efficiency of solar panels. To address this, the EDS is designed to work on a variety of materials, and functions by generatingelectrodynamic fields to clear away the dust. The Google Lunar XPRIZE (GLXP), a space competition "designed to inspire pioneers to do robotic space transport on a budget," serves as a likely method for the MoonRIDERS to get their project to the moon. The EDS would potentially be flown as a hosted payload on a competitor's lander (still to be chosen). This briefing will provide an overview of the technology, the unique partnership, progress update and testing leading to this flight opportunity.

  20. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Lv, J.C. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Zhi, T.; Chen, J.Y.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Lu, Z.Q.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-12-30

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O{sub 2} plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O{sub 2} plasma treated and SWCNT coated PET fabric was better and worse than that of N{sub 2} or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the

  1. The impact of sea surface temperature bias on equatorial Atlantic interannual variability in partially coupled model experiments

    Science.gov (United States)

    Ding, Hui; Greatbatch, Richard J.; Latif, Mojib; Park, Wonsun

    2015-07-01

    We examine the impact of sea surface temperature (SST) bias on interannual variability during boreal summer over the equatorial Atlantic using two suites of partially coupled model (PCM) experiments with and without surface heat flux correction. In the experiments, surface wind stress anomalies are specified from observations while the thermodynamic coupling between the atmospheric and oceanic components is still active as in the fully coupled model. The results show that the PCM can capture around 50% of the observed variability associated with the Atlantic Niño from 1958 to 2013, but only when the bias is substantially reduced using heat flux correction, with no skill otherwise. We further show that ocean dynamics explain a large part of the SST variability in the eastern equatorial Atlantic in both observations (50-60%) and the PCM experiments (50-70%) with heat flux correction, implying that the seasonal predictability potential may be higher than currently thought.

  2. Instability of surface lenticular vortices: results from laboratory experiments and numerical simulations

    Science.gov (United States)

    Lahaye, Noé; Paci, Alexandre; Smith, Stefan Llewellyn

    2016-04-01

    We examine the instability of lenticular vortices -- or lenses -- in a stratified rotating fluid. The simplest configuration is one in which the lenses overlay a deep layer and have a free surface, and this can be studied using a two-layer rotating shallow water model. We report results from laboratory experiments and high-resolution direct numerical simulations of the destabilization of vortices with constant potential vorticity, and compare these to a linear stability analysis. The stability properties of the system are governed by two parameters: the typical upper-layer potential vorticity and the size (depth) of the vortex. Good agreement is found between analytical, numerical and experimental results for the growth rate and wavenumber of the instability. The nonlinear saturation of the instability is associated with conversion from potential to kinetic energy and weak emission of gravity waves, giving rise to the formation of coherent vortex multipoles with trapped waves. The impact of flow in the lower layer is examined. In particular, it is shown that the growth rate can be strongly affected and the instability can be suppressed for certain types of weak co-rotating flow.

  3. Investigating phosphorus uptake in anoxic and sulfidic surface sediments with 33P radiotracer experiments

    Science.gov (United States)

    Dijkstra, Nikki; Kraal, Peter; Gonzalez, Santiago; Slomp, Caroline

    2016-04-01

    Phosphorus (P) is a key nutrient for marine organisms. Enhanced P availability in the water column can fuel algal blooms and the development of bottom water anoxia. Recently, it was suggested that micro-organisms in sediments overlain by anoxic and sulfidic bottom waters might take up dissolved P and form Fe(II)-P minerals, thereby enhancing P removal. In this study, we investigated the uptake of P in surface sediments with 33P radiotracer experiments. The sediments were recovered from the anoxic and sulfidic deep basin of the Black Sea and, for comparison, from the adjacent oxic shelf. Results suggest a very fast sedimentary uptake of 33P at all sites but in particular for sediments from the oxic shelf. At all sites, most 33P was sequestered in the citrate-dithionite-bicarbonate-(CDB)-extractable sediment P fraction. No significant differences with abiotic controls were observed, implying that micro-organisms were not directly involved in the P uptake. Whereas 33P uptake by the oxic shelf sediment was likely controlled by sorption of 33P to iron(Fe)-(oxyhydr)oxides, the nature of the CDB-extractable P fraction in the deep basin sediments remains unclear. We discuss whether authigenic formation of Fe(II)-P minerals or fast adsorption of P to calcites may explain our findings.

  4. Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment

    Science.gov (United States)

    Wang, David W.; Liu, Antony K.; Peng, Chih Y.; Meindl, Eric A.

    1994-01-01

    This paper presents a case study on the wave-current interaction near the local curvature of a Gulf Stream meander. The wave data were obtained from in situ measurements by a pitch-roll discus buoy during the Surface Wave Dynamics Experiment (SWADE) conducted off Wallops Island, Virginia, from October 1990 to March 1991. Owing to the advection of the Gulf Stream by the semidiurnal tide, the discus buoy was alternately located outside and inside the Gulf Stream. The directional wave measurements from the buoy show the changes in wave direction, wave energy, and directional spreading when waves encountered the current in the Gulf Stream meanders. A wave refraction model, using the ray-tracing method with an estimated Gulf Stream velocity field and meandering condition, was used to simulate wave refraction patterns and to estimate wave parameters at relative locations corresponding to buoy measurements. The numerical simulation shows that a focusing zone of wave rays was formed near the boundary and behind the crest of a simulated Gulf Stream meander. The focusing of wave rays causes changes in wave direction, increases in wave energy, and decreases in wave directional spreading, which are in good agreement with the results from the buoy measurements.

  5. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  6. The New Horizons Bistatic Radio Science Experiment to Measure Pluto's Surface Properties

    Science.gov (United States)

    Linscott, I.; Hinson, D. P.; Tyler, G. L.; Vincent, M.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for principally occultation and radiometric measurement of Pluto and Charon during the flyby in July 2015. The REX subsystem is contained, together with the NH X-Band radio, in the Integrated Electronics Module (IEM) in the New Horizons spacecraft. REX samples and records in two polarizations both total RF power in a 4.5 MHz bandwidth, and radio signal waveforms in a narrow, 1.25 kHz band. During the encounter, and at closest approach to Pluto, the spacecraft's high gain antenna (HGA) will scan Pluto's equatorial latitudes, intercepting the specular zone, a region near Pluto's limb that geometrically favors reflection from the earth's direction. At the same time, a powerful 80 kW uplink beacon will have been transmitted from earth by the DSN to arrive at Pluto during spacecraft closest approach. Reflection from the specular zone is expected to be sufficiently strong to observe the bistatic uplink in the REX narrowband record. Measurements in both polarizations will then be combined to yield surface reflectivity, roughness and limits on the dielectric constant in the specular zone.

  7. Phase structure within a fracture network beneath a surface pond: Field experiment

    Energy Technology Data Exchange (ETDEWEB)

    GLASS JR.,ROBERT J.; NICHOLL,M.J.

    2000-05-09

    The authors performed a simple experiment to elucidate phase structure within a pervasively fractured welded tuff. Dyed water was infiltrated from a surface pond over a 36 minute period while a geophysical array monitored the wetted region within vertical planes directly beneath. They then excavated the rock mass to a depth of {approximately}5 m and mapped the fracture network and extent of dye staining in a series of horizontal pavements. Near the pond the network was fully stained. Below, the phase structure immediately expanded and with depth, the structure became fragmented and complicated exhibiting evidence of preferential flow, fingers, irregular wetting patterns, and varied behavior at fracture intersections. Limited transient geophysical data suggested that strong vertical pathways form first followed by increased horizontal expansion and connection within the network. These rapid pathways are also the first to drain. Estimates also suggest that the excavation captured from {approximately}10% to 1% or less of the volume of rock interrogated by the infiltration slug and thus the penetration depth could have been quite large.

  8. Formation of femtosecond laser induced surface structures on silicon : insights from numerical modeling and single pulse experiments

    CERN Document Server

    Derrien, Thibault J Y; Sarnet, Thierry; Sentis, Marc; Itina, Tatiana E

    2011-01-01

    Laser induced periodic surface structures (LIPSS) are formed by multiple irradiation of femtosecond laser on a silicon target. In this paper, we focus and discuss the surface plasmon polariton mechanism by an analysis of transient phase-matching conditions in Si on the basis of a single pulse experiment and numerical simulations. Two regimes of ripple formation mechanisms at low number of shots are identified and detailed. Correlation of numerical and experimental results is good.

  9. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Yao; LIU ZhenMei; XU ZhiKang; YAO Ke

    2009-01-01

    Surface modification with dielectric barrier discharge (DBD) plasma was carried out at atmospheric pressure (argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens (IOL). Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy (XPS),field emission scanning electron microscopy (FESEM),atomic force microscopy (AFM) and water contact angle (WCA) measurements. The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells (LECs) in vitro. After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved. The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect. The existence of low molecular weight oxidized material (LMWOM) was proved on the plasma treated IOL which was caused by the chain scission effect of the plasma treatment. The plasma-treated lOLs resisted the adhesion of platelets and macrophages significantly. The LECs spreading and proliferation were postponed on the lOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs. The IOL biocompatibility was improved after the DBD plasma treatment. We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification (ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  10. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Surface modification with dielectric barrier discharge(DBD) plasma was carried out at atmospheric pressure(argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens(IOL).Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM) and water contact angle(WCA) measurements.The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells(LECs) in vitro.After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved.The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect.The existence of low molecular weight oxidized material(LMWOM) was proved on the plasma-treated IOL which was caused by the chain scission effect of the plasma treatment.The plasma-treated IOLs resisted the adhesion of platelets and macrophages significantly.The LECs spreading and proliferation were postponed on the IOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs.The IOL biocompatibility was improved after the DBD plasma treatment.We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification(ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  11. A review of surface effects in Kapitza's experiments on heat transfer between solids and helium II (Review Article)

    Science.gov (United States)

    Amrit, Jay

    2016-08-01

    In a recent paper, it is shown that the thermal boundary Kapitza resistance between a solid and superfluid helium is explained by resonant scattering of phonons from surface roughness heights, as described in the Adamenko and Fuks (AF) model. We reexamine the original experiments of thermal transfer between a solid (platinum and copper) and superfluid helium conducted by Kapitza in 1940. In particular, we analyze his experimental results for the different surface treatments of the solid in light of the AF model. Time scales for diffuse scattering of phonons at the interface are estimated. Also the role of a layer of varnish on a copper surface is reinterpreted.

  12. Surface Experiments on a Jupiter Trojan Asteroid in the Solar Powered Sail Mission

    Science.gov (United States)

    Okada, Tatsuaki

    2016-04-01

    Introduction: A new mission to a Jupiter Trojan asteroid is under study us-ing a solar-powered sail (SPS), and a science lander is being investigated in the joint study between Japan and Europe [1]. We present here the key sci-entific objectives and the strawman payloads of science experiments on the asteroid. Science Objectives: Jupiter Trojan asteroids are located around the Sun-Jupiter Lagrange points (L4 or L5) and most of them are classified as D- or P-type in asteroid taxonomy, but their origin still remains unknown. A classi-cal (static) model of solar system evolution indicates that they were formed around the Jupiter region and survived until now as the outer end members of asteroids. A new (dynamical) model such as Nice model suggests that they were formed at the far end of the solar system and transferred inward due to dynamical migration of giant planets [2]. Therefore physical, miner-alogical, and isotopic studies of surface materials and volatile compounds could solve their origin, and then the solar system formation [3]. Strawman Payloads: The SPS orbiter will be able to carry a 100 kg class lander with 20 kg mission payloads. Just after landing of the lander, geolog-ical, mineralogical, and geophysical observations will be performed to char-acterize the site using a panoramic optical camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. The surface and subsur-face materials of the asteroid will be collected into a carousel by the bullet-type and the pneumatic drill type samplers, respectively. Samples in the carousel will be investigated by a visible and an infrared microscope, and transferred for performing high resolution mass spectrometry (HRMS). Mass resolution m/dm > 30,000 is expected to investigate isotopic ratios of D/H, 15N/14N, and 18O/16O, as well as molecules from organic matters. A set of strawman payloads are tentatively determined during the lander system study [4]. The constraints to select the strawman

  13. Radio-frequency Ar plasma treatment on muga silk fiber: correlation between physicochemical and surface morphology

    Science.gov (United States)

    Gogoi, Dolly; Chutia, Joyanti; Choudhury, Arup Jyoti; Pal, Arup Ratan; Patil, Dinkar

    2012-11-01

    Radio-frequency (RF) Ar plasma treatment is carried out on natural muga silk fibers in a capacitively coupled plasma reactor. The physical and thermal properties of the muga fibers are investigated at an RF power of 20 W and in the treatment time range of 5 to 20 min. The virgin and plasma-treated muga fibers are characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The effect of Ar plasma treatment can be observed only on the outermost layer of the muga fibers without any significant variation in their bulk and thermal properties, as supported by differential scanning calorimetry and thermogravimetric analysis. Improvement in tensile strength and hydrophobicity of the plasma-treated muga fibers is observed at lower treatment time and RF power. Attempts are made to correlate the properties of the plasma-treated muga fibers with their surface chemistry and surface morphologies.

  14. Effect of glutamic acid on copper sorption onto kaolinite - Batch experiments and surface complexation modeling.

    Science.gov (United States)

    Karimzadeh, Lotfollah; Barthen, Robert; Stockmann, Madlen; Gruendig, Marion; Franke, Karsten; Lippmann-Pipke, Johanna

    2017-07-01

    High carbonate content of the European Kupferschiefer ore deposits is a challenge for acid copper leaching (pH ≤ 2). Therefore investigating the mobility behavior of Cu(II) under conditions related to an alternative, neutrophil biohydrometallurgical Cu(II) leaching approach is of interest. As glutamic acid (Glu) might be present as a component in the growth media, we studied its effects on the adsorption of Cu(II) onto kaolinite. The binary and ternary batch sorption measurements of Cu(II) and Glu onto kaolinite were performed in the presence of 10 mM NaClO4 as background electrolyte and at a pH range from 4 to 9. Sorption experiments were modeled by the charge-distribution multi-site ion complexation (CD-MUSIC) model by using single sorption site (≡SOH) and monodentate surface complexation reactions. Glu sorption on kaolinite is weak (<10%) and independent of pH. Furthermore, Glu slightly enhances the Cu(II) sorption at low pH but strongly hinders (up to 50%) the sorption at higher pH and therewith enhances copper mobility. The results of isotherms show that Cu(II)-Glu sorption onto kaolinite mimics the Freundlich model. The proposed CD-MUSIC model provides a close fit to the experimental data and predicts the sorption of Cu(II), Cu(II)-Glu and Glu onto kaolinite as well as the effect of Glu on Cu(II) mobility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rapid assessment of anisotropic surface processes: experiments on the corrosion of Inconel 600

    Science.gov (United States)

    Schuh, Christopher A.; Anderson, Kelly; Orme, Christine

    2003-10-01

    We present a general experimental method for rapid characterization of surface processes on crystals of many orientations. By correlating maps of crystallographic orientation (obtained by electron backscatter diffraction methods) with those of surface topography (obtained by atomic force microscopy), we illustrate how a surface property can be elucidated on many off-principle crystal surfaces from a single polycrystalline specimen. For the corrosion of Inconel 600 in a dilute aqueous solution of HCl, we find that corrosion rates scale with the deviation angle of the surface normal from an ideal direction. The use of atomic force microscopy can also provide mechanistic details about the surface process in question. For Inconel 600, we correlate the surface oxide morphology directly to the orientation of the underlying crystal.

  16. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaorong [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Bincheng [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China)

    2015-02-15

    Surface thermal lens is a highly sensitive photothermal technique to measure low absorption losses of various solid materials. In such applications, the sensitivity of surface thermal lens is a key parameter for measuring extremely low absorption. In this paper, we experimentally investigated the influence of probe beam wavelength on the sensitivity of surface thermal lens for measuring the low absorptance of optical laser components. Three probe lasers with wavelength 375 nm, 633 nm, and 1570 nm were used, respectively, to detect the surface thermal lens amplitude of a highly reflective coating sample excited by a cw modulated Gaussian beam at 1064 nm. The experimental results showed that the maximum amplitude of surface thermal lens signal obtained at corresponding optimized detection distance was inversely proportional to the wavelength of the probe beam, as predicted by previous theoretical model. The sensitivity of surface thermal lens could, therefore, be improved by detecting surface thermal lens signal with a short-wavelength probe beam.

  17. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    Science.gov (United States)

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  18. Prophylactic aortic root surgery in patients with Marfan syndrome : 10 years' experience with a protocol based on body surface area

    NARCIS (Netherlands)

    Aalberts, Jan J. J.; van Tintelen, J. Peter; Hillege, Hans L.; Boonstra, Piet W.; van den Berg, Maarten P.; Waterbolk, T

    2008-01-01

    Background: Current guidelines recommending prophylactic aortic root replacement in Marfan syndrome are based on absolute diameters of the aortic root. However, aortic root diameter is a function of body surface area (BSA). Here, we report our experience with a protocol for prophylactic aortic root

  19. Modeling short wave radiation and ground surface temperature: a validation experiment in the Western Alps

    Science.gov (United States)

    Pogliotti, P.; Cremonese, E.; Dallamico, M.; Gruber, S.; Migliavacca, M.; Morra di Cella, U.

    2009-12-01

    Permafrost distribution in high-mountain areas is influenced by topography (micro-climate) and high variability of ground covers conditions. Its monitoring is very difficult due to logistical problems like accessibility, costs, weather conditions and reliability of instrumentation. For these reasons physically-based modeling of surface rock/ground temperatures (GST) is fundamental for the study of mountain permafrost dynamics. With this awareness a 1D version of GEOtop model (www.geotop.org) is tested in several high-mountain sites and its accuracy to reproduce GST and incoming short wave radiation (SWin) is evaluated using independent field measurements. In order to describe the influence of topography, both flat and near-vertical sites with different aspects are considered. Since the validation of SWin is difficult on steep rock faces (due to the lack of direct measures) and validation of GST is difficult on flat sites (due to the presence of snow) the two parameters are validated as independent experiments: SWin only on flat morphologies, GST only on the steep ones. The main purpose is to investigate the effect of: (i) distance between driving meteo station location and simulation point location, (ii) cloudiness, (iii) simulation point aspect, (iv) winter/summer period. The temporal duration of model runs is variable from 3 years for the SWin experiment to 8 years for the validation of GST. The model parameterization is constant and tuned for a common massive bedrock of crystalline rock like granite. Ground temperature profile is not initialized because rock temperature is measured at only 10cm depth. A set of 9 performance measures is used for comparing model predictions and observations (including: fractional mean bias (FB), coefficient of residual mass (CMR), mean absolute error (MAE), modelling efficiency (ME), coefficient of determination (R2)). Results are very encouraging. For both experiments the distance (Km) between location of the driving meteo

  20. Adsorption of arsenic and phosphate onto the surface of calcite as revealed by batch experiments and surface complexation modelling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt

    The adsorption of phosphate, arsenate (As(V)) and arsenite (As(III)) onto synthetic calcite was studied in a series of batch experiments. The adsorption of the three ions was studied separately followed by studies of the competition between arsenate and phosphate. The experimental data was utilized...... is complete after 1 and 2-3 hours, respectively). Also desorption is fast and complete for both ions within 0.5 h. The reversibility of the sorption process indicates that neither arsenate nor phosphate is readily incorporated into the calcite crystal lattice under our experimental conditions. The phosphate....... This clearly shows the importance of competition studies in validating multicomponent models. Extrapolation of the experimental results to calcite bearing aquifers suggests a large variability in the mobility of arsenic. Under reduced conditions, arsenite, which does not adsorb onto calcite, will dominate and...

  1. A Mechanistic study of Plasma Treatment Effects on Demineralized Dentin Surfaces for Improved Adhesive/Dentin Interface Bonding

    Science.gov (United States)

    Dong, Xiaoqing; Chen, Meng; Wang, Yong; Yu, Qingsong

    2014-01-01

    Our previous work has shown that non-thermal plasma treatment of demineralized dentin significantly (p<0.05) improved adhesive/dentin bonding strength for dental composite restoration as compared with the untreated controls. This study is to achieve mechanistic understanding of the plasma treatment effects on dentin surface through investigating the plasma treated dentin surfaces and their interaction with adhesive monomer, 2-Hydroxyethyl methacrylate (HEMA). The plasma treated dentin surfaces from human third molars were evaluated by water contact angle measurements and scanning electron microscopy (SEM). It was found that plasma-treated dentin surface with subsequent HEMA immersion (Plasma/HEMA Treated) had much lower water contact angle compared with only plasma-treated (Plasma Treated) or only HEMA immersed (HEMA Treated) dentin surfaces. With prolong water droplet deposition time, water droplets spread out completely on the Plasma/HEMA Treated dentin surfaces. SEM images of Plasma/HEMA Treated dentin surfaces verified that dentin tubules were opened-up and filled with HEMA monomers. Extracted type I collagen fibrils, which was used as simulation of the exposed dentinal collagen fibrils after acid etching step, were plasma treated and analyzed with Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) spectra. FT-IR spectra of the Plasma/HEMA Treated collage fibrils showed broadened amide I peak at 1660 cm−1 and amide II at 1550 cm−1, which indicate secondary structure changes of the collagen fibrils. CD spectra indicated that 67.4% collagen helix structures were denatured after plasma treatment. These experimental results demonstrate that non-thermal argon plasma treatment was very effective in loosing collagen structure and enhancing adhesive monomer penetration, which are beneficial to thicker hybrid layer and longer resin tag formation, and consequently enhance adhesive/dentin interface bonding. PMID:25267936

  2. An experiment to distinguish between diffusive and specular surfaces for thermal radiation in cryogenic gravitational-wave detectors

    Science.gov (United States)

    Sakakibara, Yusuke; Kimura, Nobuhiro; Suzuki, Toshikazu; Yamamoto, Kazuhiro; Tokoku, Chihiro; Uchiyama, Takashi; Kuroda, Kazuaki

    2015-07-01

    In cryogenic gravitational-wave detectors, one of the most important issues is the fast cooling of their mirrors and keeping them cool during operation to reduce thermal noise. For this purpose, the correct estimation of thermal-radiation heat transfer through the pipe-shaped radiation shield is vital to reduce the heat load on the mirrors. However, the amount of radiation heat transfer strongly depends on whether the surfaces reflect radiation rays diffusely or specularly. Here, we propose an original experiment to distinguish between diffusive and specular surfaces. This experiment has clearly shown that the examined diamond-like carbon-coated surface is specular. This result emphasizes the importance of suppressing the specular reflection of radiation in the pipe-shaped shield.

  3. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    Energy Technology Data Exchange (ETDEWEB)

    Dumée, Ludovic F., E-mail: ludovic.dumee@deakin.edu.au [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Schütz, Jürg [CSIRO, Manufacturing Flagship, 75 Pigdons Road, 3216 Waurn Ponds, Victoria (Australia)

    2016-02-15

    Graphical abstract: - Highlights: • Systematic surface modifications by gas plasma treatment of hydrophobic polymers. • Correlation between plasma parameters and materials surface energy and morphology. • Spectral analysis of the formation of functional groups across the membranes surface. • Relationship between wettability, roughness and performance. - Abstract: The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher

  4. Airspace Technology Demonstration 2 (ATD-2) Integrated Surface and Airspace Simulation - Experiment Plan

    Science.gov (United States)

    Verma, Savita Arora; Jung, Yoon Chul

    2017-01-01

    This presentation describes the overview of the ATD-2 project and the integrated simulation of surface and airspace to evaluate the procedures of IADS system and evaluate surface metering capabilities via a high-fidelity human-in-the-loop simulation. Two HITL facilities, Future Flight Central (FFC) and Airspace Operations Laboratory (AOL), are integrated for simulating surface operations of the Charlotte-Douglas International Airport (CLT) and airspace in CLT TRACON and Washington Center.

  5. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    Science.gov (United States)

    Dippold, Vance F. III; Friedlander, David

    2017-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for a commercial supersonic transport aircraft concept and experimental hardware models designed to represent the installed propulsion system of the conceptual aircraft in an upcoming test campaign. The purpose of the experiment is to determine the effects of jet-surface interactions from supersonic aircraft on airport community noise. RANS simulations of the commercial supersonic transport aircraft concept were performed to relate the representative experimental hardware to the actual aircraft. RANS screening simulations were performed on the proposed test hardware to verify that it would be free from potential rig noise and to predict the aerodynamic forces on the model hardware to assist with structural design. The simulations showed a large region of separated flow formed in a junction region of one of the experimental configurations. This was dissimilar with simulations of the aircraft and could invalidate the noise measurements. This configuration was modified and a subsequent RANS simulation showed that the size of the flow separation was greatly reduced. The aerodynamic forces found on the experimental models were found to be relatively small when compared to the expected loads from the model’s own weight.Reynolds-Averaged Navier-Stokes (RANS) simulations were completed for two configurations of a three-stream inverted velocity profile (IVP) nozzle and a baseline single-stream round nozzle (mixed-flow equivalent conditions). For the Sideline and Cutback flow conditions, while the IVP nozzles did not reduce the peak turbulent kinetic energy on the lower side of the jet plume, the IVP nozzles did significantly reduce the size of the region of peak turbulent kinetic energy when compared to the jet plume of the baseline nozzle cases. The IVP nozzle at Sideline conditions did suffer a region of separated flow from the inner stream nozzle splitter that did produce an intense, but small, region of

  6. Observing at-surface irradiance and albedo from space: the Tibet experiment

    NARCIS (Netherlands)

    Roupioz, L.

    2015-01-01

    Monitoring the solar radiation budget on a daily basis is a prerequisite to study land surface processes, especially in climatology and hydrology, and in derived applications like drought early warning. Current space-born radiometers can provide daily observations to derive surface radiative fluxes

  7. Low-energy electron diffraction experiment, theory and surface structure determination

    CERN Document Server

    Hove, Michel A; Chan, Chi-Ming

    1986-01-01

    Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor­ rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech­ nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility...

  8. Limitation in obtainable surface roughness of hardened cement paste: 'virtual' topographic experiment based on focussed ion beam nanotomography datasets.

    Science.gov (United States)

    Trtik, P; Dual, J; Muench, B; Holzer, L

    2008-11-01

    Surface roughness affects the results of nanomechanical tests. The surface roughness values to be measured on a surface of a porous material are dependent on the properties of the naturally occurring pore space. In order to assess the surface roughness of hardened cement paste (HCP) without the actual influence of the usual sample preparation for nanomechanical testing (i.e. grinding and polishing), focussed ion beam nanotomography datasets were utilized for reconstruction of 3D (nanoscale resolution) surface profiles of hardened cement pastes. 'Virtual topographic experiments' were performed and root mean square surface roughness was then calculated for a large number of such 3D surface profiles. The resulting root mean square (between 115 and 494 nm) is considerably higher than some roughness values (as low as 10 nm) reported in the literature. We suggest that thus-analysed root mean square values provide an estimate of a 'hard' lower limit that can be achieved by 'artefact-free' sample preparation of realistic samples of hardened cement paste. To the best of our knowledge, this 'hard' lower limit was quantified for a porous material based on hydraulic cement for the first time. We suggest that the values of RMS below such a limit may indicate sample preparation artefacts. Consequently, for reliable nanomechanical testing of disordered porous materials, such as hardened cement paste, the preparation methods may require further improvement.

  9. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    Science.gov (United States)

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.

  10. Comprehensive Assessment of Land Surface, Snow, and Soil Moisture-Climate Feedbacks by Multi-model Experiments of Land Surface Models under LS3MIP

    Science.gov (United States)

    Oki, T.; Kim, H.; Hurk, B. V. D.; Krinner, G.; Derksen, C.; Seneviratne, S. I.

    2015-12-01

    The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and its predictability, including effects on the energy and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. The Land surface, snow and soil moisture model inter-comparison project (LS3MIP) experiments address together the following objectives: an evaluation of the current state of land processes including surface fluxes, snow cover and soil moisture representation in CMIP6 DECK runs (LMIP-protoDECK) a multi-model estimation of the long-term terrestrial energy/water/carbon cycles, using the surface modules of CMIP6 models under observation constrained historical (land reanalysis) and projected future (impact assessment) conditions considering land use/land cover changes. (LMIP) an assessment of the role of snow and soil moisture feedbacks in the regional response to altered climate forcings, focusing on controls of climate extremes, water availability and high-latitude climate in historical and future scenario runs (LFMIP) an assessment of the contribution of land surface processes to the current and future predictability of regional temperature/precipitation patterns. (LFMIP) These LS3MIP outcomes will contribute to the improvement of climate change projections by reducing the systematic biases from the land surface component of climate models, and a better representation of feedback mechanisms related to snow and soil moisture in climate models. Further, LS3MIP will enable the assessment of probable historical changes in energy, water, and carbon cycles over land surfaces extending more than 100 years, including spatial variability and trends in global runoff, snow cover, and soil moisture that are hard to detect purely based on observations. LS3MIP will also enable the impact assessments of climate changes on hydrological regimes and available

  11. Application of orthogonal design in the experiment of plasma arc powder surfacing technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the influence of plasma arc powder surfacing technical parameters on the property of layer is defined using the orthogonal design. By the orthogonal polynomial regression, when plasma arc powder surfacing is used on the surface of the X65 steel plate with the Fe-07 alloy powder, the optimum technical parameters are the following: I=180190 A, G=41.5 g/min, v=102 mm/min, T0=350℃, Ql=280 L/h, Qs=400 L/h. Further, analysis of the cracking test data showed that the cracking preheat temperature is 350℃.

  12. Hydrophobic recovery of repeatedly plasma-treated silicone rubber .2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen

    NARCIS (Netherlands)

    Everaert, EP; VanderMei, HC; Busscher, HJ

    1996-01-01

    Surfaces of medical grade silicone rubber (Q7-4750, Dow Coming) were modified by repeated (six times) RF plasma treatments using various discharge gases: oxygen, argon, carbon dioxide, and ammonia. The treated samples were stored for a period of 3 months in ambient air, water, or liquid nitrogen. Su

  13. Particle beam experiments for the investigation of plasma-surface interactions: application to magnetron sputtering and polymer treatment

    CERN Document Server

    Corbella, Carles; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; von Keudell, Achim

    2013-01-01

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions. Atom and ion beams are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions and metal vapor. The heterogeneous surface processes are monitored in-situ and in real time by means of a quartz crystal microbalance (QCM) and Fourier transform infrared spectroscopy (FTIR). Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma treatment of polymers (PET, PP).

  14. Introducing Students to Surface Modification and Phase Transfer of Nanoparticles with a Laboratory Experiment

    Science.gov (United States)

    Alkilany, Alaaldin M.; Mansour, Sara; Amro, Hamza M.; Pelaz, Beatriz; Soliman, Mahmoud G.; Hinman, Joshua G.; Dennison, Jordan M.; Parak, Wolfgang J.; Murphy, Catherine J.

    2017-01-01

    A simple, reliable, and cost-effective experiment is presented in which students synthesized citrate-capped gold nanoparticles (GNPs), functionalized them with poly(ethylene glycol) (PEG), and transferred the PEG-GNPs from water to the organic phase dichloromethane. The experiment introduces students to nanotechnology with foci on important…

  15. Optical characterization of gold chains and steps on the vicinal Si(557) surface: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Physics and European Theoretical Spectroscopy Facility (ETSF), University of Rome ' ' Tor Vergata' ' , Via della Ricerca Scientifica 1, 00133 Rome (Italy); McAlinden, Niall; McGilp, John F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2012-06-15

    We present a joint experimental-theoretical study of the reflectance anisotropy of clean and gold-covered Si(557), a vicinal surface of Si(111) upon which gold forms quasi-one-dimensional (1D) chains parallel to the steps. By means of first-principles calculations, we analyse the close relationship between the various surface structural motifs and the optical properties. Good agreement is found between experimental and computed spectra of single-step models of both clean and Au-adsorbed surfaces. Spectral fingerprints of monoatomic gold chains and silicon step edges are identified. The role of spin-orbit coupling (SOC) on the surface optical properties is examined, and found to have little effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Virtual laparoscopy: Initial experience with three-dimensional ultrasonography to characterize hepatic surface features

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, Tadashi, E-mail: tad_sekimoto@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Maruyama, Hitoshi, E-mail: maru-cib@umin.ac.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Kondo, Takayuki, E-mail: takakondonaika@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Shimada, Taro, E-mail: bobtaro51@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Takahashi, Masanori, E-mail: machat1215@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Yokosuka, Osamu, E-mail: yokosukao@faculty.chiba-u.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Otsuka, Masayuki, E-mail: otsuka-m@faculty.chiba-u.jp [Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Miyazaki, Masaru, E-mail: masaru@faculty.chiba-u.jp [Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Mine, Yoshitaka, E-mail: yoshitaka.mine@toshiba.co.jp [Toshiba Medical Systems Corporation, Ultrasound Systems Division, Ultrasound Systems Development Department, Otawara, Tochigi (Japan)

    2013-06-15

    Objective: To examine the potential utility of 3D-reconstructed sonograms to distinguish cirrhotic from non-cirrhotic livers by demonstrating hepatic surface characteristics. Materials and methods: A preliminary phantom study was performed to examine the potential resolution of 3D images, recognizing surface irregularities as a difference in height. In a prospective clinical study of 31 consecutive patients with ascites (21 cirrhosis, 10 non-cirrhosis), liver volume data were acquired by transabdominal mechanical scanning. The hepatic surface features of cirrhotic and non-cirrhotic patients were compared by 2 independent reviewers. Intra- and inter-operator/reviewer agreements were also examined. Results: The phantom study revealed that 0.4 mm was the minimum recognizable difference in height on the 3D sonograms. The hepatic surface image was successfully visualized in 74% patients (23/31). Success depended on the amount of ascites; visualization was 100% with ascites of 10 mm or more between the hepatic surface and abdominal wall. The images showed irregularity of the hepatic surface in all cirrhotic patients. The surface appearance was confirmed as being very similar in 3 patients who had both 3D sonogram and liver resection for transplantation. The ability to distinguish cirrhotic liver from non-cirrhotic liver improved with the use of combination of 2D- and 3D-imaging versus 2D-imaging alone (sensitivity, p = 0.02; accuracy, p = 0.02) or 3D-imaging alone (sensitivity, p = 0.03). Intra-/inter-operator and inter-reviewer agreement were excellent (κ = 1.0). Conclusion: 3D-based sonographic visualization of the hepatic surface showed high reliability and reproducibility, acting as a virtual laparoscopy method, and the technique has the potential to improve the diagnosis of cirrhosis.

  17. The surface area of human V1 predicts the subjective experience of object size

    OpenAIRE

    Schwarzkopf, Dietrich Samuel; Song, Chen; Rees, Geraint

    2010-01-01

    Abstract The surface area of human primary visual cortex (V1) varies substantially between individuals for unknown reasons. Here, we show that this variability is strongly and negatively correlated with the magnitude of two common visual illusions, where two physically identical objects appear different in size due to their context. Because such illusions dissociate conscious perception from physical stimulation, our findings indicate that the surface area of V1 predicts variabilit...

  18. Finite Element Analysis and Experiment Research on Surface Residual Stress of Ceramics Grinding

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The theoretical model of residual stress of ceramics grinding has been established applying thermal elastoplastic mechanics theory. While grinding at the course of grinding wheel moved along workpiece surface the distributing regulation of residual stress can be simplified into thermal elastioplastic mechanical issue, under the action of the both moving centralized force and heat source. Calculating and evaluating of surface residual stress using current procedure of finite element analysis which has been...

  19. The effect of rough surfaces on Nuclear Magnetic Resonance relaxation experiments

    CERN Document Server

    Nordin, Matias

    2015-01-01

    Most theoretical treatments of Nuclear Magnetic Resonance (NMR) assume ideal smooth geometries (i.e. slabs, spheres or cylinders) with well-defined surface-to-volume ratios (S/V). This same assumption is commonly adopted for naturally occurring materials, where the pore geometry can differ substantially from these ideal shapes. In this paper the effect of surface roughness on the T2 relaxation spectrum is studied. By homogenization of the problem using an electrostatic approach it is found that the effective surface relaxivity can increase dramatically in the presence of rough surfaces. This leads to a situation where the system responds as a smooth pore, but with significantly increased surface relaxivity. As a result: the standard approach of assuming an idealized geometry with known surface-to-volume and inverting the T2 relaxation spectrum to a pore size distribution is no longer valid. The effective relaxivity is found to be fairly insensitive to the shape of roughness but strongly dependent on the width...

  20. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    Science.gov (United States)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-11-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.

  1. Surface activity and radiation field measurements of the TMI-2 reactor building gross decontamination experiment

    Energy Technology Data Exchange (ETDEWEB)

    McIsaac, C V

    1983-10-01

    Surface samples were collected from concrete and metal surfaces within the Three Mile Island Unit 2 Reactor Building on December 15 and 17, 1981 and again on March 25 and 26, 1982. The Reactor Building was decontaminated by hydrolasing during the period between these dates. The collected samples were analyzed for radionuclide concentration at the Idaho National Engineering Laboratory. The sampling equipment and procedures, and the analysis methods and results are discussed. The measured mean surface concentrations of /sup 137/Cs and /sup 90/Sr on the 305-ft elevation floor before decontamination were, respectively, 3.6 +- 0.9 and 0.17 +- 0.04 ..mu..Ci/cm/sup 2/. Their mean concentrations on the 347-ft elevation floor were about the same. On both elevations, walls were found to be considerably less contaminated than floors. The fractions of the core inventories of /sup 137/Cs, /sup 90/Sr, and /sup 129/I deposited on Reactor Building surfaces prior to decontamination were calculated using their mean concentrations on various types of surfaces. The calculated values for these three nuclides are 3.5 +- 0.4 E-4, 2.4 +- 0.8 E-5, and 5.7 +- 0.5 E-4, respectively. The decontamination operations reduced the /sup 137/Cs surface activity on the 305- and 347-ft elevations by factors of 20 and 13, respectively. The /sup 90/Sr surface activity reduction was the same for both floors, that being a factor of 30. On the whole, decontamination of vertical surfaces was not achieved. Beta and gamma exposure rates that were measured during surface sampling were examined to determine the degree to which they correlated with measured surface activities. The data were fit with power functions of the form y = ax/sup b/. As might be expected, the beta exposure rates showed the best correlation. Of the data sets fit with the power function, the set of December 1981 beta exposure exhibited the least scatter. The coefficient of determination for this set was calculated to be 0.915.

  2. Cratering and penetration experiments in aluminum and teflon: Implications for space-exposed surfaces

    Science.gov (United States)

    Hörz, Friedrich

    2012-04-01

    Whether a target is penetrated or not during hypervelocity impact depends strongly on typical impactor dimensions (Dp) relative to the absolute target thickness (T). We have therefore conducted impact experiments in aluminum1100 and TeflonFEP targets that systematically varied Dp/T (=D*), ranging from genuine cratering events in thick targets (Dp > T). The objectives were to (1) delineate the transition from cratering to penetration events, (2) characterize the diameter of the penetration hole (Dh) as a function of D*, and (3) determine the threshold target thickness that yields Dh = Dp. We employed spherical soda-lime glass (SLG) projectiles of Dp = 50-3175 μm at impact velocities (V) from 1 to 7 km s-1, and varied target thicknesses from microns to centimeters. The transition from cratering to penetration processes in thick targets forms a continuum in all morphologic aspects. The entrance side of the target resembles that of a standard crater even when the back of the target suffers substantial, physical perforations via spallation and plastic deformation. We thus suggest that the cratering-to-penetration transition does not occur when the target becomes physically perforated (i.e., at the "ballistic limit"), but when the shock pulse duration in the projectile (tp) is identical to that in the target (tt), i.e., tp = tt. This condition is readily calculated from equation-of-state data. As a consequence, in reconstructing impactor dimensions from observations of space-exposed substrates, we recommend that crater size (Dc) be used for the case of tp tt. The morphologic evolution of the penetration hole and its size also forms a continuum that strongly depends on both the scaled parameter D* and on V, but it is independent of the absolute scale. The condition of Dh = Dp is approached at D* > 50. The dependence of Dh on T and V, however, is very systematic. This has led to new and detailed calibration curves, permitting the reconstruction of Dp from the measurement

  3. Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, T.J.-Y., E-mail: thibault.derrien@lp3.univ-mrs.fr [Lasers, Plasmas and Photonic Processes Laboratory (LP3), UMR 6182 CNRS - Universite de la Mediterranee, Parc Scientifique et Technologique de Luminy, 163 Avenue de luminy - C. 917, 13288 Marseille cedex 9 (France); Torres, R.; Sarnet, T.; Sentis, M. [Lasers, Plasmas and Photonic Processes Laboratory (LP3), UMR 6182 CNRS - Universite de la Mediterranee, Parc Scientifique et Technologique de Luminy, 163 Avenue de luminy - C. 917, 13288 Marseille cedex 9 (France); Itina, T.E. [Hubert Curien laboratory (LaHC), UMR 5516 CNRS - Universite Jean Monnet, Bat. F, 18 rue du Professeur Benoit Lauras, 42000, Saint Etienne (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Theoretical conditions for exciting SPP in Si are verified. Black-Right-Pointing-Pointer SPP model explains why a seed is needed to produce single shot ripples. Black-Right-Pointing-Pointer Two regimes of ripples are identified and explained by numerical simulations. Black-Right-Pointing-Pointer The presented results have a strong correlation with experiments. - Abstract: Laser induced periodic surface structures (LIPSS) are formed by multiple irradiation of femtosecond laser on a silicon target. In this paper, we focus and discuss the surface plasmon polariton mechanism by an analysis of transient phase-matching conditions in Si on the basis of a single pulse experiment and numerical simulations. Two regimes of ripple formation mechanisms at low number of shots are identified and detailed. Correlation of numerical and experimental results is good.

  4. Effects of cutting parameters and machining environments on surface roughness in hard turning using design of experiment

    Science.gov (United States)

    Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan

    2016-07-01

    Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.

  5. Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices.

    Science.gov (United States)

    Triandafillu, K; Balazs, D J; Aronsson, B-O; Descouts, P; Tu Quoc, P; van Delden, C; Mathieu, H J; Harms, H

    2003-04-01

    Pseudomonas aeruginosa pneumonia is a life threatening complication in mechanically ventilated patients that requires the ability of the bacteria to adhere to, and colonize the endotracheal intubation device. New strategies to prevent or reduce these nosocomial infections are greatly needed. We report here the study of a set of P. aeruginosa clinical isolates, together with specific mutants, regarding their adhesion on native and chemically modified poly(vinyl chloride) (PVC) surfaces from endotracheal intubation devices. The adhesion of the different strains to untreated PVC varied widely, correlating with several physico-chemical characteristics known to influence the attachment of bacteria to inert surfaces. The adhesion patterns were compared to the calculations obtained with the DLVO theory of colloidal stability. These results illustrate the importance of testing different clinical isolates when investigating bacterial adhesion. Oxygen plasma treatment of the PVC pieces yielded a hydrophilic surface and reduced the number of adhering bacteria by as much as 70%. This reduction is however unlikely to be sufficient to prevent P. aeruginosa colonization of endotracheal intubation devices.

  6. Droplet evaporation from porous surfaces; model validation from field and wind tunnel experiments for sand and concrete

    Science.gov (United States)

    Griffiths, R. F.; Roberts, I. D.

    The evaporation model of Roberts and Griffiths (1995 Atmospheric Environment 29, 1307-1317) has been subjected to an extensive validation exercise based on a major campaign of field experiments on evaporation from surfaces composed of sand and of concrete. This complements the previous validation which was limited to wind tunnel experiments on sand surfaces. Additionally, the validation using wind tunnel data has been extended to include concrete surfaces. The model describes the constant-rate and falling-rate periods that characterise evaporation from porous media. During the constant-rate period, the evaporation is solely determined by the vapour transport rate into the air. During the falling-rate period, the process in the porous medium is modelled as a receding evaporation front, the overall evaporation rate being determined by the combined effects of vapour transport through the pore network and subsequently into the air. The field trials programme was conducted at sites in the USA and the UK, and examined the evaporation of diethyl malonate droplets from sand and concrete surfaces. Vapour concentrations at several heights in the plume were measured at the centre of a 1 m radius annular source (of width 10 cm) contaminated by uniformly sized droplets (2.4 or 4.1 mm in diameter), key meteorological data being measured at the same time. The evaporation was quantified by coupling concentration and wind speed data. In all, 22 trials were performed on sand and concrete; a further 8 were performed on non-porous surfaces (aluminium foil and slate) as references. The model performance was evaluated against the experimental data in terms of two quantities, the initial evaporation rate of the embedded droplets, and the mass-fraction remaining in the substrate at intervals over the evaporation episode. Overall, the model performance was best in the case of the field experiments for concrete, and the wind tunnel experiments for sand; the performance for wind tunnel

  7. VIS-NIR Imaging Spectroscopy of Mercury's Surface: SIMBIO-SYS/VIHI Experiment Onboard the BepiColombo

    Science.gov (United States)

    Capaccioni, Fabrizio; de Sanctis, Maria Cristina; Filacchione, Gianrico; Piccioni, Giuseppe; Ammannito, Eleonora; Tommasi, Leonardo; Ficai Veltroni, Iacopo; Cosi, Massimo; Debei, Stefano; Calamai, Luciano; Flamini, Enrico

    2010-07-01

    The Visible and Infrared Hyperspectral Imager (VIHI) is one of the three optical heads of the Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem (SIMBIO-SYS) experiment onboard European Space Agency's BepiColombo cornerstone mission to Mercury. The other two optical heads of SIMBIO-SYS are a stereo camera and a high-resolution image camera. The experiment is designed to scan the Hermean surface from a polar orbit with the three channels to map the physical, morphological, tectonic, and compositional properties of the planet. The main scientific objectives of SIMBIO-SYS are the study of Mercury's surface geology and stratigraphy, the surface composition, the regolith properties, the crustal differentiation, impact, and volcanic processes. The VIHI experiment uses a high-performance optical layout (Schmidt telescope and spectrometer in Littrow configuration) which allows investigating the 400-2000 nm spectral range with 256 spectral channels (6.25 nm/band sampling). The instrument has an instrument field of view (FOV) of 250 microrad corresponding to a spatial scale of about 100 m/pixel at periherm and 375 m at apoherm. The instrument operates in pushbroom configuration, sampling the surface of Mercury with an FOV of 64 x 0.25 mrad. The main technical challenges of this experiment are focal-plane design (cadmium-mercury-telluride thinned to improve the efficiency at visible wavelengths), short dwell time (from about 40 ms at equator to about 100 ms at poles), thermal control, mechanical miniaturization, radiation hardening, high data rate, and compression. A description of the internal calibration unit concept and functionalities is given.

  8. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    Science.gov (United States)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  9. Calculating time-resolved differential absorbance spectra for ultrafast pump-probe experiments with surface hopping trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Andrew S.; Subotnik, Joseph E. [Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2014-10-21

    We report a surface hopping approach for modeling the full time- and frequency-resolved differential absorbance spectra (beyond the inhomogenous limit) obtained in ultrafast pump-probe experiments. In our approach, we combine dynamical information obtained from ensembles of classical trajectories propagated on the ground and on the excited potential energy surfaces to directly calculate optical response functions and hence spectral lineshapes. We demonstrate that our method is exact for the model problem of two shifted harmonic potentials with identical harmonic frequencies in the absence of electronic relaxation. We then consider a model three state system with electronic relaxation and show that our method is able to capture the effects of nonadiabatic excited state dynamics on the time-dependent differential absorbance spectra. Furthermore, by comparing our spectra against those spectra calculated with either an (1) inhomogenous expression, (2) ground-state Kubo theory, or (3) excited-state Kubo theory, we show that including dynamical information from both the ground and excited potential energy surfaces significantly improves the reliability of the semiclassical approximations. As such, our surface hopping method should find immediate use in modeling the time-dependent differential abosrbance spectra of ultrafast pump-probe experiments.

  10. Mechanistic controls of surface warming by ocean heat and carbon uptake: Experiments using idealised ocean models with and without overturning

    Science.gov (United States)

    Katavouta, Anna; Williams, Richard; Goodwin, Philip

    2017-04-01

    Transient climate response to emissions (TCRE) is an empirically derived index that relates global surface warming to cumulative carbon emissions in Earth system models. TCRE is nearly constant (i.e. surface warming is proportional to carbon emissions), and independent of the emissions pathway and model complexity, for reasons that are not yet fully understood. In our view, this proportionality is driven by ocean ventilation. To explore the link between TCRE and ocean heat and carbon uptake, we use an idealised 1-D atmosphere-ocean model with three layers (i.e., atmosphere, ocean mixed layer, interior ocean) with or without circulation. The model is forced using idealised carbon emission scenarios and drives the temperature and carbon concentration for each layer. The experiments reveal that an increase in carbon emissions eventually leads to ocean declining heat uptake, which causes the dependence of surface warming on radiative forcing from anthropogenic carbon to increase with time. In contrast, an increase in carbon emissions amplifies the ocean carbon uptake which acts to decrease the dependence of radiative forcing on carbon emissions. These two partially compensating effects lead to the nearly linear dependence between surface temperature and cumulative carbon emissions. The linear dependence holds in experiments with and without circulation. However, the TCRE value depends on the circulation and associated ventilation of heat and carbon. Hence, differences in circulation patterns amongst climate models may be responsible for the spread in their response.

  11. Wind tunnel experiment of drag of isolated tree models in surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer of this kind of surface. A simple pendulum method was designed and carried out in wind tunnel to measure drag of isolated tree models according to balance law of moment of force. The method was easy to conduct and with small error. The results showed that the drag and drag coefficient of isolated tree increased with decreasing of its permeability or porosity. Relationship between drag coefficient and permeability of isolated tree empirically was expressed by quadric curve.

  12. Water accommodation on ice and organic surfaces: insights from environmental molecular beam experiments.

    Science.gov (United States)

    Kong, Xiangrui; Thomson, Erik S; Papagiannakopoulos, Panos; Johansson, Sofia M; Pettersson, Jan B C

    2014-11-26

    Water uptake on aerosol and cloud particles in the atmosphere modifies their chemistry and microphysics with important implications for climate on Earth. Here, we apply an environmental molecular beam (EMB) method to characterize water accommodation on ice and organic surfaces. The adsorption of surface-active compounds including short-chain alcohols, nitric acid, and acetic acid significantly affects accommodation of D2O on ice. n-Hexanol and n-butanol adlayers reduce water uptake by facilitating rapid desorption and function as inefficient barriers for accommodation as well as desorption of water, while the effect of adsorbed methanol is small. Water accommodation is close to unity on nitric-acid- and acetic-acid-covered ice, and accommodation is significantly more efficient than that on the bare ice surface. Water uptake is inefficient on solid alcohols and acetic acid but strongly enhanced on liquid phases including a quasi-liquid layer on solid n-butanol. The EMB method provides unique information on accommodation and rapid kinetics on volatile surfaces, and these studies suggest that adsorbed organic and acidic compounds need to be taken into account when describing water at environmental interfaces.

  13. A Simple Experiment to Show Photodynamic Inactivation of Bacteria on Surfaces

    Science.gov (United States)

    Caminos, Daniel A.; Durantini, Edgardo N.

    2007-01-01

    New suitable approaches were investigated to visualize the photodynamic inactivation (PDI) of bacteria immobilized on agar surfaces. The PDI capacities of a cationic photosensitizer (5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl)porphyrin) and an anionic photosensitizer (5,10,15,20-tetra(4-sulfonatophenyl)porphyrin) were analyzed on a typical…

  14. Phased array antenna integrated with a frequency selective surface: Theory and experiments

    NARCIS (Netherlands)

    Monni, S.; Llombart Juan, N.; Neto, A.; Gerini, G.

    2003-01-01

    A modeling tool is described to characterize the array antennas integrated with frequency selective surfaces by means of a multimode equivalent network approach applied to infinite periodic structures. The theoretical formulation of the problem is presented in this paper together with the numerical

  15. Hysteresis in Fe particles with surface and magnetoelastic anisotropies: Experiment and micromagnetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, F. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid (Spain)], E-mail: fgarcias@icmm.csic.es; Chubykalo-Fesenko, O.A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid (Spain)], E-mail: oksana@icmm.csic.es; Martinez, A. [Instituto de Magnetismo Aplicado. P.O. Box 155, 28230 Las Rozas, Madrid (Spain)], E-mail: alvamartinez@adif.es; Gonzalez, J.M. [Unidad Asociada ICMM-IMA. c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain and P.O. Box 155, 28230 Las Rozas, Madrid (Spain)], E-mail: jesus.m.gonzalez@icmm.csic.es

    2008-02-01

    We report on the correlation between the experimentally obtained saturation coercive force of highly elongated Fe nanoribbons and the results of micromagnetic simulations. To describe various realistic situations in our micromagnetic model of the ribbons we incorporated, in addition to a biaxial magnetocrystalline anisotropy, surface magnetocrysalline and magnetoelastic anisotropies and crystalline orientation distributions.

  16. Experiment about Drag Reduction of Bionic Non-smooth Surface in Low Speed Wind Tunnel

    Institute of Scientific and Technical Information of China (English)

    Tian Li-mei; Ren Lu-quan; Han Zhi-wu; Zhang Shi-cun

    2005-01-01

    The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship be tween drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of 1 mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13 % to 22.30%.

  17. Combining Theory and Experiment to Characterize the Atomic Structures of Surface-Deposited Au309 Clusters

    NARCIS (Netherlands)

    Curley, B.C.; Johnston, R.L.; Young, N.P.; Li, Z.; Di Vece, M.; Palmer, R.E.; Bleloch, A.l.

    2007-01-01

    Gold clusters with icosahedral, decahedral, and cuboctahedral shell structures, have been studied using the Gupta many-body potential, to aid in the structural characterization of surface-deposited Au309 clusters using high-angle annular dark field-scanning transmission electron microscopy (HAADF-ST

  18. Thickness and waviness of surface coatings formed by overlap : Modelling and experiment

    NARCIS (Netherlands)

    Ocelík, V.; Nenadl, O.; Hemmati, I.; De Hosson, J.T.M.

    2013-01-01

    Several surface engineering techniques are known that form a hard facing coating on an inexpensive substrate by a successive overlap of individual cladding tracks. Typical examples include laser cladding and laser additive manufacturing. Realistic predicting the final thickness and waviness of the c

  19. Laser ablation of metals: Analysis of surface-heating and plume-expansion experiments

    Science.gov (United States)

    Mele, A.; Giardini Guidoni, A.; Kelly, R.; Flamini, C.; Orlando, S.

    1997-02-01

    The thermal effects produced by laser pulses (6 or 18 ns) absorbed by a solid target have been investigated experimentally and theoretically. The energy which is absorbed serves to raise the temperature of the surface. The regimes to be considered are described by the heat-diffusion equation under conditions of what we term `normal vaporization'. Numerical solutions of the heat-diffusion equation lead to the temperature profiles produced within the target. The aim of this work is to present the results on heat flow in terms of the surface temperature and the velocity at which the surface recedes. Experimental data on the recession velocity and of the crater depth in relation to the thermophysical parameters of the metals Al, Cu, Nb, W, and Zn, are reported. The effect of the surface heating has also been examined in terms of the velocities of the plumes emitted from the targets. It is concluded that vaporization from the laser-heated targets is not the only relevant process but that one or both of laser-plume interaction and phase explosion may play a role in determining particle energies.

  20. Application of a grating coupler for surface plasmon polariton excitation in a photoemission electron microscopy experiment

    DEFF Research Database (Denmark)

    Leißner, Till; Jauernik, Stephan; Lemke, Christoph

    Surface plasmon polariton (SPP) excitation at a gold-vacuum interface via 800 nm light pulses mediated by a periodic array of gold ridges is probed at high lateral resolution by means of photoemission electron microscopy (PEEM). We directly monitor and quantify the coupling properties as a function...

  1. Observations and Modelling of Winds and Waves During the Surface Wave Dynamics Experiment

    Science.gov (United States)

    1994-03-01

    l’Environnement Terrestre et Planitalre (CRPE), France; Dr. Will M. Drennan, National Water Research Institute, CCIW; Dr. Lynn "Nick" K. Shay, RSMAS; Dr...250 m), and the orbital velocities of the low-frequency surface wave components. A summary of the results from SWADE are described in Shay (1993). 18

  2. Thickness and waviness of surface coatings formed by overlap : Modelling and experiment

    NARCIS (Netherlands)

    Ocelík, V.; Nenadl, O.; Hemmati, I.; De Hosson, J.T.M.

    2013-01-01

    Several surface engineering techniques are known that form a hard facing coating on an inexpensive substrate by a successive overlap of individual cladding tracks. Typical examples include laser cladding and laser additive manufacturing. Realistic predicting the final thickness and waviness of the

  3. Prevalence, risk surfaces and inter-municipality variations in caries experience in Danish children and adolescents in 2012

    DEFF Research Database (Denmark)

    Nørrisgaard, Pia Elisabeth; Qvist, Vibeke; Ekstrand, Kim

    2016-01-01

    -municipality variation in caries experience. Materials and methods Data was collected in the public Child Dental Health Service. In total, 5636 caries registrations on 3-, 9-, 15- and 18-year-olds were collected in 35 of the 98 Danish municipalities. Caries experience was expressed by mean def-s/DMF-S and caries......Objective The aim of this study was to describe the caries experience, prevalence and distribution related to tooth type and surfaces in the primary and permanent dentition in children and adolescents in Denmark in 2012. In addition, to examine if explanatory factors influence the inter...... prevalence by def-s = 0/DMF-S = 0. Inter-municipality variations were illustrated. Multivariate regression analyses were applied to assess the influence of fluoride concentration in drinking water, proportion of immigrants and personal income on the inter-municipality variation in mean def-s/DMF-S. Results...

  4. Microbial analyses of groundwater and surfaces during the retrieval of experiment 3, A04, in MINICAN

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Edlund, Johanna; Eriksson, Lena [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2011-12-15

    The MINICAN project is located at the depth of 450 m in the Aespoe Hard Rock Laboratory (HRL) research tunnel. The aim of the project was to study corrosion of the cast iron inserts if a hole is introduced in the outer copper-canister. The experimental part of MINICAN started in 2007 and consists of five different experiment canisters (Table 1.1), denoted experiment A02-A06. Four of the MINICAN test copper canisters are surrounded by bentonite in a support steel cage, of which the bentonite in experiment A05 is fully compacted according to the KBS-3 approach (dry density 1,600 kg m{sup -3}) and experiments A02-A04 are compacted with bentonite to a lower density than will be used (dry density 1,300 kg m{sup -3}). Experiment A06 has no bentonite. In all the MINICAN copper canisters, holes with a diameter of 1 mm have been drilled to allow Aspo groundwater to come in contact with the interior cast iron inserts. This is done to mimic real accidental leakage during the KBS-3 type of long-time spent nuclear fuel storage. The project has been described in 1068871- Project Plan MINICAN, in AP TD F77.3-05-001, AP TD F77.3.08-44 and in AP TD F77.3.

  5. Synthesis of sub-10 nm VO2 nanoparticles films with plasma-treated glass slides by aqueous sol-gel method

    Science.gov (United States)

    Lan, Shi-Di; Cheng, Chih-Chia; Huang, Chi-Hsien; Chen, Jem-Kun

    2015-12-01

    This paper describes an aqueous sol-gel synthesis of thermochromic thin films consisted of vanadium dioxide nanoparticles (VNPs) on glass slides. The glass slides were treated by argon/oxygen plasma to generate dispersedly negative charge sites on the surface to attract VO2+ from a sol-gel solution. After heat treatment in a low-pressure carbon monoxide/carbon dioxide (CO/CO2) atmosphere, the VNPs could be generated in sub-10 nm of particle size on the surface. Various levels of doping were achieved by adding small quantities of a water-soluble tungsten compound to the sol; however, the particle size increased slightly with the tungsten doping levels. The change in electrical conductivity with temperature for VNP films were measured and compared to VO2 crystalline films. VNP films exhibited the lower transition temperature of the semiconductor to metal phase change; at a doping level of 4 wt% the transition temperature was measured at 32.2 ± 1.2 and 24.1 ± 1.2 °C for the VO2 and VNP films, respectively. The VNP films showed excellent visible transparency and a large change in transmittance at near-infrared (NIR) wavelengths before and after the metal-insulator phase transition (MIT). The current method is a landmark in the development of nanostructured material toward applications in energy-saving smart windows.

  6. Equilibrium liquid free-surface configurations: Mathematical theory and space experiments

    Science.gov (United States)

    Concus, P.; Finn, R.

    1996-01-01

    Small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. We describe some of our mathematical results that predict such behavior and that form the basis for physical experiments in space. The results include cases of discontinuous dependence on data and symmetry-breaking type of behavior.

  7. Fermi surface traversal resonance in metals: two theories and an experiment

    Science.gov (United States)

    Ardavan, Arzhang; Schrama, J. M.; Blundell, S. J.; Singleton, J.; Semeno, A.; Goy, Philippe; Kurmoo, M.; Day, P.

    1999-09-01

    Fermi-surface traversal resonance (FTR) is caused by the periodic motion of carriers in a magnetic field across open sections of Fermi surface (FS). Owing to the warping of the FS, the real space velocities of the carries oscillate, generating resonances in the high frequency conductivity which may be described by a semiclassical model. A rectangular resonance cavity, oscillating at 70 GHz, which can rotate in the external magnetic field, has been used to confirm the existence of the effect in the organic metal (alpha) -(BEDT-TTF)2KHg(SCN)4. The data contain a great deal of information about the FS, including the direction and anharmonicity of warping components. A quantum mechanical model is presented which predicts all of the features of FTR appearing in the semiclassical model. This confirms that FTR is a fundamental property of low- dimensional systems, existing under a very wide range of conditions.

  8. Photoemission from Low Work Function Coated Metal Surfaces A Comparison of Theory to Experiment

    CERN Document Server

    Jensen, Kevin; Moody, Nathan A

    2005-01-01

    The development of rugged and/or self rejuvenating photocathodes with high quantum efficiency (QE) using the longest wavelength drive laser is of paramount importance for RF photo-injectors for high power FELs and accelerators. We report on our program to develop advanced photocathodes and to develop and validate models of photoemission from coated metals to analyze experimental data,* provide emission models usable by beam simulation codes,** and project performance. The model accounts for the effects of laser heating, thermal evolution, surface conditions, laser parameters, and material characteristics, and predicts current distribution and QE. The photoemission and QE from metals and dispenser photocathodes is evaluated: the later introduces complications such as coverage non-uniformity and field enhancement. The performance of the models is compared to our experimental results for dispenser photocathodes and cesiated surfaces (e.g., tungsten, silver, etc.) in which the time-dependent models are shown to a...

  9. Effect of glutamic acid on copper sorption onto kaolinite. Batch experiments and surface complexation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, Lotfallah; Barthen, Robert; Gruendig, Marion; Franke, Karsten; Lippmann-Pipke, Johanna [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactive Transport; Stockmann, Madlen [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    In this work, we study the mobility behavior of Cu(II) under conditions related to an alternative, neutrophile biohydrometallurgical Cu(II) leaching approach. Sorption of copper onto kaolinite influenced by glutamic acid (Glu) was investigated in the presence of 0.01 M NaClO{sub 4} by means of binary and ternary batch adsorption measurements over a pH range of 4 to 9 and surface complexation modeling.

  10. Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments

    Science.gov (United States)

    2017-01-19

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/7160--17-9702 Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e

  11. Surface scattering and giant magnetoresistance: In-situ resistance and magnetoresistance experiments

    Science.gov (United States)

    Bailey, William Evans

    Surface scattering, particularly the enhancement of "specular" scattering, is widely believed to hold the key to yet-unattained levels of spin-valve GMR. We have developed a novel technique to measure surface scattering, the in-situ magnetoconductance measurement. By measuring resistance and GMR in real time during deposition, in ultrahigh vacuum, and in the Van der Pauw configuration, we may determine the effect on scattering of various overlayers as they are created. We have applied this technique to study claims that the specularity may be modified through deposition of metal overlayers. In conjunction with first-principles based calculations of film conductance and detailed characterization of thickness-dependent film microstructure, we have determined that the surface specularity is not modified during overlayer deposition. Effects previously attributed to specularity modulations are well interpreted through scattering mechanisms intrinsic to the system. We have also examined the dependence of GMR on bulk microstructure, as characterized ex-situ. We find that crystallographic disorder tends to decrease spin-valve GMR. This is shown experimentally through depositions of several series of samples, characterization of the relevant defects, and correlation to magnetotransport measurements. We have formed the films by sputtering and UHV ion beam deposition. Experimental techniques used to characterize microstructure are high-resolution cross-sectional transmission electron microscopy (HR-xTEM), x-ray diffraction (XRD), 59Co nuclear magnetic resonance (NMR), contributed by Ewa Jedryka at the Polish Institute of Physics in Warsaw.

  12. Electrochemical behavior of a typical redox mediator on a modified electrode surface: Experiment and computer simulations

    Science.gov (United States)

    Gavilán Arriazu, E. M.; Paz Zanini, Verónica I.; Gulotta, Florencia A.; Araujo, Virginia M.; Pinto, O. A.

    2017-04-01

    This paper describes the study of a redox species electrosorption on a modified electrode by experimental measurements and computer simulation. The propose model is based on the fact that charges are transferred to the electrode when an electroactive species is adsorbed on its surface. The electrode surface is modified by the irreversible adsorption of a non-electroactive species, which blocks a percentage of the adsorption sites. Hence, the electroactive species can only be adsorbed on the surface vacancies, and, when this phenomenon occurs, interact laterally with the non-electroactive one. Lattice-gas models and Monte Carlo simulations in the Gran Canonical Ensemble are used. The analysis conducted is based on the study of adsorption isotherms and voltammograms, for several values of energies and adsorption degrees of the non-electroactive species. In the case of experimental measurements, an artificial clay (Laponite®) represents the non-electroactive species while the redox probe Fe(CN)64- is the electroactive one. The results obtained by the proposed model are compared with experimental voltammograms.

  13. The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform

    Science.gov (United States)

    Overeem, I.; Hutton, E.; Kettner, A.; Peckham, S. D.; Syvitski, J. P.

    2012-12-01

    The Community Surface Dynamics Modeling System - CSDMS- develops a software platform with shared and coupled modules for modeling earth surface processes as a community resource. The framework allows prediction of water, sediment and nutrient transport through the landscape and seacape. The underlying paradigm is that the Earth surface we live on is a dynamic system; topography changes with seasons, with landslides and earthquakes, with erosion and deposition. The Earth Surface changes due to storms and floods, and important boundaries, like the coast, are ever-moving features. CSDMS sets out to make better predictions of these changes. Earth surface process modeling bridges the terrestrial, coastal and marine domains and requires understanding of the system over a range of time scales, which inherently needs interdisciplinarity. Members of CSDMS (~830 in July 2012) are largely from academic institutions (˜75%), followed by federal agencies (˜17%), and oil and gas companies (˜5%). Members and governmental bodies meet once annually and rely additionally on web-based information for communication. As an organization that relies on volunteer participation, CSDMS faces challenges to scientific collaboration. Encouraging volunteerism among its members to provide and adapt metadata and model code to be sufficiently standardized for coupling is crucial to building an integrated community modeling system. We here present CSDMS strategies aimed at providing the appropriate technical tools and cyberinfrastructure to support a variety of user types, ranging from advanced to novice modelers. Application of these advances in science is key, both into the educational realm and for managers and decision-makers. We discuss some of the implemented ideas to further organizational transparency and user engagement in small-scale governance, such as advanced trackers and voting systems for model development prioritization through the CSDMS wiki. We analyzed data on community

  14. Contaminations of inner surface of magnesium fluoride windows in the `Expose-R' experiment on the International Space Station

    Science.gov (United States)

    Skurat, V. E.

    2017-10-01

    A series of experiments was carried out previously on board of the International Space Station in `EXPOSE-R', a multi-user expose facility, provided by European Space Agency attached to the external surface of the Russian Segment. In one experiment, spores of microorganisms and species of higher plant seeds, in heat-sealed polymer bags were irradiated by solar radiation passed through MgF2 windows in a high space vacuum. After sample exposure, it was found that in many cases the inner surfaces of windows were contaminated. Analysis of the contamination revealed the presence of chemical groups CH2, CH3, NH, OH, C═O, Si-CH3 (Demets et al. in 2015). Their presence in deposits was explained by photofixation of gaseous precursors - some of the vapours of glues and additives in polymeric materials in the core facility of `Expose-R'. Carbon-, oxygen- and silicon-containing groups may be deposited from outer intrinsic atmosphere. This atmosphere is connected with sample compartments and core facility. However, the presence of NH groups on inner surfaces of windows was not expected. This paper shows that the process responsible for carbon-, nitrogen- and oxygen-containing group formation can be a photopolymerization of caprolactam, which is released from the outer Nylon 6 layer of polymer bags under Solar vacuum ultraviolet radiation.

  15. Oscillatory thermocapillary convection in liquid bridges with highly deformed free surfaces: Experiments and energy-stability analysis

    Science.gov (United States)

    Sumner, L. B. S.; Neitzel, G. P.; Fontaine, J.-P.; Dell'Aversana, P.

    2001-01-01

    Laboratory experimentation, numerical simulation, and energy-stability theory are used to examine the effect of interface deformation on the onset of oscillatory thermocapillary convection in half zones. Experiments are performed to map the stability boundaries marking the onset of oscillatory flow, modifying the free-surface deformation by adjusting the volume of liquid in the bridge. The stability results presented here along with those of other researchers [Monti et al., Proceedings of the 43rd Cong. Int. Artro. Fed. (1992); Hu et al., J. Cryst. Growth 142, 379 (1994)] show that free-surface curvature can have a pronounced influence on flow stability. Steady, axisymmetric flow simulations are computed using the commercial code FIDAP to model the conditions of the experiments, and reveal that flow structure near the stability boundary is sensitive to several parameters. Energy theory is applied to these simulations to determine sufficient conditions for stability. Comparisons between the theoretical and experimental results show nonconservative energy limits falling above the experimentally determined stability boundaries for bridges of various liquid volumes. While the trend of the experimental data is predicted for zones of large volume ratio (bulging zones), the same cannot be said for those with small volume ratio (necked-down zones). In addition, energy-stability limits for some undeformed-free-surface cases were determined which are above the linear-stability limits determined by other researchers, in clear contradiction of the roles of the respective theories.

  16. Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility.

    Science.gov (United States)

    Ren, T B; Weigel, Th; Groth, Th; Lendlein, A

    2008-07-01

    The microwave plasma surface modification of silicone elastomer with allylamine was studied to improve the biocompatibility of the material. An effort was made to clarify the relationships among plasma conditions and surface chemical composition, physical surface properties and biocompatibility of material, as well as the stability of plasma deposited layers. ATR-IR, XPS, Ellipsometry measurements, and contact angle measurements were used to investigate the changes of surface. The stability of plasma-treated silicone surfaces were also studied. The results demonstrated that the temperature and pressure had a strong influence on the chemical composition and structure of surface-deposited layer. The layer was nearly completely crosslinking when the modification was carried out at 60 degrees C. The polymerization speed decreased linearly with temperature. The XPS analysis results showed that the nitrogen element content in the surface layer was very high, especially under low pressure. The nitrogen/carbon ratio in the layer even greatly surpassed that of the allylamine monomer. The wettability of the silicone surface was greatly improved after plasma modification, and increased with the quantities of amine groups. The plasma-treated surfaces have good storage stability in air up to 3 months. The wettability of the surfaces decreased incipiently and then it dramatically increased with further time. The human skin fibroblasts were used to evaluate biocompatibility of plasma-treated silicone elastomer. The surface biocompatibility was greatly improved after modification; human skin fibroblasts adhered quickly and grew well on the modified silicone surface.

  17. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus;

    2011-01-01

    The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite...... was studied in 11 different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, CO32- and HCO3-. Our results show strong sorption of phosphate onto calcite. The kinetics of phosphate sorption onto calcite are fast; adsorption is complete within 2–3h while desorption...... of a high degree of super-saturation with respect to hydroxyapatite (SIHAP⩽7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the CO32- activity decreases (at constant pH) and as pH increases (at constant CO32- activity). The primary effect...

  18. Continuing Experiments on the Receptivity of Transient Disturbances to Surface Roughness and Freestream Turbulence

    Science.gov (United States)

    2008-09-28

    Bruun, H. H. (1995). Hot - Wire Anemometry Principles and Signal Analysis. Oxford University Press. Butler, K. and B. Farrell (1992). Three-dimensional... anemometry . Data resulting from an independent direct numerical simulation (DNS) of the experiment is also used as inputs to the biorthogonal...measurements are obtained using straight- wire probes and are decomposed into a spanwise-invariant basic state, a stationary disturbance and an unsteady

  19. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    OpenAIRE

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the ...

  20. Replication of surface micro-structures in isothermal moulding: Experiments and Numerical Simulations

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Rasmussen, Henrik Koblitz

    2005-01-01

    The forming of well-defined micro surface structures on polymer materials is important for the production of devices for biology and optics and well established in commercial polymer-processing operations. This is the case in for example the production of DVD discs used for high-density data...... storage and micro fluidic systems respectively. These devices are typically processed using injection moulding or hot embossing. In this work, we focus on isothermal moulding. This allows an investigation of the effect of the rheological properties of the polymer melt during processing on the ability...

  1. SU-E-J-139: One Institution’s Experience with Surface Imaging in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L; Singh, H; Zheng, Y [ProCure Proton Therapy Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: X-ray system is commonly used for IGRT in proton therapy, however image acquisition not only increases treatment time but also adds imaging dose. We studied a 3D surface camera system (AlignRT) performance for proton therapy. Methods: System accuracy was evaluated with rigid phantom under two different camera location configurations. For initial clinical applications, post mastectomy chest wall and partial breast treatments were studied. X-ray alignment was used as our ground truth. Our studies included: 1) comparison of daily patient setup shifts between X-ray alignment and SI calculation; 2) interfractional breast surface position variation when aligning to bony landmark on X-ray; 3) absolute positioning using planning CT DICOM data; 4) shifts for multi-isocenter treatment plan; 5) couch isocentric rotation accuracy. Results: Camera locations affected the system performance. After camera relocation, the accuracy of the system for the rigid phantom was within 1 mm (fixed couch), and 1.5 mm (isocentric rotation). For intrafractional patient positioning, X-ray and AlignRT shifts were highly correlated (r=0.99), with the largest difference (mean ± SD) in the longitudinal direction (2.14 ± 1.02 mm). For interfractional breast surface variation and absolute positioning, there were still larger disagreements between the two modalities due to different focus on anatomical landmarks, and 95% of the data lie within 5mm with some outliers at 7 mm–9 mm. For multi-isocenter shifts, the difference was 1 ± 0.56 mm over an 11 cm shift in longitudinal direction. For couch rotation study, the differences was 1.36 ± 1.0 mm in vertical direction, 3.04 ± 2.11 mm in longitudinal direction, and 2.10 ± 1.66 mm in lateral direction, with all rotation differences < 1.5 degree. Conclusion: Surface imaging is promising for intrafractional treatment application in proton therapy to reduce X-ray frequency. However the interfractional discrepancy between the X-ray and SI

  2. Simulated evaluation of an intraoperative surface modeling method for catheter ablation by a real phantom simulation experiment

    Science.gov (United States)

    Sun, Deyu; Rettmann, Maryam E.; Packer, Douglas; Robb, Richard A.; Holmes, David R.

    2015-03-01

    In this work, we propose a phantom experiment method to quantitatively evaluate an intraoperative left-atrial modeling update method. In prior work, we proposed an update procedure which updates the preoperative surface model with information from real-time tracked 2D ultrasound. Prior studies did not evaluate the reconstruction using an anthropomorphic phantom. In this approach, a silicone heart phantom (based on a high resolution human atrial surface model reconstructed from CT images) was made as simulated atriums. A surface model of the left atrium of the phantom was deformed by a morphological operation - simulating the shape difference caused by organ deformation between pre-operative scanning and intra-operative guidance. During the simulated procedure, a tracked ultrasound catheter was inserted into right atrial phantom - scanning the left atrial phantom in a manner mimicking the cardiac ablation procedure. By merging the preoperative model and the intraoperative ultrasound images, an intraoperative left atrial model was reconstructed. According to results, the reconstruction error of the modeling method is smaller than the initial geometric difference caused by organ deformation. As the area of the left atrial phantom scanned by ultrasound increases, the reconstruction error of the intraoperative surface model decreases. The study validated the efficacy of the modeling method.

  3. Controlling sulfidic tailings oxidation with surface application of crude glycerol : column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Behrooz, M.; Borden, R.C. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Civil, Construction and Environmental Engineering

    2010-07-01

    In this study, crude glycerol was used to control acid mine drainage (AMD) production in sulfidic tailings samples obtained from the Ore Knob tailings pile in Ash County, North Carolina (NC). AMD is produced when mining activities expose sulfidic materials to a moist, oxidative environment. The tailings release high sulfate heavy metal-laden effluents into the New River basin. Four experimental columns were installed in the field for a 15-month period. The glycerol was applied to the surface of unweathered sulfidic tailings. The columns were left exposed to the atmosphere at the surface and buried within the existing tailings pile to simulate naturally occurring variations in temperature and rainfall. Platinum redox electrodes and porous cup lysimeters were installed to monitor redox and geochemical conditions within the unsaturated tailings. Water samples were collected throughout the experimental period and monitored for dissolved oxygen (DO), hydrogen sulfide (H{sub 2}S), and pH. Major cations and metals were analyzed using inductively coupled plasma spectroscopy. Results of the pilot tests demonstrated that the glycerol additions resulted in large and statistically significant decreases in Fe, sulfate (SO{sub 4}), and hot acidity. Changes in sodium (Na) and potassium (K) were limited. The glycerol additions reduced the rate of AMD production and treated the AMD after it was formed through H{sub 2}S production. Results of the study will be used to create a geochemical model for characterizing AMD production in the vadose zone of the tailing pile. 10 refs., 1 tab., 2 figs.

  4. Experiments for improving fabrication, recovery and surface-protection of Cs3Sb photocathode

    Science.gov (United States)

    Kimoto, Takayoshi; Arai, Yoshihiro; Nagayama, Kuniak

    2017-01-01

    We examined 1) the photocurrent from Cs3Sb photocathode as a function of anode voltage below 200 V, 2) the relationship between the quantum efficiency of photoemission and the conditions for fabrication by the sandwich method, 3) recovery of the photoemission by additional Cs deposition, and 4) the effects of surface protection of Cs3Sb photocathodes by WO3 and Cr2O3 films in the passive state. The photocurrent had a maximum at approximately 68 V except when we increased the anode voltage extraordinarily slowly. Cs3Sb photocathodes were fabricated by increasing the temperature of sandwiched layers of Sb, Cs and Sb deposited on the fine tips of eight cathodes at less than -12 °C. Cs3Sb photocathodes having higher quantum efficiency were fabricated by smoothly increasing the temperature of the layers quickly after we deposited the second Sb layer. The photocurrent from the Cs3Sb photocathodes was significantly higher when Cs was deposited at temperatures of 50-70 °C. Deposition of a one- to three- atomic-layer W or Cr film extended the photoemission lifetime after the layers were oxidized to WO3 or Cr2O3 in the passive state due to oxidation. The WO3 or Cr2O3 in the passive state provided more surface protection as their thickness increased.

  5. 溶液表面吸附实验拓展%Extension of surface adsorption experiment for butanol aqueous solution

    Institute of Scientific and Technical Information of China (English)

    李田; 杨玲; 徐金荣; 吴忠云; 朱涛

    2016-01-01

    ‘Determination of surface adsorption for n-butanol aqueous solution’is a classical experiment in physical chemistry laboratory.This paper expands the solution system from n-butanol to three isomers including n-butanol,i-butanol and t-butanol.Their surface tension at different concentrations is determined.The occupied area of each molecule is acquired and consistent with the theoretical modeling by chem3D Ultra.The result demonstrates that the surface adsorption experiment can characterize the molecule structure size in nano-scale accurately,and this teaching design can help students understand the experiment more deeply.%对经典的物理化学实验“溶液表面吸附的测定”进行了拓展,将体系由单一的正丁醇溶液扩展成正丁醇、异丁醇和叔丁醇一系列同分异构体。分别测定了3种醇溶液在不同浓度下的表面张力,拟合实验数据进而计算得到了单分子的占有面积,并与 chem3D软件的理论模拟进行了比较。结果表明,实验求得吸附量和单分子占有面积的同时,可以有效地区分分子纳米尺度的结构差异。实验有助于增强学生对微观的具象认识,并对表面吸附实验有更加深刻全面的理解。

  6. How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?

    Science.gov (United States)

    Suhir, E.; Yi, S.; Ghaffarian, R.

    2017-03-01

    It has been established that it is the peripheral solder joints that are the most vulnerable in the ball-grid-array (BGA) and column-grid-array (CGA) designs and most often fail. As far as the long-term reliability of a soldered microelectronics assembly as a whole is concerned, it makes a difference, if just one or more peripheral joints experience inelastic strains. It is clear that the low cycle fatigue lifetime of the solder system is inversely proportional to the number of joints that simultaneously experience inelastic strains. A simple and physically meaningful analytical expression (formula) is obtained for the prediction, at the design stage, of the number of such joints, if any, for the given effective thermal expansion (contraction) mismatch of the package and PCB; materials and geometrical characteristics of the package/PCB assembly; package size; and, of course, the level of the yield stress in the solder material. The suggested formula can be used to determine if the inelastic strains in the solder material could be avoided by the proper selection of the above characteristics and, if not, how many peripheral joints are expected to simultaneously experience inelastic strains. The general concept is illustrated by a numerical example carried out for a typical BGA package. The suggested analytical model (formula) is applicable to any soldered microelectronics assembly. The roles of other important factors, such as, e.g., solder material anisotropy, grain size, and their random orientation within a joint, are viewed in this analysis as less important factors than the level of the interfacial stress. The roles of these factors will be accounted for in future work and considered, in addition to the location of the joint, in a more complicated, more sophisticated, and more comprehensive reliability/fatigue model.

  7. Experiments on the Flow of a Thin Liquid Film Over a Horizontal Stationary and Rotating Disk Surface

    Science.gov (United States)

    Ozar, B.; Cetegen, B. M.; Faghri, A.

    2003-01-01

    Experiments on characterization of thin liquid films flowing over stationary and rotating disk surfaces are described. The thin liquid film was created by introducing deionized water from a flow collar at the center of an aluminum disk with a known initial film thickness and uniform radial velocity. Radial film thickness distribution was measured using a non-intrusive laser light interface reflection technique that enabled the measurement of the instantaneous film thickness over a finite segment of the disk. Experiments were performed for a range of flow rates between 3.01pm and 15.01pm, corresponding to Reynolds numbers based on the liquid inlet gap height and velocity between 238 and 1,188. The angular speed of the disk was varied from 0 rpm to 300 rpm. When the disk was stationary, a circular hydraulic jump was present in the liquid film. The liquid-film thickness in the subcritical region (down-stream of the hydraulic jump) was an order of magnitude greater than that in the supercritical region (upstream of the hydraulic jump) which was of the order of 0.3 mm. As the Reynolds number increased, the hydraulic jump migrated toward the edge of the disk. In the case of rotation, the liquid-film thickness exhibited a maximum on the disk surface. The liquid-film inertia and friction influenced the inner region where the film thickness progressively increased. The outer region where the film thickness decreased was primarily affected by the centrifugal forces. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. At high rotational speeds, spiral waves were observed on the liquid film. It was also determined that the angle of the waves which form on the liquid surface was a function of the ratio of local radial to tangential velocity.

  8. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.

    Key words: Hydrology (desertification - Meterology and

  9. Free-surface flow in horizontally rotating cylinder: experiment and simulation

    Science.gov (United States)

    Bohacek, J.; Kharicha, A.; Ludwig, A.; Wu, M.; Paar, A.; Brandner, M.; Elizondo, L.; Trickl, T.

    2016-07-01

    The horizontal centrifugal casting process targets on a liquid layer with a uniform thickness. To achieve this, the rotations of the mold have to be large enough so that the liquid can pick up the speed of the mold. In the present paper, an experiment was conducted using a laboratory plexi-glass mold with water as a working fluid. Starting with an initial volume fraction of liquid resting in the bottom of the mold, the mold rotations were gradually increased from 0 rpm to max rpm and a new position of the contact line was recorded. In addition, first critical rpm was recorded, at which the transition from the liquid pool to a uniform liquid layer occurred. While gradually going back from max rpm to 0 rpm, second critical rpm was recorded, at which the uniform liquid layer collapsed. The experiment was compared with the numerical simulation solving the modified shallow water equations using the Newton-Raphson method with the Wallington filter.

  10. First experiments with Cs doped Mo as surface converter for negative hydrogen ion sources

    Science.gov (United States)

    Schiesko, L.; Cartry, G.; Hopf, C.; Höschen, T.; Meisl, G.; Encke, O.; Heinemann, B.; Achkasov, K.; Amsalem, P.; Fantz, U.

    2015-08-01

    A study was conducted on the properties of molybdenum implanted with caesium as an approach to reduce the Cs consumption of negative hydrogen ion sources based on evaporated Cs. The depth profiles of the implanted Cs were simulated by SDTrimSP and experimentally determined by X-ray photoelectron spectroscopy depth profiling. In particular, one year after implantation, the depth profiles showed no signs of Cs diffusion into the molybdenum, suggesting long term stability of the implanted Cs atoms. The H- surface generation mechanisms on the implanted samples in hydrogen plasma were investigated, and the stability of the H- yield during four hours low power hydrogen plasma discharges was demonstrated. An estimation of the work function reduction (-0.8 eV) by the Cs implantation was performed, and a comparison of the relative negative ion yields between the implanted samples and highly oriented pyrolitic graphite showed that the Cs doped Mo negative ion yield was larger.

  11. Control Surface Fault Diagnosis with Specified Detection Probability - Real Event Experiences

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2013-01-01

    Diagnosis of actuator faults is crucial for aircraft since loss of actuation can have catastrophic consequences. For autonomous aircraft the steps necessary to achieve fault tolerance is limited when only basic and non-redundant sensor and actuators suites are present. Through diagnosis...... that exploits analytical redundancies it is, nevertheless, possible to cheaply enhance the level of safety. This paper presents a method for diagnosing control surface faults by using basic sensors and hardware available on an autonomous aircraft. The capability of fault diagnosis is demonstrated obtaining...... false alarm probability. A data based method is used to determine the validity of the methods proposed. Verification is achieved using real data and shows that the presented diagnosis method is efficient and could have avoided incidents where faults led to loss of aircraft....

  12. The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R R; Zundel, Z

    2012-01-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays for energies above 1.6x10^(18) eV in its first three years of operation. The spectrum shows a dip at an energy of 5x10^(18) eV and a steepening at 5x10^(19) eV which is consistent with the expectation from the GZK cutoff. Here we use a new technique that involves generating a complete simulation of the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the "thinning" approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  13. The Potential Energy Surface for the Electronic Ground State of H 2Se Derived from Experiment

    Science.gov (United States)

    Jensen, P.; Kozin, I. N.

    1993-07-01

    The present paper reports a determination of the potential energy surface for the electronic ground state of the hydrogen selenide molecule through a direct least-squares fitting to experimental data using the MORBID (Morse oscillator rigid bender internal dynamics) approach developed by P. Jensen [ J. Mol. Spectrosc.128, 478-501 (1988); J. Chem. Soc. Faraday Trans. 284, 1315-1340 (1988)]. We have fitted a selection of 303 rotation-vibration energy spacings of H 280Se, D 280Se, and HD 80Se involving J ≤ 5 with a root-mean-square deviation of 0.0975 cm -1 for the rotational energy spacings and 0.268 cm -1 for the vibrational spacings. In the fitting, 14 parameters were varied. On the basis of the fitted potential surface we have studied the cluster effect in the vibrational ground state of H 2Se, i.e., the formation of nearly degenerate, four-member groups of rotational energy levels [see I. N. Kozin, S. Klee, P. Jensen, O. L. Polyansky, and I. M. Pavlichenkov. J. Mol. Spectrosc., 158, 409-422 (1993), and references therein]. The cluster formation becomes more pronounced with increasing J. For example, four-fold clusters formed in the vibrational ground state of H 280Se at J = 40 are degenerate to within a few MHz. Our predictions of the D 280Se energy spectrum show that for this molecule, the cluster formation is displaced towards higher J values than arc found for H 280Se. In the vibrational ground state, the qualitative deviation from the usual rigid rotor picture starts at J = 12 for H 280Se and at J = 18 for D 280Se, in full agreement with predictions from semiclassical theory. An interpretation of the cluster eigenstates is discussed.

  14. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    Science.gov (United States)

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry.

  15. Geophysical monitoring of near surface CO2 injection at Svelvik - Learnings from the CO2FieldLab experiments.

    Science.gov (United States)

    Querendez, Etor; Romdhane, Anouar; Jordan, Michael; Eliasson, Peder; Grimstad, Alv-Arne

    2014-05-01

    A CO2 migration field laboratory for testing monitoring methods and tools has been established in the glaciofluvial-glaciomarine Holocene deposits of the Svelvik ridge, near Oslo (Norway). At the site, feasibility, sensitivity, acquisition geometry and usefulness of various surface and subsurface monitoring tools are investigated during controlled CO2 injection experiments. In a first stage, a shallow CO2 injection experiment was conducted in September 2011. Approximately 1700 kg of CO2 was injected at 18 m depth below surface in an unconsolidated sand formation. The objectives of this experiment were to (i) detect and, where possible, quantify migrated CO2 concentrations at the surface and very shallow subsurface, (ii) evaluate the sensitivity of the monitoring tools and (iii) study the impact of the vadose zone on observed measurements. Results showed that all deployed monitoring tools (for surface and near-surface gas monitoring, subsurface water monitoring and subsurface geophysical monitoring) where able to detect the presence of CO2 even though the CO2 plume did not migrate vertically as expected in what was thought to be an homogeneous unconsolidated sand structure. The upper part of the site revealed to be more heterogeneous than expected, mainly due to the highly variable lamination and channelling of the morainic sediments and to the presence of pebble and cobble beds sporadically showing throughout the deposits. Building on the learnings from the 18m depth injection experiment, a second experiment is being planned for a deeper injection, at a depth of 65m. Re-processing of the appraisal 2D multi-channel seismic with state-of-the-art processing techniques, like Linear Radon coherent and random noise attenuation and Full Waveform Inversion followed by pre-stack depth migration, corroborate the presence of heterogeneities at the near surface. Based on the re-interpreted seismic sections, a more realistic 3D geomodel, where the complex topography of the site

  16. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation.

    Science.gov (United States)

    Panaccione, G; Vobornik, I; Fujii, J; Krizmancic, D; Annese, E; Giovanelli, L; Maccherozzi, F; Salvador, F; De Luisa, A; Benedetti, D; Gruden, A; Bertoch, P; Polack, F; Cocco, D; Sostero, G; Diviacco, B; Hochstrasser, M; Maier, U; Pescia, D; Back, C H; Greber, T; Osterwalder, J; Galaktionov, M; Sancrotti, M; Rossi, G

    2009-04-01

    We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

  17. Experiment study of forming and activation of conductive film of the surface conduction electron emitter display

    Institute of Scientific and Technical Information of China (English)

    LEI Xin; XU Wei-jun; LIU Chun-liang; LIANG Zhi-hu

    2007-01-01

    The forming and activation of the conductive films are studied experimentally. The power supply,a peak-to-peak 30 V triangle profile voltage,is applied to three kinds of conductive films that contain 0.25%,0.5%,and 1% of palladium respectively. In the experiments we contrasted the values of related parameter in different conditions,observed the lumi nous spots on the anode panel,dealt with and analyzed the related data,and compared the positions and the amount of the luminous spots. We have gotten the conclusion that there is a threshold value Uth. The emission current Ie will increase rapidly when the device voltage Uf is greater than Uth. And the emission current Ie could be controlled by the device voltage Uf.The positions of the luminous spots on the anode panel are related with the device voltage Uf.

  18. Analysis of cylindrical ramp compression experiment with radiography based surface fitting method

    Science.gov (United States)

    Martin, Matthew R.; Lemke, R. W.; McBride, Ryan D.; Davis, Jean-Paul; Knudson, M. D.

    2012-03-01

    The shockless compression of a cylindrical liner Z-pinch is explored as a method to obtain high pressure states while minimizing the entropy production in the target material. Experiments with beryllium liners on the Z-machine resulted in radiographic profiles at four different times in the liner's trajectory. From these results, we infer the longitudinally and azimuthally averaged material density, material pressure, and magnetic pressure along with their uncertainties. By combining these results with magnetohydrodynamic simulation, we obtain a pressure versus density response in solid beryllium up to 2.4Mbar. We conclude that the pressure versus density response for material samples in the 10Mbar range is achievable on the Z-machine with improved radiographic capability.

  19. Kinetics of hybridization on surface oligonucleotide microchips: theory, experiment, and comparison with hybridization on gel-based microchips.

    Science.gov (United States)

    Sorokin, N V; Chechetkin, V R; Pan'kov, S V; Somova, O G; Livshits, M A; Donnikov, M Y; Turygin, A Y; Barsky, V E; Zasedatelev, A S

    2006-08-01

    The optimal design of oligonucleotide microchips and efficient discrimination between perfect and mismatch duplexes strongly depend on the external transport of target DNA to the cells with immobilized probes as well as on respective association and dissociation rates at the duplex formation. In this paper we present the relevant theory for hybridization of DNA fragments with oligonucleotide probes immobilized in the cells on flat substrate. With minor modifications, our theory also is applicable to reaction-diffusion hybridization kinetics for the probes immobilized on the surface of microbeads immersed in hybridization solution. The main theoretical predictions are verified with control experiments. Besides that, we compared the characteristics of the surface and gel-based oligonucleotide microchips. The comparison was performed for the chips printed with the same pin robot, for the signals measured with the same devices and processed by the same technique, and for the same hybridization conditions. The sets of probe oligonucleotides and the concentrations of probes in respective solutions used for immobilization on each platform were identical as well. We found that, despite the slower hybridization kinetics, the fluorescence signals and mutation discrimination efficiency appeared to be higher for the gel-based microchips with respect to their surface counterparts even for the relatively short hybridization time about 0.5-1 hour. Both the divergence between signals for perfects and the difference in mutation discrimination efficiency for the counterpart platforms rapidly grow with incubation time. In particular, for hybridization during 3 h the signals for gel-based microchips surpassed their surface counterparts in 5-20 times, while the ratios of signals for perfect-mismatch pairs for gel microchips exceeded the corresponding ratios for surface microchips in 2-4 times. These effects may be attributed to the better immobilization efficiency and to the higher

  20. Transverse magnetoresistance induced by electron-surface scattering on thin gold films: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzún, Simón [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne CEDEX (France); Henríquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Suárez, Marco Antonio; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, Germán [Bachillerato, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); Munoz, Raúl C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2014-01-15

    We report new experimental data regarding the transverse magnetoresistance measured in a family of thin gold films of different thickness with the electric field E oriented perpendicular to the magnetic field B (both fields contained within the plane of the film), as well as a theoretical description of size effects based upon a solution of Boltzmann Transport Equation. The measurements were performed at low temperatures T (4 K ≤ T ≤ 50 K) under magnetic field strengths B (1.5 T ≤ B ≤ 9 T). The magnetoresistance signal can be univocally identified as arising from electron-surface scattering, for the Hall mobility at 4 K depends linearly on film thickness. The magnetoresistance signal exhibits a marked thickness dependence, and its curvature as a function of magnetic field B varies with film thickness. The theoretical description of the magnetic field dependence of the magnetoresistance requires a Hall field that varies with the thickness of the film; this Hall field is tuned to reproduce the experimental data.

  1. Numerical study of chemical reactions in a surface microdischarge tube with mist flow based on experiment

    Science.gov (United States)

    Shibata, T.; Nishiyama, H.

    2014-03-01

    Recently, a water treatment method of spraying solution into a discharge region has been developed and shows high energy efficiency. In this study, a simulation model of a water treatment method using a surface microdischarge (SMD) tube with mist flow is proposed for further understanding the detailed chemical reactions. Our model has three phases (plasma, gas and liquid) and three simulation steps. The carrier gas is humid air including 2% or 3% water vapour. The chemical species diffusion characteristics in the SMD tube and the concentrations in a droplet are clarified in a wide pH interval. The simulation results show that the chemical species generated on the SMD tube inner wall are diffused to the central axis and dissolved into fine droplets. Especially, OH radicals dissolve into droplets a few mm away from the SMD tube wall because of acidification of the droplets. Furthermore, the hydrogen peroxide density, which is the most important indicator of a radical reaction in water, is influenced by the initial solution pH. This pH dependence results from ozone self-decomposition in water.

  2. First experiments with Cs doped Mo as surface converter for negative hydrogen ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Schiesko, L., E-mail: loic.schiesko@ipp.mpg.de; Hopf, C.; Höschen, T.; Meisl, G.; Encke, O.; Heinemann, B.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Cartry, G.; Amsalem, P. [Aix Marseille University, CNRS, PIIM, UMR 7345, F-13013 Marseille (France); Achkasov, K. [Aix Marseille University, CNRS, PIIM, UMR 7345, F-13013 Marseille (France); CEA-Cadarache, IRFM, F-13108 St Paul lez Durance (France)

    2015-08-21

    A study was conducted on the properties of molybdenum implanted with caesium as an approach to reduce the Cs consumption of negative hydrogen ion sources based on evaporated Cs. The depth profiles of the implanted Cs were simulated by SDTrimSP and experimentally determined by X-ray photoelectron spectroscopy depth profiling. In particular, one year after implantation, the depth profiles showed no signs of Cs diffusion into the molybdenum, suggesting long term stability of the implanted Cs atoms. The H{sup −} surface generation mechanisms on the implanted samples in hydrogen plasma were investigated, and the stability of the H{sup −} yield during four hours low power hydrogen plasma discharges was demonstrated. An estimation of the work function reduction (−0.8 eV) by the Cs implantation was performed, and a comparison of the relative negative ion yields between the implanted samples and highly oriented pyrolitic graphite showed that the Cs doped Mo negative ion yield was larger.

  3. Skylab experiment SO73: Gegenschein/zodiacal light. [electrophotometry of surface brightness and polarization

    Science.gov (United States)

    Weinberg, J. L.

    1976-01-01

    A 10 color photoelectric polarimeter was used to measure the surface brightness and polarization associated with zodiacal light, background starlight, and spacecraft corona during each of the Skylab missions. Fixed position and sky scanning observations were obtained during Skylab missions SL-2 and SL-3 at 10 wavelenghts between 4000A and 8200A. Initial results from the fixed-position data are presented on the spacecraft corona and on the polarized brightness of the zodiacal light. Included among the fixed position regions that were observed are the north celestial pole, south ecliptic pole, two regions near the north galactic pole, and 90 deg from the sun in the ecliptic. The polarized brightness of the zodiacal light was found to have the color of the sun at each of these positions. Because previous observations found the total brightness to have the color of the sun from the near ultraviolet out to 2.4 micrometers, the degree of polarization of the zodiacal light is independent of wavelength from 4000A to 8200A.

  4. Energetic analysis and experiments of earthworm-like locomotion with compliant surfaces.

    Science.gov (United States)

    Zarrouk, David; Sharf, Inna; Shoham, Moshe

    2016-02-04

    The energy consumption of worm robots is composed of three parts: heat losses in the motors, internal friction losses of the worm device and mechanical energy locomotion requirements which we refer to as the cost of transport (COT). The COT, which is the main focus of this paper, is composed of work against two types of external factors: (i) the resisting forces, such as weight, tether force, or fluid drag for robots navigating inside wet environments and (ii) sliding friction forces that may result from sliding either forward or backward. In a previous work, we determined the mechanical energy requirement of worm robot locomotion over compliant surfaces, independently of the efficiency of the worm device. Analytical results were obtained by summing up the external work done on the robot and alternatively, by integrating the actuator forces over the actuator motions. In this paper, we present experimental results for an earthworm robot fitted with compliant contacts and these are post-processed to estimate the energy expenditure of the device. The results show that due to compliance, the COT of our device is increased by up to four-fold compared to theoretical predictions for rigid-contact worm-like locomotion.

  5. Two decades of temperature-time monitoring experiment: air - ground surface - shallow subsurface interactions

    Science.gov (United States)

    Cermak, Vladimir; Dedecek, Petr; Safanda, Jan; Kresl, Milan

    2014-05-01

    Long-term observations (1994-2013) of air and shallow ground temperatures at borehole Prague-Sporilov (50º02'28.5"E, 14º28'40.2"N, 274 m a.s.l.) have been thoroughly analyzed to understand the relationship between these quantities and to describe the mechanism of heat transport at the land-atmosphere boundary layer. Data provided a surprisingly small mean ground-air temperature offset of only 0.31 K with no clear annual course and with the offset value changing irregularly even on a daily scale. Such value is substantially lower than similar values (1-2 K and more) found elsewhere, but may well characterize a mild temperate zone, when all so far available information referred rather to southern locations. Borehole data were correlated with similar observations in a polygon-site under four types of surface conditions (grass, soil, sand and asphalt) completed with registration of meteorological variables (wind direction & velocity, air & soil humidity, direct & reflected solar radiation, precipitation and snow cover). The "thermal orbits" technique proved to be an effective tool for the fast qualitative diagnostics of the thermal regime in the subsurface (conductive versus non-conductive).

  6. Reversibly swithable DNA Nanocompartment on surfaces: experiments,applications,and theory

    Institute of Scientific and Technical Information of China (English)

    You-dong MAO; Chun-xiong LUO; Qi OU-YANG

    2008-01-01

    This paper summarizes our studies of DNA nano-compartement in recent years. Biological macromolecules have been used to fabricate many nanostructures, bio-de-vices, and biomimetics because of their physical and chemi-cal properties. But dynamic nanostructure and bio-machin-ery that depend on collective behavior of biomolecules have not been demonstrated. Here, we report the design of DNA nanocompartinent on surfaces that exhibit reversible changes in molecular mechanical properties. Such molecular nanocompar-tment is served to encage molecules, switched by the collec-tive effect of Watson-Crick base- pairing interactions. This effect is used to investigate the dynamic process of nano-compartment switching and molecular thermosensing, as well as perform molecular recognition. Further, we found that 'fuel' strands with single-base variation cannot afford an efficient closing of nanocompartment, which allows highly sensitive label-free DNA array detection. Theoretical analy-sis and computer simulations confirm our experimental ob-servations, which are discussed in this review paper. Our results suggest that DNA nanocompartment can be used as building blocks for complex biomaterials, because its core functions are independent of substrates and mediators.

  7. Technical Results from the Surface Run of the LUX Dark Matter Experiment

    CERN Document Server

    Akerib, D S; Bernard, E; Bernstein, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chapman, J J; Coffey, T; Dobi, A; Dragowsky, E; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Gaitskell, R J; Gibson, K R; Gilchriese, M; Hall, C; Hanhardt, M; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Larsen, N; Lee, C; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; McKinsey, D N; Mei, D; Mock, J; Moongweluwan, M; Morii, M; Nelson, H; Neves, F; Nikkel, J A; Pangilinan, M; Pech, K; Phelps, P; Rodionov, A; Shutt, T; Silva, C; Skulski, W; Solovov, V N; Sorensen, P; Stiegler, T; Sweany, M; Szydagis, M; Taylor, D; Tripathi, M; Uvarov, S; Verbus, J R; de Viveiros, L; Walsh, N; Webb, R; White, J T; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01

    We present the results of the three-month above-ground commissioning run of the Large Underground Xenon (LUX) experiment at the Sanford Underground Research Facility located in Lead, South Dakota, USA. LUX is a 370 kg liquid xenon detector that will search for cold dark matter in the form of Weakly Interacting Massive Particles (WIMPs). The commissioning run, conducted with the detector immersed in a water tank, validated the integration of the various sub-systems in preparation of the underground deployment. Using the data collected, we report excellent light collection properties, achieving 8 photoelectrons per keV for 662 keV electron recoils without an applied electric field, measured in the center of the WIMP target. We also find good energy and position resolution in relatively high-energy interactions from a variety of internal and external sources. Finally, we have used the commissioning data to tune the optical properties of our simulation and report updated sensitivity projections for spin-independe...

  8. Impurities removal by laser blow-off from in-vacuum optical surfaces on RFX-mod experiment.

    Science.gov (United States)

    Alfier, A; Barison, S; Fassina, A; Fiameni, S; Giudicotti, L; Pasqualotto, R; Cervaro, V; Lotto, L

    2010-12-01

    An in situ window cleaning system by laser blow-off through optical fiber has been developed on the basis of a feasibility study previously presented. The beam generated by a Q-switched Nd:YAG laser is launched in a vacuum box into a high damage threshold optical fiber through a lens. The fiber output is focused on the impurities-coated surface of a vacuum window exposed to the plasma of the RFX-mod experiment, and it is remotely controlled with an xy motion system to scan the entire surface. We first investigate the energy density threshold necessary to ablate the deposited impurity substrate on removed dirty windows: above threshold, a single laser pulse recovers ∼95% of the window transmission before its exposure to the plasma, while below it the efficiency of the cleaning process is too poor. The system so conceived was then used to clean the three collection windows of the Main Thomson scattering diagnostic on RFX-mod. We also present results obtained applying the same technique to the SiO-protected Al mirror used for the Z(eff) diagnostic: an energy threshold for efficient impurity removal without mirror damage is first identified, then ablation tests are executed and analyzed in terms of recovered reflectivity. The SIMS technique is used both with windows and mirror to study the composition of surfaces before and after the ablation.

  9. Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling

    Science.gov (United States)

    Fukai, J.; Shiiba, Y.; Yamamoto, T.; Miyatake, O.; Poulikakos, D.; Megaridis, C. M.; Zhao, Z.

    1995-02-01

    In this paper an experimental and theoretical study of the deformation of a spherical liquid droplet colliding with a flat surface is presented. The theoretical model accounts for the presence of inertia, viscous, gravitation, surface tension, and wetting effects, including the phenomenon of contact-angle hysteresis. Experiments with impingement surfaces of different wettability were performed. The study showed that the maximum splat radius decreased as the value of the advancing contact angle increased. The effect of impact velocity on droplet spreading was more pronounced when the wetting was limited. The experimental results were compared to the numerical predictions in terms of droplet deformation, splat radius, and splat height. The theoretical model predicted well the deformation of the impacting droplet, not only in the spreading phase, but also during recoiling and oscillation. The wettability of the substrate upon which the droplet impinges was found to affect significantly all phases of the spreading process, including the formation and development of a ring structure around the splat.

  10. The effect of three surface conditions, speed and running experience on vertical acceleration of the tibia during running.

    Science.gov (United States)

    Boey, Hannelore; Aeles, Jeroen; Schütte, Kurt; Vanwanseele, Benedicte

    2016-09-05

    Research has focused on parameters that are associated with injury risk, e.g. vertical acceleration. These parameters can be influenced by running on different surfaces or at different running speeds, but the relationship between them is not completely clear. Understanding the relationship may result in training guidelines to reduce the injury risk. In this study, thirty-five participants with three different levels of running experience were recruited. Participants ran on three different surfaces (concrete, synthetic running track, and woodchip trail) at two different running speeds: a self-selected comfortable speed and a fixed speed of 3.06 m/s. Vertical acceleration of the lower leg was measured with an accelerometer. The vertical acceleration was significantly lower during running on the woodchip trail in comparison with the synthetic running track and the concrete, and significantly lower during running at lower speed in comparison with during running at higher speed on all surfaces. No significant differences in vertical acceleration were found between the three groups of runners at fixed speed. Higher self-selected speed due to higher performance level also did not result in higher vertical acceleration. These results may show that running on a woodchip trail and slowing down could reduce the injury risk at the tibia.

  11. Surface dynamics of crude and weathered oil in the presence of dispersants: Laboratory experiment and numerical simulation

    Science.gov (United States)

    Soloviev, Alexander V.; Haus, Brian. K.; McGauley, Michael G.; Dean, Cayla W.; Ortiz-Suslow, David G.; Laxague, Nathan J. M.; Özgökmen, Tamay M.

    2016-05-01

    Marine oil spills can have dire consequences for the environment. Research on their dynamics is important for the well-being of coastal communities and their economies. Propagation of oil spills is a very complex physical-chemical process. As seen during the Deepwater Horizon event in the Gulf of Mexico during 2010, one of the critical problems remaining for prediction of oil transport and dispersion in the marine environment is the small-scale structure and dynamics of surface oil spills. The laboratory experiments conducted in this work were focused on understanding the differences between the dynamics of crude and weathered oil spills and the effect of dispersants. After deposition on the still water surface, a drop of crude oil quickly spread into a thin slick; while at the same time, a drop of machine (proxy for weathered) oil did not show significant evolution. Subsequent application of dispersant to the crude oil slick resulted in a quick contraction or fragmentation of the slick into narrow wedges and tiny drops. Notably, the slick of machine oil did not show significant change in size or topology after spraying dispersant. An advanced multi-phase, volume of fluid computational fluid dynamics model, incorporating capillary forces, was able to explain some of the features observed in the laboratory experiment. As a result of the laboratory and modeling experiments, the new interpretation of the effect of dispersant on the oil dispersion process including capillary effects has been proposed, which is expected to lead to improved oil spill models and response strategies.

  12. Effect of DC glow discharge plasma treatment on PET/TiO(2) thin film surfaces for enhancement of bioactivity.

    Science.gov (United States)

    Navaneetha Pandiyaraj, K; Selvarajan, V; Rhee, Young Ha; Kim, Hyoung Woo; Pavese, Matteo

    2010-08-01

    In this paper, the surfaces of PET/TiO(2) thin film were modified by DC glow discharge plasma as a function of discharge potentials for improving the bioactivity. The hydrophilicity of the plasma-treated PET/TiO(2) film was measured by contact angle measurement and the surface energy was estimated by using Fowkes method. The structural and chemical composition of the plasma-treated PET/TiO(2) was analysed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Immersion in a simulated body solution (SBF) solution was used to evaluate the bioactivity of the plasma-treated PET/TiO(2) samples in vitro. It was found that the plasma treatment modified the surfaces both in chemical composition and crystallinity which makes surface of the PET/TiO(2) to become more hydrophilic compared with untreated one. Analytical and microstructural investigations of SBF results, showed considerable higher rates of apatite formation on the plasma-treated PET/TiO(2) compared to the untreated films.

  13. Nutrient Limitation in Surface Waters of the Oligotrophic Eastern Mediterranean Sea: an Enrichment Microcosm Experiment

    KAUST Repository

    Tsiola, A.

    2015-12-01

    The growth rates of planktonic microbes in the pelagic zone of the Eastern Mediterranean Sea are nutrient limited, but the type of limitation is still uncertain. During this study, we investigated the occurrence of N and P limitation among different groups of the prokaryotic and eukaryotic (pico-, nano-, and micro-) plankton using a microcosm experiment during stratified water column conditions in the Cretan Sea (Eastern Mediterranean). Microcosms were enriched with N and P (either solely or simultaneously), and the PO4 turnover time, prokaryotic heterotrophic activity, primary production, and the abundance of the different microbial components were measured. Flow cytometric and molecular fingerprint analyses showed that different heterotrophic prokaryotic groups were limited by different nutrients; total heterotrophic prokaryotic growth was limited by P, but only when both N and P were added, changes in community structure and cell size were detected. Phytoplankton were N and P co-limited, with autotrophic pico-eukaryotes being the exception as they increased even when only P was added after a 2-day time lag. The populations of Synechococcus and Prochlorococcus were highly competitive with each other; Prochlorococcus abundance increased during the first 2 days of P addition but kept increasing only when both N and P were added, whereas Synechococcus exhibited higher pigment content and increased in abundance 3 days after simultaneous N and P additions. Dinoflagellates also showed opportunistic behavior at simultaneous N and P additions, in contrast to diatoms and coccolithophores, which diminished in all incubations. High DNA content viruses, selective grazing, and the exhaustion of N sources probably controlled the populations of diatoms and coccolithophores.

  14. Membrane fluidity and the surface properties of the lipid bilayer: ESR experiment and computer simulation.

    Science.gov (United States)

    Man, Dariusz; Olchawa, Ryszard; Kubica, Krystian

    2010-09-01

    Penetration of the liposome membranes formed in the gel phase from DPPC (DPPC liposomes) and in the liquid-crystalline phase from egg yolk lecithin (EYL liposomes) by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) and 16 DOXYL (2-ethyl-2-(15-methoxy-oxopentadecyl)-4,4-dimethyl-3-oxazolidinyloxy) spin probes has been investigated. The penetration process was followed by 120 hours at 24(0)C, using the electron spin resonance (ESR) method. The investigation of the kinetics of the TEMPO probe building into the membranes of both types of liposomes revealed differences appearing 30 minutes after the start of the experiment. The number of TEMPO particles built into the EYL liposome membranes began to clearly rise, aiming asymptotically to a constant value after about 100 minutes, whereas the number of the TEMPO particles built into the DPPC liposome membranes was almost constant in time. The interpretation of the obtained experimental results was enriched with those of computer simulation, following the behavior of the polar heads (dipoles) of the lipid particles forming a lipid layer due to the change in the value of the model parameter, k, determining the mobility of the dipoles. The possibility of the formation of an irregular ordering of the polar part of lipid membranes was proved, which leads to the appearance of spaces filled with of water for k > 0.4. The appearance of these defects enables the penetration of the bilayer by the TEMPO particles. The limited mobility of lipid polar heads (k < 0.2) prevents the appearance of such areas facilitating the penetration of the lipid membrane by alien particles in the gel phase.

  15. Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes

    Science.gov (United States)

    Messmer, Martina; José Gómez-Navarro, Juan; Raible, Christoph C.

    2017-07-01

    Extratropical cyclones of type Vb, which develop over the western Mediterranean and move northeastward, are major natural hazards that are responsible for heavy precipitation over central Europe. To gain further understanding in the governing processes of these Vb cyclones, the study explores the role of soil moisture and sea surface temperature (SST) and their contribution to the atmospheric moisture content. Thereby, recent Vb events identified in the ERA-Interim reanalysis are dynamically downscaled with the Weather Research and Forecasting (WRF) model. Results indicate that a mean high-impact summer Vb event is mostly sensitive to an increase in the Mediterranean SSTs and rather insensitive to Atlantic SSTs and soil moisture changes. Hence, an increase of +5 K in Mediterranean SSTs leads to an average increase of 24 % in precipitation over central Europe. This increase in precipitation is mainly induced by larger mean upward moisture flux over the Mediterranean with increasing Mediterranean SSTs. This further invokes an increase in latent energy release, which leads to an increase in atmospheric instability, i.e. in convective available potential energy. Both the increased availability of atmospheric moisture and the increased instability of the atmosphere, which is able to remove extra moisture from the atmosphere due to convective processes, are responsible for the strong increase in precipitation over the entire region influenced by Vb events. Precipitation patterns further indicate that a strong increase in precipitation is found at the eastern coast of the Adriatic Sea for increased Mediterranean SSTs. This premature loss in atmospheric moisture leads to a significant decrease in atmospheric moisture transport to central Europe and the northeastern flanks of the Alpine mountain chain. This leads to a reduction in precipitation in this high-impact region of the Vb event for an increase in Mediterranean SSTs of +5 K. Furthermore, the intensity of the Vb

  16. Laboratory Experiments of Roughness Effects on the Lateral Surface Transient Storage Mean Residence Time in Small Streams

    Science.gov (United States)

    Jackson, T. R.; Haggerty, R.; Apte, S. V.; Budwig, R.; Tonina, D.

    2012-12-01

    Lateral surface transient storage (LSTS) zones are common in riverine systems. The higher mean residence times (MRTs) associated with LSTS recirculation impact water quality and solute transport. We are working to develop a predictive model of LSTS MRT based on parameters easily measured in the field. We investigated the effect of streambed roughness and LSTS shape (a lateral roughness) on MRT. We performed 9 laboratory experiments spanning roughness conditions and LSTS shapes that are based on shapes observed in natural streams. The three streambed roughness conditions were: (1) a smooth flume with a 15-cm depth; (2) a uniformly rough flume with 5-cm gravels 1-particle thick in the main channel and finer sand in the LSTS at 15-cm depth; and (3) a uniformly rough flume at 30-cm depth. We collected data on: (1) entrainment velocities at the LSTS entrance using stereo particle image velocimetry; (2) velocity and turbulence quantities along a horizontal plane in the LSTS with an acoustic Doppler velocimeter; and (3) MRT with salt injection experiments and electrical conductivity probes. Preliminary results from the experiments will be presented, and resulting insights into the predictive relationship.

  17. Effect of the surface roughness on the seismic signal generated by a single rock impact: insight from laboratory experiments

    Science.gov (United States)

    Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud

    2016-04-01

    The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity, with strong implication in terms of natural hazard monitoring. Indeed, as natural flows travel down the slope, they apply stresses on the ground, generating seismic waves in a wide frequency band. Our ultimate objective is to relate the granular flow properties to the generated signals that result from the different physical processes involved. We investigate here the more simple process: the impact of a single bead on a rough surface. Farin et al. [2015] have already shown theoretically and experimentally the existence of a link between the properties of an impacting bead (mass and velocity) on smooth surfaces, and the emitted signal (radiated elastic energy and mean frequency). This demonstrates that the single impactor properties can be deduced from the form of the emitted signal. We extend this work here by investigating the impact of single beads and gravels on rough and erodible surfaces. Experimentally, we drop glass and steel beads of diameters from 2 mm to 10 mm on a PMMA plate. The roughness of this last is obtained by gluing 3mm-diameter glass beads on one of its face. Free beads have been also added to get erodible beds. We track the dropped impactor motion, times between impacts and the generated acoustic waves using two fast cameras and 8 accelerometers. Cameras are used in addition to estimate the impactor rotation. We investigate the energy balance during the impact process, especially how the energy restitution varies as a function of the energy lost through acoustic waves. From these experiments, we clearly observe that even if more dissipative processes are involved (friction, grain reorganization, etc.), the single bead scaling laws obtained on smooth surfaces remain valid. A main result of this work is to quantify the fluctuations of the characteristic quantities such as the bounce angle, the

  18. Estimation of Land Surface Parameters by LDAS-UT: Model Development and Validation on Tanashi Field Experiment

    Science.gov (United States)

    Lu, H.; Koike, T.; Yang, K.; Li, X.; Graf, T.; Boussetta, S.; Tsutsui, H.; Kuria, D. N.

    2007-12-01

    The estimation of soil moisture and surface energy fluxes at various temporal and spatial scales remains to be an outstanding problem in hydrologic and meteorological researches. Remote sensed data retrieval algorithms, land surface models and data assimilation systems are highly expected to provide a solution to this problem. But the parameters required by those algorithms and systems, such as the soil texture, porosity, roughness parameters and so on, are highly variable or unavailable. In this study, a land data assimilation system (LDAS- UT) is employed to inversely estimate the optimal values of those land surface parameters with meteorological forcing data and remote sensed data. And a field experiment is designed to provide a well-controlled data set for the system validation. The Tanashi experiment has been in operation since November, 2006 in the farm of the University of Tokyo. Continuous ground measurements of meteorological variables, soil moisture and temperature profiles and vegetation status have been taken over a plot, in which winter wheat was planted. At the same time, the ground based microwave radiometers (GBMR) are employed to provide accurate field measurements of brightness temperature up-welling from the plot, at the frequencies of 6.925, 10.65, 18.7, 23.8, 36.5 and 89 GHz. The LDAS_UT is then run with using data obtained from this experiment to retrieval parameters for two periods. One is the period from December 2006 to February 2007, the germination period of winter wheat, and during which the vegetation effects are small. The second period is from April to May 2007, during which the winter wheat was developing rapidly. The optimize parameters were compared with the in situ observed ¡®real' ones. It found that, for the first period, the retrieved parameters are close to the ¡®real' values, while for the second period, the gap between the retrieved parameters and the ¡®real' values are much bigger. The difference between the

  19. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  20. The effect of surface modification by nitrogen plasma on photocatalytic degradation of polyvinyl chloride films

    Science.gov (United States)

    Xiao-jing, L.; Guan-jun, Q.; Jie-rong, C.

    2008-08-01

    The solid-phase photocatalytic degradation of poly(vinyl chloride) (PVC) films was investigated under the ambient air in order to assess the feasibility of developing photodegradable polymers. Nitrogen plasma was used to modify PVC films to enhance the photocatalytic degradation of PVC with nano-sized anatase TiO 2. The plasma parameter varied in this study is discharge power from 30 to 120 W for a constant treatment time of 60 s and a constant gas pressure of 10 Pa. The photodegradation of the plasma-treated PVC-TiO 2 films was compared with that of pure PVC films and PVC-TiO 2 films performing weight loss monitoring, scanning electron microscopy (SEM) analysis, contact angle measurements, electron spin resonance (ESR), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The wettability of the plasma-treated PVC is improved significantly. ESR revealed that the signal of radicals on the surface of the plasma-treated PVC film was enhanced after the treatment. Furthermore, the weight loss indicated that TiO 2 speeds up the photocatalytic degradation of PVC chains. The SEM image of the plasma-treated PVC-TiO 2 film showed a lot of crack on the film surface after irradiation. XPS indicated that the C and Cl atomic concentration reached minimum values on the surface of plasma-treated PVC-TiO 2 under identical photocatalytic condition. The experimental results reveal that plasma treatment can obviously enhance the photocatalytic degradation of PVC.

  1. Optimizing the Machining Parameters for Minimum Surface Roughness in Turning of GFRP Composites Using Design of Experiments

    Institute of Scientific and Technical Information of China (English)

    K. Palanikumar; L.Karunamoorthy; R.Karthikeyan

    2004-01-01

    In recent years, glass fiber reinforced plastics (GFRP) are being extensively used in variety of engineering applications in many different fields such as aerospace, oil, gas and process industries. However, the users of FRP are facing difficulties to machine it, because of fiber delamination, fiber pull out, short tool life, matrix debonding, burning and formation of powder like chips. The present investigation focuses on the optimization of machining parameters for surface roughness of glass fiber reinforced plastics (GFRP) using design of experiments (DoE). The machining parameters considered were speed, feed, depth of cut and workpiece (fiber orientation). An attempt was made to analyse the influence of factors and their interactions during machining. The results of the present study gives the optimal combination of machining parameters and this will help to improve the machining requirements of GFRP composites.

  2. Multiscale atomistic simulation of metal-oxygen surface interactions: Methodological development, theoretical investigation, and correlation with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Judith C. [Univ. of Pittsburgh, Pittsburgh, PA (United States)

    2015-01-09

    The purpose of this grant is to develop the multi-scale theoretical methods to describe the nanoscale oxidation of metal thin films, as the PI (Yang) extensive previous experience in the experimental elucidation of the initial stages of Cu oxidation by primarily in situ transmission electron microscopy methods. Through the use and development of computational tools at varying length (and time) scales, from atomistic quantum mechanical calculation, force field mesoscale simulations, to large scale Kinetic Monte Carlo (KMC) modeling, the fundamental underpinings of the initial stages of Cu oxidation have been elucidated. The development of computational modeling tools allows for accelerated materials discovery. The theoretical tools developed from this program impact a wide range of technologies that depend on surface reactions, including corrosion, catalysis, and nanomaterials fabrication.

  3. Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments.

    Science.gov (United States)

    Onorato, M; Osborne, A R; Serio, M; Cavaleri, L; Brandini, C; Stansberg, C T

    2004-12-01

    We study random surface gravity wave fields and address the formation of large-amplitude waves in a laboratory environment. Experiments are performed in one of the largest wave tank facilities in the world. We present experimental evidence that the tail of the probability density function for wave height strongly depends on the Benjamin-Feir index (BFI)-i.e., the ratio between wave steepness and spectral bandwidth. While for a small BFI the probability density functions obtained experimentally are consistent with the Rayleigh distribution, for a large BFI the Rayleigh distribution clearly underestimates the probability of large events. These results confirm experimentally the fact that large-amplitude waves in random spectra may result from the modulational instability.

  4. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  5. Microskin autografting in the treatment of burns over 70% of total body surface area: 14 years of clinical experience.

    Science.gov (United States)

    Chen, Xu-Lin; Liang, Xun; Sun, Li; Wang, Fei; Liu, Sheng; Wang, Yong-Jie

    2011-09-01

    Despite the fact that early excision and grafting have significantly improved burn outcomes, the management of severely burned patients whose burn size exceeds 70% total body surface area (TBSA) still represents a big challenge for burn surgeons all over the world. During the period of 1997-2010 at our centre, aggressive excision and microskin autografting were performed in 63 severely burned patients. Their burn sizes ranged from 70% to 98% TBSA with a mean of 84.9%. The average full-thickness burn was 66.3% (range, 29-94%). Thirty patients had concomitant inhalation injury. Two to 7 days after burn, these patients underwent aggressive excisions ranging from 25% to 60% TBSA and transplantation of microskin autograft overlaid with allograft. The ratios of donor-site to recipient-site surface area were between 1:6 and 1:18. Signs of epithelialization were shown within 35-55 days. The wound healing rate was 74.9% (176/235), with 51.1% of cases (120/235) healing completely and 23.8% (56/235) improving. Microskin autografting yielded an overall survival rate of 63.5%; only 23 patients died. Our clinical experience in using the microskin autografting for burn coverage suggests that the technique is very effective in covering extensive burns, and that it is particularly useful when graft donor sites are very limited due to its high utilization rate of donor site. The factors affecting the outcome of microskin autografting are discussed herein.

  6. Study on structural, morphological and thermal properties of surface modified polyvinylchloride (PVC) film under air, argon and oxygen discharge plasma

    Science.gov (United States)

    Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Serra Rodríguez, Carmen

    2016-09-01

    The effect of air, argon, oxygen DC glow discharge plasma on the polyvinylchloride (PVC) film synthesized by solution casting technique, were evaluated via changes in physio-chemical properties such as structural, morphological, crystalline, thermal properties. The PVC film was plasma treated as a function of exposure time and different plasma forming gases, while other operating parameters such as power and pressure remained constant at 100 W and 2 Pa respectively. The plasma treated PVC were characterized by static contact angle, ATR-FTIR, XPS, AFM and T-peel analysis. It was found that various gaseous plasma treatments have improved the polar components, surface roughness on the surface of PVC which was confirmed by XPS, AFM, resulting in highly enhanced wettability and adhesion. X-ray diffraction study showed that plasma treatment does not persuade considerable change, even though it vaguely induces the crystallinity. The thermal properties of plasma treated PVC were evaluated by Differential Scanning Calorimetry and it was observed that O2 plasma treatment gives higher glass transition temperature of 87.21 °C compared with the untreated one. The glass transition temperature slightly increased for Oxygen plasma treated material due to the presence of higher concentration of the polar functional groups on the PVC surface due to strong intramolecular bonding.

  7. Study of Ag induced bimetallic (Au-Ag) nanowires on silicon (5 5 12) surfaces: Experiment and theoretical aspects

    Science.gov (United States)

    Bhukta, Anjan; Bagarti, Trilochan; Guha, Puspendu; Ravulapalli, Sathyavathi; Satpati, Biswarup; Rakshit, Bipul; Maiti, Paramita; Parlapalli, Venkata Satyam

    2017-10-01

    The reconstructed vicinal (high index) silicon surfaces, such as, Si (5 5 12) composes row-like structures that can be used as templates for growing aligned nanowires. By using a sub-monolayers of Ag, prior to Au deposition on reconstructed Si (5 512) surface, intermixing of Au and Ag, enhancement of aspect ratio of bimetallic Au-Ag nanowires with tunable morphology is reported. This is attributed to a combined effect of pre-grown Ag strips as nucleation centers for incoming Au ad-atoms and anisotropic Au-Ag intermixing. To achieve optimum conditions for the growth of larger aspect ratio Au-Ag nanostructures, the growth kinetics have been studied by varying growth and annealing temperatures. At ≈400 °C, the Ag diffused into silicon substrate and the inter-diffusion found to inhibit the formation of Au-Ag bimetallic nanostructures. Controlled experiments under ultra-high vacuum condition in a molecular beam epitaxy system and in-situ scanning tunneling microscopy measurements along with ex-situ scanning transmission and secondary electron microscopy measurements have been carried out to understand the bimetallic nanostructure growth. Kinetic Monte Carlo (KMC) simulations based on kinematics of ad-atoms on an anisotropic template with a solid on solid model in which the relative ratios of binding energies (that are obtained from the Density Functional Theory) have been used and the KMC simulations results agree with the experimental observations. Advantage of having bimetallic structures as effective substrates for Surface enhanced Raman spectroscopy application is demonstrated by detecting Rhodamine 6 G (R6G) molecule at the concentration of 10-7M.

  8. Simulation of large particle transport near the surface under stable conditions: comparison with the Hanford tracer experiments

    Science.gov (United States)

    Kim, Eugene; Larson, Timothy

    A plume model is presented describing the downwind transport of large particles (1-100 μm) under stable conditions. The model includes both vertical variations in wind speed and turbulence intensity as well as an algorithm for particle deposition at the surface. Model predictions compare favorably with the Hanford single and dual tracer experiments of crosswind integrated concentration (for particles: relative bias=-0.02 and 0.16, normalized mean square error=0.61 and 0.14, for the single and dual tracer experiments, respectively), whereas the US EPA's fugitive dust model consistently overestimates the observed concentrations at downwind distances beyond several hundred meters (for particles: relative bias=0.31 and 2.26, mean square error=0.42 and 1.71, respectively). For either plume model, the measured ratio of particle to gas concentration is consistently overestimated when using the deposition velocity algorithm of Sehmel and Hodgson (1978. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA). In contrast, these same ratios are predicted with relatively little bias when using the algorithm of Kim et al. (2000. Atmospheric Environment 34 (15), 2387-2397).

  9. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    Science.gov (United States)

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  10. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments.

    Science.gov (United States)

    Kondiparty, Kirti; Nikolov, Alex; Wu, Stanley; Wasan, Darsh

    2011-04-05

    The wetting and spreading of nanofluids composed of liquid suspensions of nanoparticles have significant technological applications. Recent studies have revealed that, compared to the spreading of base liquids without nanoparticles, the spreading of wetting nanofluids on solid surfaces is enhanced by the structural disjoining pressure. Here, we present our experimental observations and the results of the statics analysis based on the augmented Laplace equation (which takes into account the contribution of the structural disjoining pressure) on the effects of the nanoparticle concentration, nanoparticle size, contact angle, and drop size (i.e., the capillary and hydrostatic pressure); we examined the effects on the displacement of the drop-meniscus profile and spontaneous spreading of a nanofluid as a film on a solid surface. Our analyses indicate that a suitable combination of the nanoparticle concentration, nanoparticle size, contact angle, and capillary pressure can result not only in the displacement of the three-phase contact line but also in the spontaneous spreading of the nanofluid as a film on a solid surface. We show here, for the first time, that the complete wetting and spontaneous spreading of the nanofluid as a film driven by the structural disjoining pressure gradient (arising due to the nanoparticle ordering in the confined wedge film) is possible by decreasing the nanoparticle size and the interfacial tension, even at a nonzero equilibrium contact angle. Experiments were conducted on the spreading of a nanofluid composed of 5, 10, 12.5, and 20 vol % silica suspensions of 20 nm (geometric diameter) particles. A drop of canola oil was placed underneath the glass surface surrounded by the nanofluid, and the spreading of the nanofluid was monitored using an advanced optical technique. The effect of an electrolyte, such as sodium chloride, on the nanofluid spreading phenomena was also explored. On the basis of the experimental results, we can conclude

  11. A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEX-B field experiment

    Science.gov (United States)

    Logan, Timothy; Xi, Baike; Dong, Xiquan; Obrecht, Rebecca; Li, Zhanqing; Cribb, Maureen

    2010-04-01

    Asian dust events occur frequently during the boreal spring season. Their optical properties have been analyzed by using a combination of source region (ground-based and satellite) and remote Pacific Ocean (aircraft) measurements during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) field campaign which lasted from 7 April to 15 May 2006. A strong dust event originating from the Gobi Desert and passing over the Xianghe surface site on 17 April 2006 has been extensively analyzed. The surface averaged aerosol optical depth (AOD) values increased from 0.17 (clear sky) to 4.0 (strong dust), and the Angström exponent (α) dropped from 1.26 (clear sky) to below 0.1. Its total downwelling SW flux over the Xianghe site (thousands of kilometers away from the dust source region) is only 46% of the clear-sky value with almost no direct transmission and nearly double the diffuse SW clear-sky value. This event was also captured 6 days later by satellite observations as well as the UND/NASA DC-8 aircraft over the eastern Pacific Ocean. The DC-8 measurements in the remote Pacific region further classified the plumes into dust dominant, pollution dominant, and a mixture of dust and pollution events. HYSPLIT backward trajectories not only verified the origins of each case we selected but also showed (1) two possible origins for the dust: the Gobi and Taklimakan deserts; and (2) pollution: urban areas in eastern China, Japan, and other industrialized cities east of the two deserts. Based on the averaged satellite retrieved AOD data (0.5° × 0.5° grid box), declining AOD values with respect to longitude demonstrated the evolution of the transpacific transport pathway of Asian dust and pollution over the period of the field campaign.

  12. Follow-up of the fate of imazalil from post-harvest lemon surface treatment to a baking experiment.

    Science.gov (United States)

    Vass, Andrea; Korpics, Evelin; Dernovics, Mihály

    2015-01-01

    Imazalil is one of the most widespread fungicides used for the post-harvest treatment of citrus species. The separate use of peel during food preparation and processing may hitherto concentrate most of the imazalil into food products, where specific maximum residue limits hardly exist for this fungicide. In order to monitor comprehensively the path of imazalil, our study covered the monitoring of the efficiency of several washing treatments, the comparison of operative and related sample preparation methods for the lemon samples, the validation of a sample preparation technique for a fatty cake matrix, the preparation of a model cake sample made separately either with imazalil containing lemon peel or with imazalil spiking, the monitoring of imazalil degradation into α-(2,4-dichlorophenyl)-1H-imidazole-1-ethanol because of the baking process, and finally the mass balance of imazalil throughout the washing experiments and the baking process. Quantification of imazalil was carried out with an LC-ESI-MS/MS set-up, while LC-QTOF was used for the monitoring of imazalil degradation. Concerning the washing, none of the addressed five washing protocols could remove more than 30% of imazalil from the surface of the lemon samples. The study revealed a significant difference between the extraction efficiency of imazalil by the EN 15662:2008 and AOAC 2007.1 methods, with the advantage of the former. The use of the model cake sample helped to validate a modified version of the EN 15662:2008 method that included a freeze-out step to efficiently recover imazalil (>90%) from the fatty cake matrix. The degradation of imazalil during the baking process was significantly higher when this analyte was spiked into the cake matrix than in the case of preparing the cake with imazalil-containing lemon peel (52% vs. 22%). This observation calls the attention to the careful evaluation of pesticide stability data that are based on solution spiking experiments.

  13. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    Science.gov (United States)

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  14. Optimization of Electrospray Ionization by Statistical Design of Experiments and Response Surface Methodology: Protein-Ligand Equilibrium Dissociation Constant Determinations

    Science.gov (United States)

    Pedro, Liliana; Van Voorhis, Wesley C.; Quinn, Ronald J.

    2016-09-01

    Electrospray ionization mass spectrometry (ESI-MS) binding studies between proteins and ligands under native conditions require that instrumental ESI source conditions are optimized if relative solution-phase equilibrium concentrations between the protein-ligand complex and free protein are to be retained. Instrumental ESI source conditions that simultaneously maximize the relative ionization efficiency of the protein-ligand complex over free protein and minimize the protein-ligand complex dissociation during the ESI process and the transfer from atmospheric pressure to vacuum are generally specific for each protein-ligand system and should be established when an accurate equilibrium dissociation constant (KD) is to be determined via titration. In this paper, a straightforward and systematic approach for ESI source optimization is presented. The method uses statistical design of experiments (DOE) in conjunction with response surface methodology (RSM) and is demonstrated for the complexes between Plasmodium vivax guanylate kinase ( PvGK) and two ligands: 5'-guanosine monophosphate (GMP) and 5'-guanosine diphosphate (GDP). It was verified that even though the ligands are structurally similar, the most appropriate ESI conditions for KD determination by titration are different for each.

  15. Neutron die-away experiment for remote analysis of the surface of the moon and the planets, phase 3

    Science.gov (United States)

    Mills, W. R.; Allen, L. S.

    1972-01-01

    Continuing work on the two die-away measurements proposed to be made in the combined pulsed neutron experiment (CPNE) for analysis of lunar and planetary surfaces is described. This report documents research done during Phase 3. A general exposition of data analysis by the least-squares method and the related problem of the prediction of variance is given. A data analysis procedure for epithermal die-away data has been formulated. In order to facilitate the analysis, the number of independent material variables has been reduced to two: the hydrogen density and an effective oxygen density, the latter being determined uniquely from the nonhydrogeneous elemental composition. Justification for this reduction in the number of variables is based on a set of 27 new theoretical calculations. Work is described related to experimental calibration of the epithermal die-away measurement. An interim data analysis technique based solely on theoretical calculations seems to be adequate and will be used for future CPNE field tests.

  16. Constraining the process-based land surface model ORCHIDEE by nutrient enrichment and forest management experiments in Sweden

    Science.gov (United States)

    Sofie Lansø, Anne; Resovsky, Alex; Guenet, Bertrand; Peylin, Philippe; Vuichard, Nicolas; Messina, Palmira; Smith, Benjamin; Ryder, James; Naudts, Kim; Chen, Yiying; Otto, Juliane; McGrath, Matthew; Valade, Aude; Luyssaert, Sebastiaan

    2017-04-01

    Understanding the coupling between carbon (C) and nitrogen (N) cycling in terrestrial ecosystems is key to predicting global change. While numerous experimental studies have demonstrated the positive response of stand-level photosynthesis and net primary production (NPP) to atmospheric CO2 enrichment, N availability has been shown to exert an important control on the timing and magnitude of such responses. Forest management is also a key driver of C storage in such ecosystems but interactions between forest management and the N cycle as a C storage driver are not well known. In this study, we use data from N-fertilization experiments at two long-term forest manipulation sites in Sweden to inform and improve the representation of C and N interaction in the ORCHIDEE land surface model. Our version of the model represents the union of two ORCHIDEE branches; 1) ORCHIDEE-CN, which resolves processes related to terrestrial C and N cycling, and 2) ORCHIDEE-CAN, which integrates a multi-layer canopy structure and includes representation of forest management practices. Using this new model branch, referred to as ORCHIDEE-CN-CAN, we simulate the growth patterns of managed forests both with and without N limitations. Combining our simulated results with measurements of various ecosystem parameters (such as soil N) will aid in ecosystem model development, reducing structural uncertainty and optimizing parameter settings in global change simulations.

  17. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    Science.gov (United States)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-02-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle ( θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low- k to high- k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  18. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    Science.gov (United States)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-01-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle (θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low-k to high-k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  19. Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification.

    Science.gov (United States)

    Pegalajar-Jurado, A; Joslin, J M; Hawker, M J; Reynolds, M M; Fisher, E R

    2014-08-13

    Herein, we describe the surface modification of an S-nitrosated polymer derivative via H2O plasma treatment, resulting in polymer coatings that maintained their nitric oxide (NO) releasing capabilities, but exhibited dramatic changes in surface wettability. The poly(lactic-co-glycolic acid)-based hydrophobic polymer was nitrosated to achieve a material capable of releasing the therapeutic agent NO. The NO-loaded films were subjected to low-temperature H2O plasma treatments, where the treatment power (20-50 W) and time (1-5 min) were varied. The plasma treated polymer films were superhydrophilic (water droplet spread completely in plasma-treated materials; however, they still result in physiologically relevant NO fluxes. XPS, SEM-EDS, and ATR-IR characterization suggests the plasma treatment resulted in polymer rearrangement and implantation of hydroxyl and carbonyl functional groups. Plasma treated samples maintained both hydrophilic surface properties and NO release profiles after storage at -18 °C for at least 10 days, demonstrating the surface modification and NO release capabilities are stable over time. The ability to tune polymer surface properties while maintaining bulk properties and NO release properties, and the stability of those properties under refrigerated conditions, represents a unique approach toward creating enhanced therapeutic biopolymers.

  20. Machinability study on discontinuously reinforced aluminium composites (DRACs using response surface methodology and Taguchi’s design of experiments under dry cutting condition

    Directory of Open Access Journals (Sweden)

    Raviraj Shetty1

    2008-03-01

    Full Text Available The development of metal matrix composites with discontinuous reinforcement represents a well-established method for improving the strength and stiffness of a material. This paper discusses the use of Taguchi’s design of experiments and response surface methodology (RSM for minimising the surface roughness in turning of discontinuously reinforced aluminium composites (DRACs having aluminum alloy 6061 as the matrix and containing 15 vol. % of silicon carbide particles with a mean diameter of 25µm under dry cutting condition. The measured results are then collected and analysed with the help of a commercial software package MINITAB15. The experiments are conducted using Taguchi’s experimental design technique. The matrices of test conditions include cutting speed, feed rates and depth of cut. The effect of cutting parameters on surface roughness is evaluated and the optimum cutting condition for minimising the surface roughness is determined. A second-order model is established between the cutting parameters and the surface roughness using RSM. The experimental results reveal that the most significant machining parameter for surface roughness is feed, followed by cutting speed. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the surface roughness in the machining of DRACs.

  1. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment.

    Science.gov (United States)

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability.

  2. Hydroelastic Response of Surface-Effect Ship Bow Seals: Large-Scale Experiments and Post-Buckling Analysis

    Science.gov (United States)

    Wiggins, Andrew D.

    Bow seals are critical components on advanced marine vehicles that rely on aerostatic support to reduce drag. They consist of a series of open-ended fabric cylinders ("fingers") that contact the free surface and, when inflated, form a compliant pressure barrier. Bow seals are unique in that, unlike a majority of structures in civil and mechanical engineering, bow seals operate in a buckled state. The response characteristics of these structures are of practical interest due to unacceptable wear rates on seal components and difficulties in predicting seal performance. Despite this, the hydroelastic response of the seal system, particularly basic information on seal vibration modes and the mechanisms responsible for seal wear, remains largely unknown. Similarly, estimates of the hydrodynamic loads on the seal system are inaccurate and based on heuristic scaling of data from small-scale experiments, where similitude is challenging to maintain. Thus, a large-scale test system is necessary to obtain accurate estimates of bow seal response. The work is comprised of three parts. Part one presents detailed observations of bow seal response acquired using a large-scale test platform developed as part of the present study. These high-resolution observations, the first of their kind, show bow seal response to be characterized by complex post-buckling behavior. Part two proposes an analytical framework for interpreting the wide range of behavior observed at large scale. Using this framework, key parameters driving seal conformation and stability are identified. It is found that, due to their buckled state, bow seals are highly susceptible to a mode switching instability, which may be a potential mechanism responsible for the damaging vibrations. In part three, a benchtop experiment is used to demonstrate that the scalings identified in this study hold across a wide range of bending rigidities. This work has implications for improving drag and wear characteristics in future bow

  3. Five Years of Land Surface Phenology in a Large Scale Hydrological Manipulation Experiment in an Arctic Tundra Landscape

    Science.gov (United States)

    Goswami, S.; Gamon, J. A.; Tweedie, C. E.

    2010-12-01

    Climate change appears to be most pronounced at high northern latitudes. Many of the observed and modeled climate change responses in arctic tundra ecosystems have profound effects on surface energy budgets, land-atmosphere carbon exchange, plant phenology, and geomorphic processes. Detecting biotic responses to a changing environment is essential for understanding the consequences of global change. Plants can work as very effective indicators of changing conditions and, depending on the nature of the change, respond by increasing or decreasing amounts of green-leaf biomass, chlorophyll, and water content. Shifts in the composition and abundance of plant species have important effects on ecosystem processes such as net primary production and nutrient cycling. Vegetation is expected to be responsive to arctic warming, although there is some uncertainty as to how the interplay between geomorphic, hydrologic, climatic and other biotic will manifest over a range of spatial scales. The NSF-supported Biocomplexity project in Barrow, Alaska, involves experimental manipulation of water table (drained, flooded, and control treatments) in a vegetated arctic thaw lake basin to investigate the effects of altered hydrology on land-atmosphere carbon balance. In each experimental treatment, hyperspectral reflectance data were collected in the visible and near IR range of the spectrum using a robotic tram system that operated along a 300m tramline during the snow free growing period between June and August 2005-09. Water table depths and soil volumetric water content was also collected along these transects. The years 2005-2007 were control or unmanipulated experimental years and 2008 and 2009 were experimental years where water table was raised (+10cm) and lowered (-10cm) in flooding and draining experiments respectively. This presentation will document the change in phenology (NDVI) between years, treatments, and land cover types. Findings from this research have implications

  4. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment (LTX)

    Science.gov (United States)

    Majeski, Dick

    2016-10-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  5. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    Science.gov (United States)

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  6. Manipulation of the surface density of states of Ag(111) by means of resonators: Experiment and theory

    Science.gov (United States)

    Fernández, J.; Moro-Lagares, María; Serrate, D.; Aligia, A. A.

    2016-08-01

    We show that the density of surface Shockley states of Ag(111) probed by the differential conductance G (V )=d I /d V by a scanning-tunneling microscope (STM) can be enhanced significantly at certain energies and positions introducing simple arrays of Co or Ag atoms on the surface, in contrast to other noble-metal surfaces. Specifically we have studied resonators consisting of two parallel walls of five atoms deposited on the clean Ag(111) surface. A simple model in which the effect of the adatoms is taken into account by an attractive local potential and a small hybridization between surface and bulk at the position of the adatoms explains the main features of the observed G (V ) and allows us to extract the proportion of surface and bulk states sensed by the STM tip. These results might be relevant to engineer the surface spectral density of states, to study the effects of surface states on the Kondo effect, and to separate bulk and surface contributions in STM studies of topological surface states.

  7. Competitive and synergistic effects between excimer VUV radiation and O radicals on the etching mechanisms of polyethylene and fluoropolymer surfaces treated by an atmospheric He–O2 post-discharge

    OpenAIRE

    Dufour, Thierry; Hubert, J.; Vandencasteele, N; Viville, P; Lazzaroni, R; Reniers, F

    2013-01-01

    International audience; Among various surface modification techniques, plasma can be used as a source for tailoring the surface properties of diverse materials. HDPE and fluoropolymer surfaces have been treated by the post-discharge of an atmospheric RF-plasma torch supplied with helium and oxygen gases. The plasma-treated surfaces were characterized by measurements of mass losses, water contact angles, x-ray photoelectron spectroscopy and atomic force microscopy. This experimental approach c...

  8. Surface water and atmospheric underway carbon data obtained during the World Ocean Circulation Experiment Indian Ocean survey cruises (R/V Knorr, December 1998--January 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, A. [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center; Allison, L. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

    1997-11-01

    This data documentation presents the results of the surface water and atmospheric underway measurements of mole fraction of carbon dioxide (xCO{sub 2}), sea surface salinity, and sea surface temperature, obtained during the World Ocean Circulation Experiment (WOCE) Indian Ocean survey cruises (December 1994--January 1996). Discrete and underway carbon measurements were made by members of the CO{sub 2} survey team. The survey team is a part of the Joint Global Ocean Flux Study supported by the US Department of Energy to make carbon-related measurements on the WOCE global survey cruises. Approximately 200,000 surface seawater and 50,000 marine air xCO{sub 2} measurements were recorded.

  9. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.

    Science.gov (United States)

    Bullock, Robin J; Aggarwal, Srijan; Perkins, Robert A; Schnabel, William

    2017-04-01

    In the event of a marine oil spill in the Arctic, government agencies, industry, and the public have a stake in the successful implementation of oil spill response. Because large spills are rare events, oil spill response techniques are often evaluated with laboratory and meso-scale experiments. The experiments must yield scalable information sufficient to understand the operability and effectiveness of a response technique under actual field conditions. Since in-situ burning augmented with surface collecting agents ("herders") is one of the few viable response options in ice infested waters, a series of oil spill response experiments were conducted in Fairbanks, Alaska, in 2014 and 2015 to evaluate the use of herders to assist in-situ burning and the role of experimental scale. This study compares burn efficiency and herder application for three experimental designs for in-situ burning of Alaska North Slope crude oil in cold, fresh waters with ∼10% ice cover. The experiments were conducted in three project-specific constructed venues with varying scales (surface areas of approximately 0.09 square meters, 9 square meters and 8100 square meters). The results from the herder assisted in-situ burn experiments performed at these three different scales showed good experimental scale correlation and no negative impact due to the presence of ice cover on burn efficiency. Experimental conclusions are predominantly associated with application of the herder material and usability for a given experiment scale to make response decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    Science.gov (United States)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  11. Two-dimensional prognostic experiments for fast-flowing ice streams from the Academy of Sciences Ice Cap: future modeled histories obtained for the reference surface mass balance

    Directory of Open Access Journals (Sweden)

    Y. V. Konovalov

    2015-11-01

    Full Text Available The prognostic experiments for fast-flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago, are implemented in this study. These experiments are based on inversions of basal friction coefficients using a two-dimensional flow-line thermo-coupled model and the Tikhonov's regularization method. The modeled ice temperature distributions in the cross-sections were obtained using the ice surface temperature histories that were inverted previously from the borehole temperature profiles derived at the Academy of Sciences Ice Cap. Input data included InSAR ice surface velocities, ice surface elevations, and ice thicknesses obtained from airborne measurements and the surface mass balance, were adopted from the prior investigations for the implementation of both the forward and inverse problems. The prognostic experiments reveal that both ice mass and ice stream extents decline for the reference time-independent surface mass balance. Specifically, the grounding line retreats (a along the B–B' flow line from ~ 40 to ~ 30 km (the distance from the summit, (b along the C–C' flow line from ~ 43 to ~ 37 km, and (c along the D–D' flow line from ~ 41 to ~ 32 km considering a time period of 500 years and assuming time-independent surface mass balance. Ice flow velocities in the ice streams decrease with time and this trend results in the overall decline of the outgoing ice flux. Generally, the modeled histories are in agreement with observations of sea ice extent and thickness indicating a continual ice decline in the Arctic.

  12. Ultra-fast grain boundary diffusion and its contribution to surface segregation on a martensitic steel. Experiments and modeling

    Science.gov (United States)

    Christien, F.; Le Gall, R.

    2011-09-01

    Phosphorus surface segregation was measured by Auger Electron Spectroscopy on a 17-4 PH martensitic stainless steel at 450, 550 and 600 °C. Surface segregation was shown to be much faster than expected which was attributed to a high contribution of phosphorus diffusion along the former austenitic grain boundaries. A model of surface segregation was developed following the Darken-du Plessis approach and taking account of both bulk and grain boundary solute diffusion. The phosphorus grain boundary diffusion coefficient in 17-4 PH was estimated: DGB17-4 PH steel than in α-iron.

  13. Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting open-water and sea-ice surfaces during melt and freeze-up seasons

    OpenAIRE

    Sotiropoulou, G.; Tjernström, M.; Sedlar, J.; Achtert, P; Brooks, BJ; Brooks, IM; Persson, POG; Prytherch, J.; Salisbury, DJ; Shupe, MD; Johnston, PE; Wolfe, D.

    2016-01-01

    The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmo...

  14. Understanding polyethylene surface functionalization by an atmospheric He-O$_2$ plasma through combined experiments and simulation

    CERN Document Server

    Dufour, Thierry; Rich, Sami Abou; Neyts, Erik C; Bogaerts, Annemie; Reniers, François

    2016-01-01

    High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of C-O, C=O and O-C=O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.

  15. Comparison of experiment with Monte Carlo simulations on a reflective gap using a detailed surface properties model

    Energy Technology Data Exchange (ETDEWEB)

    Zaworski, J.; Welty, J.R. [Oregon State Univ., Corvallis, OR (United States); Palmer, B.J.; Drost, M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1996-05-01

    The spatial distribution of light through a rectangular gap bounded by highly reflective, diffuse surfaces was measured and compared with the results of Monte Carlo simulations. Incorporating radiant properties for real surfaces into a Monte Carlo code was seen to be a significant problem; a number of techniques for accomplishing this are discussed. Independent results are reported for measured values of the bidirectional reflectance distribution function over incident polar angles from 0 to 90 deg for a semidiffuse surface treatment (Krylon flat white spray paint). The inclusion of this information into a Monte Carlo simulation yielded various levels of agreement with experimental results. The poorest agreement occurred when the incident radiation was at a grazing angle with respect to the surface and the reflectance was nearly specular. 10 refs., 7 figs.

  16. Advanced surface cleaning methods: three years of experience with high pressure ultrapure water rinsing of superconducting cavaties

    Energy Technology Data Exchange (ETDEWEB)

    Kneisel, P.; Lewis, B.

    1995-01-01

    In the last three years we have carried out a large number of tests ofn single cell and multi-cell niobium and Nb{sub 3}Sn cavities at L- band frequencies, which as a final surface cleaning step had been rinsed with high pressure jets of ultrapure water. This treatment resulted in an unprecedented quality and reproducibility of cavity performance. Field emission free surfaces up to peak surface electric fields of E{sup peak} {ge} 45 MV/m were achieved nearly routinely after buffered chemical polishing of niobium surfaces. In addition, residual surface resistances below R{sub res} {le} 10 n{Omega} and as low as R{sub res} = 2 n{Omega} were not uncommon. In 5-cell production cavities of the Cornell/CEBAF shape gradients as high as E{sub acc} =21.5 MV/m corresponding to peak surface fields of E{sub peak} {approx} 55 MV/m have been measured after post purification with Ti without the need for rf-processing. Several Nb{sub 3}Sn - cavities exhibited no field emission loading after high pressure ultrapure water rinsing up to the maximum achievable surface fields of E{sup peak} {approx} 33 MV/m; the field limits were given by the available rf-power. The unprecedented reproducibility of the cavities permitted serial testing of various parameters affecting cavity performance such as the influence of residual gas inside the cavities prior to cooldown, the removal of the surface damage layer or the impact of peripheral parts such as rf-windows. The major portion of this paper summarizes several of the results obtained from investigations carried out during the last three years. The second part discusses possibilities for further improvements in cavity cleaning.

  17. Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L.

    Directory of Open Access Journals (Sweden)

    Shinya Hosokawa

    Full Text Available Accumulation of Cu, Zn, Cd, and Pb in the sediment of seagrass ecosystems was examined using mesocosm experiments containing Zostera marina (eelgrass and reference pools. Lead was approximately 20-fold higher in the surface sediment in the eelgrass pool than in eelgrass leaves and epiphytes on the eelgrass leaves, whereas zinc and cadmium were significantly lower in the surface sediment than in the leaves, with intermediate concentrations in epiphytes. Copper concentrations were similar in both the surface sediment and leaves but significantly lower in epiphytes. Carbon and nitrogen contents increased significantly with increasing δ13C in surface sediments of both the eelgrass and reference pools. Copper, Zn, Cd, and Pb also increased significantly with increasing δ13C in the surface sediment in the eelgrass pool but not in the reference pool. By decomposition of eelgrass leaves with epiphytes, which was examined in the eelgrass pool, copper and lead concentrations increased more than 2-fold and approximately a 10-fold, whereas zinc and cadmium concentrations decreased. The high copper and lead concentrations in the surface sediment result from accumulation in decomposed, shed leaves, whereas zinc and cadmium remobilized from decomposed shed leaves but may remain at higher concentrations in the leaves than in the original sediments. The results of our mesocosm study demonstrate that whether the accumulation or remobilization of trace metals during the decomposition of seagrass leaves is trace metal dependent, and that the decomposed seagrass leaves can cause copper and lead accumulation in sediments in seagrass ecosystems.

  18. Accumulation of Trace Metal Elements (Cu, Zn, Cd, and Pb) in Surface Sediment via Decomposed Seagrass Leaves: A Mesocosm Experiment Using Zostera marina L.

    Science.gov (United States)

    Hosokawa, Shinya; Konuma, Susumu; Nakamura, Yoshiyuki

    2016-01-01

    Accumulation of Cu, Zn, Cd, and Pb in the sediment of seagrass ecosystems was examined using mesocosm experiments containing Zostera marina (eelgrass) and reference pools. Lead was approximately 20-fold higher in the surface sediment in the eelgrass pool than in eelgrass leaves and epiphytes on the eelgrass leaves, whereas zinc and cadmium were significantly lower in the surface sediment than in the leaves, with intermediate concentrations in epiphytes. Copper concentrations were similar in both the surface sediment and leaves but significantly lower in epiphytes. Carbon and nitrogen contents increased significantly with increasing δ13C in surface sediments of both the eelgrass and reference pools. Copper, Zn, Cd, and Pb also increased significantly with increasing δ13C in the surface sediment in the eelgrass pool but not in the reference pool. By decomposition of eelgrass leaves with epiphytes, which was examined in the eelgrass pool, copper and lead concentrations increased more than 2-fold and approximately a 10-fold, whereas zinc and cadmium concentrations decreased. The high copper and lead concentrations in the surface sediment result from accumulation in decomposed, shed leaves, whereas zinc and cadmium remobilized from decomposed shed leaves but may remain at higher concentrations in the leaves than in the original sediments. The results of our mesocosm study demonstrate that whether the accumulation or remobilization of trace metals during the decomposition of seagrass leaves is trace metal dependent, and that the decomposed seagrass leaves can cause copper and lead accumulation in sediments in seagrass ecosystems.

  19. Three-dimensional geometry of thrust surfaces and the origin of sinuous thrust traces in orogenic belts: Insights from scaled sandbox experiments

    Science.gov (United States)

    Chattopadhyay, A.; Jain, M.; Bhattacharjee, D.

    2014-12-01

    Sinuous traces of emerging thrust tips, comprising multiple salients and recesses, are commonly observed in orogenic belts (e.g. Lesser Himalayas of India, Nepal and Bhutan) and in accretionary prisms (e.g. Nankai Trough off the coast of Japan). Lateral (along the strike of the deformation zone) variation in the depths of foreland basins (i.e. variable sediment thickness) or in the strength of the basal detachment, or presence of a curved indenter has been traditionally cited to explain the formation of salients in fold-and-thrust belts, although they are not applicable in all cases. In the present work, we have carried out four series of scaled analog model experiments using dry quartz sand, changing the dip of the basal decollément (β = 0° or 5°) and the basal friction (μb = 0.5 or 0.3) to investigate the 3D shape of thrust surfaces under varying overall boundary conditions, but without any lateral variation of these parameters, within the models. The experimental results show that under all boundary conditions, thrust surfaces are curved both in their dip and strike directions (i.e. spoon-shaped in 3D). Multiple concave-upward and convex-upward segments constitute a thrust surface, which produces a sinuous trace when the tip line intersects the Earth's surface. It is also shown that thrust surface curvatures occur at different scales, and the overall thrust surface roughness (corrugations) has a self-affine fractal geometry.

  20. Characterization of surface modifications by white light interferometry: applications in ion sputtering, laser ablation, and tribology experiments.

    Science.gov (United States)

    Baryshev, Sergey V; Erck, Robert A; Moore, Jerry F; Zinovev, Alexander V; Tripa, C Emil; Veryovkin, Igor V

    2013-02-27

    In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: i. Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. ii. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. iii. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.

  1. Characterization of film surface treated with ECR plasma by Doppler broadening

    CERN Document Server

    Nishijima, S; Hirata, K; Kobayashi, Y; Honda, Y; Tagawa, S

    2000-01-01

    Doppler broadened positron annihilation measurements were carried out using the positron beam technique on plasma treated polyethylene films as a function of incident positron energy. In addition, surface properties of the treated films also have been measured using other conventional techniques such as FT-IR, SEM and AFM. The surface tension of the films was also determined using sessile drop method. The S-parameter is seen to decrease on the surface upon plasma treatment that introduces polar groups such as hydroxyl and carbonyl on the surface. The results are discussed.

  2. Coastal Zone Color Scanner (CZCS): Imagery of near-surface phytoplankton pigment concentrations from the first coastal ocean dynamics experiment (CODE-1), March - July 1981

    Science.gov (United States)

    Abbott, M. R.; Zion, P. M.

    1984-01-01

    As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.

  3. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    Science.gov (United States)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2017-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  4. Improved analytic methods for coal surface area and pore size distribution determination using 77 K nitrogen adsorption experiment

    Institute of Scientific and Technical Information of China (English)

    Wang Gongda; Wang Kai; Ren Tingxiang

    2014-01-01

    77 K nitrogen adsorption was the most widely used technique for determining surface area and pore size distribution of coal. Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) model are com-monly used analytic methods for adsorption/desorption isotherm. A Chinese anthracite coal is tested in this study using an improved experimental method and adsorption isotherm analyzed by three adsorp-tion mechanisms at different relative pressure stages. The result shows that the micropore filling adsorp-tion predominates at the relative pressure stage from 6.8E?7 to 9E?3. Theoretically, BET and BJH model are not appropriate for analyzing coal samples which contain micropores. Two new analytic procedures for coal surface area and pore size distribution calculation are developed in this work. The results show that BET model underestimates surface area, and micropores smaller than 1.751 nm account for 35.5%of the total pore volume and 74.2%of the total surface area. The investigation of surface area and pore size distribution by incorporating the influence of micropore is significant for understanding adsorption mechanism of methane and carbon dioxide in coal.

  5. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: first-principles calculations and experiments

    CERN Document Server

    Kim, E; Hite, D A; McKay, K S; Pappas, D P; Weck, P F; Sadeghpour, H

    2016-01-01

    The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.

  6. Experiment and Statistical Analysis of End Milling Parameters for Al/SiC Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna M

    2015-12-01

    Full Text Available For industrial applications, the ceramics composites are machined in large scale using end milling. Due the abrasive reinforcement particle, the failure in tool life and surface quality are possible. This research work focuses on developing the mathematical models of cutting force (FR, Metal Removal Rate (MRR and surface roughness (Ra and to optimize it. The Response Surface Methodology (RSM with L31 empirical model was used for conducting the basic trails on Al/SiC composites of various compositions. The XRD, EDS, Optical microscopic images of Al/SiC composites were analysed and the SEM morphology of the machined samples were studied. The models developed for predicting responses were tested by analysis of variance (ANOVA to evaluate its adequacy. The optimal machining configuration was identified which yields 0.5%, 14% and 4% of MRR, Ra and FR respectively compared with experimental results.

  7. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments

    Science.gov (United States)

    Kim, E.; Safavi-Naini, A.; Hite, D. A.; McKay, K. S.; Pappas, D. P.; Weck, P. F.; Sadeghpour, H. R.

    2017-03-01

    The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, predicts a noise spectrum, in accordance with the measured values.

  8. Enhanced biocompatibility of TiO2 surfaces by highly reactive plasma

    Science.gov (United States)

    Junkar, Ita; Kulkarni, Mukta; Drašler, Barbara; Rugelj, Neža; Recek, Nina; Drobne, Damjana; Kovač, Janez; Humpolicek, Petr; Iglič, Aleš; Mozetič, Miran

    2016-06-01

    In the present study the biological response to various nanotopographic features after gaseous plasma treatment were studied. The usefulness of nanostructured surfaces for implantable materials has already been acknowledged, while less is known on the combined effect of nanostructured plasma modified surfaces. In the present work the influence of oxygen plasma treatment on nanostructured titanium oxide (TiO2) surfaces was studied. Characterization of the TiO2 surface chemical composition and morphological features was analyzed after plasma modification by x-ray photoelectron spectroscopy and by scanning electron microscopy while surface wettability was studied with measuring the water contact angle. Cell adhesion and morphology was assessed from images taken with scanning electron microscopy, whereas cell viability was measured with a calorimetric assay. The obtained results showed that oxygen plasma treatment of TiO2 nanotube surfaces significantly influences the adhesion and morphology of osteoblast-like cells in comparison to untreated nanostructured surfaces. Marked changes in surface composition of plasma treated surfaces were observed, as plasma treatment removed hydrocarbon contamination and removed fluorine impurities, which were present due to the electrochemical anodization process. However no differences in wettability of untreated and plasma treated surfaces were noticed. Treatment with oxygen plasma stimulated osteoblast-like cell adhesion and spreading on the nanostructured surface, suggesting the possible use of oxygen plasma surface treatment to enhance osteoblast-like cell response.

  9. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  10. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.

    Science.gov (United States)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  11. The L-band PBMR measurements of surface soil moisture in FIFE. [First International satellite land surface climatology project Field Experiment

    Science.gov (United States)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1990-01-01

    The NASA Langley Research Center's L-band pushbroom microwave radiometer (PBMR) aboard the NASA C-130 aircraft was used to map surface soil moisture at and around the Konza Prairie Natural Research Area in Kansas during the four intensive field campaigns of FIFE in May-October 1987. There was a total of 11 measurements was made when soils were known to be saturated. This measurement was used for the calibration of the vegetation effect on the microwave absorption. Based on this calibration, the data from other measurements on other days were inverted to generate the soil moisture maps. Good agreement was found when the estimated soil moisture values were compared to those independently measured on the ground at a number of widely separated locations. There was a slight bias between the estimated and measured values, the estimated soil moisture on the average being lower by about 1.8 percent. This small bias, however, was accounted for by the difference in time of the radiometric measurements and the soil moisture ground sampling.

  12. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  13. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  14. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  15. Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments.

    Science.gov (United States)

    Němec, Michal; Syrová, Michaela; Dokoupilová, Lenka; Veselý, Petr; Šmilauer, Petr; Landová, Eva; Lišková, Silvie; Fuchs, Roman

    2015-01-01

    We compared the responses of the nesting red-backed shrikes (Lanius collurio) to three dummies of a common nest predator, the Eurasian jay (Garrulus glandarius), each made from a different material (stuffed, plush, and silicone). The shrikes performed defensive behaviour including attacks on all three dummies. Nevertheless, the number of attacks significantly decreased from the stuffed dummy through the plush dummy and finally to the silicone dummy. Our results show that wild birds use not only colours but also other surface features as important cues for recognition and categorization of other bird species. Moreover, the silicone dummy was attacked only when presented after the stuffed or plush dummy. Thus, we concluded that the shrikes recognized the jay only the stuffed (with feathered surface) and plush (with hairy surface) dummies during the first encounter. Recognition of the silicon dummy (with glossy surface) was facilitated by previous encounters with the more accurate model. This process resembles the effect of perceptual priming, which is widely described in the literature on humans.

  16. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    Science.gov (United States)

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  17. Simulation and Experiment on Surface Morphology and Mechanical Properties Response in Nano-Indentation of 6H-SiC

    Science.gov (United States)

    Li, Chen; Zhang, Feihu; Meng, Binbin; Ma, Zhaokai

    2017-02-01

    The nano-indentation test for 6H-SiC is carried out with a Berkovich indenter. The indentation surface morphology is analyzed by SEM, which show that when the maximum load P max is 8 mN, there is only plastic deformation and no cracks on the surface of workpiece after unloading process, and when P max is 10 mN, there is the initiation of crack occurring on the surface of workpiece after unloading process. Based on the strain hardening model, the three-dimensional finite element method of nano-indentation for 6H-SiC is carried out. Simulation results show that in the unloading process the maximum stress and the maximum strain occur in the contact area between the workpiece with the indenter edges, which is consistent with the experimental results. When propagate to the surface from the subsurface, the cracks are subjected to the type I stress and the type II stress due to elastic recovery. After propagating to surface of workpiece, the cracks propagate along a fixed direction because the proportion of type I stress is much larger than that of type II stress. The influence of the cleavage plane on the propagation direction of cracks is obvious. The cracks propagate more easily when the indenter edges are along cleavage plane. The indentation depth and residual depth increase with the increase of P max. While, the elastic recovery rate gradually decreases and tends to be stable with the increase of P max. When P max is <10 mN, the micro-hardness and the elastic modulus increase linearly with the increase of P max. When P max exceeds 10 mN, the micro-hardness decreases with the increase of P max and then gradually tends to be stable, and the elastic modulus increases by power function with the increase of P max and then gradually tends to be stable.

  18. NASA Cold Land Processes Experiment (CLPX 2002/03): Ground-based and near-surface meteorological observations

    Science.gov (United States)

    Kelly Elder; Don Cline; Angus Goodbody; Paul Houser; Glen E. Liston; Larry Mahrt; Nick Rutter

    2009-01-01

    A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPXas well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters...

  19. Comparisons between buoy-observed, satellite-derived, and modeled surface shortwave flux over the subtropical North Atlantic during the Subduction Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Waliser, Duane E. [Institute for Terrestrial and Planetary Atmospheres, State University of New York, Stony Brook (United States); Weller, Robert A. [Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (United States); Cess, Robert D. [Institute for Terrestrial and Planetary Atmospheres, State University of New York, Stony Brook (United States)

    1999-12-27

    Two years of surface shortwave flux data, from five buoys in the subtropical North Atlantic Ocean during the Subduction Experiment, were used to examine shortwave absorption in the atmosphere, and its partitioning between the clear and cloudy sky. Robust methods were used to isolate the clear-sky shortwave observations so that they could be directly compared to values derived using a single-column version of the National Center for Atmospheric Research Community Climate Model radiation code. The model-derived values agreed with the observations to within 0.5% mean relative error. Additional analysis showed that the model-data clear-sky surface shortwave differences showed no systematic relationship with respect to column water vapor amount. These results indicate that clear-sky absorption of shortwave radiation appears to be well modeled by current theory. Model-derived clear-sky surface shortwave values were combined with the observed (all-sky) values to determine the surface shortwave cloud forcing. The mean of these series were combined with 5-year mean Earth Radiation Budget Experiment derived top of the atmosphere (TOA) cloud forcing values to estimate the surface to TOA cloud forcing ratio. The resulting values range between 1.25 and 1.59. These values, along with the agreement between modeled and observed clear-sky surface shortwave, support the suggestion that our current theoretical radiative transfer models do not properly account for the amount of shortwave energy absorbed by the cloudy atmosphere. Mean values from the 2-year shortwave flux time series were compared to mean values from two climatologies derived from bulk parameterizations that utilize ship-based cloud reports. These comparisons show that the Oberhuber climatology underestimates the surface shortwave flux by {approx}20% ({approx}40 W m-2), while the Esbensen and Kushnir climatology underestimates the flux by {approx}4% ({approx}8 W m-2). The observed mean values were also compared to five

  20. Efforts to Find, Recover and Restore "A National Treasure", The Apollo Lunar Surface Experiments Package (ALSEP) Data Set

    Science.gov (United States)

    Nagihara, S.; Lewis, L. R.; Nakamura, Y.; Neal, C. R.; Chi, P. J.; Williams, D. R.; Schmidt, G. K.; Currie, D. G.; Taylor, P. T.; Hills, H. K.; Horanyi, M.; Gruen, E.; Dyal, P.; Freeman, J. W.; Reiff, P. H.; Bates, J.; Hager, M. A.; Kiefer, W. S.; Perkins, D.

    2014-12-01

    ALSEP science stations were deployed by Apollo astronauts at 5 Apollo lunar landing sites and were comprised of 13 active science experiments which were flown 4 to 8 at a time. All ALSEPs were turned-off on 9-30-1977, after they had generated a data set of 31 system data years and an experiment data set of over 100 data years. The 3 passive laser retroreflector experiments are still providing useable return signals. The plan was for NASA to archive the raw data, while PI Teams archived their processed data in GSFC-NSSDC. In 1975 funding for science experiments was drastically reduced. Archiving of experiments data was incomplete and in other cases experiment years of data were never analyzed. JSC's ALSEP operations manager at-end-mission stressed that the 10s of 1,000s of pages of ALSEP operational and background materals be archived in Lunar and Planetary Library for future use. In 2004 there was a renewed interest in old ALSEP science data. However, current investigators found ALSEP data very difficult to use because of its archaic formats, rerecording artifacts, and lack of suitable playback tape transports. In 2007 a group of original ALSEP personnel, current lunar investigators, and personnel from NSSDC began an effort to help solve ALSEP data availability problems. NSSDC PDS established a Lunar Node whose role was to restore the existing ALSEP data into forms which could be used by current lunar investigators. Excellent progress was achieved in several areas*. In 2010 NLSI made the Recovery of Missing ALSEP Data, a NLSI Focus Group. The group estimated 50 percent of ALSEP processed data and 80 percent of ALSEP experiments raw data were never archived with NSSDC. We suspect archival raw data tapes for the first 44 ALSEP mission months (AMM) were degaussed and reused, those for AMM 45 to 79 were lost, misplaced or destroyed in a complex system of NASA, government, industrial storage facilities (except for ~450 tapes located by S. Nagihara). The last 19 AMMs of

  1. Demonstrating the angular, wavelength and polarization dependence of surface plasmon resonance on thin gold films—An undergraduate experiment

    Science.gov (United States)

    Connolly, Peter W. R.; Kaplan, Andrey

    2016-10-01

    This paper describes the design of a simple and compact optical system capable of examining fundamental properties of light coupling to surface plasmon resonance (SPR) on a thin gold film. The setup, involving a rotatable Attenuated Total Reflection device, from which the reflected light is focused by means of a parabolic mirror, allows for the investigation of the dependence of the reflected intensity on the angle of incidence without moving the detector. It additionally makes provision for a convenient exchange of light sources or the possibility to incorporate a broadband source suitable to investigate SPR at different wavelengths. Theoretical simulation of the experimental data is provided, as well as straightforward calculations for exploring the physics of light excited waves propagating on a surface.

  2. Potential-dependent water orientation on Pt(1 1 1) stepped surfaces from laser-pulsed experiments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Araez, Nuria [Instituto de Electroquimica, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain); Climent, Victor [Instituto de Electroquimica, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)], E-mail: victor.climent@ua.es; Feliu, Juan M. [Instituto de Electroquimica, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)

    2009-01-01

    Coulostatic potential transients induced by nanosecond pulsed laser irradiation on Pt(1 1 1) stepped surfaces in perchloric acid solutions are analyzed here. The results provide unique information on the effect of the structure of the metal surface on the potential-dependent water reorientation at the electrified interphase. The most significant information is obtained from the sign and shape of the laser-induced transients. The existence of two potentials where the transient is zero can be related to the local properties of the surface, i.e. the existence of two local potentials of zero free charge, corresponding to the step and terrace sites. The dependency of these quantities with the step density is studied in detail. In addition, it is found that the presence of steps significantly slows down the coulostatic response at potentials in the double-layer region, which has been interpreted as a decrease in the velocity of water reorganization. The corresponding relaxation time is estimated and its dependency with the step density is also analyzed.

  3. Introduction to special section: Studies of the ocean surface from the Spaceborne Imaging Radar-C/X-Band SAR experiments

    Science.gov (United States)

    Holt, Benjamin

    1998-08-01

    Nearly 20 years have now passed since Seasat briefly sampled the ocean surface with its suite of then extraordinarily advanced active microwave instruments. The tantalizing 3-month snapshots from Seasat's altimeter and scatterometer were analyzed and reanalyzed and used to justify follow-on missions that were finally implemented within the last decade, including the ERS missions, TOPEX/POSEIDON, NSCAT, and Geosat. The third active microwave instrument carried on Seasat, the synthetic aperture radar (SAR), has had more of a mixed success in its contribution to physical oceanography, despite its being flown on four satellites since 1991, the European Space Agency's ERS-I and ERS-2, the Japanese Space Agency's JERS-I, and Canada's RADARSAT. The recent special issue on oceanographic results from ERS-I and ERS-2 (special section on Advances in Oceanography and Sea Ice Research Using ERS Observations, Journal of Geophysical Research, 103(C4), 1998) has numerous papers that incorporate SAR for both ocean and polar sea ice research. The finescale twodimensional view of the ocean surface seen in SAR imagery provides unparalleled detail of the short wave field and its interactions with longer waves and currents. However, the detailed view comes at an expense. Using the imagery for oceanographic applications has required the unraveling of the data's often baffling signatures, arising not only from the complicated wave-wave and wave-current interactions but also from the varying local wind field. Once understood, these signatures provide new and unique oceanographic and atmospheric information at higher spatial resolution than is available in the other microwave instruments. One approach to untangle this challenging interaction of ocean and radar physics is to look at the ocean surface simultaneously with multiple radar frequencies and polarizations. Most commonly, this is done with aircraft and surface-based instrumentation. This suite of multiple channels provides a more

  4. "UV-olution, a photochemistry experiment in Low Earth Orbit": investigation of the photostability of carboxylic acids exposed to Mars surface UV radiation conditions

    Science.gov (United States)

    Stalport, Fabien; Guan, Yuan Yong; Noblet, Audrey; Coll, Patrice; Szopa, Cyril; Macari, Frederique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    The detection and identification of organics at Mars are necessary to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. Excepted methane, no organic matter was detected. The harsh environmental conditions on the surface could explain this non detection but only rare studies tested this hypothesis. To investigate the nature, abundance, and stability of organics that could survive under such conditions, we exposed in low Earth orbit organic molecules with martian astrobiological relevance to solar UV radiation ¿ 200 nm during 12 days, during the UVolution experiment, onboard the BIOPAN ESA module which was set outside a Russian Foton capsule. We also studied the photostability of these molecules in laboratory. Indeed we developed a laboratory experiment, MOMIE (Martian Organic Material Irradiation and Evolution) in order to investigate the behaviour of material related to Mars under UV radiation. The targeted molecules (AIB, mellitic, phthalic and trimesic acids) have been exposed with and without an analogous martian soil. Here, we present results with regard to the impact of solar UV radiation on the targeted molecules. Our results show that no sample seems to resist to UVs if directly exposed to them. Moreover, the presence of a mineral matrix seems to increases the photodestruction rate. These molecules should then not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected at the top of the surface.

  5. Experiences of the measurement of the extent of surface subsidence in the area of the Thorez Opencast mine

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, L.

    1987-01-01

    Experiences gained in the course of subsidence measurement in the environs of the Thorez opencast mine (North Hungary) and the results of recent subsidence measurements are summarized. The direction, size, extension and temporal variation of surficial movements caused by draining of formation water are dealt with. Two cases are dealt with in detail which were not caused by surficial movements and the real causes were revealed just by the subsidence measurements.

  6. Report and Analysis of the May 1979 Marine Surface Layer Micrometeorological Experiment at San Nicolas Island, California.

    Science.gov (United States)

    1981-12-31

    and the topic of horizontal homo - geneity of the marine boundary layer is discussed. -The experiment data base is to be made available on magnetic...EuC~~UC, E, -4) 0 .C,, 0 r- E ECC - - 0m C). ’A U0 r4 C4 M W5 U U C Cx 0 C-11 5 - n - : 0 : U~ CuU ~,~~C(U U E 260 -. NRL REPORT 8363 with a Particle

  7. Synthesis and Characterization of PEG-like Structures on Nitinol Surface under ECR-cold-plasma

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; WANG Jianhua; Tong Sheyi

    2005-01-01

    The synthesis and characterization of PEG-like macromolecular structures on Nitinol surface from tri (ethylene glycol) dimethyl-ether under ECR-cold-plasma conditions were discussed. It was demonstrated that based on high-resolution ESCA, ATR-FTIR and contact angle investigations, the deposited PEG-like layers are composed mainly of -CH2-CH2-O- linkages. These structures have a relatively low contact angle. Compared to the unmodified surfaces, the plasma-treated Nitinol surfaces are more hydrophilic. Plasma enhanced coatings of PEG-like layers can prevent Ni ion from releasing, thereby improving the biocompatibility of Nitinol.

  8. Titan Ice and Dust Experiment (TIDE): Detection and Analysis of Compounds of Interest to Astrobiology in the Lower Atmosphere and Surface of Titan

    Science.gov (United States)

    Kojiro, Daniel R.; Holland Paul M.; Stimac, Robert M.; Kaye, William J.; Takeruchi, Noreshige

    2004-01-01

    The Titan Orbiter Aerorover Mission (TOAM) is a proposed concept for the Solar System Exploration Visions Mission, Titan Explorer, a follow-on to the Cassini-Huygens mission. TOAM would use a Titan polar orbiter and a lighter-than-air aerorover to investigate the surface and atmosphere of Titan. Astrobiology issues will be addressed though TOAM investigations including, for example: Distribution and composition of organics (atmospheric, aerosol, surface); Organic chemical processes, their chemical context and energy sources; and Seasonal variations and interactions of the atmosphere and surface. The TIDE instrument will perform in-situ analyses to obtain comprehensive and sensitive molecular and elemental assays of volatile organics in the atmosphere, oceans and surface. TIDE chemical analyses are conducted by a Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS). This TIDE GC-IMS was a component of the mini-Cometary Ice and Dust Experiment (mini-CIDEX) developed for the chemical analysis of a cometary environment. Both the GC and helium IMS of mini-CIDEX have been further developed to better meet the analytical and operational requirements of the TOAM. application. A Micro-ElectroMechanical System (MEMS) GC and Mini-Cell helium IMS are under development to replace their respective mini-CIDEX components, providing similar or advanced analytical capabilities.

  9. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  10. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Bareiss

    2009-08-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in an Arctic landscape. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formula currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an untypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that only the use of a hydrodynamic three-layer temperature-profile model achieves enough accuracy for heat flux calculations as it reliably reproduces the temporal variability of the surface temperature.

  11. Multi-dimensional modelling of electrostatic force distance curve over dielectric surface: Influence of tip geometry and correlation with experiment

    Science.gov (United States)

    Boularas, A.; Baudoin, F.; Villeneuve-Faure, C.; Clain, S.; Teyssedre, G.

    2014-08-01

    Electric Force-Distance Curves (EFDC) is one of the ways whereby electrical charges trapped at the surface of dielectric materials can be probed. To reach a quantitative analysis of stored charge quantities, measurements using an Atomic Force Microscope (AFM) must go with an appropriate simulation of electrostatic forces at play in the method. This is the objective of this work, where simulation results for the electrostatic force between an AFM sensor and the dielectric surface are presented for different bias voltages on the tip. The aim is to analyse force-distance curves modification induced by electrostatic charges. The sensor is composed by a cantilever supporting a pyramidal tip terminated by a spherical apex. The contribution to force from cantilever is neglected here. A model of force curve has been developed using the Finite Volume Method. The scheme is based on the Polynomial Reconstruction Operator—PRO-scheme. First results of the computation of electrostatic force for different tip-sample distances (from 0 to 600 nm) and for different DC voltages applied to the tip (6 to 20 V) are shown and compared with experimental data in order to validate our approach.

  12. The influence of crystal faces on corrosion behavior of copper surface: First-principle and experiment study

    Science.gov (United States)

    Zhang, Zhengwei; Wang, Qiang; Wang, Xu; Gao, Lin

    2017-02-01

    When the MBT-:Cl- ratio is 50-10:1 in a solution containing of NaCl and Na-MBT (sodium salt of 2-mercaptobenzothiazole), the copper sample-1 (S1) was passivated; when the ration is 10-5:1, it was corroded. The copper sample-2 (S2) had no anti-corrosive ability in all solutions with MBT-:Cl- = 50-5:1. First-principle calculation revealed that the Cu atoms of (220) face, the main face of S1, have more unsaturated and energetic electrons than that of (200) and (111) faces, the main faces of S2. The highest chemical activation of the (220) face leads the S1 surface to show a better anti-corrosive ability.

  13. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fill, Matthias [ETH Zurich, Laser Spectroscopy and Sensing Lab, 8093 Zurich (Switzerland); Phocone AG, 8005 Zurich (Switzerland); Debernardi, Pierluigi [IEIIT-CNR, Torino 10129 (Italy); Felder, Ferdinand [Phocone AG, 8005 Zurich (Switzerland); Zogg, Hans [ETH Zurich (Switzerland)

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  14. A qualitative study of parents' experiences using family support services: applying the concept of surface and depth.

    Science.gov (United States)

    Whittaker, Karen A; Cox, Pat; Thomas, Nigel; Cocker, Karen

    2014-09-01

    United Kingdom policy and practice endorses family support for child well-being. Achieving such support requires multi-agency approaches that consider all aspects of parents' and children's lives and which offer practical, social and emotional help. The potential for services to make a positive impact on parents and their families will depend in part on the level and nature of engagement. In this paper, a case is made for the application of the two-part surface and depth concept for understanding how practitioners engage with families and how they might improve the chances of supporting sustainable differences for parents and families. To illustrate, qualitative data from a review of family centre support provided by a north of England local authority are presented. The review was commissioned to explore why families often need to re-engage with intensive support services. Data were drawn from interviews with parents (n = 18, recruited following a survey of all those registered with the service during April-May 2009) and discussions with family centre support workers (n = 4), and following thematic analysis, three dominant themes emerged--resources available, staff approach and real life--which were appraised in the light of the surface and depth concept. Much of the work with parents effectively dealt with pressing needs. This felt gratifying for both parent and worker and supported immediate service engagement. However, each noted that the more complex issues in parents' lives went unchallenged and thus the sustainability of progress in terms of parenting practice was questionable. A strengths focused approach by staff that understood needs in the context of parents' real-life circumstances was important to parent engagement. Thus, longer term benefits from family support require practitioners to work with parents to problem solve immediate issues while also digging deeper to acknowledge and seek to resolve the more complex challenges parents face in their real

  15. Surface-Layer Similarity Functions for Dissipation Rate and Structure Parameters of Temperature and Humidity Based on Eleven Field Experiments

    Science.gov (United States)

    Kooijmans, Linda M. J.; Hartogensis, Oscar K.

    2016-09-01

    In the literature, no consensus can be found on the exact form of the universal funtions of Monin-Obukhov similarity theory (MOST) for the structure parameters of temperature, {C_T}^2, and humidity, {C_q}^2, and the dissipation rate of turbulent kinetic energy, ɛ. By combining 11 datasets and applying data treatment with spectral data filtering and error-weighted curve-fitting we first derived robust MOST functions of {C_T}^2, {C_q}^2 and ɛ that cover a large stability range for both unstable and stable conditions. Second, as all data were gathered with the same instrumentation and were processed in the same way—in contrast to earlier studies—we were able to investigate the similarity of MOST functions across different datasets by defining MOST functions for all datasets individually. For {C_T}^2 and ɛ we found no substantial differences in MOST functions for datasets over different surface types or moisture regimes. MOST functions of {C_q}^2 differ from that of {C_T}^2, but we could not relate these differences to turbulence parameters often associated with non-local effects. Furthermore, we showed that limited stability ranges and a limited number of data points are plausible reasons for variations of MOST functions in the literature. Last, we investigated the sensitivity of fluxes to the uncertainty of MOST functions. We provide an overview of the uncertainty range for MOST functions of {C_T}^2, {C_q}^2 and ɛ, and suggest their use in determining the uncertainty in surface fluxes.

  16. Can alteration experiments on impact melts from El'gygytgyn and volcanic glasses shed new light on the formation of the Martian surface?

    Science.gov (United States)

    Hellevang, Helge; Dypvik, Henning; Kalleson, Elin; Pittarello, Lidia; Koeberl, Christian

    2013-07-01

    This investigation involved three specimens: an altered felsic sample of impactite from the ICDP El'gygytgyn drill core D1c, and two reference volcanics from Iceland, namely a rhyolitic glass and a basaltic glass. The goal of this work was to better understand the alteration of impact melt and volcanic glass, and to apply the results to an investigation of alteration processes below the surface of Mars. Hydrothermal batch alteration experiments with the El'gygytgyn sample showed formation of various silica phases such as cristobalite, opal, and quartz. According to geochemical modeling, zeolites were also expected, but zeolite minerals already present in the impactite prior to the experiment may have masked possible experimental zeolite growth. Basaltic glass was altered to smectite, talc, and opal. The accompanying numerical modeling gave results that were similar or comparable to the laboratory experiments. Rhyolitic glass was kinetically more stable than basaltic glass, and showed only minor formation of calcite and feldspar during the 3-week experiment. The study showed that closed-system isochemical alteration of both siliceous and mafic glasses and melts results in the formation of smectites and zeolites. Therefore, to link alteration features on Mars to specific physical conditions, the exact identity of the mineral phases present in surface rocks must be known. Moreover, our simulations on closed-system isochemical alteration showed that the fraction of zeolites and silica formed relative to smectite depends on the source mineral altered. Therefore, fractions of these mineral groups present in the Martian soil may be used to better predict source rock characteristics.

  17. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments.

    Science.gov (United States)

    Csapó, E; Majláth, Z; Juhász, Á; Roósz, B; Hetényi, A; Tóth, G K; Tajti, J; Vécsei, L; Dékány, I

    2014-11-01

    The interaction between kynurenic acid (KYNA) and two peptide fragments (ca. 30 residues) of Human Glutamate Receptor 201-300 (GluR1) using surface plasmon resonance (SPR) spectroscopy was investigated. Because of the medical interest in the neuroscience, GluR1 is one of the important subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). AMPARs are ionotoropic glutamate receptors, which are mediating fast synaptic transmission and are crucial for plasticity in the brain. On the other hand, KYNA has been suggested to have neuroprotective activity and it has been considered for apply in therapy in certain neurobiological disorders. In this article the adsorption of the GluR1201-230 and GluR1231-259 peptides were studied on gold biosensor chip. The peptides were chemically bonded onto the gold surface via thiol group of L-cysteine resulted in the formation of peptide monolayer on the SPR chip surface. Because the GluR1231-259 peptide does not contain L-cysteine the Val256 was replaced by Cys256. The cross sectional area and the surface orientation of the studied peptides were determined by SPR and theoretical calculations (LOMETS) as well. The binding capability of KYNA on the peptide monolayer was studied in the concentration range of 0.1-5.0 mM using 150 mM NaCl ionic strength at pH 7.4 (±0.02) in phosphate buffer solutions. In order to determine the binding enthalpy the experiments were carried out between +10°C and +40°C. The heat of adsorption was calculated by using adsorption isotherms at different surface loading of KYNA on the SPR chip.

  18. Wind flow and wind loads on the surface of a tower- shaped building: Numerical simulations and wind tunnel experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non- hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.

  19. X-ray scattering of periodic and graded multilayers: comparison of experiments to simulations from surface microroughness characterization

    CERN Document Server

    Salmaso, B; Canestrari, R; Raimondi, L; 10.1016/j.nima.2012.10.104

    2013-01-01

    To enhance the reflectivity of X-ray mirrors beyond the critical angle, multilayer coatings are required. Interface imperfections in the multilayer growth process are known to cause non-specular scattering and degrade the mirror optical performance; therefore, it is important to predict the amount of X-ray scattering from the rough topography of the outer surface of the coating, which can be directly measured, e.g., with an Atomic Force Microscope (AFM). This kind of characterization, combined with X-ray reflectivity measurements to assess the deep multilayer stack structure, can be used to model the layer roughening during the growth process via a well-known roughness evolution model. In this work, X-ray scattering measurements are performed and compared with simulations obtained from the modeled interfacial Power Spectral Densities (PSDs) and the modeled Crossed Spectral Densities for all the couples of interfaces. We already used this approach in a previous work for periodic multilayers; we now show how th...

  20. Tritium Plasma Experiment Upgrade and Improvement of Surface Diagnostic Capabilities at STAR Facility for Enhancing Tritium and Nuclear PMI Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M.; Taylor, C. N.; Pawelko, R. J.; Cadwallader, L. C.; Merrill, B. J.

    2016-04-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  1. Durable anti-fogging effect and adhesion improvement on polymer surfaces

    Science.gov (United States)

    Moser, E. M.; Gilliéron, D.; Henrion, G.

    2010-01-01

    The hydrophobic properties of polymeric surfaces may cause fogging in transparent packaging and poor adhesion to printing colours and coatings. Novel plasma processes for durable functionalization of polypropylene and polyethylene terephthalate substrates were developed and analysed using optical emission spectroscopy. A worm-like nano pattern was created on the polypropylene surface prior to the deposition of thin polar plasma polymerised layers. For both substrates, highly polar surfaces exhibiting a surface tension of up to 69 mN/m and a water contact angle of about 10° were produced - providing the anti-fogging effect. The deposition of thin plasma polymerised layers protects the increased surface areas and enables to tailoring the surface energy of the substrate in a wide range. Wetting characteristics were determined by dynamic contact angle measurements. Investigations of the chemical composition of several layers using X-ray photoelectron spectroscopy and FT-infrared spectroscopy were correlated with functional testing. The surface topography was investigated using atomic force microscopy. The weldability and peeling-off characteristics of the plasma treated polymer films could be adjusted by varying the process parameters. Global and specific migration analyses were undertaken in order to ensure the manufacturing of plasma treated polymer surfaces for direct food contact purposes.

  2. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    Science.gov (United States)

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were

  3. UVolution, a Photochemistry Experiment in Low Earth Orbit: Investigation of the Photostability of Carboxylic Acids Exposed to Mars Surface UV Radiation Conditions

    Science.gov (United States)

    Stalport, Fabien; Guan, Yuan Yong; Coll, Patrice; Szopa, Cyril; Macari, Frédérique; Raulin, François; Chaput, Didier; Cottin, Hervé

    2010-05-01

    The detection and identification of organic molecules on Mars are of prime importance to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. To date, however, no complex organic compounds have been detected on Mars. The harsh environmental conditions at the surface of Mars are commonly advocated to explain this nondetection, but few studies have been implemented to test this hypothesis. To investigate the nature, abundance, and stability of organic molecules that could survive under such environmental conditions, we exposed, in low Earth orbit, organic molecules of martian astrobiological relevance to solar UV radiation (>200 nm). The experiment, called UVolution, was flown on board the Biopan ESA module, which was situated outside a Russian Foton automated capsule and exposed to space conditions for 12 days in September 2007. The targeted organic molecules [α-aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid] were exposed with, and without, an analogous martian soil. Here, we present experimental results of the impact of solar UV radiation on the targeted molecules. Our results show that none of the organic molecules studied seemed to be radiotolerant to the solar UV radiation when directly exposed to it. Moreover, the presence of a mineral matrix seemed to increase the photodestruction rate. AIB, mellitic acid, phthalic acid, and trimesic acid should not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected from the first centimeters of the top surface layer.

  4. Ensemble urban flood simulation in comparison with laboratory-scale experiments: Impact of interaction models for manhole, sewer pipe, and surface flow

    Science.gov (United States)

    Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime

    2016-11-01

    An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.

  5. UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carboxylic acids exposed to mars surface UV radiation conditions.

    Science.gov (United States)

    Stalport, Fabien; Guan, Yuan Yong; Coll, Patrice; Szopa, Cyril; Macari, Frédérique; Raulin, François; Chaput, Didier; Cottin, Hervé

    2010-05-01

    The detection and identification of organic molecules on Mars are of prime importance to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. To date, however, no complex organic compounds have been detected on Mars. The harsh environmental conditions at the surface of Mars are commonly advocated to explain this nondetection, but few studies have been implemented to test this hypothesis. To investigate the nature, abundance, and stability of organic molecules that could survive under such environmental conditions, we exposed, in low Earth orbit, organic molecules of martian astrobiological relevance to solar UV radiation (>200 nm). The experiment, called UVolution, was flown on board the Biopan ESA module, which was situated outside a Russian Foton automated capsule and exposed to space conditions for 12 days in September 2007. The targeted organic molecules [alpha-aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid] were exposed with, and without, an analogous martian soil. Here, we present experimental results of the impact of solar UV radiation on the targeted molecules. Our results show that none of the organic molecules studied seemed to be radiotolerant to the solar UV radiation when directly exposed to it. Moreover, the presence of a mineral matrix seemed to increase the photodestruction rate. AIB, mellitic acid, phthalic acid, and trimesic acid should not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected from the first centimeters of the top surface layer.

  6. Towards a validation of surface-enhanced Raman scattering (SERS) for use in forensic science: repeatability and reproducibility experiments.

    Science.gov (United States)

    Muehlethaler, Cyril; Leona, Marco; Lombardi, John R

    2016-11-01

    In order for a new analytical technique such as surface-enhanced Raman scattering (SERS) to be used in a routine manner, data and studies on the validation of the method are required. In that context, we performed a systematic study of the variability observed at different levels of the analytical procedure (i.e. respectively measurement, sampling, colloids aliquots, colloids batches, laboratories). Our goal is to provide data towards a qualitative validation of the technique for identification purposes. Three molecules of forensic interest were used as probes, respectively crystal violet, methamphetamine and 2,4,6-trinitrotoluene (TNT). We demonstrate that the method is repeatable with RSD and multivariate techniques (PCA). The % RSD at the different analytical stages vary between the molecules and the peaks considered. The repeatability is on the order of 2-6% for crystal violet, and 5-16% for TNT. Methamphetamine binds very weakly to the silver colloids giving much greater variability in the measurements (5-29%). We show that spectra measured in the same conditions (e.g. same laboratory and instrument), even a few days apart, are comparable and stable. The largest source of variation has been identified to be the measurement conditions and the associated random fluctuations in intensity (i.e. Brownian motion of the particles, solvent evaporation and concentration). The influence of the substrate is confirmed to be negligible. However, the reproducibility between different laboratories and different instruments introduced the largest source of variability (∼ 10-70%). Despite these factors, we demonstrate that qualitative identification of the species under analysis by measurement and comparison of peaks position is always successful even though quantitative analysis is, at present, difficult. Regardless of the amount of variability determined, the molecules could always be successfully identified, even on different instruments from different laboratories by

  7. The derivation of an anisotropic velocity model from combined surface and borehole seismic experiments at the COSC-1 borehole, central Sweden

    Science.gov (United States)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2016-04-01

    The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision, where the surface geology in combination with geophysical data provide control of the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep fully cored boreholes in western Jämtland, central Sweden. In 2014 the COSC-1 borehole was successfully drilled through the Seve Nappe Complex. This unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during collisional orogeny. A major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Combined with core analysis and downhole logging, the survey will allow extrapolation of the structures away from the borehole. The survey consisted of three parts: 1) a high-resolution zero-offset Vertical Seismic Profile (VSP), 2) a multi-azimuthal walkaway VSP in combination with three long offset surface receiver lines, and 3) a limited 3D seismic survey. Data from the multi-azimuthal walkaway VSP experiment and the long offset surface lines were used to derive a detailed velocity model around the borehole from the inversion of first arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated from the zero-offset VSP revealed clear differences in velocities for mainly horizontally and vertically traveling waves. Therefore, an anisotropic VTI model was constructed, using the P-wave velocity function from zero-offset VSP and the Thomson parameters ɛ and δ. The latter were partly derived from ultrasonic lab measurements on COSC-1 core samples. Traveltimes were calculated with an anisotropic eikonal solver and serve as the basis

  8. Analysis of science team activities during the 1999 Marsokhod Rover Field Experiment: Implications for automated planetary surface exploration

    Science.gov (United States)

    Thomas, Geb; Cabrol, Nathalie; Rathe, April

    2001-04-01

    This work analyzes the behavior and effectiveness of a science team using the Marsokhod mobile robot to explore the Silver Lake region in the Mojave Desert near Baker, California. The work addresses the manner in which the geologists organized themselves, how they allocated their time in different activities, how they formed and communicated scientific hypotheses, and the frequency with which they requested different types of data from the mission archive during the first 3 days of the mission. Eleven scientists from the NASA Ames Research Center and three of the five scientists who participated from their home institutions were videotaped as they worked throughout the 3-day experiment. The videotape record indicates that 46% of available person-hours were consumed in semistructured or formal meetings and that only 1% of their time was spent studying immersive, three-dimensional virtual reality models of the robot's surroundings. The remainder of their time was spent in unstructured work sessions in groups of two or three. Hypothesis formation and evolution patterns show a meager flow of information from the distributed science team to the on-site team and a bias against reporting speculative hypotheses. Analysis of the visual imagery received from the robot indicates that acquisition of the large panoramic information leads to high levels of redundancy in the data acquired. The scientists' archive requests indicate that small, specifically requested image targets were the most frequently accessed information. The work suggests alternative organizational structures that would expedite the flow of information within the geologic team. It also advocates emphasizing specific science targets over high-resolution, stereoscopic, panoramic imaging when programming a mobile robot's onboard cameras.

  9. Surface wave Tomography on the Indian Plate under La Réunion Island from RHUM-RUM experiment data

    Science.gov (United States)

    Mazzullo, Alessandro; Stutzmann, Eleonore; Montagner, Jean-Paul; Barruol, Guilhem; Sigloch, Karin; Maurya, Satish

    2016-04-01

    The island of La Reunion has been created by one of the most active volcanoes in the world, but the origin at depth of the mantle upwelling beneath the hotspot is still controversial. More particularly the interaction between the plume and the ridge is not known. In the framework of the RHUM-RUM project, an array of 57 french and german ocean bottom seismometers (OBS) has been deployed during one year (2012-2013) over an area of 2000 km x 2000 km centered on La Reunion Island. 15 land stations have also been installed in Madagascar, the Comoros and Mozambique. This dataset has been used to obtain a high resolution tomographic model of the South West indian area. For each earthquake-station path, Rayleigh wave fundamental mode phase velocity has been measured using the roller-coaster method in the period range 30-250 seconds. The total dataset consists of 3500 paths. This dataset has then been regionalized and inverted versus depth using a simulated annealing method in which the number and shape of the splines that describe the S-wave velocity model are variable. The model lateral resolution is about 500 km. We observe a good correlation between the tomographic model and surface tectonics down to about 100 km depth. At 50 km depth, a slow velocity anomaly is found beneath the hot-spot of Réunion-Mauritius islands. This slow anomaly is extended along the Rodrigues ridge up to the Indian central ridge which confirms a connection between the plume and the ridge. At greater depth (150 km) a large slow velocity anomaly is observed beneath the Réunion hot-spot elongated in the direction of the African plate motion, that may be related to the spreading of hot plume material. We also observe slow velocities beneath the hot-spots of Marion, Crozet and Kerguelen. Finally, under Comoros archipelago, the slow velocity anomaly may be the signature of the termination of the East African rift.

  10. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    Science.gov (United States)

    Andriyash, A. V.; Astashkin, M. V.; Baranov, V. K.; Golubinskii, A. G.; Irinichev, D. A.; Kondrat'ev, A. N.; Kuratov, S. E.; Mazanov, V. A.; Rogozkin, D. B.; Stepushkin, S. N.; Khatunkin, V. Yu.

    2016-06-01

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wave pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10-15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.

  11. Runoff characteristics and washoff loads from rainfall-simulation experiments on a street surface and a native pasture in the Denver metropolitan area, Colorado

    Science.gov (United States)

    Mustard, Martha H.; Ellis, Sherman R.; Gibbs, Johnnie W.

    1987-01-01

    Rainfall simulation studies were conducted in conjunction with the Denver Regional Urban Runoff Program to: (1) Compare runoff quantity and quality from two different intensities of rainfall on impervious plots having identical antecedent conditions, (2) document a first flush of constituent loads in runoff from l,000-square-foot street-surface plots, (3) compare runoff characteristics from a street surface subjected to simulated rainfall with those from a 69-acre urban basin of mixed land use subjected to natural rainfall, (4) perform statistical analysis of constituent loads in the runoff with several independent variables, and (5) compare the quantity and quality of runoff from 400-square-foot plots of native grasses used for pasture and subjected to simulated rainfall with that from a 405-acre basin covered with native grasses used for pasture and subjected to natural rainfall. The rainfall simulations conducted on the street surface showed that higher intensity simulated rainfall produced a higher percentage of runoff than lower intensity rainfall. A first flush of constituent loads occurred for most constituents in the runoff from most rainfall simulations on the street surface; however, a first flush did not occur in the runoff from simulated rainfall on the pasture. The event mean concentrations of constituents in the runoff from simulated storms on the street surface were generally much smaller than the event mean concentrations of constituents in the runoff from an adjacent urban basin. Analysis of the data from the rainfall simulations on a street surface indicates that intensity of rainfall and total rainfall are important variables determining constituent loads. The design of the experiment was such that intensity of rainfall and total rainfall were highly correlated, thus precluding the development of useful regression equations to predict washoff loads. The quality of runoff from the simulated rainfall on the pasture was influenced by the disturbed

  12. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    Science.gov (United States)

    Pantosti, Daniela

    2017-04-01

    normal faults mapped in the available geological literature is noteworthy. The field data collected suggest a complex coseismic surface faulting pattern along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays. The cumulative surface faulting length has been estimated in about 40 km. The maximum vertical offset is significant, locally exceeding 2 meters along the Mt. Vettore Fault, measured both along bedrock fault planes and free-faces affecting unconsolidated deposits. This enormous collaborative experience has a twofold relevance, on the one side allowed to document in high detail the earthquake ruptures before Winter would destroy them, on the other represent the first large European experience for coseismic effects survey that we should use a leading case to establish a coseismic effects European team to get ready to respond to future seismic crises at the European level.

  13. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  14. Transport of Bacteria and Virus-Sized Particles and Bacteriophage from Ground Surface to Depth in a Bedrock Aquifer - A Field Experiment

    Science.gov (United States)

    Novakowski, K. S.; Trimper, S.; Praamsma, T.; Springthorpe, S.

    2010-12-01

    Shallow, unprotected bedrock aquifers are common sources of drinking water supply in eastern North America. The vulnerability of these aquifers to contamination from pathogens is widely recognised, although little is actually known about the transport processes involved, particularly where the source is located near to or on ground surface (i.e. a septic system). In this experiment we explore the transport of fluorescent microspheres having diameters of 1.75 and 0.3 µm and the bacteriophage Φ-X174 in a sparsely-fractured gneissic terrain having minimal overburden cover. The experiment was conducted by ponding water in a 7 m2 area on the edge of an outcrop having observable vertical fractures and measuring the arrival of particles in two nearby monitoring wells. A conservative solute tracer (Lissamine FF) was also used to follow the solute front. In order to encourage transport to the wells and to provide a discharge stream to sample, pumping was conducted at a rate of 7.7 L/min from the lower half of the 15-m deep well farthest from the pond (approximately 7 m away). Sampling was conducted from the pumping stream, the upper 5 m of that well and the upper 5 m of an additional well located about 5 m from the surface pond. The experiment was conducted over a 48 hr period and samples were obtained every 15 min initially declining to once every 2 hrs towards the end of the experiment. Analysis of the bacteriophage was conducted using the Double Agar Layer method and the concentration of microspheres was determined using epi-fluorescent microscopy. As the latter is very time consuming, only preliminary results are available for the microsphere transport. The results show widespread migration of both the microspheres and the bacteriophage, as arrival in all sampling locations was detected. Mass recovery was low but similar for both the bacteriophage and the solute tracer, although the majority of the bacteriophage arrived much earlier than the majority of the solute

  15. Analysis of experiments for the effect of noncondensable gases on steam condensation over a vertical tube external surface under low wall subcooling

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiqiang; Sun, Zhongning, E-mail: sunzhongning@hrbeu.edu.cn; Ding, Ming; Fan, Guangming

    2014-10-15

    Highlights: • The effect of wall subcooling on HTC under low wall subcooling degree is stronger than Nusselt analysis. • New empirical correlation for steam condensation over a vertical tube external surface under low wall subcooling degree have been developed. • There is no noncondensable gases stratification phenomenon during all the present experiments. - Abstract: Experimental investigations have been conducted to study the steam heat removal capacity with noncondensable gases (e.g. air, helium) under low wall subcooling over a vertical tube external surface. The effect of the wall subcooling on the steam condensation heat transfer coefficients has been researched by experiments when the pressure and the air mass fractions are stable. At the air/steam cases, condensation heat transfer coefficient has been obtained under the wall subcooling degree ranging from13 to 25 °C, total pressure ranging from 0.4 MPa to 0.6 MPa and air mass fraction ranging from 0.07 to 0.52. Under the same pressure and noncondensable gases mass fraction, the effect of wall subcooling on condensation heat transfer coefficient with noncondensable gases is stronger than that with pure steam. The empirical correlation is developed for the heat transfer coefficient which covered all data points within 15%. Under air/helium/steam cases, the effect of helium (simulating hydrogen) on the heat transfer coefficient is investigated under the wall subcooling degree ranging from 18 to 27 °C, total pressure ranging from 0.53 MPa to 0.6 MPa, steam mass fraction ranging from 0.6 to 0.92 and helium volume fraction in noncondensable gases keeping 0.3. None of the experimental conditions is found the helium stratification. The condensation heat transfer coefficient that got from steam/air/helium condition is about 20% lower than that got from air/steam cases.

  16. Surface contamination of the LIL optical components and their evolution after laser irradiation (1. series of experiments); La pollution surfacique de la LIL et son evolution sur un composant optique soumis a une irradiation laser (1. serie d'experiences)

    Energy Technology Data Exchange (ETDEWEB)

    Palmier, St.; Garcia, S.; Lamaignere, L.; Manac' h, P.; Rullier, J.L.; Tovena, I

    2006-07-01

    In the context of the Laser Megajoule project, a study has been carried out to observe the correlation between particle contamination at the surface of the optical components and laser irradiation. The experiments consist in placing silica samples in the Ligne d'Integration Laser (LIL) environment more precisely around the frequency conversion crystals and beam focusing area. Particle contamination at the surface samples is characterized and quantified. Then its behaviour under 1064 nm laser irradiation is observed. From the results of this first series of experiments, it appears that on irradiated silica samples treated with anti reflection coatings, surface particles or contamination can induce a surface defect. (author)

  17. Measuring the permittivity of the surface of the Churyumov-Gerasimenko nucleus: the PP-SESAME experiment on board the Philae/ROSETTA lander

    Science.gov (United States)

    Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.

    2014-12-01

    Within Philae, the lander of the Rosetta spacecraft, the Permittivity Probe (PP) experiment as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) package was designed to measure the low frequency (Hz-kHz) electrical properties of the close subsurface of the nucleus.At frequencies below 10 kHz, the electrical signature of the matter is especially sensitive to the presence of water ice and its temperature. PP-SESAME will thus allow to determine the water ice content in the near-surface and to monitor its diurnal and orbital variations thus providing essential insight on the activity and evolution of the cometary nucleus.The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a first dipole, and the induced electrical voltage is measured with a second dipole. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate the dielectric constant and electric conductivity of the ground. To do this we have developed a method called the "capacity-influence matrix method".A replica of the instrument was recently built in LATMOS (France) and was tested in the frame of a field campaign in the giant ice cave system of Dachstein, Austria. In the caves, the ground is covered with a thick layer of ice, which temperature is rather constant throughout the year. This measurement campaign allowed us to test the "capacity influence matrix method" in a natural icy environment.The first measurements of the PP-SESAME/Philae experiment should be available in mid-November. In this paper we will present the "capacity-influence matrix method", the measurements and results from the Austrian field campaign and the preliminary analysis of the PP-SESAME/Philae data.

  18. Surface plasmon resonance investigation of optical detection in plasma-modified phospholipid layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungchoo; Cho, Chanyoun; Choi, Kyoungho; Jeon, Honggoo [Kwangwoon University, Seoul (Korea, Republic of)

    2012-03-15

    We herein report on a study of surface plasmon resonance (SPR) in thin gold (Au) films coated with thin layers of phospholipid material, which had been exposed to an atmospheric pressure (AP) plasma containing both pure Ar and Ar mixed with O{sub 2} (Ar/O{sub 2}, 0.8%). The phospholipid material that we used for the SPR experiments was lecithin, and the AP plasma system was applied in air by means of a radio-frequency (RF) plasma generator. A thin (∼60 nm) film of Au and a thin (∼15 nm) layer of lecithin were deposited and attached to the face of a prism, and surface plasmon modes were excited along the interfaces of the prism-Au-lecithin-air system by means of prism coupling using a He-Ne Laser (632.8 nm). The experimental SPR reflectance curves of the Au-lecithin-air modes were found to be shifted towards those of the Au-air mode with increasing applications of AP RF plasma treatment. From the shifts in the SPR curves, we found that the estimated thickness of the lecithin layer treated with a pure Ar plasma showed a linear decrease with etching rate of about 3 nm per treatment while the thickness of the lecithin layer treated with a mixed Ar/O{sub 2} plasma showed a tendency to saturate following a large initial decrease (ca. 14 nm). All these results demonstrate that the use of SPR sensing could facilitate the detection of extremely small variations in plasma-treated films of biomaterials.

  19. Experience ATLAS on the surface

    CERN Multimedia

    2009-01-01

    The new high-tech ATLAS Visitor Centre was officially inaugurated on 23 February. Located next to the ATLAS control centre at Point 1, it boasts some technology to rival its neighbour. var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2009/CERN-MOVIE-2009-004/CERN-MOVIE-2009-004-0753-kbps-640x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-004/CERN-MOVIE-2009-004-Multirate-200-to-753-kbps-640x360-25-fps.wmv', 'false', 533, 300, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-004/CERN-MOVIE-2009-004-posterframe-640x360-at-10-percent.jpg', '1164774', true, 'Video/Public/Movies/2009/CERN-MOVIE-2009-004/CERN-MOVIE-2009-004-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4'); Watch the video! The centre is overflowing with fun, interactive activities. Juliette Davenne, lef...

  20. Characteristics of epoxy resin/SiO2 nanocomposite insulation: effects of plasma surface treatment on the nanoparticles.

    Science.gov (United States)

    Yan, Wei; Phung, B T; Han, Zhao Jun; Ostrikov, Kostya

    2013-05-01

    The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.

  1. Surface Modification of Poly Vinyl Chloride (PVC) Using Low Pressure Argon and Oxygen Plasma

    Science.gov (United States)

    Mahmood, Ghoranneviss; Sheila, Shahidi; Jakub, Wiener

    2010-04-01

    In this study, commercial poly vinyl chloride (PVC) films were treated by oxygen and argon plasmas in a cylindrical glass tube which was surrounded by a DC variable magnetic field, with different sample positions in the plasma reactor and also different exposure durations. Effects of the plasma treatment on the hydrophilic properties of the films were studied by measuring the water drop contact angle on the surface of the samples. The surface topography of the untreated and plasma treated films was analyzed and compared by atomic force microscopy (AFM). The optical characteristic changes in treated samples were investigated using reflective spectrophotometry. Also, the chemical changes which appeared on the surface of the samples were investigated using Fourier transform infrared spectroscopy (FTIR). The results show that the plasma treated PVC becomes more hydrophilic with an enhanced wettability. A sharp decrease in the water contact angle may also be a consequence of the surface texturization. The aging effect on wettability of the samples was also investigated. The results show that the effect of oxygen plasma on the surface properties of the samples is more pronounced compared with that of argon plasma.

  2. West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    Science.gov (United States)

    Xue, Yongkang; De Sales, Fernando; Lau, William K.-M.; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; Li, Suosuo; Druyan, Leonard M.; Sanda, Ibrah Seidou; Thiaw, Wassila; Zeng, Ning; Comer, Ruth E.; Lim, Young-Kwon; Mahanama, Sarith; Song, Guoqiong; Gu, Yu; Hagos, Samson M.; Chin, Mian; Schubert, Siegfried; Dirmeyer, Paul; Ruby Leung, L.; Kalnay, Eugenia; Kitoh, Akio; Lu, Cheng-Hsuan; Mahowald, Natalie M.; Zhang, Zhengqiu

    2016-12-01

    The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the twentieth century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60 % of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40 % of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic

  3. "PROCESS and UVolution: photochemistry experiments in Low Earth Orbit": investigation of the photostability of organic and mineral material exposed to Mars surface UV radiation conditions

    Science.gov (United States)

    Stalport, Fabien; Guan, Yuan Yong; Noblet, Audrey; Coll, Patrice; Szopa, Cyril; Macari, Frederique; Person, Alain; Chaput, Didier; Raulin, Francois; Cottin, Hervé

    The harsh martian environment could explain the lack of organics and minerals such as car-bonates by destroying them: i) no organic molecule has been found at the two different landing sites of the Viking landers within the detection limits of the instruments onboard, ii) to date, no large deposits of carbonates have been detected and their detection is specific of local ar-eas and in very low amounts. In this context several experimental and numerical modelling studies were led to evaluate the possibility for the destruction or evolution of the organics and carbonates under the martian surface environmental conditions. The presence of UV radiation has been proposed to explain the photodecomposition of such material. This is the reason why, to investigate the nature, abundance, and stability of organic and mineral material that could survive under such environmental conditions, we exposed in low Earth orbit organic molecules and carbonates (also biominerals) with martian relevance to solar UV radiation ¿ 200 nm, in the frame of the experiment UVolution, onboard the BIOPAN ESA module which was set outside a Russian Foton automated capsule and exposed to space condition during 12 days in September 2007, and the experiment PROCESS (hervé peux tu rajouter quelques infos sur le temps exact d'exposition stp) which was set outside the International Space Station (ISS). Here, we present results with regard to the impact of solar UV radiation on the targeted molecules. Preliminary results indicate that that no organic sample seems to resist to the solar UV radiation if directly exposed to it. Conversely our results show that the exposed carbonates seem to be stable to the solar UV radiation if directly exposed to it. Moreover, the stability of the biominerals strengthens the interest to explore deeper their potential as life records at Mars. Hence they should be considered as primary targets for in situ analyses during future missions.

  4. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam

    Science.gov (United States)

    Jessen, Søren; Postma, Dieke; Larsen, Flemming; Nhan, Pham Quy; Hoa, Le Quynh; Trang, Pham Thi Kim; Long, Tran Vu; Viet, Pham Hung; Jakobsen, Rasmus

    2012-12-01

    Three surface complexation models (SCMs) developed for, respectively, ferrihydrite, goethite and sorption data for a Pleistocene oxidized aquifer sediment from Bangladesh were used to explore the effect of multicomponent adsorption processes on As mobility in a reduced Holocene floodplain aquifer along the Red River, Vietnam. The SCMs for ferrihydrite and goethite yielded very different results. The ferrihydrite SCM favors As(III) over As(V) and has carbonate and silica species as the main competitors for surface sites. In contrast, the goethite SCM has a greater affinity for As(V) over As(III) while PO43- and Fe(II) form the predominant surface species. The SCM for Pleistocene aquifer sediment resembles most the goethite SCM but shows more Si sorption. Compiled As(III) adsorption data for Holocene sediment was also well described by the SCM determined for Pleistocene aquifer sediment, suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed. The concentrations of As (SCM correctly predicts desorption for As(III) but for Si and PO43- it predicts an increased adsorption instead of desorption. The goethite SCM correctly predicts desorption of both As(III) and PO43- but failed in the prediction of Si desorption. These results indicate that the prediction of As mobility, by using SCMs for synthetic Fe-oxides, will be strongly dependent on the model chosen. The SCM based on the Pleistocene aquifer sediment predicts the desorption of As(III), PO43- and Si quite superiorly, as compared to the SCMs for ferrihydrite and goethite, even though Si desorption is still somewhat under-predicted. The observation that a SCM calibrated on a different sediment can predict our field results so well suggests that sediment based SCMs may be a

  5. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu-Ri [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kwon, Jae-Sung [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Song, Doo-Hoon [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Choi, Eun Ha [Plasma Bioscience Research Center Kwangwoon University, Seoul 139-701, 447-1 Wokgye-Dong, Nowon-Gu, Seoul (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn, E-mail: kmkim@yuhs.ac [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2013-11-29

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering.

  6. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  7. Different Organization of Type I Collagen Immobilized on Silanized and Nonsilanized Titanium Surfaces Affects Fibroblast Adhesion and Fibronectin Secretion.

    Science.gov (United States)

    Marín-Pareja, Nathalia; Cantini, Marco; González-García, Cristina; Salvagni, Emiliano; Salmerón-Sánchez, Manuel; Ginebra, Maria-Pau

    2015-09-23

    Silanization has emerged in recent years as a way to obtain a stronger and more stable attachment of biomolecules to metallic substrates. However, its impact on protein conformation, a key aspect that influences cell response, has hardly been studied. In this work, we analyzed by atomic force microscopy (AFM) the distribution and conformation of type I collagen on plasma-treated surfaces before and after silanization. Subsequently, we investigated the effect of the different collagen conformations on fibroblasts adhesion and fibronectin secretion by immunofluorescence analyses. Two different organosilanes were used on plasma-treated titanium surfaces, either 3-chloropropyl-triethoxy-silane (CPTES) or 3-glycidyloxypropyl-triethoxy-silane (GPTES). The properties and amount of the adsorbed collagen were assessed by contact angle, X-ray photoelectron spectroscopy, optical waveguide lightmode spectroscopy, and AFM. AFM studies revealed different conformations of type I collagen depending on the silane employed. Collagen was organized in fibrillar networks over very hydrophilic (plasma treated titanium) or hydrophobic (silanized with CPTES) surfaces, the latter forming little globules with a beads-on-a-string appearance, whereas over surfaces presenting an intermediate hydrophobic character (silanized with GPTES), collagen was organized into clusters with a size increasing at higher protein concentration in solution. Cell response was strongly affected by collagen conformation, especially at low collagen density. The samples exhibiting collagen organized in globular clusters (GPTES-functionalized samples) favored a faster and better fibroblast adhesion as well as better cell spreading, focal adhesions formation, and more pronounced fibronectin fibrillogenesis. In contrast, when a certain protein concentration was reached at the material surface, the effect of collagen conformation was masked, and similar fibroblast response was observed in all samples.

  8. Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile–butadiene–styrene blends

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.B. [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Chen, Y. [School of materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002 (China); Wang, F. [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Hong, R.Y., E-mail: rhong@suda.edu.cn [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); College of Chemistry, Chemical Engineering and Materials Science & Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China)

    2015-10-01

    Highlights: • CB was modified through the method of oxygen plasma treatment. • Surface modified CB applied in PC/ABS blends. • The treated CB showed better compatibility in PC/ABS blends. • PC/ABS blends with treated CB showed better mechanical and thermal properties. - Abstract: The surface of carbon black was modified by oxygen plasma treatment for different times (10, 20 and 30 min). In order to increase the applicability of carbon black (CB), functional groups were grafted on the generally inert surface of CB using oxygen plasma. The surface compositional and structural changes that occurred on CB were investigated by SEM, FT-IR, Raman spectroscopy, XRD and BET. Subsequently, CB reinforced polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) composites were prepared by internal batch mixing with the addition of different content of CB (3, 6, 9, 12 wt%). The morphology of PC/ABS/CB (7/3/6 wt%) nanocomposites was studied through scanning electron microscopy. Observations of SEM images showed that the plasma-treated CB had a better dispersion in the blend matrix. Moreover, the mechanical tests showed that the tensile strength and impact strength were improved by 32.4% and 22.5%, respectively, with the addition of plasma-treated CB. In addition, the thermal stability was improved and glass transition temperatures of both PC and ABS increased as shown by TGA and DSC, respectively.

  9. Surfacing Moves

    DEFF Research Database (Denmark)

    Lutz, Peter

    2013-01-01

    such as schedules, machines, and aging bodies. To this end, the article also experiments with ‘surfacing’ as an ethnographic heuristic for figuring these different ‘spatial-timings’. The article concludes that surfacing matters not only in senior home care but also in the field-desks of ethnographic analysis....

  10. Surfacing Moves

    DEFF Research Database (Denmark)

    Lutz, Peter

    2013-01-01

    such as schedules, machines, and aging bodies. To this end, the article also experiments with ‘surfacing’ as an ethnographic heuristic for figuring these different ‘spatial-timings’. The article concludes that surfacing matters not only in senior home care but also in the field-desks of ethnographic analysis....

  11. Cytocompatibility of oxygen plasma-treated polylactic acid and bioactive glass guided bone regeneration membrane%氧等离子处理聚乳酸与生物活性玻璃引导骨再生膜的细胞相容性

    Institute of Scientific and Technical Information of China (English)

    齐磊; 同志超; 伍骥

    2015-01-01

    BACKGROUND:Currently, bioactive glass and polylactic acid have been used in clinical dentistry and plastic surgery; however, their therapeutic outcomes are not satisfactory, because the material properties have some limitations. OBJECTIVE:To explore the cytocompatibility of oxygen plasma-treated polylactic acid and bioactive glass guided bone regeneration membrane. METHODS:Bioactive glass and polylactic acid were used as the basic materials to prepare polylactic acid membrane, polylactic acid and bioactive glass composite membrane and oxygen plasme-treated polylactic acid and bioactive glass composite membrane, al of which were used to culture MG63 cels. Cel adhesion rate, cel proliferation rate and alkaline phosphatase activity of MG63 cels on these three kinds of membranes were observed. RESULTS AND CONCLUSION: With the growth of time, in these three groups of membranes, the cel adhesion rate and cel proliferation rate were al significantly increased. Alkaline phosphatase activity showed a decreasing trend after the first increase, and reached its peak at the 7thday of culture. The cel adhesion rate and cel proliferation rate in oxygen plasma-treated polylactic acid and bioactive glass group were significantly higher than those in the other two groups, while the cel adhesion and proliferation rates in polylactic acid and polylactic acid and bioactive glass groups were similar. At the 3rd day of culture, the alkaline phosphatase activity in the polylactic acid and bioactive glass group and oxygen plasma-treated polylactic acid and bioactive glass group was significantly higher than that in the polylactic acid group. At the 7th and 14th days, there was no significant difference in the alkaline phosphatase activity among these three groups. These results show that oxygen plasma-treated polylactic acid and bioactive glass composite membrane has good biocompatibility, which can better promote cel adhesion, proliferation and matrix secretion from osteogenic cels.%背

  12. Vineyard weeds control practices impact on surface water transfers: using numerical tracer experiment coupled to a distributed hydrological model to manage agricultural practices spatial arrangements.

    Science.gov (United States)

    Colin, F.; Moussa, R.

    2009-04-01

    In rural basins, agricultural landscape management highly influences water and pollutants transfers. Landuse, agricultural practices and their spatial arrangements are at issue. Hydrological model are widely used to explore impacts of anthropogenic influences on experimental catchments. But planning all spatial arrangements leads to a possible cases count which cannot be considered. On the basis of the recent « numerical experiment » approach, we propose a « numerical tracer function » which had to be coupled to a distributed rainfall-runoff model. This function simulate the transfer of a virtual tracer successively spread on each distributed unit inside the catchment. It allows to rank hydrological spatial units according to their hydrological contribution to the surface flows, particularly at the catchment outlet. It was used with the distributed model MHYDAS in an agricultural context. The case study concerns the experimental Roujan vine-growing catchment (1km², south of France) studied since 1992. In this Mediterranean context, we focus on the soil hydraulic conductivity distributed parameter because it highly depends on weed control practices (chemical weeding induces a lot more runoff than mechanical weeding). We checked model sensitivity analysis to soil hydraulic conductivity spatial arrangement on runoff coefficient, peak discharge and catchment lag-time. Results show (i) the use of the tracer function is more efficient than a random approach to improve sensitivity to spatial arrangements from point of view of simulated discharge range, (ii) the first factor explaining hydrological simulations variability was practices area ratio, (iii) variability induced by practices spatial arrangements was significant on runoff coefficient and peak discharge for balanced practices area ratio and on lag-time for low area ratio of chemical weeding practices. From the actual situation on the experimental Roujan catchment (40% of tilled and 60% of non tilled vineyard

  13. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    Science.gov (United States)

    Rezaei, Fatemeh; Shokri, Babak; Sharifian, M.

    2016-01-01

    This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid-base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was observed that plasma-treated samples exhibited significantly better biocompatibility, comparing to the pristine one.

  14. Biofouling development on plasma treated samples versus layers coated samples

    Science.gov (United States)

    Hnatiuc, B.; Exnar, P.; Sabau, A.; Spatenka, P.; Dumitrache, C. L.; Hnatiuc, M.; Ghita, S.

    2016-12-01

    Biofouling is the most important cause of naval corrosion. In order to reduce the Biofouling development on naval materials as steel or resin, different new methods have been tested. These methods could help to follow the new IMO environment reglementations and they could replace few classic operations before the painting of the small ships. The replacement of these operations means a reduction in maintenance costs. Their action must influence especially the first two steps of the Biofouling development, called Microfouling, that demand about 24 hours. This work presents the comparative results of the Biofouling development on two different classic naval materials, steel and resin, for three treated samples, immersed in sea water. Non-thermal plasma, produced by GlidArc technology, is applied to the first sample, called GD. The plasma treatment was set to 10 minutes. The last two samples, called AE9 and AE10 are covered by hydrophobic layers, prepared from a special organic-inorganic sol synthesized by sol-gel method. Theoretically, because of the hydrophobic properties, the Biofouling formation must be delayed for AE9 and AE10. The Biofouling development on each treated sample was compared with a witness non-treated sample. The microbiological analyses have been done for 24 hours by epifluorescence microscopy, available for one single layer.

  15. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  16. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    Directory of Open Access Journals (Sweden)

    Aiping Zeng

    2017-01-01

    Full Text Available The plasma treatment on commercial active carbon (AC was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI.

  17. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    Science.gov (United States)

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P plasma technology in contact lens surface modification.

  18. Suppression of cell-spreading and phagocytic activity on nano-pillared surface: in vitro experiment using hemocytes of the colonial ascidian Botryllus schlosseri

    Directory of Open Access Journals (Sweden)

    L Ballarin

    2015-02-01

    Full Text Available Nano-scale nipple array on the body surface has been described from various invertebrates including endoparasitic and mesoparasitic copepods, but the functions of the nipple array is not well understood. Using the hydrophilized nanopillar sheets made of polystyrene as a mimetic material of the nipple arrays on the parasites’ body surface, we assayed the cell spreading and phagocytosis of the hemocytes of the colonial ascidian Botryllus schlosseri. On the pillared surface, the number of spreading amebocytes and the number of phagocytizing hemocytes per unit area were always smaller than those on the flat surface (Mann-Whitney test, p < 0.05 - 0.001, probably because the effective area for the cell attachment on the pillared surface is much smaller than the area on the flat sheet. The present results supports the idea that the nipple array on the parasites' body surface reduces the innate immune reaction from the host hemocytes.

  19. Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Menezes Atayde, Cleuson de; Doi, Ioshiaki [Center for Semiconductor Components, University of Campinas - UNICAMP, Campinas, SP (Brazil); School of Electrical and Computer Engineering, University of Campinas - UNICAMP, Campinas, SP (Brazil)

    2010-02-15

    Surface modification of polydimethylsiloxane (PDMS, Sylgard 184) was carried out by O{sub 2} plasma and UV in broadband mode/O{sub 2} plasma treatments with different exposure times, and studied in terms of hydrophilic stability. Water contact angle measurements, Fourier Transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the analysis of the modified surface and hydrophilic stability of the PDMS films. The results show reasonably good hydrophilic stability in the range of a week with a contact angle of around 70 for O{sub 2} plasma treated samples, whereas a more high hydrophilic stability, with a low contact angle of 65 up to 15 days, was observed for UV/O{sub 2} plasma treated PDMS. FTIR analysis of the samples reveals significant oxidation noted by large presence of Si-O-Si, and Si-OH bonds on the PDMS surface, which improves the affinity with water molecules and increases the hydrophilicy. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Surface modification of PE film by DBD plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Ren, C.-S. [State Key Laboratory of Material Modification by Electron, Ion and Laser Beams, Dalian University of Technology, Dalian 116023 (China)], E-mail: rchsh@dlut.edu.cn; Wang, K.; Nie, Q.-Y.; Wang, D.-Z.; Guo, S.-H. [State Key Laboratory of Material Modification by Electron, Ion and Laser Beams, Dalian University of Technology, Dalian 116023 (China)

    2008-12-30

    In this paper, surface modification of polyethylene (PE) films is studied by dielectric barrier discharge plasma treatment in air. The treated samples were examined by water contact angle measurement, calculation of surface free energy, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The water contact angle changes from the original value of 93.2{sup o} to the minimum value of 53.3{sup o} and surface free energy increases from 27.3 to 51.89 J/m{sup 2} after treatment time of 50 s. Both ATR and XPS show some oxidized species are introduced into the sample surface by the plasma treatment and that the change tendencies of the water contact angle and surface free energy with the treatment time are the same as that of the oxygen concentration on the treated sample surface. Cu films were deposited on the treated and untreated PE surfaces. The peel adhesive strength between the Cu film and the treated sample is 1.5 MPa, whereas the value is only 0.8 MPa between the Cu film and the untreated PE. SEM pictures show that the Cu film deposited on the plasma treated PE surface is smooth and the crystal grain is smaller, contrarily the Cu film on the untreated PE surface is rough and the crystal grain is larger.

  1. Anisotropy in Ostwald ripening and step-terraced surface formation on GaAs(0 0 1): Experiment and Monte Carlo simulation

    Science.gov (United States)

    Kazantsev, D. M.; Akhundov, I. O.; Shwartz, N. L.; Alperovich, V. L.; Latyshev, A. V.

    2015-12-01

    Ostwald ripening and step-terraced morphology formation on the GaAs(0 0 1) surface during annealing in equilibrium conditions are investigated experimentally and by Monte Carlo simulation. Fourier and autocorrelation analyses are used to reveal surface relief anisotropy and provide information about islands and pits shape and their size distribution. Two origins of surface anisotropy are revealed. At the initial stage of surface smoothing, crystallographic anisotropy is observed, which is caused presumably by the anisotropy of surface diffusion at GaAs(0 0 1). A difference of diffusion activation energies along [1 1 0] and [1 1 bar 0] axes of the (0 0 1) face is estimated as ΔEd ≈ 0.1 eV from the comparison of experimental results and simulation. At later stages of surface smoothing the anisotropy of the surface relief is determined by the vicinal steps direction. At the initial stage of step-terraced morphology formation the kinetics of monatomic islands and pits growth agrees with the Ostwald ripening theory. At the final stage the size of islands and pits decreases due to their incorporation into the forming vicinal steps.

  2. A Process-Based Assessment of Decadal-Scale Surface Temperature Evolutions in the NCAR CCSM4's 25-Year Hindcast Experiments

    Science.gov (United States)

    Deng, Yi; Chen, Junwen

    2017-04-01

    This study represents an initial effort in the context of the coupled atmosphere-surface climate feedback-response analysis method (CFRAM) to partition the temporal evolution of the global surface temperature from 1981 to 2005 into components associated with individual radiative and non-radiative (dynamical) processes in the NCAR CCSM4's decadal hindcasts. When compared with the observation (ERA-Interim), the CCSM4 is able to predict an overall warming trend as well as the transient cooling occurring during the period 1989-1994. However, while the model captures fairly well the positive contributions of the CO2 and surface albedo change to the temperature evolution, it has an overly strong water vapor effect that dictates the temperature evolution in the hindcast. This is in contrast with the observation where changes in surface dynamics (mainly ocean circulation and heat content change) dominates the actual temperature evolution. Atmospheric dynamics in both the observation and model works against the surface temperature tendency through turbulent and convective heat transport, leading to an overall negative contribution to the evolution of the surface temperature. Impacts of solar forcing and ozone change on the surface temperature change are relatively weak during this period. The magnitude of cloud effect is considerably smaller compared to that in the observation and the spatial distribution of the cloud effect is also significantly different between the two especially over the equatorial Pacific. The value and limitations of this process-based temperature decomposition are discussed.

  3. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    Energy Technology Data Exchange (ETDEWEB)

    Vunnam, Swathi, E-mail: swathi.vunnam@mines.sdsmt.edu [Nanoscience and Nanoengineering Department, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States); Ankireddy, Krishnamraju; Kellar, Jon; Cross, William [Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States)

    2013-03-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO.

  4. Grafting Silane onto Silicate Glass Surface Treated by DBD in Air

    Institute of Scientific and Technical Information of China (English)

    REN Chunsheng; WANG Dezhen; WANG Younian

    2008-01-01

    Dielectric barrier discharge plasma in air was used to modify glass surface to induce the graft of silane onto the treated surface to increase the possibility of biomolecule immobilization.The plasma treated glass had been characterized by scanning electron microscopy (SEM),Fourier transform infrared attenuated total reflection spectroscopy,X-ray photoelectron spectroscopy (XPS) and surface water contact angle measurement.The validity of grafting silane onto glass surface was approved by the analysis of water contact angle measurement,SEM and XPS.The grafted silane content was measured by visible absorption spectroscopy using acid Orange-7.It is shown that the grafting density of silane for glass samples increases significantly after plasma treatment.

  5. Dynamic Wettability of Different Adhesives on Wheat Straw Surface Modified by Cold Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Xuehui Yang

    2014-02-01

    Full Text Available The effects of cold oxygen plasma treatment on the exterior and interior surfaces and wettability of wheat straw were investigated. The wheat straw was treated with oxygen plasma for 150 s, and the radio-frequency power was set at 100 W. The surface wettability was evaluated by measuring the contact angles and the K values of urea-formaldehyde, phenol-formaldehyde, and methylene diphenyl diisocyanate resins. Specimens with different gluing surfaces were bonded together with urea-formaldehyde and phenol-formaldehyde and then hot-pressed to assess bonding strength. Results indicate that the dynamic wettability and the shear strength of wheat straw were remarkably improved after it was exposed to the cold oxygen plasma. Additionally, the adhesive type and the wheat straw surface characteristics had significant effects on the dynamic wettability and bonding strength of both untreated and plasma-treated wheat straw.

  6. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    National Research Council Canada - National Science Library

    Michelly C. dos Santos; Aline P. Moraes; Maykon A. Lemes; Emília C. D. Lima; Anselmo E. de Oliveira

    2010-01-01

    An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol...

  7. Marcus-Hush-Chidsey theory of electron transfer to and from species bound at a non-uniform electrode surface: Theory and experiment

    Science.gov (United States)

    Henstridge, Martin C.; Batchelor-McAuley, Christopher; Gusmão, Rui; Compton, Richard G.

    2011-11-01

    Two simple models of electrode surface inhomogeneity based on Marcus-Hush theory are considered; a distribution in formal potentials and a distribution in electron tunnelling distances. Cyclic voltammetry simulated using these models is compared with that simulated using Marcus-Hush theory for a flat, uniform and homogeneous electrode surface, with the two models of surface inhomogeneity yielding broadened peaks with decreased peak-currents. An edge-plane pyrolytic graphite electrode is covalently modified with ferrocene via 'click' chemistry and the resulting voltammetry compared with each of the three previously considered models. The distribution of formal potentials is seen to fit the experimental data most closely.

  8. Modelling of the mechanical behavior of a polyurethane finger interphalangeal joint endoprosthesis after surface modification by ion implantation

    Science.gov (United States)

    Beliaev, A.; Svistkov, A.; Iziumov, R.; Osorgina, I.; Kondyurin, A.; Bilek, M.; McKenzie, D.

    2016-04-01

    Production of biocompatible implants made of polyurethane treated with plasma is very perspective. During plasma treatment the surface of polyurethane acquires unique physic-chemical properties. However such treatment may change the mechanical properties of polyurethane which may adversely affect the deformation behaviour of the real implant. Therefore careful study of the mechanical properties of the plasma-modified polyurethane is needed. In this paper, experimental observations of the elastic characteristics of plasma treated polyurethane and modelling of the deformation behaviour of polyurethane bio-implants are reported.

  9. Beagle to the Moon: An Experiment Package to Measure Polar Ice and Volatiles in Permanently Shadowed Areas or Beneath the Lunar Surface

    Science.gov (United States)

    Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.

    2007-01-01

    Near the beginning of the next decade we will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface and have the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration

  10. Surface modification of poly(dimethylsiloxane) through oxygen and nitrogen plasma treatment to improve its characteristics towards biomedical applications

    Science.gov (United States)

    Gomathi, N.; Mishra, I.; Varma, S.; Neogi, S.

    2015-09-01

    Polymeric materials successfully applied in biomedical applications have an issue of poor surface properties which may restrict their applications as biomaterials. The present paper aims to study the effect of oxygen and nitrogen plasma treatment on physico-chemical properties of poly(dimethylsiloxane) (PDMS) and enhancement in its biocompatibility. Various characterization techniques including Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy (SEM), atomic force microscopy were used to evaluate the changes in surface chemistry and morphology of plasma treated PDMS. Changes in the wettability after plasma treatments and the effects of ageing on wettability were studied by contact angle measurement. Ageing studies showed that the contact angle was stable after two hours. The effect of plasma treatment on biocompatibility was studied through cell adhesion and MTT using 3T3 fibroblast cells. Morphology of cells obtained through SEM was analyzed using ImageJ software. Among the different treated and untreated samples, substantial enhancement in biocompatibility was observed for nitrogen plasma treated PDMS for 5 min in terms of highest cell area observed from cell adhesion test and highest cell viability observed from MTT test. This may be probably due to its highest polarity (0.4) and surface energy (33.3 N mm-2) with a moderate surface roughness (Rrms = 100.24 nm) among the other treated and untreated samples.

  11. A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment

    Science.gov (United States)

    2013-01-01

    EXPERIMENTAL METHODS BT, MP, MBT, NBT, and MBA were used as received from Sigma-Aldrich. EBT was purchased from Santa Cruz Bio - technology. All...Surface Raman Spectroelec- trochemistry. Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J...Rev. Lett. 2011, 106, 083003. (29) Wu, D.-Y.; Liu, X.-M.; Huang, Y.-F.; Ren, B.; Xu, X.; Tian, Z.-Q. Surface Catalytic Coupling Reaction of p

  12. The role of chemistry and pH of solid surfaces for specific adsorption of biomolecules in solution--accurate computational models and experiment.

    Science.gov (United States)

    Heinz, Hendrik

    2014-06-18

    Adsorption of biomolecules and polymers to inorganic nanostructures plays a major role in the design of novel materials and therapeutics. The behavior of flexible molecules on solid surfaces at a scale of 1-1000 nm remains difficult and expensive to monitor using current laboratory techniques, while playing a critical role in energy conversion and composite materials as well as in understanding the origin of diseases. Approaches to implement key surface features and pH in molecular models of solids are explained, and distinct mechanisms of peptide recognition on metal nanostructures, silica and apatite surfaces in solution are described as illustrative examples. The influence of surface energies, specific surface features and protonation states on the structure of aqueous interfaces and selective biomolecular adsorption is found to be critical, comparable to the well-known influence of the charge state and pH of proteins and surfactants on their conformations and assembly. The representation of such details in molecular models according to experimental data and available chemical knowledge enables accurate simulations of unknown complex interfaces in atomic resolution in quantitative agreement with independent experimental measurements. In this context, the benefits of a uniform force field for all material classes and of a mineral surface structure database are discussed.

  13. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  14. Evaluation of Surface Cleaning Procedures in Terms of Gas Sensing Properties of Spray-Deposited CNT Film: Thermal- and O2 Plasma Treatments

    Directory of Open Access Journals (Sweden)

    Joon Hyub Kim

    2016-12-01

    Full Text Available The effect of cleaning the surface of single-walled carbon nanotube (SWNT networks by thermal and the O2 plasma treatments is presented in terms of NH3 gas sensing characteristics. The goal of this work is to determine the relationship between the physicochemical properties of the cleaned surface (including the chemical composition, crystal structure, hydrophilicity, and impurity content and the sensitivity of the SWNT network films to NH3 gas. The SWNT networks are spray-deposited on pre-patterned Pt electrodes, and are further functionalized by heating on a programmable hot plate or by O2 plasma treatment in a laboratory-prepared plasma chamber. Cyclic voltammetry was employed to semi-quantitatively evaluate each surface state of various plasma-treated SWNT-based electrodes. The results show that O2 plasma treatment can more effectively modify the SWNT network surface than thermal cleaning, and can provide a better conductive network surface due to the larger number of carbonyl/carboxyl groups, enabling a faster electron transfer rate, even though both the thermal cleaning and the O2 plasma cleaning methods can eliminate the organic solvent residues from the network surface. The NH3 sensors based on the O2 plasma-treated SWNT network exhibit higher sensitivity, shorter response time, and better recovery of the initial resistance than those prepared employing the thermally-cleaned SWNT networks.

  15. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    OpenAIRE

    Michelly C. dos Santos; Moraes,Aline P.; Lemes,Maykon A.; Lima,Emília C. D.; Oliveira,Anselmo E. de

    2010-01-01

    An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, acti...

  16. Adsorção e propriedades de volume de misturas binárias água álcool: um experimento didático com base em medidas de tensão superficial An undergraduate experiment in physical chemistry: adsorption and bulk properties of alcohol-water mixtures based on surface tension measurements

    Directory of Open Access Journals (Sweden)

    Michelly C. dos Santos

    2010-01-01

    Full Text Available An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, activity, and ideal solution.

  17. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    Science.gov (United States)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  18. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer--Part I: Anatomical foundation and model conceptualization.

    Science.gov (United States)

    Weinbaum, S; Jiji, L M; Lemons, D E

    1984-11-01

    A new theoretical model supported by ultrastructural studies and high-spatial resolution temperature measurements is presented for surface tissue heat transfer in a two-part study. In this first paper, vascular casts of the rabbit thigh prepared by the tissue clearance method were serially sectioned parallel to the skin surface to determine the detailed variation of the vascular geometry as a function of tissue depth. Simple quantitative models of the basic vascular structures observed were then analyzed in terms of their characteristic thermal relaxation lengths and a new three-layer conceptual model proposed for surface tissue heat transfer. Fine wire temperature measurements with an 80-micron average diameter thermocouple junction and spatial increments of 20 micrometers between measurement sites have shown for the first time the detailed temperature fluctuations in the microvasculature and have confirmed the fundamental assumptions of the proposed three-layer model for the deep tissue, skeletal muscle and cutaneous layers.

  19. Surface modification of polymeric materials by cold atmospheric plasma jet

    Science.gov (United States)

    Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

    2014-09-01

    In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  20. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  1. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  2. 表面张力系数实验的应用研究%On the Application of Liquid Surface Tension Coefficient Experiment

    Institute of Scientific and Technical Information of China (English)

    葛素红; 孙桂华; 王雅丽

    2014-01-01

    The surface tension coefficient of saline water and sweet water in the same temperature and different densities was measured using the FD-NST-I liquid surface tension coefficient measuring instrument. And the surface tension coefficient of tap -water and purified water in different temperatures was also measured using the same instrument. Results show that the surface tension coefficient is related to temperature and density.%应用拉脱法测量了食盐和白糖溶液的表面张力系数,发现:盐溶液的表面张力系数随着溶液密度的增大而增大,糖溶液的表面张力系数随着浓度的增大而减小。测量了自来水与纯净水在不同环境温度下的表面张力系数,验证了液体表面张力系数随着温度的升高而降低的物理规律。

  3. Functionalization of poly(dimethylsiloxane) surfaces with maleic anhydride copolymer films.

    Science.gov (United States)

    Cordeiro, Ana L; Zschoche, Stefan; Janke, Andreas; Nitschke, Mirko; Werner, Carsten

    2009-02-01

    Combining advantageous bulk properties of polymeric materials with surface-selective chemical conversions is required in numerous advanced technologies. For that aim, we investigate strategies to graft maleic anhydride (MA) copolymer films onto poly(dimethylsiloxane) (PDMS) precoatings. Amino groups allowing the covalent attachment of the MA copolymer films to the PDMS (Sylgard 184) surface were introduced either by low-pressure ammonia plasma treatment, or by attachment of 3-aminopropyltriethoxysilane (APTES) onto air plasma-treated PDMS. The resultant coatings were extensively characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contact angle measurements, and atomic force microscopy (AFM). The results show that the impact of the plasma treatment on the physical properties on the topmost surface of the PDMS is critically important for the characteristics of the layered coatings.

  4. Surface modification of carbon nanohorns by helium plasma and ozone treatments

    Science.gov (United States)

    Lin, Zaw; Iijima, Toru; Selvam Karthik, Paneer; Yoshida, Mitsunobu; Hada, Masaki; Nishikawa, Takeshi; Hayashi, Yasuhiko

    2017-01-01

    In this paper, we describe the effects of helium plasma and ozone treatments on the dispersibility of carbon nanohorns (CNHs) in water. The experimental setups have been designed to efficiently generate helium plasma and ozone by dielectric barrier discharge at atmospheric pressure. After being treated with ozone, the oxygen-containing functional groups were introduced to the surface of CNHs, and are responsible for better dispersion. Helium plasma treatment was performed separately and it resulted in hydroxyl functional groups on the surface of CNHs. It was also found that the sizes of CNHs in water were smaller after ozone treatment. However, plasma-treated CNHs were bigger than ozone treated CNHs. The dispersed CNHs modified by ozone treatment were stable for more than three months without precipitation. In contrast, though helium plasma treatment introduced hydroxyl groups to the surface of CNHs, the dispersibility decreased and the flocculation of CNHs was observed in a few minutes.

  5. Enhancement of the flux for polypropylene hollow fiber membrane in a submerged membrane-bioreactor by surface modification

    Institute of Scientific and Technical Information of China (English)

    YU Hai-yin; LEI Hao; XU Zhi-kang

    2006-01-01

    To improve its limiting flux and antifouling characteristics in a submerged membrane-bioreactor (SMBR) for wastewater treatment, polypropylene hollow fiber microporous membrane (PPHFMM) was surface-modified by the plasma-induced immobilization of poly (N-vinyl-2-pyrrolidone) (PVP) and the plasma treatment with different gases respectively. Attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the structural and morphological changes on the membrane surface. Water contact angle was measured by the sessile drop method. It was found that the water contact angle was 128.8, 72.3, 62.7, 74.4, 79.1,86.3, and 71.3° for the nascent, PVP-immobilized, air,O2, Ar, CO2 and H2O plasma treated PPHFMM, respectively. The SMBR was operated at fixed transmembrane pressure to determine the limiting flux for the PPHFMM before and after surface modification.Results showed that the limiting flux appeared to be 103, 159, 117, 133, 136, 121 and 152 L/(m2·h) for the nascent, PVP-immobilized,air, O2, Ar, CO2 and H2O plasma treated PPHFMM, respectively. After continuous operation for about 50 h in the SMBR, the antifouling characteristics were improved to some extent.

  6. Effect of Low-Pressure Nitrogen DC Plasma Treatment on the Surface Properties of Biaxially Oriented Polypropylene, Poly (Methyl Methacrylate) and Polyvinyl Chloride Films

    Science.gov (United States)

    S. Hamideh, Mortazavi; Mahmood, Ghoranneviss; Soheil, Pilehvar; Sina, Esmaeili; Shamim, Zargham; S. Ebrahim, Hashemi; Hamzeh, Jodat

    2013-04-01

    In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chloride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemical changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT-IR) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy after treatment for 2 min, 4 min and 6 min in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.

  7. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Larsen, Flemming

    2012-01-01

    , suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed...

  8. Facilitating Conceptual Understanding of Gas-Liquid Mass Transfer Coefficient through a Simple Experiment Involving Dissolution of Carbon Dioxide in Water in a Surface Aeration Reactor

    Science.gov (United States)

    Utgikar, Vivek P.; MacPherson, David

    2016-01-01

    Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…

  9. Facilitating Conceptual Understanding of Gas-Liquid Mass Transfer Coefficient through a Simple Experiment Involving Dissolution of Carbon Dioxide in Water in a Surface Aeration Reactor

    Science.gov (United States)

    Utgikar, Vivek P.; MacPherson, David

    2016-01-01

    Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…

  10. Impact of surface roughness of Au core in Au/Pd core-shell nanoparticles toward formic acid oxidation - Experiment and simulation

    Science.gov (United States)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-12-01

    The Au/Pd core-shell nanoparticles (NPs) were synthesized via galvanic replacement of Cu by Pd on hollow Au cores by adding different concentrations of Na2SO3 solution. It was found that the higher concentration of Na2SO3 that was used, the rougher the Au nanospheres became. However, the rougher Au surface may cause more defects in the Pd layers and decrease the catalytic abilities. The Au/Pd NPs synthesized using 0 M Na2SO3 (denoted as 0 M-Au/Pd NPs) have the smoothest Pd surface and demonstrate higher formic acid oxidation (FAO) activity (0.714 mA cm-2, normalized to the surface area of Pd) than other Au/Pd NPs and commercial Pd black (0.47 mA cm-2). Additional electrochemical characterization of the 0 M-Au/Pd NPs also demonstrated lower CO-stripping onset and peak potentials, higher stability (8× improvement in stabilized oxidation current), and superior durability (by 1.6×) than the Pd black. In addition, a simple simulation of FAO was adopted to predict the anodic curve by including reaction intermediates of formate and hydroxyl. The 0 M-Au/Pd NPs were found to show higher formate and lower hydroxyl coverage than the Pd black.

  11. Synthesis of the Danish Experience with Combating Nutrient Pollution of Surface Waters: The Old Regulatory Approach and a New Targeted Approach Utilising the Natural Attenuation Capacity in Landscapes

    Science.gov (United States)

    Kronvang, Brian; Windolf, Jørgen; Blicher-Mathiesen, Gitte; Tornbjerg, Henrik; Højberg, Anker; Rieman, Bo

    2016-04-01

    Excess nitrogen (N) and phosphorus (P) emissions to surface waters are a high priority environmental problem worldwide for protection of water resources in times of population growth and climate change. As clean water is a scarce resource the struggle for reducing nutrient emissions are an ongoing issue for many countries and regions. Since the mid1980s a wide range of national regulatory general measures have been implemented to reduce land based nitrogen (N) and phosphorus (P) loadings of the Danish aquatic environment. These measures have addressed both point source emissions and emissions from diffus