WorldWideScience

Sample records for plasma-stabilizing magnetic-field mechanism

  1. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  2. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    International Nuclear Information System (INIS)

    Zhang, H.-S.; Komvopoulos, K.

    2008-01-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp 3 ) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study

  3. Emergent kink stability of a magnetized plasma jet injected into a transverse background magnetic field

    Science.gov (United States)

    Zhang, Yue; Gilmore, Mark; Hsu, Scott C.; Fisher, Dustin M.; Lynn, Alan G.

    2017-11-01

    We report experimental results on the injection of a magnetized plasma jet into a transverse background magnetic field in the HelCat linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81(1), 345810104 (2015)]. After the plasma jet leaves the plasma-gun muzzle, a tension force arising from an increasing curvature of the background magnetic field induces in the jet a sheared axial-flow gradient above the theoretical kink-stabilization threshold. We observe that this emergent sheared axial flow stabilizes the n = 1 kink mode in the jet, whereas a kink instability is observed in the jet when there is no background magnetic field present.

  4. Stability of axisymmetric plasmas in closed line magnetic fields

    International Nuclear Information System (INIS)

    Simakov, A.N.; Vernon Wong, H.; Berk, H.L.

    2003-01-01

    The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study the stability of pressure driven shear Alfven modes. A point dipole is considered in detail to demonstrate that equilibria exist which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated for Z pinch and point dipole equilibria by means of resistive MHD theory. Kinetic theory is used to study drift frequency modes and their interaction with MHD modes near the ideal stability boundary for different collisionality regimes. Effects of collisional dissipation on drift mode stability are explicitly evaluated and applied to a Z pinch. The role of finite Larmor radius effects and drift reversed particles in modifying ideal stability thresholds is examined. (author)

  5. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  6. Magnetohydrodynamic stability of a plasma confined in a convex poloidal magnetic field

    International Nuclear Information System (INIS)

    Hellsten, T.

    1976-11-01

    A plasma confined in a purely poloidal magnetic field with a finite pressure at the boundary and surrounded by a conducting wall can be stabilized against magnetohydrodynamic perturbations even in absence of shear and minimum-average-B properties. To achieve large pressure gradients the average magnetic field has to decrease rapidly outwards. The theory is applied to a 'Spherator' configuration with a purely poloidal magnetic field. (Auth.)

  7. Field stability by the electron beam in a warm magnetized plasma-filled waveguide

    International Nuclear Information System (INIS)

    Khalil, Sh.M.; Sayed, Y.A.; EI-Shorbagy, Kh.H.; EI-Gendy, A.T.

    2002-11-01

    We study the effect of the electron beam on the field stability and minimizing the energy losses in waveguide filled with plasma. Analytical calculations are performed to find the plasma dielectric tensor. By applying the boundary conditions at the plasma-conductor interface, we derive the dispersion equations, which describe the propagated E- and H- waves and their damping rate. The necessary condition for the field stability in the waveguide and the amplification coefficient for the E- wave are obtained. Realistic plasma conditions (i.e. its warmness and inhomogeneity under the effect of an external static magnetic field) are taken into consideration. The electron beam is found to play a crucial role in controlling the field attenuation in waveguide. (author)

  8. Non-modal stability analysis and transient growth in a magnetized Vlasov plasma

    KAUST Repository

    Ratushnaya, V.

    2014-12-01

    Collisionless plasmas, such as those encountered in tokamaks, exhibit a rich variety of instabilities. The physical origin, triggering mechanisms and fundamental understanding of many plasma instabilities, however, are still open problems. We investigate the stability properties of a 3-dimensional collisionless Vlasov plasma in a stationary homogeneous magnetic field. We narrow the scope of our investigation to the case of Maxwellian plasma and examine its evolution with an electrostatic approximation. For the first time using a fully kinetic approach we show the emergence of the local instability, a transient growth, followed by classical Landau damping in a stable magnetized plasma. We show that the linearized Vlasov operator is non-normal leading to the algebraic growth of the perturbations using non-modal stability theory. The typical time scales of the obtained instabilities are of the order of several plasma periods. The first-order distribution function and the corresponding electric field are calculated and the dependence on the magnetic field and perturbation parameters is studied. Our results offer a new scenario of the emergence and development of plasma instabilities on the kinetic scale.

  9. Non-modal stability analysis and transient growth in a magnetized Vlasov plasma

    KAUST Repository

    Ratushnaya, V.; Samtaney, Ravi

    2014-01-01

    Collisionless plasmas, such as those encountered in tokamaks, exhibit a rich variety of instabilities. The physical origin, triggering mechanisms and fundamental understanding of many plasma instabilities, however, are still open problems. We investigate the stability properties of a 3-dimensional collisionless Vlasov plasma in a stationary homogeneous magnetic field. We narrow the scope of our investigation to the case of Maxwellian plasma and examine its evolution with an electrostatic approximation. For the first time using a fully kinetic approach we show the emergence of the local instability, a transient growth, followed by classical Landau damping in a stable magnetized plasma. We show that the linearized Vlasov operator is non-normal leading to the algebraic growth of the perturbations using non-modal stability theory. The typical time scales of the obtained instabilities are of the order of several plasma periods. The first-order distribution function and the corresponding electric field are calculated and the dependence on the magnetic field and perturbation parameters is studied. Our results offer a new scenario of the emergence and development of plasma instabilities on the kinetic scale.

  10. Toroidal plasma reactor with low external magnetic field

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.

    1991-01-01

    A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs

  11. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    Science.gov (United States)

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2018-05-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.

  12. On plasma stability under anisotropic random electric field influence

    International Nuclear Information System (INIS)

    Rabich, L.N.; Sosenko, P.P.

    1987-01-01

    The influence of anisotropic random field on plasma stability is studied. The thresholds and instability increments are obtained. The stabilizing influence of frequency missmatch and external magnetic field is pointed out

  13. Linear stability analysis of a levitated nanomagnet in a static magnetic field: Quantum spin stabilized magnetic levitation

    Science.gov (United States)

    Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.

    2017-10-01

    We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.

  14. Plasma heating in a variable magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kichigin, G. N., E-mail: king@iszf.irk.ru [Russian Academy of Sciences, Institute of Solar-Terrestrial Physics (Russian Federation)

    2013-05-15

    The problem of particle acceleration in a periodically variable magnetic field that either takes a zero value or passes through zero is considered. It is shown that, each time the field [0]passes through zero, the particle energy increases abruptly. This process can be regarded as heating in the course of which plasma particles acquire significant energy within one field period. This mechanism of plasma heating takes place in the absence of collisions between plasma particles and is analogous to the mechanism of magnetic pumping in collisional plasma considered by Alfven.

  15. 3-D MHD modeling and stability analysis of jet and spheromak plasmas launched into a magnetized plasma

    Science.gov (United States)

    Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick

    2016-10-01

    The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  16. Effect of solenoidal magnetic field on drifting laser plasma

    Science.gov (United States)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  17. Effect of solenoidal magnetic field on drifting laser plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazumasa; Sekine, Megumi; Okamura, Masahiro; Cushing, Eric; Jandovitz, Peter

    2013-01-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  18. Effect of solenoidal magnetic field on drifting laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazumasa; Sekine, Megumi [Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States) and RIKEN, Wako-shi, Saitama 351-0198 (United States); Cushing, Eric [Pennsylvania State University, University Park, PA 16802 (United States); Jandovitz, Peter [Cornell University, Ithaca, NY 14853 (United States)

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  19. Topics on the formation and stability of magnetic-mirror-confined plasmas

    International Nuclear Information System (INIS)

    Wickham, M.G.

    1981-01-01

    We have investigated two methods of creating a magnetic mirror confined plasma. The first method used the direct cross-field injection of a potassium plasma into a magnetic mirror, and the second applied ion-cyclotron-resonance heating (ICRH) to a barium Q-machine plasma in a simple axisymmetric mirror field. The latter procedure provided a plasma which was particularly suitable for the investigation of MHD stability and kinetic microstability

  20. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Colin Stuart [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Univ. of Washington, Seattle, WA (United States)

    2015-01-15

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.

  1. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    OpenAIRE

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2017-01-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys.81, 345810104 (2015)]. Magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink-stabilizati...

  2. Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field

    Science.gov (United States)

    Zhang, Yue

    2017-10-01

    A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation

  3. The Stability of Magnetized Rotating Plasmas with Superthermal Fields

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Psaltis, Dimitrios

    2005-01-01

    be taken fully into account. We demonstrate that the presence of a strong toroidal component in the magnetic field plays a non-trivial role. When strong fields are considered, the strength of the toroidal magnetic field not only modifies the growth rates of the unstable modes but also determines which...... modes are subject to instabilities. We find that, for rotating configurations with Keplerian laws, the magnetorotational instability is stabilized at low wavenumbers for toroidal Alfven speeds exceeding the geometric mean of the sound speed and the rotational speed. We discuss the significance of our......During the last decade it has become evident that the magnetorotational instability is at the heart of the enhanced angular momentum transport in weakly magnetized accretion disks around neutron stars and black holes. In this paper, we investigate the local linear stability of differentially...

  4. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria

    2016-12-17

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  5. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria; Samtaney, Ravi

    2016-01-01

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  6. Dynamics of a rarefied plasma in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeyev, R S; Kadomtsev, B B; Rudakov, L I; Vedyonov, A A

    1958-07-01

    The nature of the motion and properties of high temperature plasma in a magnetic field is of particular interest for the problem of producing controlled thermonuclear reactions. The most general theoretical approach to such problems lies in the description of the plasma by the Boltzmann and Maxwell equations that connect the self-consistent electric and magnetic fields with the ion and electron distribution functions. The exact equations for the motion of plasma in an electromagnetic field can only be solved in certain simple cases especially because the fields are influenced by the collective motion of all the particles. For a certain class of problems it is possible to work out a procedure for decreasing the number of variables and thus simplify the characteristic equations. In this work the following cases are considered and equations derived: equations for the macroscopic motion of the plasma; hydrodynamics of a low pressure plasma; instability of plasma in a magnetic field with an anisotropic ion velocity distribution; stability of a pinched cylindrical plasma using the kinetic equation; non-linear one-dimensional motion of a rarefied plasma.

  7. Electro-Magnetic Fields and Plasma in the Cosmos

    International Nuclear Information System (INIS)

    Scott, Donald E.

    2006-01-01

    It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories

  8. On nonlinear MHD-stability of toroidal magnetized plasma

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.; Pastukhov, V.P.

    1994-01-01

    The variational approach to analyze the nonlinear MHD stability of ideal plasma in toroidal magnetic field is proposed. The potential energy functional to be used is expressed in terms of complete set of independent Lagrangian invariants, that allows to take strictly into account all the restrictions inherent in the varied functions due to MHD dynamic equations. (author). 3 refs

  9. Impact of magnetic perturbation fields on tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, Sina; Maraschek, Marc; Suttrop, Wolfgang; Zohm, Hartmut [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Classen, Ivo [FOM-Institute DIFFER, Nieuwegein (Netherlands); Collaboration: the ASDEX Upgrade Team

    2015-05-01

    Non-axisymmetric external magnetic perturbation (MP) fields arise in every tokamak e.g. due to not perfectly positioned external coils. Additionally many tokamaks, like ASDEX Upgrade (AUG), are equipped with a set of external coils, which produce a 3D MP field in addition to the equilibrium field. This field is used to either compensate for the intrinsic MP field or to influence MHD instabilities such as Edge Localised Modes (ELMs) or Neoclassical Tearing Modes (NTMs). But these MP fields can also give rise to a more global plasma response. The resonant components can penetrate the plasma and influence the stability of existing NTMs or even lead to their formation via magnetic reconnection. In addition they exert a local torque on the plasma. These effects are less pronounced at high plasma rotation where the resonant field components are screened. The non-resonant components do not influence NTMs directly but slow down the plasma rotation globally via the neoclassical toroidal viscous torque. The island formation caused by the MP field as well as the interaction of pre-existing islands with the MP field at AUG is presented. It is shown that these effects can be modelled using a simple forced reconnection theory. Also the effect of resonant and non-resonant MPs on the plasma rotation at AUG is discussed.

  10. Effect of plasma current breakaway on the operating stability of the superconducting coil of the toroidal magnetic field in the T-10M installation

    International Nuclear Information System (INIS)

    Kostenko, A.I.; Kravchenko, M.Yu.; Monoszon, N.A.; Trokhachev, G.V.

    1979-01-01

    The method and calculation results of stability of a superconducting coil of the toroidal magnetic field in the T-10M installation to plasma current breakaway are presented. The calculations were performed for two values of the magnetic field induction in the centre of the plasma cross section: 3.5 and 5 T. The calculation of energy losses and heating of the superconducting coil was performed assuming the plasma current in case of breakaway decreases to zero with an infinite rate, so that the estimations obtained are maxiaum. It is shown that in case of 3.5 T induction the superconducting coil exhibits resistance to plasma current breakaways, and in case of 5 T it is necessary to use electromagnetic screening to provide stability

  11. Super-high magnetic fields in spatially inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nastoyashchiy, Anatoly F.

    2012-01-01

    The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)

  12. Magnetic field in expanding quark-gluon plasma

    Science.gov (United States)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  13. Plasma confinement in a magnetic field of the internal ring current

    International Nuclear Information System (INIS)

    Shafranov, Vitaly; Popovich, Paul; Samitov, Marat

    2000-01-01

    Plasma confinement in compact region surrounding an internal ring current is considered. As the limiting case of large aspect ratio system the cylindrical plasma is considered initially. Analysis of the cylindrical tubular plasma equilibrium and stability against the most dangerous flute (m=0) and kink (m=1) modes revealed the possibility of the MHD stable plasma confined by magnetic field of the internal rod current, with rather peaked plasma pressure and maximal local beta β(γ)=0.4. In case of the toroidal internal ring system an additional external magnetic field creates the boundary separatrix witch limits the plasma volume. The dependence of the plasma pressure profiles, marginally stable with respect to the flute modes, from the shape of the external plasma boundary (separatrix) in such kind closed toroidal systems is investigated. The internal ring system with circular poloidal magnetic mirror, where the ring supports could be placed, is proposed. (author)

  14. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  15. Pressure profiles of plasmas confined in the field of a magnetic dipole

    International Nuclear Information System (INIS)

    Davis, Matthew S; Mauel, M E; Garnier, Darren T; Kesner, Jay

    2014-01-01

    Equilibrium pressure profiles of plasmas confined in the field of a dipole magnet are reconstructed using magnetic and x-ray measurements on the levitated dipole experiment (LDX). LDX operates in two distinct modes: with the dipole mechanically supported and with the dipole magnetically levitated. When the dipole is mechanically supported, thermal particles are lost along the field to the supports, and the plasma pressure is highly peaked and consists of energetic, mirror-trapped electrons that are created by electron cyclotron resonance heating. By contrast, when the dipole is magnetically levitated losses to the supports are eliminated and particles are lost via slower cross-field transport that results in broader, but still peaked, plasma pressure profiles. (paper)

  16. Statistical mechanics of a plasma in a very strong magnetic field

    International Nuclear Information System (INIS)

    Psimopoulos, M.

    1980-03-01

    Using the guiding centre model the behaviour of a plasma in the presence of a very strong constant magnetic field has been studied. The validity of the model is discussed and the conditions concerning the strength of the magnetic field are derived. Both the equilibrium and the non-equilibrium aspects of the problem are considered. (U.K.)

  17. Relaxational dissipation of magnetic field energy in a rarefied plasma

    International Nuclear Information System (INIS)

    Vekshtejn, G.E.

    1987-01-01

    A mechanism of solar corona plasma heating connected with relaxation of a magnetic configuration in the corona to the state of the magnetic energy minimum at restrictions imposed by high conductivity of a medium is considered. Photospheric plasma pulsations leading to generation of longitudinal currents in the corona are in this case energy sources. The excess magnetic energy of these currents is dissipated as a result of reclosing of force lines of the magnetic field in narrow current layers. Plasmaturbulence related to the process of magnetic reclosing is phenomenologically described in this case by introducing certain characteristic time of relaxation. Such an approach permits to relate the plasma heating energy with parameters of photospheric motions in the framework of a simple model of the magnetic field

  18. Reversed-Field Pinch plasma model

    International Nuclear Information System (INIS)

    Miley, G.H.; Nebel, R.A.; Moses, R.W.

    1979-01-01

    The stability of a Reversed-Field Pinch (RFP) is strongly dependent on the plasma profile and the confining sheared magnetic field. Magnetic diffusion and thermal transport produce changing conditions of stability. Despite the limited understanding of RFP transport, modelling is important to predict general trends and to study possible field programming options. To study the ZT-40 experiment and to predict the performance of future RFP reactors, a one-dimensional transport code has been developed. This code includes a linear, ideal MHD stability check based on an energy principle. The transport section integrates plasma profiles forward in time while the stability section periodically checks the stability of the evolving plasma profile

  19. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  20. Lazer-produced plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Kaitmazov, S.D.; Shklovskij, E.I.

    1978-01-01

    Investigations on interaction of laser plasma with the magnetic field in the range of 100-300 kOe are surveyed. Problems associated with the effect of the field on the optical breakdown threshold in gases, the geometry (kinetics) of laser plasma and its radiation are mainly considered. It is noted that the magnetic field may reduce the o tical breakdown threshold in gases, promote the spreading of plasma predominantly in the direction of tice magnetic field, and also affect (increase in the visible range) the radiation intensity of the laser plasma. The effect of the magnetic field on the temperature of the laser plasma is not completely understood yet, but the very fact of existence of this dependence is important; it enables one to search for conditions under which the magnetic field would promote the increase at the temperature of laser plasma

  1. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  2. Stability of expanded plasma focus

    International Nuclear Information System (INIS)

    Soliman, H.M.

    1994-01-01

    In this study, the stabilization of the expanded plasma focus formed by 4.5 kJ plasma focus device of Mather type by magnetic field is presented. The experimental results of the induced axial magnetic field and electric probe measurements of the expanded plasma focus show that, the plasma consists of three plasmoids, electron temperature measurements off the plasmoids at a point close to the muzzle are 26 eV, 30 eV and 27 eV respectively and the electron densities are 6.6 x 10 14 , 6.1 x 10 14 / cm 3 respectively. The presence of external axial magnetic field (B 2 = 1.6 kg) at the mid distance between the breech and the muzzle has a less effect on the stability of expanded focus and it causes a restriction for the plasma motion. the electron temperature of the three plasmoids are found to increase in that case by 23%, 18.5% respectively. When this axial magnetic field is applied at the muzzle end, it leads to a more stable expanded plasma focus which consists mainly of one plasmoid with electron temperature of 39 eV and density of 3.4 x 10 14 / cm 3 . 5 figs

  3. Study of magnetic field expansion using a plasma generator for space radiation active protection

    International Nuclear Information System (INIS)

    Jia Xianghong; Jia Shaoxia; Wan Jun; Wang Shouguo; Xu Feng; Bai Yanqiang; Liu Hongtao; Jiang Rui; Ma Hongbo

    2013-01-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power. (authors)

  4. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  5. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Igumenshchev, I.; Stoeckl, C.; Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  6. Nonlinear mechanism for the suppression of error field magnetic islands by plasma flow

    International Nuclear Information System (INIS)

    Parker, R.D.

    1992-01-01

    Non-axisymmetric magnetic field perturbations generated, for example, by errors in the alignment of the field coils are known to lead to reduced confinement in a tokamak. By inducing the formation of small, stationary, magnetic islands on all rational surfaces they can enhance radial transport and under certain circumstances interact with MHD instabilities to trigger the onset of locked modes leading, in some cases, to disruption of the plasma discharge. Given the stationary nature of the error field islands it is natural to consider whether they can be reduced significantly by the viscous drag of a sheared flow resulting from a bulk rotation of the plasma. In this paper, we examine this interaction by modelling the nonlinear growth and saturation of force-reconnected magnetic islands driven by a corrugated boundary in a slab plasma with an initially uniform flow. A systematic parameter study is made of the time asymptotic steady state. (author) 3 figs., 5 refs

  7. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  8. Production of field-reversed plasma with a magnetized coaxial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1981-01-01

    Experimental data are presented on the production of field-reversed deuterium plasma by a modified coaxial plasma gun. The coaxial gun is constructed with solenoid coils along the inner and outer electrodes that, together with an external guide field solenoid, form a magnetic cusp at the gun muzzle. The net flux inside the inner electrode is arranged to be opposite the external guide field and is the source of field-reversed flux trapped by the plasma. The electrode length is 145 cm, the diameter of the inner (outer) electrode is 15 cm (32 cm). The gun discharge is driven with a 232-μF 40-kV capacitor bank. Acceleration of plasma through the magnetic cusp at the gun muzzle results in entrainment of field-reversed flux that is detected by magnetic probes 75 cm from the gun muzzle. Field-reversed plasma has been produced for a variety of experimental conditions. In one typical case, the guide magnetic field was B 0 =4.8 kG and the change in axial magnetic field ΔB/sub z/ normalized to B 0 was ΔB/sub z/ /B 0 =-3.1. Total field-reversed flux (poloidal flux) obtained by integrating ΔB/sub z/ profiles is in the range 2 x 10 3 kG cm 2 . Measurement of the orthogonal field component indicates a sizable toroidal field peaked off axis at rapprox. =10 cm with a magnitude of roughly one-half the poloidal field component that is measured on magnetic axis. Reconnection of the poloidal field lines has not been established for the data reported in the paper and will be addressed in future experiments which attempt to trap and confine the field-reversed plasma in a magnetic mirror

  9. Parametric instabilities in an electron beam-plasma system: magnetic field effects

    International Nuclear Information System (INIS)

    Gell, Y.; Levush, B.; Nakach, R.

    1981-09-01

    The effects of a magnetic field on the excitation of low-frequency parametric instabilities in a beam-plasma system are considered. The dispersion relation of the three-dimensional beamless configuration, is analytically evaluated for an electrostatic pump wave having a finite wave-vector parallel to the magnetic field. The results of this analysis serve as a guide to the numerical study of the stability of the involved system including the beam. As for the one-dimensional case, one finds that two low-frequency electrostatic instability branches having different growth rates may exist simultaneously. The effects of the magnetic field on these instabilities could be summarized as follows: the small growth rate instability is negligibly small when the electron gyrofrequency is about equal to the pump wave frequency. This instability is magnetic field independent for high enough values of the field. When the plasma electron Debye length is greater than the beam electron Debye length, a large growth rate instability is excited and appears to be weakly dependent on the magnetic field, while the two instability branches are quite sensitive to change of the magnetic field, when the two Debye lengths are equal. Other characteristics of this system are also discussed

  10. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  11. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  12. Confinement of laser plasma expansion with strong external magnetic field

    Science.gov (United States)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  13. Equilibrium and stability of theta-pinch plasma in modified toroidal multiple mirror field

    International Nuclear Information System (INIS)

    Shiina, S.; Saito, K.; Osanai, Y.; Itagaki, T.; Karakizawa, T.; Gesso, H.; Todoroki, J.; Kawakami, I.; Yoshimura, H.

    1976-01-01

    To confine a high-beta plasma a new toroidal magnetic configuration with closed lines of force has been proposed [1]. The configuration is an appropriate superposition of l = 0, l = +- 1, l = +- 2,sup(...), helical fields. In this experiment, it is generated by modifying the multiple mirror field by enclosing the discharge tube in a copper shell which has longitudinal gap. This configuration is preferred for the wall stabilizing effect to that with the separated helical windings. The characteristics of the equilibrium conditions are examined based on the near-axis approximation theory and compared with the experimental results. The stability of plasma in the configurations with l = 0 field and with superposition of l = 0, l = +- 2 fields is investigated in linear geometry. (author)

  14. Interchange stability of noncircular reversed field pinches

    International Nuclear Information System (INIS)

    Skinner, D.A.; Prager, S.C.; Todd, A.M.M.

    1987-08-01

    Interchange (Mercier) stability of toroidal reversed-field-pinch plasmas with noncircular cross-section is evaluated numerically. Marginally stable pressure profiles and beta values are produced. Most shapes, such as indented or vertically elongated, reduce stability by making the net magnetic curvature of the poloidal-field-dominated plasmas yet worse than that of the circle. Horizontally elongated plasmas slightly enhance stability beyond that of the circle as a result of increased shear produced by toroidicity. Such shear enhancement by the toroidal shift of magnetic surfaces might be exploited for future, more comprehensive studies

  15. Interaction between laser-produced plasma and guiding magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko

    2013-01-01

    Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)

  16. Effect of mobilities and electric field on the stability of magnetized positive column

    International Nuclear Information System (INIS)

    Dogra, V.K.; Uberoi, M.S.

    1983-01-01

    The effect of ratio of the mobilities of electrons and ions and non-dimensional electric field, on the stability of magnetized positive column for all unstable modes is studied in a self-consistent formulation for the perturbations of plasma density and electric potential. The minimum non-dimensional electric field at which magnetized positive column becomes unstable for different ratios of the mobilities of electrons and ions is also investigated. (author)

  17. Relativistic stability of interacting Fermi gas in a strong magnetic field

    International Nuclear Information System (INIS)

    Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng

    2013-01-01

    By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)

  18. A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field

    Science.gov (United States)

    Patel, A. D.; Sharma, M.; Ramasubramanian, N.; Ganesh, R.; Chattopadhyay, P. K.

    2018-04-01

    A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10-5 -1 × 10-3 mbar, achieving plasma densities ranging from 109 to 1011 cm-3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δIisat/Iisat physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.

  19. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-11-01

    The plasma of Hall thruster type in external magnetic field is studied in 2D3V kinetic simulations using PIC MCC method. The periodical structure with maxima of electron and ion densities is formed and becomes more pronounced with increase of magnetic field incidence angle in the plasma. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. This leads to formation of two-dimensional double-layers structure in cylindrical plasma chamber. Depending on Larmor radius and Debye length up to nineteen potential steps appear across the oblique magnetic field. The electrical current gathered on the wall is associated with the electron and ion density ridges.

  20. Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target

    International Nuclear Information System (INIS)

    Sudan, R.N.

    1993-01-01

    The physical mechanism for the generation of very high ''dc'' magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target originates in the spatial gradients and nonstationary character of the ponderomotive force. A set of model equations to determine the evolution of the ''dc'' fields is derived and it is shown that the ''dc'' magnetic field is of the same order of magnitude as the high frequency laser magnetic field

  1. Analysis and correction of intrinsic non-axisymmetric magnetic fields in high-β DIII-D plasmas

    International Nuclear Information System (INIS)

    Garofalo, A.M.; La Haye, R.J.; Scoville, J.T.

    2002-01-01

    Rapid plasma toroidal rotation, sufficient for stabilization of the n=1 resistive wall mode, can be sustained by improving the axisymmetry of the toroidal magnetic field geometry of DIII-D. The required symmetrization is determined experimentally both by optimizing currents in external n=1 correction coils with respect to the plasma rotation, and by use of the n=1 magnetic feedback to detect and minimize the plasma response to non-axisymmetric fields as β increases. Both methods point to an intrinsic ∼7 G (0.03% of the toroidal field), m/n=2/1 resonant helical field at the q=2 surface as the cause of the plasma rotation slowdown above the no-wall β limit. The drag exerted by this field on the plasma rotation is consistent with the behaviour of 'slipping' in a simple induction motor model. (author)

  2. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in

    2016-04-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  3. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    International Nuclear Information System (INIS)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan

    2016-01-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  4. Automatic plasma control in magnetic traps

    International Nuclear Information System (INIS)

    Samojlenko, Y.; Chuyanov, V.

    1984-01-01

    Hot plasma is essentially in thermodynamic non-steady state. Automatic plasma control basically means monitoring deviations from steady state and producing a suitable magnetic or electric field which brings the plasma back to its original state. Briefly described are two systems of automatic plasma control: control with a magnetic field using a negative impedance circuit, and control using an electric field. It appears that systems of automatic plasma stabilization will be an indispensable component of the fusion reactor and its possibilities will in many ways determine the reactor economy. (Ha)

  5. Taylor-Couette flow stability with toroidal magnetic field

    International Nuclear Information System (INIS)

    Shalybkov, D

    2005-01-01

    The linear stability of the dissipative Taylor-Couette flow with imposed azimuthal magnetic field is considered. Unlike to ideal flow, the magnetic field is fixed function of radius with two parameters only: a ratio of inner to outer cylinder radii and a ratio of the magnetic field values on outer and inner cylinders. The magnetic field with boundary values ratio greater than zero and smaller than inverse radii ratio always stabilizes the flow and called stable magnetic field below. The current free magnetic field is the stable magnetic field. The unstable magnetic field destabilizes every flow if the magnetic field (or Hartmann number) exceeds some critical value. This instability survives even without rotation (for zero Reynolds number). For the stable without the magnetic field flow, the unstable modes are located into some interval of the vertical wave numbers. The interval length is zero for critical Hartmann number and increases with increasing Hartmann number. The critical Hartmann numbers and the length of the unstable vertical wave numbers interval is the same for every rotation law. There are the critical Hartmann numbers for m = 0 sausage and m = 1 kink modes only. The critical Hartmann numbers are smaller for kink mode and this mode is the most unstable mode like to the pinch instability case. The flow stability do not depend on the magnetic Prandtl number for m = 0 mode. The same is true for critical Hartmann numbers for m = 0 and m = 1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is order of 100 Gauss

  6. Influence of mechanical scratch on the recorded magnetization stability of perpendicular recording media

    International Nuclear Information System (INIS)

    Nagano, Katsumasa; Sasaki, Syota; Futamoto, Masaaki

    2010-01-01

    Stability of recorded magnetization of hard disk drives (HDDs) is influenced by external environments, such as temperature, magnetic field, etc. Small scratches are frequently formed on HDD medium surface upon contacts with the magnetic head. Influence of temperature and mechanical scratch on the magnetization structure stability of perpendicular recording media was investigated by using a magnetic force microscope. The magnetic bit shape started to change at around 300 0 C for an area with no scratches, whereas for the area near a shallow mechanical scratch it started to change at a lower temperature around 250 0 C. An analysis of magnetization structure under an influence of temperature and mechanical scratch is carried out for the magnetization structure variation and recorded magnetization strength.

  7. Dispersion functions for weakly relativistic magnetized plasmas in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Gaelzer, R.; Schneider, R.S.; Ziebell, L.F.

    1995-01-01

    The study of wave propagation and absorption inhomogeneous plasmas can be made by using a formulation in which the dielectric properties of the plasma are described by an effective dielectric tensor which incorporates inhomogeneity effects, inserted into a dispersion relation which is formally the same as that of an homogeneous plasma. We have recently utilized this formalism in the study of electron cyclotron absorption in inhomogeneous media, both in the case of homogeneous magnetic field and in the case of inhomogeneous magnetic field. In the present paper we resume the study of the case with inhomogeneous magnetic field, in order to introduce a generalized dispersion function useful for the case of a Maxwellian plasma, and discuss some of its properties. (author). 10 refs

  8. Establishment of magnetic coordinates for a given magnetic field

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1981-04-01

    A method is given for expressing the magnetic field strength in magnetic coordinates for a given field. This expression is central to the study of equilibrium, stability, and transport in asymmetric plasmas

  9. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    International Nuclear Information System (INIS)

    Parker, E.N.

    1987-01-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references

  10. Acceleration of particles by electron plasma waves in a moderate magnetic field

    International Nuclear Information System (INIS)

    Smith, D.F.

    1976-01-01

    A general scheme is established to examine any magnetohydrodynamic (MHD) configuration for its acceleration potential including the effects of various types of plasma waves. The analysis is restricted to plasma waves in a magnetic field with electron cyclotron frequency less than, but comparable to, the electron plasma frequency (moderate field). The general role of electron plasma waves is examined in this paper independent of a specific MHD configuration or generating mechanism in the weak turbulence limit. The evolution of arbitrary wave spectra in a non-relativistic plasma is examined, and it is shown that the nonlinear process of induced scattering on the polarization clouds of ions leads to the collapse of the waves to an almost one-dimensional spectrum directed along the magnetic field. The subsequent acceleration of non-relativistic and relativistic particles is considered. It is shown for non-relativistic particles that when the wave distribution has a negative slope the acceleration is retarded for lower velocities and enhanced for higher velocities compared to acceleration by an isotropic distribution of electron plasma waves in a magnetic field. This change in behaviour is expected to affect the development of wave spectra and the subsequent acceleration spectrum. (Auth.)

  11. Theory of plasma confinement in non-axisymmetric magnetic fields.

    Science.gov (United States)

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  12. Plasma flow in a curved magnetic field

    International Nuclear Information System (INIS)

    Lindberg, L.

    1977-09-01

    A beam of collisionless plasma is injected along a longitudinal magnetic field into a region of curved magnetic field. Two unpredicted phenomena are observed: The beam becomes deflected in the direction opposite to that in which the field is curved, and it contracts to a flat slab in the plane of curvature of the magnetic field. The phenomenon is of a general character and can be expected to occur in a very wide range of densities. The lower density limit is set by the condition for self-polarization, nm sub(i)/epsilon 0 B 2 >> 1 or, which is equivalent, c 2 /v 2 sub(A) >> 1, where c is the velocity of light, and v sup(A) the Alfven velocity. The upper limit is presumably set by the requirement ωsub(e)tau(e) >> 1. The phenomenon is likely to be of importance e.g. for injection of plasma into magnetic bottles and in space and solar physics. The paper illustrates the comlexity of plasma flow phenomena and the importance of close contact between experimental and theoretical work. (author)

  13. Kelvin-Helmholtz instability for a bounded plasma flow in a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Burinskaya, T. M.; Shevelev, M. M.; Rauch, J.-L.

    2011-01-01

    Kelvin-Helmholtz MHD instability in a plane three-layer plasma is investigated. A general dispersion relation for the case of arbitrarily orientated magnetic fields and flow velocities in the layers is derived, and its solutions for a bounded plasma flow in a longitudinal magnetic field are studied numerically. Analysis of Kelvin-Helmholtz instability for different ion acoustic velocities shows that perturbations with wavelengths on the order of or longer than the flow thickness can grow in an arbitrary direction even at a zero temperature. Oscillations excited at small angles with respect to the magnetic field exist in a limited range of wavenumbers even without allowance for the finite width of the transition region between the flow and the ambient plasma. It is shown that, in a low-temperature plasma, solutions resulting in kink-like deformations of the plasma flow grow at a higher rate than those resulting in quasi-symmetric (sausage-like) deformations. The transverse structure of oscillatory-damped eigenmodes in a low-temperature plasma is analyzed. The results obtained are used to explain mechanisms for the excitation of ultra-low-frequency long-wavelength oscillations propagating along the magnetic field in the plasma sheet boundary layer of the Earth’s magnetotail penetrated by fast plasma flows.

  14. Relativistic degenerate electron plasma in an intense magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1978-01-01

    The dielectric response function for a dense, ultra-degenerate relativistic electron plasma in an intense uniform magnetic field is presented. Dispersion relations for plasma oscillations parallel and perpendicular to the magnetic field are obtained

  15. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    Science.gov (United States)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  16. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  17. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  18. Neutral beam injection and plasma convection in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Hiroe, S.

    1988-06-01

    Injection of a neutral beam into a plasma in a magnetic field has been studied by means of numerical plasma simulations. It is found that, in the absence of a rotational transform, the convection electric field arising from the polarization charges at the edges of the beam is dissipated by turbulent plasma convection, leading to anomalous plasma diffusion across the magnetic field. The convection electric field increases with the beam density and beam energy. In the presence of a rotational transform, polarization charges can be neutralized by the electron motion along the magnetic field. Even in the presence of a rotational transform, a steady-state convection electric field and, hence, anomalous plasma diffusion can develop when a neutral beam is constantly injected into a plasma. Theoretical investigations on the convection electric field are described for a plasma in the presence of rotational transform. 11 refs., 19 figs

  19. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  20. General methods for determining the linear stability of coronal magnetic fields

    Science.gov (United States)

    Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.

    1988-01-01

    A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.

  1. Magnetic field propagation in a two ion species planar plasma opening switch

    International Nuclear Information System (INIS)

    Strauss, H. R.; Doron, R.; Arad, R.; Rubinstein, B.; Maron, Y.; Fruchtman, A.

    2007-01-01

    Three fluid plasma evolution equations are applied to the problem of magnetic field propagation in a planar plasma opening switch. For certain initial conditions in which Hall parameter H∼1, magnetic field penetration due to the Hall field, initially, as expected, either opposes or adds to the hydromagnetic pushing, depending on the polarity of the magnetic field relative to the density gradient. Later, however, the plasma pushing by the magnetic field is found in the case studied here to modify the plasma density in a way that the density gradient tends to align with the magnetic field gradient, effectively turning off the Hall effect. The penetration of the magnetic field then ceases and plasma pushing becomes the dominant process

  2. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    International Nuclear Information System (INIS)

    Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd

    2012-01-01

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  3. Study of aerosol sample interaction with dc plasma in the presence of oscillating magnetic field

    International Nuclear Information System (INIS)

    Stoiljkovic, M.M.; Pavlovic, M.S.; Savovic, J.; Kuzmanovic, M.; Marinkovic, M.

    2005-01-01

    Oscillating magnetic field was used to study the efficiency of the aerosol sample introduction into the dc plasma. At atmospheric plasmas, the effect of magnetic field is reduced to Lorentz forces on the current carrying plasma, which produces motion of the plasma. The motion velocity of dc plasma caused by oscillating magnetic field was correlated to spectral emission enhancement of analytes introduced as aerosols. Emission enhancement is the consequence of the reduced barrier to introduction of analyte species and aerosol particles into the hot plasma region. Two hypotheses described in the literature for the origin of the barrier are considered: (i) barrier induced by temperature field is based upon the thermophoretic forces on the aerosol particles when their radius is comparable to the molecular free path in the surrounding gas and (ii) barrier induced by radial electric field, recently described, that originates from gradients of charged particles in radial direction. Correlation between ionization energy of the analyte atoms with experimental emission enhancement obtained by the use of oscillating magnetic field indicates that mechanism (ii) based upon the radial electric field is predominant. The ultimate emission enhancement and possible analytical advantage is discussed

  4. a Novel Method for Improving Plasma Nitriding Efficiency: Pre-Magnetization by DC Magnetic Field

    Science.gov (United States)

    Kovaci, Halim; Yetim, Ali Fatih; Bozkurt, Yusuf Burak; Çelik, Ayhan

    2017-06-01

    In this study, a novel pre-magnetization process, which enables easy diffusion of nitrogen, was used to enhance plasma nitriding efficiency. Firstly, magnetic fields with intensities of 1500G and 2500G were applied to the untreated samples before nitriding. After the pre-magnetization, the untreated and pre-magnetized samples were plasma nitrided for 4h in a gas mixture of 50% N2-50% H2 at 500∘C and 600∘C. The structural, mechanical and morphological properties of samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness tester and surface tension meter. It was observed that pre-magnetization increased the surface energy of the samples. Therefore, both compound and diffusion layer thicknesses increased with pre-magnetization process before nitriding treatment. As modified layer thickness increased, higher surface hardness values were obtained.

  5. Chaotic magnetic field line in toroidal plasmas

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.

    1989-05-01

    This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)

  6. Magnetic fields in laser heated plasmas

    International Nuclear Information System (INIS)

    Amiranoff, F.; Brackbill, J.; Colombant, D.; Grandjouan, N.

    1984-01-01

    With a fixed-ion code for the study of self-generated magentic fields in laser heated plasmas, the inhibition of thermal transport and the effect of the Nernst term are modeled for a KrF laser. For various values of the flux limiter, the response of a foil to a focused laser is calculated without a magnetic field and compared with the response calculated with a magnetic field. The results are: The Nernst term convects the magnetic field to densities above critical as found by Nishiguchi et al. (1984), but the field does not strongly inhibit transport into the foil. The field is also transported to sub-critical densities, where it inhibits thermal diffusion and enhance lateral transport by convection

  7. Plasma cluster acceleration by means of external magnetic fields

    International Nuclear Information System (INIS)

    Kracik, J.; Maloch, J.; Sobra, K.

    1975-01-01

    The electromagnetic shock tubes are used not only for shock wave creation and study but also for pulse plasma acceleration. By applying the rail acceleration the external magnetic field perpendicular to the plasma cluster velocity can be increased. In the present work is theoretically and experimentally confirmed the external magnetic field influence on the plasma cluster acceleration when the 'snow plough' model is used. (Auth.)

  8. Effect of magnetic field on Rayleigh-Taylor instability of quantum and stratified plasma in porous medium

    International Nuclear Information System (INIS)

    Sharma, P.K.; Tiwari, Anita; Argal, Shraddha; Chhajlani, R.K.

    2013-01-01

    This paper is devoted to an investigation of Quantum effects and magnetic field effects on the Rayleigh Taylor instability of two superposed incompressible fluids in bounded porous medium. The Quantum magneto hydrodynamic equations are solved by using normal mode method and a dispersion relation is obtained. The dispersion relation is derived for the case where plasma is bounded by two rigid planes z = 0 and z = h. The Rayleigh Taylor instability growth rate and stability condition of the medium is discussed in the presence of quantum effect, magnetic field, porosity and permeability. It is found that the magnetic field and medium porosity have stabilizing influence while permeability has destabilizing influence on the Rayleigh Taylor instability. (author)

  9. Effects of a nonuniform open magnetic field on the plasma presheath

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1991-01-01

    Effects of a nonuniform magnetic field on the plasma presheath is numerically investigated using the plasma equation for a collisionless plasma with a finite-temperature particle source. The present calculation confirms that analytical solutions previously published by the authors are available over a wide range of mirror ratio. Potential drop in the presheath, which considerably depends on both the magnetic strength profile and the spatial distribution of the particle source, is remarkably increased by applying an expanding magnetic field when plasma particles are generated in the inner part of the plasma. An effect of a nonuniform magnetic field on sheath formation is also discussed by using the calculated ion distribution function. If the plasma equation has no singularity at the sheath edge, its solution satisfies the generalized Bohm criterion with the inequality sign in the expanding magnetic field. (author)

  10. Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null

    International Nuclear Information System (INIS)

    Kim, J.S.

    1984-01-01

    Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null

  11. Neutron stars. [quantum mechanical processes associated with magnetic fields

    Science.gov (United States)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  12. Interaction of plasma with magnetic fields in coaxial discharge

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs

  13. Magnetorotational and Parker instabilities in magnetized plasma Dean flow as applied to centrifugally confined plasmas

    International Nuclear Information System (INIS)

    Huang Yimin; Hassam, A.B.

    2003-01-01

    The ideal magnetohydrodynamics stability of a Dean flow plasma supported against centrifugal forces by an axial magnetic field is studied. Only axisymmetric perturbations are allowed for simplicity. Two distinct but coupled destabilization mechanisms are present: flow shear (magnetorotational instability) and magnetic buoyancy (Parker instability). It is shown that the flow shear alone is likely insufficient to destabilize the plasma, but the magnetic buoyancy instability could occur. For a high Mach number (M S ), high Alfven Mach number (M A ) system with M S M A > or approx. πR/a (R/a is the aspect ratio), the Parker instability is unstable for long axial wavelength modes. Implications for the centrifugal confinement approach to magnetic fusion are also discussed

  14. Transport of plasma across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1976-10-01

    Transport rates are calculated for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which the magnetic surfaces are destroyed. Such a magnetic condition, termed magnetic braiding, may be brought about by asymmetric magnetic perturbations, perhaps quite weak, which typically produce overlap of two sets of magnetic islands. Plasma transport is calculated for this environment, using both a fluid and a kinetic drift model. The latter gives an appreciably higher rate, namely, a fast-particle diffusion coefficient equal to ( 1 / 2 )D/sub M/ [absolute value of v/sub ''/], where D/sub M/ is the coefficient of spatial diffusion for the magnetic lines of force. Correction terms, due to polarization-associated E/sub ''/ fields, are small unless components of the braiding field resonate with ion-acoustic or drift waves. Insertion of a Bhatnager--Gross--Krook collision term shows the diffusion rate is unaffected by weak collisions. Diffusion due to magnetic braiding is of interest for tokamaks, particularly with respect to enhanced electron heat transport, enhanced current penetration, plasma disruption, and internal sawtooth oscillations

  15. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    Pollock, B. B.; Froula, D. H.; Davis, P. F.; Ross, J. S.; Fulkerson, S.; Bower, J.; Satariano, J.; Price, D.; Krushelnick, K.; Glenzer, S. H.

    2006-01-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  16. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    Science.gov (United States)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  17. Solenoidal magnetic field influences the beam neutralization by a background plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.

    2004-01-01

    An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration is much longer than the electron plasma period. In the opposite limit, the beam pulse excites large-amplitude plasma waves. Figure 1 shows the influence of a solenoidal magnetic field on charge and current neutralization. Analytical studies show that the solenoidal magnetic field begins to influence the radial electron motion when ω ce > βω pe . Here, ω ce is the electron gyrofrequency, ω pe is the electron plasma frequency, and β = V b /c is the ion beam velocity. If a solenoidal magnetic field is not applied, plasma waves do not propagate. In contrast, in the presence of a solenoidal magnetic field, whistler waves propagate ahead of the beam and can perturb the plasma ahead of the beam pulse. In the limit ω ce >> βω pe , the electron current completely neutralizes the ion beam current and the beam self magnetic field greatly diminishes. Application of an external solenoidal magnetic field clearly makes the collective processes of ion beam-plasma interactions rich in physics content. Many results of the PIC simulations remain to be explained by analytical theory. Four new papers have been published or submitted describing plasma neutralization of an intense ion beam pulse

  18. Interaction of plasma with magnetic fields in coaxial discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.

  19. Plasma equilibrium and stability in stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.; Shafranov, V.D.

    1987-01-01

    A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived

  20. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves t...... towards the injector. Simultaneously with the compression, an increase in the electron temperature and reflection of a small amount of plasma are seen. The amount of plasma transmitted through the dipole field is found to be nearly independent of the field strength.......A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...

  1. On the electric and magnetic field generation in expanding plasmas

    International Nuclear Information System (INIS)

    Gielen, H.J.G.

    1989-01-01

    This thesis deals with the generation of electric and magnetic fields in expanding plasmas. The theoretical model used to calculate the different field quantities in such plasmas is discussed in part 1 and is in fact an analysis of Ohm's law. A general method is given that decomposes each of the forces terms in Ohm's law in a component that induces a charge separation in the plasma and in a component that can drive current. This decomposition is unambiguous and depends upon the boundary conditions for the electric potential. It is shown that in calculating the electromagnetic field quantities in a plasma that is located in the vicinity of a boundary that imposes constraints on the electric potential, Ohm's law should be analyzed instead of the so-called induction equation. Three applications of the model are presented. A description is given of the unipolar arc discharge where both plasma and sheath effects have been taken into account. Secondly a description is presented of the plasma effects of a cathode spot. The third application of the model deals with the generation of magnetic fields in laser-produced plasmas. The second part of this thesis describes the experiments on a magnetized argon plasma expanding from a cascaded arc. With the use of spectroscopic techniques the electron density, ion temperature and the rotation velocity profiles of the ion gas have been determined. The magnetic field generated by the plasma has been measured with the use of the Zeeman effect. Depending on the channel diameter of the nozzle of the cascaded arc, self-generated magnetic fields with axial components of the order of 1% of the externally applied mangetic field have been observed. From the measured ion rotation it has been concluded that this magnetic field is mainly generated by azimuthal electron currents. The corresponding azimuthal current density is of the order of 15% of the axial current density. The observed ion rotation is caused by electron-ion friction. (author

  2. Interaction of a supersonic plasma jet with a coaxial dipole magnetic field

    International Nuclear Information System (INIS)

    Landes, K.

    1975-01-01

    A low pressure plasma jet of considerable conductivity can be influenced by a magnetic field. On the other hand the influencing magnetic field is changed by currents induced in the plasma jet. New astrophysical examples of suchlike interaction have been found in the investigation of the moon, where the partially not currentfree solar wind is influenced by locally confined magnetic fields. In the experiment reported, the interaction of a supersonic plasma jet with a coaxial, dipole-shaped magnetic field is investigated. A current is superimposed to the plasma jet. (Auth.)

  3. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-06-01

    The characteristics of two-dimensional periodical structures in a magnetized plasma are studied using kinetic simulations. Ridges (i.e. spikes in electron and ion density) are formed and became more pronounced with an increase of magnetic field incidence angle in the plasma volume in the cylindrical chamber. These ridges are shifted relative to each other, which results in the formation of a two-dimensional double-layer structure. Depending on Larmor radius and Debye length up to 19 potential steps appear across the oblique magnetic field. The electrical current gathered into the channels is associated with the electron and ion density ridges.

  4. Oscillations and Stability of Plasma in an External High-Frequency Electric Field

    International Nuclear Information System (INIS)

    Aliev, Ju.M.; Gorbunov, L.M.; Silin, V.P.; Uotson, H.

    1966-01-01

    A theory is developed for the oscillations and stability of plasma in a strong external HF electric field. The kinetic equation with self-congruent reciprocity is linearized for weak deviations from the ground state. Since the latter depends on an external HF field, the linearized equation obtained has coefficients with a periodic time dependence. From this equation and also from Maxwell's equations there is derived a dispersion equation for plasma oscillations that represents the zero value of the infinite order determinant, and that is solved both for external field frequencies considerably exceeding the electron Langmuir frequency and for frequencies that are less. The external HF field changes the oscillation branches in a plasma without an external field, and also leads to a new low-frequency oscillation branch. Movement of particles in the HF field gives spatial dispersion. If the frequency of the field exceeds the election Langmuir frequency, the plasma oscillations are stable. At frequencies less than this level there occurs a build-up of low-frequency oscillations. Here the maximum of the build-up occurs when the external field frequencies approach the electron Langmuir frequency and is equal to the product of the Langmuir frequency and the one-third power of the electron-ion mass ratio. Away from the resonance, -the increment of build-up has the same order of magnitude as the ion Langmuir frequency. An external magnetic field increases the number of possible natural plasma oscillations and thereby increases the possibility of resonance with the external HF field. Allowance for the thermal motion of the particles enables one to determine the attenuation of the oscillations in question. Expressions for the decrements are derived. The effect of the external HF field on a plasma in which there are beams is also discussed. An HF field has a destabilizing effect on a system of this kind, since on the one hand there can be a build-up of fresh, low

  5. Plasma behavior and plasma-wall interaction in magnetic fusion divices

    International Nuclear Information System (INIS)

    Ohtsuka, Hideo

    1984-10-01

    To study the fundamental behavior of plasma in magnetic field is the main subject in the early stage of the magnetic fusion research. At the next stage, it is necessary to overcome some actual problems in order to attain reactor grade plasmas. One of them is to control impurities in the plasma. In these points of view, we carried out several experiments or theoretical analyses. Firstly, anomalous loss mechanisms in magnetic field were investigated in a toroidal multipole device JFT-1 and the role of motions of charged particles in the magnetic field was exhibited. Various measurements of plasma in the scrape-off layer were made in a divertor tokamak JFT-2a and in an ordinary tokamak JFT-2. The former study demonstrated the first successful divertor operation of the tokamak device and the latter one clarified the mechanism of arcing on the tokamak first wall. As to arcing, a new theory which describes the retrograde motion, the well known strange motion of arcs in a magnetic field, was proposed. Good agreement with the experimental results was shown. Finally, by considering a zero-dimensional sputtering model a self-consistent relation between light and metal impurities in tokamak plasmas was obtained. It was shown that the relation well describes some fundamental aspects of the plasma-wall interaction. As a conclusion, the importance of simple behavior of charged particles in magnetic fields was pointed out not only for the plasma confinement but also for the plasma-wall interaction. (author)

  6. Magnetic field stabilization in THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2012-07-01

    THe-Trap is a Penning trap mass spectrometer dedicated to measure the {sup 3}H to {sup 3}He mass ratio aiming to a relative mass uncertainty better than 10{sup -11}. The most vital prerequisite for this measurement is a stable magnetic field: The relative temporal fluctuations during a measurement cycle of typically 1 hour, should be better than 10{sup -11}. The 5.26 T field is provided by a superconducting magnet. Unfortunately, the materials within the cryostat have a temperature-dependent susceptibility which necessitates a temperature stabilization. The stabilization is achieved by controlling the liquid helium level above the traps, and by keeping the pressure of the liquid helium constant. An important part of the system is the pressure reference, which is stable at a 0.04 Pa level. In addition to the stabilization of the field fluctuations within the cryostat itself, a system to cancel external fluctuations is set up consisting of a passive coil with a shielding factor of up to 180 build into the cryostat. Furthermore, a Helmholtz coil pair is placed around the cryostat. The compensation signal is provided by a custom-built flux-gate magnetometer. Technical details about the stabilization systems are given.

  7. Toroidal field effects on the stability of Heliotron E

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Lynch, V.E.

    1986-02-01

    The addition of a small toroidal field to the Heliotron E configuration improves the stability of the n = 1 mode and increases the value of the stability beta critical. Total stabilization of this mode can be achieved with added toroidal fields between 5 and 15% of the total field. In this situation, the plasma can have direct access to the second stability regime. For the Heliotron E configuration, the self-stabilization effect is due to the shear, not to the magnetic well. The toroidal field threshold value for stability depends strongly on the pressure profile and the plasma radius. 21 refs., 15 figs

  8. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  9. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  10. Plasma Flows in Crossed Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Belikov, A.G.

    2005-01-01

    The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field

  11. Dynamic effects on the stretching of the magnetic field by a plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2003-08-22

    A key mechanism in the growth of magnetic energy in kinematic dynamos is the stretching of the magnetic field vector by making it point in an unstable direction of the strain matrix. Our objective is to study whether this feature may be maintained in an ideal plasma when also considering the back reaction of the magnetic field upon the flow through the Lorentz force. Several effects occur: in addition to the nonlocal ones exerted by the total pressure, a complex geometry of magnetic field lines decreases the rate of growth of magnetic energy, rotation of the flow enhances it and above all the rate of growth decreases with minus the square of the eigenvalue associated with the magnetic field direction. Thus local dynamics tend to rapidly quench the stretching of the field.

  12. Magnetic field line draping in the plasma depletion layer

    Science.gov (United States)

    Sibeck, D. G.; Lepping, R. P.; Lazarus, A. J.

    1990-01-01

    Simultaneous IMP 8 solar wind and ISEE 1/2 observations for a northern dawn ISEE 1/2 magnetopause crossing on November 6, 1977. During this crossing, ISEE 1/2 observed quasi-periodic pulses of magnetosheathlike plasma on northward magnetic field lines. The ISEE 1/2 observations were originally interpreted as evidence for strong diffusion of magnetosheath plasma across the magnetopause and the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. An alternate explanation, in terms of magnetic field merging and flux transfer events, has also been advocated. In this paper, a third interpretation is proposed in terms of quasi-periodic magnetopause motion which causes the satellites to repeatedly exit the magnetosphere and observe draped northward magnetosheath magnetic field lines in the plasma depletion layer.

  13. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Lynch, Brian; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California–San Diego, La Jolla, California 92093 (United States)

    2015-03-15

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the “dust grid” and point out potential implications and applications of these observations.

  14. Some aspects of the study of gas-discharge plasma and production of high magnetic fields

    International Nuclear Information System (INIS)

    Novitskii, V.G.

    This collection is compiled from the papers presented in the section of MHD generators and superconducting devices at the Institute of Electromechanics Conference held in May 1965. The subjects discussed include three-phase plasmatrons, their operational characteristics, and the nature of the physical processes occurring in the arc chamber. The collection also contains the results of experimental and theoretical research on gas-discharge plasma, conduction phenomena in flowing gaseous plasmas, and energy balance and radiation in the case of gas-discharge plasma. It also considers the stability of arcs, the effect of the transverse magnetic field and gas flow on breakdown voltages, the electrode phenomena and the distribution of current on the electrodes. Results of research on the conditions of electric-arc contraction and the characteristics of a contracted arc are given. The problems associated with the production of high magnetic fields and the use of superconducting materials to this end are discussed. The experience gained in the design and fabrication of superconducting magnets and cryostats is described. The results of design calculations for magnetic systems of the Bitter type are also presented

  15. Anisotropic temperature relaxation of plasmas in an external magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1977-01-01

    The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)

  16. Optimization of the Magnetic Field Structure for Sustained Plasma Gun Helicity Injection for Magnetic Turbulence Studies at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Cartagena-Sanchez, C. A.; Schaffner, D. A.; Johnson, H. K.; Fahim, L. E.

    2017-10-01

    A long-pulsed magnetic coaxial plasma gun is being implemented and characterized at the Bryn Mawr Plasma Laboratory (BMPL). A cold cathode discharged between the cylindrical electrodes generates and launches plasma into a 24cm diameter, 2m long chamber. Three separately pulsed magnetic coils are carefully positioned to generate radial magnetic field between the electrodes at the gun edge in order to provide stuffing field. Magnetic helicity is continuously injected into the flux-conserving vacuum chamber in a process akin to sustained slow-formation of spheromaks. The aim of this source, however, is to supply long pulses of turbulent magnetized plasma for measurement rather than for sustained spheromak production. The work shown here details the optimization of the magnetic field structure for this sustained helicity injection.

  17. On the balance of a linear plasma column confined in a transverse magnetic field

    International Nuclear Information System (INIS)

    Lehnert, B.

    1978-08-01

    The equilibrium features are investigated of a straight plasma column being confined in a purely transverse magnetic field, part of which is being generated by external conductors. Provided that stability can be secured at high beta values, the reduced transport of particles and heat in the axial direction should allow for large axial temperature gradients. It is then expected that temperatures even leading to ignition can be achieved in a pure plasma, at technically realistic column lengths. (author)

  18. Interaction of counter-streaming plasma flows in dipole magnetic field

    OpenAIRE

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G

    2017-01-01

    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  19. Magnetic Field Analysis of Plasma Guide in Galathea Trimyx

    Directory of Open Access Journals (Sweden)

    Jin Xianji

    2016-01-01

    Full Text Available You Galathea Trimyx is a kind of small size, multipole magnetic confinement devices in controlled thermonuclear fusion. Plasma guide is one of important part in Galathea Trimyx which is responsible for transporting fast and slow plasma bunches ejected from plasma gun. The distribution and uniformity of magnetic field in completed plasma guide is analyzed in detail, including in x -axis direction and in z-axis direction. On the basis, the motion of plasma in the guide is discussed.

  20. Effect of magnetic field on the Rayleigh Taylor instability of rotating and stratified plasma

    International Nuclear Information System (INIS)

    Sharma, PK; Tiwari, Anita; Argal, Shraddha

    2017-01-01

    In the present study the effect of magnetic field and rotation have been carried out on the Rayleigh Taylor instability of conducting and rotating plasma, which is assumed to be incompressible and confined between two rigid planes z = 0 and z = h. The dispersion relation of the problem is obtained by solving the basic MHD equations of the problem with the help normal mode technique and appropriate boundary conditions. The dispersion relation of the medium is analysed and the effect of magnetic field and angular velocity (rotation effect) have been examined on the growth rate of Rayleigh Taylor instability. It is found that the magnetic field and angular velocity (rotation effect) have stabilizing influence on the Rayleigh Taylor instability. (paper)

  1. Penetration of magnetic fields into plasmas

    International Nuclear Information System (INIS)

    Bengtson, R.D.

    1976-01-01

    A pulsed plasma experiment was constructed to study the penetration of a fast-rising magnetic pulse into an initially unmagnetized, weakly ionized plasma of density 10 11 to 10 13 cm -3 . Magnetic probe data was analyzed using a magnetohydrodynamic approach to obtain detailed information about the dynamics of the penetration mechanism. In particular it is possible to obtain the local resistivity and thus the collision frequency from this data. These collision frequencies compare favorably with theoretical estimates of turbulent collision frequencies. The data indicates that sufficient energy is absorbed to heat the bulk of the plasma to temeratures in excess of 1 keV. A differential rotation of a collisionless theta-pinch column during implosion has been observed and explained by a model in which the driving mechanism is the off-diagonal element p/sub r theta/ of the pressure tensor. Rotational motion was detected by directional probes and spectroscopic techniques. Experimental data were modeled by a one-dimensional hybrid code which included ionization and charge exchange of protons with neutral H atoms

  2. 3+1 dimensional envelop waves and its stability in magnetized dusty plasma

    International Nuclear Information System (INIS)

    Duan Wenshan

    2006-01-01

    It is well known that there are envelope solitary waves in unmagnetized dusty plasmas which are described by a nonlinear Schrodinger equation (NLSE). A three dimension nonlinear Schrodinger equation for small but finite amplitude dust acoustic waves is first obtained for magnetized dusty plasma in this paper. It suggest that in magnetized dusty plasmas the envelope solitary waves exist. The modulational instability for three dimensional NLSE is studied as well. The regions of stability and instability are well determined in this paper

  3. Particle-in-cell simulations of fast magnetic field penetration into plasmas due to the Hall electric field

    International Nuclear Information System (INIS)

    Swanekamp, S.B.; Grossmann, J.M.; Fruchtman, A.; Oliver, B.V.; Ottinger, P.F.

    1996-01-01

    Particle-in-cell (PIC) simulations are used to study the penetration of magnetic field into plasmas in the electron-magnetohydrodynamic (EMHD) regime. These simulations represent the first definitive verification of EMHD with a PIC code. When ions are immobile, the PIC results reproduce many aspects of fluid treatments of the problem. However, the PIC results show a speed of penetration that is between 10% and 50% slower than predicted by one-dimensional fluid treatments. In addition, the PIC simulations show the formation of vortices in the electron flow behind the EMHD shock front. The size of these vortices is on the order of the collisionless electron skin depth and is closely coupled to the effects of electron inertia. An energy analysis shows that one-half the energy entering the plasma is stored as magnetic field energy while the other half is shared between internal plasma energy (thermal motion and electron vortices) and electron kinetic energy loss from the volume to the boundaries. The amount of internal plasma energy saturates after an initial transient phase so that late in time the rate that magnetic energy increases in the plasma is the same as the rate at which kinetic energy flows out through the boundaries. When ions are mobile it is observed that axial magnetic field penetration is followed by localized thinning in the ion density. The density thinning is produced by the large electrostatic fields that exist inside the electron vortices which act to reduce the space-charge imbalance necessary to support the vortices. This mechanism may play a role during the opening process of a plasma opening switch. copyright 1996 American Institute of Physics

  4. Plasma parameters, fluctuations and kinetics in a magnetic field line reconnection experiment

    International Nuclear Information System (INIS)

    Wild, N.C. Jr.

    1983-01-01

    The processes associated with reconnecting magnetic field lines have been studied in a large experimental laboratory plasma. Detailed time- and space-resolved probe measurements of the plasma density, temperature, potential and electric and magnetic fields are discussed. Plasma currents are seen to modify the vacuum magnetic field topology. A flat neutral sheet develops along the separatrix where magnetic flux is transferred from regions of private to common flux. Forced tearing and magnetic island formation are also observed. Rapid electron heating, density and temperature nonuniformities and plasma potential gradients are all observed. The pressure is found to peak at the two edges of the neutral sheet. The dissipation E.J is determined and analyzed in terms of particle heating and fluid acceleration. A consistent, detailed picture of the energy flow via Poynting's theorem is also described. Significant temporal fluctuations in the magnetic fields and electron velocity distribution are measured and seen to give rise to anomalously high values for the plasma resistivity, the ion viscosity and the cross-field thermal conductivity. Electron temperature fluctuations, double layers associated with partial current disruptions, and whistler wave magnetic turbulence have all been identified and studied during the course of the reconnection event

  5. Numerical analysis of plasma-wall interaction for an oblique magnetic field

    International Nuclear Information System (INIS)

    Chodura, R.

    1982-01-01

    A numerical code is used to calculate energy and incidence angle of plasma ions and electrons impinging on an absorbing wall. Plasma particles coming from a plasma of given density and temperature traverse a transition layer with an electric space charge field perpendicular to the wall and a given magnetic field of arbitrary angle before being adsorbed in the wall. The 1d electrostatic particle code determines the electric field and the change of particle velocity distributions in the transition layer. When the incidence angle psi of the magnetic field is varied from 0 0 (normal) to 90 0 (tangential), the impact energies W of ions and electrons at the wall stay nearly unchanged. Electrons reach the wall according to an isotropic Maxwellian distribution except for large angles psi where only electrons travelling along the magnetic field have a chance to escape the plasma. Ions hit the wall at increasing angles theta for increasing psi. The incidence angle of cold ions (Tsub(i0) = 0) is always steeper than that of the magnetic field. For nearly grazing incidence angle of the magnetic field psi →90 0 the ion incidence angle theta becomes grazing as well. After the distribution function is determined the sputtering yield of wall incident ions is calculated for different magnetic field angles psi showing maximum yield for psi near to 90 0 . (orig.)

  6. Plasma opening switch with extrinsic magnetic field

    CERN Document Server

    Dolgachev, G; Maslennikov, D

    2001-01-01

    Summary form only given, as follows. We have demonstrated in series of experiments that plasma opening switch (POS) switching voltage (UPOS) is defined by energy density (w) deposited in the POS plasma. If we then consider a plasma erosion mainly responsible for the effect of POS switching (the erosion effect could be described by Hall or Child-Langmuir models) the energy density (w) could be measured as a function of a system "macro-parameter" such as the initial charging voltage of the capacity storage system (the Marx pulsed voltage generator) UMarx. The POS voltage in this case could be given by UPOS"aw=aUMarx4/7, where a is a constant. This report demonstrates that for the high-impedance POS which has limited charge density transferred through the POS plasma a"2.5 (MV3/7) with no external magnetic field applied. The use of the extrinsic magnetic field allows to increase a up to 3.6 (MV3/7) and to achieve higher voltages at the opening phase - UPOS=3.6UMarx4/7. To verify this approach set of experimental ...

  7. Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.

    Science.gov (United States)

    Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M

    2004-10-15

    The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

  8. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Directory of Open Access Journals (Sweden)

    Nishio K.

    2013-11-01

    Full Text Available The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  9. The Maryland Centrifugal Experiment (MCX): Centrifugal Confinement and Velocity Shear Stabilization of Plasmas in Shaped Open Magnetic Systems

    International Nuclear Information System (INIS)

    Hassam, Adil; Ellis, Richard F.

    2012-01-01

    The Maryland Centrifugal Experiment (MCX) Project has investigated the concepts of centrifugal plasma confinement and stabilization of instabilities by velocity shear. The basic requirement is supersonic plasma rotation about a shaped, open magnetic field. Overall, the MCX Project attained three primary goals that were set out at the start of the project. First, supersonic rotation at Mach number up to 2.5 was obtained. Second, turbulence from flute interchange modes was found considerably reduced from conventional. Third, plasma pressure was contained along the field, as evidenced by density drops of x10 from the center to the mirror throats.

  10. Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma

    Science.gov (United States)

    Bezbaruah, P.; Das, N.

    2018-05-01

    The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.

  11. Influence of magnetic topology on transport and stability in Stellerators

    Energy Technology Data Exchange (ETDEWEB)

    Castejon, F.; Fujisawa, A.; Ida, K.; Talmadge, J.N.; Estrada, T.; Lopez-Bruna, D.; Hidalgo, C.

    2005-07-01

    The influence of magnetic topology on transport and stability has been studied in four different stellarators: An almost shear less medium size flexible heliac (TJ-II), a medium size and a large heliotron (CHS and LHD) with shear, and a quasi helically symmetric device (HSX) with moderate shear. All of them can vary their rotational transform profiles, especially TJ-II that can do it by a factor of more than 2. LHD and HSX can vary their confinement properties by modifying their respective magnetic ripples. CHS has proven that the electric field can jump between the electron and ion roots. Experiments in these stellarators have allowed us to determine how transport and stability are modified when the magnetic topology is changed, and to understand better the mechanisms that act in the different devices. Low rational values of ?/2? can create transport barriers in LHD and TJ-II when they are located close to the plasma core or at the edge. This has been done either by scanning the rotational transform, driving currents using ECCD, or inducing OH currents. In this way it is demonstrated that low order rationals are not always deleterious for confinement but can be beneficial. The key ingredient to understand this fact is the appearance of a positive and sheared electric field in these plasmas, which is created by the additional non-ambipolar fluxes that appear due to the presence of the rationals. Moreover, the electric field approximately vanishes inside the island, which creates a sheared flow in its vicinity. LHD and TJ-II experiments indicate that it is possible to create ITBs in the plasma without the presence of low order rationals. This occurs when the electric field is created by neoclassical mechanisms and the electron root appears in the plasma core. ITBs also appear in CHS but the role of rationals is not clear yet in this device. The time evolution of the electric field has been studied and fast transitions have been found between high and low confinement

  12. Influence of magnetic topology on transport and stability in Stellerators

    International Nuclear Information System (INIS)

    Castejon, F.; Fujisawa, A.; Ida, K.; Talmadge, J.N.; Estrada, T.; Lopez-Bruna, D.; Hidalgo, C.

    2005-01-01

    The influence of magnetic topology on transport and stability has been studied in four different stellarators: An almost shear less medium size flexible heliac (TJ-II), a medium size and a large heliotron (CHS and LHD) with shear, and a quasi helically symmetric device (HSX) with moderate shear. All of them can vary their rotational transform profiles, especially TJ-II that can do it by a factor of more than 2. LHD and HSX can vary their confinement properties by modifying their respective magnetic ripples. CHS has proven that the electric field can jump between the electron and ion roots. Experiments in these stellarators have allowed us to determine how transport and stability are modified when the magnetic topology is changed, and to understand better the mechanisms that act in the different devices. Low rational values of ?/2? can create transport barriers in LHD and TJ-II when they are located close to the plasma core or at the edge. This has been done either by scanning the rotational transform, driving currents using ECCD, or inducing OH currents. In this way it is demonstrated that low order rationals are not always deleterious for confinement but can be beneficial. The key ingredient to understand this fact is the appearance of a positive and sheared electric field in these plasmas, which is created by the additional non-ambipolar fluxes that appear due to the presence of the rationals. Moreover, the electric field approximately vanishes inside the island, which creates a sheared flow in its vicinity. LHD and TJ-II experiments indicate that it is possible to create ITBs in the plasma without the presence of low order rationals. This occurs when the electric field is created by neoclassical mechanisms and the electron root appears in the plasma core. ITBs also appear in CHS but the role of rationals is not clear yet in this device. The time evolution of the electric field has been studied and fast transitions have been found between high and low confinement

  13. Density and magnetic field measurements in the Tormac IV-c plasma

    International Nuclear Information System (INIS)

    Coonrod, J.W. Jr.

    1978-01-01

    Tormac is a concept for magnetically confining a high-β fusion plasma in a toroidal, stuffed line cusp. A Tormac plasma has two regions: an interior confined on the closed toroidal field lines of the stuffing field, and an exterior sheath on open, cusped field lines. The interior plasma gives the device a longer confinement time than a standard mirror, while the favorable curvature of the cusp fields allow the plasma to be stable at higher values of β (the ratio of the plasma pressure to magnetic pressure) than a totally closed configuration like Tokamak. This thesis describes the design, construction and operation of Tormac IV-c, and reports on the results, with emphasis on describing the behavior of the density compression and field penetration

  14. Rotation of dust plasma crystals in an axial magnetic field

    International Nuclear Information System (INIS)

    Cheung, F.; Prior, N.; Mitchell, L.

    2000-01-01

    Full text: Micron-sized melamine formaldehyde particles were introduced into argon plasma. As a result, the particles were negatively charged due to collision with the electrons within the plasma. With the right conditions, these particles formed a stable macroscopic crystal lattice, known as dust plasma crystal. In our experiment we conduct at Flinders University, we apply an external axial magnetic field to various configurations of dust plasma crystal. These configurations include small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The magnetic field strength ranged from 0-32G and was uniform over the extent of the crystal. The crystals were observed to be rotating collectively in the left-handed direction under the influence of the axial magnetic field. In the case of the large crystals, the angular velocity was about 2 complete rotations per minute and was proportional to the applied magnetic field. The angular velocity changes only slightly depending on the plasma conditions. Neither radial variance in the angular velocity nor shear velocity in the vertical direction was observed in the crystal's rotational motion. In the case of the small crystals, we managed to rotate 2-6 particles (whether they are planar, 2 layers or tetrahedral). We discovered that the ease and the uniformity of the rotation of the different crystals increase as its rotational symmetry increases. Also an increase in the magnetic field strength will correspond to an increase in the angular velocity. Crystals in the shape of an annulus were also tested for theoretical reasons. The poster presentation will contain the experimental procedures, a detailed analysis and an explanation for such dust plasma crystal rotational motion

  15. Flux quanta, magnetic field lines, merging – some sub-microscale relations of interest in space plasma physics

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2011-06-01

    Full Text Available We clarify the notion of magnetic field lines in plasma by referring to sub-microscale (quantum mechanical particle dynamics. It is demonstrated that magnetic field lines in a field of strength B carry single magnetic flux quanta Φ0=h/e. The radius of a field line in the given magnetic field B is calculated. It is shown that such field lines can merge and annihilate only over the length ℓ∥ of their strictly anti-parallel sections, for which case we estimate the power generated. The length ℓ∥ becomes a function of the inclination angle θ of the two merging magnetic flux tubes (field lines. Merging is possible only in the interval 12πθ≤π. This provides a sub-microscopic basis for "component reconnection" in classical macro-scale reconnection. We also find that the magnetic diffusion coefficient in plasma appears in quanta D0m=eΦ0/me=h/me. This lets us conclude that the bulk perpendicular plasma resistivity is limited and cannot be less than η0⊥=μ0eΦ0/me=μ0h/me~10−9 Ohm m. This resistance is an invariant.

  16. Magnetic field approaches in dc thermal plasma modelling

    International Nuclear Information System (INIS)

    Freton, P; Gonzalez, J J; Masquere, M; Reichert, Frank

    2011-01-01

    The self-induced magnetic field has an important role in thermal plasma configurations generated by electric arcs as it generates velocity through Lorentz forces. In the models a good representation of the magnetic field is thus necessary. Several approaches exist to calculate the self-induced magnetic field such as the Maxwell-Ampere formulation, the vector potential approach combined with different kinds of boundary conditions or the Biot and Savart (B and S) formulation. The calculation of the self-induced magnetic field is alone a difficult problem and only few papers of the thermal plasma community speak on this subject. In this study different approaches with different boundary conditions are applied on two geometries to compare the methods and their limitations. The calculation time is also one of the criteria for the choice of the method and a compromise must be found between method precision and computation time. The study shows the importance of the current carrying path representation in the electrode on the deduced magnetic field. The best compromise consists of using the B and S formulation on the walls and/or edges of the calculation domain to determine the boundary conditions and to solve the vector potential in a 2D system. This approach provides results identical to those obtained using the B and S formulation over the entire domain but with a considerable decrease in calculation time.

  17. Transformation of QSPA plasma streams in longitudinal magnetic field

    International Nuclear Information System (INIS)

    Makhlaj, V.A.; Bandura, A.N.; Chebotarev, V.V.; Kulik, N.V.; Wuerz, H.

    2002-01-01

    The main aim of this work is analysis of efficiency of QSPA powerful plasma streams transportation in longitudinal magnetic field in dependence on operational mode of accelerator and plasma stream parameters

  18. Test results of BM109 magnet field stability during ramping

    International Nuclear Information System (INIS)

    Kristalinski, A.

    1992-12-01

    This report presents results of the measured lag between the current ramp and the following magnetic field rise in BM109 magnets. The purpose of these tests is to choose identical ramping programs for PC4AN1, PC4AN2 and PC4AN3 magnets. The lag occurs due to the large eddy currents in the magnets' solid iron cores. The experiment requires a magnetic field stability of 0.1% during beam presence. Using existing equipment and a program slope of 100 Amp/sec starting at Tl yields fields within the 0.05% of set value. Add to this 0.05% for P.S. regulation to meet the required field stability of 0.1%. This program yields annual savings of $200,000 (assuming 100% usage) . Additional savings can be made by using faster slopes, but this requires additional controls

  19. The vacuum-arc plasma motion in a toroidal magnetic field

    International Nuclear Information System (INIS)

    Timoshenko, A.I.; Gnybida, M.V.; Taran, V.S.; Tereshin, V.I.; Chechelnitskij, O.G.

    2005-01-01

    The separation of the vacuum-arc plasma from macro-particles in the curvilinear plasma filters allows obtaining coatings with especially high characteristics. However, inside such filters the significant plasma losses also have been occurred. At the same time, increasing in the filter's efficiency is a difficult task without an effective mathematical model that really would describe the vacuum-arc plasma motion in a toroidal magnetic field. The description based on the flax-tube model was in fact only the first approximation in the decision of this problem. According to detailed flax-tube analysis of ions passage through the quarter torus plasma guide, the efficiency of the filter should grow up to 85% as the positive potential U, applied to the body of the plasma guide, is on the increase. However, the experiment showed that maximum of transparency reach up to ∼ 12%, at potential about of +18 Volts, and comes down under the further increase in potential. Such big digression from experiment does not justify the use of flux-tube model for designing of curvilinear plasma filters. We offer the new approach to the description of the vacuum-arc plasma motion in a toroidal magnetic field based on the solutions of steady-state (∂/∂t=0) Vlasov-Maxwell equations for the long plasma column aligned parallel to a constant axial magnetic field. The relations for the self-consistent electric polarization fields, which appear due to displacement of the electron component from ionic one on the curvilinear part of motion, were derived within a framework of the drift approximation. The dynamics of the central part of the plasma flow in the electric polarization fields was considered in detail. The displacement of the plasma flow at the output of the plasma guide was calculated for the carbon and titanium plasmas. The good agreement with the experimental data was obtained. (author)

  20. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    International Nuclear Information System (INIS)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-01-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons

  1. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Takahashi, K. [Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2137 (Japan); Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Horioka, K. [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan)

    2016-02-15

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  2. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Science.gov (United States)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  3. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  4. Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding

    Science.gov (United States)

    Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin

    2018-05-01

    An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.

  5. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  6. Resistive wall mode stabilization in slowly rotating high beta plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H [Columbia University, New York, NY 10027 (United States); Garofalo, A M [Columbia University, New York, NY 10027 (United States); Okabayashi, M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Strait, E J [General Atomics, San Diego, CA 92186-5608 (United States); Betti, R [University of Rochester, Rochester, NY 14627 (United States); Chu, M S [General Atomics, San Diego, CA 92186-5608 (United States); Hu, B [University of Rochester, Rochester, NY 14627 (United States); In, Y [FAR-TECH, Inc., San Diego, CA 92121 (United States); Jackson, G L [General Atomics, San Diego, CA 92186-5608 (United States); La Haye, R J [General Atomics, San Diego, CA 92186-5608 (United States); Lanctot, M J [Columbia University, New York, NY 10027 (United States); Liu, Y Q [Chalmers University of Technology, S-412 96 Goeteborg (Sweden); Navratil, G A [Columbia University, New York, NY 10027 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Takahashi, H [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Groebner, R J [General Atomics, San Diego, CA 92186-5608 (United States)

    2007-12-15

    DIII-D experiments show that the resistive wall mode (RWM) can remain stable in high {beta} scenarios despite a low net torque from nearly balanced neutral beam injection heating. The minimization of magnetic field asymmetries is essential for operation at the resulting low plasma rotation of less than 20 krad s{sup -1} (measured with charge exchange recombination spectroscopy using C VI emission) corresponding to less than 1% of the Alfven velocity or less than 10% of the ion thermal velocity. In the presence of n = 1 field asymmetries the rotation required for stability is significantly higher and depends on the torque input and momentum confinement, which suggests that a loss of torque-balance can lead to an effective rotation threshold above the linear RWM stability threshold. Without an externally applied field the measured rotation can be too low to neglect the diamagnetic rotation. A comparison of the instability onset in plasmas rotating with and against the direction of the plasma current indicates the importance of the toroidal flow driven by the radial electric field in the stabilization process. Observed rotation thresholds are compared with predictions for the semi-kinetic damping model, which generally underestimates the rotation required for stability. A more detailed modeling of kinetic damping including diamagnetic and precession drift frequencies can lead to stability without plasma rotation. However, even with corrected error fields and fast plasma rotation, plasma generated perturbations, such as edge localized modes, can nonlinearly destabilize the RWM. In these cases feedback control can increase the damping of the magnetic perturbation and is effective in extending the duration of high {beta} discharges.

  7. Numerical investigation of a plasma beam entering transverse magnetic fields

    International Nuclear Information System (INIS)

    Koga, J.; Geary, J.L.; Tajima, T.; Rostoker, N.

    1988-11-01

    We study plasma beam injection into transverse magnetic fields using both electrostatic and electromagnetic particle-in-cell (PIC) codes. In the case of small beam momentum or energy (low drift kinetic /beta/) we study both large and small ion gyroradius beams. Large ion gyroradius beams with a large dielectric constant /epsilon/ /muchreverse arrowgt/ (M/m)/sup /1/2// are found to propagate across the magnetic field via E /times/ B drifts at nearly the initial injection velocity, where /epsilon/ = 1 + (/omega//sup pi//sup 2/)/(/Omega//sub i//sup 2/) and (M/m) is the ion to electron mass ratio. Beam degradation and undulations are observed in agreement with previous experimental and analytical results. When /epsilon/ is on the order of (M/m)/sup /1/2//, the plasma beam propagates across field lines at only half its initial velocity and loses its coherent structure. When /epsilon/ is much less than (M/m)/sup /1/2//, the beam particles decouple at the magnetic field boundary, scattering the electrons and slightly deflecting the ions. For small ion gyroradius beam injection a flute type instability is observed at the beam magnetic fields interface. In the case of large beam momentum or energy (high drift kinetic /beta/) we observe good penetration of a plasma beam which shields the magnetic field from the interior of the beam (diagmagnetism). 25 refs., 13 figs., 1 tab

  8. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  9. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  10. Plasma cleaning of ITER First Mirrors in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Lucas, E-mail: lucas.moser@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Steiner, Roland [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Leipold, Frank; Reichle, Roger [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); Marot, Laurent; Meyer, Ernst [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2015-08-15

    To avoid reflectivity losses in ITER’s optical diagnostic systems, plasma sputtering of metallic First Mirrors is foreseen in order to remove deposits coming from the main wall (mainly beryllium and tungsten). Therefore plasma cleaning has to work on large mirrors (up to a size of 200 × 300 mm) and under the influence of strong magnetic fields (several Tesla). This work presents the results of plasma cleaning of aluminium and aluminium oxide (used as beryllium proxy) deposited on molybdenum mirrors. Using radio frequency (13.56 MHz) argon plasma, the removal of a 260 nm mixed aluminium/aluminium oxide film deposited by magnetron sputtering on a mirror (98 mm diameter) was demonstrated. 50 nm of pure aluminium oxide were removed from test mirrors (25 mm diameter) in a magnetic field of 0.35 T for various angles between the field lines and the mirrors surfaces. The cleaning efficiency was evaluated by performing reflectivity measurements, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy.

  11. Study of beam-plasma interactions in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Etievant, C.

    1963-12-01

    The instabilities developing in a 'beam-plasma' system and in a 'double-beam' system in the presence of a magnetic field are discussed theoretically starting from the conductivity tensor expression for a multi-beam system. Oblique propagation is taken into account and this leads to the introduction of certain instability mechanisms which would not appear in the case of a propagation which is purely parallel or perpendicular to the magnetic field. Two experiments are described: a) Study of the collision of two counterstreaming electron beams: An instability has been observed experimentally which leads to the generation of a stationary cyclotron wave having a frequency of ω ce /2. A description is given of the measurement of the interaction frequency, of the wavelength and of the build-up time of the wave. b) Study of a 'beam-plasma' system: A description is given of the measurement of the spectra of excited waves and of the perturbation of the beam velocity distribution at the plasma-exit. This perturbation is very pronounced when 'plasma-plasma' interaction appears in the system. A study into cyclotron oscillations produced in the plasma by excitation due to the passage of the beam is also described in this report. (author) [fr

  12. Screening of the field of a static charge in an anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Arsenin, V.V.; Puzitskii, M.L.

    1991-01-01

    The field of a static charge placed in an equilibrium plasma is screened at a distance of the order of the Debye radius. Debye screening occurs both with and without an external magnetic field. This property also persists when the plasma is not an equilibrium plasma but the velocity distribution function of the particles is isotropic (the screening radius in this case contains the characteristic value of the energy instead of the temperature). The situation can change if the distribution is anisotropic. First, the drop in the field can become non-Debye. In particular, in an unmagnetized plasma some distribution functions are characterized by a power-law decrease of the field. Second, a static test charge induces a magnetic as well as an electrostatic field in an anisotropic plasma. In this communication the authors describe the anomalies of screening of the field of a static charge in a magnetized plasma. For definiteness they consider a situation (typical, e.g., of magnetic mirror systems) when the ionic component is anisotropic. The simplifications for the sake of computations are limited to the case of a charge which extends along the magnetic field and only harmonics much longer than the Debye length are significant in the Fourier expansion of the density of this charge in the longitudinal coordinate

  13. Anisotropic plasma with flows in tokamak: Steady state and stability

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.

    1996-01-01

    An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics

  14. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    Science.gov (United States)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in

  15. Equilibrium and stability in strongly inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1978-10-01

    The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability

  16. Plasma Constraints on the Cosmological Abundance of Magnetic Monopoles and the Origin of Cosmic Magnetic Fields

    Science.gov (United States)

    Medvedev, Mikhail; Loeb, Abraham

    2017-10-01

    Existing theoretical and observational constraints on the abundance of magnetic monopoles are limited. Here we demonstrate that an ensemble of monopoles forms a plasma whose properties are well determined and whose collective effects place new tight constraints on the cosmological abundance of monopoles. In particular, the existence of micro-Gauss magnetic fields in galaxy clusters and radio relics implies that the scales of these structures are below the Debye screening length, thus setting an upper limit on the cosmological density parameter of monopoles, ΩM <= 3 ×10-4 , which precludes them from being the dark matter. Future detection of Gpc-scale coherent magnetic fields could improve this limit by a few orders of magnitude. In addition, we predict the existence of magnetic Langmuir waves and turbulence which may appear on the sky as ``zebra patterns'' of an alternating magnetic field with k . B ≠ 0 . We also show that magnetic monopole Langmuir turbulence excited near the accretion shock of galaxy clusters may be an efficient mechanism for generating the observed intracluster magnetic fields. The authors acknowledge DOE partial support via Grant DE-SC0016368.

  17. Plasma constraints on the cosmological abundance of magnetic monopoles and the origin of cosmic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, Mikhail V.; Loeb, Abraham, E-mail: mmedvedev@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States)

    2017-06-01

    Existing theoretical and observational constraints on the abundance of magnetic monopoles are limited. Here we demonstrate that an ensemble of monopoles forms a plasma whose properties are well determined and whose collective effects place new tight constraints on the cosmological abundance of monopoles. In particular, the existence of micro-Gauss magnetic fields in galaxy clusters and radio relics implies that the scales of these structures are below the Debye screening length, thus setting an upper limit on the cosmological density parameter of monopoles, Ω {sub M} {sub ∼<} {sub 3} {sub ×} {sub 10}{sup −4}, which precludes them from being the dark matter. Future detection of Gpc-scale coherent magnetic fields could improve this limit by a few orders of magnitude. In addition, we predict the existence of magnetic Langmuir waves and turbulence which may appear on the sky as ''zebra patterns'' of an alternating magnetic field with k·B ≠ 0. We also show that magnetic monopole Langmuir turbulence excited near the accretion shock of galaxy clusters may be an efficient mechanism for generating the observed intracluster magnetic fields.

  18. Stability of self-gravitating homogeneous spheroid with azimuthal magnetic field. I

    International Nuclear Information System (INIS)

    Antonov, V.A.; Zheleznyak, O.A.

    1988-01-01

    The influence of a frozen magnetic field on the stability of a self-gravitating homogeneous spheroid with respect to a deformation that transforms it into a triaxial ellipsoid is investigated. It is shown that an azimuthal magnetic field is a stabilizing factor, allowing the spheroid to be stable at e > e/sub cr/ = 0.95285

  19. Dynamics of the plasma injected into the gap of a plasma opening switch across a strong magnetic field

    International Nuclear Information System (INIS)

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.; Fedotkin, A. S.; Khodeev, I. A.; Shvedov, A. A.

    2011-01-01

    A method is proposed to increase the linear charge density transferred through a plasma opening switch (POS) and, accordingly, reduce the POS diameter by enhancing the external magnetic field in the POS gap. Results are presented from experimental studies of the dynamics of the plasma injected into the POS gap across a strong magnetic field. The possibility of closing the POS gap by the plasma injected across an external magnetic field of up to 60 kG is demonstrated.

  20. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  1. Dynamics of Dust in a Plasma Sheath with Magnetic Field

    International Nuclear Information System (INIS)

    Duan Ping; Liu Jinyuan; Gon Ye; Liu Yue; Wang Xiaogang

    2007-01-01

    Dynamics of dust in a plasma sheath with a magnetic field was investigated using a single particle model. The result shows that the radius, initial position, initial velocity of the dust particles and the magnetic field do effect their movement and equilibrium position in the plasma sheath. Generally, the dust particles with the same size, whatever original velocity and position they have, will locate at the same position in the end under the net actions of electrostatic, gravitational, neutral collisional, and Lorentz forces. But the dust particles will not locate in the plasma sheath if their radius is beyond a certain value

  2. EDITORIAL: 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control

    Science.gov (United States)

    Buttery, Richard

    2011-08-01

    This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http

  3. Steady state models for filamentary plasma structures associated with force free magnetic fields

    International Nuclear Information System (INIS)

    Marklund, G.

    1978-05-01

    This paper presents a model for filamentary plasma structures associated with force-free magnetic fields. A homogenous electric field parallel to the symmetry axis of the magnetic field is assumed. Under the influence of these fields, the plasma will drift radially inwards resulting in an accumulation of plasma in the central region. We assume recombination losses to keep the central plasma density at a finite value, and the recombined plasma i.e. the neutrals to diffuse radially outwards. Plasma density and some neutral gas density distributions for a steady state situation are calculated for various cases

  4. Magnetogravitational stability of resistive plasma through porous medium with thermal conduction and FLR corrections

    International Nuclear Information System (INIS)

    Vaghela, D.S.; Chhajlani, R.K.

    1989-01-01

    The problem of stability of self gravitating magnetized plasma in porous medium is studied incorporating electrical resistivity, thermal conduction and FLR corrections. Normal mode analysis is applied to derive the dispersion relation. Wave propagation is discussed for parallel and perpendicular directions to the magnetic field. Applying Routh Hurwitz Criterion the stability of the medium is discussed and it is found that Jeans' criterion determines the stability of the medium. Magnetic field, porosity and resistivity of the medium have no effect on Jeans' Criterion in longitudinal direction. For perpendicular direction, in case of resistive medium Jeans' expression remains unaffected by magnetic field but for perfectly conducting medium magnetic field modifies the Jeans' expression to show the stabilizing effect. Thermal conductivity affects the sonic mode by making the process isothermal instead of adiabatic. Porosity of the medium is effective only in case of perpendicular direction to magnetic field for perfectly conducting plasma as it reduces the stabilizing effect of magnetic field. For longitudinal wave propagation, though Finite Larmor Radius (FLR) corrections have no effect on sonic mode but it changes the growth rate for Alfven mode. For transverse wave propagation FLR corrections and porosity affect the Jeans' expression in case of non-viscous medium but viscosity of the medium removes the effect of FLR and porosity on Jeans' condition. (author)

  5. Stability in high gain plasmas in DIII-D

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Houlberg, W.A.; Murakami, M.; Wade, M.R.

    1996-10-01

    Fusion power gain has been increased by a factor of 3 in DIII-D plasmas through the use of strong discharge shaping and tailoring of the pressure and current density profiles. H-mode plasmas with weak or negative central magnetic shear are found to have neoclassical ion confinement throughout most of the plasma volume. Improved MHD stability is achieved by controlling the plasma pressure profile width. The highest fusion power gain Q (ratio of fusion power to input power) in deuterium plasmas was 0.0015, which extrapolates to an equivalent Q of 0.32 in a deuterium-tritium plasma and is similar to values achieved in tokamaks of larger size and magnetic fields

  6. Production and study of high-beta plasma confined by a superconducting dipole magnet

    International Nuclear Information System (INIS)

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-01-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large

  7. Axial magnetic field restriction of plasma sheath in a coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M. M.; Soliman, H. M.; Ibrahim, F. A.

    1999-01-01

    The study deals with the effect of an applied axial magnetic field on the dynamics and parameters of the plasma sheath and the expanded plasma in a coaxial discharge. Experimental investigations were carried out with a 3 kJ coaxial discharge device of a Mather geometry. The discharge takes place in Hydrogen gas with base pressure of 1 torr. The experiments were conducted with a 10 kV bank voltage, which corresponds to 100 kA discharge currents. The investigations have shown that the maximum axial plasma sheath velocity is decreased by 20% when applying the external axial magnetic field along the coaxial electrodes of intensity 2.6 kG. The experimental results of axial magnetic field intensity B z along the coaxial electrodes indicated that the application of external axial magnetic field causes an increases of B z ∼ 40% at a mid-distance between the breech and the muzzle and a decrease by 75% at the muzzle. The experimental results of expanded plasma electron temperature T e and density n e cleared that when the axial magnetic field is applied the maximum T e is decreased by 2.6 and 3 times, while the maximum n e is increased by 2.8 and 2 times for the first and second half cycles respectively. (author)

  8. Stability analysis of perpendicular magnetic trilayers with a field-like spin torque

    International Nuclear Information System (INIS)

    Wang, Ri-Xing; Zhao, Jing-Li; He, Peng-Bin; Gu, Guan-Nan; Li, Zai-Dong; Pan, An-Lian; Liu, Quan-Hui

    2013-01-01

    We have analytically studied the magnetization dynamics in magnetic trilayers with perpendicular anisotropy for both free and pinned layers. By linear stability analysis, we obtain the phase diagram parameterized by the current, magnetic field and relative strength of the field-like spin torque to Slonczewski torque. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field. In addition, the presence of field-like spin torque can change the switching current and precession frequency. - Highlights: ► The phase diagram is obtained by linear stability analysis. ► The precession frequency can be controlled by the current and magnetic field. ► Field-like spin torque can change instability current and precession frequency.

  9. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    International Nuclear Information System (INIS)

    Abudurexiti, A.; Tuniyazi, P.; Wang Qian

    2011-01-01

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  10. Method and means for measuring the anisotropy of a plasma in a magnetic field

    Science.gov (United States)

    Shohet, J.L.; Greene, D.G.S.

    1973-10-23

    Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)

  11. Transport barriers with and without shear flows in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinell, Julio J.

    2014-01-01

    Different ways of producing a transport barrier in a toroidal magnetized plasma are discussed and the properties of the barriers are analyzed. The first mechanism is associated with the presence of a sheared plasma flow that is present in a limited region of the plasma, which creates a zonal flow. In contrast to the usual paradigm stating that the sheared flow reduces the turbulence correlation length and leads to suppression of the fluctuation driven transport in the region of highest shear, it is shown that from the perspective of chaotic transport of plasma particles in the fluctuation fields, the transport barrier is formed in the region of zero shear and it can be destroyed when the fluctuation level is high enough. It is also shown that finite gyroradius effects modify the dynamics and introduces new conditions for barrier formation. The second mechanism considers a method in which radio-frequency waves injected into the plasma can stabilize the drift waves and therefore the anomalous transport is reduced, creating a barrier. This process does not involve the presence of sheared flows and depends only on the effect of the RF wave field on the drift waves. The stabilizing effect in this case is due to the nonlinear ponderomotive force which acts in a way that offsets the pressure gradient destabilization. Finally, a mechanism based on the ponderomotive force of RF waves is described which produces poloidal plasma rotation around the resonant surface due to the asymmetry of induced transport; it creates a transport barrier by shear flow stabilization of turbulence

  12. Local thermodynamics of a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.

    2013-01-01

    An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

  13. Internal Magnetic Field, Temperature and Density Measurements on Magnetized HED plasmas using Pulsed Polarimetry

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2016-01-01

    The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high-beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.

  14. Internal Magnetic Field, Temperature and Density Measurements on Magnetized HED plasmas using Pulsed Polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Roger J. [Univ. of Washington, Seattle, WA (United States)

    2016-10-20

    The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high-beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.

  15. Effect of ECRH and resonant magnetic fields on formation of magnetic islands in the T-10 tokamak plasma

    Science.gov (United States)

    Shestakov, E. A.; Savrukhin, P. V.

    2017-10-01

    Experiments in the T-10 tokamak demonstrated possibility of controlling the plasma current during disruption instability using the electron cyclotron resonance heating (ECRH) and the controlled operation of the ohmic current-holding system. Quasistable plasma discharge with repeating sawtooth oscillations can be restored after energy quench using auxiliary ECRH power when PEC / POH > 2-5. The external magnetic field generation system consisted of eight saddle coils that were arranged symmetrically relative to the equatorial plane of the torus outside of the vacuum vessel of the T-10 tokamak to study the possible resonant magnetic field effects on the rotation frequency of magnetic islands. The saddle coils power supply system is based on four thyristor converters with a total power of 300 kW. The power supply control system is based on Siemens S7 controllers. As shown by preliminary experiments, the interaction efficiency of external magnetic fields with plasma depends on the plasma magnetic configuration. Optimal conditions for slowing the rotation of magnetic islands were determined. Additionally, the direction of the error magnetic field in the T-10 tokamak was determined, and the threshold value of the external magnetic field was determined.

  16. Robustness of the filamentation instability for asymmetric plasma shells collision in arbitrarily oriented magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2013-10-15

    The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism to generate shocks.

  17. Pulsed Electron Source with Grid Plasma Cathode and Longitudinal Magnetic Field for Modification of Material and Product Surfaces

    Science.gov (United States)

    Devyatkov, V. N.; Koval, N. N.

    2018-01-01

    The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.

  18. Magnetic propulsion of intense lithium streams in a tokamak magnetic field

    International Nuclear Information System (INIS)

    Zakharov, Leonid E.

    2003-01-01

    This paper describes the effect and gives the theory of magnetic propulsion which allows driving free surface plasma facing liquid lithium streams in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integrodifferential equation which takes into account the propulsion effect, viscosity, and the drag force due to magnetic pumping and other interactions with the magnetic field. A stability criterion is obtained for stabilization of the 'sausage' instability of the streams by centrifugal force

  19. Effects of external magnetic field on harmonics generated in laser interaction with underdense plasma

    International Nuclear Information System (INIS)

    Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.

    2010-01-01

    Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.

  20. Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    Science.gov (United States)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.

    2018-01-01

    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.

  1. Radio frequency conductivity of plasma in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Itoh, Sanae; Nishikawa, Kyoji; Fukuyama, Atsushi; Itoh, Kimitaka.

    1985-01-01

    Nonlocal conductivity tensor is obtained to study the kinetic effects on propagation and absorption of radio frequency (rf) waves in dispersive plasmas. Generalized linear propagator in the presence of the inhomogeneity of magnetic field strength along the field line is calculated. The influence of the inhomogeneity to the rf wave-energy deposition is found to be appreciable. Application to toroidal plasmas is shown. (author)

  2. M.V.A. amplifier for plasma position control by vertical magnetic field

    International Nuclear Information System (INIS)

    Schenk, G.

    1978-01-01

    The radial plasma position in the WEGA torus is controlled by a power amplifier, acting on the vertical magnetic field. Up to now the feedback loop contains, as amplifying elements, two 90 kW DC-transistor amplifiers, acting in push-pull operation. As increased plasma stability and lifetime is desirable, we have to increase the power amplifier to about 1 Megawatt. Industry offered a thyristor rectifier, operating at 50 or 300 Hz, and alternatively a thyristor chopper amplifier at a few kHz frequency response. Theses offers did not correspond to our demand, as far as response time, price and primary power requirements are concerned. We have implemented a bipolar switching-type amplifier (also called H-bridge converter) with the characteristics: time response < 0,05 ms., pulsed power = 1 MW (400 V, 2500 A), primary power = 2,5 kW. As power switch, a network of parallel high voltage transistors, driven by three transistor stages, has been chosen, to control a vertical magnetic field or +/- 180 G, with a precision of about one per cent. Precautions for transistor switches concerning mainly critical voltage, current, instantaneous power and selfoscillating behaviour have been taken. This systems corresponds to our demands

  3. The Influence of the Axial Magnetic Field Upon-the Coaxial Plasma Gun Parameters

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; EL-Demrdash, A.

    2001-01-01

    This study concerns with the influence of an applied axial magnetic field upon the electrical parameters of a coaxial plasma gun device. The experimental results are investigated with 0.5 KJ plasma gun device operated with argon gas at a pressure of 3.5 Torr. An axial time independent magnetic field with intensity of 550 G is introduced along the plasma current sheath axial region, within the annular space between the two coaxial electrodes. From the measurements of the discharge current I(t) and the voltage V(t), the electrical discharge parameters of the plasma gun device and the plasma current sheath implosion velocity are estimated, in normal mode of plasma gun operation and in the mode of presence external axial magnetic field. A comparison between these two modes is studied

  4. The Ionospheric Bubble Index deduced from magnetic field and plasma observations onboard Swarm

    DEFF Research Database (Denmark)

    Park, Jaeheung; Noja, Max; Stolle, Claudia

    2013-01-01

    . This product called L2-IBI is generated from magnetic field and plasma observations onboard Swarm, and gives information as to whether a Swarm magnetic field observation is affected by EPBs. We validate the performance of the L2-IBI product by using magnetic field and plasma measurements from the CHAMP...... satellite, which provided observations similar to those of the Swarm. The L2-IBI product is of interest not only for ionospheric studies, but also for geomagnetic field modeling; modelers can de-select magnetic data which are affected by EPBs or other unphysical artifacts....

  5. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    Science.gov (United States)

    Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  6. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); Beard, J.; Billette, J.; Portugall, O. [LNCMI, UPR 3228, CNRS-UFJ-UPS-INSA, 31400 Toulouse (France); Ciardi, A. [LERMA, Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS UMR 8112, Paris (France); Vinci, T.; Albrecht, J.; Chen, S. N.; Da Silva, D.; Hirardin, B.; Nakatsutsumi, M.; Romagnagni, L.; Simond, S.; Veuillot, E.; Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Burris-Mog, T.; Dittrich, S.; Herrmannsdoerfer, T.; Kroll, F.; Nitsche, S. [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); and others

    2013-04-15

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

  7. Influence of Temperature and Mechanical Scratch on the Recorded Magnetization Stability of Longitudinal and Perpendicular Recording Media

    International Nuclear Information System (INIS)

    Nagano, Katsumasa; Tobari, Kousuke; Futamoto, Masaaki

    2011-01-01

    Stability of recorded magnetization of hard disk drive (HDD) is influenced by external environments, such as temperature and magnetic field. Small scratches are frequently formed on HDD medium surface upon contacts with the magnetic head. The influences of temperature and mechanical scratch on the magnetization structure stability are investigated for longitudinal and perpendicular recording media by using a magnetic force microscope. PMR media remained almost unchanged up to about 300 deg. C for the area with no scratches, whereas the areas near and under mechanical scratches started to change around 250 deg. C. The magnetization structure of LMR media started to change at about 100 degrees lower temperature under mechanical scratches when compared with no scratch areas. A quantitative analysis of magnetization structure variation is carried out by measuring the recorded magnetization strength difference estimated from the MFM images observed for a same sample area before and after exposing the sample to different temperatures.

  8. Stochastic layers of magnetic field lines and formation of ITB in a toroidal plasma

    International Nuclear Information System (INIS)

    Volkov, E.D.; Bererzhnyi, V.L.; Bondarenko, V.N.

    2003-01-01

    The results of local measurements of RF discharge plasma parameters in the process of ITB formation in the vicinity of rational magnetic surfaces in the Uragan-3M torsatron are presented. The next phenomena were observed in the process of ITB formation: the widening of the radial density distribution, the formation of pedestals on radial density and electron temperature distributions, the formation of regions with high shear of poloidal plasma rotation velocity and radial electric field in the vicinity of stochastic layers of magnetic field lines, the decrease of density fluctuations and their radial correlation length, the decorrelation of density fluctuations, the increase of the bootstrap current. After the ITB formation, the transition to the improved plasma confinement regime takes place. The transition moves to the beginning of the discharge with the increase of heating power. The possible mechanism of ITB formation near rational surfaces is discussed. (orig.)

  9. Pressure and compressibility of a quantum plasma in a magnetic field

    NARCIS (Netherlands)

    Suttorp, L.G.

    1993-01-01

    The equilibrium pressure tensor that occurs in the momentum balance equation for a quantum plasma in a magnetic field is shown to be anisotropic. Its relation to the pressure that follows from thermodynamics is elucidated. A general proof of the compressibility rule for a magnetized quantum plasma

  10. Studies of the formation of field reversed plasma by a magnetized co-axial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-01-01

    The gun injects axially into a drift tank followed by a magnetic mirror. For the experiments reported here, only the guide coils outside the vacuum vessel and solenoids on the plasma gun electrodes were used; the mirror coil was not energized. A stainless steel flux conserver is placed in the mirror throat to prevent the plasma from contacting the nonconducting vacuum wall in the region of the mirror. An axis encircling array of magnetic loop probes includes four diamagnetic loops and a loop which measures the azimuthally averaged outward pointing radial component of magnetic field. These loop probes are stainless steel jacketed and form a flux conserving boundary (at a radius = 30 cm) for plasma emitted from the gun. A five tip probe that can be positioned anywhere along the axis of the experiment is used to measure internal components of magnetic field

  11. About the Toroidal Magnetic Field of a Tokamak Burning Plasma Experiment with Superconducting Coils

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    In tokamaks, the strong dependence on the toroidal magnetic field of both plasma pressure and energy confinement is what makes possible the construction of small and relatively inexpensive burning plasma experiments using high-field resistive coils. On the other hand, the toroidal magnetic field of tokamaks using superconducting coils is limited by the critical field of superconductivity. In this article, we examine the relative merit of raising the magnetic field of a tokamak plasma by increasing its aspect ratio at a constant value of the peak field in the toroidal magnet. Taking ITER-FEAT as an example, we find that it is possible to reach thermonuclear ignition using an aspect ratio of approximately 4.5 and a toroidal magnetic field of 7.3 T. Under these conditions, fusion power density and neutron wall loading are the same as in ITER [International Thermonuclear Experimental Reactor], but the normalized plasma beta is substantially smaller. Furthermore, such a tokamak would be able to reach an energy gain of approximately 15 even with the deterioration in plasma confinement that is known to occur near the density limit where ITER is forced to operate

  12. Stability of skyrmions on curved surfaces in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elias, R.G.; Altbir, D. [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, J.M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000 Viçosa, MG (Brazil)

    2015-10-01

    We study the stability and energetics associated to skyrmions appearing as excitations on curved surfaces. Using a continuum model we show that the presence of cylindrically radial and azimuthal fields destabilize the skyrmions that appear in the absence of an external field. Weak fields generate fractional skyrmions while strong magnetic fields yield stable 2π-skyrmions, which have their widths diminished by the magnetic field strength. Under azimuthal fields vortex appears as stable state on the curved surface. - Highlights: • Stability of skyrmions on curved surfaces in the presence of a magnetic field. • Weak fields can destabilize skyrmions. • Strong magnetic fields yield the appearing of 2π-skyrmions. • The width of skyrmions is determined by the curvature and magnetic field strength. • Under azimuthal fields vortex appears as stable states.

  13. Analysis of resistive tearing-mode in the reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Oshiyama, Hiroshi; Masamune, Sadao; Hamuro, Eitaro; Tamaki, Reiji.

    1985-01-01

    As one of the methods of confining high temperature plasma by magnetic stress, attention has been paid to reversed field pinch (RFP). This RFP is the method of maintaining plasma pressure by combining the poloidal field generated by plasma current and the toroidal field having nearly same intensity, thus forming the toroidal shape, closed magnetic surface. As the typical RFP equipment, there have been TPE-1R(M), HBTX-1A, ZT-40M and OHTE, but in order to anticipate the further development, one of the problems is the resistive instability. In this study, the critical beta value determined by the tearing mode in RFP configuration was examined by analytical and numerical calculation methods. The position of a wall required for the stability was determined by solving a second order differential equation for a radial perturbed magnetic field. The propriety of the computer code for determining the position was examined. The magnetic field configuration having a finite beta value was determined, and its stability against a tearing mode was investigated. For this judgement of the stability, the developed computer code was used. The tearing mode in a Bessel function model, the tearing mode of a finite beta value and others are described. (Kako, I.)

  14. Study on the plasma diode in the external magnetic field

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1981-01-01

    The experimental investigations of plasma diode with cathode plasma formation on the basis of an incomplete charge over dielectric surface in the external longitudinal magnetic field with the intensity of Hsub(z) up to 2000 Oe are presented. It is demonstrated that at the 150-250 keV diode voltage and the current density of up to 300 A/cm 2 the homogeneity of the current density over transverse cross section is preserved up to the cell size of metallic grid onto cathode with the change of the magnetic field up to 2000 Oe [ru

  15. Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    The longitudinal dielectric response of a relativistic ultradegenerate electron plasma in a strong magnetic field is obtained via a relativistic generalization of the Hartree self-consistent field method. Dispersion relations and damping conditions for plasma oscillations both parallel and perpendicular to the magnetic field are obtained. Detailed results for the zero-field case, and applications to white dwarf stars and pulsars are given

  16. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D., Startsev, E. A., Sefkow, A. B., Davidson, R. C.

    2008-10-10

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite- length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to infuence the self-electric and self-magnetic fields when ωce > ωpeβb, where ωce = eβ/mec is the electron gyrofrequency, ωpe is the electron plasma frequency, and βb = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

  17. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Startsev, E. A.; Sefkow, A. B.; Davidson, R. C.

    2008-01-01

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to influence the self-electric and self-magnetic fields when ω ce ∼> ω pe β b , where ω ce = eB/m e c is the electron gyrofrequency, ω pe is the electron plasma frequency, and β b = V b /c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement

  18. Morphology of magnetic fields generated in laser-produced plasmas

    International Nuclear Information System (INIS)

    Boyd, T.J.M.; Cooke, D.

    1988-01-01

    Magnetic fields in the megagauss range have been measured in experiments on plasmas generated by irradiating targets with high power lasers. A study of the morphology of these self-generated fields is important not only for its intrinsic interest but for possible implications in laser--target physics. In this paper work on the numerical modeling of large magnetic fields generated in target experiments is reported. The results show generally satisfactory agreement with the fields measured experimentally both in terms of the magnitude of the peak fields and their morphology. In the numerical model the contribution from the Hall term in describing the evolution of the magnetic field is shown to be important especially in short pulse (≅100 psec) experiments

  19. Effects of magnetic fields on the quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bali, G.S. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Bruckmann, F. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Endrődi, G., E-mail: gergely.endrodi@physik.uni-r.de [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Fodor, Z. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); Bergische Universität Wuppertal, Theoretical Physics, 42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); Katz, S.D. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group (Hungary); Schäfer, A. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-11-15

    In this talk, the response of the thermal QCD medium to external (electro)magnetic fields is studied using continuum extrapolated lattice results at physical quark masses. The magnetic susceptibility of QCD is calculated, revealing a strong paramagnetic response at high temperatures. This paramagnetism is shown to result in an anisotropic squeezing of the quark–gluon plasma in non-central heavy-ion collisions, implying a sizeable contribution to the elliptic flow. Another aspect is the magnetic response of topologically non-trivial domains to the magnetic field. We quantify this effect on the lattice and compare the results to a simple model estimate.

  20. A reduced set of gyrofluid equations for plasma flow in a diverging magnetic field

    International Nuclear Information System (INIS)

    Robertson, Scott

    2016-01-01

    Plasmas are often generated in a small diameter source with a strong magnetic field and subsequently flow into a region with greater diameter and smaller field. The magnetic mirror force that accelerates plasma in a diverging magnetic field appears in the gyrofluid equations developed for applications to toroidal devices, but this force is often absent from fluid equations. A set of gyrofluid equations with reduced complexity is developed in which drifts are assumed negligible and the mirror force is retained. The Chew–Goldberger–Low equations of state are used for a simple closure. These reduced gyrofluid equations are applied to plasma equilibrium in a magnetic mirror, to acceleration of plasma in a magnetic nozzle, and to space charge neutralization of an ion beam by electrons in a diverging magnetic field. The results from gyrofluid theory are compared with results from drift kinetic theory to find the accuracy of the gyrofluid approximation in these applications.

  1. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  2. Investigation of shock compressed plasma parameters by interaction with magnetic field

    International Nuclear Information System (INIS)

    Dudin, S. V.; Fortov, V. E.; Gryaznov, V. K.; Mintsev, V. B.; Shilkin, N. S.; Ushnurtsev, A. E.

    1998-01-01

    The Hall effect parameters in shock compressed air, helium and xenon have been estimated and results of experiments with air and helium plasma are presented. Explosively driven shock tubes were used for the generation of strong shock waves. To obtain magnetic field a solenoid was winded over the shock tube. Calculations of dense shock compressed plasma parameters were carried out to plan the experiments. In the experiments with the magnetic field of ∼5 T it was found, that air plasma slug was significantly heated by the whirlwind electrical field. The reflected shock waves technique was used in the experiments with helium. Results on measurements of electrical conductivity and electron concentration of helium are presented

  3. Measurement of Resistive Wall Mode stability in rotating high beta plasmas

    International Nuclear Information System (INIS)

    Reimerdes, H.; Bialek, J.; Garofalo, A.M.; Navratil, G.A.; Chance, M.S.; Menard, J.E.; Okabayashi, M.; Takahashi, H.; Chu, M.S.; Gohil, P.; Jackson, G.L.; Jensen, T.H.; La Haye, R.J.; Scoville, J.T.; Strait, E.J.; Jayakumar, R.J.; Liu, Y.Q.

    2005-01-01

    Toroidal plasma rotation in the order of a few percent of the Alfven velocity can stabilize the resistive wall mode and extend the operating regime of tokamaks from the conventional, ideal MHD no-wall limit up to the ideal MHD ideal wall limit. The stabilizing effect has been measured passively by measuring the critical plasma rotation required for stability and actively by probing the plasma with externally applied resonant magnetic fields. These measurements are compared to predictions of rotational stabilization of the sound wave damping and of the kinetic damping model using the MARS code. (author)

  4. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    Science.gov (United States)

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  5. Magnetic-flutter-induced pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.; Cole, A.J.

    2013-01-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an

  6. Magnetic-flutter-induced pedestal plasma transport

    Science.gov (United States)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron

  7. Jeans instability of self-gravitating magnetized strongly coupled plasma

    International Nuclear Information System (INIS)

    Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K

    2012-01-01

    We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.

  8. Relativistic electron beam - plasma interaction with intense self-fields

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1984-01-01

    The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc

  9. Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: roy@fzu.cz, E-mail: aroy@barc.gov.in [School of Nuclear Engineering and Center for Materials Under Extreme Environment(CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); Murtaza Hassan, Syed; Harilal, Sivanandan S.; Hassanein, Ahmed [School of Nuclear Engineering and Center for Materials Under Extreme Environment(CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); Endo, Akira; Mocek, Tomas [HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2014-05-15

    We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm, Nd:YAG laser pulses with varying pulse duration (5–15 ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ∼0.5 T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasma show that the ion flux reduces by a factor of ∼5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ∼1.2 cm/μs and reduced to ∼0.75 cm/μs with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5 T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.

  10. Mechanical stability of titanium and plasma polymer nanoclusters in nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Palesch, E. [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic); Marek, A. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Solar, P.; Kylian, O. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Vyskocil, J. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Biederman, H. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Cech, V., E-mail: cech@fch.vutbr.cz [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic)

    2013-10-01

    The mechanical stability of nanoclusters embedded in nanocomposite coatings was investigated by scratch and wear tests supported by atomic force microscopy using surface topography mode. Titanium and plasma polymer nanoclusters were deposited on planar substrates (glass, titanium) using a magnetron-based gas aggregation cluster source. The deposited clusters were overcoated with a thin titanium film of different thicknesses to stabilize the position of the clusters in the nanocomposite coating. Nanotribological measurements were carried out to optimize the thickness of the overcoating film for sufficient interfacial adhesion of the cluster/film system. - Highlights: ► Titanium and plasma polymer nanoclusters were overcoated with thin titanium film. ► The mechanical stability of nanoclusters was characterized by nanotribological tests. ► The film thickness was optimized to stabilize the position of the clusters in coating.

  11. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  12. On the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Smolyakov, A.I.; Garbet, X.; Bourdelle, C.

    2009-01-01

    This paper describes the structure of the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic field. The parallel momentum balance equation is derived from magnetohydrodynamic equations by an expansion in the inverse magnetic field 1/B as a small parameter. Contributions of the gyroviscosity and inertia terms are clarified. It is shown that magnetic field curvature leads to important coupling of parallel flow with fluctuations of the electric field and plasma pressure.

  13. Energization of electrons in a plasma beam entering a curved magnetic field

    International Nuclear Information System (INIS)

    Brenning, N.; Lindberg, L.; Eriksson, A.

    1980-09-01

    Earlier experiments have indicated that suprathermal electrons appear when a collisionless plasma flowing along a magnetic field enters a region where the magnetic field is curved. In the present investigation newly developed methods of He-spectroscopy based on the absolute intensities of the He I 3889 A and He II 4686 A lines are utilized to study the electron temperature and to estimate the population of non-thermal electrons. The density of helium added for the diagnostic purpose is so low that the flow is not disturbed. It is found that the intrusion of the plasma into a curved or transverse field gives rise to a slight increase (15-20%) in the electron temperature and a remarkable increase in the fraction of non-thermal (>100 eV) electrons from below 1% to as much as 20-25% of the total electron population. There are also indications that the energization of electrons is particularly efficient on that side of the plasma beam which becomes polarized to a positive potential when entering the curved field. The experiments are confined to the case of weak magnetic field, i.e. only the electrons are magnetically confined. New details of the electric field and potential structure are presented and discussed. Electric field components parallel to the magnetic field are likely to energize the electrons, probably through the run-away phenomenon. (Auth.)

  14. Non-Maxwellian and magnetic field effects in complex plasma wakes★

    Science.gov (United States)

    Ludwig, Patrick; Jung, Hendrik; Kählert, Hanno; Joost, Jan-Philip; Greiner, Franko; Moldabekov, Zhandos; Carstensen, Jan; Sundar, Sita; Bonitz, Michael; Piel, Alexander

    2018-05-01

    In a streaming plasma, negatively charged dust particles create complex charge distributions on the downstream side of the particle, which are responsible for attractive forces between the like-charged particles. This wake phenomenon is studied by means of refined linear response theory and molecular dynamics simulations as well as in experiments. Particular attention is paid to non-Maxwellian velocity distributions that are found in the plasma sheath and to situations with strong magnetic fields, which are becoming increasingly important. Non-Maxwellian distributions and strong magnetic fields result in a substantial damping of the oscillatory wake potential. The interaction force in particle pairs is explored with the phase-resolved resonance method, which demonstrates the non-reciprocity of the interparticle forces in unmagnetized and magnetized systems.

  15. Assessment of magnetic fluid stability in non-homogeneous magnetic field of a single-tooth magnetic fluid sealer

    Energy Technology Data Exchange (ETDEWEB)

    Arefyev, I.M.; Demidenko, O.V.; Saikin, M.S.

    2017-06-01

    A special experimental stand has been developed and made to test magnetic fluid. It represents a single-tooth magnetic fluid sealer. The type of dependence of the pressure differential on magnetic fluid sealer operation time is used as a criterion to determine magnetic fluid stability and magnetic fluid sealer service life under such conditions. The siloxane-based magnetic fluid was used as the test sample. The colloidal stability as well as stability of the synthesized magnetic fluid in magnetic fields in static mode were determined. It has been found that the obtained magnetic fluid is stable in static mode and, consequently, can be used to conduct necessary tests on stand. Short-term and life tests on stand have shown that MF remains stable and efficient for at least 360 days of continuous utilization. - Highlights: • An experimental single-tooth magnetic fluid sealer has been developed and made. • The magnetic fluid based on siloxane liquid was used as the test sample. • Short-term and life tests of the magnetic fluid were conducted. • The magnetic fluid stability was determined by necessary tests on stand.

  16. Plasma rotation by electric and magnetic fields in a discharge cylinder

    Science.gov (United States)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  17. Production and Magnetic Field Confinement of Laser-Irradiated Solid Particle Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haught, A. F.; Polk, D. H.; Fader, W. J. [United Aircraft Research Laboratories East Hartford, CT (United States)

    1969-01-15

    The focused high-intensity beam from a Q-spoiled laser has been used to form a high-temperature, high-density plasma from a single 10-20 micron radius solid particle of lithium hydride which is electrically suspended in a vacuum environment free of all material supports. Time-resolved charge collection measurements of the freely expanding plasma have shown that a high degree of ionization of the 10{sup 15} atoms in the lithium hydride particle can be achieved and that the plasma produced is essentially spherically symmetric in density over the full 4 {pi} solid angle. Time-of-flight studies of the plasma expansion have shown that average electron and ion energies exceeding 200 electron volts are obtained and that the plasma expansion rate, like the plasma density, is spherically symmetric. No charge separation or separation of the lithium and hydrogen ions is observed in the expanding plasma. Numerical calculations of the plasma formation and expansion have been made using a one-dimensional spherical hydrodynamic model and, on the basis of the results obtained, an integrated similarity model has been developed for calculations of the plasma time history and energy over the range of conditions employed in the experiments. These calculations, which include the effects of laser pulse time history, fraction of the incident beam occupied by the expanding plasma, radial density and velocity gradients within the plasma, and spatial distribution of the incident laser energy, give results for the plasma radial density distribution, velocity profile, and plasma energy in good agreement with those determined experimentally over the full range of the present measurements. Measurements have been carried out to examine the interaction of these laser -produced plasmas with mirror, cusp, and minimum-B magnetic fields. Experiments with mirror and minimum-B magnetic fields up to 8 kC show that plasmas with densities of 10{sup 12} -10{sup 13} cm{sup -3} are confined for times of 5

  18. Proton-beam propagation through wall-confined plasma channel stabilized against sausage instability

    International Nuclear Information System (INIS)

    Nakahama, Masao; Nemoto, Masahiro; Masugata, Katsumi; Ito, Michiaki; Matsui, Masao; Yatsui, Kiyoshi

    1986-01-01

    Experimental results are presented of proton-beam (energy ∼ 650 keV) propagation through wall-confined plasma channel that is stabilized against sausage instability by an externally-applied longitudinal magnetic field. Significant improvement of beam-propagation efficiency has been obtained of ∼ 70 % compared with the previous experiment of ∼ 55 % without the magnetic field. The propagation can also be available up to ∼ 30 % even in a non-propagation region in a non-stabilized channel. (author)

  19. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    Science.gov (United States)

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  20. Stability of highly shifted equilibria in a large aspect ratio low-field tokamak

    International Nuclear Information System (INIS)

    Gourdain, P.-A.; Leboeuf, J.-N.; Neches, R. Y.

    2007-01-01

    In the long run, the economics of fusion will dictate that reactors confine large plasma pressure rather efficiently. A possible route manifests itself as equilibria with large shift of the plasma magnetic axis. This shift compresses the flux surfaces on the outer part of the plasma, hereby increasing the allowable plasma pressure a machine can confine for a given toroidal magnetic field, which is the main cost of the device. As a first step toward a reactor, we propose investigating the stability of such configurations in a low magnetic field high aspect ratio machine. By focusing our arguments solely on the shape of the toroidal plasma current density profile we discuss the stability of highly shifted equilibria and their robustness to current profile variations that could occur in actual experiments. The evolution of the plasma parameters, as the beta poloidal is increased, is also examined to give a better understanding of the difference in performance between the various regimes

  1. The low-field permanent magnet electrostatic plasma lens

    International Nuclear Information System (INIS)

    Goncharov, A.; Gorshkov, V.; Maslov, V.; Zadorozhny, V.; Brown, I.

    2004-01-01

    We describe the status of ongoing research and development of the electrostatic plasma lens as used for the manipulation of high current broad beams of heavy ions of moderate energy. In some collaborative work at Lawrence Berkeley National Laboratory the lens was used to good effect for carrying out high dose ion implantation processing. In the process of this work a very narrow range of low magnetic field was found for which the ion-optical characteristics of the lens improved markedly. Subsequent theoretical analysis and computer modeling has led to an understanding of this phenomenon. These serendipitous results open up some attractive possibilities for the development of a new compact and low cost plasma lens based on permanent magnets rather than on current-driven field coils surrounding the lens volume. The development of this kind of lens, including both very low noise and minimal spherical aberration effects, may lead to a tool suitable for use in the injection beam lines of high current heavy ion linear accelerators. Here we briefly review the lens fundamentals, some characteristics of focusing heavy ion beams at low magnetic fields, and summarize recent theoretical and experimental developments, with emphasis on the relevance and suitability of the lens for accelerator injection application

  2. Beta II plasma-gun mechanical design and construction

    International Nuclear Information System (INIS)

    Pedrotti, L.; Deis, G.; Wong, R.; Calderon, M.; Chargin, A.; Garner, D.

    1979-01-01

    The magnetized coaxial plasma gun (located on the east end of the Beta II facility at the Lawrence Livermore Laboratory) will be used to test a new method of initiating a field reversed mirror plasma. The field-reversed mirror is expected to improve the mirror-fusion reactor by enhancing the ratio of fusion power to injected power. This paper concentrates on the mechanical design and construction of the magnetized coaxial plasma gun and also discusses the diagnostic devices necessary to demonstrate the formation of field-reversed rings

  3. Investigation of MHD Instabilities in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma

    Science.gov (United States)

    Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.

    2016-10-01

    A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.

  4. Two-stream instability for a light ion beam-plasma system with external magnetic field

    International Nuclear Information System (INIS)

    Okada, T.; Tazawa, H.

    1992-12-01

    For inertial confinement fusion, a focused light ion beam (LIB) is required to propagate stably through a chamber to a target. We have pointed out that the applied external magnetic field is important for LIB propagation. To investigate the influence of the external magnetic field on the LIB propagation, we analysed the electrostatic dispersion relation of magnetized light ion beam-plasma system. The particle in-cell (PIC) simulation results are presented for a light ion beam-plasma system with external magnetic field. (author)

  5. Fast reconnection of magnetic fields in a plasma

    International Nuclear Information System (INIS)

    Hu, P.N.

    1983-01-01

    Reconnection process of magnetic fields in a plasma is analytically studied by perturbing the boundary conditions on a slab of incompressible plasma with a resonant surface inside. It is found, for small resistivity, that the reconnection takes place on Alfven time scale and continues into a slow time scale t 1 = eta/sup 1/3/t. Both time scales are faster than the usual tearing time scale. Furthermore, the plasma evolves globally from its initial equilibrium on the slow time scale and settles down to a different final equilibrium

  6. Unified Ideal Stability Limits for Advanced Tokamak and Spherical Torus Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Sabbagh, S.A.; Fredrickson, E.D.; Jardin, S.C.; Maingi, R.; Manickam, J.; Mueller, D.; Ono, M.; Paoletti, F.; Peng, Y.-K.M.; Soukhanovskii, V.; Stutman, D.; Synakowski, E.J.

    2003-01-01

    Ideal magnetohydrodynamic stability limits of shaped tokamak plasmas with high bootstrap fraction are systematically determined as a function of plasma aspect ratio. For plasmas with and without wall stabilization of external kink modes, the computed limits are well described by distinct and nearly invariant values of a normalized beta parameter utilizing the total magnetic field energy density inside the plasma. Stability limit data from the low aspect ratio National Spherical Torus Experiment is compared to these theoretical limits and indicates that ideal nonrotating plasma no-wall beta limits have been exceeded in regimes with sufficiently high cylindrical safety factor. These results could impact the choice of aspect ratio in future fusion power plants

  7. Effect of different parameters governing the stability of drift wave in a magnetised plasma

    International Nuclear Information System (INIS)

    Elashkar, F.F.

    1990-01-01

    Influence of the governing parameters, such as electron drift parallel speed, parallel wave length, electron-neutral and ion-neutral collision frequencies, electron temperature and magnetic field, on the stability of drift wave in a magnetized plasma has been studied experimentally and theoretically using a full numerical solution of the exact equation. Drift wave has been excited by a positively biased grid; at a threshold grid potential secondary excitation and ionisation processes take place in the ejected beam of plasma. Effect of the applied magnetic field on the probability of these processes is discussed. Grid positive potential, electron-neutral collision, parallel wave length, electron temperature and speed are found to be destabilizing, While ion neutral collision is stabilizing. Using a new parameter β, the effect of magnetic field is investigated and it is destabilizing only upto a certain limit. (author). 11 figs., 21 refs

  8. Stabilization mechanisms for information stored in magnetic nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cisternas, Eduardo, E-mail: eduardo.cisternas@gmail.com [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Faúndez, Julián [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Vogel, Eugenio E. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago (Chile)

    2017-03-15

    The durability of the stored information in magnetic systems is one important feature in firmware applications such as security codes, magnetic keys and other similar products. In the present paper we discuss two different ways of preserving patterns in the set of magnetic wires trapped in the porous membranes used to produce them. One of the techniques is the inscription of an opposite magnetic band of about 1/3 the width of the stored pattern which minimizes the repulsive energy among the ferromagnetic cylinders still leaving a potent magnetic signal to be read. The other technique makes use of segmented nanowires which present a competition of repulsive energy of segments within the same layer while the interaction is attractive with the closer segments of the other layer; such a competition can lead to stabilization if the geometrical parameters are properly controlled. The first technique is cheaper and faster to implement, while the second technique needs a more complete fabrication process but can lead to more durable stored information. - Highlights: • Stability of ferromagnetic patterns inscribed on magnetic nanowires arrays. • Information prevalence and stabilization mechanisms. • Applicability to fimware, security codes and magnetic keys.

  9. Improved magnetic properties and thermal stabilities of Pr-Nd-Fe-B sintered magnets by Hf addition

    Science.gov (United States)

    Jiang, Qingzheng; Lei, Weikai; Zeng, Qingwen; Quan, Qichen; Zhang, Lili; Liu, Renhui; Hu, Xianjun; He, Lunke; Qi, Zhiqi; Ju, Zhihua; Zhong, Minglong; Ma, Shengcan; Zhong, Zhenchen

    2018-05-01

    Nd2Fe14B-type permanent magnets have been widely applied in various fields such as wind power, voice coil motors, and medical instruments. The large temperature dependence of coercivity, however, limits their further applications. We have systematically investigated the magnetic properties, thermal stabilities and coercivity mechanisms of the (Pr0.2Nd0.8)13Fe81-xB6Hfx (x=0, 0.5) nanocrystalline magnets fabricated by a spark plasma sintering (SPS) technique. The results indicate that the influence of Hf addition is significant on magnetic properties and thermal stabilities of the (PrNd)2Fe14B-type sintered magnets. It is shown that the sample with x = 0.5 at 300 K has much higher coercivity and remanent magnetization than those counterparts without Hf. The temperature coefficients of remanence (α) and coercivity (β) of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets are improved significantly from -0.23 %/K, -0.57 %/K for the sample at x = 0 to -0.17 %/K, -0.49 %/K for the sample at x = 0.5 in the temperature range of 300-400 K. Furthermore, it is found out that the domain wall pinning mechanism is more likely responsible for enhancing the coercivity of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets.

  10. Stability of interstellar clouds containing magnetic fields

    International Nuclear Information System (INIS)

    Langer, W.D.; and Bell Laboratories, Crawford Hill Laboratory, Holmdel, NJ)

    1978-01-01

    The stability of interstellar clouds against gravitational collapse and fragmentation in the presence of magnetic fields is investigated. A magnetic field can provide pressure support against collapse if it is strongly coupled to the neutral gas; this coupling is mediated by ion-neutral collisions in the gas. The time scale for the growth of perturbations in the gas is found to be a sensitive function of the fractional ion abundance of the gas. For a relatively large fractional ion abundance, corresponding to strong coupling, the collapse of the gas is retarded. Star formation is inhibited in dense clouds and the collapse time for diffuse clouds cn exceed the limit on their lifetime set by disruptive processes. For a small fractional ion abundance, the magnetic fields do not inhibit collapse and the distribution of the masses of collapsing fragments are likely to be quite different in regions of differing ion abundance. The solutions also predict the existence of large-scale density waves corresponding to two gravitational-magnetoacoustic modes. The conditions which best support these modes correspond to those found in the giant molecular clouds

  11. Magnetohydrodynamic Stability of Streaming Jet Pervaded Internally by Varying Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Alfaisal A. Hasan

    2012-01-01

    Full Text Available The Magnetohydrodynamic stability of a streaming cylindrical model penetrated by varying transverse magnetic field has been discussed. The problem is formulated, the basic equations are solved, upon appropriate boundary conditions the eigenvalue relation is derived and discussed analytically, and the results are verified numerically. The capillary force is destabilizing in a small axisymmetric domain 0<<1 and stabilizing otherwise. The streaming has a strong destabilizing effect in all kinds of perturbation. The toroidal varying magnetic field interior the fluid has no direct effect at all on the stability of the fluid column. The axial exterior field has strong stabilizing effect on the model. The effect of all acting forces altogether could be identified via the numerical analysis of the stability theory of the present model.

  12. Magnetic field profiles during turbulent heating in a toroidal hydrogen plasma

    International Nuclear Information System (INIS)

    Kalfsbeek, H.W.

    1978-12-01

    A description is given of the measurements of both poloidal and toroidal magnetic field components as functions of radius and time in a small turbulently heated tokamak. These measurements have been carried out with an array of miniature pick-up coils, enclosed in a quartz tube which is inserted into the plasma. The electric fields inside the plasma, as well as the parallel resistivity profiles are deduced from the measured magnetic fields. The ohmically dissipated energy is determined from the field distributions and compared with the total input energy. The experimental results are compared with the outcome of a numerical model. The consistency with information obtained from other diagnostic measurements is checked. (Auth.)

  13. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-01-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  14. Particle-in-cell simulations of plasma opening switch with external magnetic field

    International Nuclear Information System (INIS)

    Chen Yulan; Zeng Zhengzhong; Sun Fengju

    2003-01-01

    Fully electromagnetic particle-in-cell simulations are performed to study the effects of an external magnetic field on coaxial plasma opening switch (POS). The simulation results show that POS opening performance can be significantly improved only when external longitudinal magnetic field coils are placed at the cathode side, and an additional azimuthal magnetic field is effective whether the central electrode is of positive or negative polarity. Voltage multiplication coefficient K rises with the additional magnetic field increasing till the electron current is completely magnetically insulated during the opening of POS

  15. Observations of dusty plasmas with magnetized dust grains

    Science.gov (United States)

    Luo, Q.-Z.; D'Angelo, N.

    2000-11-01

    We report a newly observed phenomenon in a dusty plasma device of the \\mbox{Q-machine} type. At low plasma densities the time required by the plasma to return to its no-dust conditions, after the dust dispenser is turned off, can be as long as many tens of seconds or longer. A tentative interpretation of this observation in terms of magnetized dust grains is advanced. It appears that an important loss mechanism of fine dust grains is by ion drag along the magnetic field lines. The effect of ion drag is somewhat counteracted by the -µ∇B force present when the magnetic field has a mirror geometry.

  16. Transport in a fusion plasma in presence of a chaotic magnetic field

    International Nuclear Information System (INIS)

    Nguyen, F.

    1992-09-01

    In the tokamak Tore Supra, the magnetic field ensuring the confinement is stochastic at the plasma edge due to a resonant perturbation. This perturbation is created by a set of six helicoidal coils inside the vacuum vessel, the ergodic divertor. The first part of the study concerns the analysis of the transport of particles and energy in a fusion plasma in presence of a stochastic magnetic field, without physical wall. The effective transport of electrons, i.e. heat transport, increases. The ions transport increases too but less than heat transport. The discrepancy produces a mean radial electric field. The second part is devoted to the influence of the physical wall. The topology of the magnetic connexion on the wall is precisely determined with the code Mastoc. The transport of particles and energy is then described from the confined plasma until the wall. This study enlights severals important observations of the experience Tore Supra in the ergodic divertor configuration: the spreading of the power deposition on the wall components without anomalous concentration, the robustness of this configuration relatively to misalignment, the edge structures visible in H α light during plasma reattachment. In order to study the transport of impurity ions, a variational approach of minimum entropy production has been developped. This principle is applied to the calculation of the neoclassical diffusion of impurity ions with the radial electric field. This electric field deconfines ions if the pressure profile is not balanced by a Lorentz force, i.e. if the plasma is locked in rotation, poloidally and toroidally, because of magnetic perturbation or friction force

  17. Plasma edge control by chaotic magnetic field structures. Book of abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The following topics were dealt with: Formation of stochastic magnetic layers and plasma response to external, non-axisymmetric magnetic perturbations, energy and particle transport in stochastic magnetic fields and 3D equilibria, application of resonant magnetic perturbations for ELM control and implications for ITER, transport and exhaust in helical and island divertors. (HSI)

  18. Air core poloidal magnetic field system for a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux

  19. Collisionless scattering of plasma cloud in a dipole magnetic field

    International Nuclear Information System (INIS)

    Osipyan, D.A.

    2006-01-01

    Results of numerical simulation of dense plasma cloud scattering dynamics in a magnetized background and MHD indignations generation are presented. The magnetic field has dipole structure. The initial system of equations includes the Vlasov equations for ionic components of plasma, hydrodynamic approach for electrons and Maxwell's system of equations. The method of solution is based on the use of the method of particles in cells and finite difference splitting schemes. Quantitative characteristics of dependence of scattering cloud parameters from the Mach-Alfven number and parameter of magnetic laminar interaction are observed. In particular, a condition of more effective deformation of a cloud is large values of the Mach-Alfven numbers and small parameters of the magnetic laminar interaction

  20. Two-dimensional magnetic field evolution measurements and plasma flow speed estimates from the coaxial thruster experiment

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Gerwin, R.A.; Schoenberg, K.F.; Scheuer, J.T.; Hoyt, R.P.; Henins, I.

    1994-01-01

    Local, time-dependent magnetic field measurements have been made in the Los Alamos coaxial thruster experiment (CTX) [C. W. Barnes et al., Phys. Fluids B 2, 1871 (1990); J. C. Fernandez et al., Nucl. Fusion 28, 1555 (1988)] using a 24 coil magnetic probe array (eight spatial positions, three axis probes). The CTX is a magnetized, coaxial plasma gun presently being used to investigate the viability of high pulsed power plasma thrusters for advanced electric propulsion. Previous efforts on this device have indicated that high pulsed power plasma guns are attractive candidates for advanced propulsion that employ ideal magnetohydrodynamic (MHD) plasma stream flow through self-formed magnetic nozzles. Indirect evidence of magnetic nozzle formation was obtained from plasma gun performance and measurements of directed axial velocities up to v z ∼10 7 cm/s. The purpose of this work is to make direct measurement of the time evolving magnetic field topology. The intent is to both identify that applied magnetic field distortion by the highly conductive plasma is occurring, and to provide insight into the details of discharge evolution. Data from a magnetic fluctuation probe array have been used to investigate the details of applied magnetic field deformation through the reconstruction of time-dependent flux profiles. Experimentally observed magnetic field line distortion has been compared to that predicted by a simple one-dimensional (1-D) model of the discharge channel. Such a comparison is utilized to estimate the axial plasma velocity in the thruster. Velocities determined in this manner are in approximate agreement with the predicted self-field magnetosonic speed and those measured by a time-of-flight spectrometer

  1. The dynamic ergodic divertor in TEXTOR-A novel tool for studying magnetic perturbation field effects

    International Nuclear Information System (INIS)

    Neubauer, O.; Czymek, G.; Finken, K.H.; Giesen, B.; Huettemann, P.W.; Lambertz, H.T.; Schruff, J.

    2005-01-01

    Recently TEXTOR has been upgraded by the installation of the dynamic ergodic divertor (DED). The purpose of the DED is to influence transport parameters in plasma edge and core and to study the resulting effects on heat exhaust, edge cooling, impurity screening, plasma confinement and stability. Alternatively, the DED creates static or rotating multipolar helical magnetic perturbation fields of different mode patterns. A set of 16 helical coils has been installed on the inboard high-field side of the vacuum vessel. Rotating fields of up to 10 kHz can be generated. A novel coil design has been developed which fulfills the various mechanical, electrical, high frequency, thermal, and vacuum requirements. In addition to the various technical aspects of the DED design, implementation and commissioning, highlights of recent experiments will be presented. In particular the impact of the perturbation field on MHD stability and plasma rotation will be addressed

  2. Experimental investigation of magnetically confined plasma loops

    International Nuclear Information System (INIS)

    Tenfelde, Jan

    2012-01-01

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  3. Experimental investigation of magnetically confined plasma loops

    Energy Technology Data Exchange (ETDEWEB)

    Tenfelde, Jan

    2012-12-11

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  4. Multi-scale interaction between magnetic islands and microturbulence in magnetized plasmas

    International Nuclear Information System (INIS)

    Muraglia, M.

    2009-10-01

    In a tokamak, it exists many kinds of instability at the origin of a damage of the confinement and worst of a lost of a confinement. This work presents a study of the dynamics of a magnetic island in presence of turbulence in magnetized plasmas. More precisely, the goal is to understand the multi-scales interaction between turbulence, generated by a pressure gradient and the magnetic field curvature, and a magnetic island formed thanks to a tearing mode. Thanks to the derivation of a 2-dimensional slab model taking into account both tearing and interchange instabilities, theoretical and numerical linear studies show the pressure effect on the magnetic island linear formation and show interchange modes are stabilized in presence of a strong magnetic field. Then, a numerical nonlinear study is presented in order to understand how the interchange mechanism affects the nonlinear dynamics of a magnetic island. It is shown that the pressure gradient and the magnetic field curvature affect strongly the nonlinear evolution of a magnetic island through dynamics bifurcations. The nature of these bifurcations should be characterized in function of the linear situation. Finally, the last part of this work is devoted to the study of the origin of the nonlinear poloidal rotation of the magnetic island. A model giving the different contributions to the rotation is derived. It is shown, thanks to the model and to the numerical studies, that the nonlinear rotation of the island is mainly governed by the ExB poloidal flow and/or by the nonlinear diamagnetic drift. (author)

  5. Features of laser spectroscopy and diagnostics of plasma ions in high magnetic fields

    International Nuclear Information System (INIS)

    Semerok, A F; Fomichev, S V

    2003-01-01

    Laser induced fluorescence and laser absorption spectroscopies of plasma ions in high magnetic fields have been investigated. Both the high degree of Zeeman splitting of the resonant transitions and the ion rotational movement drastically change the properties of the resonance interaction of the continuous wave laser radiation with ions in highly magnetized plasma. Numerical solution of the density matrix equation for a dissipative two-level system with time-dependent detuning from resonance was used to analyse this interaction. A theoretical simulation was performed and compared with the experimental results obtained from the laser spectroscopy diagnostics of barium plasma ions in high magnetic fields in the several tesla range

  6. Influence of external resonant magnetic perturbation field on edge plasma of small tokamak HYBTOK-II

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Suzuki, Y.; Ohno, N. [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Okamoto, M. [Ishikawa National College of Technology, Kitachujo, Tsubata-cho, Kahoku-gun, Ishikawa 929-0392 (Japan); Kikuchi, Y. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Sakakibara, S.; Watanabe, K.; Takemura, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)

    2015-08-15

    Radial profile of externally applied resonant magnetic perturbation (RMP) field with mode numbers of m = 6 and n = 2 in a small tokamak device HYBTOK-II have been investigated using a magnetic probe array, which is able to measure the radial profile of magnetic field perturbation induced by applying RMP. Results of RMP penetration into the plasma show that the RMP decreased toward the plasma center, while they were amplified around the resonant surface with a safety factor q = 3 due to the formation of magnetic islands. This suggests that RMP fields for controlling edge plasmas may trigger some kind of MHD instabilities. In addition, simulation results, based on a linearized four-field model, which agrees with the experimental ones, indicates that the penetration and amplification process of RMP strongly depend on a Doppler-shifted frequency between the RMP and plasma rotation.

  7. Magnetic field in laser plasmas: non-local electron transport and reconnection

    International Nuclear Information System (INIS)

    Riquier, Raphael

    2016-01-01

    In the framework of the inertial confinement fusion, a pellet filled with the deuterium-tritium fuel is imploded, either through laser irradiation (direct drive, laser - low atomic number target interaction) or by the black body radiation from a cavity converting the laser radiation (indirect drive, laser - high atomic number target interaction). In both cases, a correct modeling of the electron transport is of first importance in order to have predictive hydro-radiative simulations. Nonetheless, it has been shown early on that the hypothesis of the linear transport are not valid in the framework of a solid target irradiated by a high power laser (I≅10 14 W/cm 2 ). This is due in part to very steep temperature gradients (kinetic effects, so-called 'non-local') and because of a magnetic field self-generated through the thermo-electric effect. Finally, the heat flux and the magnetic field are strongly coupled through two mechanisms: the advection of the field with the heat flux (Nernst effect) and the rotation and inhibition of the heat flux by the plasma's magnetization (Righi-Leduc effect).In this manuscript, we will first present the various electron transport models, particularly the non-local with magnetic field model included in the hydro-radiative code FCI2. Following, in order to validate this model, we will compare it first against a kinetic code, and then with an experiment during which the magnetic field has been probed through proton radiography. Once the model validated, we will use FCI2 simulations to explain the source and transport of the field, as well as its effect on the interaction. Finally, the reconnection of the magnetic field, during the irradiation of a solid target by two laser beams, will be studied. (author) [fr

  8. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  9. Effect of magnetic field gradient on power absorption in compact microwave plasma sources

    International Nuclear Information System (INIS)

    Dey, Indranuj; Shamim, Md.; Bhattacharjee, Sudeep

    2006-01-01

    We study the effect of the change in magnetic field gradient at the electron cyclotron resonance (ECR) point, on the generated plasma for two different cylindrical minimum B-field configurations, viz. the hexapole and the octupole. The plasma parameters such as the electron and ion density, electron temperature including the wave field characteristics (B-field and E-field) in the plasma will be measured and compared for the two configurations. (author)

  10. Observation of magnetic field perturbations during sawtooth activity in tokamak plasmas

    International Nuclear Information System (INIS)

    Soltwisch, H.; Koslowski, H.R.

    1997-01-01

    Sawtooth activity is a prominent example of a global plasma instability which is observed in virtually all tokamak devices. Despite numerous experimental and theoretical investigations, the phenomenon is still barely understood. As far as experimental effort is concerned, much attention has been paid to soft X-ray emission from the plasma and to its analysis in terms of two-dimensional contour plots, because it is thought to reflect the shape and temporal behaviour of magnetic flux surfaces during a sawtooth cycle. Recently, more direct methods of detecting sawtooth-related changes in the magnetic field structure have become available and have added new facets to the general picture. In this picture, some observations made on the Juelich tokamak TEXTOR by means of a Faraday rotation diagnostic technique will be reported. First, in correlation with the sawtooth collapse a localized periodic perturbation of the magnetic field with principal mode numbers m = 1 and n = 0 has been detected which, in the presence of an m = n = 1 island, may give rise to magnetic field line stochastization and thereby contribute significantly to a rapid expulsion of electronic energy from the plasma core region. Second, the so-called precursor oscillations prior to a sawtooth crash have been investigated and estimates have been obtained for the growth rate and width of a magnetic island forming immediately before the collapse. (Author)

  11. Effects of a static inhomogeneous magnetic field acting on a laser-produced carbon plasma plume

    Directory of Open Access Journals (Sweden)

    M. Favre

    2017-08-01

    Full Text Available We present time- and space-resolved observations of the dynamics of a laser-produced carbon plasma, propagating in a sub-Tesla inhomogeneous magnetic field, with both, axial and radial field gradients. An Nd:YAG laser pulse, 340 mJ, 3.5 ns, at 1.06 μm, with a fluence of 7 J/cm2, is used to generate the plasma from a solid graphite target, in vacuum. The magnetic field is produced using two coaxial sets of two NeFeB ring magnets, parallel to the laser target surface. The diagnostics include plasma imaging with 50 ns time resolution, spatially resolved optical emission spectroscopy and Faraday cup. Based on our observations, evidence of radial and axial plasma confinement due to magnetic field gradients is presented. Formation of C2 molecules, previously observed in the presence of a low pressure neutral gas background, and enhanced on-axis ion flux, are ascribed to finite Larmor radius effects and reduced radial transport due to the presence of the magnetic field.

  12. Ionospheric plasma escape by high-altitude electric fields: Magnetic moment ''pumping''

    International Nuclear Information System (INIS)

    Lundin, R.; Hultqvist, B.

    1989-01-01

    Measurements of electric fields and the composition of upward flowing ionospheric ions by the Viking spacecraft have provided further insight into the mass dependent plasma escape process taking place in the upper ionosphere. The Viking results of the temperature and mass-composition of individual ion beams suggest that upward flowing ion beams can be generated by a magnetic moment ''pumping'' mechanism caused by low-frequency transverse electric field fluctuations, in addition to a field aligned ''quasi-electrostatic'' acceleration process. Magnetic moment ''pumping'' within transverse electric field gradients can be described as a conversion of electric drift velocity to cyclotron velocity by the inertial drift in time-dependent electric field. This gives an equal cyclotron velocity gain for all plasma species, irrespective of mass. Oxygen ions thus gain 16 times as much transverse energy as protons. In addition to a transverse energy gain above the escape energy, a field-aligned quasi-electrostatic acceleration is considered primarily responsible for the collimated upward flow of ions. The field-aligned acceleration adds a constant parallel energy to escaping ionospheric ions. Thus, ion beams at high altitudes can be explained by a bimodal acceleration from both a transverse (equal velocity) and a parallel (equal energy) acceleration process. The Viking observations also show that the thermal energy of ion beams, and the ion beam width are mass dependent. The average O + /H + ''temperature ratio has been found to be 4.0 from the Viking observations. This is less than the factor of 16 anticipated from a coherent transverse electric field acceleration but greater than the factor of 1 (or even less than 1) expected from a turbulent acceleration process. copyright American Geophysical Union 1989

  13. Magnetized whirls in plasma focus discharges

    International Nuclear Information System (INIS)

    Witalis, E.

    1979-05-01

    The plasma focus is briefly described with emphasis on its capabilities as a neutron source. The filamentary whirl structures observed in the discharge plasma are described. Starting with a simple, early and particularly well established case of vorticity imparted by a rotational electric field to the plasma in MHD generators, a general derivation is then outlined proving that such magnetically induced rotation is a general feature for the normally Hall-conducting magnetized plasma. Physical interpretations of the effect are given and objections to it are critically reviewed as is also a theory proposing radiation cooling as the cause of plasma filamentation. A more detailed derivation based essentially on the consistent description of the motion and the field generation of the charged plasma particles yields a theoretical model where the specific features of magnetically compressed plasmas are found. In particular, the ion collisionless skin depth is obtained as the key length parameter. This length is identified as roughly the whirl radius. In conjunction with a generalized Bennett relation theoretical whirl properties are predicted and found to agree with observations. Mechanisms that relate the whirls to nuclear fusion reaction conditions are tentatively indicated. (author)

  14. Radiative properties of a plasma moving across a magnetic field. I: Theoretical analysis

    International Nuclear Information System (INIS)

    Roussel-Dupre, R.; Miller, R.H.

    1993-01-01

    The early-time evolution of plasmas moving across a background magnetic field is addressed with a two-dimensional model in which a plasma cloud is assumed to have formed instantaneously with a velocity across a uniform background magnetic field and with a Gaussian density profile in the two dimensions perpendicular to the direction of motion. This model treats both the dynamics associated with the formation of a polarization field and the generation and propagation of electromagnetic waves. In general, the results indicate that, to zeroth order, the plasma cloud behaves like a large dipole antenna oriented in the direction of the polarization field which oscillates at frequencies defined by the normal mode of the system. The magnitude of the radiation field and the amount of plasma momentum and energy carried away by and stored instantaneously in the fields are discussed only qualitatively in this paper, quantitative results for specific cloud parameters and scaling laws for the magnitude of the fields and the slowing down of the plasma cloud are presented in a companion manuscript

  15. Equilibrium, stability and heating of plasmas in linear and toroidal Extrap pinches

    International Nuclear Information System (INIS)

    Bonnevier, B.; Drake, J.R.; Dalhed, H.E.

    1983-01-01

    The Extrap scheme consists of a Z-pinch immersed in an octupole field. The total magnetic field has no component along the pinch axis. Globally stable Z-pinch equilibria with a distributed plasma current density and a duration of about 100 Alfven transit times have been observed in linear and toroidal sector experiments. Theoretical studies indicate that this stability can be the result of constraints introduced by the octupole field and the resulting separatrix of the total field, in combination with finite-Larmor-radius effects. A scheme for ICRF heating of the plasma in configurations with a magnetic neutral line, being applicable to Extrap and FRC, is analysed. Wave propagation arises owing to the Hall effect. Particle resonances are responsible for the absorption, owing to a high parallel wavenumber and a weak magnetic field. (author)

  16. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  17. Low-frequency instabilities of a warm plasma in a magnetic field

    International Nuclear Information System (INIS)

    Smith, D.F.; Hollweg, J.V.

    1977-01-01

    The marginal stability of a plasma carrying current along the static magnetic field with isotropic Maxwellian ions and isotropic Maxwellian electrons drifting relative to the ions is investigated. The complete electromagnetic dispersion relation is studied using numerical techniques; the electron sums are restricted to three terms which limits the analysis to frequencies much less than the electron gyro-frequency, but includes frequencies somewhat above the ion gyro-frequency. A 'kink-like' instability and an instability of the Alfven mode are found to have the lowest threshold drift velocities in most cases. In fact the threshold drift for the kink-like instability can be significantly less than the ion thermal speed. Electrostatic and electromagnetic ion-cyclotron instabilities are also found as well as the electro-static ion-acoustic instability. No instability of the fast magnetosonic mode was found. The stability analysis provides only threshold drift velocities and gives no information about growth rates. (author)

  18. Magnetic stochasticity in magnetically confined fusion plasmas chaos of field lines and charged particle dynamics

    CERN Document Server

    Abdullaev, Sadrilla

    2014-01-01

    This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas.  The analytical models describing the generic features of equilibrium magnetic fields and  magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and  statisti...

  19. Characteristics of MHD stability of high beta plasmas in LHD

    International Nuclear Information System (INIS)

    Sato, M.; Nakajima, N.; Watanabe, K.Y.; Todo, Y.; Suzuki, Y.

    2012-11-01

    In order to understand characteristics of the MHD stability of high beta plasmas obtained in the LHD experiments, full MHD simulations have been performed for the first time. Since there is a magnetic hill in a plasma peripheral region, the ballooning modes extending into the plasma peripheral region with a chaotic magnetic field are destabilized. However, in the nonlinear phase, the core region comes under the in influence of the instabilities and the central pressure decreases. There is a tendency that modes are suppressed as the beta value and/or magnetic Reynolds number increase, which is consistent with a result that high beta plasmas enter the second stable region of the ideal ballooning modes as beta increases and remaining destabilized ballooning modes are considered to be resistive type. (author)

  20. Magnetic Nozzles for Plasma Thrusters: Acceleration, Thrust, and Detachment Mechanisms

    Science.gov (United States)

    2011-10-01

    neutral double layer. A very detailed study of this surface discontinuity has been culminated [4]. It had been claimed that the presence of this DL could...field assures that electrons are strongly-magnetized whereas ions are partially-magnetized. The use of the method of characteristic surfaces (i.e...z = const disk. (d) Ambipolar electric field and equipotential lines for plasmas with a 0.2 fraction of 9-times hotter electrons at the nozzle

  1. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  2. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  3. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    Science.gov (United States)

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  4. Quark-gluon plasma in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran

    2013-04-15

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  5. Quark-gluon plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2013-04-01

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  6. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    Science.gov (United States)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  7. Instabilities responsible for magnetic turbulence in laboratory rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Erokhin, N.N.; Pustovitov, V.D.; Konovalov, S.V.

    2008-01-01

    Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities

  8. Methods for studying plasma charge transport across a magnetic field

    International Nuclear Information System (INIS)

    Popovich, A.S.

    1978-01-01

    A comparative analysis of experimental methods for the diffusion transfer of plasma charged particles accross the magnetic field at the study of its confinement effectiveness, instability effect is carried out. Considered are the methods based on the analysis of particle balance in the charge and possibilities of diffusion coefficient determination according to measuring parameters of density gradient and particle flow on the wall, rate of plasma decay after switching off ionization source radial profile of plasma density outside the active region of stationary charge. Much attension is payed to the research methods of diffusion transfer, connected with the study of propagation of periodic and aperiodic density perturbation in a plasma. Analysed is the Golubev and Granovsky method of diffusion waves and its different modifications, phase analysis method of ''test charges'' movement, as well as different modifications of correlation methods. Considered are physical preconditions of the latter and criticized is unilateral interpretation of correlation measurings, carried out in a number of works. The analysis of study possibilities of independent (non-ambipolar) diffusion of electrons and ions in a plasma in the magnetic field is executed

  9. The Influence of the Axial Magnetic Field Upon- the Coaxial Plasma Gun Parameters

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; El-Demardash, A.

    2001-01-01

    This study concerns with the influence of an applied axial magnetic field upon the electrical parameters and on the brightness (luminance) of argon plasma. The brightness was measured by with a photomultiplier type of IP28 RCA. The experimental results are investigated with plasma gun device operated with argon gas at a pressure of 3.5 Torr. An axial time independent magnetic field with intensity of 550 G is introduced along the plasma current sheath axial region, within the annular space between the two coaxial electrodes. From the measurements of the discharge current I(t) and the voltage V(t), the electrical discharge parameters of the plasma gun device and the plasma current sheath implosion velocity are estimated, in normal mode of plasma gun operation and in the mode of presence external axial magnetic field. A comparison between these two modes is studied. It was found that the thickness of skin-layer δ about 0.01 cm and the wavelength λ, of the perturbation about 1.3 cm i.e. the instability has been satisfied. The growth rate γ of the instability about 10 6 sec -1 . (author)

  10. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  11. Modified Debye screening potential in a magnetized quantum plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hussain, A.; Sara, I.; Murtaza, G.; Shah, H.A.

    2009-01-01

    The effects of quantum mechanical influence and uniform static magnetic field on the Shukla-Nambu-Salimullah potential in an ultracold homogeneous electron-ion Fermi plasma have been examined in detail. It is noticed that the strong quantum effect arising through the Bohm potential and the ion polarization effect can give rise to a new oscillatory behavior of the screening potential beyond the shielding cloud which could explain a new type of possible robust ordered structure formation in the quantum magnetoplasma. However, the magnetic field enhances the Debye length perpendicular to the magnetic field in the weak quantum limit of the quantum plasma.

  12. Determination of Local Magnetic Dipole Moment of the Plasma at the PUPR Cusp-Mirror Machine

    International Nuclear Information System (INIS)

    Leal-Quiros, Edbertho; Prelas, Mark

    2006-01-01

    A novel diagnostic that allows measurement of the magnetic moment μ has been designed. The μ-Analyzer consists of a Directional Energy Analyzer and a Magnetic Hall Probe in the same detector miniature case. The Directional Energy Analyzer measures the ion temperature in the perpendicular direction to the magnetic field. On the other side, the Hall Probe measures the magnetic field. The μ-Analyzer is a miniature analyzer to avoid plasma perturbation. This allows the measurement of the ion temperature and the local magnetic field at the same point at the same time, therefore μ, the first adiabatic invariant is found. From the above parameters, the local Larmor radius also will be calculated. From the analysis of the data simultaneously in time and space, the μ of the Local Plasma has been determined. This result is a very important quantity, among other properties that permit one to know the stability of the magnetic confinement device using the MHD Stability Criterium, and also very important in Space Plasma Research. In addition to the above, a direct measurement of the Larmor radius of each position is also possible. The experiments have been made in a Cusp/Mirror Plasma Machine where plasma parameters such as Density and Temperature are relatively easy to change in a very wide range

  13. Ponderomotive force, magnetic fields and hydrodynamics of laser produced plasmas

    International Nuclear Information System (INIS)

    Bobin, J.-L.; Wee Woo; Degroot, J.-S.

    1977-01-01

    Nonlinear effects deeply change the structure of a laser driven plasma flow. For high intensities, the radiation pressure should be taken into account. It acts through a ponderomotive force proportional to the electron density and to the gradient of the mean electric field energy density of the incident wave. Static magnetic fields originate from a term in the ponderomotive force which includes radiation absorption and whose curl is non zero. The basic properties of the structure are determined analytically in the absence of thermal conductivity and magnetic fields: steep density gradient close to the cut-off density, shelf at lower densities. The conditions of a steady state regime are set up. The isothermal case is specially investigated. It is shown that the cavities which are created in a motionless plasma may disappear due to the onset of a flow. Regions in which electromagnetic forces arising from the static field compensate the ponderomotive force are determined. The subsequent effects on the flow itself are studied [fr

  14. Dielectric response of particle-antiparticle plasmas in a magnetic field

    International Nuclear Information System (INIS)

    Frankel, N.E.; Hines, K.C.; Kowalenko, V.

    1982-01-01

    We have considered the longitudinal dielectric response of an ultra-degenerate relativistic plasma composed of electrons and positrons. We have used the relativistic Hartree self-consistent field method to investigate the dispersion relations and damping parameters of such a plasma in the presence of a magnetic field. These properties must be studied in the various regimes appropriate for a relativistic plasma as detailed by Tsytovich and Jancovici. Although it is hoped that this work will yield new insight into certain astrophysical phenomena (such as pulsars), it is interesting to note that laboratory electron-positron plasmas may be a thing of the immediate future as a result of suggested new experiments using an intense relativistic electron beam. (author)

  15. Toroidal field magnet and poloidal divertor field coil systems adapted to reactor requirements

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.

    1985-01-01

    ASDEX Upgrade is a tokamak experiment with external poloidal field coils, that is now under construction at IPP Garching. It can produce elongated single-null (SN), double-null (DN) and limiter (L) configurations. The SN is the reference configuration with asymmetric load distributions in the poloidal field (PF) system and the toroidal field (TF) magnet. Plasma control and stabilization requires a rigid passive conductor close to the plasma. The design principles of the coils and support structure are described. (orig.)

  16. Bremsstrahlung emission coefficient of a plasma in a uniform magnetic field

    International Nuclear Information System (INIS)

    Pangborn, R.J.

    1976-01-01

    The leading (electron-ion, dipole) contribution to the bremsstrahlung spectrum of a Maxwellian plasma in a constant, uniform magnetic field is calculated. The plasma is assumed infinite and fully ionized. A simpler, more direct derivation of Kirchoff's Law for anisotropic media is presented. The plasma dispersion relation is then found using previously obtained expressions for the conductivity tensor (accurate to first order in collisional effects). From the dispersion the collisional damping, assumed small, is obtained and by means of Kirchoff's Law an expression for the bremsstrahlung emission coefficient is written. No terms of order (kappa 2 lambda 2 0 ) or higher are included. For wave frequencies large compared with the plasma and electron cyclotron frequencies (ω 2 much greater than ω 2 rho, ω 2 much greater than Ω 3 ) an expansion of the exact result is given accurate to fourth order in Ω/ω and ω rho/ω. The result is found to disagree with previous high frequency expressions. Analysis of the exact expression reveals that for certain frequencies and directions of propagation the emission spectrum exhibits a resonance quality. The results are presented in such fashion that for various magnetic field strengths the frequency of the resonant emission at arbitrary angle relative to the field is easily obtained. These phenomena arise due to the influence of the magnetic fieldon the dielectric properties of the plasma and not because of its effect on the binary collision process. A physical explanation of the results is presented

  17. Multi-scale magnetic field intermittence in the plasma sheet

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    2003-09-01

    Full Text Available This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large-scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC process.Key words. Magnetospheric physics (magnetotail; plasma sheet – Space plasma physics (turbulence

  18. Effects of ion acoustic waves on diffusion in a magnetized plasma

    International Nuclear Information System (INIS)

    Watanabe, Yukio; Akazaki, Masanori; Fujiyama, Hiroshi.

    1975-01-01

    This paper describes on the behavior of ion acoustic waves in magnetized plasma. The plasma was produced with a discharge tube placed in an air-core coil. The pressure of argon gas in the discharge tube was 1--10 mTorr. The plasma was entracted along the externally applied magnetic field through a nozzle into a measuring part. The condition of stabilization of drift waves was investigated. Four small glass tubes were placed in contact with the wall of the discharge tube, and the drift wave was remarkably suppressed. Then the ion acoustic waves can be observed. The magnetic field dependence of the frequency of ion acoustic waves was studied. The frequency depends on magnetic field and gas pressure. The magnetic field dependence of the frequency is caused by the variation of electron temperature. The Timofee's theory can explain the magnetic field of generating ion acoustic waves. The ion acoustic waves being excited naturally propagate to the direction of the diamagnetic drift of electrons, and their spectra are monochromatic. The dependence of Dsub(perpendicular), diffusion constant, on magnetic field is explained by two-pole diffusion, and the effect of the monochromatic ion acoustic waves on diffusion is small. (Kato, T.)

  19. Ultrasonic Studies of Emulsion Stability in the Presence of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Józefczak

    2015-01-01

    Full Text Available Pickering emulsions are made of solid particle-stabilized droplets suspended in an immiscible continuous liquid phase. A magnetic emulsion can be obtained using magnetic particles. Solid magnetic nanoparticles are adsorbed strongly at the oil-water interface and are able to stabilize emulsions of oil and water. In this work emulsions stabilized by magnetite nanoparticles were obtained using high-energy ultrasound waves and a cavitation mechanism and, next, their stability in time was tested by means of acoustic waves with a low energy, without affecting the structure. An acoustic study showed high stability in time of magnetic emulsions stabilized by magnetite particles. The study also showed a strong influence of an external magnetic field, which can lead to changes of the emulsion properties. It is possible to control Pickering emulsion stability with the help of an external stimulus—a magnetic field.

  20. Qualitative models of magnetic field accelerated propagation in a plasma due to the Hall effect

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Cherepanov, K.V.

    2000-01-01

    Two qualitatively new models of accelerated magnetic field propagation (relative to normal diffusion) in a plasma due to the Hall effect are developed within the frames of the electron magnetic hydrodynamics. The first model is based on a simple hydrodynamic approach, which, in particular, reproduces the number of known theoretical results. The second one makes it possible to obtain exact analytical description of the basic characteristics of the magnetic field accelerated propagation in a inhomogeneous iso-thermic plasma, namely, the magnetic field front and its effective width [ru

  1. Numerical study of plasma-wall transition in an oblique magnetic field

    International Nuclear Information System (INIS)

    Valsaque, Fabrice; Manfredi, Giovanni

    2001-01-01

    The interaction of a plasma with a fixed wall is investigated numerically. The ions are described by a kinetic model, while the electrons are assumed to be at thermal equilibrium. Finite Debye length effects are taken into account. An Eulerian code is used for the ion dynamics, which enables us to obtain a fine resolution of both position and velocity space. First, we analyse the effect of ionization and collisions, which bring the ion flow to supersonic velocity at the entrance of the Debye sheath (Bohm's criterion). Second, we consider a collisionless sheath with an oblique magnetic field. A magnetic presheath, which has a width of several ion gyroradii, is located between the Debye sheath and the bulk plasma. We perform a systematic numerical study of these sheaths for different incidences of the magnetic field

  2. The magnetic field application for the gas discharge plasma control in processes of surface coating and modification

    International Nuclear Information System (INIS)

    Asadullin, T Ya; Galeev, I G

    2017-01-01

    In this paper the method of magnetic field application to control the gas discharge plasma effect on the various surfaces in processes of surface coating and modification is considered. The magnetic field directed perpendicular to the direction of electric current in the gas discharge plasma channel is capable to reject this plasma channel due to action of Lorentz force on the moving electrically charged particles [1,2]. The three-dimensional spatial structure of magnetic field is created by system of necessary quantity of the magnets located perpendicular to the direction of course of electric current in the gas-discharge plasma channel. The formation of necessary spatial distribution of magnetic field makes possible to obtain a required distribution of plasma parameters near the processed surfaces. This way of the plasma channel parameters spatial distribution management is the most suitable for application in processes of plasma impact on a surface of irregular shape and in cases when the selective impact of plasma on a part of a surface of a product is required. It is necessary to apply automated computer management of the process parameters [3] to the most effective plasma impact. (paper)

  3. ECR plasma source in a flaring magnetic field

    International Nuclear Information System (INIS)

    Meis, C.; Compant La Fontaine, A.; Louvet, P.

    1992-01-01

    The propagation and absorption of an electromagnetic wave, near the electron cyclotron zone, of a cold plasma (T e ∼ 1-5 eV) confined in a flaring magnetic field is studied. The case of both extraordinary and ordinary modes has been considered. Temperature effects and electron-neutral collisions have been taken account in the dielectric tensor

  4. Equilibrium state analysis of a nonneutral plasma under a uniform magnetic field

    International Nuclear Information System (INIS)

    Fernandez, J.E.; Molinari, V.G.; Sumini, M.A.

    1990-01-01

    By recourse to the Boltzmann H-theorem, the existence of a thermodynamic equilibrium state has been proved for a nonneutral plasma under an external magnetic field. The equation describing the density profile of ions or electrons has been found. The density equation has been numerically solved for a generic magnetic field and plasma frequency, giving a parametric limit for the confinement region. An appropriate change of variable allows to approximate the density equation whose analytical solution has been found. The approximated density closely fits the numerical solution of the original equation. (Author)

  5. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  6. Magnetic field effects on runaway electron energy deposition in plasma facing materials and components

    International Nuclear Information System (INIS)

    Niemer, K.A.; Gilligan, J.G.

    1992-01-01

    This paper reports magnetic field effects on runaway electron energy deposition in plasma facing materials and components is investigated using the Integrated TIGER Series. The Integrated TIGER Series is a set of time-independent coupled electron/photon Monte Carlo transport codes which perform photon and electron transport, with or without macroscopic electric and magnetic fields. A three-dimensional computational model of 100 MeV electrons incident on a graphite block was used to simulate runawayelectrons striking a plasma facing component at the edge of a tokamak. Results show that more energy from runaway electrons will be deposited in a material that is in the presence of a magnetic field than in a material that is in the presence of no field. For low angle incident runaway electrons in a strong magnetic field, the majority of the increased energy deposition is near the material surface with a higher energy density. Electrons which would have been reflected with no field, orbit the magnetic field lines and are redeposited in the material surface, resulting in a substantial increase in surface energy deposition. Based on previous studies, the higher energy deposition and energy density will result in higher temperatures which are expected to cause more damage to a plasma facing component

  7. Stability aspects of plasmas penetrated by neutral gas with respect to velocity driven modes

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1978-08-01

    A study of the stability properties of dense partially ionized plasmas immersed in strong magnetic fields with respect to velocity driven modes are presented. First we consider modes driven by mass motion perpendicular to the lines of force and the unperturbed density and temperature gradients. The presence of a third fluid, neutral gas, gives under certain conditions rise to unstable modes. This type of instability arises independently or whether the applied electric field transverse to the lines of force, driving the mass motion, being parallel or antiparallel to the unperturbed density and temperature gradient. The presence of neutral gas also corresponds to stabilizing effects which, in certain parameter regions, result in a quenching of this instability. It is shown that modes driven by velocity shear perpendicular to the lines of force are effectively stabilized by viscous and resistive effects. These effects are in certain parameter ranges strongly enhanced on account of plasma-neutral gas interaction effects. In collisionless plasmas, modes driven by velocity shear parallel to the lines of force are stabilized by compressibility effects parallel to the magnetic field and by finite Larmor radius effects. (author)

  8. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2008-01-01

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment

  9. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  10. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    International Nuclear Information System (INIS)

    Strait, E. J.; Park, J. K.; Marmar, E. S.; Ahn, J. W.; Berkery, J. W.; Burrell, K. H.; Canik, J. M.; Delgado-Aparicio, L.; Ferraro, N. M.; Garofalo, A. M.; Gates, D. A.; Greenwald, M.; Kim, K.; King, J. D.; Lanctot, M. J.; Lazerson, S. A.; Liu, Y. Q.; Lore, J. D.; Menard, J. E.; Nazikian, R.; Shafer, M. W.; Paz-Soldan, C.; Reiman, A. H.; Rice, J. E.; Sabbagh, S. A.; Sugiyama, L.; Turnbull, A. D.; Volpe, F.; Wang, Z. R.; Wolfe, S. M.

    2014-01-01

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10 -4 of the main axisymmetric field, such ''3D'' fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data

  11. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  12. Stability of superconducting cables for use in large magnet systems

    International Nuclear Information System (INIS)

    Tateishi, Hiroshi; Schmidt, C.

    1992-01-01

    The construction of large superconducting magnets requires the development of complicated conductor types, which can fulfill the specific requirements of different types of magnets. A rather hard boundary condition for large magnets is the presence of fast changing magnetic fields. In the Institute of Technical Physics of the Karlsruhe Nuclear Research Center, Germany, a superconducting cable was developed for use in poloidal field coils in Tokamak experiments. This 'POLO'-cable exhibits low losses in a magnetic ac-field and a high stability margin. In the present article the requirements on a superconducting cable are described, as well as the mechanisms of ac-losses and the calculation of the stability limit. Calculated values are compared with experimental data. Some unresolved problems concerning the stability of large magnets are discussed taking the example of the POLO-cable. (author)

  13. Induced magnetic-field effects in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Rognlien, T.D.

    1995-01-01

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest

  14. Qualifying tests for TRIAM-1M superconducting toroidal magnetic field coil

    Energy Technology Data Exchange (ETDEWEB)

    Nakanura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Tanaka, Masayoshi; Nagao, Akihiro; Kawasaki, Shoji; Itoh, Satoshi

    1984-09-01

    In the strong toroidal magnetic field experimental facility ''TRIAM-1M'' currently under construction, construction of the superconducting toroidal magnetic field coil and the following qualifying tests conducted on the full-scale superconducting toroidal magnetic field coil actually fabricated are described: (1) coil excitation test, (2) superconducting stability test, (3) external magnetic field application test, and (4) high-speed excitation test. On the basis of these test results, stability was evaluated of the superconducting coil being operated in the tokamak device. In normal tokamak operation, there occurs no normal conduction transition. At the time of plasma disruption, though this transition takes place in part of the coil, the superconducting state is immediately restored. By its electromagnetic force analysis, the superconducting coil is also stable in structure.

  15. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    CERN Document Server

    Frisch, J; Decker, V; Hendrickson, L; Markiewicz, T W; Partridge, R; Seryi, Andrei

    2004-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  16. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    International Nuclear Information System (INIS)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; SLAC

    2006-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system

  17. The acceleration of a gaseous plasma by intense microwave fields in a constant inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Mourier, Georges

    1971-01-01

    A gaseous plasma excited by a powerful microwave source (up to 300 kW) was studied theoretically and experimentally. The large amplitude electric field excites, in a constant inhomogeneous magnetic field, a plasma near to the electron cyclotron resonance. These particles are accelerated to energies of between 100 and 10000 eV and subsequently drift to the regions of lower magnetic field. The ions are accelerated by the resulting electrostatic forces. Ion and electron currents of some tens of milli-amperes to a few amperes are obtained. The energy of the electrons is limited by their relativistic mass; a three-dimensional of space charge model is set up to describe the particle flow. (author) [fr

  18. The effect of plasma beta on high-n ballooning stability at low magnetic shear

    Science.gov (United States)

    Connor, J. W.; Ham, C. J.; Hastie, R. J.

    2016-08-01

    An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma pressure or poloidal beta, {β\\text{pol}} , as observed in MAST and JET, is sought in terms of the impact of the Shafranov shift, {{Δ }\\prime} , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment of the low magnetic shear region of the ‘s-α ’ stability diagram is presented using the large aspect ratio Shafranov equilibrium, but enhancing both α and {{Δ }\\prime} so that they compete with each other. The method of averaging, valid at low s, is used to simplify the calculation and demonstrates how α , {{Δ }\\prime} , plasma shaping and ‘average favourable curvature’ all contribute to stability.

  19. Correlation of Magnetic Fields with Solar Wind Plasma Parameters at 1AU

    Science.gov (United States)

    Shen, F.

    2017-12-01

    The physical parameters of the solar wind observed in-situ near 1AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature T and velocity V, and the negative correlation between density N and velocity V, are well known. However, the magnetic field intensity does not appear to be well correlated with any individual plasma parameter. In this paper, we discuss previously under-reported correlations between B and the combined plasma parameters √NV2 as well as between B and √NT. These two correlations are strong during the periods of corotating interaction regions and high speed streams, moderate during intervals of slow solar wind, and rather poor during the passage of interplanetary coronal mass ejections. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure. Then, we employ a 3D MHD model to simulate the formation of the relationships between the magnetic strength B and √NV2 as well as √NT observed at 1AU. The inner boundary condition is derived by empirical models, with the magnetic field and density are optional. Five kinds of boundary conditions at the inner boundary of heliosphere are tested. In the cases that the magnetic field is related to speed at the inner boundary, the correlation coefficients between B and √NV2 as well as between B and √NT are even higher than that in the observational results. At 1AU the simulated radial magnetic field shows little latitude dependence, which matches the observation of Ulysses. Most of the modeled characters in these cases are closer to observation than others. This inner boundary condition may more accurately characterize Sun's magnetic influence on the heliosphere. The new input may be able to improve the simulation of CME propagation in the inner heliosphere and the space weather forecasting.

  20. Energy loss of ions by electric-field fluctuations in a magnetized plasma.

    Science.gov (United States)

    Nersisyan, Hrachya B; Deutsch, Claude

    2011-06-01

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  1. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  2. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Cohen, Samuel A.

    2009-01-01

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ∼ 200-300 λ D,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength

  3. FAST MAGNETIC FIELD AMPLIFICATION IN THE EARLY UNIVERSE: GROWTH OF COLLISIONLESS PLASMA INSTABILITIES IN TURBULENT MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Falceta-Gonçalves, D. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Kowal, G. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, São Paulo, SP 03828-000 (Brazil)

    2015-07-20

    In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.

  4. Electrostatic instabilities and turbulence in a toroidal magnetized plasma

    International Nuclear Information System (INIS)

    Poli, F. M.

    2007-06-01

    This Thesis aims at characterizing the linear properties of electrostatic drift instabilities arising in a toroidal plasma and the mechanisms leading to their development into turbulence. The experiments are performed on the TORoidal Plasma EXperiment (TORPEX) at CRPP-EPFL, Lausanne. The first part of the Thesis focuses on the identification of the nature of the instabilities observed in TORPEX, using a set of electrostatic probes, designed and built for this purpose. The global features of fluctuations, analyzed for different values of control parameters such as the magnetic field, the neutral gas pressure and the injected microwave power, are qualitatively similar in different experimental scenarios. The maximum of fluctuations is observed on the low field side, where the pressure gradient and the gradient of the magnetic field are co-linear, indicating that the curvature of the magnetic field lines has an important role in the destabilization of the waves. The power spectrum is dominated by electrostatic fluctuations with frequencies much lower than the ion cyclotron frequency. Taking advantage of the extended diagnostics coverage, the spectral properties of fluctuations are measured over the whole poloidal cross-section. Both drift and interchange instabilities develop and propagate on TORPEX, with the stability of both being affected by the curvature of the magnetic field. It is shown that modes of different nature are driven at separate locations over the plasma cross-section and that the wavenumber and frequency spectra, narrow at the location where the instabilities are generated, broaden during convection, suggesting an increase in the degree of turbulence. The transition from coherent to turbulent spectral features and the role of nonlinear coupling between modes in the development of turbulence are treated in the second part of this work. It is found that nonlinear mode-mode coupling is responsible for the redistribution of spectral energy from the

  5. Theory and experimental show up of axial magnetic fields self-generated in dense laser-produced plasmas

    International Nuclear Information System (INIS)

    El Tamer, M.

    1986-09-01

    The work presented in this thesis concerns the magnetic fields generated in laser produced plasma. A summary of the theoretical and experimental studies concerning the toroidal magnetic fields and realised by different groups of research is presented. Then, we present our original contribution on the generation of axial magnetic fields by the dynamo effect. The experimental work for the detection of magnetic field is based on the Faraday rotation and Zeeman effects. The experimental diagrams are detailed and discussed. The experimental results are presented and compared to the theory. Finaly, we present some consequences of the generation of the axial magnetic fields in laser produced plasma as a discussion of the thermal conductivity [fr

  6. The spatial distribution and time evolution of impact-generated magnetic fields

    Science.gov (United States)

    Crawford, D. A.; Schultz, P. H.

    1991-01-01

    The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.

  7. Dynamo generation of a magnetic field by decaying Lehnert waves in a highly conducting plasma

    Science.gov (United States)

    Mizerski, Krzysztof A.; Moffatt, H. K.

    2018-03-01

    Random waves in a uniformly rotating plasma in the presence of a locally uniform seed magnetic field and subject to weak kinematic viscosity ? and resistivity ? are considered. These "Lehnert" waves may have either positive or negative helicity, and it is supposed that waves of a single sign of helicity are preferentially excited by a symmetry-breaking mechanism. A mean electromotive force proportional to ? is derived, demonstrating the conflicting effects of the two diffusive processes. Attention is then focussed on the situation ?, relevant to conditions in the universe before and during galaxy formation. An ?-effect, axisymmetric about the rotation vector, is derived, decaying on a time-scale proportional to ?; this amplifies a large-scale seed magnetic field to a level independent of ?, this field being subsequently steady and having the character of a "fossil field". Subsequent evolution of this fossil field is briefly discussed.

  8. On the regularity of the magnetic field in a diffusive plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    2001-09-28

    It is known that magnetic fields in ideal chaotic plasmas tend to become extremely irregular and to concentrate in a fractal set, and it is assumed that the presence of a positive resistivity will have a smoothing effect. Here we try to quantify this effect by proving new inequalities which, on the one hand, relate the local and global size of velocity and magnetic field with the gradient of this field, and on the other provide a bound of the area of generalized level surfaces. (author)

  9. Electrical conductivity of a fully ionized plasma in a magnetic field

    International Nuclear Information System (INIS)

    Vaucher, B.; Vaclavik, J.; Schneider, H.

    1975-01-01

    In this experimental work the authors have investigated the electrical conductivity of a homogeneous fully ionized plasma in a homogeneous magnetic field. In particular, the conductivity perpendicular to the magnetic field was studied by means of the magnetoacoustic resonance for different values of the parameter ωsub(c)/γsub(ei) where ωsub(c) is the electron cyclotron frequency and γsub(ei) is the collision frequency between electrons and ions. (Auth.)

  10. Auroral electrojet dynamics during magnetic storms, connection with plasma precipitation and large-scale structure of the magnetospheric magnetic field

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    1999-04-01

    Full Text Available Effect of the equatorward shift of the eastward and westward electrojets during magnetic storms main phase is analyzed based on the meridional chains of magnetic observatories EISCAT and IMAGE and several Russian observatories (geomagnetic longitude ~110°, corrected geomagnetic latitudes 74°F 51°. Magnetic storms of various Dst index intensity where the main phase falls on 1000 UT - 2400 UT interval were selected so that one of the observatory chains was located in the afternoon - near midnight sector of MLT. The eastward electrojet center shifts equatorward with Dst intensity increase: when Dst ~ - 50 nT the electrojet center is located at F ~ 62°, when Dst ~ -300 nT it is placed at F ~54°. The westward electrojet center during magnetic storms main phase for intervals between substorms shifts equatorward with Dst increase: at F~ 62° when Dst ~ -100 nT and at F ~ 55° when Dst ~ -300 nT. During substorms within the magnetic storms intervals the westward electrojet widens poleward covering latitudes F~ 64°- 65°. DMSP (F08, F10 and F11 satellite observations of auroral energy plasma precipitations at upper atmosphere altitudes were used to determine precipitation region structure and location of boundaries of various plasma domains during magnetic storms on May 10-11, 1992, February 5-7 and February 21-22, 1994. Interrelationships between center location, poleward and equatorward boundaries of electrojets and characteristic plasma regions are discussed. The electrojet center, poleward and equatorward boundaries along the magnetic observatories meridional chain were mapped to the magnetosphere using the geomagnetic field paraboloid model. The location of auroral energy oxygen ion regions in the night and evening magnetosphere is determined. Considerations are presented on the mechanism causing the appearance in the inner magnetosphere during active intervals of magnetic storms of ions with energy of tens KeV. In the framework of the

  11. Tilt stability and compression heating studies of field-reversed configurations

    International Nuclear Information System (INIS)

    Rej, D.J.; Tuszewski, M.; Barnes, D.C.; Barnes, G.A.; Chrien, R.E.; Siemon, R.E.; Taggart, D.P.; Webster, R.B.; Wright, B.L.; Milroy, R.D.; Crawford, E.A.; Slough, J.T.; Steinhauer, L.C.; Bailey, A.D.; Baron, M.H.; Cobb, J.W.; Staudenmeier, J.L.; Sugimoto, S.; Takahashi, T.

    1990-01-01

    The first observations of internal tilt instabilities in field-reversed configurations (FRCs) are reported. Detailed comparisons with theory establish that data from an array of external magnetic probes are signatures of these destructive plasma instabilities. This work reconciles theory and experiments and suggests that grossly stable FRCs are restricted to very kinetic and elongated plasmas. Self-consistent three-dimensional numerical simulations demonstrate tilt stabilization by the addition of a beam ion component. High-power compression heating experiments with stable equilibrium FRCs are also reported. Plasmas formed in a tapered theta-pinch coil have been translated along a guide magnetic field into a new single-turn compression coil where the external field is increased up to 7 times the initial value in 55 μs. Substantial heating is observed accompanied by a decrease in confinement time. 17 refs

  12. The dust characteristics in the collisional plasma sheath at the presence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shourkaei, Hossein Akbarian [AEOI, Tehran (Iran, Islamic Republic of). Plasma Physics Research Group

    2015-05-15

    The characteristics of dust in a plasma sheath are investigated in the presence of an external magnetic field and taking into account neutral collision forces. By using the fluid model, the continuity and momentum equations of ions and dusts are solved numerically with various magnitudes of collision force. In various magnitude and directions of the magnetic field, the electron and ion density distribution, ion flow velocity, electron potential have been calculated. It is shown that magnetic field has obvious effect on the plasma sheath and the collision force reduces the dust kinetic energy.

  13. Measurements of magnetic fields generated in underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Najmudin, Z.; Walton, B. R.; Mangles, S. P. D.; Dangor, A. E.; Krushelnick, K.; Fritzler, S.; Malka, V.; Faure, J.; Tatarakis, M.

    2006-01-01

    Measurements have been made of the magnetic field generated by the passage of high intensity short laser pulses through underdense plasmas. For a 30 fs, 1 J, 800 nm linearly-polarised laser pulse, an azimuthal magnetic field is observed at a radial extent of approximately 200 μm. The field is found to exceed 2.8 MG. For a 1 ps, 40 J, 1054 nm circularly-polarised laser pulse, a solenoidal field is observed that can exceed 7 MG. This solenoidal field is absent with linear polarised light, and hence can be considered as an Inverse Faraday effect. Both types of field are found to decay on the picosecond timescale. For both the azimuthal and solenoidal fields produced by such intense lasers, the production of energetic electrons by the interaction is thought to be vital for magnetic field generation

  14. Mechanism and scaling for convection of isolated structures in nonuniformly magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Naulin, V.

    2005-01-01

    Large-scale radial advection of isolated structures in nonuniformly magnetized plasmas is investigated. The underlying mechanism considered is due to the nonlinear evolution of interchange motions, without any presumption of plasma sheaths. Theoretical arguments supported by numerical simulations...

  15. Far infrared polarimetry with tokamak plasmas for determination of the poloidal magnetic field distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, W

    1979-01-01

    This study examines the poloidal magnetic field distribution of tokamak plasma, and the elucidation of the radial distribution of the toroidal plasma flow. A numerical and experimental determination of the poloidal field based on the Faraday effect is presented. A method is discussed for measuring the rotation of the polarization plane linear polarized electromagnetic radiation, by passing through a plasma magnetized in the direction of the radiation. The polarization behavior of a linear polarized wave passing through a tokamak plasma is presented theoretically for various wavelengths, along with the experimental investigation of a ferrite modulation procedure through the use of different far infrared detectors.

  16. On-axis parallel ion speeds near mechanical and magnetic apertures in a helicon plasma device

    International Nuclear Information System (INIS)

    Sun Xuan; Cohen, S.A.; Scime, Earl E.; Miah, Mahmood

    2005-01-01

    Using laser-induced fluorescence, measurements of parallel ion velocities were made along the axis of a helicon-generated Ar plasma column whose radius was modified by spatially separated mechanical and magnetic apertures. Ion acceleration to supersonic speeds was observed 0.1-5 cm downstream of both aperture types, simultaneously generating two steady-state double layers (DLs) when both apertures were in place. The DL downstream of the mechanical aperture plate had a larger potential drop, Δφ DL =6-9 kT e , compared to the DL downstream of the magnetic aperture, Δφ DL ∼3 kT e . In the presheath region upstream of the mechanical aperture, the convective ion speed increased over a collisional distance; from stagnant at 4 cm from the aperture to the 1.4 times the sound speed at the aperture. The dependence of the free- and trapped-ion-velocity-distribution functions on the magnetic-field strength and mechanical-aperture electrical bias are also presented

  17. Vlasov-Fokker-Planck modeling of magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-08-01

    Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm’s law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.

  18. Vlasov-Fokker-Planck modeling of magnetized plasma

    International Nuclear Information System (INIS)

    Thomas, Alexander

    2016-01-01

    Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm's law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.

  19. Ideal stability of cylindrical plasma in the presence of mass flow

    International Nuclear Information System (INIS)

    Bondeson, A.; Iacono, R.

    1988-11-01

    The ideal stability of cylindrical plasma with mass flows is investigated using the guiding centre plasma (GCP) model of Grad. For rotating plasmas, the kinetic treatment of the parallel motion in GCP gives significantly different results than fluid models, where the pressures are obtained from equations of state. In particular, GCP removes the resonance with slow magnetoacoustic waves and the loss of stability that results in magnetohydrodynamics (MHD) for near-soni flows. Because of the strong kinetic damping of the sound waves in an isothermal plasma, the slow waves have little influence on plasma stability in GCP at low β. In the large aspect ratio, low-β tokamak ordering, Alfvenic flows are needed to change the ideal GCP stability significantly. At lowest order in the inverse aspect ratio, flow can be favorable or unfavorable for stability of local modes depending on the profiles, but external kinks are always destilized by flow if the velocity vanishes at the edge. For high-β, reversed field pinch equilibria, numerical computations show that flow can be stabilizing for local modes, but external modes are destabilized by flow. It is shown that in three dimensions, the MHD equilibrium problem becomes hyperbolic for arbitrarily small flows across the magnetic field, whereas in GCP the equilibrium remains elliptic for sub-Alfvenic flows. (author) 7 figs., 1 tab, 32 refs

  20. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    Science.gov (United States)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  1. Electric arc behaviour in dynamic magnetic fields

    International Nuclear Information System (INIS)

    Put'ko, V.F.

    2000-01-01

    The behaviour of an electric arc in different time-dependent (dynamic) magnetic fields was investigated. New possibilities were found for spatial and energy stabilisation of a discharge, for intensifying heat exchange, extending the electric arc and distributed control of electric arc plasma. Rotating, alternating and travelling magnetic fields were studied. It was found that under the effect of a relatively low frequency of variations of dynamic magnetic fields (f 1000 Hz) the arc stabilised at the axis of the discharge chamber, the pulsation level decreased and discharge stability increased. The borders between these two arc existence modes were formed by a certain critical field variation frequency the period of which was determined by the heat relaxation time of the discharge. (author)

  2. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  3. Magnetic reconnection in nontoroidal plasmas

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2005-01-01

    Magnetic reconnection is a major issue in solar and astrophysical plasmas. The mathematical result that the evolution of a magnetic field with only point nulls is always locally ideal limits the nature of reconnection in nontoroidal plasmas. Here it is shown that the exponentially increasing separation of neighboring magnetic field lines, which is generic, tends to produce rapid magnetic reconnection if the length of the field lines is greater than about 20 times the exponentiation, or Lyapunov, length

  4. Enhanced self-magnetic field by atomic polarization in partially stripped plasma produced by a short and intense laser pulse

    International Nuclear Information System (INIS)

    Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie

    2005-01-01

    The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam

  5. SATURATION OF MAGNETOROTATIONAL INSTABILITY THROUGH MAGNETIC FIELD GENERATION

    International Nuclear Information System (INIS)

    Ebrahimi, F.; Prager, S. C.; Schnack, D. D.

    2009-01-01

    The saturation mechanism of magnetorotational instability (MRI) is examined through analytical quasi-linear theory and through nonlinear computation of a single mode in a rotating disk. We find that large-scale magnetic field is generated through the α-effect (the correlated product of velocity and magnetic field fluctuations) and causes the MRI mode to saturate. If the large-scale plasma flow is allowed to evolve, the mode can also saturate through its flow relaxation. In astrophysical plasmas, for which the flow cannot relax because of gravitational constraints, the mode saturates through field generation only.

  6. An analytical method for the investigation of instability of a collisionless plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Zakharov, V.U.

    1993-01-01

    An analytical method for the investigation of special types of dispersion relations is presented. In particular, analysis of the propagation of small-amplitude hydromagnetic waves in a collisionless plasma in a strong magnetic field leads to such dispersion relations. The fifth-degree dispersion relation corresponding to a particular case is considered. The necessary stability condition for a steady state and conditions for the degeneration of small-amplitude waves are derived. A comparison with other methods for the analysis of similar dispersion relations is also presented. (author)

  7. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    International Nuclear Information System (INIS)

    Yang Xuefeng; Wang Zhengxiong

    2012-01-01

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  8. Stationary quenching wave in magnetized plasma

    International Nuclear Information System (INIS)

    Alikhanov, S.G.; Glushkov, I.S.

    1976-01-01

    The interaction of a magnetized hot plasma (ωsub(e)tau sub(e)>>1) with cold plasma or a gas leads to the appearanci of a cooling wave. The transition layer between hot and cold plasma is the main source of radiation losses which should be compensated by a heat flow from the hot region. A stationary state is considered, equations are written in the system in which temperature and magnetic field profiles are steady, and the plasma flux with magnetic field passes through the cooling wave. Calculations, have been carried out on a computer. The dependence of the magnetized plasma flux velocity Vsub(r) on the ratio p/Hsub(r) is shown, where p is the pressure, Hsub(r) is the magnetic field in the hot reqion. The dependence of the characteristic dimension of the cooling wave on the magnetic field is determined for the hot plasma region. A considerable fraction of the rediation losses is shown to fall to the region of (ωsub(e)tausub(e)< or approximately)1

  9. Changing fluorescence in a streaming barium plasma due to an axial magnetic field

    International Nuclear Information System (INIS)

    Bonin, K.D.; Mason, T.G.

    1991-01-01

    The present investigations consider the case of a low-density laser-produced plasma expanding into a vacuum in the presence of an axial magnetic field. The time-integrated line intensities of neutral and singly ionized barium have been measured for magnetic fields up to 300 G. These measurements reveal three prominent changes in the intensities of individual lines as a function of increasing magnetic field: extinction, growth, and severe attenuation followed by enhancement. Measurements support a model that predicts the quenching of higher-lying transitions and the enhancement of lower-lying transitions for increasing magnetic fields

  10. Collective acceleration of laser plasma in a nonstationary and nonuniform magnetic field

    Science.gov (United States)

    Isaev, A.; Kozlovskiy, K.; Shikanov, A.; Vovchenko, E.

    2017-12-01

    This paper presents the new experimental results concerning acceleration of deuterium ions extracted from laser plasma in the rapid-growing nonuniform magnetic field in order to initiate the nuclear reactions D(d, n)3He and T(d, n)4He. For obtaining of laser plasma a Nd: YAG laser (λ = 1,06 μm) that generates in Q-switched mode the radiation pulses with the energy W ≤ 0,85 J and duration of τ ≈ 10 ns was used. Rapid-growing magnetic field was created with the discharge of Arkadyev-Marx pulsed-voltage generator to conical coil with the inductance of 0,65 μΗ. At characteristic discharge time of 30 ns, the rate of magnetic field growth achieved 2·107 T/s. Ion velocity was determined with the time-of-flight technique. During the experiment on deuterium plasma an ion flux velocity of ∼3 · 108 cm/s was obtained, which corresponds to the deuteron energy of ∼100 keV. Herewith, for target power density of ∼5·1011 W/cm2 obtaining of up to 1015 of accelerated deuterons and up to 108 of neutrons per a pulse is expected.

  11. On the origin of cosmic magnetic fields

    Science.gov (United States)

    Kulsrud, Russell M.; Zweibel, Ellen G.

    2008-04-01

    We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10-20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard

  12. Spectroscopic determination of the magnetic field distribution in a gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gregorian, L; Davara, G; Kroupp, E; Maron, Y [Weizmann Institute of Science, Rehovot (Israel). Dept. of Particle Physics

    1997-12-31

    The time dependent radial distribution of the magnetic field in a gas-puff Z-pinch plasma has been determined by observing the Zeeman effect on emission lines, allowed for by polarization spectroscopy and high accuracy line-profile measurements. A modeling scheme, based on a 1-D magnetic diffusion equation, is used to fit the experimental data. The plasma conductivity inferred from the field distribution was found to be consistent with the Spitzer conductivity. The current density distribution and the time dependent plasma region in which the entire circuit current flows were determined. (author). 3 figs., 6 refs.

  13. On the origin of cosmic magnetic fields

    International Nuclear Information System (INIS)

    Kulsrud, Russell M; Zweibel, Ellen G

    2008-01-01

    We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10 -20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard

  14. Active feedback stabilization of the flute instability in a mirror machine using field-aligned coils

    International Nuclear Information System (INIS)

    Lifshitz, A.; Be'ery, I.; Fisher, A.; Ron, A.; Fruchtman, A.

    2012-01-01

    A plasma confined in linear mirror machines is unstable even at low β, mainly because of the flute instability. One possible way to stabilize the plasma is to use active feedback to correct the plasma shape in real time. The theoretically investigated apparatus consists of feedback coils aligned with the magnetic field, immersed in a cold plasma around the hot core. When the current through the feedback coils changes, the plasma moves to conserve the magnetic flux via compressional Alfvén waves. An analytical model is used to find a robust feedback algorithm with zero residual currents. It is shown that due to the plasma's rotation, maximal stability is obtained with a large phase angle between the perturbations' modes and the feedback integral-like term. Finally, a two-dimensional MHD simulation implementing the above algorithm in fact shows stabilization of the plasma with zero residual currents. (paper)

  15. Equilibrium of high beta plasma in closed magnetic line system (MBT)

    International Nuclear Information System (INIS)

    Gesso, H.; Shiina, S.; Saito, K.; Nogi, Y.; Osaniai, Y.; Yoshimura, H.; Todoroki, J.; Hamada, S.; Nihon Univ., Tokyo. Atomic Energy Research Inst.)

    1985-01-01

    The beta effects on the plasma equilibrium in Modified Bumpy Torus (MBT) sector, which is an asymmetric closed line system with l = 0 and fairly large l = +- 1 field distortions, are studied. For this purpose, the equilibrium of high beta plasma produced by theta-pinch is compared with that of betaless plasma numerically calculated from the measured magnetic field profiles in device. The equilibrium condition depends weakly on beta value, but the plasma cross-section is vertically elongated as the beta value increases. The m = 1 long wavelength MHD instability is not observed during the observation time of approx. 15 μs. These experimental results are compared with MHD theory based on the new ordering taking the finiteness of l = +- 1 field distortion (deltasub(+-1) > or approx. 1) into account, which suggests significant stabilizing effects due to self formation of magnetic well and also due to the conducting wall. (author)

  16. Laser-plasma interactions in magnetized environment

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.

  17. Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    García-Rubio, F., E-mail: fernando.garcia.rubio@upm.es; Sanz, J. [E.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Ruocco, A. [Universitá degli studi di Napoli Federico II, 80138 Napoli (Italy)

    2016-01-15

    Plasma expansion into a vacuum with an external magnetic field is studied under the ideal magnetohydrodynamic hypothesis. The inclination of the magnetic field with respect to the expansion direction is arbitrary, and both the perpendicular and the oblique cases are separately analyzed. A self-similar solution satisfying the boundary conditions is obtained. The interface with the vacuum is treated as a fluid surface, and jump conditions concerning the momentum conservation are imposed. The effect of the intensity of the magnetic field and its inclination is thoroughly studied, and the consistency of the solution for small and large inclinations is investigated.

  18. Vlasov-Maxwell equilibrium solutions for Harris sheet magnetic field with Kappa velocity distribution

    International Nuclear Information System (INIS)

    Fu, W.-Z.; Hau, L.-N.

    2005-01-01

    An exact solution of the steady-state, one-dimensional Vlasov-Maxwell equations for a plasma current sheet with oppositely directed magnetic field was found by Harris in 1962. The so-called Harris magnetic field model assumes Maxwellian velocity distributions for oppositely drifting ions and electrons and has been widely used for plasma stability studies. This paper extends Harris solutions by using more general κ distribution functions that incorporate Maxwellian distribution in the limit of κ→∞. A new functional form for the plasma pressure as a function of the magnetic vector potential p(A) is found and the magnetic field is a modified tanh z function. In the extended solutions the effective temperature is no longer spatially uniform like in the Harris model and the thickness of the current layer decreases with decreasing κ

  19. Start-up assist by magnetized plasma flow injection in TPE-RX reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Nagata, M. [Graduate School of Engineering, University of Hyogo, Himeji (Japan); Koguchi, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Hirano, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Sakakita, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Yambe, K. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Kiyama, S. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)

    2006-11-15

    A reversed-field pinch (RFP) start-up assisted by a magnetized plasma flow injection was demonstrated for the first time on a TPE-RX machine. This sequence of experiments aimed to establish a new method of ionization, gas-fill and helicity injection in the start-up phase of an RFP. In this start-up method, magnetized and well-ionized plasma is formed by a magnetized coaxial plasma gun and injected into the torus chamber as an initial pre-ionized plasma for RFP formation. In the initial experiments, attenuated density pump-out and comparatively slow decay of the toroidal flux and plasma current were observed as evidence of its being an effective start-up method.

  20. Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall

    International Nuclear Information System (INIS)

    Krasheninnikova, Natalia S.; Tang Xianzhu

    2010-01-01

    Motivated by the magnetized target fusion (MTF) experiment [R. E. Siemon et al., Comments Plasma Phys. Controlled Fusion 18, 363 (1999)], a systematic investigation of the force balance and equilibrium plasma flows was carried out using analytical theory and the particle-in-cell code VPIC[K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] for a one-dimensional plasma sheath with a magnetic field parallel to the wall. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing wall. The analysis of the steady-state force balance of the entire plasma as well as its individual components illuminates the roles that the hydrodynamic, magnetic, and electric forces play. In particular, when ρ thi D , the magnetic force balances the divergence of the pressure tensor. As the magnetic field is decreased, the electric force becomes prominent in areas where quasineutrality breaks, which can be a substantial part of the sheath. Its importance depends on the relation between three parameters, namely, electron and ion thermal Larmor radii and plasma Debye length: ρ the , ρ thi , and λ D . The relative importance of the electron and ion current in the magnetic or Lorentz force term can be understood through the analysis of the two-fluid force balance. It reveals that the current is carried primarily by the electrons. This is due to the direction of the electric field that helps confine the ions, but not the electrons, which are forced to carry a large current to confine themselves magnetically. In the regimes where the electric field is negligible, the ions also need the current for confinement, but in these cases the divergence of ion pressure tensor is much smaller than that of the electrons. Consequently the ion current is also smaller. The study of the electron and ion flow parallel to the wall clarifies this picture even further. In the regime of strong magnetic field, the

  1. Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Tsunoda, R.T.

    1980-01-01

    Measurements of both incoherent-scatter (IS) and backscatter from field-aligned irregularities (FAI) were made in 1978 with ALTAIR, a fully-steerable high-power radar, to investigate the magnetic-field-aligned characteristics of equatorial plasma bubbles. By operating the radar in a latitude-scan IS mode it was possible to map the location and percentage depletion of plasma bubbles as a function of altitude. By showing that backscatter from FAI is spatially collocated with the upper wall of plasma bubbles it was possible to use the spatial displacement of a field aligned backscatter region to estimate the upward bubble velocity. Besides showing that plasma bubbles are indeed aligned along magnetic field lines, this data set is used to show that a plasma bubble with a percentage depletion of as much as 90% does not have as large an upward velocity as predicted by two-dimensional models. Instead, the inferred bubble velocity is shown to be in better agreement with the bubble velocity predicted by theoretical models using flux-integrated values of electron density and Pedersen conductivity. The need to use flux-tube-integrated values when comparing theory and observation is further stressed by the presence of a non-uniform latitudinal distribution of electron density (i.e. the equatorial anomaly) that was found in the latitude-scan data. (author)

  2. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.

    Science.gov (United States)

    Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2013-01-11

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1  MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

  3. Observations and modeling of magnetized plasma jets and bubbles launched into a transverse B-field

    Science.gov (United States)

    Fisher, Dustin M.; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward B., IV; van der Holst, Bart; Rogers, Barrett N.; Hsu, Scott C.

    2017-10-01

    Hot, dense, plasma structures launched from a coaxial plasma gun on the HelCat dual-source plasma device at the University of New Mexico drag frozen-in magnetic flux into the chamber's background magnetic field providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, shocks, as well as CME-like dynamics possibly relevant to the solar corona. Vector magnetic field data from an eleven-tipped B-dot rake probe and images from an ultra-fast camera will be presented in comparison with ongoing MHD modeling using the 3-D MHD BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid (AMR) that enables the capture and resolution of shock structures and current sheets and is uniquely suited for flux-rope expansion modeling. Recent experiments show a possible magnetic Rayleigh-Taylor (MRT) instability that appears asymmetrically at the interface between launched spheromaks (bubbles) and their entraining background magnetic field. Efforts to understand this instability using in situ measurements, new chamber boundary conditions, and ultra-fast camera data will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  4. Modelling of three dimensional equilibrium and stability of MAST plasmas with magnetic perturbations using VMEC and COBRA

    Energy Technology Data Exchange (ETDEWEB)

    Ham, C. J., E-mail: christopher.ham@ccfe.ac.uk; Chapman, I. T.; Kirk, A.; Saarelma, S. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2014-10-15

    It is known that magnetic perturbations can mitigate edge localized modes (ELMs) in experiments, for example, MAST [Kirk et al., Nucl. Fusion 53, 043007 (2013)]. One hypothesis is that the magnetic perturbations cause a three dimensional corrugation of the plasma and this corrugated plasma has different stability properties to peeling-ballooning modes compared to an axisymmetric plasma. It has been shown in an up-down symmetric plasma that magnetic perturbations in tokamaks will break the usual axisymmetry of the plasma causing three dimensional displacements [Chapman et al., Plasma Phys. Controlled Fusion 54, 105013 (2012)]. We produce a free boundary three-dimensional equilibrium of a lower single null MAST relevant plasma using VMEC [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)]. The safety factor and pressure profiles used for the modelling are similar to those deduced from axisymmetric analysis of experimental data with ELMs. We focus on the effect of applying n = 3 and n = 6 magnetic perturbations using the resonant magnetic perturbation (RMP) coils. A midplane displacement of over ±1 cm is seen when the full current is applied. The current in the coils is scanned and a linear relationship between coil current and midplane displacement is found. The pressure gradient in real space in different toroidal locations is shown to change when RMPs are applied. This effect should be taken into account when diagnosing plasmas with RMPs applied. The helical Pfirsch-Schlüter currents which arise as a result of the assumption of nested flux surfaces are estimated for this equilibrium. The effect of this non-axisymmetric equilibrium on infinite n ballooning stability is investigated using COBRA [Sanchez et al., J. Comput. Phys. 161, 576–588 (2000)]. The infinite n ballooning stability is analysed for two reasons; it may give an indication of the effect of non-axisymmetry on finite n peeling-ballooning modes, responsible for ELMs; and

  5. MHD simulation study of compact toroid injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Kishimoto, Yasuaki

    2000-01-01

    To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)

  6. Ablation acceleration of macroparticle in spiral magnetic fields

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-05-01

    The rocket motion of macroparticles heated by energetic pulses in a spiral magnetic field was studied. The purpose of the present work is to study the ablation acceleration of a macroparticle in a spiral magnetic field with the help of the law of conservation of angular momentum. The basic equation of motion of ablatively accelerated projectile in a spiral magnetic field was derived. Any rocket which is ejecting fully ionized plasma in an intense magnetic field with rotational transform is able to have spin by the law of conservation of momentum. The effect of spiral magnetic field on macroparticle acceleration is discussed. The necessary mass ratio increase exponentially with respect to the field parameter. The spiral field should be employed with care to have only to stabilize the position of macroparticles. As conclusion, it can be said that the ablation acceleration of the projectile in a spiral field can give the accelerated body spin quite easily. (Kato, T.)

  7. Generating Long Scale-Length Plasma Jets Embedded in a Uniform, Multi-Tesla Magnetic-Field

    Science.gov (United States)

    Manuel, Mario; Kuranz, Carolyn; Rasmus, Alex; Klein, Sallee; Fein, Jeff; Belancourt, Patrick; Drake, R. P.; Pollock, Brad; Hazi, Andrew; Park, Jaebum; Williams, Jackson; Chen, Hui

    2013-10-01

    Collimated plasma jets emerge in many classes of astrophysical objects and are of great interest to explore in the laboratory. In many cases, these astrophysical jets exist within a background magnetic field where the magnetic pressure approaches the plasma pressure. Recent experiments performed at the Jupiter Laser Facility utilized a custom-designed solenoid to generate the multi-tesla fields necessary to achieve proper magnetization of the plasma. Time-gated interferometry, Schlieren imaging, and proton radiography were used to characterize jet evolution and collimation under varying degrees of magnetization. Experimental results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, by the National Laser User Facility Program, grant number DE-NA0000850, by the Predictive Sciences Academic Alliances Program in NNSA-ASC, grant number DEFC52-08NA28616, and by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.

  8. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  9. 3-D magnetic reconnection in colliding laser-produced plasmas

    Science.gov (United States)

    Matteucci, Jackson; Fox, Will; Moissard, Clement; Bhattacharjee, Amitava

    2017-10-01

    Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the expanding laser-produced plasmas by the Biermann battery effect. Using fully kinetic 3-D particle in cell simulations, we conduct the first end-to-end simulations of these experiments, including self-consistent magnetic field generation via the Biermann effect through driven magnetic field reconnection. The simulations show rich, temporally and spatially dependent magnetic field reconnection. First, we find fast, vertically-localized ``Biermann-mediated reconnection,'' an inherently 3-D reconnection mechanism where the sign of the Biermann term reverses in the reconnection layer, destroying incoming flux and reconnecting flux downstream. Reconnection then transitions to fast, collisionless reconnection sustained by the non-gyrotropic pressure tensor. To separate out the role 3-D mechanisms, 2-D simulations are initialized based on reconnection-plane cuts of the 3-D simulations. These simulations demonstrate: (1) suppression of Biermann-mediated reconnection in 2-D; (2) similar efficacy of pressure tensor mechanisms in 2-D and 3-D; and (3) plasmoids develop in the reconnection layer in 2-D, where-as they are suppressed in 3-D. Supported by NDSEG Fellowship. This research used resources of the OLCF at ORNL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  10. Rotating magnetic field current drive-theory and experiment

    International Nuclear Information System (INIS)

    Donnelly, I.J.

    1989-01-01

    Rotating magnetic fields have been used to drive plasma current and establish a range of compact torus configurations, named rotamaks. The current drive mechanism involves a ponderomotive force acting on the electron fluid. Recent extensions of the theory indicate that this method is most suitable for driving currents in directions perpendicular to the steady magnetic fields

  11. Simulation studies on stability of hot electron plasma

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu

    1985-01-01

    Stability of a hot electron plasma in an NBT(EBT)-like geometry is studied by using a 2-1/2 dimensional relativistic, electromagnetic particle code. For the low-frequency hot electron interchange mode, comparison of the simulation results with the analytical predictions of linear stability theory show fairly good agreement with the magnitude of the growth rates calculated without hot electron finite Larmor radius effects. Strong stabilizing effects by finite Larmor radius of the hot electrons are observed for short wavelength modes. As for the high-frequency hot electron interchange mode, there is a discrepancy between the simulation results and the theory. The high-frequency instability is not observed though a parameter regime is chosen in which the high-frequency hot electron interchange mode is theoretically predicted to grow. Strong cross-field diffusion in a poloidal direction of the hot electrons might explain the stability. Each particle has a magnetic drift velocity, and the speed of the magnetic drift is proportional to the kinetic energy of each particle. Hence, if the particles have high temperature, the spread of the magnetic drift velocity is large. This causes a strong cross-field diffusion of the hot electrons. In the simulation for this interchange mode, an enhanced temperature relaxation is observed between the hot and cold electrons although the theoretically predicted high frequency modes are stable. (Nogami, K.)

  12. Mechanical design of a high field common coil magnet

    CERN Document Server

    Caspi, S; Dietderich, D R; Gourlay, S A; Gupta, R; McInturff, A; Millos, G; Scanlan, R M

    1999-01-01

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a "conductor-friendly" option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb/sub 3/Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach. (9 refs).

  13. Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Nurujjaman, Md., E-mail: jaman-nonlinear@yahoo.co.in [Department of Physics, National Institute of Technology Sikkim, Ravangla, Sikkim 737139 (India)

    2015-12-15

    We report on the experimental observation of canard orbit and mixed mode oscillations (MMOs) in an excitable glow discharge plasma induced by an external magnetic field perturbation using a bar magnet. At a small value of magnetic field, small amplitude quasiperiodic oscillations were excited, and with the increase in the magnetic field, large amplitude oscillations were excited. Analyzing the experimental results, it seems that the magnetic field could be playing the role of noise for such nonlinear phenomena. It is observed that the noise level increases with the increase in magnetic field strength. The experimental results have also been corroborated by a numerical simulation using a FitzHugh-Nagumo like macroscopic model derived from the basic plasma equations and phenomenology, where the noise has been included to represent the internal plasma noise. This macroscopic model shows MMO in the vicinity of the canard point when an external noise is added.

  14. Primary physical mechanism of different magnetic fields action on roots of some plants

    Directory of Open Access Journals (Sweden)

    N. V. Sheykina

    2017-12-01

    Full Text Available Background: Though the magnetic field action on biological object is proved now by many experiments it cannot be explained. The counterarguments are the small value of magnetic induction, that is effective for static magnetic field and the small value of ions free path length for ion cyclotron resonance presence.   Objectives of the article were to generalize all the results that had been obtained before in static, alternative and combined magnetic fields and to explain all results by one and the same primary physical mechanism. Materials and methods that were used to obtain experimental results were based on the using of well reproducible magnetic conditions. For this purpose 3 lays µ-metal shield and superconductive shield with warm volume were used. The artificial magnetic field was created in the shield. The objects of the investigation were roots of cress, maize and pea. Their gravitropic reaction was studied. Results and discussion: All experimental results were compared with the theories and calculations maid before and following from the three mechanisms proposed below.  It was shown that there were three physical primary mechanisms that could lead to effect of low frequency alternative and combined magnetic fields and permanent magnetic field on gravitropic reaction in plants. All of them depended on the relative location of roots, gravity and components of permanent and alternative magnetic fields between themselves. The first mechanism is based on the classic model of the rotation of ions in the plane that is perpendicular to the magnetic field direction or precession of magnetic moments round the direction of magnetic field vector. The second mechanism is connected with the piezoelectric properties of starch grain (porous piezoelectricity. This property of starch may create the change in the moving of starch grains in alternative and combined magnetic fields, and even in static one. The third mechanism is caused by the phase

  15. Design of a magnetic field alignment diagnostic for the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Deadrick, F.J.; House, P.A.; Frye, R.W.

    1985-01-01

    Magnet alignment in tandem mirror fusion machines plays a crucial role in achieving and maintaining plasma confinement. Various visual alignment tools have been described by Post et al. to align the Tara magnet system. We have designed and installed a remotely operated magnetic field alignment (MFA) diagnostic system as a part of the Mirror Fusion Test Facility (MFTF-B). It measures critical magnetic field alignment parameters of the MFTF-B coil set while under full-field operating conditions. The MFA diagnostic employs a pair of low-energy, electron beam guns on a remotely positionable probe to trace and map selected magnetic field lines. An array of precision electrical detector paddles locates the position of the electron beam, and thus the magnetic field line, at several critical points. The measurements provide a means to compute proper compensating currents to correct for mechanical misalignments of the magnets with auxiliary trim coils if necessary. This paper describes both the mechanical and electrical design of the MFA diagnostic hardware

  16. Mechanical design of a 250 kilogauss solenoidal magnet

    International Nuclear Information System (INIS)

    Bonanos, P.

    1975-12-01

    The mechanical design and construction of a 5 cm bore, 23 cm long solenoidal magnet operated at 250 kilogauss is described. The magnet provides confining field for a plasma heated by a CO 2 laser. Radial diagnostic ports with a clear aperture of 0.41 cm allow viewing access near the magnet midplane. The on-axis field homogeneity is within 5 percent over a central length of 12 cm. The magnet sustained 500 to 1000 pulses at the highest field levels before catastrophic failure

  17. The ASDEX upgrade toroidal field magnet and poloidal divertor field coil system adapted to reactor requirements

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.; Blaumoser, M.; Ennen, K.; Gruber, J.; Gruber, O.; Jandl, O.; Kaufmann, M.; Kollotzek, H.; Kotzlowski, H.; Lackner, E.; Lackner, K.; Larcher, T. von; Noterdaeme, J.M.; Pillsticker, M.; Poehlchen, R.; Preis, H.; Schneider, H.; Seidel, U.; Sombach, B.; Speth, E.; Streibl, B.; Vernickel, H.; Werner, F.; Wesner, F.; Wieczorek, A.

    1986-01-01

    ASDEX Upgrade is a tokamak experiment with external poloidal field coils that is now under construction at IPP Garching. It can produce elongated single-null (SN), double-null (DN) , and limiter (L) configurations. The SN is the reference configuration with asymmetric load distributions in the poloidal field (PF) system and the toroidal field (TF) magnet. Plasma control and stabilization require a rigid passive conductor close to the plasma. The design principles of the coils and support structure are described. (orig.)

  18. Kink stability of a field-reversed ion layer in a background plasma

    International Nuclear Information System (INIS)

    Ishida, A.; Sudan, R.N.; Rosenbluth, M.N.; Engquist, M.G.

    1986-01-01

    By means of the two-fluid energy principle, the kink stability boundary of a field-reversed ion layer of arbitrary thickness immersed in a dense low-temperature background plasma is investigated theoretically. This system is found to have a stability window against kinks. The dependence of the kink stability regime on the equilibrium properties of the system is also shown. In the thin layer limit, a comparison is made between the previous theories and the present theory

  19. Generation mechanisms for magnetic-field-aligned electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.-G.

    1977-09-01

    Magnetic-field-aligned electric fields in the magnetosphere can be generated in several different ways, and in this review some possible mechanisms are presented. Observational data now available indicates that more than one of the mechanisms mentioned are operative in the magnetosphere but it is not yet possible to evaluate their relative importance. (author)

  20. Influence of an axial magnetic field on the density profile of capillary plasma channels

    CERN Document Server

    Ivanov, V V; Toma, E S; Bijkerk, F

    2003-01-01

    A narrow capillary plasma channel, with a sizeable depletion of the electron density on the channel axis, has been proposed to guide a laser pulse over a length of several to several tens of centimetres. We discuss the possibility to significantly improve the wave-guiding properties of such a channel by applying an axial magnetic field. Our analytical and numerical studies show that a pulsed axial magnetic field of 10 T in a hydrogen capillary plasma at a pressure of 50 Torr will reduce the on-axis plasma density by a factor of three, and the full width at half maximum of the density profile by a factor of two. The resulting parabolic plasma density profile is expected to be more efficient in guiding laser pulses.

  1. Interfacial Stability of Spherically Converging Plasma Jets for Magnetized Target Fusion

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, Jason; Wu, S. T.; Eskridge, Richard; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner to implode a magnetized target to produce the fusion reaction. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The results lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that the maximum temporal growth rate of the perturbed flow at the jet interface is very small in comparison with the time to full compression of the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of the gaseous liner can withstand velocity variation of the order of 10% between the neighboring jets over the density and temperature ranges investigated.

  2. Propagation and diffusion of a plasma column in a magnetic field

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Gadda, E.; Prevot, F.

    1966-12-01

    A plasma column is created in a magnetic field by longitudinal diffusion from a low-pressure pulsed discharge in hydrogen. Depending on the discharge conditions, two regimes are obtained in which the gas pumping speed has a different effect upon the plasma density in the column. Calculations are presented which can explain this effect by a difference in the transverse diffusion coefficient. (authors) [fr

  3. Experimental and numerical study of electromagnetically induced transparency in magnetized plasmas

    International Nuclear Information System (INIS)

    Kawamori, Eiichirou; Hsieh, Tung-Yuan; Nishida, Yasushi; Cheng, C-Z

    2012-01-01

    We present a demonstration of electromagnetically induced transparency (EIT) in magnetized plasmas by means of experiment and numerical simulation. EIT in magnetized plasmas is a phenomenon by which a plasma-absorbing electron cyclotron wave is rendered transparent by a pump wave, which is a classical analog to conventional quantum EIT although the plasma EIT is not a quantum-mechanics-based phenomenon. This paper describes an attempt to identify plasma oscillations excited by the mode coupling of a pump wave and a probe wave, which is a key mechanism for achieving magnetized plasma EIT, by an experiment and a particle-in-cell (PIC) simulation. A preliminary result of the longitudinal electric field measurement indicates an enhancement of the plasma oscillation in the vicinity of the beat frequency between the probe and pump waves. Also the PIC calculation, which simulated the real experiment, shows a plasma oscillation excited by the mode coupling between the probe and pump waves in the magnetized plasma EIT, showing agreement with theory and experiment. (paper)

  4. Absorption of high-frequency electromagnetic energy in a high-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeyev, R S; Shafranov, V D

    1958-07-01

    In this paper an analysis of the cyclotron and Cherenkov mechanisms is given. These are two fundamental mechanisms for noncollisional absorption of electromagnetic radiation by plasma in a magnetic field. The expressions for the dielectric permeability tensor, for plasma with a nonisotropic temperature distribution in a magnetic field, are obtained by integrating the kinetic equation with Lagrangian particle co-ordinates in a form suitable to allow a comprehensive physical interpretation of the absorption mechanisms. The oscillations of a plasma column stabilized by a longitudinal field have been analyzed. For uniform plasma, the frequency spectrum has been obtained together with the direction of electromagnetic wave propagation when both the cyclotron and Cherenkov absorption mechanisms take place. The influence of nonlinear effects on the electromagnetic wave absorption and the part which cyclotron and Cherenkov absorption play in plasma heating have also been investigated.

  5. Overview of transport and MHD stability study and impact of magnetic field topology in the Large Helical Device

    International Nuclear Information System (INIS)

    Ida, K.; Nagaoka, K.; Kasahara, H.; Yoshinuma, M.; Ohdachi, S.; Osakabe, M.; Kobayashi, M.; Sudo, S.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K.Y.; Kaneko, O.; Komori, A.; Inagaki, S.; Evans, T.; Kamiya, Kensaku

    2014-10-01

    The progress of physics understanding and concurrent parameter extension since the last IAEA-FEC 2012 in the Large Helical Device is overviewed. High ion and electron temperature plasma (T i (0) ∼ T e (0) ∼ 6 keV) with simultaneous ion and electron internal transport barrier (ITB) is obtained by controlling recycling and heating deposition. Associated with the formation of a transport barrier, a sign flip of the non-diffusive term of impurity/momentum transport (residual stress and convection flow) is observed. The impact of the topology of 3-D magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum and particle/impurity transport and MHD stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1x10 19 m -3 and with high electron and ion temperatures (T i (0) ∼ T e (0) ∼ 2 keV) resulting in 3.36 GJ of input energy is achieved. (author)

  6. The influence of electrical resistivity, magnetic field strength, boundary conditions, and injection conditions on the behavior of the magnetically injected plasma in the PBFA-II opening switch

    International Nuclear Information System (INIS)

    Watrous, J.J.; Frese, M.H.

    1993-01-01

    The Plasma Opening Switch used on PBFA-II uses a source plasma which is injected into the inter-electrode gap along the field lines of a modest-strength applied poloidal magnetic field. The distribution of this plasma within the gap plays an important role in the behavior of the switch. Knowledge of this distribution is critical for performing relevant switch calculations and for interpreting experimental data. In the work reported here, the influence on that distribution of the plasma electrical resistivity, the applied magnetic field strength, and the boundary and injection conditions have been investigated with the 2 1/2-dimensional magnetohydrodynamics simulation code, MACH2. The injected plasma has density in the 10 14 cm -3 range and temperature in the several eV range. In this parameter regime, the classical collision time scale is on the order of 10 ns, which, when compared to the 100 ns time scale of the inflowing plasma, means that the plasma is classically collisionless. However, mechanisms other than classical collisions are likely to contribute to electrical resistivity. The authors have investigated the effect of an anomalous resistivity which scales with the plasma frequency, varying the scaling from the electron plasma frequency to the ion plasma frequency. They will compare these results with results based on the assumption of an ideal plasma, and discuss other anomalous resistivity models

  7. Modification and damping of Alfven waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.

    1994-10-01

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)

  8. Observation of disruptions in tokamak plasma under the influence of resonant helical magnetic fields

    International Nuclear Information System (INIS)

    Araujo, M.; Vannucci, A.; Caldas, I.

    1996-01-01

    Disruptive instabilities were investigated in the small tokamak TBR-1 during the application of resonant helical magnetic fields created by external helical windings. Indications were found that the main triggering mechanism of the disruptions was the rapid increase of the m=2/n=1 mode which, apparently after reaching a certain amplitude, interacts with other resistive modes: the internal 1/1 mode in the case of minor disruptions. After the coupling, the growth of the associated islands would create a chaotic field line distribution in the region between the corresponding rational magnetic surfaces which caused the gross particle transport and, finally, destroyed the confinement. In addition, investigations on higher Z eff discharges in which a mixture of helium and hydrogen was used resulted in much more unstable plasmas but apparently did not alter basic characteristics of the disruptions

  9. Magnetic field structure of experimental high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Deniz, A.V.

    1986-01-01

    The magnetic field structure of several low and high β tokamaks in the Columbia High Beta Tokamak (HBT) was determined by high-impedance internal magnetic probes. From the measurement of the magnetic field, the poloidal flux, toroidal flux, toroidal current, and safety factor are calculated. In addition, the plasma position and cross-sectional shape are determined. The extent of the perturbation of the plasma by the probe was investigated and was found to be acceptably small. The tokamaks have major radii of approx.0.24 m, minor radii of approx.0.05 m, toroidal plasma current densities of approx.10 6 A/m 2 , and line-integrated electron densities of approx.10 20 m -2 . The major difference between the low and high β tokamaks is that the high β tokamak was observed to have an outward shift in major radius of both the magnetic center and peak of the toroidal current density. The magnetic center moves inward in major radius after 20 to 30 μsec, presumably because the plasma maintains major radial equilibrium as its pressure decreases from radiation due to impurity atoms. Both the equilibrium and the production of these tokamaks from a toroidal field stabilized z-pinch are modeled computationally. One tokamak evolves from a state with low β features, through a possibly unstable state, to a state with high β features

  10. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    Science.gov (United States)

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  11. Ionization and acoustical instability of a low temperature magnetized plasma in a combined (direct and alternating) electrical field

    International Nuclear Information System (INIS)

    Andropov, V.G.; Sinkevich, O.A.

    1983-01-01

    It is shown that the ionization front which moves through a gas along a magnetic field in a combined electrical field, which lies in the plane of the front, may be unstable, as a result of the development of an ionization instability in the plasma behind the front. The criterion of instability of the ionization front does not greatly differ from the criterion of instability of an infinite plasma. The ionization front in the magnetic field is stable only in an electrical field of circular polarization or in a combined field in which the direct and alternating electrical fields are orthogonal and the Joule heat liberation from them is equal. The generation of sound is possible in a magnetized plasma in an alternating electrical field orthogonal to a magnetic due to the parametric acoustical instability at the frequency of the external electrical field. 8 refs

  12. Effects of lorentz force on flow fields of free burning arc and wall stabilized non-transferred arc

    International Nuclear Information System (INIS)

    Peng Yi; Huang Heji; Pan Wenxia

    2013-01-01

    The flow fields of two typical DC plasma arcs, namely the transferred free burning arc and the non-transferred arc were simulated by solving hydrodynamic equations and electromagnetic equations. The effects of the Lorentz force on the characteristics of the flow fields of these two typical DC plasma arcs were estimated. Results show that in the case of the free burning arc, the Lorentz force due to the current self-induced magnetic field has significant impact on the flow fields, as the self-induced magnetic compression is the main arc constraint mechanism. However, in the case of the non-transferred arc generated in a torch with long and narrow inter-electrode inserts and an abruptly expanded anode, the Lorentz force has limited impact on the flow fields of the plasma especially at the downstream of the inter-electrode inserts, compared with the strong wall constraints and relatively high aerodynamic force. This is because the ratio of the electromagnetic force to the aerodynamic force is only about 0.01 in this region. When the main consideration is outlet parameters of the wall stabilized non-transferred DC arc plasma generator, in order to improve the efficiency of the numerical simulation program, the Lorentz force could be neglected in the non-transferred arc in some cases. (authors)

  13. Expansion of a plasma injected from an electrodeless gun along a magnetic field

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1978-04-01

    The dynamics of a plasma injected from an electrodeless plasma gun (conical theta pinch) into a longitudinal magnetic field is studied theoretically. For the experiments referred to, conditions are collisionless for the ions and range from collision dominated to collisionless for the electrons. During the expansion of the injected plasma the electrons are trapped by an ambipolar electric field maintaining charge neutrality and a magnetic mirror at the gun. The development of the ion and electron distribution functions for the completely collisionless case is considered in detail. Assuming that the acceleration of the ions is negligible and taking the action integral over an electron oscillation to be an adiabatic invariant self similar solutions are found. The electrons lose energy adiabatically as a result of the plasma expansion and it is suggested that a re-thermalisation process must operate in experimental situations to account for the observed electron energies

  14. The influence of an external magnetic axial field on the autocompression of a plasma column

    International Nuclear Information System (INIS)

    Zoler, D.

    1979-01-01

    The results of theoretical research on the autocompression of a plasma column under the influence of its own azimuthal field, in the presence of an external magnetic axial field are presented in this paper. Focussed plasma installations are important both for the fundamental researches which can be undertaken on great density and high temperature plasma and for their possible applications since they can be used as sources of neutrons, Roentgen radiations and to obtain heavy ions. The important parameters of plasma have been studied comparatively in the presence or absence of the external magnetic axial field by means of a method of numerical simulation of phenomena from focussed plasma in a complex MHD system taking into account the dissipative and transport phenomena. The numerical data used in chapter 5 are in agreement with the parameters of the experimental installation produced at IFTAR-Bucharest, which have been indicated to us by the members of the focussed plasma staff. (author)

  15. Equilibrium and stability studies for high beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Cooper, W.A.; Charlton, L.A.

    1983-01-01

    The equilibrium and stability properties of high β plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (Asub(p) <= 8), the self-stabilizing effect of the magnetic axis shift is large enough to open a direct path to the second stability regime. (author)

  16. Feedback stabilization of the axisymmetric instability of a deformable tokamak plasma

    International Nuclear Information System (INIS)

    Pomphrey, N.; Jardin, S.C.; Ward, D.J.

    1989-01-01

    The paper presents an analysis of the magnetohydrodynamic stability of the axisymmetric system consisting of a free boundary tokamak plasma with non-circular cross-section, finite resistivity passive conductors, and an active feedback system with magnetic flux pickup loops, a proportional amplifier with gain G and current carrying poloidal field coils. A numerical simulation of the system when G is set to zero identifies flux loop locations which correctly sense the plasma motion. However, when certain of these locations are incorporated into an active feedback scheme, the plasma fails to be stabilized, no matter what value of the gain is chosen. Analysis on the basis of an extended energy principle indicates that this failure is due to the deformability of the plasma cross-section. (author). 14 refs, 7 figs

  17. Impact of rotating resonant magnetic perturbation fields on plasma edge electron density and temperature

    International Nuclear Information System (INIS)

    Stoschus, H.; Schmitz, O.; Frerichs, H.; Reiser, D.; Unterberg, B.; Lehnen, M.; Reiter, D.; Samm, U.; Jakubowski, M.W.

    2012-01-01

    Rotating resonant magnetic perturbation (RMP) fields impose a characteristic modulation to the edge electron density n e (r, t) and temperature T e (r, t) fields, which depends on the relative rotation f rel between external RMP field and plasma fluid. The n e (r, t) and T e (r, t) fields measured in the edge (r/a = 0.9–1.05) of TEXTOR L-mode plasmas are in close correlation with the local magnetic vacuum topology for low relative rotation f rel = −0.2 kHz. In comparison with the 3D neutral and plasma transport code EMC3-Eirene, this provides substantial experimental evidence that for low relative rotation level and high resonant field amplitudes (normalized radial field strength B r 4/1 /B t =2×10 -3 ), a stochastic edge with a remnant island chain dominated by diffusive transport exists. Radially outside a helical scrape-off layer, the so-called laminar zone embedded into a stochastic domain is found to exist. In contrast for high relative rotation of f rel = 1.8 kHz, the measured modulation of n e is shifted by π/2 toroidally with respect to the modelled vacuum topology. A pronounced flattening in T e (r) and a reduction in n e (r) is measured at the resonant flux surface and represents a clear signature for a magnetic island, which is phase shifted with respect to the vacuum island position. A correlated shift of the laminar zone radially outwards at the very plasma edge is observed suggesting that the actual near-field structure at the perturbation source is determined by the plasma response as well. (paper)

  18. Representations of currents and magnetic fields in anisotropic magnetohydrostatic plasma. 2. General theory and examples

    International Nuclear Information System (INIS)

    Heinemann, M.; Pontius, D.H. Jr.

    1991-01-01

    The authors develop a general treatment of field-aligned currents in quasi-static adiabatic plasma. The formalism is an extension of an earlier analysis (Heinemann, 1990) to include electric and gravitational fields. The assumption that the particle motions are adiabatic along the magnetic field leads to an expression for the total current density that is a generalization of expressions given by Grad (1964) and Vasyliunas (1970). The current density is a vector function of the gradients of the field line constants characterizing the plasma and the gradients of field line integrals of the partial derivations of the parallel pressure with respect to the constants. The use of the expression as the current source in Ampere's law leads to an equation governing the equilibrium of the system of plasma and magnetic field. Examples based on bi-Maxwellian distribution functions suggest that the effects of thermal anisotropy can be about as large as the currents due to isotropic plasma and that the effects of parallel electric field are of the same order of magnitude

  19. Current in the plasma moving in an arbitrary direction across a magnetic field

    International Nuclear Information System (INIS)

    Samokhin, M.V.

    1991-01-01

    Condition under which freezing-in equation is satisfied in case of arbitrarily changeable direction of rate of plasma flow across the magnetic field is considered. It is shown that in the ideally frozen-in plasma there should exist current independent on the flow rate

  20. Self-consistent solution for a collisionless plasma slab in motion across a magnetic field

    International Nuclear Information System (INIS)

    Echim, Marius M.; Lemaire, Joseph F.; Roth, Michel

    2005-01-01

    The problem of the dynamics of a plasma slab moving across a magnetic field is treated in the framework of the kinetic theory. A velocity distribution function (VDF) is found for each plasma species, electrons and protons, in terms of the constants of motion defined by the geometry of the problem. The zero- and first-order moments of the VDF are introduced into the right-hand side term of Maxwell's equations to compute the electric and magnetic vector potentials and corresponding fields. The solutions are found numerically. We obtain a region of plasma convection--the slab proper--where the plasma moves with a uniform velocity, V x =V 0 =(ExB/B 2 ) x . At the core margins two plasma 'wings' are formed, each being the result of a pair of interpenetrated boundary layers with different transition lengths. Inside these wings, the plasma velocity is not uniform, V x ≠(ExB/B 2 ) x . It decreases from the maximum value obtained in the core to a minimum value in the central region of the wings where a flow reversal is found with the plasma convecting in the opposite direction to the core motion. There is also an asymmetry of the velocity gradient at the borders of the core, which results in a corresponding asymmetry in the thickness of the wings. Furthermore, it is found that the reversed plasma flow in the thinner wing is larger than that in the broader wing. For a fixed direction of the magnetic field the two plasma wings interchange position with respect to the center of the slab when the plasma bulk velocity reverses sign

  1. Small scale irregularities in Comet Halley's plasma mantle - An attempt at self-consistent analysis of plasma and magnetic field data

    Science.gov (United States)

    Vaisberg, O. L.; Russell, C. T.; Luhmann, J. G.; Schwingenschuh, K.

    1989-01-01

    VEGA-1 measurements of the plasma density and magnetic field in the coma of Comet Halley show characteristic signatures over a significant portion of the outbound pass. It is found that the assumption that there is a balance between the thermal and magnetic pressures in these features can be used to obtain estimates of the plasma temperature as a function of distance from the nucleus. These estimates indicate that the ions cool from about 1.5 x 10 to the 6th K at 10 to the 5th km to 2 x 10 to the 5th K at 5 x 10 to the 4th km. The technique used here represents a novel approach whereby temperature measurements can be made in situations where only plasma density and magnetic field data are available.

  2. Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks

    Science.gov (United States)

    Takeuchi, Satoshi

    2018-02-01

    A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.

  3. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  4. Discrete Calderon’s projections on parallelepipeds and their application to computing exterior magnetic fields for FRC plasmas

    International Nuclear Information System (INIS)

    Kansa, E.; Shumlak, U.; Tsynkov, S.

    2013-01-01

    Confining dense plasma in a field reversed configuration (FRC) is considered a promising approach to fusion. Numerical simulation of this process requires setting artificial boundary conditions (ABCs) for the magnetic field because whereas the plasma itself occupies a bounded region (within the FRC coils), the field extends from this region all the way to infinity. If the plasma is modeled using single fluid magnetohydrodynamics (MHD), then the exterior magnetic field can be considered quasi-static. This field has a scalar potential governed by the Laplace equation. The quasi-static ABC for the magnetic field is obtained using the method of difference potentials, in the form of a discrete Calderon boundary equation with projection on the artificial boundary shaped as a parallelepiped. The Calderon projection itself is computed by convolution with the discrete fundamental solution on the three-dimensional Cartesian grid.

  5. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  6. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    International Nuclear Information System (INIS)

    Chen, Xing.

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs

  7. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    International Nuclear Information System (INIS)

    Kolka, E.

    1993-07-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*10 21 cm -3 and confinement time τ= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  8. Stability properties of a toroidal z-pinch in an external magnetic multipole field

    International Nuclear Information System (INIS)

    Eriksson, H.G.

    1987-01-01

    MHD stability of m=1, axisymmetric, external modes of a toroidal z-pinch immersed in an external multipole field (Extrap configuration) is studied. The description includes the effects of a weak toroidicity, a non-circular plasma cross-section and the influence of induced currents in the external conductors. It is found that the non-circularity of the plasma cross-section always has a destabilizing effect but that the m=1 mode can be stabilized by the external feedback if the non-circularity is small. (author)

  9. Investigation of plasma heating by magnetic pumping with nonaxisymmetric alternating fields

    International Nuclear Information System (INIS)

    Lapshin, V.I.; Stepanov, K.N.

    1975-01-01

    Non-collisional heating is studied of an inhomogeneous plasma cylinder with the aid of magnetic pumping with axial nonsymmetric variable fields running along a constant field at the phase velocity ω/ksub(ax) which is around an ion thermal velocity or an ion sound velocity. The axial wave-number ksub(ax) is assumed to be greater that I/R, where R is the major radius of the torus. The heating rate at ksub(ax)a approximately 1 (a is the plasma radius) is found to be equal to that in the axial symmetric case. In the event of an ion-acoustic resonance (ω approximately ksub(ax) vsub(s) the energy absorption rate increases by (Tsub(e)/Tsub(i)) >> 1 times, if the resonance occurs in a narrow resonance layer, and by (Tsub(e)/Tsub(i))sup(3/2) times if it does in the entire plasma volume (vsub(s) is the sound velocity). If the pumping frequency is of the same order as the frequency of drift oscillations of inhomogeneous plasma, the pumping field may lead to plasma cooling. This effect is linked with a severe non-equilibrium and instability of an inhomogeneous plasma in this frequency range

  10. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Hill, D.N.; Stallard, B.W.; Bulmer, R.; Cohen, B.; Holcomb, C.T.; Hooper, E.B.; McLean, H.S.; Moller, J.; Wood, R.D.

    2003-01-01

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (∼1 kV) are produced, giving the highest sustained voltage ∼500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B-tilde)/B≥2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments

  11. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    Science.gov (United States)

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-07

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

  12. Three-dimensional plasma equilibrium model based on the poloidal representation of the magnetic field

    International Nuclear Information System (INIS)

    Gruber, R.; Degtyarev, L.M.; Kuper, A.; Martynov, A.A.; Medvedev, S.Yu.; Shafranov, V.D.

    1996-01-01

    Equations for the three-dimensional equilibrium of a plasma are formulated in the poloidal representation. The magnetic field is expressed in terms of the poloidal magnetic flux Ψ and the poloidal electric current F. As a result, three-dimensional equilibrium configurations are analyzed with the help of a set of equations including the elliptical equation for the poloidal flux, the magnetic differential equation for the parallel current, and the equations for the basis vector field b. To overcome the difficulties associated with peculiarities that can arise in solving the magnetic differential equation at rational toroidal magnetic surfaces, small regulating corrections are introduced into the proposed set of equations. In this case, second-order differential terms with a small parameter appear in the magnetic differential equations. As a result, these equations take the form of elliptical equations. Three versions of regulating corrections are proposed. The equations obtained can be used to develop numerical codes for calculating three-dimensional equilibrium plasma configurations with an island structure

  13. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  14. Effect of rotation on Jeans instability of magnetized radiative quantum plasma

    Science.gov (United States)

    Joshi, H.; Pensia, R. K.

    2017-03-01

    The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.

  15. Electrostatic ion confinement in a magnetic mirror field

    International Nuclear Information System (INIS)

    Nishida, Y.; Kawamata, S.; Ishii, K.

    1976-08-01

    The electrostatic ion stoppering at the mirror point is demonstrated experimentally in a magnetic mirror field. The ion losses from the mirror throat are decreased to about 15% of the initial losses in a rather high plasma density (10 10 0 13 cm -3 ). It is discussed as a confinement mechanism of ions that particles are reflected back adiabatically at the throat of the magnetic mirror field supplemented by DC electric field. (auth.)

  16. Stability and control of resistive wall modes in high beta, low rotation DIII-D plasmas

    International Nuclear Information System (INIS)

    Garofalo, A.M.; Jackson, G.L.; Haye, R.J. La; Okabayashi, M.; Reimerdes, H.; Strait, E.J.; Ferron, J.R.; Groebner, R.J.; In, Y.; Lanctot, M.J.; Matsunaga, G.; Navratil, G.A.; Solomon, W.M.; Takahashi, H.; Takechi, M.; Turnbull, A.D.

    2007-01-01

    Recent high-β DIII-D (Luxon J.L. 2002 Nucl. Fusion 42 64) experiments with the new capability of balanced neutral beam injection show that the resistive wall mode (RWM) remains stable when the plasma rotation is lowered to a fraction of a per cent of the Alfven frequency by reducing the injection of angular momentum in discharges with minimized magnetic field errors. Previous DIII-D experiments yielded a high plasma rotation threshold (of order a few per cent of the Alfven frequency) for RWM stabilization when resonant magnetic braking was applied to lower the plasma rotation. We propose that the previously observed rotation threshold can be explained as the entrance into a forbidden band of rotation that results from torque balance including the resonant field amplification by the stable RWM. Resonant braking can also occur naturally in a plasma subject to magnetic instabilities with a zero frequency component, such as edge localized modes. In DIII-D, robust RWM stabilization can be achieved using simultaneous feedback control of the two sets of non-axisymmetric coils. Slow feedback control of the external coils is used for dynamic error field correction; fast feedback control of the internal non-axisymmetric coils provides RWM stabilization during transient periods of low rotation. This method of active control of the n = 1 RWM has opened access to new regimes of high performance in DIII-D. Very high plasma pressure combined with elevated q min for high bootstrap current fraction, and internal transport barriers for high energy confinement, are sustained for almost 2 s, or 10 energy confinement times, suggesting a possible path to high fusion performance, steady-state tokamak scenarios

  17. Generation of static magnetic fields by a test charge in a plasma with anisotropic electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Yu.M.; Bychenkov, V.Yu.; Frolov, A.A. (AN SSSR, Moscow. Fizicheskij Inst.)

    Structure of electomagnetic field generated with a charge in a plasma with anisotropic electron temperature has been studied. Unlike a hydrodynamical approach to study on the magnetic field qeneration with a test charge a kinetic theory describing spatial distribution of both magnetic and electrostatic components of charge field was constructed. Such theory results permit to investigate the charge field structure both at distances larger than length of free electron path and not exceeding it. The developed theory can serve as the basis for development of new methods for anisotropic plasma diagnostics.

  18. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  19. Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle

    Science.gov (United States)

    Sckopke, N.; Paschmann, G.; Rosenbauer, H.; Fairfield, D. H.

    1976-01-01

    The response of the plasma mantle to the orientation of the interplanetary magnetic field (IMF) has been studied by correlating Heos 2 plasma and Imp 6 magnetic field data. The mantle is nearly always present when the IMF has a southward component and often also when the field has a weak northward component. In addition, the mantle appears increasingly thicker with greater southward components. On the other hand, the mantle is thin or missing (from the region where it is normally found) when the average IMF has a strong northward component. This result supports the idea that polar cap convection plays a dominant role in the formation of the plasma mantle: mantle plasma originates in the magnetosheath, enters the magnetosphere through the day side polar cusps, and is transported across the cusp to the night side by means of a convection electric field whose magnitude is controlled by the orientation of the IMF.

  20. Instability of the Shukla mode in a dusty plasma containing equilibrium density and magnetic field inhomogeneities

    International Nuclear Information System (INIS)

    Shukla, P.K.; Bharuthram, R.; Schlickeiser, R.

    2004-01-01

    It is shown that the dispersive Shukla mode [P.K. Shukla, Phys. Lett. A 316, 238 (2003)] can become unstable in the presence of equilibrium density and magnetic field inhomogeneities in a dusty plasma. A new dispersion relation for our nonuniform dusty magnetoplasma is derived and analyzed to show the modification of the Shukla mode frequency and its amplification due to combined action of the plasma density and magnetic field gradients. The present instability may account for the origin of low-frequency electromagnetic turbulence in molecular clouds and in cometary plasmas

  1. The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Gerick, F.; Saur, J.; Papen, M. von, E-mail: felix.gerick@uni-koeln.de [Institute of Geophysics and Meteorology, University of Cologne, Cologne (Germany)

    2017-07-01

    In order to resolve and characterize anisotropy in turbulent plasma flows, a proper estimation of the background magnetic field is crucially important. Various approaches to calculating the background magnetic field, ranging from local to globally averaged fields, are commonly used in the analysis of turbulent data. We investigate how the uncertainty in the orientation of a scale-dependent background magnetic field influences the ability to resolve anisotropy. Therefore, we introduce a quantitative measure, the angle uncertainty, that characterizes the uncertainty of the orientation of the background magnetic field that turbulent structures are exposed to. The angle uncertainty can be used as a condition to estimate the ability to resolve anisotropy with certain accuracy. We apply our description to resolve the spectral anisotropy in fast solar wind data. We show that, if the angle uncertainty grows too large, the power of the turbulent fluctuations is attributed to false local magnetic field angles, which may lead to an incorrect estimation of the spectral indices. In our results, an apparent robustness of the spectral anisotropy to false local magnetic field angles is observed, which can be explained by a stronger increase of power for lower frequencies when the scale of the local magnetic field is increased. The frequency-dependent angle uncertainty is a measure that can be applied to any turbulent system.

  2. The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence

    International Nuclear Information System (INIS)

    Gerick, F.; Saur, J.; Papen, M. von

    2017-01-01

    In order to resolve and characterize anisotropy in turbulent plasma flows, a proper estimation of the background magnetic field is crucially important. Various approaches to calculating the background magnetic field, ranging from local to globally averaged fields, are commonly used in the analysis of turbulent data. We investigate how the uncertainty in the orientation of a scale-dependent background magnetic field influences the ability to resolve anisotropy. Therefore, we introduce a quantitative measure, the angle uncertainty, that characterizes the uncertainty of the orientation of the background magnetic field that turbulent structures are exposed to. The angle uncertainty can be used as a condition to estimate the ability to resolve anisotropy with certain accuracy. We apply our description to resolve the spectral anisotropy in fast solar wind data. We show that, if the angle uncertainty grows too large, the power of the turbulent fluctuations is attributed to false local magnetic field angles, which may lead to an incorrect estimation of the spectral indices. In our results, an apparent robustness of the spectral anisotropy to false local magnetic field angles is observed, which can be explained by a stronger increase of power for lower frequencies when the scale of the local magnetic field is increased. The frequency-dependent angle uncertainty is a measure that can be applied to any turbulent system.

  3. Electrodeless plasma acceleration system using rotating magnetic field method

    Directory of Open Access Journals (Sweden)

    T. Furukawa

    2017-11-01

    Full Text Available We have proposed Rotating Magnetic Field (RMF acceleration method as one of electrodeless plasma accelerations. In our experimental scheme, plasma generated by an rf (radio frequency antenna, is accelerated by RMF antennas, which consist of two-pair, opposed, facing coils, and these antennas are outside of a discharge tube. Therefore, there is no wear of electrodes, degrading the propulsion performance. Here, we will introduce our RMF acceleration system developed, including the experimental device, e.g., external antennas, a tapered quartz tube, a vacuum chamber, external magnets, and a pumping system. In addition, we can change RMF operation parameters (RMF applied current IRMF and RMF current phase difference ϕ, focusing on RMF current frequency fRMF by adjusting matching conditions of RMF, and investigate the dependencies on plasma parameters (electron density ne and ion velocity vi; e.g., higher increases of ne and vi (∼360 % and 55 %, respectively than previous experimental results were obtained by decreasing fRMF from 5 MHz to 0.7 MHz, whose RMF penetration condition was better according to Milroy’s expression. Moreover, time-varying component of RMF has been measured directly to survey the penetration condition experimentally.

  4. TANGLED MAGNETIC FIELDS IN SOLAR PROMINENCES

    International Nuclear Information System (INIS)

    Van Ballegooijen, A. A.; Cranmer, S. R.

    2010-01-01

    Solar prominences are an important tool for studying the structure and evolution of the coronal magnetic field. Here we consider so-called hedgerow prominences, which consist of thin vertical threads. We explore the possibility that such prominences are supported by tangled magnetic fields. A variety of different approaches are used. First, the dynamics of plasma within a tangled field is considered. We find that the contorted shape of the flux tubes significantly reduces the flow velocity compared to the supersonic free fall that would occur in a straight vertical tube. Second, linear force-free models of tangled fields are developed, and the elastic response of such fields to gravitational forces is considered. We demonstrate that the prominence plasma can be supported by the magnetic pressure of a tangled field that pervades not only the observed dense threads but also their local surroundings. Tangled fields with field strengths of about 10 G are able to support prominence threads with observed hydrogen density of the order of 10 11 cm -3 . Finally, we suggest that the observed vertical threads are the result of Rayleigh-Taylor instability. Simulations of the density distribution within a prominence thread indicate that the peak density is much larger than the average density. We conclude that tangled fields provide a viable mechanism for magnetic support of hedgerow prominences.

  5. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    Science.gov (United States)

    Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  6. Magnetic field line reconnection experiments

    International Nuclear Information System (INIS)

    Gekelman, W.; Stenzel, R.L.; Wild, N.

    1982-01-01

    A laboratory experiment concerned with the basic physics of magnetic field line reconnection is discussed. Stimulated by important processes in space plasmas and anomalous transport in fusion plasmas the work addresses the following topics: Dynamic magnetic fields in a high beta plasma, magnetic turbulence, plasma dynamics and energy transport. First, the formation of magnetic neutral sheets, tearing and island coalescence are shown. Nonstationary magnetic fluctuations are statistically evaluated displaying the correlation tensor in the #betta#-k domain for mode identification. Then, the plasma properties are analyzed with particular emphasis on transport processes. Although the classical fluid flow across the separatrix can be observed, the fluctuation processes strongly modify the plasma dynamics. Direct measurements of the fluid force density and ion acceleration indicate the presence of an anomalous scattering process characterized by an effective scattering tensor. Turbulence also enhances the plasma resistivity by one to two orders of magnitude. Measurements of the three-dimensional electron distribution function using a novel energy analyzer exhibit the formation of runaway electrons in the current sheet. Associated micro-instabilities are observed. Finally, a macroscopic disruptive instability of the current sheet is observed. Excess magnetic field energy is converted at a double layer into particle kinetic energy and randomized through beam-plasma instabilities. These laboratory results are compared with related observations in space and fusion plasmas. (Auth.)

  7. Dynamic processes in the generation of quasisteady magnetic fields in a laser plasma

    International Nuclear Information System (INIS)

    Aleksich, N.; Andreev, N.E.; Bychenko, V.Yu.

    1991-01-01

    Research on the generation of quasisteady magnetic fields (QSMF) in plasma under the action of strong electro-magnetic fields has long attracted attention in connection with its role when high-power laser radiation interacts with matter. In connection with the problem of laser thermonuclear fusion, a great deal of attention has been devoted to the generation of QSMF through resonant conversion of the heating radiation into electron plasma oscillations near the critical surface. Under conditions which are of interest for present-day experiments, this conversion is nonlinear due to the ponderomotive action of the radiation on the plasma plays an important role; when it is taken into account the picture of the nonlinear interaction between the radiation and the plasma changes fundamentally. Moreover, thus far QSMF generation under the action of the heating radiation has been studied mainly without including both (nonlinearity and plasma expansion) of these factors, although in the numerical simulation of the problem QSMF has been studied for a comparatively long time. The present work presents results of a theoretical study of QSMF excitation made using the LAST code, which treats the self-consistent dynamical nonlinear picture of the plasma electrodynamics and hydrodynamics

  8. Production of field-reversed mirror plasma with a coaxial plasma gun

    Science.gov (United States)

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  9. Production of field-reversed mirror plasma with a coaxial plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Shearer, J.W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode

  10. Equilibrium and stability studies for high-beta plasmas in torsatron/heliotron devices

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Cooper, W.A.

    1983-01-01

    The equilibrium and stability properties of high-#betta# plasmas in torsatron/heliotron devices have been investigated. Three numerical approaches have been used to study plasma equilibria for a range of coil configurations. The method of averaging permits fast equilibrium and stability calculations. Two fully 3-D codes, namely the Chodura-Schluter code, and the NEAR code recently developed at ORNL, are used to explore selected regions of parameter space. The resulting equilibria calculated with different methods are in good agreement. This validates the average method approach and enhances its usefulness. Results are presented for configurations with different aspect ratios and number of field periods. The role of the vertical field has also been studied in detail. The main conclusion is that for moderate aspect ratios (A/sub p/ less than or equal to 8), the self-stabilizing effect of the magnetic-axis shift is large enough to open a direct path to the second-stability regime

  11. Three-dimensional plasma transport in open chaotic magnetic fields. A computational assessment for tokamak edge layers

    International Nuclear Information System (INIS)

    Frerichs, Heinke Gerd

    2010-04-01

    The development of nuclear fusion as an alternative energy source requires the research on magnetically confined, high temperature plasmas. In particular, the quantification of plasma flows in the domain near exposed material surfaces of the plasma container by computer simulations is of key importance, both for guiding interpretation of present fusion experiments and for aiding the ongoing design activities for large future devices such as ITER, W7-X or the DEMO reactor. There is a large number of computational issues related to the physics of hot, fully ionized and magnetized plasmas near surfaces of the vacuum chamber. This thesis is dedicated to one particular such challenge, namely the numerical quantification of self-consistent kinetic neutral gas and plasma fluid flows in very complex 3D (partially chaotic) magnetic fields, in the absence of any common symmetries for plasma and neutral gas dynamics. Such magnetic field configurations are e.g. generated by externally applied magnetic perturbations at the plasma edge, and are of great interest for the control of particle and energy exhausts. In the present thesis the 3D edge plasma and neutral particle transport code EMC3-EIRENE is applied to two distinct configurations of open chaotic magnetic system: at the TEXTOR and DIII-D tokamaks. Improvements of the edge transport model and extensions of the transport code are presented, which have allowed such simulations for the first time for 3D scenarios at DIII-D with ITER similar plasmas. A strong 3D effect of the chaotic magnetic field on the DIII-D edge plasma is found and analyzed in detail. It is found that a pronounced striation pattern of target particle and heat fluxes at DIII-D can only be obtained up to a certain upper limiting level of anomalous cross-field transport. Hence, in comparison to experimental data, these findings allow to narrow down the range of this model parameter. One particular interest at TEXTOR is the achievement of a regime with

  12. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  13. Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field

    Science.gov (United States)

    Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan

    2018-02-01

    A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.

  14. The effect of colloidal stabilization upon ferrimagnetic resonance in magnetic fluids in the presence of a polarizing magnetic field

    CERN Document Server

    Fannin, P C; Socoliuc, V; Istratuca, G M; Giannitsis, A T

    2003-01-01

    The complex magnetic susceptibility of two magnetic fluids, with different degrees of colloidal stabilization, has been measured over the frequency range 100 MHz to 6 GHz. The colloidal stabilization of the magnetic fluids has been investigated using magneto-optical measurements. Based on complex magnetic susceptibility measurements, chi(omega) chi'(omega)-i chi''(omega), the dependence of the maximum absorption frequency at resonance, f sub m sub a sub x , and of line width, DELTA f, on an external magnetic polarizing field, H, over the range 0-1.45 kOe, has been examined for both magnetic fluids. The experimental results have been interpreted in terms of magnetic interparticle interactions and particle agglomeration.

  15. A kinetic model of retarding field analyser measurements in strongly magnetized, flowing, collisional plasmas

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Fuchs, Vladimír; Kočan, M.

    2013-01-01

    Roč. 55, č. 4 (2013), 045012-045012 ISSN 0741-3335 R&D Projects: GA MŠk 7G10072 Institutional support: RVO:61389021 Keywords : plasma * collisions * magnetic field * retarding field analyzer Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.386, year: 2013 http://iopscience.iop.org/0741-3335/55/4/045012/pdf/0741-3335_55_4_045012.pdf

  16. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  17. Equilibrium and stability of high-beta plasma in a finite l=+-1 toroidal system

    International Nuclear Information System (INIS)

    Shiina, S.; Saito, K.; Todoroki, J.; Hamada, S.; Gesso, H.; Nogi, Y.; Osanai, Y.; Yoshimura, H.

    1983-01-01

    The equilibrium and stability are theoretically and experimentally investigated of high-beta plasma in the Modified Bumpy Torus, which is an asymmetric closed-line system with fairly large l=0 and l=+-1 field components. The finiteness of the l=+-1 component induces significant stabilizing effects due both to self formation of a magnetic well and to the conducting wall. (author)

  18. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  19. Effects of 3D magnetic perturbations on toroidal plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2011-01-01

    Small three-dimensional (3D) magnetic field perturbations have many interesting and possibly useful effects on tokamak and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most notably on diamagnetic-level toroidal plasma flows, have recently been developed. The 3D field perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (say 1-5) resonant (with field line pitch, q = m/n) and non-resonant fields, medium n (∼20, due to toroidal field ripple) and high n (due to microturbulence). Low n non-resonant fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal rotation throughout the plasma towards an offset rotation in the counter-current direction. Recent tokamak experiments have generally confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n toroidal field ripple produces similar effects plus possible ripple-trapping NTV effects and ion direct losses in the edge. A low n (e.g. n = 1) resonant field is mostly shielded by the toroidally rotating plasma at and inside the resonant (rational) surface. If it is large enough it can stop plasma rotation at the rational surface, facilitate magnetic reconnection there and lead to a growing stationary magnetic island (locked mode), which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components. In the plasma their lowest n (e.g. n = 1) externally resonant components can be amplified by kink-type plasma responses, particularly at high β. Low n plasma instabilities (e.g. resistive wall modes, neoclassical tearing modes) cause additional 3D magnetic perturbations in tokamak plasmas. Tearing modes in their nonlinear (Rutherford) regime bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can, if not shielded by plasma rotation effects, cause local magnetic

  20. Nonlinear inertial Alfven waves in plasmas with sheared magnetic field and flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge; Tan Liwei

    2004-01-01

    Nonlinear equations describing inertial Alfven waves in plasmas with sheared magnetic field and flow are derived. For some specific parameters chosen, authors have found a new type of electromagnetic coherent structures in the tripolar vortex-like form

  1. Theory of the dynamic stability of plasma systems

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Kleev, A.I.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    Internal instabilities of the plasma of a diffuse pinch result from the acceleration of the plasma in the course of its compression and the expansion of the current channel. The spectra of the growth rates σ m,k of the hydromagnetic instabilities responsible for the disruption of the initial cylindrical symmetry during compression are calculated. For a Z-pinch with a Gaussian density profile, the major instabilities in the course of the compression are the small-scale sausage and kink instabilities with kR >> 1 (R is a typical radius of the pinch). Superimposed on these small-scale instabilities is a filamentation instability with m >> 1, which develops more slowly. If the density instead has a power-law profile, the filamentation instabilities will develop more rapidly than the sausage and kink instabilities. Dynamic stabilization of a pinch by a longitudinal magnetic field makes it possible to maintain symmetry up to radial compressions of the plasma significantly higher than in the absence of a field

  2. Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall

    International Nuclear Information System (INIS)

    Krasheninnikova, Natalia S.; Tang Xianzhu

    2011-01-01

    Motivated by the Magnetized Target Fusion (MTF), a systematic investigation of the equilibrium properties of a 1D plasma sheath with a magnetic field parallel to the wall was carried out using analytical theory and kinetic simulations. Initially uniform full Maxwellian plasma consisting of equal temperature collisionless electrons and ions is allowed to interact with a perfectly absorbing conducting wall, which charges positively due to large ions gyro-radii. The analysis of the steady-state plasma and field profiles reveals the importance of the relation between electron and ion thermal Larmor radii and plasma Debye length. In particular, the sheath width scaling, the details of the particle flows and the break-down of force balance components exhibit different behaviors in three possible regimes. Despite our primary motivation, the results in this paper can also be applicable to the divertor and the first wall of tokamaks.

  3. Plasma transport through magnetic boundaries

    International Nuclear Information System (INIS)

    Treumann, R.A.

    1992-01-01

    We examine the overall plasma diffusion processes across tangential discontinuities of which the best known example is the Earth's magnetopause during northward interplanetary magnetic field conditions. The existence of the low latitude boundary layer (LLBL) adjacent to the magnetopause during those periods is ample evidence for the presence of so far poorly defined and understood entry processes acting at the magnetopause. We conclude that microscopic instabilities are probably not efficient enough to account for the LLBL. They affect only a small number of resonant particles. It is argued that macroscopic nonresonant turbulence is the most probable mechanism for plasma transport

  4. Plasma-column instabilities in a reversed-field pinch without a shell

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell.

  5. Plasma-column instabilities in a reversed-field pinch without a shell

    International Nuclear Information System (INIS)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell

  6. Magnetic reconnection through the current sheets as the universal process for plasma dynamics in nonuniform magnetic fields

    International Nuclear Information System (INIS)

    Frank, A.G.; Bogdanov, S.Yu.; Burilina, V.B.; Kyrie, N.P.

    1997-01-01

    Laboratory experiments are reported, in which we studied the possibilities of the formation of current sheets (CS) in different magnetic configurations, as well as the magnetic reconnection phenomena. In 2D magnetic fields with null-lines the CS formation was shown to be a typical process in both linear and nonlinear regimes. The problem of CS formation is of a fundamental importance in the general case of 3D magnetic configurations. We have revealed experimentally, that the formation of CS occurs in the various 3D configurations, both containing magnetic null-points and without them. At the same time, the CS parameters essentially depend on the local characteristics of the configuration. We may conclude therefore, that the self-organization of CS represents the universal process for the plasma dynamics in the nonuniform magnetic fields. (author)

  7. Effect of magnetic field on Rayleigh-Taylor instability of two superposed fluids

    International Nuclear Information System (INIS)

    Sharma, P K; Tiwari, Anita; Chhajlani, R K

    2012-01-01

    The effect of two dimensional magnetic field on the Rayleigh-Taylor (R-T) instability in an incompressible plasma is investigated to include simultaneously the effects of suspended particles and the porosity of the medium. The relevant linearized perturbation equations have been solved. The explicit expression of the linear growth rate is obtained in the presence of fixed boundary conditions. A stability criterion for the medium is derived and discussed the Rayleigh Taylor instabilities in different configurations. It is found that the basic Rayleigh-Taylor instability condition is modified by the presence of magnetic field, suspended particles and porosity of the medium. In case of an unstable R-T configuration, the magnetic field has a stabilizing effect on the system. It is also found that the growth rate of an unstable R-T mode decreases with increasing relaxation frequency thereby showing a stabilizing influence on the R-T configuration.

  8. Ion heating at the cyclotron resonance in plasmas magnetically confined in a toroidal octupole field

    International Nuclear Information System (INIS)

    Barter, J.D.

    1976-01-01

    Ion temperatures as high as 600 eV have been produced using rf wave heating at the ion cyclotron resonance frequency in a toroidal octupole magnetic field. Rf is coupled to the plasma with an externally driven ''fifth'' hoop which forms the inductive leg of an oscillator tank circuit. Power levels up to 1 MW at 1 to 3 MHz have been applied for periods up to 2 msec. Plasmas produced either by ECRH or by gun injection are simulated with a computer program in which known particle and energy production and loss mechanisms are used to predict the spatially averaged time behaviour of the plasma in the presence of the applied ion heating. The program can be used to calculate the consequences of the heating model in the presence of many cooling mechanisms which may each have a separate dependence on instantaneous plasma parameters. Experimental quantities compared to computer predictions include density, ion temperature, and loading of the hoop by the plasma, both resistive and reactive, and neutral reflux from the wall by electron and ion impact. Wave penetration to the resonance zone is good up to the highest densities available (6 x 10 12 cm -3 by gun injection) in good agreement with theory. Neutral reflux from the walls and the large charge exchange cooling which results is the dominant loss mechanism at the higher hoop voltages

  9. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    Science.gov (United States)

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  10. Magnetic field-aligned plasma expansion in critical ionization velocity space experiments

    International Nuclear Information System (INIS)

    Singh, N.

    1989-01-01

    Motivated by the recent Critical Ionization Velocity (CIV) experiments in space, the temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, along with the Poisson equation for the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is assumed to consist of cold, warm, and hot electrons with temperatures T/sub c/ ≅ 0.2 eV, T/sub w/ ≅ 2 eV, and T/sub h/ ≅ 10 eV, respectively. It is found that the minor hot electrons escape the cloud, and their velocity distribution function shows the typical time-of-flight dispersion feature - that is, the larger the distance from the cloud, the larger is the average drift velocity of the escaping electrons. The major warm electrons expand along the magnetic field line with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure which accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, with each having their own bipolar electric fields. Effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of recent space experiments on CIV

  11. Relation between magnetic fields and electric currents in plasmas

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliunas

    2005-10-01

    Full Text Available Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/cJ implies a time-varying electric field (displacement current which acts to change both terms (in order to bring them toward equality; the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe. On larger scales, the evolution of B (and hence also of ∇×B is governed by

  12. A study of the methods for the production and confinement of high energy plasmas. [injection of dense plasma into long magnetic field

    Science.gov (United States)

    Cheng, D. Y.; Wang, P.

    1972-01-01

    The injection of dense plasmas into a B sub z long magnetic field from both ends of the field coil was investigated. Deflagration plasma guns and continuous flow Z-pinch are discussed along with the possibility of a continuous flow Z-pinch fusion reactor. The injection experiments are described with emphasis on the synchronization of the two plasma deflagration guns, the collision of the two plasma beams, and the determination of plasma density.

  13. Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Milant'ev, V.P.; Turikov, V.A.

    2006-01-01

    In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done

  14. Progress towards experimental realization of extreme-velocity flow-dominated magnetized plasmas

    Science.gov (United States)

    Weber, T. E.; Adams, C. S.; Welch, D. R.; Kagan, G.; Bean, I. A.; Henderson, B. R.; Klim, A. J.

    2017-10-01

    Interactions of flow-dominated plasmas with other plasmas, neutral gases, magnetic fields, solids etc., take place with sufficient velocity that kinetic energy dominates the dynamics of the interaction (as opposed to magnetic or thermal energy, which dominates in most laboratory plasma experiments). Building upon progress made by the Magnetized Shock Experiment (MSX) at LANL, we are developing the experimental and modeling capability to increase our ultimate attainable plasma velocities well in excess of 1000 km/s. Ongoing work includes designing new pulsed power switches, triggering, and inductive adder topologies; development of novel high-speed optical diagnostics; and exploration of new numerical techniques to specifically model the unique physics of translating/stagnating flow-dominated plasmas. Furthering our understanding of the physical mechanisms of energy conversion from kinetic to other forms, such as thermal energy, non-thermal tails/accelerated populations, enhanced magnetic fields, and radiation (both continuum and line), has wide-ranging significance in basic plasma science, astrophysics, and plasma technology applications such as inertial confinement fusion and intense radiation sources. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. LA-UR-17-25786.

  15. Stability and magnetic tearing of finite-β modified drift waves

    International Nuclear Information System (INIS)

    Chen, L.; Hsu, J.; Kaw, P.K.; Rutherford, P.H.

    1977-10-01

    A new simplified approach to the analysis of radial eigenmodes of finite-β modified drift waves in a sheared magnetic field is described. Applying this approach to the universal drift mode, one recovers, for the lowest (n = 0) radial eigenmode, the previous result that finite-β effects are stabilizing. For the next (n = 1) radial eigenmode, however, one finds that finite-β effects further destabilize the mode. Moreover, the corresponding mode structure exhibits nonzero radial (tearing) magnetic perturbations around the mode-rational surface. The consequences of a structure of microscopic magnetic islands, created in this way, for plasma transport are also briefly discussed

  16. Influence of error fields on the plasma confining field and the plasma confinement in tokamak

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    1977-05-01

    Influence of error fields on the plasma confining field and the plasma confinement is treated in the standpoint of design. In the initial breakdown phase before formation of the closed magnetic surfaces, the vertical field properly applied is the most important. Once the magnetic surfaces are formed, the non-axisymmetric error field is important. Effect of the shell gap associated with iron core and with pulsed vertical coils is thus studied. The formation of magnetic islands due to the external non-axisymmetric error field is studied with a simple model. A method of suppressing the islands by choosing the minor periodicity is proposed. (auth.)

  17. Propagation Dynamics Associated with Resonant Magnetic Perturbation Fields in High-Confinement Mode Plasmas inside the KSTAR Tokamak.

    Science.gov (United States)

    Xiao, W W; Evans, T E; Tynan, G R; Yoon, S W; Jeon, Y M; Ko, W H; Nam, Y U; Oh, Y K

    2017-11-17

    The propagation dynamics of resonant magnetic perturbation fields in KSTAR H-mode plasmas with injection of small edge perturbations produced by a supersonic molecular beam injection is reported for the first time. The results show that the perturbation field first excites a plasma response on the q=3 magnetic surface and then propagates inward to the q=2 surface with a radially averaged propagation velocity of resonant magnetic perturbations field equal to 32.5  m/ s. As a result, the perturbation field brakes the toroidal rotation on the q=3 surface first causing a momentum transport perturbation that propagates both inward and outward. A higher density fluctuation level is observed. The propagation velocity of the resonant magnetic perturbations field is larger than the radial propagation velocity of the perturbation in the toroidal rotation.

  18. The effect of tangled magnetic fields on instabilities in tokamak plasmas

    International Nuclear Information System (INIS)

    Thornton, A J; Kirk, A; Harrison, J R; Chapman, I T; Cahyna, P; Nardon, E

    2014-01-01

    The high pressure gradients in the edge of a tokamak plasma can lead to the formation of explosive plasma instabilities known as edge localised modes (ELMs). The control of ELMs is an important requirement for the next generation of fusion devices such as ITER. Experiments performed on the Mega Amp Spherical Tokamak (MAST) at Culham have shown that the application of non-axisymetric resonant magnetic perturbations (RMPs) can be used to mitigate ELMs. During the application of the RMPs, clear structures are observed in visible- light imaging of the X-point region. These lobes, or tangles, have been observed for the first time and their appearance is correlated with the mitigation of ELMs. Tangle formation is seen to be associated with the RMPs penetrating the plasma and may be important in explaining why the ELM frequency increases during ELM mitigation. Whilst the number and location of the tangles can be explained by vacuum magnetic field modelling, obtaining the correct radial extent of the tangles requires the plasma response to be taken into account

  19. CO2-laser--produced plasma columns in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Offenberger, A.A.; Cervenan, M.R.; Smy, P.R.

    1976-01-01

    A 1-GW CO 2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  20. Stimulated Brillouin backscattering and magnetic field generation in laser-produced plasmas

    International Nuclear Information System (INIS)

    Bawa'aneh, M.S.

    1999-01-01

    This thesis is concerned with aspects of laser-plasma interactions related to fusion reactions; in particular thermoelectric magnetic field generation around a hole dug in plasma by intense laser beams, and stimulated Brillouin back scattering (SBBS) from plasmas containing hot spots. A hole, of the size of the laser focal spot, is dug in the plasma when illuminated by intense laser if the laser pressure exceeds the plasma thermal pressure. This hole is found to have steep, radial density gradients. My first concern arose from the prediction that magnetic fields might be generated around the hole-plasma interface in places where the steep density gradients overlap with the non-aligned temperature gradients. When a high-power laser beam is focused on a solid pellet, plasma is formed at the surface. In order to create conditions for thermonuclear reactions in the interior of the pellet, an effective deposition of the laser energy to thermal energy of the pellet via laser-plasma coupling is necessary. When light irradiates a plasma collective processes occur, which can either enhance or reduce the light absorption. For a better understanding of the fusion problem a knowledge of the nature of these collective processes and of the fraction of light reflected from the plasma modes is required. Local hot spots seen experimentally lead to higher gain levels of scattered light. These local temperature inhomogeneities could lead to non-equilibrium distributions, which result in a free energy leading to some interesting phenomena in plasma. In the second part of the thesis stimulated Brillouin back scattering from an ion acoustic mode in a hot spot is studied. Temperature inhomogeneities lead to an ion acoustic instability, and to higher levels of SBBS gain, which leads to lower thresholds for the same electron to ion temperature ratios. This could be the answer for the observed high levels of scattering from hot spots. (author)

  1. Velocity space ring-plasma instability, magnetized, Part I: Theory

    International Nuclear Information System (INIS)

    Lee, J.K.; Birdsall, C.K.

    1979-01-01

    The interaction of magnetized monoenergetic ions (a ring in velocity space) with a homogeneous Maxwellian target plasma is studied numerically using linear Vlasov theory. The ring may be produced when an energetic beam is injected perpendicular to a uniform magnetic field. In addition to yielding the previously known results, the present study classifies this flute-like instability into three distinct regimes based on the beam density relative to the plasma density, where many features such as physical mechanisms, dispersion diagrams, and maximum growth rates are quite different. The effects of electron dynamics, plasma or ring thermal spread, the ratio of ω/sub p//ω/sub c/ for plasma ions, and electromagnetic modifications are also considered

  2. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  3. Stabilization of Rayleigh-Taylor instability due to the spontaneous magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Ogasawara, Masatada; Takita, Masami.

    1981-08-01

    Spontaneous magnetic fields due to the temperature gradient nabla T 0 produced by a focussed laser beam on one point of a pellet are taken into account in deriving the dispersion relation of Rayleigh-Taylor instability. Growth rate γ decreases with time. Density fluctuation with wavelength shorter than 1.5(R/L sub(T)) x (n sub(s)/n 0 )sup(1/2) μm is remarkably stabilized, where R, L sub(T), n sub(s) and n 0 are the radius of a pellet, L sub(T)sup(-1) = + nabla T 0 /T 0 + , number densities of solid and the pellet. Validity condition of the theory is γt 0 >> 1 or in another form R >> L, where t 0 is the time of thermal expansion of a pellet and L -1 = + nabla n 0 /n 0 + . (author)

  4. Quasi-adiabatic particle acceleration in a magnetic field reversals and the formation of the plasma sheet boundary layer in the earth's magnetotail

    International Nuclear Information System (INIS)

    Zelenyi, L.M.; Vogin, D.V.; Buechner, J.

    1989-01-01

    Two types of regularity exist for the particle motion in the two-dimensional magnetic field reversals (MFR) with the strongly curves magnetic field lines - the usual adiabatic and another one which we called 'quasiadiabatic'. Here we consider the acceleration of MFR particles in stationary and homogeneous electric field induced by the motion of MFR through the ambient plasma (i.e. solar wind). Assuming that the time scale of acceleration is slow in comparison with the period of orbital motion we introduce the new longitudinal invariant I κ . This enables to describe the process of acceleration in a closed form and to obtain for the first time the laws governing the quasiadiabatic ion acceleration in the Earth's mangetotail. The similarities and differences in adiabatic and quasiadiabatic acceleration mechanisms are discussed. The obtained results give and important insights to the problem of the particle heating in hte Earth's magnetotail and to the formation of accelerated plasma streams along the edges of the plasma sheet. (author). 17 refs.; 7 figs

  5. Plasma transport across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1978-01-01

    Simple fluid and particle models are used to estimate the transport of density, current, and electron heat for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which magnetic surfaces are destroyed. (author)

  6. Non-adiabatic stability analysis of current and magnetic curvature driven modes in cold plasmas penetrated by neutral gas

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1978-08-01

    Previous stability theories concerning electrostatic current and magnetic curvature driven modes in cold plasma mantle boundary layers are generalized. In particular the commonly used adiabatic approximation is relaxed. In the general theory presented important new effects associated with heat conduction, ionization and ohmic heating are found. In combination with viscosity and resistivity these effects introduce additional stabilizing as well as destabilizing effects. Furthermore the present theory typically predicts similar stability properties as the adiabatic theory in the limit |d(1nT)/d(1nn)| >1 the general theory predicts less favourable stability properties. One may speculate that these conclusions also apply to more general types of electrostatic modes associated with density and temperature gradients in cold plasma mantel boundary layers. (author)

  7. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  8. Change of the Magnetic-Field Topology by an Ergodic Divertor and the Effect on the Plasma Structure and Transport

    International Nuclear Information System (INIS)

    Jakubowski, M.W.; Schmitz, O.; Abdullaev, S.S.; Brezinsek, S.; Finken, K.H.; Kraemer-Flecken, A.; Lehnen, M.; Samm, U.; Unterberg, B.; Wolf, R.C.; Spatschek, K.H.

    2006-01-01

    The magnetic-field perturbation produced by the dynamic ergodic divertor in TEXTOR changes the topology of the magnetic field in the plasma edge, creating an open chaotic system. The perturbation spectrum contains only a few dominant harmonics and therefore it can be described by an analytical model. The modeling is performed in the vacuum approximation without assuming a backreaction of the plasma and does not rely on any experimentally obtained parameters. It is shown that this vacuum approximation predicts in many details the experimentally observed plasma structure. Several experiments have been performed to prove that the plasma edge behavior is defined mostly by the magnetic topology of the perturbed volume. The change in the transport can be explained with the knowledge of only the magnetic structures; i.e., the ergodic pattern dominates the plasma properties

  9. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  10. Behaviour of laser-produced plasma in a uniform magnetic field

    International Nuclear Information System (INIS)

    Okada, Shigefumi; Sato, Kohnosuke; Sekiguchi, Tadashi.

    1979-11-01

    A column of a laser-produced plasma is successfully made in a uniform magnetic field. The radius of the column increases and then decreases (bouncing motion). On the surface of this plasma column, where the steep density gradient exists with the scale length shorter than the ion Larmor radius, an azimuthal modulation appears in the plasma luminosity. This is indicative of the flute-like instability with the azimuthal wave number; k sub(perpendicular) -- 4 x 10 3 B sup(0.8) (in the MKSA system of units). The dispersion equation based on the linearized Vlasov equation with the local approximation is derived and the occurrence of the lower-hybrid-drift instability is predicted. A fairly good agreement between the theory and experiments is seen. (author)

  11. theoretical and experimental study of plasma acceleration by means of R.F. and static magnetic field gradient

    International Nuclear Information System (INIS)

    Bardet, Rene; Consoli, Terenzio; Geller, Richard

    1964-09-01

    In the first part of the paper, the theory of the physical mechanism of ion dragging by accelerated electrons due to the superimposition of the gradient of a electromagnetic field and the gradient of a static magnetic field, is described. The resulting trajectory of the electrons is a helicoid and one shows the variations of the diameter and the path of the spirals along the axis as a function of the difference between the gyrofrequency and the applied R.F. frequency. The ion acceleration is due to an electron space charge effect. The grouping of the equations of the electronic and ionic fluid motions leads to the introduction of a tensor mass: along the x and y direction the transverse motion of the fluid is controlled by the relativistic mass of electrons whereas along the z direction the axial motion is determined by the ionic mass. Then we deduce physical consequences of the theoretical study and give three experimental evidences. The second part of the paper is devoted to the experimental device called Pleiade which allowed us to verify some of the theoretical predictions. Pleiade produces a D.C. operating plasma beam in which the electrons exhibit radially oriented energies whereas the ionic energy is mainly axial. The experimental results indicate that the energy of the particles is in the keV range. In the third part we deal with the reflecting properties of the device. We show that the R.F. static magnetic field gradients are not only capable of accelerating a Plasma beam along the axially decreasing magnetic field, but are also capable of stopping and reflecting such a beam when the latter is moving along an axially increasing magnetic field. We describe finally a plasma accumulation experiment in which two symmetric structures form simultaneously an accelerator and a 'dynamic mirror' for the particles. Evidence of accumulation is given. (authors) [fr

  12. Influence of external magnetic field on laser-induced gold nanoparticles fragmentation

    International Nuclear Information System (INIS)

    Serkov, A. A.; Rakov, I. I.; Simakin, A. V.; Kuzmin, P. G.; Shafeev, G. A.; Mikhailova, G. N.; Antonova, L. Kh.; Troitskii, A. V.; Kuzmin, G. P.

    2016-01-01

    Laser-assisted fragmentation is an efficient method of the nanoparticles size and morphology control. However, its exact mechanisms are still under consideration. One of the remaining problems is the plasma formation, inevitably occurring upon the high intensity laser irradiation. In this Letter, the role of the laser-induced plasma is studied via introduction of high-intensity external magnetic field (up to 7.5 T). Its presence is found to cause the plasma emission to start earlier regarding to a laser pulse, also increasing the plume luminosity. Under these conditions, the acceleration of nanoparticles fragmentation down to a few nanometers is observed. Laser-induced plasma interaction with magnetic field and consequent energy transfer from plasma to nanoparticles are discussed.

  13. Alternating magnetic field losses in ATLAS type aluminium stabilized NbTi superconductors

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    During ramping up- and down of the current in large-scale magnets the ramp losses are an important factor affecting the thermal and electro-magnetic stability of the system. The calculation of the losses is not straightforward due to the large dimensions of the conductor (~600 mm/sup 2/) implying that diffusion effects have to be taken into account. The AC-losses of the Al stabilized NbTi cable conductors used in the ATLAS magnet system were measured in 0.5 m long samples, using an inductive method with pick-up coils as well as the calorimetric method. External varying magnetic fields up to 2 tesla amplitude were applied parallel and perpendicular to the conductor wide surface. The results are compared to theory. It is found that hysteresis loss, eddy current loss in the Aluminum cladding and cable-to-cladding coupling loss contribute most to the AC loss. (5 refs).

  14. Boundary between a plasma and a field with particle losses

    International Nuclear Information System (INIS)

    Konkhashbaev, I.K.; Zandman, I.S.; Ilinich, F.R.

    1978-01-01

    For open magnetic traps with β=1, the formation of plasma-field boundary (skin-layer) and the rate of the magnetic field fiffusion into plasma were investigated through the consideration of an evolution of a wide skin-layer. A large value of the mirror ratio is assumed for the sake of simplicity. The skin-layer structure is formed by two mechanisms: a mutual plasma-field diffusion tending to expand the boundary, and escape of particles trapped in the skin-layer region, along lines of force through the magnetic mirror, which tends to compress the boundary. It is shown that compression of the wide boundary occurs for the time of the order of the ion-ion collision time when the ion and electron temperatures change substantially. The final skin-layer width proved to be larger than a hybrid one, but smaller than the ion Larmour radius and depends slightly on initial temperatures. It has been established that the diffusion of the magnetic field into the plasma of magnetic trap has the character of a stationary wave of a width equal to the ion Larmour radius and of the velocity V approximately Vsub(Ti)/(ωsub(i)tausub(i))(Vsub(Ti) is the thermal ion velocity, ωsub(i), tausub(i) - the ion cyclotron frequency and collision time)

  15. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, David A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  16. Modification of the magnetic field structure of high-beta plasmas with a perturbation field in the Large Helical Device

    International Nuclear Information System (INIS)

    Sakakibara, S; Suzuki, Y; Narushima, Y; Watanabe, K Y; Ohdachi, S; Ida, K; Yoshinuma, M; Narihara, K; Yamada, I; Tanaka, K; Tokuzawa, T; Yamada, H; Takemura, Y

    2013-01-01

    The effect of resonant magnetic perturbation (RMP) on MHD characteristics is investigated in high-beta plasmas of the Large Helical Device. The ramp-up and static m/n = 1/1 RMP field are applied in medium- (∼2%) and high- (∼4%) beta plasmas in order to find beta dependences of mode penetration, MHD activities and confinement. The results show that the threshold of mode penetration linearly increases with the beta value and/or plasma collisionality. The threshold of mode penetration in the RMP ramp-up experiments is roughly consistent with the static RMP case. The beta value gradually decreases with the RMP field strength before mode penetration, which is caused by a reduction in the pressure inside the ι/2π = 1 resonance. The width of the magnetic island after the penetration becomes larger than the given RMP field, and it is further enhanced by the increment of the beta value. (paper)

  17. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    Science.gov (United States)

    Manning, Robert M.

    2009-01-01

    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  18. Characterization of pinning stability of HTS Gd123 bulks by using a pulsed-field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, R; Miki, M; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Yamaguchi, K [Sumitomo Heavy Industries Ltd., ThinkPark Tower, 1-1-2, Osaki, Shinagawa-ku, Tokyo 141-6025 (Japan); Kimura, Y [Kawasaki Heavy Industries Ltd., Technical Institute System Technology Development Center, 1-1, Kawasaki-cho, Akashi-shi, Hyogo 673-8666 (Japan); Ida, T, E-mail: m084025@kaiyodai.ac.j [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, Toyota-gun, Hiroshima 725-0231 (Japan)

    2010-06-01

    High-temperature superconductor (HTS) Gd-bulks are used for field-pole magnets of rotating machines. We have conducted a study of pulsed-field magnetization (PFM) for the bulks to be magnetized alternatively on the rotor. Performances of HTS bulks have been qualified on the basis of the field-cooling magnetization (FCM). HTS bulks are a kind of crystals containing lots of tiny crystals boundaries. It is difficult to find comparable data between PFM and FCM results, mainly because of the different pinning stability through both processes. We need to assess an effective method of characterization for the flux pinning stability under PFM. We compared two HTS bulks: one shows a flux flow and relatively small trapped flux while the other is magnetized with a little flux instability and a large integrated trapped flux. These Gd123 bulks are 100 mm in diameter and 20 mm in thickness. After applying PFM at the liquid nitrogen temperature, we measured the trapped field density distribution and introduced a new parameter representing the trapped flux instability at each position on the surface of the bulk. We propose a way of visualization of the flux pinning instability of the HTS bulks.

  19. Influence of magnetic topology on transport and stability in stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Castejon, F [Laboratorio Nacional de Fusion. Asociacion Euratom/Ciemat, 28040-Madrid (Spain); Fujisawa, A [National Institute for Fusion Science Oroshi-cho, Toki-shi, Gifu, 509-5292 (Japan); Ida, K [National Institute for Fusion Science Oroshi-cho, Toki-shi, Gifu, 509-5292 (Japan); Talmadge, J N [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Estrada, T [Laboratorio Nacional de Fusion. Asociacion Euratom/Ciemat, 28040-Madrid (Spain); Lopez-Bruna, D [Laboratorio Nacional de Fusion. Asociacion Euratom/Ciemat, 28040-Madrid (Spain); Hidalgo, C [Laboratorio Nacional de Fusion. Asociacion Euratom/Ciemat, 28040-Madrid (Spain); Krupnik, L [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Melnikov, A [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow (Russian Federation)

    2005-12-15

    The influence of the magnetic topology on transport and stability has been investigated in four stellarators: an almost shearless medium size flexible heliac (TJ-II), a medium size and a large heliotron (CHS and LHD) with shear, and a quasihelically symmetric device (HSX) with moderate shear. All of these have variable rotational transform profiles and magnetic ripples. Using these capabilities, bifurcated states can appear and plasma can jump from one to another with subsequent changes in the transport properties. Low rational values of {iota}/2{pi} can create transport barriers in LHD and TJ-II when they are located close to the plasma core or at the edge. The key ingredient for transport barriers is a positive and sheared electric field. Internal transport barriers also appear in CHS, but the role of rationals is not clear yet in this device. The time evolution of the electric field shows the onset of a bifurcation triggered either by the rational or by the presence of the ion and electron roots. The electric potential inside ITBs follows the ECE-temperature profile in a fast time scale. The plasma stability properties and its effect on the viscosity are also studied in the HSX, and the influence of the dynamics of rational surface is studied in the LHD and TJ-II stellarators.

  20. Influence of magnetic topology on transport and stability in stellarators

    International Nuclear Information System (INIS)

    Castejon, F; Fujisawa, A; Ida, K; Talmadge, J N; Estrada, T; Lopez-Bruna, D; Hidalgo, C; Krupnik, L; Melnikov, A

    2005-01-01

    The influence of the magnetic topology on transport and stability has been investigated in four stellarators: an almost shearless medium size flexible heliac (TJ-II), a medium size and a large heliotron (CHS and LHD) with shear, and a quasihelically symmetric device (HSX) with moderate shear. All of these have variable rotational transform profiles and magnetic ripples. Using these capabilities, bifurcated states can appear and plasma can jump from one to another with subsequent changes in the transport properties. Low rational values of ι/2π can create transport barriers in LHD and TJ-II when they are located close to the plasma core or at the edge. The key ingredient for transport barriers is a positive and sheared electric field. Internal transport barriers also appear in CHS, but the role of rationals is not clear yet in this device. The time evolution of the electric field shows the onset of a bifurcation triggered either by the rational or by the presence of the ion and electron roots. The electric potential inside ITBs follows the ECE-temperature profile in a fast time scale. The plasma stability properties and its effect on the viscosity are also studied in the HSX, and the influence of the dynamics of rational surface is studied in the LHD and TJ-II stellarators

  1. Stability of plane Poiseuille flow of viscoelastic fluids in the presence of a transverse magnetic field

    Directory of Open Access Journals (Sweden)

    Hifdi Ahmed

    2012-07-01

    Full Text Available The linear stability of plan Poiseuille flow of an electrically conducting viscoelastic fluid in the presence of a transverse magnetic field is investigated numerically. The fourth-order Sommerfeld equation governing the stability analysis is solved by spectral method with expansions in lagrange’s polynomials, based on collocation points of Gauss-Lobatto. The critical values of Reynolds number, wave number and wave speed are computed. The results are shown through the neutral curve. The main purpose of this work is to check the combined effect of magnetic field and fluid’s elasticity on the stability of the plane Poiseuille flow. Based on the results obtained in this work, the magnetic field is predicted to have a stabilizing effect on the Poiseuille flow of viscoelastic fluids. Hence, it will be shown that for second-order fluids (K 0 is that the critical Reynolds numbers Rec increase when the Hartman number M increases for certain value of elasticity number K and decrease for others. The latter result is in contrast to previous studies.

  2. Effects of assistant anode on planar inductively coupled magnetized argon plasma in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, Deli; Chu, Paul K.

    2003-01-01

    The enhancement of planar radio frequency (RF) inductively coupled argon plasma is studied in the presence of an assistant anode and an external magnetic field at low pressure. The influence of the assistant anode and magnetic field on the efficiency of RF power absorption and plasma parameters is investigated. An external axial magnetic field is coupled into the plasma discharge region by an external electromagnetic coil outside the discharge chamber and an assistant cylindrical anode is inserted into the discharge chamber to enhance the plasma discharge. The plasma parameters and density profile are measured by an electrostatic Langmuir probe at different magnetic fields and anode voltages. The RF power absorption by the plasma can be effectively enhanced by the external magnetic field compared with the nonmagnetized discharge. The plasma density can be further increased by the application of a voltage to the assistant anode. Owing to the effective power absorption and enhanced plasma discharge by the assistant anode in a longitudinal magnetic field, the plasma density can be enhanced by more than a factor of two. Meanwhile, the nonuniformity of the plasma density is less than 10% and it can be achieved in a process chamber with a diameter of 600 mm

  3. The effect of magnetic field on bistability in 1D photonic crystal doped by magnetized plasma and coupled nonlinear defects

    International Nuclear Information System (INIS)

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.

    2014-01-01

    In this work, we study the defect mode and bistability behavior of 1-D photonic band gap structure with magnetized plasma and coupled nonlinear defects. The transfer matrix method has been employed to investigate the magnetic field effect on defect mode frequency and bistability threshold. The obtained results show that the frequency of defect mode and bistability threshold can be altered, without changing the structure of the photonic multilayer. Therefore, the bistability behavior of the subjected structure in the presence of magnetized plasma can be utilized in manufacturing wide frequency range devices

  4. Active feedback stabilization of axisymmetric modes in highly elongated tokamak plasmas

    International Nuclear Information System (INIS)

    Ward, D.J.; Hofmann, F.

    1993-07-01

    Active feedback stabilization of the vertical instability is studied for highly elongated tokamak plasmas (1≤κ≤3), and evaluated in particular for the TCV configuration. It is shown that the feedback can strongly affect the form of the eigenfunction for these highly elongated equilibria, and this can have detrimental effects on the ability of the feedback system to properly detect and stabilize the plasma. A calculation of the vertical displacement that uses poloidal flux measurements, poloidal magnetic field measurements, and corrections for the vessel eddy currents and active feedback currents was found to be effective even in the cases with the worst deformations of the eigenfunction. We also examine how these deformations affect differently shaped equilibria, and it is seen that the magnitude of the deformation of the eigenfunction is strongly function of the plasma elongation. (author) 15 figs., 13 refs

  5. Nonequilibrium Thermodynamic Treatment of a Warm Plasma in Strong Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Abourabia, A.M.; Shahein, R.A.

    2008-01-01

    In the framework of the irreversible thermodynamics we study a rarefied and collisional warm electron plasma under the effects of external strong magnetic and electric fields which generate small wave amplitudes. We adopt the linear theory and normal mode solution in the MHD model to calculate the perturbations in pressure, mass density, components of velocity, electric and magnetic fields. By applying the second law of thermodynamics it is concluded that the change in the internal energy of the plasma particles predicts whether they gain from or lose energy to the generated waves .The obtained results agree with the physical ground bounded by the positive nature of the entropy production. The predictions have been carried out within the range of the frequency of the generated waves and the distance from the Debye sphere

  6. Magnetic field structure near the plasma boundary in helical systems and divertor tokamaks

    International Nuclear Information System (INIS)

    Nagasaki, Kazunobu; Itoh, Kimitaka

    1990-02-01

    Magnetic field structure of the scrape off layer (SOL) region in both helical systems and divertor tokamaks is studied numerically by using model fields. The connection length of the field line to the wall is calculated. In helical systems, the connection length, L, has a logarithmic dependence on the distance from the outermost magnetic surface or that from the residual magnetic islands. The effect of axisymmetric fields on the field structure is also determined. In divertor tokamaks, the connection length also has logarithmic properties near the separatrix. Even when the perturbations, which resonate to rational surfaces near the plasma boundary, are added, logarithmic properties still remain. We compare the connection length of torsatron/helical-heliotron systems with that of divertor tokamaks. It is found that the former is shorter than the latter by one order magnitude with similar aspect ratio. (author)

  7. Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas

    International Nuclear Information System (INIS)

    Thomas, P.R.; Becoulet, M.; Evans, T.E.; Osborne, T.H.; Groebner, R.J.; Jackson, G.L.; Haye, R.J. La; Schaffer, M.J.; West, W.P.; Moyer, R.A.; Rhodes, T.L.; Rudakov, D.L.; Watkins, J.G.; Boedo, J.A.; Doyle, E.J.; Wang, G.; Zeng, L.; Fenstermacher, M.E.; Groth, M.; Lasnier, C.J.; Finken, K.H.; Harris, J.H.; Pretty, D.G.; Masuzaki, S.; Ohyabu, N.; Reimerdes, H.; Wade, M.R.

    2005-01-01

    Large divertor heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELMs, during a coil pulse, is less than 0.4% of plasma current. Modelling shows that the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ N ≤ 1.0), when q95 = 3.7±0.2 creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, N , H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. At high collisionality (ν* ∼0.5-1), there is no obvious effect of the perturbation on the edge profiles and yet ELMs are suppressed, nearly completely, for up to 9τ E . At low collisionality (ν* <0.1), there is a density pump-out and complete ELM suppression, reminiscent of the DIIID QH- mode. Other differences, specifically in the resonance condition and the magnetic fluctuations, suggest that different mechanisms are at play in the different collisionality regimes. In addition to a description and interpretation of the DIIID data, the application of this method to ELM control on other machines, such as JET and ITER will be discussed. (author)

  8. Plasma transport in stochastic magnetic field caused by vacuum resonant magnetic perturbations at diverted tokamak edge

    International Nuclear Information System (INIS)

    Park, G.; Chang, C. S.; Joseph, I.; Moyer, R. A.

    2010-01-01

    A kinetic transport simulation for the first 4 ms of the vacuum resonant magnetic perturbations (RMPs) application has been performed for the first time in realistic diverted DIII-D tokamak geometry [J. Luxon, Nucl. Fusion 42, 614 (2002)], with the self-consistent evaluation of the radial electric field and the plasma rotation. It is found that, due to the kinetic effects, the stochastic parallel thermal transport is significantly reduced when compared to the standard analytic model [A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978)] and the nonaxisymmetric perpendicular radial particle transport is significantly enhanced from the axisymmetric level. These trends agree with recent experimental result trends [T. E. Evans, R. A. Moyer, K. H. Burrell et al., Nat. Phys. 2, 419 (2006)]. It is also found, as a side product, that an artificial local reduction of the vacuum RMP fields in the vicinity of the magnetic separatrix can bring the kinetic simulation results to a more detailed agreement with experimental plasma profiles.

  9. Stability and Control of Burning Tokamak Plasmas with Resistive Walls: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, George [Univ. of Tulsa, OK (United States); Brennan, Dylan [Princeton Univ., NJ (United States); Cole, Andrew [Columbia Univ., New York, NY (United States); Finn, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-02

    This project is focused on theoretical and computational development for quantitative prediction of the stability and control of the equilibrium state evolution in toroidal burning plasmas, including its interaction with the surrounding resistive wall. The stability of long pulse burning plasmas is highly sensitive to the physics of resonant layers in the plasma, sources of momentum and flow, kinetic effects of energetic particles, and boundary conditions at the wall, including feedback control and error fields. In ITER in particular, the low toroidal flow equilibrium state, sustained primarily by energetic alpha particles from fusion reactions, will require the consideration of all of these key elements to predict quantitatively the stability and evolution. The principal investigators on this project have performed theoretical and computational analyses, guided by analytic modeling, to address this physics in realistic configurations. The overall goal has been to understand the key physics mechanisms that describe stable toroidal burning plasmas under active feedback control. Several relevant achievements have occurred during this project, leading to publications and invited conference presentations. In theoretical efforts, with the physics of the resonant layers, resistive wall, and toroidal momentum transport included, this study has extended from cylindrical resistive plasma - resistive wall models with feedback control to toroidal geometry with strong shaping to study mode coupling effects on the stability. These results have given insight into combined tearing and resistive wall mode behavior in simulations and experiment, while enabling a rapid exploration of plasma parameter space, to identify possible domains of interest for large plasma codes to investigate in more detail. Resonant field amplification and quasilinear torques in the presence of error fields and velocity shear have also been investigated. Here it was found, surprisingly, that the Maxwell

  10. Reaction kinetics and mechanism of magnetic field effects in cryptochrome

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Schulten, Klaus

    2012-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and birds have an intriguing sixth sense that allows them to orient themselves in the Earth's magnetic field. Despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically...

  11. General connected and reconnected fields in plasmas

    Science.gov (United States)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2018-02-01

    For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of "magnetic reconnection" may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.

  12. Measured improvement of global magnetohydrodynamic mode stability at high-beta, and in reduced collisionality spherical torus plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Berkery, J. W.; Sabbagh, S. A.; Balbaky, A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B. P.; Manickam, J.; Menard, J. E.; Podestà, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-05-15

    Global mode stability is studied in high-β National Spherical Torus Experiment (NSTX) plasmas to avoid disruptions. Dedicated experiments in NSTX using low frequency active magnetohydrodynamic spectroscopy of applied rotating n = 1 magnetic fields revealed key dependencies of stability on plasma parameters. Observations from previous NSTX resistive wall mode (RWM) active control experiments and the wider NSTX disruption database indicated that the highest β{sub N} plasmas were not the least stable. Significantly, here, stability was measured to increase at β{sub N}∕l{sub i} higher than the point where disruptions were found. This favorable behavior is shown to correlate with kinetic stability rotational resonances, and an experimentally determined range of measured E × B frequency with improved stability is identified. Stable plasmas appear to benefit further from reduced collisionality, in agreement with expectation from kinetic RWM stabilization theory, but low collisionality plasmas are also susceptible to sudden instability when kinetic profiles change.

  13. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.

  14. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  15. Theory of steady state plasma flow and confinement in a periodic magnetic field

    International Nuclear Information System (INIS)

    Brown, M.G.

    1981-02-01

    The steady flow of plasmas through spatially periodic magnetic fields is examined, and a theoretical model is developed for the case of axisymmetric geometry. The externally applied magnetic fields can be cusps or mirrors joined end to end; electrons are then localised by these fields because of their small Larmor radius, while the ions can traverse the magnetic mirrors. The properties of the model equations are studied and dimensionless parameters which appear are interpreted. Numerical methods used in steady flow applications are reviewed, and some techniques of solution for the model equations are discussed. A solution method involving numerical integration of time-dependent equations is described, which approaches the steady state asymptotically; results from this method are presented and compared with the results from perturbation theory. (author)

  16. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  17. The nonlinear coupling between gyroradius scale turbulence and mesoscale magnetic islands in fusion plasmas

    International Nuclear Information System (INIS)

    Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.

    2010-01-01

    The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.

  18. Reconnection of magnetic field lines

    International Nuclear Information System (INIS)

    Heyn, M.F.; Gratton, F.T.; Gnavi, G.; Heindler, M.

    1990-01-01

    Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer equations of dissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for a class of plasma parameters have been obtained which are consistent with the boundary conditions appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow of a plasma with reconnecting magnetic field lines. The range of the validity of the solutions, their relation to other fluid models of reconnection, and their possible applications to space plasma configurations are pointed out. (Author)

  19. Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.

    Science.gov (United States)

    Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J

    2008-11-07

    We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.

  20. Quantum regime of a plasma-wave-pumped free-electron laser in the presence of an axial magnetic field.

    Science.gov (United States)

    Shirvani, H; Jafari, S

    2018-03-01

    The quantum regime of a plasma-whistler-wave-pumped free-electron laser (FEL) in the presence of an axial-guide magnetic field is presented. By quantizing both the plasma whistler field and axial magnetic field, an N-particle three-dimensional Hamiltonian of quantum-FEL (QFEL) has been derived. Employing Heisenberg evolution equations and introducing a new collective operator which controls the vertical motion of electrons, a quantum dispersion relation of the plasma whistler wiggler has been obtained analytically. Numerical results indicate that, by increasing the intrinsic quantum momentum spread and/or increasing the axial magnetic field strength, the bunching and the radiation fields grow exponentially. In addition, a spiking behavior of the spectrum was observed with increasing cyclotron frequency which provides an enormous improvement in the coherence of QFEL radiation even in a limit close-to-classical regime, where an overlapping of these spikes is observed. Also, an upper limit of the intrinsic quantum momentum spread which depends on the value of the cyclotron frequency was found.

  1. Measurement of The Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap

    International Nuclear Information System (INIS)

    Jones, B.; Taylor, G.; Efthimion, P.C.; Munsat, T.

    2004-01-01

    Measurement of the magnetic field in a spherical torus by observation of harmonic overlap frequencies in the electron Bernstein wave (EBW) spectrum has been previously suggested [V.F. Shevchenko, Plasma Phys. Reports 26 (2000) 1000]. EBW mode conversion to X-mode radiation has been studied in the Current Drive Experiment-Upgrade spherical torus, [T. Jones, Ph.D. thesis, Princeton University, 1995] with emission measured at blackbody levels [B. Jones et al., Phys. Rev. Lett. 90 (2003) article no. 165001]. Sharp transitions in the thermally emitted EBW spectrum have been observed for the first two harmonic overlaps. These transition frequencies are determined by the magnetic field and electron density at the mode conversion layer in accordance with hot-plasma wave theory. Prospects of extending this measurement to higher harmonics, necessary in order to determine the magnetic field profile, and high beta equilibria are discussed for this proposed magnetic field diagnostic

  2. Neutrino (antineutrino) effective charge in a magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Serbeto, A.; Rios, L.A.; Mendonca, J.T.; Shukla, P.K.

    2004-01-01

    Using dynamical techniques of the plasma physics, the neutrino (antineutrino) effective charge in a magnetized dense electron-positron plasma is determined here. It shown that its value, which is determined by the plasma collective processes, depends mainly on the propagation direction of plasma waves and neutrinos against the external magnetic field direction. The direction dependence of the effective charge occurs due to the fact that the magnetic field breaks the plasma isotropy. The present theory gives a unified picture of the problem which is valid for an external magnetic field below the Landau-Schwinger critical value. Comparison with some of the results from the quantum field theory has been made

  3. Macroscale implicit electromagnetic particle simulation of magnetized plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1988-01-01

    An electromagnetic and multi-dimensional macroscale particle simulation code (MACROS) is presented which enables us to make a large time and spatial scale kinetic simulation of magnetized plasmas. Particle ions, finite mass electrons with the guiding-center approximation and a complete set of Maxwell equations are employed. Implicit field-particle coupled equations are derived in which a time-decentered (slightly backward) finite differential scheme is used to achieve stability for large time and spatial scales. It is shown analytically that the present simulation scheme suppresses high frequency electromagnetic waves and that it accurately reproduces low frequency waves in the plasma. These properties are verified by numerical examination of eigenmodes in a 2-D thermal equilibrium plasma and by that of the kinetic Alfven wave. (author)

  4. Modeling of prominence threads in magnetic fields: Levitation by incompressible MHD waves

    Science.gov (United States)

    Pécseli, Hans; Engvold, OddbjØrn

    2000-05-01

    The nature of thin, highly inclined threads observed in quiescent prominences has puzzled solar physicists for a long time. When assuming that the threads represent truly inclined magnetic fields, the supporting mechanism of prominence plasma against gravity has remained an open issue. This paper examines the levitation of prominence plasma exerted by weakly damped MHD waves in nearly vertical magnetic flux tubes. It is shown that the wave damping, and resulting `radiation pressure', caused predominantly by ion-neutral collisions in the `cold' prominence plasma, may balance the acceleration of gravity provided the oscillation frequency is ω~ 2 rad s^-1 (f~0.5 Hz). Such short wave periods may be the result of small-scale magnetic reconnections in the highly fragmentary magnetic field of quiescent prominences. In the proposed model, the wave induced levitation acts predominantly on plasma - neutral gas mixtures.

  5. Radio emission from a helical electron beam-plasma system in a twisted magnetic field

    International Nuclear Information System (INIS)

    Krishan, V.

    1982-01-01

    The excitation of electromagnetic radiation near the harmonics of electron plasma frequency from a helical electron beam travelling parallel to a helical magnetic field through a stationary inhomogeneous plasma is studied. The motivation behind this study is to explain the observed characteristics of the type III solar radio bursts and thus to predict the nature of the plasma system responsible for the generation of these radio bursts. (author)

  6. Equilibrium and stability MHD in the magnetic confinement for thermonuclear fusion

    International Nuclear Information System (INIS)

    Otero, Dino; Proto, A.N.

    1979-08-01

    A survey of the mayor systems for magnetic confinement of plasmas is made. The basic concepts are reviewed briefly. The equilibrium and stability conditions for open systems (mirrors, magnetic wells, Z and Theta-pinches), for toroidal axisymmetric (Z-Pinch, Screw-Pinch, Belt-Pinch and Tokamak) and toroidal non-axisymmetric systems (High-β Stellarator and low-β Theta-Pinch) are discussed. A comparative analysis between the diferent systems is made. In the conclusions, the author's opinions about future developments in the field are included. (author) [es

  7. Plasma and magnetic field characteristics of the distant polar cusp near local noon: The entry layer

    International Nuclear Information System (INIS)

    Paschmann, G.; Haerendel, G.; Sckopke, N.; Rosenbauer, H.; Hedgecock, P.C.

    1976-01-01

    Heos 2 plasma and magnetic field measurements in the distant polar cusp region reveal the existence of a plasma layer on day side field lines just inside the magnetopause. Density and temperature in this layer are nearly the same as they are in the adjacent magnetosheath, but the flow lacks the order existing both in the magnetosheath and in the plasma mantle. Flow directions toward and away from the sun but, in general, parallel to the field lines have been found. The magnetopause (as defined by a sudden rotation of the magnetic field vector) mostly coincides with the transition to ordered magnetosheath flow. The inner boundary of the layer is located just within the outer boundary of the hot ring current plasma. In the region of overlap the hot electrons have the signature of trapped particles, though often at reduced intensity. The magnetic field is strongly fluctuating in magnitude, while its orientation is more stable, consistent with a connection to the earth, but is systematically distorted out of the meridian plane. The layer is thought to be a consequence of the entry of magnetosheath plasma, which does not appear to be unobstructed, as has been claimed in the concept of a magnetospheric cleft. The magnetopause has a cusplike indentation which is elongated in local time. The existence of field-aligned currents (total strength approx. =10 6 A) and their location of flow in the inner part of the entry layer (into the ionosphere before noon and out of it after noon) are inferred from the systematic bending of field lines. It is proposed that the dynamo of the related current system is provided by the transfer of perpendicular momentum resulting from the plasma entry into the layer. The essential features of the entry layer might be compatible with the model of plasma flow through the magnetopause of Levy et al. (1964) if a 'dam' effect caused by the cusp geometry were added

  8. Effects of 3D Magnetic Perturbations on Toroidal Plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2010-01-01

    Full text: To lowest order tokamaks are two-dimensional (2D) axisymmetric magnetic systems. But small 3D magnetic perturbations (both externally applied and from plasma instabilities) have many interesting and useful effects on tokamak (and quasi-symmetric stellarator) plasmas. Plasma transport equations that include these effects, especially on diamagnetic-level toroidal plasma rotation, have recently been developed. The 3D magnetic perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (1 to 5) resonant (q = m/n in plasma) and non-resonant fields, medium n (due to toroidal field ripple), and high n (due to microturbulence). This paper concentrates on low and medium n perturbations. Low n non-resonant magnetic fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal plasma rotation throughout the plasma toward an offset flow in the counter-I p direction; recent tokamak experiments have confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n perturbations have similar effects plus possible ripple trapping and resultant edge ion losses. A low n resonant magnetic field induces a toroidal plasma torque in the vicinity of the rational surface; when large enough it can stop plasma rotation there and lead to a locked mode, which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components; in the plasma their lowest n components are amplified by plasma responses, particularly at high beta. Low n plasma instabilities (e.g., NTMs, RWMs) cause additional 3D magnetic perturbations in tokamak plasmas; tearing modes can bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can cause local magnetic stochasticity and influence H-mode edge pedestal transport. These various effects of 3D magnetic perturbations can be used to control the toroidal plasma

  9. Does shaping bring an advantage for reversed field pinch plasmas?

    International Nuclear Information System (INIS)

    Guo, S.C.; Xu, X.Y.; Wang, Z.R.; Liu, Y.Q.

    2013-01-01

    The MHD–kinetic hybrid toroidal stability code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503) is applied to study the shaping effects on magnetohydrodynamic (MHD) stabilities in reversed field pinch (RFP) plasmas, where both elongation and triangularity are taken into account. The ideal wall β (the ratio of the gaso-kinetic to magnetic pressures) limit set by the ideal kink mode/resistive wall mode in shaped RFP is investigated first, followed by a study of the kinetic damping on the resistive wall mode. Physics understanding of the results is provided by a systematic numerical analysis. Furthermore, the stability boundary of the linear resistive tearing mode in shaped RFP plasmas is computed and compared with that of the circular case. Finally, bootstrap currents are calculated for both circular and shaped RFP plasmas. Overall, the results of these studies indicate that the current circular cross-section is an appropriate choice for RFP devices, in the sense that the plasma shaping does not bring an appreciable advantage to the RFP performance in terms of macroscopic stabilities. In order to reach a steady-state operation, future RFP fusion reactors will probably need a substantial fraction of external current drives, due to the unfavourable scaling for the plasma-generated bootstrap current in the RFP configuration. (paper)

  10. Rotating light ion beam-plasma system in inertial confinement fusion

    International Nuclear Information System (INIS)

    Murakami, H.; Okada, T.

    1997-01-01

    The stabilizing mechanism of filamentation instability in light ion beam propagation is studied numerically by using a particle-in-cell code. Rotating light ion beam scheme has been proposed for the light ion beam propagation. The filamentation instability is stabilized by the external magnetic field which is induced by the rotating light ion beams. From a dispersion relation, linear growth rates of filamentation instabilities are obtained in a light ion beam-plasma system with an external magnetic field. The theory and simulation comparisons illustrate the results. (author)

  11. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    International Nuclear Information System (INIS)

    Faenov, A.; Dyakin, V.; Magunov, A.; Pikuz, T.; Skobelev, I.; Pikuz, S.; Pisarczyk, T.; Wolowski, J.; Zielinska, E.

    1996-01-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N e (z) and T e (z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.)

  12. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Dyakin, V. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Magunov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, T. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Skobelev, I. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, S. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.; Kasperczyk, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Pisarczyk, T. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland)

    1996-08-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N{sub e}(z) and T{sub e}(z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.).

  13. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  14. Collective modes of the quantum one-component plasma in a magnetic field

    NARCIS (Netherlands)

    John, P.; Suttorp, L.G.

    1993-01-01

    The authors derive the collective modes of a quantum one-component plasma in a magnetic field by using a projection operator technique. With the help of these modes the long-time behaviour of the time correlation functions for the charge density, the current density and the energy density is

  15. Feedback-stabilized dual-beam laser interferometer for plasma measurements

    International Nuclear Information System (INIS)

    Yasuda, A.; Kanai, Y.; Kusunoki, J.; Kawahata, K.; Takeda, S.

    1980-01-01

    A stabilized laser interferometer is proposed with two beams as the light source. The fringe shift for a 0.63 μm beam of a He--Ne laser is used to stabilize the interferometer against the effect of mechanical vibrations via a feedback controlled speaker coil, while another beam of 3.39 μm, for which consequently the effect of the mechanical vibrations is excluded, is used to measure the plasma density. A stability of approx.1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hz. The stability for higher frequencies is limited to approx.1/30 of one fringe for 0.63 μm, which correspondes to approx.1/200 of one fringe for 3.39 μm, by the acoustic noise picked up by the speaker coil. Furthermore, the total accuracy is limited by the detector noise to approx.1/60 of one fringe for 3.39 μm, which corresponds to a line electron density of approx.5 x 10 14 cm -2 . The detector noise may be reduced by cooling the detector. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. The interferometer is tested with the measurement of a plasma in a dynamic magnetic arcjet. Since the effect of the neutral gas background is reduced in the present interferometer, the application has an advantage for the diagnostics of plasmas produced in high pressure gases

  16. Rotation and toroidal magnetic field effects on the stability of two-component jets

    Science.gov (United States)

    Millas, Dimitrios; Keppens, Rony; Meliani, Zakaria

    2017-09-01

    Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of 'spine and sheath' models of jets. Most studies focus on a two-component jet consisting of a highly relativistic inner jet and a slower - but still relativistic - outer jet surrounded by an unmagnetized environment. These jets are believed to be susceptible to a relativistic Rayleigh-Taylor-type instability, depending on the effective inertia ratio of the two components. We extend previous studies by taking into account the presence of a non-zero toroidal magnetic field. Different values of magnetization are examined to detect possible differences in the evolution and stability of the jet. We find that the toroidal field, above a certain level of magnetization σ, roughly equal to 0.01, can stabilize the jet against the previously mentioned instabilities and that there is a clear trend in the behaviour of the average Lorentz factor and the effective radius of the jet when we continuously increase the magnetization. The simulations are performed using the relativistic MHD module from the open source, parallel, grid adaptive, mpi-amrvac code.

  17. Quasi-discrete particle motion in an externally imposed, ordered structure in a dusty plasma at high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe; Lynch, Brian; Adams, Stephen; LeBlanc, Spencer [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2015-11-15

    Dusty plasmas have been studied in argon, radio frequency (rf) glow discharge plasmas at magnetic fields up to 2.5 T where the electrons and ions are strongly magnetized. Plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper electrode supports a dual mesh consisting of #24 brass and #30 aluminum wire cloth. In this experiment, we study the formation of imposed ordered structures and particle dynamics as a function of magnetic field. Through observations of trapped particles and the quasi-discrete (i.e., “hopping”) motion of particles between the trapping locations, it is possible to make a preliminary estimate of the potential structure that confines the particles to a grid structure in the plasma. This information is used to gain insight into the formation of the imposed grid pattern of the dust particles in the plasma.

  18. Comparison of mechanical concepts for $Nb_3Sn$ high field accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2084469; Peter, Schmolz

    Several magnets using Nb$_{3}$Sn as conductor are currently developed at CERN; these magnets are either slated for future updates of the LHC or for research purposes relating to future accelerators. The mechanical structure is one of the challenging aspects of superconducting high-field magnets. The main purpose of the mechanical structure is to keep the coils in compression till the emergence of the highest electromagnetic forces that are developed in the ultimate field of the magnet. Any loss of pre-compression during the magnet’s excitation would cause too large deformation of the coil and possibly a quench in the conductor owing to relative movements of strands in contact associated with excessive local heat release. However, too high pre-compression would overstrain the conductor and thereby limit the performance of the magnet. This thesis focuses on the mechanical behaviour of three of these magnets. All of them are based on different mechanical designs, “bladder and key” and “collar-based”, ...

  19. Extrap L-1 experimental stability

    International Nuclear Information System (INIS)

    Brunsell, P.; Hellblom, G.; Karlsson, P.; Mazur, S.; Nordlund, P.; Scheffel, J.

    1990-01-01

    In the Extrap scheme a Z-pinch is stabilized by imposing a strongly inhomogeneous octupole magnetic field. This field is generated by four conductor rods, each carrying equal currents I v antiparallel to the plasma current I p itself. Theoretically, interchange stability is improved by the magnetic field, as well as long-wavelength kinks due to induced currents in the plasma and in the rods. Short wavelength kinks are, as in the 1-D pinch, stabilized by FLR and viscous-resistive effects. We have performed a set of experiments in the linear Extrap L-1 device (length 40 cm, plasma radius a 2 cm, rod distance 3 cm) in order to determine optimal performance in terms of confined current (5-20 kA) and stability during the discharge length (80 μs; of the order 100 Alfven times). In this paper we summarize our results from two types of experiments; with and without external axial magnetic field. The results are compared with theory in the final paragraph. (author) 5 figs

  20. Correlation of Coronal Plasma Properties and Solar Magnetic Field in a Decaying Active Region

    Science.gov (United States)

    Ko, Yuan-Kuen; Young, Peter R.; Muglach, Karin; Warren, Harry P.; Ugarte-Urra, Ignacio

    2016-01-01

    We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7-11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while these coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a basal state (at 1.5 x 10(exp 6) K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.