Solar Wind Strahl Broadening by Self-Generated Plasma Waves
Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.
2013-01-01
This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn [Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070 (China)
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.
Bernstein wave aided laser third harmonic generation in a plasma
Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok
2016-09-01
The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.
Energy Technology Data Exchange (ETDEWEB)
Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi' an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi' an Shaanxi 710071 (China)
2013-01-15
A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.
Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet
Laroussi, Mounir; Razavi, Hamid
2015-09-01
Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.
Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.
2016-11-01
Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
Relativistic spherical plasma waves
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
Energy Technology Data Exchange (ETDEWEB)
Sodha, M.S.; Govind; Sharma, R.P. (Indian Inst. of Tech., New Delhi. Centre of Energy Studies)
1981-05-01
An investigation of the plasma wave and third harmonic generation by a Gaussian electromagnetic (em) beam, propagating in extraordinary mode in a collisionless hot magnetoplasma has been made. On account of the (VXB) force, a plasma wave at twice the pump wave frequency gets excited. The interaction of the plasma wave with the pump wave leads to third harmonic generation. By taking into account the self-focusing of the pump wave on account of non-uniform intensity distribution along the wave front, a modification is effected in the power of the plasma wave and the third harmonic em wave. The dependence of these phenomena on the strength of the static magnetic field has also been studied.
Magnetoresistive waves in plasmas
Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.
1982-10-01
The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.
Iwai, Akinori; Nakamura, Yoshihiro; Sakai, Osamu
2016-09-01
We clarify the relation between second harmonic wave (SH wave) and plasma generation in various experimental conditions by detecting properties of propagating electromagnetic waves (EM waves). Plasma has a nonlinear reaction against EM wave, generating harmonic waves which depends on electron density ne. In the case with increased ne, EM wave comes to be prevented from going into plasma with negative permittivity ɛp. Double-split-ring resonators (DSRRs), one of metamaterials, make permeability μD negative. We have shown that EM wave being volume wave can propagate into the combination of overdense plasma and DSRRs because of real negative value refractive index N. In our previous paper, we have confirmed enhanced SH wave (4.9 GHz) generation in the composite with 2.45-GHz input. In this report, we show the dependence of the SH wave emission with plasma generation on plasma parameters and gas conditions of plasma. Furthermore, we show the phase change with N variation of the composite space in the case with various input power as the proof of the negative index state.
Generation and detection of whistler wave induced space plasma turbulence at Gakona, Alaska
Rooker, L. A.; Lee, M. C.; Pradipta, R.; Watkins, B. J.
2013-07-01
We report on high-frequency wave injection experiments using the beat wave technique to study the generation of very-low-frequency (VLF) whistler waves in the ionosphere above Gakona, Alaska. This work is aimed at investigating whistler wave interactions with ionospheric plasmas and radiation belts. The beat wave technique involves injecting two X-mode waves at a difference frequency in the VLF range using the High-frequency Active Auroral Research Program (HAARP) heating facility. A sequence of beat wave-generated whistler waves at 2, 6.5, 7.5, 8.5, 9.5, 11.5, 15.5, 22.5, 28.5 and 40.5 kHz were detected in our 2011 experiments. We present Modular Ultra-high-frequency Ionospheric Radar (MUIR) (446 MHz) measurements of ion lines as the primary diagnosis of ionospheric plasma effects caused by beat wave-generated whistler waves. A magnetometer and digisonde were used to monitor the background ionospheric plasma conditions throughout the experiments. Our theoretical and data analyses show that VLF whistler waves can effectively interact with ionospheric plasmas via two different four-wave interaction processes leading to energization of electrons and ions. These preliminary results support our Arecibo experiments to study NAU-launched 40.75 kHz whistler wave interactions with space plasmas.
Generation of fast electrons by breaking of a laser-induced plasma wave
Trines, Rmgm; Goloviznin, V. V.; Kamp, L. P. J.; Schep, T. J.
2001-01-01
A one-dimensional model for fast electron generation by an intense, nonevolving laser pulse propagating through an underdense plasma has been developed. Plasma wave breaking is considered to be the dominant mechanism behind this process, and wave breaking both in front of and behind the laser pulse
Characteristics of Plasma Shock Waves Generated in the Pulsed Laser Ablation Process
Institute of Scientific and Technical Information of China (English)
李智华; 张端明; 郁伯铭; 关丽
2002-01-01
We modify the Sedov theory to describe plasma shock waves generated in a pulsed laser ablating process. We also study the propagation characteristics of plasma shock waves during the preparation process of functional thin films deposited by a pulsed laser. In particular, we discuss in detail the temporal behaviour of energy causing the difference of the propagation characteristics between the plasma shock wave and the ideal shock wave in the point explosion model. Under the same experimental conditions, the theoretical results calculated with our modified Sedov theory are in good agreement with the existing experimental data.
Relativistic spherical plasma waves
Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P
2011-01-01
Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.
Athermal Annealing of Semiconductors Using Shock Waves Generated by a Laser-Plasma
Fischer, R. P.; Grun, J.; Mignogna, R.; Donnelly, D. W.; Covington, B.
2004-07-01
We are investigating an annealing technique in which shock or sound waves generated by a laser-plasma are used to anneal a semiconductor. The athermal annealing (AA) process occurs very rapidly, which results in almost no diffusion of. dopants. A HeNe laser is used to measure the reflectivity of the silicon as a function of time. Measurements show that the annealing occurs in 1.8 μsec, which is the acoustic time scale for waves to propagate from the focus through the AA region. A knife-edge technique is employed to study acoustic waves in the sample by measuring the deflection of the probe beam. Initial results for aluminum samples irradiated at modest laser intensities (200 mJ, 50 nsec) show well-defined surface acoustic waves. However, both silicon and GaAs have more complicated structure which resemble Lamb (plate) waves.
Temporal evolution of linear kinetic Alfvén waves in inhomogeneous plasmas and turbulence generation
Goyal, Ravinder; Sharma, R. P.
2016-07-01
The coronal ion heating in the Sun is primarily considered due to Alfvén wave dissipation. The Hinode data which has provided strong evidence for the presence of Alfvén waves in the corona and in coronal loops, has lead laboratory investigations and numerical simulations of Alfvén wave propagation and damping. The inhomogeneous plasmas with steep density gradients can be employed to study such phenomenon in relatively shorter systems. This article presents a model for the propagation of Kinetic Alfvén waves (KAWs) in inhomogeneous plasma when the inhomogeneity is in transverse and parallel directions relative to the background magnetic field. The semi-analytical technique and numerical simulations have been performed to study the KAW dynamics when plasma inhomogeneity is incorporated in the dynamics. The model equations are solved in order to study the localization of KAW and their magnetic power spectrum which indicates the direct transfer of energy from lower to higher wave numbers as well as frequencies. The inhomogeneity scale lengths in both directions may control the nature of fluctuations and localization of the waves and play a very important role in the turbulence generation and its level. We present a theoretical study of the localization of KAWs, variations in magnetic field amplitude in time, and variation in the frequency spectra arising from inhomogeneities. The relevance of the model to space and laboratory observations is discussed.
Tsai, Ya-Yi; Tsai, Jun-Yi; I, Lin
2016-06-01
Rogue waves--rare uncertainly emerging localized events with large amplitudes--have been experimentally observed in many nonlinear wave phenomena, such as water waves, optical waves, second sound in superfluid He II (ref. ) and ion acoustic waves in plasmas. Past studies have mainly focused on one-dimensional (1D) wave behaviour through modulation instabilities, and to a lesser extent on higher-dimensional behaviour. The question whether rogue waves also exist in nonlinear 3D acoustic-type plasma waves, the kinetic origin of their formation and their correlation with surrounding 3D waveforms are unexplored fundamental issues. Here we report the direct experimental observation of dust acoustic rogue waves in dusty plasmas and construct a picture of 3D particle focusing by the surrounding tilted and ruptured wave crests, associated with the higher probability of low-amplitude holes for rogue-wave generation.
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
Whistler Wave generation by an electron beam in a LAPTAG Plasma Physics experiment
Bridges, Gabriel; Pribyl, Patrick; Gekelman, Walter; Thomas, Sam; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Baker, Bob; Marmie, Ken; Wolman, Ben; Buckley-Bonnano, Samuel
2015-11-01
A multi-grid pulsed electron beam (Ebeam = 1-4.8 KV, area =1.32 cm2, τ >5 μs) is inserted into a background plasma (He, n = 5X1010 cm3, B0z = 80 G, L = 1.5 m, dia = 40 cm). The pulsed electron beam power supply, can generate up to 4800 Volts at 10 Amps and was constructed by the LAPTAG high school students. The beam can be oriented at any angle with respect to the background magnetic field. The pulsed beam generates whistler waves by Cherenkov radiation. The waves are detected with 3 axis magnetic pickup probes which can be moved in planes transverse or parallel to the background magnetic field under computer control. The whistler wave pattern is used to determine the wavenumber k and Fourier analysis of the signal determines ω. The wave dispersion relation is compared to theory. Work done at BaPSF at UCLA and supported by NSF and DOE.
Energy Technology Data Exchange (ETDEWEB)
Savel' ev, Sergey; Yampol' skii, V A; Rakhmanov, A L; Nori, Franco [Advanced Science Institute, Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198 (Japan)
2010-02-15
The recent growing interest in terahertz (THz) and sub-THz science and technology is due to its many important applications in physics, astronomy, chemistry, biology and medicine, including THz imaging, spectroscopy, tomography, medical diagnosis, health monitoring, environmental control, as well as chemical and biological identification. We review the problem of linear and nonlinear THz and sub-THz Josephson plasma waves in layered superconductors and their excitations produced by moving Josephson vortices. We start by discussing the coupled sine-Gordon equations for the gauge-invariant phase difference of the order parameter in the junctions, taking into account the effect of breaking the charge neutrality, and deriving the spectrum of Josephson plasma waves. We also review surface and waveguide Josephson plasma waves. The spectrum of these waves is presented, and their excitation is discussed. We review the propagation of weakly nonlinear Josephson plasma waves below the plasma frequency, {omega}{sub J}, which is very unusual for plasma-like excitations. In close analogy to nonlinear optics, these waves exhibit numerous remarkable features, including a self-focusing effect and the pumping of weaker waves by a stronger one. In addition, an unusual stop-light phenomenon, when {partial_derivative}{omega}/{partial_derivative}k {approx} 0, caused by both nonlinearity and dissipation, can be observed in the Josephson plasma waves. At frequencies above {omega}{sub J}, the current-phase nonlinearity can be used for transforming continuous sub-THz radiation into short, strongly amplified, pulses. We also present quantum effects in layered superconductors, specifically, the problem of quantum tunneling of fluxons through stacks of Josephson junctions. Moreover, the nonlocal sine-Gordon equation for Josephson vortices is reviewed. We discuss the Cherenkov and transition radiations of the Josephson plasma waves produced by moving Josephson vortices, either in a single
DEFF Research Database (Denmark)
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
1993-01-01
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.
Generation of magnetic fields by the ponderomotive force of electromagnetic waves in dense plasmas
Shukla, P K; Shukla, Nitin; Stenflo, Lennart
2010-01-01
We show that the non-stationary ponderomotive force of a, large-amplitude electromagnetic move in a very dense quantum plasma wall streaming degenerate electrons can spontaneously create d.c. magnetic fields. The present result can account for the seed magnetic fields in compact astrophysical objects and in the next-generation intense laser-solid density, plasma interaction experiments.
Generation of Non-Inductive H-Mode Plasmas with 30 MHz Fast Wave Heating in NSTX-U
Taylor, G.; Bertelli, N.; Gerhardt, S. P.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Poli, F. M.; Wilson, J. R.; Raman, R.
2016-10-01
A Fusion Nuclear Science Facility based on a spherical tokamak must generate the plasma current (Ip) with little or no central solenoid field. The NSTX-U non-inductive (NI) plasma research program is addressing this goal by developing NI start-up, ramp-up and sustainment scenarios separately. 4 MW of 30 MHz fast wave power is predicted to ramp Ip to 400 kA, a level sufficient to avoid significant shine-through of 90 keV ions from neutral beam injection. In 2010, experiments in NSTX demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a NI Ip fraction, fNI, around 0.7 at the maximum axial toroidal field (BT(0)) in NSTX of 0.55 T. NSTX-U is a major upgrade of NSTX that will eventually allow the generation of plasmas with BT(0) up to 1 T. Full wave simulations of 30 MHz HHFW heating in NSTX-U predict reduced FW power loss in the plasma edge as BT(0) is increased. HHFW experiments this year aim to couple 3 - 4 MW of 30 MHz HHFW power into an Ip = 250 - 350 kA plasma with BT(0) up to 0.75 T to generate a fNI = 1 H-mode plasma. These experiments should benefit from the improved fast wave coupling predicted at higher BT(0) in NSTX-U. Work supported by USDOE Contract No. DE-AC02-09CH11466.
Waves generated in the vicinity of an argon plasma gun in the ionosphere
Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.
1993-01-01
Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.
A two-stream plasma electron microwave source for high-power millimeter wave generation, phase 1
Guest, Gareth E.; Dandl, Raphael A.
1989-03-01
A novel high power millimeter/microwave source is proposed in which one or more pairs of interpenetrating streams of electrons, flowing through a background plasma in a static magnetic field are used to generate a hot-electron plasma that is confined in a mirror-like magnetic field. Energy stored in the anisotropic, hot-electron plasma is then used to amplify pulses of unstable plasma waves to large amplitude by selective deactivation of mechanisms that stabilize the hot-electron plasma during the energy accumulation phase when the density of hot electrons is rapidly increased through the beam-plasma interaction. The Phase 1 program has yielded a design for an experimental arrangement capable of verifying the key aspects of this novel source concept, as well as a theoretical framework for interpreting the empirical Phase 2 results produced by the experimental device and extrapolating those results to evaluate the suitability of the proposed source to meet the requirements of various high power microwave and millimeter wave defense and industrial applications. The experiments will be carried out in a timely and cost-effective way by employing the AMPHED (a CW magetic mirror) experimental facility at Applied Microwave Plasma Concepts (AMPC).
Dust acoustic shock wave generation due to dust charge variation in a dusty plasma
Indian Academy of Sciences (India)
M R Gupta; S Sarkar; M Khan; Samiran Ghosh
2003-12-01
In a dusty plasma, the non-adiabaticity of the charge variation on a dust grain surface results in an anomalous dissipation. Analytical investigation shows that this results in a small but ﬁnite amplitude dust acoustic (DA) wave propagation which is described by the Korteweg–de Vries–Burger equation. Results of the numerical investigation of the propagation of large-amplitude dust acoustic stationary shock wave are presented here using the complete set of non-linear dust ﬂuid equations coupled with the dust charging equation and Poisson equation. The DA waves are of compressional type showing considerable increase of dust density, which is of signiﬁcant importance in astrophysical context as it leads to enhanced gravitational attraction considered as a viable process for star formation. The DA shock transition to its far downstream amplitude is oscillatory in nature due to dust charge ﬂuctuations, the oscillation amplitude and shock width depending on the ratio pd/ch and other plasma parameters.
Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target
Energy Technology Data Exchange (ETDEWEB)
Pisarczyk, T.; Kalinowska, Z.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Kasperczuk, A.; Parys, P.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gus' kov, S. Yu.; Demchenko, N. N. [P.N. Lebedev Physical Institute of RAS, 53 Leninsky Ave., 119 991 Moscow (Russian Federation); Batani, D.; Antonelli, L.; Folpini, G.; Maheut, Y. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence (France); Baffigi, F.; Cristoforetti, G.; Gizzi, L. A.; Koester, P.; Labate, L. [Intense Laser Irradiation Laboratory at INO-CNR, Pisa (Italy); Krousky, E. [Institute of Plasma Physics ASCR, v.v.i., ZaSlovankou 3, 182 00 Prague 8 (Czech Republic); and others
2014-01-15
Efficiency of the laser radiation energy transport into the shock wave generated in layered planar targets (consisting of massive Cu over coated by thin CH layer) was investigated. The targets were irradiated using two laser pulses. The 1ω pulse with the energy of ∼50 J produced a pre-plasma, imitating the corona of the pre-compressed inertial confinement fusion target. The second main pulse used the 1ω or 3ω laser harmonics with the energy of ∼200 J. The influence of the pre-plasma on parameters of the shock wave was determined from the crater volume measurements and from the electron density distribution measured by 3-frame interferometry. The experimental results show that the energy transport by fast electrons provides a definite contribution to the dynamics of the ablative process, to the shock wave generation, and to the ablation pressure in dependence on the target irradiation conditions. The strong influence of the pre-plasma on the investigated process was observed in the 1ω case. Theoretical analysis supports the explanation of experimental results.
Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target
Pisarczyk, T.; Gus'kov, S. Yu.; Kalinowska, Z.; Badziak, J.; Batani, D.; Antonelli, L.; Folpini, G.; Maheut, Y.; Baffigi, F.; Borodziuk, S.; Chodukowski, T.; Cristoforetti, G.; Demchenko, N. N.; Gizzi, L. A.; Kasperczuk, A.; Koester, P.; Krousky, E.; Labate, L.; Parys, P.; Pfeifer, M.; Renner, O.; Smid, M.; Rosinski, M.; Skala, J.; Dudzak, R.; Ullschmied, J.; Pisarczyk, P.
2014-01-01
Efficiency of the laser radiation energy transport into the shock wave generated in layered planar targets (consisting of massive Cu over coated by thin CH layer) was investigated. The targets were irradiated using two laser pulses. The 1ω pulse with the energy of ˜50 J produced a pre-plasma, imitating the corona of the pre-compressed inertial confinement fusion target. The second main pulse used the 1ω or 3ω laser harmonics with the energy of ˜200 J. The influence of the pre-plasma on parameters of the shock wave was determined from the crater volume measurements and from the electron density distribution measured by 3-frame interferometry. The experimental results show that the energy transport by fast electrons provides a definite contribution to the dynamics of the ablative process, to the shock wave generation, and to the ablation pressure in dependence on the target irradiation conditions. The strong influence of the pre-plasma on the investigated process was observed in the 1ω case. Theoretical analysis supports the explanation of experimental results.
Lominadze, D G
2013-01-01
Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f
Energy Technology Data Exchange (ETDEWEB)
Podesta, John J. [Space Science Institute, Boulder, Colorado 80301 (United States)
2012-08-15
The electric field generated by a time varying point charge in a three-dimensional, unbounded, spatially homogeneous plasma with a uniform background magnetic field and a uniform (static) flow velocity is studied in the electrostatic approximation which is often valid in the near field. For plasmas characterized by Maxwell distribution functions with isotropic temperatures, the linearized Vlasov-Poisson equations may be formulated in terms of an equivalent integral equation in the time domain. The kernel of the integral equation has a relatively simple mathematical form consisting of elementary functions such as exponential and trigonometric functions (sines and cosines), and contains no infinite sums of Bessel functions. Consequently, the integral equation is amenable to numerical solutions and may be useful for the study of the impulse response of magnetized plasmas and, more generally, the response to arbitrary waveforms.
Dokgo, Kyunghwan; Woo, Minho; Choi, Cheong-Rim; Min, Kyoung-Wook; Hwang, Junga
2016-09-01
Generation of coherent ion acoustic solitary waves (IASWs) in inhomogeneous plasmas by an odd eigenmode (OEM) of electron holes (EHs) is investigated using 1D electrostatic particle-in-cell (PIC) simulations. The OEM oscillates at a frequency comparable to the trapped electron bouncing frequency, as also demonstrated by Lewis' theoretical formalism about the linear eigenmode in Bernstein-Greene-Kruskal (BGK) equilibrium. The density gradient in the inhomogeneous plasmas causes asymmetry in the EH potential structure associated with the OEM, whose amplitude grows rapidly as it propagates through the density gradient region. As the ions interact with this asymmetric potential, which oscillates slowly enough for the ions to respond, they are ejected to the lower density side with a larger potential amplitude, forming a chain of IASWs coherently with the oscillation of the OEM.
Explosive Line Wave Generators
2013-12-01
curvature produced by each line wave generator. Piezoelectric pins were used for an additional assessment of the explosive lens design...to a visual assessment of the wave curvature from the high speed camera images, the explosive lens design was also evaluated using piezoelectric pins...High Explosive Firing Complex (HEFC). The various explosive line wave generators were taped vertically on a supporting board and the detonation wave
Dokgo, K.; Woo, M.; Choi, C.; Min, K. W.; Hwang, J.
2015-12-01
The generation of coherent ion acoustic solitary waves (IASWs) due to interactions between an electron hole (EH) and density gradient of plasma is investigated by both 1D particle-in-cell (PIC) simulation and theory. In our simulation, an EH is generated by plasma blob injection at the beginning. When the EH passes density gradient region, two features are observed: one is oscillations of EH bipolar field and another is IASWs generation. We found that these E field oscillations correspond to odd-symmetric trapped mode in the EH (OSTM). Using theoretical formalism introduced by Lewis, we theoretically derived the structure and the dispersion relation of OSTM. The OSTM structures calculated from simulation and theory are in good agreement. In the presence of density gradient, OSTM structure is distorted and become spatially asymmetric; its potential is weak in the higher density side and strong in the lower density side. Ions are pulled and pushed by the OSTM potential. As a results of potential difference, ions are accelerated to the lower density side then they formed IASWs. These process are repeated in the density gradient region when EH are passing, so IASWs are generated coherently.
Undamped electrostatic plasma waves
Valentini, F; Califano, F; Pegoraro, F; Veltri, P; Morrison, P J; O'Neil, T M
2015-01-01
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the $(k,\\omega_{_R})$ plane ($\\omega_{_R}$ being the real part of the wave frequency and $k$ the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existenc...
Directory of Open Access Journals (Sweden)
D. Yu. Klimushkin
2008-06-01
Full Text Available The generation of a high-m Alfvén wave by substorm injected energetic particles in the magnetosphere is studied. The wave is supposed to be emitted by an alternating current created by the drifting particle cloud or ring current inhomogeneity. It is shown that the wave appears in some azimuthal location simultaneously with the particle cloud arrival at the same spot. The value of the azimuthal wave number is determined as m~ω/ωd, where ω is the eigenfrequency of the standing Alfvén wave and ωd is the particle drift frequency. The wave propagates westward, in the direction of the proton drift. Under the reasonable assumption about the density of the energetic particles, the amplitude of the generated wave is close to the observed amplitudes of poloidal ULF pulsations.
Low-Frequency Waves in Space Plasmas
Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery
2016-02-01
Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.
The energy associated with MHD waves generation in the solar wind plasma
delaTorre, A.
1995-01-01
Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.
Solid expellant plasma generator
Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)
2010-01-01
An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.
Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos
2015-11-01
ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f
Energy Technology Data Exchange (ETDEWEB)
Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain [Physics Division, Institute of Nuclear Energy Research (INER), Longtan, Taoyuan County 32546, Taiwan (China); Leou, Keh-Chyang [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)
2014-09-14
With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.
Energy Technology Data Exchange (ETDEWEB)
Winske, D., E-mail: winske@lanl.gov; Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-02-15
We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (β{sub e} = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with T{sub i} = T{sub e}. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (β{sub i} = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.
Winske, D.; Daughton, W.
2015-02-01
We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.
Chen, Hsin-Liang; Tu, Yen-Cheng; Hsieh, Cheng-Chang; Lin, Deng-Lain; Leou, Keh-Chyang
2014-09-01
With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in time and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.
Turbulence generation by waves
Energy Technology Data Exchange (ETDEWEB)
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Gravitational waves in a free isotropic plasma. II
Energy Technology Data Exchange (ETDEWEB)
Galtsov, D.V.; Grats, IU.V.; Melkumova, E.IU.
1985-07-01
The generation of gravitational waves in an isotropic homogeneous plasma is investigated theoretically, within the frame work of a recently developed formalism. The effectiveness of different mechanisms generating gravitational waves is considered. Attention is given to thermal gravitational radiation by a two-component plasma; the transformation of longitudinal plasma waves into gravitons due to current fluctuations; and the generation of gravitational waves due to Langmuir turbulence. It is shown that collective plasma effects play a critical role in the generation of gravitational waves.
Physics issues associated with low-beta plasma generators
Borovsky, Joseph E.
1992-01-01
Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.
Energy Technology Data Exchange (ETDEWEB)
Antonov, O.; Efimov, S.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel); Bernshtam, V. [Weizmann Institute of Science, Rehovot 76100 (Israel)
2015-05-15
The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple method of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.
Zheleznyakov, V. V.; Bespalov, P. A.
2016-04-01
In part I of this work [1], we study the dispersion characteristics of low-frequency waves in a relativistic electron-positron plasma. In part II, we examine the electromagnetic wave instability in this plasma caused by an admixture of nonrelativistic protons with energy comparable with the energy of relativistic low-mass particles. The instability occurs in the frequency band between the fundamental harmonic of proton gyrofrequency and the fundamental harmonic of relativistic electron gyrofrequency. The results can be used for the interpretation of known observations of the pulsar emissions obtained with a high time and frequency resolution. The considered instability can probably be the initial stage of the microwave radio emission nanoshots typical of the pulsar in the Crab Nebula.
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Optical plasma torch electron bunch generation in plasma wakefield accelerators
Directory of Open Access Journals (Sweden)
G. Wittig
2015-08-01
Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.
Nonlinear plasma wave in magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
2013-08-15
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.
Zakharov, Yu P.; Ponomarenko, A. G.; Tishchenko, V. N.; Antonov, V. M.; Melekhov, A. V.; Posukh, V. G.; Prokopov, P. A.; Terekhin, V. A.
2016-05-01
We present the results of first experiments on the formation of collisionless shock waves (CSWs) in background plasma by injecting laser plasma bunches transverse to the magnetic field (as a piston) with a maximum energy up to 100 J per unit of solid angle and with a high enough degree of ion magnetisation. With this aim in view, on a unique KI-1 facility at the Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences (ILP), a plastic (polyethylene) target irradiated by a CO2 laser in the most energy-efficient regime (near the plasma formation threshold) and a highly ionised hydrogen plasma with a high concentration in a large volume (not less than 1 m3) have been employed. As a result of model experiments performed on the basis of a model of collisionless interaction of plasma flows, developed at the VNIIEF and being adequate to the problem under consideration, not only an intensive, background-induced, deceleration of a super-Alfven laser plasma flow, but also the formation in that flow of a strong perturbation having the properties of a subcritical CSW and propagating transverse to the magnetic field, have been first registered in the laboratory conditions.
Frozen waves: experimental generation.
Vieira, Tarcio A; Gesualdi, Marcos R R; Zamboni-Rached, Michel
2012-06-01
Frozen waves (FWs) are very interesting particular cases of nondiffracting beams whose envelopes are static and whose longitudinal intensity patterns can be chosen a priori. We present here for the first time (that we know of) the experimental generation of FWs. The experimental realization of these FWs was obtained using a holographic setup for the optical reconstruction of computer generated holograms (CGH), based on a 4-f Fourier filtering system and a nematic liquid crystal spatial light modulator (LC-SLM), where FW CGHs were first computationally implemented, and later electronically implemented, on the LC-SLM for optical reconstruction. The experimental results are in agreement with the corresponding theoretical analytical solutions and hold excellent prospects for implementation in scientific and technological applications.
Ermolov, A.; Mak, K. F.; Frosz, M. H.; Travers, J. C.; Russell, P. St. J.
2015-09-01
We report on the generation of a three-octave-wide supercontinuum extending from the vacuum ultraviolet (VUV) to the near infrared, spanning at least 113-1000 nm (i.e., 11 -1.2 eV ), in He-filled hollow-core kagome-style photonic crystal fiber. Numerical simulations confirm that the main mechanism is an interaction between dispersive-wave emission and plasma-induced blue-shifted soliton recompression around the fiber zero dispersion frequency. The VUV part of the supercontinuum, the modeling of which proves to be coherent and possesses a simple phase structure, has sufficient bandwidth to support single-cycle pulses of 500 asec duration. We also demonstrate, in the same system, the generation of narrower-band VUV pulses through dispersive-wave emission, tunable from 120 to 200 nm with efficiencies exceeding 1 % and VUV pulse energies in excess of 50 nJ.
Indian Academy of Sciences (India)
M Singh; P N Deka
2006-03-01
A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.
Waves and instabilities in plasmas
Chen Liu
1987-01-01
The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.
Energy Technology Data Exchange (ETDEWEB)
Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)
2017-03-18
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.
2016-09-01
Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.
Nonlinear Plasma Wave in Magnetized Plasmas
Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke
2013-01-01
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].
Shock Wave Dynamics in Weakly Ionized Plasmas
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
The Potential for Ambient Plasma Wave Propulsion
Gilland, James H.; Williams, George J.
2016-01-01
A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at
Wave Generation in Physical Models
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...
Brodin, G.; Stenflo, L.
2017-03-01
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large.
Ion Acoustic Waves in the Presence of Electron Plasma Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Electron waves and resonances in bounded plasmas
Vandenplas, Paul E
1968-01-01
General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.
Institute of Scientific and Technical Information of China (English)
DAI Hou-Mei; LIU Jin-Song
2011-01-01
A transient photocurrent model is used to explain terahertz ermission from gas plasma irritated by two-color laser pulses,with one the second harmonic of the other.Taking multiple degrees of ionization into account,the gas ionization process at different laser intensities from 1014 W/cm2 to 1015 W/cm2 is discussed.The results show that when Iω ≥ 6 × 1014 W/cm2,double ionization plays an important role in producing electrons.The corresponding terahertz spectra and waveforms are calculated,showing that increasing laser intensity can broaden the spectra to high frequencies and enhance the terahertz field.A promising method for generating terahertz (THz) waves involves emission from laser induced gas plasmas,which was first introduced hy Hamster et al.[1,2] By focusing laser femtosecond pulses with intensity greater than the thresholl for ionization of the gas molecules,one can obtain significant plasma formation.The ionized electrons will then accelerate by the lapser ponderomotive force,thus an electromagnetic pulse at THz frcqucncies can be produced.Since then,other plasma-based THz generation scheines have been proposed.L(o)ffler et al.,[3,4] applied an external dc bias to the plasma region,leading to an approximately one order of magnitude increase in the THz field strength.%A transient photocurrent model is used to explain terahertz emission from gas plasma irritated by two-color laser pulses, with one the second harmonic of the other. Taking multiple degrees of iom'xntion into account, the gas ionizntion process at different laser intensities from 1014 W/cm2 to 1015 W/cm2 is discussed. The results show that when /w > 6 X 1014 W/cin2, double ionization plays an important role in producing electrons. The corresponding terahertz spectra and waveforms are calculated, showing that increasing laser intensity can broaden the spectra to high frequencies and enhance the terahertz Geld.
Efficient Generation of Freak Waves in Laboratory
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In the present study, Kriebel's method is improved to generate freak waves in laboratory. The improved method superposes a random wave train with two transient wave trains to simulate freak wave events in a wave tank. The freak waves are more nonlinear than what generated with Kriebel's method of the same energy. It can also generate freak waves to satisfy all the qualifications of the adopted definition with less energy than Kriebel's and can hardly influence the significant wave height.
An amplitude modulated radio frequency plasma generator
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo
2017-04-01
A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.
Wave rectification in plasma sheaths surrounding electric field antennas
Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.
1994-01-01
Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.
Indian Academy of Sciences (India)
Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta
2013-02-01
The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.
Dichromatic Langmuir waves in degenerate quantum plasma
Dubinov, A. E.; Kitayev, I. N.
2015-06-01
Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.
Radiation Heat Waves in Gold Plasma
Institute of Scientific and Technical Information of China (English)
YANG Jia-Min; XU Yan; DING Yao-Nan; LAI Dong-Xian; DING Yong-Kun; JIANG Shao-En; ZHENG Zhi-Jian; MIAO Wen-Yong
2003-01-01
Eight beams 0.35/um laser with pulse duration of about 1.0ns and energy of 260 J per beam was injected into a cylindrical cavity to generate intense x-ray radiation on the "Shengguang I" high power laser facility. Gold foils with a thickness in the range of 0.09-0.52/j,m were attached on the diagnostic hole of the cavity and ablated by the intense x-ray radiation. The propagating radiation heat wave in the high-Z gold plasma was observed clearly. For comparison, we also simulated the experimental results.
Plasma Waves as a Benchmark Problem
Kilian, Patrick; Schreiner, Cedric; Spanier, Felix
2016-01-01
A large number of wave modes exist in a magnetized plasma. Their properties are determined by the interaction of particles and waves. In a simulation code, the correct treatment of field quantities and particle behavior is essential to correctly reproduce the wave properties. Consequently, plasma waves provide test problems that cover a large fraction of the simulation code. The large number of possible wave modes and the freedom to choose parameters make the selection of test problems time consuming and comparison between different codes difficult. This paper therefore aims to provide a selection of test problems, based on different wave modes and with well defined parameter values, that is accessible to a large number of simulation codes to allow for easy benchmarking and cross validation. Example results are provided for a number of plasma models. For all plasma models and wave modes that are used in the test problems, a mathematical description is provided to clarify notation and avoid possible misunderst...
Electromagnetic waves in a strong Schwarzschild plasma
Energy Technology Data Exchange (ETDEWEB)
Daniel, J.; Tajima, T.
1996-11-01
The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.
Internal Wave Generation by Convection
Lecoanet, Daniel Michael
In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the
Koons, H. C.; Roeder, J. L.; Bauer, O. H.; Haerendel, G.; Treumann, R.
1987-01-01
Nonlinear wave decay processes have been detected in the solar wind by the plasma wave experiment aboard the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM spacecraft. The main process is the generation of ultralow-frequency ion acoustic waves from the decay of Langmuir waves near the electron plasma frequency. Frequently, this is accompanied by an enhancement of emissions near twice the plasma frequency. This enhancement is most likely due to the generation of electromagnetic waves from the coalescence of two Langmuir waves. These processes occur within the electron foreshock in front of the earth's bow shock.
Fundamental plasma emission involving ion sound waves
Cairns, Iver H.
1987-01-01
The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.
Geotail MCA Plasma Wave Investigation Data Analysis
Anderson, Roger R.
1997-01-01
significant problems of sun-earth connections. Plasma waves are involved in the energization and de-energization of plasma and energetic particles via numerous wave-particle interaction processes. Plasma waves in many instances are the source for the heating or cooling of the particles. They can cause particle precipitation by scattering particles into the loss cone. They move particles across boundaries in mass and energy dependent ways. Identifying the waves and the instabilities which produce them are thus crucial for understanding the plasma processes. Wave-particle interaction processes are especially important at various boundaries between the different regions of geospace including the bow shock, magnetopause, and interfaces in the geomagnetic tail between the magnetosheath, lobe, plasmasheet, boundary layers, and neutral sheet. In addition to identifying the characteristics of the instabilities and generation mechanisms encountered, plasma wave measurement are used in conjunction with other fields and particle measurements to identify the region of space the spacecraft is in or the boundary that is being crosed.
Solitary Waves in Relativistic Electromagnetic Plasma
Institute of Scientific and Technical Information of China (English)
XIE Bai-Song; HUA Cun-Cai
2005-01-01
Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.
Kirichok, A V; Pryimak, A V; Zagorodny, A G
2015-01-01
The development of one-dimensional parametric instabilities of intense long-wave plasma waves is considered in terms of the so-called hybrid models, when electrons are treated as a fluid and ions are regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model -- ZHM) or greater (Silin's hybrid model -- SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency (LF) oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. Reduced absorption of the HF field leads to the retardation of the HF field burnout within plasma density cavities and to the broadening of the HF spectrum. At the same time, the i...
A laboratory search for plasma erosion by Alfven waves
Vincena, S.; Gekelman, W.; Pribyl, P.
2007-12-01
Obliquely propagating shear Alfven waves with transverse wavelengths on the order of the electron inertial length or even the ion gyro-radius are commonly observed in the earth's low-altitude auroral zones. These regions are also replete with observations of electron beams and transversely heated ions. A kinetic treatment of shear Alfven wave-particle interaction reveals how these waves can be responsible for some of the observed particle acceleration. The auroral plasma environment is further enriched by the presence of field-aligned depletions in plasma density, and it has been suggested* that the Alfven waves may, in fact, be the cause of the erosion of ionospheric density. In this laboratory experiment, shear waves will be launched using a variety of proven antennas, and also allowed to grow spontaneously as Drift-Alfven modes in seeded density depletions**. Detailed measurements of the wave magnetic fields in the perpendicular density gradient regions will be presented which demonstrate the generation of short perpendicular wave scales due to the perpendicular gradient in parallel wave phase speed. Miniature in-situ particle diagnostics will also be used to look for electron and ion acceleration. The waves will also be launched into an increasing region of background magnetic field in an attempt to model the ratios of Alfven speed to electron thermal speed, and density gradient scale length to electron inertial length appropriate to the earth's auroral zone. Preliminary results will be presented on the efficacy of shear Alfven waves to self-generate plasma density depletions, or deepen ambient density inhomogeneities. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device. *Chaston, et al., "Ionospheric erosion by Alfven Waves," JGR, V 111, A03206, 2006. **Penano, et al., "Drift-Alfven fluctuations associated with a narrow pressure striation," Phys. Plasmas, V 7, Issue 1, pp. 144-157 (2000).
Alfven Wave Tomography for Cold MHD Plasmas
Energy Technology Data Exchange (ETDEWEB)
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
Polar Plasma Wave Investigation Data Analysis in the Extended Mission
Gurnett, Donald A.
2004-01-01
The low latitude boundary layer (LLBL) is a region where solar wind momentum and energy is transferred to the magnetosphere. Enhanced "broadband" electric plasma waves from less than 5 Hz to 10(exp 5) Hz and magnetic waves from less than 5 Hz to the electron cyclotron frequency are characteristic of the LLBL. Analyses of Polar plasma waves show that these "broadband" waves are actually discrete electrostatic and electromagnetic modes as well as solitary bipolar pulses (electron holes). It is noted that all wave modes can be generated by approx. 100 eV to approx. 10 keV auroral electrons and protons. We will review wave-particle interactions, with focus on cross-diffusion rates and the contributions of such interactions toward the formation of the boundary layer. In summary, we will present a scenario where the global solar wind-magnetosphere interaction is responsible for the auroral zone particle beams, and hence for the generation of plasma waves and the formation of the boundary layer. It is speculated that all planetary magnetospheres will have boundary layers and they will be characterized by similar currents and plasma wave modes.
High latitude electromagnetic plasma wave emissions
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
Opacity of Shock-Generated Argon Plasmas
Institute of Scientific and Technical Information of China (English)
王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛
2001-01-01
Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).
Energy Technology Data Exchange (ETDEWEB)
Wijnands, T.J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere
1997-03-01
This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author) 151 refs.
Energy Technology Data Exchange (ETDEWEB)
Kirichok, A. V., E-mail: sandyrcs@gmail.com; Kuklin, V. M.; Pryimak, A. V. [Institute for High Technologies, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022 (Ukraine); Zagorodny, A. G. [Bogolyubov Institute for Theoretical Physics, 14-b, Metrolohichna str., Kiev 03680 (Ukraine)
2015-09-15
The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.
Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.
2015-09-01
The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Wave-driven Countercurrent Plasma Centrifuge
Energy Technology Data Exchange (ETDEWEB)
A.J. Fetterman and N.J. Fisch
2009-03-20
A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.
Effect of wave localization on plasma instabilities
Energy Technology Data Exchange (ETDEWEB)
Levedahl, W.K.
1987-01-01
The Anderson model of wave localization in random media is invoked to study the effect of solar-wind density turbulence on plasma processes associated with the solar type-III radio burst. ISEE-3 satellite data indicate that a possible model for the type-III process is the parametric decay of Langmuir waves excited by solar-flare electron streams into daughter electromagnetic and ion-acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir-wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Riegel criteria for wave localization in the solar wind with observed density fluctuations {approximately}1%. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action-principle approach is used to develop a theory of nonlinear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability.
Generation of auroral kilometric radiation in inhomogeneous magnetospheric plasma
Burinskaya, T. M.; Shevelev, M. M.
2017-01-01
The generation of auroral kilometric radiation in a narrow 3D plasma cavity, in which a weakly relativistic electron flow is propagated along the magnetic field against a low-density cold background plasma, is studied. The time dynamics of the propagation and intensification of waves are analyzed using geometric optics equations. The waves have different wave vector components and start from the cavity center at an altitude of about the Earth's radius at plasma parameters typical for the auroral zone at this altitude. It is shown that the global inhomogeneity of the Earth's magnetic field is of key importance in shaping the auroral kilometric radiation spectra.
Interchange Reconnection Alfven Wave Generation
Lynch, B J; Li, Y
2014-01-01
Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we present further analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfven waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly-open field lines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high frequency component associated with the current sheet/reconnection site and an extended low frequency component associ...
Generation of radiation by intense plasma and electromagnetic undulators
Energy Technology Data Exchange (ETDEWEB)
Joshi, C.
1991-10-01
We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs.
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Kinetic Alfven wave turbulence in space plasmas
Energy Technology Data Exchange (ETDEWEB)
Sharma, R.P. [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India); Kumar, Sachin, E-mail: dynamicalfven@gmail.co [Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, New Delhi (India)
2010-07-26
This work presents the derivation of nonlinear coupled equations for the evolution of solar wind turbulence. These equations are governing the coupled dynamics of kinetic Alfven wave and ion acoustic wave. Numerical simulation of these equations is also presented. The ponderomotive nonlinearity is incorporated in the wave dynamics. Filamentation of kinetic Alfven wave and the turbulent spectra are presented in intermediate-{beta} plasmas at heliocentric distances (0.3 AU{<=}r<1.0 AU). The growing filaments and steeper turbulent spectra (of power law k{sup -S}, 5/3{<=}S{<=}3) can be responsible for plasma heating and particle acceleration in solar wind.
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...
Instability wave control in turbulent jet by plasma actuators
Kopiev, V. F.; Akishev, Y. S.; Belyaev, I. V.; Berezhetskaya, N. K.; Bityurin, V. A.; Faranosov, G. A.; Grushin, M. E.; Klimov, A. I.; Kopiev, V. A.; Kossyi, I. A.; Moralev, I. A.; Ostrikov, N. N.; Taktakishvili, M. I.; Trushkin, N. I.; Zaytsev, M. Yu
2014-12-01
Instability waves in the shear layer of turbulent jets are known to be a significant source of jet noise, which makes their suppression important for the aviation industry. In this study we apply plasma actuators in order to control instability waves in the shear layer of a turbulent air jet at atmospheric pressure. Three types of plasma actuators are studied: high-frequency dielectric barrier discharge, slipping surface discharge, and surface barrier corona discharge. Particle image velocimetry measurements of the shear layer demonstrate that the plasma actuators have control authority over instability waves and effectively suppress the instability waves artificially generated in the shear layer. It makes these actuators promising for application in active control systems for jet noise mitigation.
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Drift waves in a weakly ionized plasma
DEFF Research Database (Denmark)
Popovic, M.; Melchior, H.
1968-01-01
A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....
Energy Technology Data Exchange (ETDEWEB)
Dumont, R
2004-07-01
This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)
Wind generated rogue waves in an annular wave flume
Toffoli, A; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M
2016-01-01
We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves, where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an {\\it unlimited-fetch} condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.
Wind Generated Rogue Waves in an Annular Wave Flume.
Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M
2017-04-07
We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.
Chaotic ion motion in magnetosonic plasma waves
Varvoglis, H.
1984-01-01
The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.
Water waves generated by underwater explosion
Mehaute, Bernard Le
1996-01-01
This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...
Generalized Langmuir Waves in Magnetized Kinetic Plasmas
Willes, A. J.; Cairns, Iver H.
2000-01-01
The properties of unmagnetized Langmuir waves and cold plasma magnetoionic waves (x, o, z and whistler) are well known. However, the connections between these modes in a magnetized kinetic plasma have not been explored in detail. Here, wave properties are investigated by numerically solving the dispersion equation derived from the Vlasov equations both with and without a beam instability present. For omega(sub p)>Omega(sub e), it is shown that the generalized Langmuir mode at oblique propagation angles has magnetic z-mode characteristics at low wave numbers and thermal Langmuir mode characteristics at high wave numbers. For omega(sub p)Langmuir mode instead connects to the whistler mode at low wave numbers. The transition from the Langmuir/z mode to the Langmuir/whistler mode near omega(sub p) = Omega(sub e) is rapid. In addition, the effects on wave dispersion and polarization after adding a beam are investigated. Applications of this theory to magnetized Langmuir waves in Earth's foreshock and the solar wind, to waves observed near the plasma frequency in the auroral regions, and to solar type III bursts are discussed.
Twisted electron-acoustic waves in plasmas
Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.
2016-08-01
In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.
Generation of whistler-wave heated discharges with planar resonant RF networks.
Guittienne, Ph; Howling, A A; Hollenstein, Ch
2013-09-20
Magnetized plasma discharges generated by a planar resonant rf network are investigated. A regime transition is observed above a magnetic field threshold, associated with rf waves propagating in the plasma and which present the characteristics of whistler waves. These wave heated regimes can be considered as analogous to conventional helicon discharges, but in planar geometry.
Colliding solitary waves in quark gluon plasmas
Rafiei, Azam; Javidan, Kurosh
2016-09-01
We study the head-on collision of propagating waves due to perturbations in quark gluon plasmas. We use the Massachusetts Institute of Technology bag model, hydrodynamics equation, and suitable equation of state for describing the time evolution of such localized waves. A nonlinear differential equation is derived for the propagation of small amplitude localized waves using the reductive perturbation method. We show that these waves are unstable and amplitude of the left-moving (right-moving) wave increases (decreases) after the collision, and so they reach the borders of a quark gluon plasma fireball with different amplitudes. Indeed we show that such arrangements are created because of the geometrical symmetries of the medium.
Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The poloidal rotation of the magnetized edge plasma in tokamak driven by theponderomotive force which is generated by injecting lower hybrid wave(LHW) electric field hasbeen studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla’sgrill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneouscold plasma have been derived. It is shown that a strong wave electric field will be generated inthe plasma edge by injecting LH wave of the power in MW magnitude, and this electric field willinduce a poloidal rotation with a sheared poloidal velocity.PACS: 52.55.Fa
The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence
Howes, Gregory G
2016-01-01
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...
Accumulative coupling between magnetized tenuous plasma and gravitational waves
Zhang, Fan
2016-07-01
We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) traveling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW comoves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high-frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves that are generated directly by the latter as a second-order phenomenon.
Accumulative coupling between magnetized tenuous plasma and gravitational waves
Zhang, Fan
2016-01-01
We explicitly compute the plasma wave (PW) induced by a plane gravitational wave (GW) travelling through a region of strongly magnetized plasma, governed by force-free electrodynamics. The PW co-moves with the GW and absorbs its energy to grow over time, creating an essentially force-free counterpart to the inverse-Gertsenshtein effect. The time-averaged Poynting flux of the induced PW is comparable to the vacuum case, but the associated current may offer a more sensitive alternative to photodetection when designing experiments for detecting/constraining high frequency gravitational waves. Aside from the exact solutions, we also offer an analysis of the general properties of the GW to PW conversion process, which should find use when evaluating electromagnetic counterparts to astrophysical gravitational waves, that are generated directly by the latter as a second order phenomenon.
Overdense plasma generation in a compact ion source
Castro, G.; Mascali, D.; Gammino, S.; Torrisi, G.; Romano, F. P.; Celona, L.; Altana, C.; Caliri, C.; Gambino, N.; Lanaia, D.; Miracoli, R.; Neri, L.; Sorbello, G.
2017-05-01
Electron cyclotron resonance ion sources (ECRIS) are widely used plasma based machines for the production of intense ion beams in science and industry. The performance of modern devices is limited by the presence of the density cut-off, above which electromagnetic (EM) waves sustaining the plasma are reflected. We hereby discuss the systematic data analysis of electrostatic wave generation in an ECR prototype operating at 3.75 GHz-0.1 THz. In particular, electron Bernstein waves (EBW) have been excited. EBW have already been generated in large-scale plasma devices for thermonuclear fusion purposes. In ion sources where L c ˜ λ RF (L c being the plasma chamber size and λ RF the pumping wave wavelength) the EM field assumes a modal behaviour; thus both plasma and EM field self-organize so that no optical-like wave launching is possible (i.e. the cavity effect dominates on the optical path). The collected data, however, supported by 3D full-wave simulations, actually demonstrate that a Budden-type X-B conversion scenario can be established above some critical RF power thresholds, operating in an off-ECR regime. The generation and absorption of the EBW has been demonstrated by the presence of three peculiar signatures: along with the establishment of an overdense plasma, generation of supra-thermal electrons and modification (non-linear broadening) of the EM spectrum measured within the plasma have been observed. At the threshold establishing such a heating regime, the collected data provide evidence for a fast rotation of the electron fluid.
Whistler wave generation by non-gyrotropic, relativistic, electron beams
Skender, Marina; Tsiklauri, David
2014-05-01
Super-thermal electron beams travelling away from the Sun on the open magnetic field lines are widely accepted to be the source of the Type-III bursts. The earliest idea of the generation of the Type-III bursts was based on the plasma emission mechanism. A fast moving electron beam excites Langmuir waves at the local plasma frequency, ωp. The Langmuir waves are partially transformed via scattering at ωp and 2ωp, with ion sound and oppositely propagating Langmuir waves, respectively, into electromagnetic waves. As the electron beam propagates away from the Sun, through less dense coronal and interplanetary environment, the frequency of the emitted electromagnetic radiation decreases, because plasma frequency is a function of the square root of the plasma density. Type-III bursts have been subject of theoretical, observational and numerical studies. The first detailed theory of the Type-III emission invoked coherent plasma waves, generated by a stream of fast particles, which are due to Rayleigh and combination scattering at ωp and 2ωp subsequently transformed into radio waves. Stochastic growth of the density irregularities was invoked in order to produce stochastically generated clumpy Langmuir waves, where the ambient density perturbations cause the beam to fluctuate around marginal stability. Other theories on the mechanism which generates the Type-III emission include: linear mode conversion of Langmuir waves, Langmuir waves producing electromagnetic radiation as antennas and non-gyroptropic electron beam emission [1] of commensurable properties to the Type-III bursts. In Refs. [2,3] it was found that the non-gyrotropic beam excites electromagnetic radiation by the current transverse to the magnetic field, which results in (ω,k)-space drift while propagating along the 1-dimensional spatial domain throughout the decreasing plasma density profile. The role of the electron beam pitch angle and the background density gradient profile was investigated in [4
Collapse of nonlinear electron plasma waves in a plasma layer
Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.
2016-10-01
The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.
Secondary Fast Magnetoacoustic Waves Trapped in Randomly Structured Plasmas
Yuan, Ding; Li, Bo; Walsh, Robert W.
2016-09-01
Fast magnetoacoustic waves are an important tool for inferring parameters of the solar atmosphere. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas that mimic the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the speed of the fast wave, we quantify the properties of secondary waves by examining the dependence of the average temporal period (\\bar{p}) on the initial pulse width (w 0) and studying the density contrast ({δ }ρ ) and correlation length (L c ) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, {δ }ρ does not alter \\bar{p} significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when {δ }ρ is small but have a smoothing effect when {δ }ρ is sufficiently large. We found that \\bar{p} scales linearly with L c and that the scaling factor is larger for a narrower pulse. However, in terms of the absolute values of \\bar{p}, broader pulses generate secondary waves with longer periods, and this effect is stronger in random plasmas with shorter correlation lengths. Secondary waves carry the signatures of both the leading wave pulse and the background plasma. Our study may find applications in magnetohydrodynamic seismology by exploiting the secondary waves detected in the dimming regions after coronal mass ejections or extreme ultraviolet waves.
Inductance of rf-wave-heated plasmas.
Farshi, E; Todo, Y
2003-03-14
The inductance of rf-wave-heated plasmas is derived. This inductance represents the inductance of fast electrons located in a plateau during their acceleration due to electric field or deceleration due to collisions and electric field. This inductance has been calculated for small electric fields from the two-dimensional Fokker-Planck equation as the flux crossing the surface of critical energy mv(2)(ph)/2 in the velocity space. The new expression may be important for radio-frequency current drive ramp-up, current drive efficiency, current profile control, and so on in tokamaks. This inductance may be incorporated into transport codes that study plasma heating by rf waves.
Generation of Nanometer Wavelength Acoustic Waves
Directory of Open Access Journals (Sweden)
O.Yu. Komina
2016-11-01
Full Text Available The possibility of acoustic wave generation of nanometer range in plates is shown. The experimental results that show the possible reconfiguring of the generator frequency in YFeO3 with a constant magnetic field are given.
Farhad Kiyaei, Forough; Dorranian, Davoud
2017-01-01
Effects of the obliqueness and the strength of external magnetic field on the ion acoustic (IA) cnoidal wave in a nonextensive plasma are investigated. The reductive perturbation method is employed to derive the corresponding KdV equation for the IA wave. Sagdeev potential is extracted, and the condition of generation of IA waves in the form of cnoidal waves or solitons is discussed in detail. In this work, the domain of allowable values of nonextensivity parameter q for generation of the IA cnoidal wave in the plasma medium is considered. The results show that only the compressive IA wave may generate and propagate in the plasma medium. Increasing the strength of external magnetic field will increase the frequency of the wave and decrease its amplitude, while increasing the angle of propagation will decrease the frequency of the wave and increase its amplitude.
Astrocytes generate Na+-mediated metabolic waves.
Bernardinelli, Yann; Magistretti, Pierre J; Chatton, Jean-Yves
2004-10-12
Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.
Collisional Drift Waves in Stellarator Plasmas
Energy Technology Data Exchange (ETDEWEB)
J.L.V. Lewandowski
2003-10-07
A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.
On the freak waves in mesospheric plasma
El-Labany, S. K.; El-Shewy, E. K.; El-Bedwehy, N. A.; El-Razek, H. N. Abd; El-Rahman, A. A.
2017-03-01
The nonlinear properties of dusty ionic freak waves have been studied in homogeneous, unmagnetized dusty plasma system containing ions, isothermal electrons, negative and positive grains. By using the derivative expansion method and assuming strongly dispersive medium, the basic model equations are reduced to a nonlinear form of Schrodinger equation (NLSE). One of the solutions of the NLSE in the unstable region is the rational one which is responsible for the creation of the freak profiles. The reliance of freak waves profile on dusty grains charge and carrier wave number are discussed.
Plasma shock waves excited by THz radiation
Rudin, S.; Rupper, G.; Shur, M.
2016-10-01
The shock plasma waves in Si MOS, InGaAs and GaN HEMTs are launched at a relatively small THz power that is nearly independent of the THz input frequency for short channel (22 nm) devices and increases with frequency for longer (100 nm to 1 mm devices). Increasing the gate-to-channel separation leads to a gradual transition of the nonlinear waves from the shock waves to solitons. The mathematics of this transition is described by the Korteweg-de Vries equation that has the single propagating soliton solution.
Generation of rogue waves in a wave tank
Lechuga, A.
2012-04-01
Rogue waves have been reported as causing damages and ship accidents all over the oceans of the world. For this reason in the past decades theoretical studies have been carried out with the double aim of improving the knowledge of their main characteristics and of attempting to predict its sudden appearance. As an effort on this line we are trying to generate them in a water tank. The description of the procedure to do that is the objective of this presentation. After Akhmediev et al. (2011) we use a symmetric spectrum as input on the wave maker to produce waves with a rate(Maximun wave height/ significant wave height) of 2.33 and a kurtosis of 4.77, clearly between the limits of rogue waves. As it was pointed out by Janssen (2003), Onorato et al. (2006) and Kharif, Pelinovsky and Slunyaev (2009) modulation instability is enhanced when waves depart from Gaussian statistics (i.e. big kurtosis) and therefore both numbers enforce the criterion that we are generating genuine rogue waves. The same is confirmed by Shemer (2010) and Dudley et al.(2009) from a different perspective. If besides being symmetrical the spectrum is triangular, following Akhmediev(2011),the generated waves are even more conspicuously rogue waves.
On the generation of internal wave modes by surface waves
Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian
2016-04-01
Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
First results from the Cluster wideband plasma wave investigation
Directory of Open Access Journals (Sweden)
D. A. Gurnett
Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The
Whistler wave generation by non-gyrotropic, relativistic, electron beams
Skender, Marina
2014-01-01
Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri (2011), Schmitz & Tsiklauri (2013) and Pechhacker & Tsiklauri (2012), in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study the backwards propagating wave component evident in the perpendicular components of the elecromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are...
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
Energy Technology Data Exchange (ETDEWEB)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Impact-driven shock waves and thermonuclear neutron generation
Energy Technology Data Exchange (ETDEWEB)
Gus' kov, S Yu; Demchenko, N N; Doskoch, I Ya; Rozanov, V B [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow (Russian Federation); Azechi, H; Murakami, M; Sakaiya, T; Watari, T [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Zmitrenko, N V, E-mail: guskov@sci.lebedev.r [Institute for Mathematical Modeling of Russian Academy of Sciences, Moscow (Russian Federation)
2009-09-15
Impact-driven shock waves, thermonuclear plasma and neutron yield were investigated. The results of 2D numerical simulations and Gekko/HIPER laser experiments on the collision of a laser-accelerated disk-projectile with a massive target, both containing (CD){sub n}-material, are discussed. A two-temperature model of the non-equilibrium plasma created by impact-driven shock waves due to the collision of a laser-accelerated planar projectile with a massive target was developed and used for analysis of the numerical and experimental results. The model defines the characteristics of shock waves and plasmas (including their lifetime) as well as neutron yields in both the colliding objects as functions of velocity, density and mass of the projectile-impactor just before collision. The neutron yield generated during the period of laser-driven acceleration of the impactor was also determined. Two effects were discovered that exert a substantial influence on the plasma parameters and neutron yield. The first of them relates to the formation of the pre-impact state of the impactor. It decreases the projectile density due to thermal expansion of its matter through a free boundary during the period of laser-driven acceleration. The other relates to the formation of impact-produced plasma. Predominant heating of the ion component of plasma leads to the existence of a non-equilibrium two-temperature plasma during the period of electron-ion relaxation.
Laboratory simulation of magnetospheric chorus wave generation
Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.
2017-01-01
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. A laboratory experiment (Van Compernolle et al 2015 Phys. Rev. Lett. 114 245002, An et al 2016 Geophys. Res. Lett.) in the large plasma device at UCLA was designed to closely mimic the scaled plasma parameters observed in the inner magnetosphere, and shed light on the excitation of discrete frequency whistler waves. It was observed that a rich variety of whistler wave emissions is excited by a gyrating electron beam. The properties of the whistler emissions depend strongly on plasma density, beam density and magnetic field profiles.
Analysis of plasma waves observed in the inner Saturn magnetosphere
Directory of Open Access Journals (Sweden)
J. D. Menietti
2008-09-01
Full Text Available Plasma waves observed in the Saturn magnetosphere provide an indication of the plasma population present in the rotationally dominated inner magnetosphere. Electrostatic cyclotron emissions often with harmonics and whistler mode emission are a common feature of Saturn's inner magnetosphere. The electron observations for a region near 5 R_{S} outside and near a plasma injection region indicate a cooler low-energy (<100 eV, nearly isotropic plasma, and a much warmer (E>1000 eV more pancake or butterfly distribution. We model the electron plasma distributions to conduct a linear dispersion analysis of the wave modes. The results suggest that the electrostatic electron cyclotron emissions can be generated by phase space density gradients associated with a loss cone that may be up to 20° wide. This loss cone is sometimes, but not always, observed because the field of view of the electron detectors does not include the magnetic field line at the time of the observations. The whistler mode emission can be generated by the pancake-like distribution and temperature anisotropy (T_{⊥}/T_{||}>1 of the warmer plasma population.
The Generation of Magnetic Field by Transverse Plasmons in Laser-Produced Plasma
Institute of Scientific and Technical Information of China (English)
LIU Shan-qiu; LI Xiao-qing
2000-01-01
In this paper, it is studied that a quasi-steady magnetic field could be generated in laser-producde plasmas with high-frequency electromagnetic radiation through wave-wave and wave-partide interactions in the vicinity of critical point. The behavior of self-generated magnetic field can be described by nonlinear coupling equatiom.
Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas
2012-11-21
GeoMagnetic Observatory System ( GMO ). We then have detection of HF heater-induced large plasma sheets, using MUIR radar and GPS satellites [Cohen et al...experiments. It is found that the heat wave fronts, which occurred in US, were plausible sources of free energy generating intense gravity waves and...that the heat wave fronts, which occurred in USA, were the plausible sources of free energy, generating intense gravity waves and triggering large
Electron Bernstein Wave Emission from RFP Plasmas
Nornberg, M. D.; Thomas, M.; Anderson, J.; Forest, C. B.
1998-11-01
Electron cyclotron emission (ECE) has proven to be a powerfull diagnostic tool in tokamak plasmas for determining the time evolution of the electron temperature profile. The standard technique of observing O-mode or X-mode electromagnetic waves normal to the magnetic field is not applicable to reversed field pinch (RFP) plasmas since the plasma frequency is much larger than the electron cyclotron frequency. We are investigating the use of electron Bernstein waves (presumed to be in thermal equilibrium with the electrons) through the aip.org/journal_cgi/ getpdf?KEY=PRLTAO&cvips=PRLTAO000078000018003467000001>O-X-B mode conversion process. At oblique incidence, the evanescent layer separating the plamsa cutoff from the cyclotron cutoff vanishes, allowing conversion of the Bernstein mode waves to the extraordinary mode and finally to the ordinary mode. The O-mode radiation is received by a phased array antenna consisting of two waveguides on the edge of the plasma, and the spectrum of emitted radiation is measured using a radiometer spanning 4-8 GHz. In addition to providing information about the electron temperature profile, the spectrum can provide a novel method of measuring the central magnetic field strength for current profile reconstructions.
Faraday Pilot-Waves: Generation and Propagation
Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John
2015-11-01
We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.
Onset behavior of standing wave thermoacoustic pressure wave generator
Mehta, Shreya; Desai, Keyur; Naik, Hemant Bhimbhai; Atrey, Milind
2012-06-01
A standing wave type thermoacoustic pressure wave generator for 300 Hz operating frequency is designed and developed for helium as a working fluid. The device is designed as a half wave length resonator. A parallel plate type SS 304 stack is designed and fabricated. An electric heater is used for heat supply to the hot end heat exchanger while a water cooled heat exchanger is used to maintain the other end of the stack near ambient temperature. An acoustic amplifier is used to amplify the pressure ratio generated. Experiments are conducted to study the onset behavior of pressure wave generator in terms of temperature range. Observations are recorded using piezoelectric pressure transducer. The results are obtained with different charging pressure and heat inputs. A pressure ratio of around 1.1 to 1.15 has been obtained using Nitrogen as a working fluid. The onset of thermoacoustic oscillations are studied for different filling pressure and for a range of hot end temperature.
Plasma Limiter Based on Surface Wave Plasma Excited by Microwave
Institute of Scientific and Technical Information of China (English)
YANG Geng; TAN Jichun; SHEN Benjian
2008-01-01
A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres-sure, ionization degree and density of seed electrons under low pressure (0.01 ～1 Torr) and high pressure (10 ～1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 1016 m-3, and ionization degree of 10-4, has a breakdown time of approximate 19.6 ns.
Modelling of new generation plasma optical devices
Directory of Open Access Journals (Sweden)
Litovko Irina V.
2016-06-01
Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.
Zhao, Qing; Bo, Yong; Lei, Mingda; Liu, Shuzhang; Liu, Ying; Liu, Jianwei; Zhao, Yizhe
2016-11-01
Numerical study of electromagnetic (EM) wave transmission through the magnetized plasma layer is presented in this paper. The plasma parameters are derived from computational fluid dynamics simulation of the flow field around a blunt body flying at supersonic speed and serve as the background plasma condition in the numerical modeling for EM wave transmission. The EM wave is generated by our newly designed coaxial feed GPS patch antenna. The external magnetic field is applied and assumed to vary linearly as a function of wall distance. The effects of the external applied magnetic field and the plasma parameters on wave transmission are studied, and the results show that EM wave propagation in the non-uniformly magnetized plasma is a matter of impedance matching, and the EM wave transmission can be adjusted only when the proper strength of the magnetic field is applied.
Plasma generation induced by triboelectrification
DEFF Research Database (Denmark)
Kusano, Yukihiro; Singh, Shailendra Vikram; Michelsen, Poul
2009-01-01
A gas discharge plasma can be induced by triboelectrification around a sliding contact. The detailed physical mechanism of triboelectrification is unknown, but an empirical classification scheme can be referred to in practice. It is reported that intense ultra-violet emission from a plasma...
Nonlinear Alfvén wave dynamics in plasmas
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Anwesa; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Schamel, Hans [Theoretical Physics, University of Bayreuth, D-95440 Bayreuth (Germany)
2015-07-15
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Nonlinear Alfvén wave dynamics in plasmas
Sarkar, Anwesa; Chakrabarti, Nikhil; Schamel, Hans
2015-07-01
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Kinetic theory of the interaction of gravitational waves with a plasma
Energy Technology Data Exchange (ETDEWEB)
Galtsov, D.V.; Melkumova, E.Iu.
1983-01-01
The interaction of weak gravitational waves (GWs) with a plasma is described in terms of kinetic equations and is reduced to the mutual excitation and a energy exchange between the GW, plasmons, and charged particles of the plasma. The approach used is based on elementary quantum considerations, which makes it possible to obtain a closed system of balance equations for the distribution functions of plasma particles, plasmons, and gravitons. The calculation of probabilities included in the balance equations is based on the correspondence principle, which makes it necessary to consider only those processes which accompany gravitational-wave emission. Particular consideration is given to the gravitational susceptibility of the plasma, gravitational-wave generation during the merging of plasma waves, and the 'super-light-speed' Cerenkov emission of gravitational waves from a plasma filament.
Tunable Plasma-Wave Laser Amplifier
Bromage, J.; Haberberger, D.; Davies, A.; Bucht, S.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.
2016-10-01
Raman amplification is a process by which a long energetic pump pulse transfers its energy to a counter-propagating short seed pulse through a resonant electron plasma wave. Since its conception, theory and simulations have shown exciting results with up to tens of percent of energy transfer from the pump to the seed pulse. However, experiments have yet to surpass transfer efficiencies of a few percent. A review of past literature shows that largely chirped pump pulses and finite temperature wave breaking could have been the two most detrimental effects. A Raman amplification platform is being developed at the Laboratory for Laser Energetics where a combination of a high-intensity tunable seed laser with sophisticated plasma diagnostics (dynamic Thomson scattering) will make it possible to find the optimal parameter space for high-energy transfer. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Protective, Modular Wave Power Generation System
Energy Technology Data Exchange (ETDEWEB)
Vvedensky, Jane M.; Park, Robert Y.
2012-11-27
The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.
Proton driven plasma wakefield generation in a parabolic plasma channel
Golian, Y.; Dorranian, D.
2016-11-01
An analytical model for the interaction of charged particle beams and plasma for a wakefield generation in a parabolic plasma channel is presented. In the suggested model, the plasma density profile has a minimum value on the propagation axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. While previous works investigated on the simulation results and on the perturbation techniques in case of laser wakefield accelerations for a parabolic channel, we have carried out an analytical model and solved the accelerating field equation for proton beam in a parabolic plasma channel. The solution is expressed by Whittaker (hypergeometric) functions. Effects of plasma channel radius, proton bunch parameters and plasma parameters on the accelerating processes of proton driven plasma wakefield acceleration are studied. Results show that the higher accelerating fields could be generated in the PWFA scheme with modest reductions in the bunch size. Also, the modest increment in plasma channel radius is needed to obtain maximum accelerating gradient. In addition, the simulations of longitudinal and total radial wakefield in parabolic plasma channel are presented using LCODE. It is observed that the longitudinal wakefield generated by the bunch decreases with the distance behind the bunch while total radial wakefield increases with the distance behind the bunch.
Helicon waves in uniform plasmas. II. High m numbers
Energy Technology Data Exchange (ETDEWEB)
Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)
2015-09-15
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B{sub 0}. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel [“Helicon modes in uniform plasmas. I. Low m modes,” Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name “helicon” to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B{sub 0}. The field lines near the axis of helicons are perpendicular to B{sub 0} and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B{sub 0}. The radiation efficiency of multipole antennas has been found to decrease with m.
Collisional damping rates for plasma waves
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Ticking terahertz wave generation in attoseconds
Zhang, Dongwen; Meng, Chao; Du, Xiyu; Zhou, Zhaoyan; Zhao, Zengxiu; Yuan, Jianmin
2012-01-01
We perform a joint measurement of terahertz waves and high-order harmonics generated from noble atoms driven by a fundamental laser pulse and its second harmonic. By correlating their dependence on the phase-delay of the two pulses, we determine the generation of THz waves in tens of attoseconds precision. Compared with simulations and models, we find that the laser-assisted soft-collision of the electron wave packet with the atomic core plays a key role. It is demonstrated that the rescattering process, being indispensable in HHG processes, dominant THz wave generation as well but in a more elaborate way. The new finding might be helpful for the full characterization of the rescattering dynamics.
Impact of the Collisional Plasma on the Propagation of Millimeter Waves
Institute of Scientific and Technical Information of China (English)
袁忠才; 时家明; 汪家春; 许波
2004-01-01
The plasma generated in the low-altitude atmosphere is of high collision frequencies.In this paper, the transmission coefficients of millimeter(MM) waves normally incident upon the plasma with high collision frequencies are calculated and analyzed. The experimental results of reflection and attenuation are presented for the eight-millimeter waves propagating through the plasma. Both the calculated experimental results indicate that the MM-waves concerned are attenuated significantly and reflected weakly, when propagating through the plasma of high collision frequencies.
Waves in relativistic electron beam in low-density plasma
Sheinman, I.; Sheinman (Chernenco, J.
2016-11-01
Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.
Hollow-Cathode Source Generates Plasma
Deininger, W. D.; Aston, G.; Pless, L. C.
1989-01-01
Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.
Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor
Energy Technology Data Exchange (ETDEWEB)
Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M
2005-07-21
A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.
2012-10-01
Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.
Plasma production for electron acceleration by resonant plasma wave
Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Plasma production for electron acceleration by resonant plasma wave
Energy Technology Data Exchange (ETDEWEB)
Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)
2016-09-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.
Drift waves and chaos in a LAPTAG plasma physics experiment
Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam
2016-02-01
In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.
Generation of magnetosonic waves over a continuous spectrum
Chen, Lunjin; Sun, Jicheng; Lu, Quanming; Gao, Xinliang; Xia, Zhiyang; Zhima, Zeren
2016-02-01
Magnetosonic waves, also known as equatorial noise emission, were found to have discrete frequency structures, which is consistent with instability caused by proton ring distribution. Nonetheless, nondiscrete structure, i.e., a broadband spectrum over a continuous frequency range, has been reported. We investigate the question whether proton ring distribution can generate nondiscrete spectra for perpendicularly propagating magnetosonic waves. We propose discrete and nondiscrete characteristics of the local instability for explaining the observation of discrete, continuous, and mixed spectra. The criterion for transition from discrete and continuous instability is given, γ >˜ Ωh/2, where γ is wave growth rate and Ωh is proton cyclotron frequency. The condition is verified by particle-in-cell simulation using more realistic electron-to-proton mass ratio and speed of light than in previous studies. Such criterion of generating a continuous spectrum can be tested against simultaneous in situ measurement of wave and particle. We also find that the modes at low Ωh harmonics, including the fundamental Ωh, can be still excited through nonlinear wave-wave coupling, even when they are neutral modes (γ = 0) according to the linear kinetic theory. Comparison with magnetosonic waves in cold plasma limit and electromagnetic ion Bernstein mode is also discussed.
CO2 Laser Beat-Wave Experiment in an Unmagnetized Plasma
Liu, Fei; Hwang, David; Horton, Robert; Hong, Sean; Evans, Russell
2012-10-01
The ability to remotely generate plasma current in dense plasmas is a basic yet important investigation in experimental plasma physics and fusion energy research. It is even more advantageous if the wave penetration is independent of the electron acceleration process. Plasma current can be generated through beat-wave mixing process by launching two intense electromagnetic waves (φ>>φpe) into plasma. The beat wave formation process can be efficient if the difference frequency of the two pump waves is matched to a local resonant frequency of the medium, i.e. in this case the local plasma frequency. Beat wave can accelerate plasma electrons via quasi-linear Landau process, which has been demonstrated in a low-density plasma using microwaves.footnotetextRogers, J. H. and Hwang, D. Q., Phys. Rev. Lett. v68 p3877 (1992). The CO2 lasers provide the high tunability for the wave-particle interaction experiment at a variety of plasma densities with plasma frequency in THz range. Two sections of Lumonics TEA CO2 lasers have been modified to serve as the two pump wave sources with peak power over 100MW. The development of the tunable CO2 lasers, a high-density plasma target source and diagnostics system will be presented. The initial results of unbalanced beat-wave experiment using one high-power pulsed and one low-power CW CO2 lasers will be presented and discussed using the independent plasma source to control the φpe of the interaction region. This work is supported by U.S. DOE under Contract No. DE-FG02-10ER55083.
Search for Na+ Pickup Ion Generated Waves at Mercury
Boardsen, S. A.; Slavin, J. A.
2007-05-01
Telescopic observations by Potter et al. [2002] have discovered that Mercury's Sodium exosphere has a tail extending 10's of Mercury radii. Theory predicts that the shape of and the amount of Sodium [Smyth, 1986, 1995; Ip 1986, 1990] in this exospheric tail is highly dependent upon the true anomaly of Mercury. The exospheric Na that is not reabsorbed on Mercury's surface will be photo-ionized. Computations by Ip [1986] indicated that ionized exospheric Na could significantly mass load the plasma population in Mercury's magnetosphere. These freshly created ions will be rapidly energized by the convection electric field in Mercury's magnetosphere and sheath and should be highly unstable to the generation of plasma waves. These waves could play an important role in the thermalization and retention of the Na+. Because the gyro radii of Na+ can be comparable to the scale sizes in Mercury's geospace there is an open question whether Mercury's geospace can sustain such waves. After a brief review of what was observed in the Mariner 10 magnetometer data, we will present analytic calculations of the expected pickup ion distributions, the expected unstable waves, their frequencies, wavelengths and Doppler shifts, their variation with location in Mercury's geospace and Mercury's true anomaly for both high and low solar wind convection electric fields. We will assess if and when such waves can be generated and sustained.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube
Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.
2003-01-01
A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.
Power Generation Using Mechanical Wave Energy Converter
Directory of Open Access Journals (Sweden)
Srinivasan Chandrasekaran
2012-03-01
Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.
Model of the Dynamics of Plasma-Wave Channels in Magnetized Plasmas
Shirokov, E. A.; Chugunov, Yu. V.
2016-06-01
We analyze the dynamics of the plasma-wave channels excited in magnetized plasmas in the whistler frequency range. A linear theory of excitation of a plasma waveguide by an external source is developed using the quasistatic approximation. Self-consistent spatio-temporal distributions of the electric field of quasipotential waves and plasma density, which are solutions of the nonlinear nonstationary problem of the ionizing self-channeling of waves in plasmas are found on the basis of the linear theory.
Effective action approach to wave propagation in scalar QED plasmas
Shi, Yuan; Qin, Hong
2016-01-01
A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we study a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well-known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasma...
Spin waves and spin instabilities in quantum plasmas
Andreev, P A
2014-01-01
We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Instabilities appearing due to interaction of magnetic moments of neutrons with plasma are described.
On the generation of magnetic field enhanced microwave plasma line
Chen, Longwei; Zhao, Ying; Wu, Kenan; Wang, Qi; Meng, Yuedong; Ren, Zhaoxing
2016-12-01
Microwave linear plasmas sustained by surface waves have attracted much attention due to the potential abilities to generate large-scale and uniform non-equilibrium plasmas. An external magnetic field was generally applied to enhance and stabilize plasma sources because the magnetic field decreased the electron losses on the wall. The effects of magnetic field on the generation and propagation mechanisms of the microwave plasma were tentatively investigated based on a 2-D numerical model combining a coupled system of Maxwell's equations and continuity equations. The mobility of electrons and effective electric conductivity of the plasma were considered as a full tensor in the presence of magnetic field. Numerical results indicate that both cases of magnetic field in the axial-direction and radial-direction benefit the generation of a high-density plasma; the former one allows the microwave to propagate longer in the axis direction compared to the latter one. The time-averaged power flow density and the amplitude of the electric field on the inner rod of coaxial waveguide attenuate with the propagation of the microwave for both cases of with and without external magnetic field. The attenuation becomes smaller in the presence of appropriately higher axial-direction magnetic field, which allows more microwave energies to transmit along the axial direction. Meanwhile, the anisotropic properties of the plasma, like electron mobility, in the presence of the magnetic field confine more charged particles in the direction of the magnetic field line.
Oscillatory Flow in Thermoacoustic Sound Wave Generator
Institute of Scientific and Technical Information of China (English)
Masayasu HATAZAWA
2006-01-01
Oscillatory flow in a thermoacoustic sound wave generator is described. The thermoacoustic sound wave generator plays an important role in thermoacoustic equipment. The heat exchange between the working fluid and the stack, the acceleration and deceleration of the working fluid and viscous friction loss both in the stack and in the resonance tube influence the performance of the thermoacoustic sound wave generator. Particularly,oscillatory flow significantly influences the heat exchange mechanism between the working fluid and the stack.Temporal changes in pressure and velocity are sinusoidal inside the resonance tube. Flow forms an oscillatory jet just behind the tube outlet, and becomes intermittent far downstream outside the resonance tube. The open-end corrections of 0.63R, that is, the region where oscillatory flow characteristics are maintained downstream in spite of being outside the tube outlet, are confirmed by velocity measurements and flow visualization. Also, they are almost equal to acoustical theoretical results.
Proton beam generation of oblique whistler waves
Wong, H. K.; Goldstein, M. L.
1988-01-01
It is known that ion beams are capable of generating whistler waves that propagate parallel to the mean magnetic field. Such waves may have been observed both upstream of the earth's bow shock and in the vicinity of comets. Previous analyses are extended to include propagation oblique to the mean magnetic field. The instability is generated by the perpendicular component of free energy in the ions, which can arise either via a temperature anisotropy or via a gyrating distribution. In the former case, the generation of whistler waves is confined to a fairly narrow cone of propagation directions centered about parallel propagation; in the latter case, the maximum growth of the instability can occur at fairly large obliquities (theta equal to about 50 deg).
Plasma Waves and Jets from Moving Conductors
Gralla, Samuel E
2016-01-01
We consider force-free plasma waves launched by the motion of conducting material through a magnetic field. We develop a spacetime-covariant formalism for perturbations of a uniform magnetic field and show how the transverse motion of a conducting fluid acts as a source. We show that fast-mode waves are sourced by the compressibility of the fluid, with incompressible fluids launching a pure-Alfven outflow. Remarkably, this outflow can be written down in closed form, at the nonlinear level, for an arbitrary incompressible flow. The instantaneous flow velocity is imprinted on the magnetic field and transmitted away at the speed of light, carrying detailed information about the conducting source at the time of emission. These results can be applied to transients in pulsar outflows and to jets from neutron stars orbiting in the magnetosphere of another compact object. We discuss jets from moving conductors in some detail.
Sakai, Osamu; Nakamura, Yoshihiro; Iwai, Akinori; Iio, Satoshi
2016-10-01
Plasma generation by electromagnetic waves in negative-permeability space is analyzed using experimental results and theoretical models. Installation of negative-permeability metamaterials triggers drastic changes to the propagation of electromagnetic waves. Unlike usual cases in which permeability is +1, negative permeability induces evanescent modes in a space without plasma. However, if permittivity becomes negative due to high-electron-density or overdense plasma, electromagnetic waves can propagate because negative-refractive-index states emerge. In this study, reviewing our previous experimental data, we study the underlying physical processes in plasma generation in terms of wave propagation and parameters of wave media. We confirm nonlinear (transition) processes in the phase of density evolution up to the negative permittivity state and negative-refractive-index states in the quasi-steady phase. We also note that such energetic metamaterials are built up when we use plasma, unlike conventional metamaterials composed of solid-state materials.
Benson, Robert F.; Fung, Shing F.
2008-01-01
Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).
Medina-Tanco, G. A.; Opher, R.
1990-11-01
RESUMEN. Se presentan resultados numericos para un modelo hidrodinamico de cuatro componentes (plasma de fondo, particulas energeticas, ondas de Alfven autogeneradas y campo magnetico) para choques oblicuos. ABSTRACT. Numerical results of a four component hydrodynamic model (background plasma, energetic particles, self-generated Alfven waves and magnetic field) for oblique shocks are presented. Keq wo't : COSMIC RAY-GENERAL - PLASMAS - SHOCK WAVES
On the Wind Generation of Water Waves
Bühler, Oliver; Shatah, Jalal; Walsh, Samuel; Zeng, Chongchun
2016-11-01
In this work, we consider the mathematical theory of wind generated water waves. This entails determining the stability properties of the family of laminar flow solutions to the two-phase interface Euler equation. We present a rigorous derivation of the linearized evolution equations about an arbitrary steady solution, and, using this, we give a complete proof of the instability criterion of M iles [16]. Our analysis is valid even in the presence of surface tension and a vortex sheet (discontinuity in the tangential velocity across the air-sea interface). We are thus able to give a unified equation connecting the Kelvin-Helmholtz and quasi-laminar models of wave generation.
Stochastic generation of currents by lower-hybrid waves
Energy Technology Data Exchange (ETDEWEB)
Gell, Y.; Nakach, R.
1984-03-01
A scheme for current generation based on a stochastic driving mechanism is proposed. The current in this approach is generated by launching into the plasma two lower-hybrid waves having appropriate different frequencies, wave numbers, and amplitudes. The phase-space analysis of the electron motion in such a configuration reveals the existence of a relatively broad stochastic layer far away from the separatrix, allowing for diffusion in velocity space of high-velocity electrons. The diffusion coefficient of this process is evaluated and the solution of the Fokker-Planck equation for the electron velocity distribution function is used to calculate the current J and the power dissipated P/sub d/ in generating it. A favorable J-to-P/sub d/ ratio for steady-current drive is found.
Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation
Institute of Scientific and Technical Information of China (English)
WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai
2006-01-01
@@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.
Institute of Scientific and Technical Information of China (English)
戴厚梅
2011-01-01
Photocurrent model is used to interpret the process of generating THz waves from laser in-duced gas plasma. First, irradiated by an intense laser pulse, the gas is ionized to gas plasma, and then the liberated electrons accelerate in the laser electric field, and an electromagnetic pulse at THz frequencies is produced. When the laser intensity is high enough, single ionization is not sufficient, for multiple degree of ionization, especially double ionization, should be taken into account. This pa-per mainly simulates the ionization process, by considering double ionization; and the electron density evolution with time is calculated out.%在利用光电流模型模拟空气中太赫兹辐射的过程中,飞秒激光首先将大气离化,离化后的电子在外场下加速,产生一定量的太赫兹渡.当飞秒激光的能量达到一定强度时,离化过程变得复杂,可发生多阶离化,并在产生离子数中扮演重要角色,尤其是二阶离化作用突出.文章重点讨论二阶离化对产生离子数的贡献.
Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui
2008-01-01
Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.
On Plasma Rotation Induced by Traveling Fast Alfvin Waves
Energy Technology Data Exchange (ETDEWEB)
F.W. Perkins; R.B. White; and V.S. Chan
2001-08-09
Absorption of fast Alfven waves by the minority fundamental ion-cyclotron resonance, coupled with finite banana width physics, generates torque distributions and ultimately rotational shear layers in the bulk plasma, even when the toroidal wavenumber k(subscript ''phi'') = n/R of the fast wave vanishes (n=0) and cyclotron absorption introduces no angular momentum nor canonical angular momentum [F.W. Perkins, R.B. White, P.T. Bonoli, and V.S. Chan, Phys. Plasmas 8 (2001) 2181]. The present work extends these results to travelling waves with non-zero n where heating directly introduces angular momentum. Since tokamak fast-wave antennas have approximately one wavelength per toroidal field coil, the toroidal mode number n lies in the range n = 10-20, independent of machine size. A zero-dimensional analysis shows that the rotation rate arising from direct torque is comparable to that of the rotational shear layer and has the same scaling. Nondimensional rotation profiles for n = (-10, 10) show modest changes from the n = 0 case in the expected direction. For a balanced antenna spectrum, the nondimensional rotational profile (averaged over n = -10, 10) lies quite close to the n = 0 profile.
Magnetohydrodynamic waves in fusion and astrophysical plasmas.
Goedbloed, J. P.
Macroscopic plasma dynamics in both controlled thermonuclear confinement machines and in the atmospheres of X-ray emitting stars is described by the equations of magnetohydrodynamics. This provides a vast area of overlapping research activities which is presently actively pursued. In this lecture the author concentrates on some important differences in the dynamics of the two confined plasma systems related to the very different geometries that are encountered and, thus, the role of the different boundary conditions that have to be posed. As a result, the basic MHD waves in a tokamak are quite different from those found in a solar magnetic flux tube. The result is that, whereas the three well-known MHD waves can be traced stepwise in the curved geometry of a tokamak, their separate existence is eliminated right from the start in a line-tied coronal loop because line-tying in general conflicts with the phase relationships between the vector components of the three velocity fields. The consequences are far-reaching, viz. completely different resonant frequencies and continuous spectra, absence of rational magnetic surfaces, and irrelevance of local marginal stability theory for coronal magnetic loops.
Breaking of Large Amplitude Electron Plasma Wave in a Maxwellian Plasma
Mukherjee, Arghya
2016-01-01
The determination of maximum possible amplitude of a coherent longitudinal plasma oscillation/wave is a topic of fundamental importance in non-linear plasma physics. The amplitudes of these large amplitude plasma waves is limited by a phenomena called wave breaking which may be induced by several non-linear processes. It was shown by Coffey [T. P. Coffey, Phys. Fluids 14, 1402 (1971)] using a "water-bag" distribution for electrons that, in a warm plasma the maximum electric field amplitude and density amplitude implicitly depend on the electron temperature, known as Coffey's limit. In this paper, the breaking of large amplitude freely running electron plasma wave in a homogeneous warm plasma where electron's velocity distribution is Maxwellian has been studied numerically using 1D Particle in Cell (PIC) simulation method. It is found that Coffey's propagating wave solutions, which was derived using a "water-bag" distribution for electrons, also represent propagating waves in a Maxwellian plasma. Coffey's wave...
Laser-driven Beat-Wave Current Drive in Dense Plasmas with Demo on CTIX
Liu, Fei; Horton, Robert; Hwang, David; Zhu, Ben; Evans, Russell; Hong, Sean; Hsu, Scott
2010-11-01
The ability to remotely generate plasma current in dense plasmas hanging freely in vacuum in voluminous amount without obstruction to diagnostics will greatly enhance our ability to study the physics of high energy density plasmas in strong magnetic fields. Plasma current can be generated through nonlinear beat-wave process by launching two intense electromagnetic waves into unmagnetized plasma. Beat-wave acceleration of electrons has been demonstrated in a low-density plasma using microwaves [1]. The proposed PLX experimental facility presently under construction at Los Alamos offers the opportunity to test the method at a density level scalable to the study of HED plasmas. For PLX beat-wave experiments, CO2 lasers will be used as pump waves due to their high power and tunability. For a typical PLX density ne=10^17cm-3, two CO2 lasers can be separately tuned to 9P(28) and 10P(20) to match the 2.84THz plasma frequency. The beat-wave demo experiment will be conducted on CTIX. The laser arrangement is being converted to two independent single lasers. Frequency-tuning methods, optics focusing system and diagnostics system will be discussed. The laser measurements and results of synchronization of two lasers will be presented, and scaling to PLX experiments will be given. [1] Rogers, J. H. and Hwang, D. Q., PRL. v68 p3877 (1992).
Opacity measurements in shock-generated argon plasmas
Energy Technology Data Exchange (ETDEWEB)
Erskine, D.
1993-07-01
Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.
Manual for wave generation and analysis
DEFF Research Database (Denmark)
Jakobsen, Morten Møller
This Manual is for the included wave generation and analysis software and graphical user interface. The package is made for Matlab and is meant for educational purposes. The code is free to use under the GNU Public License (GPL). It is still in development and should be considered as such. If you...
Energy Technology Data Exchange (ETDEWEB)
Rolland, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1969-05-01
The character, stable or unstable, of a medium can be deduced from the behavior of an ideal model of a semi-infinite medium which is subjected to an excitation only at the boundary. A new analytic method is used to solve this problem. The results obtained show a connection between the character of the medium and certain properties of the dispersion equation, and agree with those derived from other methods. Then, the energy exchange between a medium and a source of excitation is investigated. In order to include the case of growing waves associated with convective instabilities, this problem is treated in the context of the wave packet theory. We find that - even in the absence of collisions - there still is a power exchange. Thus a connexion can be established with the kinematic theories of growing waves and the modes generating power can be found. Moreover, the power absorbed by spatial dispersion is found to be identical with that due to Landau's effect for long waves. This confirms the kinematic character of the latter and bridges a gap between macroscopic and microscopic theories. (author) [French] Le caractere, stable ou instable, d'un milieu peut etre deduit du comportement d'un milieu semi-indefini soumis a une excitation a la frontiere. Une nouvelle methode analytique est developpee pour resoudre ce probleme. Les resultats obtenus montrent une connexion entre le comportement du milieu et certaines proprietes de l'equation de dispersion, et generalisent les resultats obtenus par d'autres methodes. On etudie ensuite les echanges d'energie entre un milieu et une source d'excitation. Pour inclure le cas des ondes croissantes associees aux instabilites convectives, on traite ce probleme dans le cadre de la theorie du paquet d'ondes. On trouve que meme en l'absence de collisions, la puissance echangee n'est pas nulle. Ceci permet d'etablir une connexion avec les theories cinematiques des ondes croissantes
Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances
Villalon, Elena
1989-03-01
Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.
DEFF Research Database (Denmark)
2010-01-01
is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...... of acoustic energy by at least one ultrasonic high intensity and high power gas-jet acoustic wave generator (101), where said ultrasonic high intensity and high power acoustic waves are directed to propagate towards said plasma (104) so that at least a part of said predetermined amount of acoustic energy...
Relativistic electromagnetic waves in an electron-ion plasma
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Magnetoacoustic waves in a partially ionized two-fluid plasma
Soler, Roberto; Ballester, Jose Luis
2013-01-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by the ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma $\\beta$, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional da...
A novel, all-dielectric, microwave plasma generator towards development of plasma metamaterials
Cohick, Zane; Luo, Wei; Perini, Steven; Baker, Amanda; Wolfe, Douglas; Lanagan, Michael
2016-11-01
A proof of concept for a microwave microplasma generator that consists of a halved dielectric resonator is presented. The generator functions via leaking electric fields of the resonant modes — TE01δ and HEM12δ modes are explored. Computational results illustrate the electric fields, whereas the stability of resonance and coupling are studied experimentally. Finally, a working device is presented. This generator promises potentially wireless and low-loss operation. This device may find relevance in plasma metamaterials; each resonator may generate the plasma structures necessary to manipulate electromagnetic radiation. In particular, the all-dielectric nature of the generator will allow low-loss interaction with high-frequency (GHz–THz) waves.
'Generations' and 'waves' in Nordic Feminism
DEFF Research Database (Denmark)
Stormhøj, Christel; Halsaa, Beatrice; Stoltz, Pauline
constructs in feminist theory (Evans 2015, Nielsen 1991, Walby 2011); their interrelations and their usefulness as frameworks for understanding changes and continuities, conflicts and consensus in Nordic feminist activism. We explore the contradictory claims that third wave feminism alludes to a generational...... shift; on the one hand to a conservative, highly individualized, post-feminist generation which takes feminism for granted, and on the other hand a radically new, inclusive, diverse and transnational generation of feminism (Dean, 2009; McRobbie, 2009; Widerberg, 2001). The empirical point of departure...
Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath
Kato, Yoshiaki; Steiner, Oskar; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats
2016-08-01
Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.
Acceleration of energetic electrons by waves in inhomogeneous solar wind plasmas
Krafft, C.; Volokitin, A.
2017-04-01
The paper studies the influence of the background plasma density fluctuations on the dynamics of the Langmuir turbulence generated by electron beams, for parameters typical for solar type III beams and plasmas near 1 AU. A self-consistent Hamiltonian model based on the Zakharov and the Newton equations is used, which presents several advantages compared to the Vlasov approach. Beams generating Langmuir turbulence can be accelerated as a result of wave transformation effects or/and decay cascade processes; in both cases, the beam-driven Langmuir waves transfer part of their energy to waves of smaller wavenumbers, which can be reabsorbed later on by beam particles of higher velocities. As a consequence, beams can conserve a large part of their initial kinetic energy while propagating and radiating wave turbulence over long distances in inhomogeneous plasmas. Beam particles can also be accelerated in quasi-homogeneous plasmas due to the second cascade of wave decay, the wave transformation processes being very weak in this case. The net gains and losses of energy of a beam and the wave turbulence it radiates are calculated as a function of the average level of plasma density fluctuations and the beam parameters. The results obtained provide relevant information on the mechanism of energy reabsorption by beams radiating Langmuir turbulence in solar wind plasmas.
A non-equilibrium plasma generator
Energy Technology Data Exchange (ETDEWEB)
Lineberry, J.T.; Wu, Y.C.L.; Martin, J.F. [ERC, Incorporated, Tullahoma, TN (United States)
1993-12-31
This paper summarizes research ideas, results and activities on a DOE MHD SBIR entitled: {open_quote}A Light Metal Fueled Nonequilibrium Plasma Generator (NPG){close_quotes}. The NPG is a concept for a device that has the capability of producing a nonequilibrium plasma from metal combustion. The results of preliminary studies on the NPG concept are given. These studies address fundamentals of the NPG including operating concepts of the NPG concept, results of studies on the quality of the plasma that it can produce, and theoretical evaluations of the nonequilibrium ionization process in an MHD disk generator driven by an NPG. A discussion of potential applications for the NPG is given. These applications encompass pulse MHD power, commercial MHD power and disk MHD generator research.
Space and Astrophysical Plasmas : Ionospheric plasma by VHF waves
Indian Academy of Sciences (India)
R P Patel; Abhay Kumar Singh; R P Singh
2000-11-01
The amplitude scintillations of very high frequency electromagnetic wave transmitted from geo-stationary satellite at 244.168 MHz have been recorded at Varanasi (geom. lat. 14° 55'N) during 1991 to 1999. The data are analyzed to determine the statistical features of overhead ionospheric plasma irregularities which are mostly of small duration < 30 minutes and are predominant during pre-midnight period. The increase of solar activity generally increases the depth of scintillation. The auto-correlation functions and power spectra of scintillations predict that the scale length of these irregularities varies from 200–500 m having velocity of movement between 75 m/sec to 200 m/sec. These results agree well with the results obtained by other workers.
Nonlinear processes in the strong wave-plasma interaction
Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei
2000-10-01
Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
Internal Wave Generation by Turbulent Convection
Lecoanet, D.; Le Bars, M.; Burns, K. J.; Vasil, G. M.; Quataert, E.; Brown, B. P.; Oishi, J.
2015-12-01
Recent measurements suggest that a portion of the Earth's core may be stably stratified. If this is the case, then the Earth's core joins the many planetary and stellar objects which have a stably stratified region adjacent to a convective region. The stably stratified region admits internal gravity waves which can transport angular momentum, energy, and affect magnetic field generation. We describe experiments & simulations of convective excitation of internal waves in water, exploiting its density maximum at 4C. The simulations show that waves are excited within the bulk of the convection zone, opposed to at the interface between the convective and stably stratified regions. We will also present 3D simulations using a compressible fluid. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number.
Viscosity effects in wind wave generation
Paquier, Anna; Rabaud, Marc
2016-01-01
We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier, Moisy and Rabaud [Phys. Fluids {\\bf 27}, 122103 (2015)] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the Free-Surface Synthetic Schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkles regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as $\
Slow electrostatic fluctuations generated by beam-plasma interaction
Pommois, Karen; Pezzi, Oreste; Veltri, Pierluigi
2016-01-01
Eulerian simulations of the Vlasov-Poisson equations have been employed to analyze the excitation of slow electrostatic fluctuations (with phase speed close to the electron thermal speed), due to a beam-plasma interaction, and their propagation in linear and nonlinear regime. In 1968, O'Neil and Malmberg [Phys. Fluids {\\bf 11}, 1754 (1968)] dubbed these waves "beam modes". In the present paper, it is shown that, in the presence of a cold and low density electron beam, these beam modes can become unstable and then survive Landau damping unlike the Langmuir waves. When an electron beam is launched in a plasma of Maxwellian electrons and motionless protons and this initial equilibrium is perturbed by a monochromatic density disturbance, the electric field amplitude grows exponentially in time and then undergoes nonlinear saturation, associated with the kinetic effects of particle trapping and phase space vortex generation. Moreover, if the initial density perturbation is setup in the form of a low amplitude rand...
Surface plasma source with saddle antenna radio frequency plasma generator.
Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R
2012-02-01
A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.
Electron trajectories and growth rates of the plasma wave pumped free-electron laser
Jafari, S.; Jafarinia, F.; Nilkar, M.; Amiri, M.
2014-12-01
A theory for a plasma wave wiggler has been described which employs the plasma whistler wave for producing laser radiation in a free-electron laser (FEL). While electromagnetically pumped FELs have been proven to be an effective means generating short wavelengths, practical difficulties occur in the design of these wigglers. For this reason, it is found that a plasma wave wiggler can be employed in concept with an electromagnetic wave wiggler due to both higher tunability and holding the focus of pump wave and e-beam over a significant distance to achieve a suitable amplification. Plasma in the presence of static magnetic field supports a plasma whistler wave. The plasma wiggler period can be tuned by varying the plasma density and/or ambient magnetic field. Electron trajectories have been analyzed using single particle dynamics and regimes of orbital stability have been demonstrated. A polynomial dispersion relation for electromagnetic and space-charge waves has then been derived, analytically. Numerical studies of the dispersion relation reveal that the growth rates are sensitive functions of the cyclotron frequency. It has been shown that by increasing the axial magnetic field strength (or cyclotron frequency), the growth rate for groups I and III orbits increases, while a growth decrement has been obtained for groups II and IV orbits.
Physics of Collisionless Shocks Space Plasma Shock Waves
Balogh, André
2013-01-01
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...
Generation of powerful terahertz emission in a beam-driven strong plasma turbulence
Arzhannikov, A.V.; Timofeev, I. V.
2012-01-01
Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps....
Freak waves in a plasma having Cairns particles
El-Tantawy, S. A.; El-Awady, E. I.; Schlickeiser, R.
2015-12-01
The probability of the existence of the ion-acoustic rogue waves in a plasma composed of warm ions and non-Maxwellian (nonthermal or Kappa) electrons is investigated in the framework of the modified Korteweg-de Vries (mKdV) equation. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived. After numerical analysis, it is found that the present plasma system populated with nonthermal (Cairns) electrons leads to generation of compressive and rarefactive pulses, in contrast to the case of Kappa distribution. Thus, only for the nonthermal populated electrons, there is a critical value of the nonthermal parameter at which the coefficient of the nonlinear term of the KdV equation vanishes. In this case, we derived the modified KdV (mKdV) equation to describe the evolution of the system. To investigate the rogue waves propagation in our system, the mKdV equation should transfer to the nonlinear Schrödinger equation (NLSE). Our results provide a better understanding of observations in space plasmas which indicate the existence of nonthermal particles.
Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion
Sharif, M
2007-01-01
The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads to a complex dispersion relation, which gives complex values of the wave number. This has been used to discuss the nature of the waves and their characteristics near the horizon.
Dispersive waves generated by an underwater landslide
Dutykh, Denys; Beysel, Sonya; Shokina, Nina; Khakimzyanov, Gayaz
2011-01-01
In this work we study the generation of water waves by an underwater sliding mass. The wave dynamics are assumed to fell into the shallow water regime. However, the characteristic wavelength of the free surface motion is generally smaller than in geophysically generated tsunamis. Thus, dispersive effects need to be taken into account. In the present study the fluid layer is modeled by the Peregrine system modified appropriately and written in conservative variables. The landslide is assumed to be a quasi-deformable body of mass whose trajectory is completely determined by its barycenter motion. A differential equation modeling the landslide motion along a curvilinear bottom is obtained by projecting all the forces acting on the submerged body onto a local moving coordinate system. One of the main novelties of our approach consists in taking into account curvature effects of the sea bed.
Electromagnetic Generators and Detectors of Gravitational Waves
Grishchuk, L P
2003-01-01
The renewed serious interest to possible practical applications of gravitational waves is encouraging. Building on previous work, I am arguing that the strong variable electromagnetic fields are appropriate systems for the generation and detection of high-frequency gravitational waves (HFGW). The advantages of electromagnetic systems are clearly seen in the proposed complete laboratory experiment, where one has to ensure the efficiency of, both, the process of generation and the process of detection of HFGW. Within the family of electromagnetic systems, one still has a great variety of possible geometrical configurations, classical and quantum states of the electromagnetic field, detection strategies, etc. According to evaluations performed 30 years ago, the gap between the HFGW laboratory signal and its level of detectability is at least 4 orders of magnitude. Hopefully, new technologies of today can remove this gap and can make the laboratory experiment feasible. The laboratory experiment is bound to be exp...
Energy Technology Data Exchange (ETDEWEB)
He, W.; Zhang, L.; Bowes, D.; Yin, H.; Ronald, K.; Phelps, A. D. R.; Cross, A. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland (United Kingdom)
2015-09-28
This paper presents for the generation of a small size high current density pseudospark (PS) electron beam for a high frequency (0.2 THz) Backward Wave Oscillator (BWO) through a Doppler up-shift of the plasma frequency. An electron beam ∼1 mm diameter carrying a current of up to 10 A and current density of 10{sup 8} A m{sup −2}, with a sweeping voltage of 42 to 25 kV and pulse duration of 25 ns, was generated from the PS discharge. This beam propagated through the rippled-wall slow wave structure of a BWO beam-wave interaction region in a plasma environment without the need for a guiding magnetic field. Plasma wave assisted beam-wave interaction resulted in broadband output over a frequency range of 186–202 GHz with a maximum power of 20 W.
Generation mechanism of whistler waves produced by electron beam injection in space
Pritchett, P. L.; Karimabadi, H.; Omidi, N.
1989-01-01
Electromagnetic particle simulations are used to determine the generation mechanism of the whistler waves observed in connection with the artificial injection of electron beams in the ionosphere. The production of the waves is shown to be closely connected with the beam-plasma interaction, which leads to the formation of a current structure which acts like an antenna and emits the whistler waves in a coherent manner. This process, in contrast to a mechanism involving amplification of radiation by a whistler mode plasma instability within the beam, allows the whistlers to be generated even though the beam width is less than one wavelength.
Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas
Kaur, Maninder; Nandan Gupta, Devki
2016-11-01
The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.
Effects of Schwarzschild Geometry on Isothermal Plasma Wave Dispersion
Sharif, M.; Sheikh, Umber
2007-01-01
The behavior of isothermal plasma waves has been analyzed near the Schwarzschild horizon. We consider a non-rotating background with non-magnetized and magnetized plasmas. The general relativistic magnetohydrodynamical equations for the Schwarzschild planar analogue spacetime with an isothermal state of the plasma are formulated. The perturbed form of these equations is linearized and Fourier analyzed by introducing simple harmonic waves. The determinant of these equations in each case leads ...
Second harmonic plasma emission involving ion sound waves
Cairns, Iver H.
1987-01-01
The theory for second harmonic plasma emission by the weak turbulence (or random phase) processes L + L + or - S to T, proceeding in two three-wave steps, L + or - S to L prime and L + L prime to T, where L, S and T denote Langmuir, ion sound and electromagnetic waves, respectively, is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes, and constraints on the characteristics of the source plasma, are derived. Limits on the brightness temperature of the radiation and the levels of the L prime and S waves are determined. Expressions for the growth rates and path-integrated wave temperatures are derived for simple models of the wave spectra and source plasma.
Cyclotron waves in a non-neutral plasma column
Energy Technology Data Exchange (ETDEWEB)
Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)
2013-04-15
A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.
The energy density of a Landau damped plasma wave
Best, R. W. B.
1999-01-01
In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite
Does the Decay Wave Propagate Forwards in Dusty Plasmas?
Institute of Scientific and Technical Information of China (English)
谢柏松
2002-01-01
The decay interaction of the ion acoustic wave in a dusty plasma with variable-charge dust grains is studied.Even if strong charging relaxation for dust grains and the short wavelength regime for ion waves are included, it is found that the decay wave must be backward propagating.
Evidence for Langmuir wave collapse in the interplanetary plasma
Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.
1992-01-01
With the Fast Envelope Sampler part of the URAP experiment on Ulysses, there is observed much rapidly varying structure in plasma waves in the solar wind. Extremely narrow (1 ms) structures observed together with electrostatic Langmuir waves, as well as some broader Langmuir wave packets are discussed.
Linear theory of plasma filled backward wave oscillator
Indian Academy of Sciences (India)
Preeti Vyas; Arti Gokhale; Y Choyal; K P Maheshwari
2001-05-01
An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.
Surface wave and linear operating mode of a plasma antenna
Energy Technology Data Exchange (ETDEWEB)
Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.; Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2015-10-15
The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristics of the plasma antenna in this mode are close to those of an analogous metal antenna.
DEFF Research Database (Denmark)
Bindslev, Henrik; Korsholm, Søren Bang; Leipold, Frank;
2012-01-01
In fusion plasmas, the dominant heating source will be fusion generated energetic ions slowing down in the plasma. The same ions can also drive waves and instabilities in the plasma. Their distribution in velocity and in space has major impact on plasma dynamics, and plasma dynamics in turn affects...... the energetic ion distributions. The dynamics of energetic ions is thus important to measure in order to understand fusion plasmas, and important to monitor as part of input to plasma control. The collective Thomson scattering of millimeter waves has proven to be a valuable means of diagnosing energetic ion...... distributions in fusion plasmas1,2. A beam of mm-waves with a diameter of 5–10 cm and a power of 150–600 kW is sent through the plasma, and radiation scattered from this probe beam by the microscopic fluctuations in the plasma is detected. These microscopic fluctuations are in part induced by the ion motion...
Louis, Hélène; Odent, Vincent; Louvergneaux, Eric
2016-04-01
Shock waves are well-known nonlinear waves, displaying an abrupt discontinuity. Observation can be made in a lot of physical fields, as in water wave, plasma and nonlinear optics. Shock waves can either break or relax through either catastrophic or regularization phenomena. In this work, we restrain our study to dispersive shock waves. This regularization phenomenon implies the emission of dispersive waves. We demonstrate experimentally and numerically the generation of spatial dispersive shock waves in a nonlocal focusing media. The generation of dispersive shock wave in a focusing media is more problematic than in a defocusing one. Indeed, the modulational instability has to be frustrated to observe this phenomenon. In 2010, the dispersive shock wave was demonstrated experimentally in a focusing media with a partially coherent beam [1]. Another way is to use a nonlocal media [2]. The impact of nonlocality is more important than the modulational instability frustration. Here, we use nematic liquid crystals (NLC) as Kerr-like nonlocal medium. To achieve shock formation, we use the Riemann condition as initial spatial condition (edge at the beam entrance of the NLC cell). In these experimental conditions, we generate, experimentally and numerically, shock waves that relax through the emission of dispersive waves. Associated with this phenomenon, we evidence the emergence of a localized wave that travels through the transverse beam profile. The beam steepness, which is a good indicator of the shock formation, is maximal at the shock point position. This latter follows a power law versus the injected power as in [3]. Increasing the injected power, we found multiple shock points. We have good agreements between the numerical simulations and the experimental results. [1] W. Wan, D. V Dylov, C. Barsi, and J. W. Fleischer, Opt. Lett. 35, 2819 (2010). [2] G. Assanto, T. R. Marchant, and N. F. Smyth, Phys. Rev. A - At. Mol. Opt. Phys. 78, 1 (2008). [3] N. Ghofraniha, L. S
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W
2013-01-01
Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.
Electromagnetic-wave excitation in a large laboratory beam-plasma system
Whelan, D. A.; Stenzel, R. L.
1981-01-01
The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability
Development of Small Plasma Wave Receiver with a Dedicated Chip for Scientific Spacecraft
Fukuhara, H.; Kojima, H.; Ishii, H.; Okada, S.; Yamakawa, H.
2012-04-01
Since space is filled with collisionless plasmas, kinetic energy of each particle of the plasmas is exchanged via electric and magnetic fields, so-called plasma waves. The plasma waves have been observed a number of scientific spacecraft. Plasma wave receivers are classified into two kinds of the receiver, spectrum receivers, and waveform receivers. The spectrum receivers provide an overview of the plasma waves. The waveform receivers give not only amplitude but also phase of the plasma waves. Phase information between the plasma waves and plasma particle is essential in wave-particle interactions. It is important for understanding physical processes to combine both kinds of data of spectra and waveforms. Since the plasma waves have various intensities in wide-band frequency range, from DC to tens of MHz, the onboard instruments for the plasma wave observation are required to have low noise, high sensitivity, and wide dynamic range in wide-band. The required performances lead to increase the weight budget of the analog part of the instrument. The dedicated system chip can drastically decrease weight budget of the plasma wave instruments for multi-point observation missions and deep space exploration missions. It is also significant that manufacturing a number of instruments with the same performance becomes easy. In this paper, we demonstrate the miniaturized plasma wave receiver, which is realized in a dedicated chip for the analog part. The spectrum receiver is a double super heterodyne receiver, so-called `Sweep Frequency Analyzer (SFA).' This SFA is improved in the time resolution with keeping good frequency resolution by combining the analog frequency conversion and FFT. The SFA consists of an amplifier, a frequency synthesizer, mixers and band-pass filters. These component circuits are fabricated in chips and their performances are tested. The waveform receiver generally consists of the band-limiting filter, the amplifier, the anti-aliasing filter, and the A
Electromagnetic radiation generated by arcing in low density plasma
Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.
1996-01-01
An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.
Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection
Institute of Scientific and Technical Information of China (English)
YUAN Zhi-Gang; DENG Xiao-Hua; PANG Ye; LI Shi-You; WANG Jing-Fang
2007-01-01
We report observations from Geotail satellite showing that large Poynting fluxes associated with Alfven waves in the plasma sheet boundary layer(PSBL) occur in the vicinity of the near-tail reconnection region on 10 December 1996.During the period of large Poynting fluxex,Geotail also observed strong tailward plasma flws.These observations demonstrate the importance of near-tail reconnection process as the energy source of Alfven waves in the PSBL.Strong tailward(Earthward)plasma flows ought to be an important candidate in generating Alfven waves.Furthermore,the strong pertutbations not only of the magnetic field but also of the electric field observed in the PSBL indicate that the PSBL plays an important role in the generation and propagation of the energy flux associated with Alfven waves.
Directory of Open Access Journals (Sweden)
Mahinder Singh
2016-10-01
Full Text Available The generation mechanism of the electromagnetic radiation in case of inhomogeneous plasma on the basis of plasma-maser interaction in presence of drift wave turbulence is studied. The drift wave turbulence is taken as the low-frequency mode field and is found to be strongly in phase relation with thermal particles and may transfer its wave energy nonlinearly through a modulated field of high-frequency extraordinary mode (X-mode wave. It has been found that amplification of X-mode wave is possible at the expense of drift wave turbulent energy. This type of high-frequency instability can leads to auroral kilometric radiation (AKR. The growth rate of the X-mode wave, in the form of AKR, has been calculated with the involvement of spatial density gradient parameter. This result may be particularly important for stability of various drift modes in magnetically confined plasma as well as for transport of momentum and energy in such inhomogeneous plasma
Nanomaterial Synthesis Using Plasma Generation in Liquid
Directory of Open Access Journals (Sweden)
Genki Saito
2015-01-01
Full Text Available Over the past few decades, the research field of nanomaterials (NMs has developed rapidly because of the unique electrical, optical, magnetic, and catalytic properties of these materials. Among the various methods available today for NM synthesis, techniques for plasma generation in liquid are relatively new. Various types of plasma such as arc discharge and glow discharge can be applied to produce metal, alloy, oxide, inorganic, carbonaceous, and composite NMs. Many experimental setups have been reported, in which various parameters such as the liquid, electrode material, electrode configuration, and electric power source are varied. By examining the various electrode configurations and power sources available in the literature, this review classifies all available plasma in liquid setups into four main groups: (i gas discharge between an electrode and the electrolyte surface, (ii direct discharge between two electrodes, (iii contact discharge between an electrode and the surface of surrounding electrolyte, and (iv radio frequency and microwave plasma in liquid. After discussion of the techniques, NMs of metal, alloy, oxide, silicon, carbon, and composite produced by techniques for plasma generation in liquid are presented, where the source materials, reaction media, and electrode configurations are discussed in detail.
Plasma driven neutron/gamma generator
Energy Technology Data Exchange (ETDEWEB)
Leung, Ka-Ngo; Antolak, Arlyn
2015-03-03
An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.
On parallel electric field generation in transversely inhomogeneous plasmas
Tsiklauri, David
2007-01-01
The generation of parallel electric fields by the propagation of ion cyclotron waves in the plasma with a transverse density inhomogeneity was studied. It was proven that the minimal model required to reproduce the previous kinetic simulation results of E_{||} generation [Tsiklauri et al 2005, Genot et al 2004] is the two-fluid, cold plasma approximation in the linear regime. By considering the numerical solutions it was also shown that the cause of E_{||} generation is the electron and ion flow separation induced by the transverse density inhomogeneity. We also investigate how E_{||} generation is affected by the mass ratio and found that amplitude attained by E_{||} decreases linearly as inverse of the mass ratio m_i/m_e. For realistic mass ratio of m_i/m_e=1836, such empirical scaling law, within a time corresponding to 3 periods of the driving ion cyclotron wave, is producing E_{||}=14 Vm^{-1} for solar coronal parameters. Increase in mass ratio does not have any effect on final parallel (magnetic field a...
A method for generating highly nonlinear periodic waves in physical wave basins
DEFF Research Database (Denmark)
Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.
2006-01-01
This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the metho...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....
Nonequilibrium plasma generator (NPG) project - experimental program
Energy Technology Data Exchange (ETDEWEB)
Lineberry, J.T.; Wu, Y.C.L.; Lin, B.C. [and others
1995-12-31
This paper summarizes research conducted under a DOE MHD SBIR entitled: {open_quotes}A Light Metal Fueled Non-equilibrium Plasma Generator (NPG){close_quotes}. It is a summary paper presenting the idea of the NPG and activities of the NPG SBIR research program along with experimental results from NPG Proof-of-Principle tests. The NPG is an innovative concept for a combustion device that can produce a nonequilibrium plasma. This device bums powdered metal fuel, and it can be used to drive an MHD disk generator pulse power unit or a similar nonequilibrium MHD device or system. The NPG research program was concluded over the past two years under sponsorship of a DOE Phase II SBIR grant. This program focused on addressing fundamental and practical aspects of the NPG concept and its system design. The research included investigation of the physics of the NPG concept through theoretical and experimental studies on the quality of the plasma that it can produce, theoretical evaluations of the nonequilibrium ionization processes in an MHD disk generator driven by an NPG, and experimental validation of the NPG concept in Proof-of-Principle tests. At the conclusion of this research it was determined that the NPG is indeed a viable concept. Results from combustion tests using powdered aluminum fuel reveal that the NPG can produce an extremely hot argon plasma clean enough to support nonequilibrium ionization in an MHD device.
Testing THEMIS wave measurements against the cold plasma theory
Taubenschuss, Ulrich; Santolik, Ondrej; Le Contel, Olivier; Bonnell, John
2016-04-01
The THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission records a multitude of electromagnetic waves inside Earth's magnetosphere and provides data in the form of high-resolution electric and magnetic waveforms. We use multi-component measurements of whistler mode waves and test them against the theory of wave propagation in a cold plasma. The measured ratio cB/E (c is speed of light in vacuum, B is magnetic wave amplitude, E is electric wave amplitude) is compared to the same quantity calculated from cold plasma theory over linearized Faraday's law. The aim of this study is to get estimates for measurement uncertainties, especially with regard to the electric field and the cold plasma density, as well as evaluating the validity of cold plasma theory inside Earth's radiation belts.
Properties of plasmas generated in microdischarges
Energy Technology Data Exchange (ETDEWEB)
Munoz-Serrano, E; Hagelaar, G; Callegari, Th; Boeuf, J P; Pitchford, L C [Centre de Physique des Plasmas et Applications de Toulouse (CPAT) Universite Paul Sabatier, Toulouse III, and CNRS UMR 5002 118 route de Narbonne, 31062 Toulouse (France)
2006-12-15
We present in this paper a discussion of the properties of plasmas generated in microhollow cathode geometries and in microcathode sustained discharge geometries. The results presented here are derived from models. This work is part of a joint modelling/experimental programme whose objective is the evaluation of the potential of the high-pressure, non-thermal plasmas created in microdischarges (e.g. discharges in small, 100s of micrometre sized geometries) for the production of large quantities of radical species, and in particular oxygen singlet delta (metastable) molecules, O{sub 2}({sup 1}{delta})
Efficient Focusing Models for Generation of Freak Waves
Institute of Scientific and Technical Information of China (English)
ZHAO Xi-zeng; SUN Zhao-chen; LIANG Shu-xiu
2009-01-01
Four focusing models for generation of freak waves are presented. An extreme wave focusing model is presented on the basis of the enhanced High-Order Spectral (HOS) method and the importance of the nonlinear wave-wave interaction is evaluated by comparison of the calculated results with experimental and theoretical data. Based on the modification of the Longuet-Higgins model, four wave models for generation of freak waves (a. Extreme wave model + random wave model; b. Extreme wave model + regular wave model; c. Phase interval modulation wave focusing model; d. Number modulation wave focusing model with the same phase) are proposed. By use of different energy distribution techniques in the four models, freak wave events are obtained with different H_(max)/H_s in finite space and time.
Radial Shock Wave Devices Generate Cavitation.
Directory of Open Access Journals (Sweden)
Nikolaus B M Császár
Full Text Available Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues.We used laser fiber optic probe hydrophone (FOPH measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA. To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans worms.FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device.The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices.Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical
Density bump formation in a collisionless electrostatic shock wave in a laser-ablated plasma
Garasev, M A; Kocharovsky, V V; Malkov, Yu A; Murzanev, A A; Nechaev, A A; Stepanov, A N
2016-01-01
The emergence of a density bump at the front of a collisionless electrostatic shock wave have been observed experimentally during the ablation of an aluminium foil by a femtosecond laser pulse. We have performed numerical simulations of the dynamics of this phenomena developing alongside the generation of a package of ion-acoustic waves, exposed to a continual flow of energetic electrons, in a collisionless plasma. We present the physical interpretation of the observed effects and show that the bump consists of transit particles, namely, the accelerated ions from the dense plasma layer, and the ions from the diluted background plasma, formed by a nanosecond laser prepulse during the ablation.
Plasma production by helicon waves with single mode number in low magnetic fields
Sato, G; Hatakeyama, R; Sato, Genta; Oohara, Wataru; Hatakeyama, Rikizo
2004-01-01
Radio-frequency discharges are performed in low magnetic fields (0-10 mT) using three types of helicon-wave exciting antennas with the azimuthal mode number of $|m|$ = 1. The most pronounced peak of plasma density is generated in the case of phased helical antenna at only a few mT, where the helicon wave with $|m| = 1$ is purely excited and propagates. An analysis based on the dispersion relation well explains the density-peak phenomenon in terms of the correspondence between the antenna one-wavelength and the helicon wavelength. The $m=+1$ helicon wave propagates even in high magnetic fields where the density peaks are not observed, but the $m=-1$ helicon wave disappers. It is expected theoretically that the $m=-1$ helicon wave shows cutoff behavior in a low density region, [M. Kramer, Phys. Plasmas 6, 1052 (1999)], and the cutoff of $m=-1$ helicon wave experimentally observed coincides with the calculated one.
On-Line Generation of 3D-Waves
DEFF Research Database (Denmark)
Frigaard, Peter
1992-01-01
The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg.......The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg....
A flowing plasma model to describe drift waves in a cylindrical helicon discharge
Chang, L; Cormac, C S
2011-01-01
A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetised plasma (WOMBAT), with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalised rotation frequency, lower temperature and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These r...
Excitation of surface plasma waves over corrugated slow-wave structure
Indian Academy of Sciences (India)
Ashim P Jain; Jetendra Parashar
2005-08-01
A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.
Wind-wave generation using interface tracking
Akervik, Espen
2016-11-01
The wind-wave generation process in a periodic open channel is studied by means of Large Eddy Simulation, using the Volume of Fluid method to track the interface. The coupled system is initiated by imposing a turbulent air flow at Reτ = 395 on top of water at rest. Surface tension effects are excluded and the Froude number is chosen so as to fit equilibrium slow moving waves inside the computational domain. In the initial stage, the surface deformation consists of streamwise elongated narrow structures. These may be seen as footprints of the near wall streaks in the turbulent air flow. This phase is associated with linear growth in amplitude, and the behavior of the air flow is largely unaffected by the surface deformations. In the second stage, localized slow moving (c /uτ exponential growth of the waves. In the third stage, non-linear interactions occur, resulting in redistribution of energy. The growth rates are compared to previous simulations and theoretical results.
Developing Serpent-Type Wave Generators to Create Solitary Wave Simulations with BEM
Institute of Scientific and Technical Information of China (English)
Wen-Kai WENG; Ruey-Syan SHIH; Chung-Ren CHOU
2013-01-01
Developing serpent-type wave generators to generate solitary waves in a 3D-basin was investigated in this study. Based on the Lagrangian description with time-marching procedures and finite differences of the time derivative, a 3D multiple directional wave basin with multidirectional piston wave generators was developed to simulate ocean waves by using BEM with quadrilateral elements, and to simulate wave-caused problems with fully nonlinear water surface conditions. The simulations of perpendicular solitary waves were conducted in the first instance to verify this scheme. Furthermore, the comparison of the waveform variations confirms that the estimation of 3D solitary waves is a feasible scheme.
Freak waves in negative-ion plasmas: an experiment revisited
Kourakis, Ioannis; Elkamash, Ibrahem; Reville, Brian
2016-10-01
Extreme events in the form of rogue waves (freak waves) occur widely in the open sea. These are space- and time-localised excitations, which appear unexpectedly and are characterised by a significant amplitude. Beyond ocean dynamics, the mechanisms underlying rogue wave formation are now being investigated in various physical contexts, including materials science, nonlinear optics and plasma physics, to mention but a few. We have undertaken an investigation, from first principles, of the occurrence of rogue waves associated with the propagation of electrostatic wavepackets in plasmas. Motivated by recent experimental considerations involving freak waves in negative-ion plasmas (NIP), we have addresed the occurrence of freak waves in NIP from first principles. An extended range of plasma parameter values was identified, where freak wave formation is possible, in terms of relevant plasma parameters. Our results extend -and partly contradict- the underlying assumptions in the interpretation of the aforementioned experiment, where a critical plasma configuration was considered and a Gardner equation approach was adopted. This work was supported from CPP/QUB funding. One of us (I. Elkamash) acknowledges financial support by an Egyptian Government fellowship.
Microwave power coupling in a surface wave excited plasma
Kar, Satyananda; Kousaka, Hiroyuki
2014-01-01
In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP). In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Energy Technology Data Exchange (ETDEWEB)
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
Effect of wave localization on plasma instabilities. Ph. D. Thesis
Energy Technology Data Exchange (ETDEWEB)
Levedahl, W.K.
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
Generation of high-power electromagnetic radiation by a beam-driven plasma antenna
Annenkov, V. V.; Volchok, E. P.; Timofeev, I. V.
2016-04-01
In this paper we study how efficiently electromagnetic radiation can be generated by a relativistic electron beam with a gigawatt power level during its injection into a thin magnetized plasma. It is shown that, if the transverse beam and plasma size is compared with the radiation wavelength and the plasma density is modulated along the magnetic field, such a beam-plasma system can radiate electromagnetic waves via the antenna mechanism. We propose a theoretical model describing generation of electromagnetic waves by this plasma antenna and calculate its main radiation characteristics. In the two-dimensional case theoretical predictions on the radiation efficiency are shown to be confirmed by the results of particle-in-cell simulations, and the three-dimensional variant of this theory is used to estimate the peak power of sub-terahertz radiation that can be achieved in beam-plasma experiments in mirror traps.
The use of cold plasma generators in medicine
National Research Council Canada - National Science Library
Kolomiiets R.O; Nikitchuk T.M; Hrek O.V
2017-01-01
Cold plasma treatment of wounds is a modern area of therapeutic medicine. We describe the physical mechanisms of cold plasma, the principles of therapeutic effects and design of two common types of cold plasma generators for medical use...
Acceleration of injected electrons by the plasma beat wave accelerator
Joshi, C.; Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Katsouleas, T.; Mori, W. B.
1992-07-01
In this paper we describe the recent work at UCLA on the acceleration of externally injected electrons by a relativistic plasma wave. A two frequency laser was used to excite a plasma wave over a narrow range of static gas pressures close to resonance. Electrons with energies up to our detection limit of 9.1 MeV were observed when 2.1 MeV electrons were injected in the plasma wave. No accelerated electrons above the detection threshold were observed when the laser was operated on a single frequency or when no electrons were injected. Experimental results are compared with theoretical predictions, and future prospects for the plasma beat wave accelerator are discussed.
Relativistic effects on the modulational instability of electron plasma waves in quantum plasma
Indian Academy of Sciences (India)
Basudev Ghosh; Swarniv Chandra; Sailendra Nath Paul
2012-05-01
Relativistic effects on the linear and nonlinear properties of electron plasma waves are investigated using the one-dimensional quantum hydrodynamic (QHD) model for a twocomponent electron–ion dense quantum plasma. Using standard perturbation technique, a nonlinear Schrödinger equation (NLSE) containing both relativistic and quantum effects has been derived. This equation has been used to discuss the modulational instability of the wave. Through numerical calculations it is shown that relativistic effects signiﬁcantly change the linear dispersion character of the wave. Unlike quantum effects, relativistic effects are shown to reduce the instability growth rate of electron plasma waves.
Nonlinear Alfvén wave propagating in ideal MHD plasmas
Zheng, Jugao; Chen, Yinhua; Yu, Mingyang
2016-01-01
The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.
A numerical study of the breaking of modulated waves generated at a wave maker
Andonowati,; Kusumawinahyu, W.M; Groesen, van E.
2006-01-01
This paper is concerned with breaking criteria for generated waves. An input in the form of a time signal is prescribed to a wave maker located at one end of a wave tank as used in hydrodynamic laboratories. The motion of this wave maker produces waves propagating into initially still water in the t
The design of a plasma generator used in ships
Institute of Scientific and Technical Information of China (English)
2008-01-01
The process and condition of arc starting and discharge and heat balance rela-tionship in a plasma generator that takes water as propellant are analyzed. Two questions that must be paid attention to arise, when designing the plasma gen-erator. Water resistance in a plasma generator should be as big as possible, and inductive reactance of electric source should be equal to capacity reactance of plasma generator so that resonance is generated in electric circuit, voltage be-tween two electrodes in the plasma generator reaches the highest value, and arc starting and discharge also occur between electrodes in the plasma generator. When energy that electric source supplies is greater than or equal to the energy required when water becomes plasma, a mixture of plasma and steam ejects from the generator outlet. So it is necessary that cavity between electrodes in the plasma generator should be as big as possible, time that water stays in the plasma gen-erator should be long enough so that water obtains enough energy from the electric source, but resistance of water becomes small and arc starting is not easy to occur. Through manufacturing and experimentes on four kinds of plasma generators as well as the contrast between experimental results, the plasma generator model is established and the plasma generator is manufactured.
Excitation of Chirping Whistler Waves in a Laboratory Plasma
Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.
2015-12-01
Whistler mode chorus emissions with a characteristic frequency chirp are an important magnetospheric wave, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified. The research was funded by NSF/DOE Plasma Partnership program by grant DE-SC0010578. Work was done at the Basic Plasma Science Facility (BAPSF) also funded by NSF/DOE.
Broadband plasma waves observed in the polar cap boundary layer: Polar
Tsurutani, B. T.; Lakhina, G. S.; Ho, C. M.; Arballo, J. K.; Galvan, C.; Boonsiriseth, A.; Pickett, J. S.; Gurnett, D. A.; Peterson, W. K.; Thorne, R. M.
1998-08-01
Polar observations indicate the presence of intense broadband plasma waves nearly all of the time (96% occurrence frequency in this study) near the apogee of the Polar trajectory (~6-8RE). The region of wave activity bounds the dayside (0500 to 1800 LT) polar cap magnetic fields, and we thus call these waves polar cap boundary layer (PCBL) waves. The waves are spiky signals spanning a broad frequency range from ~101 to 2×104Hz. The waves have a rough power law spectral shape. The wave magnetic component has on average a f-2.7 frequency dependence and appears to have an upper frequency cutoff of ~(6-7)×103Hz, which is the electron cyclotron frequency. The electric component has on average a f-2.2 frequency dependence and extends up to ~2×104Hz. The frequency dependences of the waves and the amplitude ratios of B'/E' indicate a possible mixture of obliquely propagating electromagnetic whistler mode waves plus electrostatic waves. There are no clear intensity peaks in either the magnetic or electric spectra which can identify the plasma instability responsible for the generation of the PCBL waves. The wave character (spiky nature, frequency dependence and admixture of electromagnetic and electrostatic components) and intensity are quite similar to those of the low-latitude boundary layer (LLBL) waves detected at and inside the low-latitude dayside magnetopause. Because of the location of the PCBL waves just inside the polar cap magnetic field lines, it is natural to assume that these waves are occurring on the same magnetic field lines as the LLBL waves, but at lower altitudes. Because of the similar wave intensities at both locations and the occurrence at all local times, we rule out an ionospheric source. We also find a magnetosheath origin improbable. The most likely scenario is that the waves are locally generated by field-aligned currents or current gradients. We find a strong relationship between the presence of ionospheric and magnetosheath ions and the
Generative Modeling for Machine Learning on the D-Wave
Energy Technology Data Exchange (ETDEWEB)
Thulasidasan, Sunil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Sciences Group
2016-11-15
These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.
Sydorenko, D; Chen, L; Ventzek, P L G
2015-01-01
Generation of anomalously energetic suprathermal electrons was observed in simulation of a high- voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. Efficient energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons i...
Flowing dusty plasma experiments: generation of flow and measurement techniques
Jaiswal, S.; Bandyopadhyay, P.; Sen, A.
2016-12-01
A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.
Kinetic simulations of ladder climbing by electron plasma waves
Hara, Kentaro; Barth, Ido; Kaminski, Erez; Dodin, I. Y.; Fisch, N. J.
2017-05-01
The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth et al. [Phys. Rev. Lett. 115, 075001 (2015), 10.1103/PhysRevLett.115.075001] based on a linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir waves per se.
Alfven waves in a partially ionized two-fluid plasma
Soler, R; Ballester, J L; Terradas, J
2013-01-01
Alfv\\'en waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfv\\'en waves is affected by the interaction between ionized and neutral species. Here we study Alfv\\'en waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cut-off values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mo...
The design of a plasma generator used in ships
Institute of Scientific and Technical Information of China (English)
WANG XinZhang; YANG JiaXiang; LAN Bo; XU ZuoMing; GAO Ying
2008-01-01
The process and condition of arc starting and discharge and heat balance rela-tionship in a plasma generator that takes water as propellant are analyzed.Two questions that must be paid attention to arise,when designing the plasma gen-erator.Water resistance in a plasma generator should be as big as possible,and inductive reactance of electric source should be equal to capacity reactance of plasma generator so that resonance is generated in electric circuit,voltage be-tween two electrodes in the plasma generator reaches the highest value,and arc starting and discharge also occur between electrodes in the plasma generator.When energy that electric source supplies is greater than or equal to the energy required when water becomes plasma,a mixture of plasma and steam ejects from the generator outlet.So it is necessary that cavity between electrodes in the plasma generator should be as big as possible,time that water stays in the plasma gen-erator should be long enough so that water obtains enough energy from the electric source,but resistance of water becomes small and arc starting is not easy to occur.Through manufacturing and experimentes on four kinds of plasma generators as well as the contrast between experimental results,the plasma generator model is established and the plasma generator is manufactured.
Scattering of radio frequency waves by turbulence in fusion plasmas
Ram, Abhay K.
2016-10-01
In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Surface Waves in the paritally ionized solar plasma slab
Pandey, B P
2013-01-01
The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non ideal MHD effects which causes the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid is similar to the ideal MHD except now the propagation properties depend on the fractional ionization of the medium. In the presence of Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. When both the Hall and Pedersen diffusion are present in the medium, the waves undergoes damping. For typical solar parameters, waves may damp over few minutes.
Electromagnetic ion cyclotron waves in the plasma depletion layer
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Energy Technology Data Exchange (ETDEWEB)
Tsuda, M.; Ono, K.; Tsuchihashi, M.; Hanazaki, M.; Komemura, T. [Mitsubishi Electric Corp., Tokyo (Japan)
1998-11-01
A new-type microwave plasma source has been developed for materials processing. The plasma reactor employed a launcher of azimuthally symmetric surface waves at a frequency of 2.45 GHz and also magnetic multicusp fields around the reactor chamber walls. This configuration yielded high-density (Ne {>=} 10{sup 11}cm{sup -3}) plasmas sustained by surface waves even at low gas pressures below 10 m Torr, following easy plasma ignition by electron cyclotron resonance (ECR) discharges. Electrical and optical diagnostics were made to obtain the plasma properties in Ar. It was shown that a transition from ECR excited to surface-wave excited plasmas occurs under conditions where the plasma electron density exceeds a critical value of Ne-1 times 10{sup 11}cm{sup -3}. 21 refs., 14 figs.
Energy Technology Data Exchange (ETDEWEB)
Guede, Jose Ricardo Abalde
1995-11-01
The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the
Registration of ELF waves in rocket-satellite experiment with plasma injection
Korobeinikov, V. G.; Oraevskii, V. N.; Ruzhin, Iu. Ia.; Sobolev, Ia. P.; Skomarovskii, V. S.; Chmyrev, V. M.; Namazov, C. A.; Pokhunkov, A. A.; Nesmeianov, V. I.
1992-12-01
Two rocket KOMBI-SAMA experiments with plasma injection at height 100-240 km were performed in August 1987 in the region of Brazilian magnetic anomaly (L = 1.25). The launching time of the rocket was determined so that plasma injection was at the time when COSMOS 1809 satellite passed as close as possible to magnetic tube of injection. Caesium plasma jet was produced during not less than 300 s by an electric plasma generator separated from the payload. When the satellite passed the geomagnetic tube intersecting the injection region an enhancement of ELF emission at 140 Hz, 450 Hz by a factor of 2 was registered on board the satellite. An enhancement of energetic particle flux by a factor of 4-5 was registered on board the rocket. Observed ELF emission below 100 Hz is interpreted as the generation of oblique electromagnetic ion-cyclotron waves due to drift plasma instability at the front of the plasma jet.
Surface waves on a quantum plasma half-space
Lázár, M; Smolyakov, A
2007-01-01
Surface modes are coupled electromagnetic/electrostatic excitations of free electrons near the vacuum-plasma interface and can be excited on a sufficiently dense plasma half-space. They propagate along the surface plane and decay in either sides of the boundary. In such dense plasma models, which are of interest in electronic signal transmission or in some astrophysical applications, the dynamics of the electrons is certainly affected by the quantum effects. Thus, the dispersion relation for the surface wave on a quantum electron plasma half-space is derived by employing the quantum hydrodynamical (QHD) and Maxwell-Poison equations. The QHD include quantum forces involving the Fermi electron temperature and the quantum Bohm potential. It is found that, at room temperature, the quantum effects are mainly relevant for the electrostatic surface plasma waves in a dense gold metallic plasma.
Propagation of waves in a multicomponent plasma having charged dust particles
Indian Academy of Sciences (India)
Sukanya Burman; A Roy Chowdhury; S N Paul
2001-06-01
Propagation of both low and high frequency waves in a plasma consisting of electrons, ions, positrons and charged dust particles have been theoretically studied. The characteristics of dust acoustic wave propagating through the plasma has been analysed and the dispersion relation deduced is a generalization of that obtained by previous authors. It is found that nonlinear localization of high frequency electromagnetic ﬁeld in such a plasma generates magnetic ﬁeld. This magnetic ﬁeld is seen to depend on the temperatures of electrons and positrons and also on their equilibrium density ratio. It is suggested that the present model would be applicable to ﬁnd the magnetic ﬁeld generation in space plasma.
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)
2016-09-15
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
Lee, Myoung-Jae; Jung, Young-Dae
2016-09-01
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.
Spontaneous excitation of waves by an intense ion beam on the Large Plasma Device
Tripathi, Shreekrishna; van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Heidbrink, William
2016-10-01
A hydrogen ion beam (15 keV, 10 A) has been injected into a large magnetized plasma (n 1010 -1013 cm-3, Te = 5.0 - 15.0 eV, B = 0.6 - 1.8 kG, He+ and H+ ions, 19 m long, 0.6 m diameter) for performing fast-ion studies on the Large Plasma Device (LAPD). The beam forms a helical orbit (pitch-angle 7° -55°), propagates with an Alfvénic speed (beam-speed/Alfvén-speed = 0.2 - 3.0), and significantly enhances the electron temperature and density when injected during the plasma afterglow. We report results on spontaneous generation of Alfvén waves and electrostatic waves in the lower-hybrid range of frequencies by the beam. Roles of normal and anomalous Doppler-shifted ion-cyclotron resonances in destabilizing the Alfvén waves were examined by measuring the phase-speed of waves and relevant parameters of the plasma using a variety of diagnostic tools (retarding-field energy analyzer, three-axis magnetic-loop, Dipole, and Langmuir probes). Conditions for the maximum growth of these waves were determined by varying the parameters of the beam and ambient plasma and examining the mode-structures in the fluctuation-spectra. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.
Modeling whistler wave generation regimes in magnetospheric cyclotron maser
Directory of Open Access Journals (Sweden)
D. L. Pasmanik
2004-11-01
Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles.
It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies.
On the basis of the results obtained, the model for explanation of
Infra-Gravity Wave Generation by the Shoaling Wave Groups over Beaches
Institute of Scientific and Technical Information of China (English)
LIN Yu-Hsien; HWUNG Hwung-Hweng
2012-01-01
A physical parameter,μb,which was used to meet the forcing of primary short waves to be off-resonant before wave breaking,has been considered as an applicable parameter in the infra-gravity wave generation.Since a series of modulating wave groups for different wave conditions are performed to proceed with the resonant mechanism of infragravity waves prior to wave breaking,the amplitude growth of incident bound long wave is assumed to be simply controlled by the normalized bed slope,βb.The results appear a large dependence of the growth rate,α,of incident bound long wave,separated by the three-array method,on the normalized bed slope,βb.High spatial resolution of wave records enables identification of the cross-correlation between squared short-wave envelopes and infra-gravity waves.The crossshore structure of infra-gravity waves over beaches presents the mechanics of incident bound- and outgoing free long waves with the formation of free standing long waves in the nearshore region.The wave run-up and amplification of infra-gravity waves in the swash zone appear that the additional long waves generated by the breaking process would modify the cross-shore structure of free standing long waves.Finally,this paper would further discuss the contribution of long wave breaking and bottom friction to the energy dissipation of infra-gravity waves based on different slope conditions.
Thyristor stack for pulsed inductive plasma generation.
Teske, C; Jacoby, J; Schweizer, W; Wiechula, J
2009-03-01
A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.
Surface plasma waves over bismuth–vacuum interface
Indian Academy of Sciences (India)
Ashim P Jain; J Parashar
2003-09-01
A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW cutoff=$_{p}/\\sqrt{2(_{L}+)}$ lies in the far infrared region and can be accessed using free electron laser. The damping rate of waves at low temperatures is low. The surface plasma wave may be excited by an electron beam of current ∼ 100 mA propagating parallel to the interface in its close proximity.
Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide
DEFF Research Database (Denmark)
Juul Rasmussen, Jens
1978-01-01
The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...... the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations...
Design of Permanent Magnet Synchronous Generators for Wave Power Generation
Institute of Scientific and Technical Information of China (English)
方红伟; 王丹
2016-01-01
In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embed-ded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coeffi-cient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.
Generation of long subharmonic internal waves by surface waves
Tahvildari, Navid; Kaihatu, James M.; Saric, William S.
2016-10-01
A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.
Electrostatic solitary waves in dusty pair-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Misra, A. P. [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan-731 235, West Bengal (India); Adhikary, N. C. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam (India)
2013-10-15
The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.
Spiral density wave generation by vortices in Keplerian flows
Bodo, G; Murante, G; Tevzadze, A; Rossi, P; Ferrari, A
2005-01-01
We perform a detailed analytical and numerical study of the dynamics of perturbations (vortex/aperiodic mode, Rossby and spiral-density waves) in 2D compressible disks with a Keplerian law of rotation. We draw attention to the process of spiral-density wave generation from vortices, discussing, in particular, the initial, most peculiar stages of wave emission. We show that the linear phenomenon of wave generation by vortices in smooth (without inflection points) shear flows found by using the so-called non-modal approach, is directly applicable to the present case. After an analytical non-modal description of the physics and characteristics of the spiral-density wave generation/propagation in the local shearing-sheet model, we follow the process of wave generation by small amplitude coherent circular vortex structures, by direct global numerical simulation, describing the main features of the generated waves.
Eulerian simulations of collisional effects on electrostatic plasma waves
Pezzi, Oreste; Perrone, Denise; Veltri, Pierluigi
2013-01-01
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attach, both from the theoretical and the numerical point of view, and which requires in general to approximate the original collisional Landau integral by simplified differential operators in reduced dimensionality. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear form. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator...
Surface waves in the magnetized, collisional dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Pandey, B. P. [Department of Physics, Astronomy and Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Vladimirov, S. V. [School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Ishihara, O. [Faculty of Engineering, Yokohama National University, Yokohama 240-8501 (Japan)
2013-10-15
The properties of the low frequency surface waves in inhomogeneous, magnetized collisional complex dusty plasma are investigated in this work. The inhomogeneity is modelled by the two distinct regions of the dusty medium with different dust densities. The external magnetic field is assumed to be oriented along the interface dividing the two medium. It is shown that the collisional momentum exchange that is responsible for the relative drift between the plasma particles affects the propagation of the surface waves in the complex plasma via the Hall drift of the magnetic fluctuations. The propagation properties of the sausage and kink waves depend not only on the grain charge and size distribution but also on the ambient plasma thermal conditions.
Low-Frequency Waves in Cold Three-Component Plasmas
Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong
2016-09-01
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
Energy Technology Data Exchange (ETDEWEB)
Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.
Laser propagation and soliton generation in strongly magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Feng, W.; Li, J. Q.; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)
2016-03-15
The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.
Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses
Jukna, Vytautas; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien
2016-01-01
Acoustic signals generated by filamentation of ultrashort TW laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.
Damping of Slow Magnetoacoustic Waves in an Inhomogeneous Coronal Plasma
Indian Academy of Sciences (India)
Nagendra Kumar; Pradeep Kumar; Shiv Singh; Anil Kumar
2008-03-01
We study the propagation and dissipation of slow magnetoacoustic waves in an inhomogeneous viscous coronal loop plasma permeated by uniform magnetic field. Only viscosity and thermal conductivity are taken into account as dissipative processes in the coronal loop. The damping length of slow-mode waves exhibit varying behaviour depending upon the physical parameters of the loop in an active region AR8270 observed by TRACE. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm-2 s-1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction belowto the transition region. It is also found that only those slow-mode waves which have periods more than 240 s provide the required heating rate to balance the energy losses in the solar corona. Our calculated wave periods for slow-mode waves nearly match with the oscillation periods of loop observed by TRACE.
Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view
Laval, Guy; Pesme, Denis; Adam, Jean-Claude
2016-11-01
The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.
Saturation of Langmuir waves in laser-produced plasmas
Energy Technology Data Exchange (ETDEWEB)
Baker, K.L.
1996-04-01
This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.
Scholte waves generated by seafloor topography
Zheng, Yingcai; Liu, Jing; Fehler, Michael C
2013-01-01
Seafloor topography can excite strong interface waves called Scholte waves that are often dispersive and characterized by slow propagation but large amplitude. This type of wave can be used to invert for near seafloor shear wave velocity structure that is important information for multi-component P-S seismic imaging. Three different approaches are taken to understand excitation of Scholte waves and numerical aspects of modeling Scholte waves, including analytical Cagniard-de Hoop analysis, the boundary integral method and a staggered grid finite difference method. For simple media for which the Green's function can be easily computed, the boundary element method produces accurate results. The finite difference method shows strong numerical artifacts and stagnant artificial waves can be seen in the vicinity of topography at the fluid-solid interface even when using fine computational grids. However, the amplitude of these artificial waves decays away from the seafloor. It is sensible to place receivers away fr...
Power consumption analysis DBD plasma ozone generator
Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.
2016-11-01
Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts
Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam
Gupta, D. N.; Kulagin, V. V.; Suk, H.
2017-10-01
We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.
Electron plasma waves in the solar wind - AMPTE/IRM and UKS observations
Treumann, R. A.; Bauer, O. H.; Labelle, J.; Haerendel, G.; Christiansen, P. J.
1986-01-01
Selected events of plasma wave and electromagnetic emissions in the earth's electron fore-shock region have been studied. Strong emissions are observed in the plasma-wave band when the site of the satellite is magnetically connected to the bow shock. These emissions are generally highly fluctuating. Under certain conditions one observes electromagnetic radiation at the second harmonic produced locally. Electromagnetic emission generated at a position far away from the site of the spacecraft is occasionally detected giving rise to remote sensing of the bow shock. These emissions are related to energetic electron fluxes.
Rogue waves generated through quantum chaos
Liu, Changxu
2013-05-01
Rouge waves, or freak waves, are extreme events that manifest themselves with the formation of waves with giant amplitude. One of the distinctive features of their appearance is an anomalous amplitude probability distribution, which shows significant deviations from the classical Rayleigh statistics [1]. Initially observed in the context of oceanography, rogue waves have been extensively studied in Optics where their observation has been reported in nonlinear optical fibers [2] and laser systems [3]. © 2013 IEEE.
Stochastic generation of continuous wave spectra
DEFF Research Database (Denmark)
Trulsen, J.; Dysthe, K. B.; Pécseli, Hans
1983-01-01
Wave packets of electromagnetic or Langmuir waves trapped in a well between oscillating reflectors are considered. An equation for the temporal evolution of the probability distribution for the carrier wave number is derived, and solved analytically in terms of moments in the limits of long...
Generation and Analysis of Random Waves
DEFF Research Database (Denmark)
Liu, Zhou; Frigaard, Peter
Sea waves are the most important phenomenon to be considered in the design of coastal and offshore structures. It should be stressed that, even though all contents in the book are related to sea waves, they have a broader application in practice. For example, the extreme theory has also been......-requirement for the book is the knowledge of linear wave theory....
Directory of Open Access Journals (Sweden)
Kazantseva E.V.
2015-01-01
Full Text Available In a model which describes asymmetric oppositely directed nonlinear coupler it was observed in numerical simulations a phenomenon of solitary wave generation from the input constant continuous wave set at the entrance of a waveguide with negative refraction. The period of solitary wave formation decreases with increase of the continuum wave amplitude.
Proton beam generation of whistler waves in the earth's foreshock
Wong, H. K.; Goldstein, M. L.
1987-01-01
It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.
Charged particle flows in an explosively generated non-ideal plasma
Boswell, C. J.; Carney, J. R.; Wilkinson, J.; Pangilinan, G. I.; Whitley, V. H.
2007-06-01
Non-ideal plasmas occur as a result of the stimulation of matter by strong shocks, detonation waves, or concentrated laser irradiation. Since all of these methods of generating non-ideal plasmas are already in use to address other problems, we focus on a detailed understanding of this plasma. In particular, we study the flow of charged particles in a non-ideal plasma generated using an explosive to compress the gas into the non- ideal plasma state. The shock wave in the gas is generated by an explosive located at one end of a guide tube filled with the gas. The detonation produces a shock wave strong enough to ionize the gas. Spectral line emission profiles, recorded with a streak emission spectroscopy system, are used to ascertain neutral and ionized gas properties. The electric and magnetic fields are measured by electrostatic probes and magnetic induction coils which permit the measurement of the temperature, density, and electric potential of the non-ideal plasma; as well as the flow of net electric charges respectively. The results demonstrate that a separation of the positive and negative charges occurs in the vicinity of the shock wave.
Investigation on laser accelerators. Plasma beat wave accelerators
Energy Technology Data Exchange (ETDEWEB)
Miura, Akihiko; Miyamoto, Yasuaki; Hagiwara, Masayoshi; Suzuki, Mitsutoshi; Sudo, Osamu [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works
1998-04-01
Laser accelerator technology has characteristics of high energy, compact, short pulse and high luminescence{center_dot}low emittance. This means potential many applications in wide ranges of fields as well as high energy and nuclear physics. High power short laser pulses are injected to a plasma in the typical example of laser accelerators. Large electric fields are induced in the plasma. Electrons in the plasma are accelerated with the ponderomotive force of the electric field. The principles of interaction on beat wave, wakefield accelerators, inverse free electron laser and inverse Cherenkov radiation are briefly introduced. The overview of plasma beat wave accelerator study is briefly described on the programs at Chalk River Laboratories(Canada), UCLA(USA), Osaka Univ. (Japan) and Ecole Polytechnique (France). Issues of the plasma beat wave accelerator are discussed from the viewpoint of application. Existing laser technologies of CO{sub 2}, YAG and YFL are available for the present day accelerator technology. An acceleration length of beat wave interaction is limited due to its phase condition. Ideas on multi-staged acceleration using the phasing plasma fiber are introduced. (Y. Tanaka)
Generation and Properties of Freak Waves in A Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
韩涛; 张庆河; 庞红犁; 秦崇仁
2004-01-01
Freak waves are generated based on the mechanism of wave focusing in a 2D numerical wave tank. To set up the nonlinear numerical wave tank, the Boundary Element Method is used to solve potential flow equations incorporated with fully nonlinear free surface boundary conditions. The nonlinear properties of freak waves, such as high frequency components and wave profile asymmetry, are discussed. The kinematic data, which can be useful for the evaluation of the wave forces exerted on structures to avoid underestimation of linear predictions, are obtained, and discussed, from the simulated results of freak waves.
Cho, Guangsup; Uhm, Han Sup
2016-10-01
The time-dependent solution of diffusion equation by the Fourier integration provides the axial diffusion velocity of a plasma packet, which is a key element of the plasma propagation in a plasma jet operated by the several tens of kHz. The plasma diffusion velocity is higher than the order of un ˜ 10 m/s at a high electric-field region of plasma generation and it is about the order of un ˜ 10 m/s at the plasma column of a low field region in a jet-nozzle inside. Meanwhile, the diffusion velocity is slower than the order of un ˜ 10 m/s in the open-air space where the plasma density flattens due to its radial expansion. Using these diffusion velocity data, the group-velocity of plasma diffusion wave-packet is given by ug ˜ cs2/un, a combination of the diffusion velocity un and the acoustic velocity cs. The experimental results of the plasma propagation can be verified with the plasma propagation in a form of the wave-packet whose propagation velocity is 104 m/s in a tube inside and is as fast as 105 m/s in the open-air space, thereby reconfirming that the theory of a plasma diffusion-wave is the origin of the plasma propagation in a plasma jet.
The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock
Tokar, R. L.; Gurnett, D. A.
1985-01-01
In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.
Generation of whistler waves by continuous HF heating of the upper ionosphere
Vartanyan, A.; Milikh, G. M.; Eliasson, B.; Najmi, A. C.; Parrot, M.; Papadopoulos, K.
2016-07-01
Broadband VLF waves in the frequency range 7-10 kkHz and 15-19 kHz, generated by F region CW HF ionospheric heating in the absence of electrojet currents, were detected by the DEMETER satellite overflying the High Frequency Active Auroral Research Program (HAARP) transmitter during HAARP/BRIOCHE campaigns. The VLF waves are in a frequency range corresponding to the F region lower lybrid (LH) frequency and its harmonic. This paper aims to show that the VLF observations are whistler waves generated by mode conversion of LH waves that were parametrically excited by HF-pump-plasma interaction at the upper hybrid layer. The paper discusses the basic physics and presents a model that conjectures (1) the VLF waves observed at the LH frequency are due to the interaction of the LH waves with meter-scale field-aligned striations—generating whistler waves near the LH frequency; and (2) the VLF waves at twice the LH frequency are due to the interaction of two counterpropagating LH waves—generating whistler waves near the LH frequency harmonic. The model is supported by numerical simulations that show good agreement with the observations. The (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions results and model discussions are complemented by the Kodiak radar, ionograms, and stimulated electromagnetic emission observations.
Ion-acoustic cnoidal waves in a quantum plasma
Mahmood, Shahzad
2016-01-01
Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter $H_{e}$ which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.
Second harmonic generation of shear waves in crystals.
Jiang, Wenhua; Cao, Wenwu
2004-02-01
Nonlinear self-interaction of shear waves in electro-elastic crystals is investigated based on the rotationally invariant state function. Theoretical analyses are conducted for cubic, hexagonal, and trigonal crystals. The calculations show that nonlinear self-interaction of shear waves has some characteristics distinctly different from that of longitudinal waves. First, the process of self-interaction to generate its own second harmonic wave is permitted only in some special wave propagation directions for a shear wave. Second, the geometrical nonlinearity originated from finite strain does not contribute to the second harmonic generation (SHG) of shear waves. Therefore, unlike the case of longitudinal wave, the second-order elastic constants do not involve in the nonlinear parameter of the second harmonic generation of shear waves. Third, unlike the nonlinearity parameter of the longitudinal waves, the nonlinear parameter of the shear wave exhibits strong anisotropy, which is directly related to the symmetry of the crystal. In the calculations, the electromechanical coupling nonlinearity is considered for the 6 mm and 3 m symmetry crystals. Complement to the SHG of longitudinal waves already in use, the SHG of shear waves provides more measurements for the determination of third-order elastic constants of solids. The method is applied to a Z-cut lithium niobate (LiNbO3) crystal, and its third-order elastic constant c444 is determined.
Feng, Q S; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T
2016-01-01
The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas have been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to the theoretical result of multi-ion species plasmas. When the wave number $k\\lambda_{De}$ is small, such as $k\\lambda_{De}=0.1$, the fluid NFS dominates in the total NFS and will reach as large as nearly $15\\%$ when the wave amplitude $|e\\phi/T_e|\\sim0.1$, which indicates that in the condition of small $k\\lambda_{De}$, the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large.
Inner Magnetosphere Simulations: Exploring Magnetosonic Wave Generation Conditions
Zaharia, S. G.; Jordanova, V. K.; MacDonald, E.; Thomsen, M. F.
2012-12-01
We investigate the conditions for magnetosonic wave generation in the near-Earth magnetosphere by performing numerical simulations with our newly improved self-consistent model, RAM-SCB. The magnetosonic (ion Bernstein) instability, a potential electron acceleration mechanism in the outer radiation belt, is driven by a positive slope in the ion distribution function perpendicular to the magnetic field, a so-called "velocity ring" distribution at energies above 1 keV. The formation of such distributions is dependent on the interplay of magnetic and electric drifts, as well as ring current losses, and therefore its study requires a realistic treatment of both plasma and field dynamics. The RAM-SCB model represents a 2-way coupling of the kinetic ring current-atmosphere interactions model (RAM) with a 3D plasma equilibrium code. In RAM-SCB the magnetic field is computed in force balance with the RAM anisotropic pressures and then returned to RAM to guide the particle dynamics. RAM-SCB thus properly treats both the kinetic drift physics crucial in the inner magnetosphere and the self-consistent interaction between plasma and magnetic field (required due to the strong field depressions during storms, depressions that strongly affect particle drifts). In order to provide output at geosynchronous locations, recently the RAM-SCB boundary has been expanded to 9 RE from Earth, with plasma pressure and magnetic field boundary conditions prescribed there from empirical models. This presentation will analyze, using event simulations with the improved model and comparisons with LANL MPA geosynchronous observations, the occurrence and location of magnetosonic unstable regions in the inner magnetosphere and their dependence on the following factors: 1). geomagnetic activity level (including quiet time, storm main phase and recovery); 2). magnetic field self-consistency (stretched vs. dipole fields). We will also discuss the physical mechanism for the occurrence of the velocity
Excitation of Chirping Whistler Waves in a Laboratory Plasma.
Van Compernolle, B; An, X; Bortnik, J; Thorne, R M; Pribyl, P; Gekelman, W
2015-06-19
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified.
Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma
Martines, E; Cavazzana, R; Adámek, J; Antoni, V; Serianni, G; Spolaore, M; Vianello, N
2014-01-01
A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.
Some notes on ideology of waves in plasmas
Soshnikov, V N
2002-01-01
Our last three papers provide an occasion to make some brief notes on ideology of waves in plasmas and to rehabilitate Vlasov prescription to calculate relevant logarithmically divergent integrals in the principal value sense. In this approach asymptotical solutions of plasma oscillations are selected according to self-consistent boundary physical conditions. Landau damping is absent in this case by definition. Boundary electrical field together with conditions of absence of unphysical backward and kinematical waves define single-valued dependence of boundary distribution function on electron velocity \\vec{v} in the case of transversal waves and on the surface break of the normal electrical field in the case of longitudinal oscillations. We have proposed physically more justified modified iteration procedure of collisional damping calculation and demonstrated some results of damping decrements calculations in a low-collision electron-ion plasma. Dispersion smearing of both longitudinal and transversal high-fr...
Excitation of Ion Acoustic Waves in Confined Plasmas with Untrapped Electrons
Schamis, Hanna; Dow, Ansel; Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander
2015-11-01
Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand the electron kinetics in plasmas with strong emission, we have performed simulations using a reduced model with the LSP particle-in-cell code. This model aims to show the instability generated by the electron emission, in the form of ion acoustic waves near the sheath. It also aims to show the instability produced by untrapped electrons that propagate across the plasma, similarly to a beam, and can drive ion acoustic waves in the plasma bulk. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.
Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas
Energy Technology Data Exchange (ETDEWEB)
Harilal, Sivanandan S.; Brumfield, Brian E.; Cannon, Bret D.; Phillips, Mark C.
2016-02-16
Laser ablation is used in a variety of applications albeit formation mechanisms of molecules and nanoclusters are not well understood. We investigated the formation mechanisms of AlO molecules during complex interactions between an Al laser plume expanding into ambient air at atmospheric pressure levels. To produce the plasma a high-purity Al target was ablated using 1064 nm, 6 ns laser pulses. Our results show that the plasma chemistry leading to the formation of AlO is mediated by shock waves. During the early times of plasma expansion, the generated shock waves at the plume edges act as a barrier for the combustion process and the molecular formation is prevalent after the shockwave collapse. The temporally and spatially resolved contour mapping of Al and AlO highlight the formation routes and persistence of species in the plasma and its relation to plume hydrodynamics.
Radiation characteristics of input power from surface wave sustained plasma antenna
Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.
2016-09-01
This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.
Radiation characteristics of input power from surface wave sustained plasma antenna
Energy Technology Data Exchange (ETDEWEB)
Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp [Advanced Technology R& D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Yamaura, S. [Information Technology R& D Center, Mitsubishi Electric Corporation, Kamakura, Kanagawa 247-8501 (Japan); Fukuma, Y. [Communication System Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Sakai, O. [Department of Electronic System Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)
2016-09-15
This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Directory of Open Access Journals (Sweden)
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Electromagnetic waves in a magnetized plasma near the critical surface
Energy Technology Data Exchange (ETDEWEB)
Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)
2004-06-30
Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation. (reviews of topical problems)
Full-wave solution of short impulses in inhomogeneous plasma
Indian Academy of Sciences (India)
Orsolya E Ferencz
2005-02-01
In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened in [1]. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation.
Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere
Institute of Scientific and Technical Information of China (English)
SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye
2006-01-01
@@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.
Generation of Solitary Rossby Waves by Unstable Topography
Institute of Scientific and Technical Information of China (English)
YANG Hong-Wei; YIN Bao-Shu; DONG Huan-He
2012-01-01
The effect of topography on generation of the solitary Rossby waves is researched. Here, the topography, as a forcing for waves generation, is taken as a function of longitude variable x and time variable t, which is called unstable topography. With the help of a perturbation expansion method, a forced mKdv equation governing the evolution of amplitude of the solitary Rossby waves is derived from quasi-geostrophic vortieity equation and is solved by the pseudo-spectral method. Basing on the waterfall plots, the generational features of the solitary Rossby waves under the influence of unstable topography and stable topography are compared and some conclusions are obtained.
Generation and Evolution of Internal Waves in Luzon Strait
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in Luzon...inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of mixing for...ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of sources and
Laser-driven plasma waves in capillary tubes.
Wojda, F; Cassou, K; Genoud, G; Burza, M; Glinec, Y; Lundh, O; Persson, A; Vieux, G; Brunetti, E; Shanks, R P; Jaroszynski, D; Andreev, N E; Wahlström, C-G; Cros, B
2009-12-01
The excitation of plasma waves over a length of up to 8 cm is demonstrated using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift-measured as a function of filling pressure, capillary tube length, and incident laser energy-is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range of 1-10 GV/m.
On the rogue wave propagation in ion pair superthermal plasma
Energy Technology Data Exchange (ETDEWEB)
Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)
2016-02-15
Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.
Temporal evolution of electron beam generated Argon plasma in pasotron device
Khandelwal, Neha; Pal, U. N.; Prakash, Ram; Choyal, Y.
2016-10-01
The plasma- assisted slow wave oscillator (PASOTRON) is a high power microwave source in which the electron beam in the interaction region is confined by the background plasma. The plasma is generated by impact ionization of background gas with the electron beam. A model has been developed for temporal evolution of Argon plasma in pasotron device. In this model, we consider electron beam of energy E interacting with Argon gas. The resulting ionization creates quasi neutral argon plasma composed of argon Ar atoms, singly ionized ions Ar+1and electrons having energy from 0 to E. Electron impact excitation, ionization, radiative decay, radiative recombination and three body recombination processes are considered in this model. Population of ground and excited states of argon atom, ground state of argon ion as well as the population of electron energy groups is calculated by solving time dependent rate equations. Temporal evolution of electron beam generated plasma is given.
Refraction of VHF radio waves in artificial plasma formations
Kashirin, A. I.; Kliueva, N. M.; Mikhailik, P. P.; Chkalov, V. G.
1991-09-01
The defocusing refraction of VHF waves during the radio occultation of artificial plasma clouds in the ionosphere is calculated in the framework of the geometrical-optics approximation. The possibility of determining the main cloud parameters from characteristic power variations of the received radio waves in the case of a monotonic change in the sighting parameter during the experiment is demonstrated. Results of a rocket experiment implementing this method are presented.
Reduction and analysis of data from the plasma wave instruments on the IMP-6 and IMP-8 spacecraft
Gurnett, D. A.; Anderson, R. R.
1983-01-01
The primary data reduction effort during the reporting period was to process summary plots of the IMP 8 plasma wave data and to submit these data to the National Space Science Data Center. Features of the electrostatic noise are compared with simultaneous observations of the magnetic field, plasma and energetic electrons. Spectral characteristics of the noise and the results of this comparison both suggest that in its high frequency part at least the noise does not belong to normal modes of plasma waves but represents either quasi-thermal noise in the non-Maxwellian plasma or artificial noise generated by spacecraft interaction with the medium.
Collisionless damping of electron waves in non-Maxwellian plasma
Soshnikov, V. N.
2007-01-01
In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the uniform collisionless plasmas with non-Maxwellian and Maxwellian-like electron energy distribution functions. One considered the most typical cases of both the delta-function type distribution function (the plasma stream with monochromatic electrons) an...
Phase conjugation by four-wave mixing in inhomogeneous plasmas
Williams, Edward A.; Lininger, Diana M.; Goldman, Martin V.
1989-01-01
The effects of density, temperature, and velocity gradients on four-wave mixing (FWM) in a plasma are investigated. A fluid model is used in which the stimulated Brillouin terms are included, but pump depletion is neglected. The steady state phase conjugate reflectivity and signal transmission coefficients are calculated and discussed for both degenerate and resonant FWM. The substantial effects of inhomogeneity on the use of FWM as a plasma diagnostic are discussed.
Electron plasma wave filamentation in the kinetic regime
Lushnikov, Pavel; Rose, Harvey; Silantyev, Denis
2016-10-01
We consider nonlinear electron plasma wave (EPW) dynamics in the kinetic wavenumber regime, 0.25 Bernstein-Greene-Kruskal (BGK) mode. Transverse perturbations of any of these initial conditions grow with time eventually producing strongly nonlinear filamentation followed by plasma turbulence. We compared these simulations with the theoretical results on growth rates of the transverse instability BGK mode showing the satisfactory agreement. Supported by the New Mexico Consortium and NSF DMS-1412140.
Dispersive waves in fs cascaded second-harmonic generation
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2009-01-01
Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....
Kelvin-Helmholtz wave generation beneath hovercraft skirts
Sullivan, P. A.; Walsh, C.; Hinchey, M. J.
1993-05-01
When a hovercraft is hovering over water, the air flow beneath its skirts can interact with the water surface and generate waves. These, in turn, can cause the hovercraft to undergo violent self-excited heave motions. This note shows that the wave generation is due to the classical Kelvin-Helmholtz mechanism where, beyond a certain air flow rate, small waves at the air water interface extract energy from the air stream and grow.
Harmonics Effect on Ion-Bulk Waves in CH Plasmas
Feng, Q S; Liu, Z J; Cao, L H; Xiao, C Z; Wang, Q; He, X T
2016-01-01
The harmonics effect on ion-bulk (IBk) waves has been researched by Vlasov simulation. The condition of excitation of a large-amplitude IBk waves is given to explain the phenomenon of strong short-wavelength electrostatic activity in solar wind. When $k$ is much lower than $k_{lor}/2$ ($k_{lor}$ is the wave number at loss-of-resonance point), the IBk waves will not be excited to a large amplitude, because a large part of energy will be spread to harmonics. The nature of nonlinear IBk waves in the condition of $k
Energy Technology Data Exchange (ETDEWEB)
Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)
2016-11-15
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.
2016-11-01
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Sea breeze generated waves and coastal morphology
Verhagen, H.J.; Savov, B.
1999-01-01
For the determination of the stability of coastlines, coastal erosion and the design of erosion protection studies, the “local” wave climate is the most important input parameter. For morphology, “local” means just outside the breaker line. On relatively calm days the local wave climate is strongly
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
Energy Technology Data Exchange (ETDEWEB)
Anderson, M. W.; O' Neil, T. M.; Dubin, D. H. E.; Gould, R. W. [Physics Department, University of California at San Diego, La Jolla, California 92093 (United States)
2011-10-15
In the cold-fluid dispersion relation {omega}={omega}{sub p}/[1+(k{sub perpendicular}/k{sub z}){sup 2}]{sup 1/2} for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k{sub perpendicular}/k{sub z}. As a result, for any frequency {omega}<{omega}{sub p}, there are infinitely many degenerate waves, all having the same value of k{sub perpendicular}/k{sub z}. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr={+-}({omega}{sub p}{sup 2}/{omega}{sup 2}-1){sup 1/2}. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
Coherent Polarization Control of THz Waves Generated from Asymmetrically Ionized Gases
Energy Technology Data Exchange (ETDEWEB)
Dai Jianming; Zhang, X-C [Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Karpowicz, Nicholas, E-mail: zhangxc@rpi.edu [Max-Planck Institute for Quantum Optics, Garching (Germany)
2011-02-01
Unlike polarization control of optical waves, lossless control over the polarization of broadband terahertz waves remained challenging. We recently found that the polarization of terahertz waves generated from gas plasma excited by femtosecond fundamental pulse ({omega}) and its second harmonic (2{omega}) could be coherently controlled by changing the relative phase between the {omega} and 2{omega} pulses. In particular, when the {omega} and 2{omega} pulses are both circularly polarized (or close to it), the photo-excited electrons exhibit different trajectories as the relative phase between the two optical pulses changes, and subsequently terahertz polarization angle can be controlled arbitrarily through the relative phase while the intensity of the emitted terahertz wave is kept constant. This new finding may enable fast terahertz wave modulation and coherent control of nonlinear responses excited by intense terahertz waves with controllable polarization.
Laser second harmonic generation in a magnetoplasma assisted by an electrostatic wave
Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav
2017-04-01
A laser produced plasma, and an electrostatic wave, helps to generate a strong harmonic radiation. The electrostatic wave assists k matching and contributes to non-linear coupling. In the case of the Bernstein wave assisted second harmonic, the frequency of the second harmonic is shifted from the laser second harmonic by electron cyclotron frequency. The lower hybrid wave (LHW) assisted second harmonic has frequency slightly shifted from the laser second harmonic. The upper hybrid wave (UHW) assisted second harmonic has frequency shifted by an amount ω that lies between max( ω c , ω p ) and ω U H . At a 0 = 0.1 and n ω , k → / n0 0 = 0.1, the normalized amplitude value the of electrostatic wave assisted second harmonic is quite high near the upper hybrid resonance. The effect of increasing ω c / ω p increases the max value of normalized amplitude.
The incomplete plasma dispersion function: properties and application to waves in bounded plasmas
Baalrud, Scott D.
2013-01-01
The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near...
Flowing dusty plasma experiments: Generation of flow and measurement techniques
Jaiswal, S; Sen, A
2016-01-01
A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a $\\Pi-$shaped Dusty Plasma Experimental (DPEx) device with micron size kaolin/Melamine Formaldehyde (MF) particles embedded in a background of Argon plasma created by a direct current (DC) glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super Particle Identification (sPIT) code, Particle Image Velocimetry (PIV) analysis and the excitation of Dust Acoustic Waves (DAWs). The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral dr...
Dispersion of low frequency plasma waves upstream of the quasi-perpendicular terrestrial bow shock
Directory of Open Access Journals (Sweden)
A. P. Dimmock
2013-08-01
Full Text Available Low frequency waves in the foot of a supercritical quasi-perpendicular shock front have been observed since the very early in situ observations of the terrestrial bow shock (Guha et al., 1972. The great attention that has been devoted to these type of waves since the first observations is explained by the key role attributed to them in the processes of energy redistribution in the shock front by various theoretical models. In some models, these waves play the role of the intermediator between the ions and electrons. It is assumed that they are generated by plasma instability that exist due to the counter-streaming flows of incident and reflected ions. In the second type of models, these waves result from the evolution of the shock front itself in the quasi-periodic process of steepening and overturning of the magnetic ramp. However, the range of the observed frequencies in the spacecraft frame are not enough to distinguish the origin of the observed waves. It also requires the determination of the wave vectors and the plasma frame frequencies. Multipoint measurements within the wave coherence length are needed for an ambiguous determination of the wave vectors. In the main multi-point missions such as ISEE, AMPTE, Cluster and THEMIS, the spacecraft separation is too large for such a wave vector determination and therefore only very few case studies are published (mainly for AMPTE UKS AMPTE IRM pair. Here we present the observations of upstream low frequency waves by the Cluster spacecraft which took place on 19 February 2002. The spacecraft separation during the crossing of the bow shock was small enough to determine the wave vectors and allowed the identification of the plasma wave dispersion relation for the observed waves. Presented results are compared with whistler wave dispersion and it is shown that contrary to previous studies based on the AMPTE data, the phase velocity in the shock frame is directed downstream. The consequences of this
Evolution of Modulated Dispersive Electron Waves in a Plasma
DEFF Research Database (Denmark)
Sugai, H.; Lynov, Jens-Peter; Michelsen, Poul
1979-01-01
The linear propagation of amplitude-modulated electron waves was examined in a low-density Q-machine plasma. Three effects of the strong dispersion on the modulated wave have been demonstrated: (i) a wavepacket expands along its direction of propagation, followed by a shift of the frequency through...... the wavepacket, (ii) the number of oscillations in the temporally observed packet is not identical with that in the spatially observed packet and (iii) continuously modulated waves exhibit recurrence of modulation. The experimental results agree with both a simple analysis based on the Schrodinger equation...
Numerical Simulation of Waves Generated by Seafloor Movements
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that the linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations ηmax0 are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on ηmax0 are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the ηmax0 near-linearly varies with the wave amplitudes of the surface waves, and the ηmax0 has significant depndences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, and these differences are significantly affected by the wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.
Generation and effects of EMIC waves observed by the Van Allen Probes on 18 March 2013
Zhang, J.; Saikin, A.; Gamayunov, K. V.; Spence, H. E.; Larsen, B.; Geoffrey, R.; Smith, C. W.; Torbert, R. B.; Kurth, W. S.; Kletzing, C.
2015-12-01
Electromagnetic ion cyclotron (EMIC) waves play a crucial role in particle dynamics in the Earth's magnetosphere. The free energy for EMIC wave generation is usually provided by the temperature anisotropy of the energetic ring current ions. EMIC waves can in turn cause particle energization and losses through resonant wave-particle interactions. Using measurements from the Van Allen Probes, we perform a case study of EMIC waves and associated plasma conditions observed on 18 March 2013. From 0204 to 0211 UT, the Van Allen Probe-B detected He+-band EMIC wave activity in the post-midnight sector (MLT=4.6-4.9) at very low L-shells (L=2.6-2.9). The event occurred right outside the inward-pushed plasmapause in the early recovery phase of an intense geomagnetic storm - min. Dst = -132 nT at 2100 UT on 17 March 2013. During this event, the fluxes of energetic (> 1 keV), anisotropic O+ dominate both the H+ and He+ fluxes in this energy range. Meanwhile, O+ fluxes at low energies (coefficient (Dαα) of the EMIC wave packets by using nominal ion composition, derived total ion density from the frequencies of upper hybrid resonance, and measured ambient and wave magnetic field. EMIC wave growth rates are also calculated to evaluate the role of loss-cone distributed ring current ions in the EMIC wave generation.
Directory of Open Access Journals (Sweden)
K. Sigsbee
2004-07-01
Full Text Available We present the statistics of Langmuir wave amplitudes in the Earth's foreshock using Cluster Wideband Data (WBD Plasma Wave Receiver electric field waveforms from spacecraft 2, 3 and 4 on 26 March 2002. The largest amplitude Langmuir waves were observed by Cluster near the boundary between the foreshock and solar wind, in agreement with earlier studies. The characteristics of the waves were similar for all three spacecraft, suggesting that variations in foreshock structure must occur on scales greater than the 50-100km spacecraft separations. The electric field amplitude probability distributions constructed using waveforms from the Cluster WBD Plasma Wave Receiver generally followed the log-normal statistics predicted by stochastic growth theory for the event studied. Comparison with WBD receiver data from 17 February 2002, when spacecraft 4 was set in a special manual gain mode, suggests non-optimal auto-ranging of the instrument may have had some influence on the statistics.
Quenching Plasma Waves in Two Dimensional Electron Gas by a Femtosecond Laser Pulse
Shur, Michael; Rudin, Sergey; Greg Rupper Collaboration; Andrey Muraviev Collaboration
Plasmonic detectors of terahertz (THz) radiation using the plasma wave excitation in 2D electron gas are capable of detecting ultra short THz pulses. To study the plasma wave propagation and decay, we used femtosecond laser pulses to quench the plasma waves excited by a short THz pulse. The femtosecond laser pulse generates a large concentration of the electron-hole pairs effectively shorting the 2D electron gas channel and dramatically increasing the channel conductance. Immediately after the application of the femtosecond laser pulse, the equivalent circuit of the device reduces to the source and drain contact resistances connected by a short. The total response charge is equal to the integral of the current induced by the THz pulse from the moment of the THz pulse application to the moment of the femtosecond laser pulse application. This current is determined by the plasma wave rectification. Registering the charge as a function of the time delay between the THz and laser pulses allowed us to follow the plasmonic wave decay. We observed the decaying oscillations in a sample with a partially gated channel. The decay depends on the gate bias and reflects the interplay between the gated and ungated plasmons in the device channel. Army Research Office.
Plasma wave instabilities in nonequilibrium graphene
DEFF Research Database (Denmark)
Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka
2016-01-01
We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....
RF wave propagation and scattering in turbulent tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Horton, W., E-mail: wendell.horton@gmail.com; Michoski, C. [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78654 (United States); Peysson, Y.; Decker, J. [CEA, IRFM, 13108, Saint-Paul, Durance Cedex (France)
2015-12-10
Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.
Interaction of energetic electrons with dust whistler-mode waves in magnetospheric dusty plasmas
Jafari, S.
2016-04-01
In this Letter, a new conceptual approach has been presented to investigate the interaction of energetic electrons with dust whistler-mode waves in magnetospheric dusty (complex) plasmas. Dust whistler-mode waves generated in the presence of charged dust grains in the magnetized dusty plasma, can scatter the launched electrons into the loss-cone leading to precipitation into the upper atmosphere which is an important loss process in the radiation belts and provides a major source of energy for the diffuse and pulsating aurora. To study the scattered electrons and chaotic regions, a Hamiltonian model of the electron-dust wave interaction has been employed in the magnetospheric plasma by considering the launched electron beam self-fields. Numerical simulations indicate that an electron beam interacting with the whistler-mode wave can easily trigger chaos in the dust-free plasma, while in the presence of dust charged grains in the plasma, the chaotic regions are quenched to some extent in the magnetosphere. Consequently, the rate of scattered electrons into the loss-cone reduces for the regions that the dust grains are present.
The Signal Generator of Triphase Sine Wave
Institute of Scientific and Technical Information of China (English)
RAOMin; MAOSaofu
2003-01-01
In the process of developing and adjusting the product in this project, we need some signal sources, which usually afford square or sine wave. Generally the square ware is used for digit logic, but for the analog signal wave is used to judge the linearity's qualities and other functions of the electric circuit. However the common ready-made signal sourceis all unidirectional sine wave, the signal sources whose phase shift can arbitrarily be regulatedand which have precise phase are still not available one the current market.
Estimation of Plasma Density by Surface Plasmons for Surface-Wave Plasmas
Institute of Scientific and Technical Information of China (English)
CHEN Zhao-Quan; LIU Ming-Hai; LAN Chao-Hui; CHEN Wei; LUO Zhi-Qing; HU Xi-Wei
2008-01-01
@@ An estimation method of plasma density based on surface plasmons theory for surface-wave plasmas is proposed. The number of standing-wave is obtained directly from the discharge image, and the propagation constant is calculated with the trim size of the apparatus in this method, then plasma density can be determined with the value of 9.1 × 1017 m-3. Plasma density is measured using a Langmuir probe, the value is 8.1 × 1017 m-3 which is very close to the predicted value of surface plasmons theory. Numerical simulation is used to check the number of standing-wave by the finite-difference time-domain (FDTD) method also. All results are compatible both of theoretical analysis and experimental measurement.
Interaction of High Intensity Electromagnetic Waves with Plasmas
Energy Technology Data Exchange (ETDEWEB)
G. Shvets
2008-10-03
The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
An Overview of Observations by the Cassini Radio and Plasma Wave Investigation at Earth
Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Kaiser, M. L.; Wahlund, J.-E.; Roux, A.; Canu, P.; Zarka, P.; Tokarev, Y.
2001-01-01
On August 18, 1999, the Cassini spacecraft flew by Earth at an altitude of 1186 km on its way to Saturn. Although the flyby was performed exclusively to provide the spacecraft with sufficient velocity to get to Saturn, the radio and plasma wave science (RPWS) instrument, along with several others, was operated to gain valuable calibration data and to validate the operation of a number of capabilities. In addition, an opportunity to study the terrestrial radio and plasma wave environment with a highly capable instrument on a swift fly-through of the magnetosphere was afforded by the encounter. This paper provides an overview of the RPWS observations, at Earth, including the identification of a number of magnetospheric plasma wave modes, an accurate measurement of the plasma density over a significant portion of the trajectory using the natural wave spectrum in addition to a relaxation sounder and Langmuir probe, the detection of natural and human-produced radio emissions, and the validation of the capability to measure the wave normal angle and Poynting flux of whistler-mode chorus emissions. The results include the observation of a double-banded structure at closest' approach including a band of Cerenkov emission bounded by electron plasma and upper hybrid frequencies and an electron cyclotron harmonic band just above the second harmonic of the electron cyclotron frequency. In the near-Earth plasma sheet, evidence for electron phase space holes is observed, similar to those first reported by Geotail in the magnetotail. The wave normal analysis confirms the Polar result that chorus is generated very close to the magnetic equator and propagates to higher latitudes. The integrated power flux of auroral kilometric radiation is also used to identify a series of substorms observed during the outbound passage through the magnetotail.
Upconversion of whistler waves by gyrating ion beams in a plasma
Indian Academy of Sciences (India)
Harsha Jalori; Sunil K Singh; A K Gwal
2004-09-01
A gyrating ion beam, with a ring-shaped distribution in velocity, supports negative energy beam modes near the harmonics of beam gyro-frequency. An investigation of the non-linear interaction of high-frequency whistler waves with the negative energy beam cyclotron mode is made. A non-linear dispersion relation is derived for the coupled modes. It is shown that a gyrating ion-beam frequency upconverts the whistler waves separated by harmonics of beam gyro-frequency. The expression for the growth rate of whistler mode waves has been derived. In Case 1, a high-amplitude whistler wave decays into two lower frequency waves, called a low-frequency mode and a side band of frequency lower than that of pump wave. In Case 2 a high-amplitude whistler wave decays into two lower frequency daughter waves, called the low-frequency mode and whistler waves. Generation mechanism of these waves has application in space and laboratory plasmas.
Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya
2017-01-01
We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800
Generation of MAC waves by convection in Earth's core
Jaupart, Etienne; Buffett, Bruce
2017-05-01
Convection in Earth's core is a viable mechanism for generating MAC waves when the top of the core is stably stratified. We quantify the generation mechanism by extending the physical description of MAC waves to include a source term due to buoyancy forces in the convecting part of the core. Solutions for the forced motion are obtained using a Green's function, which is constructed from the eigenfunctions for the unforced motion. When the source term is evaluated using the output of a numerical geodynamo model, the largest excitation occurs at even spherical harmonic degrees, corresponding to waves with symmetric azimuthal flow about the equator. We also find that the magnitude of the source term decreases at periods shorter than about 60 yr. As a result most of the wave generation is confined to waves with periods of 60 yr or longer. Quantitative predictions for the wave amplitudes depend on the projection of the source term into the eigenfunction of the waves. Strong stratification limits the penetration of density anomalies into the stratified layer, which means that the source term is confined to the lowermost part of the layer. Overtones of MAC waves with large amplitudes in the lower part of the stratified layer are more effectively generated by convection, even though these waves are heavily damped by magnetic diffusion. Generation of MAC waves by convection establishes a physical link between observable wave motion and deeper convective processes. Detection of changes in the amplitude and phase of MAC waves would constrain the generation processes and offer insights into the nature of the convection.
Magneto-Hydro-Dynamic Waves In The Collisionless Space Plasma
Dzhalilov, N. S.; Kuznetsov, V. D.; Staude, J.
2007-12-01
The instability of magneto-hydro-dynamic (MHD) waves in an anisotropic, collisionless, rarefied hot plasma is studied. Anisotropy properties of such a plasma are caused by a strong magnetic field, when the thermal gas pressures across and along the field become unequal. Moreover, there appears an anisotropy of the thermal fluxes. The study of the anisotropy features of the plasma are motivated by observed solar coronal data. The 16 moments equations derived from the Boltzmann-Vlasov kinetic equation are used. These equations strongly differ from the usual isotropic MHD case. For linear disturbances the wave equations in homogenous anisotropic plasma are deduced. The general dispersion relation for the incompressible wave modes is derived, solved and analyzed. It is shown that a wide wave spectrum with stable and unstable behavior is possible, in contrast to the usual isotropic MHD case. The dependence of the instability on magnetic field, pressure anisotropy, and heat fluxes is investigated. The general instability condition is obtained. The results can be applied to the theory of solar and stellar coronal heating, to wind models and in other modeling, where the collisionless approximation is valid.
Generation and Limiters of Rogue Waves
2014-06-01
chapter ( X ) Confetei’ICe P~tildlngs (not refereed) f l Multimedia report Journal article not rtfereed) Oral Presen ~n. not pub118hed It is...directional spectrum: , (4) i.e. higher values of A correspond to narrower directional distributions. Babanin et al. (2010) suggested a directional...Sell, W. and Walden, H. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch
Magnetohydrodynamic Waves and Instabilities in Rotating Tokamak Plasmas
Haverkort, J.W.
2013-01-01
One of the most promising ways to achieve controlled nuclear fusion for the commercial production of energy is the tokamak design. In such a device, a hot plasma is confined in a toroidal geometry using magnetic fields. The present generation of tokamaks shows significant plasma rotation, primarily
Magnetohydrodynamic Waves and Instabilities in Rotating Tokamak Plasmas
J.W. Haverkort (Willem)
2013-01-01
htmlabstractOne of the most promising ways to achieve controlled nuclear fusion for the commercial production of energy is the tokamak design. In such a device, a hot plasma is confined in a toroidal geometry using magnetic fields. The present generation of tokamaks shows significant plasma rotation
Electrostatic solitary waves in dusty pair-ion plasmas
Misra, A P
2013-01-01
The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the "fast" and "slow" waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass $(m)$ and temperature $(T)$ ratios of negative to positive ions, as well as the effects of immobile charged dusts $(\\delta)$. For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique (RPT) is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves ...
Surface Wave Propagation in non--ideal plasmas
Pandey, B P
2015-01-01
The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the nonideal magnetohydrodynamic effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few percent) due to the compressibility of the medium in both ideal as well as Hall diffusion dominated regimes. However, unlike ideal regime, only waves below certain cut off frequency can propagate in the medium in Hall dominated regime. This cut off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut off is introduce...
Revisiting linear plasma waves for finite value of the plasma parameter
Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren
2010-11-01
We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.
A Schamel equation for ion acoustic waves in superthermal plasmas
Energy Technology Data Exchange (ETDEWEB)
Williams, G., E-mail: gwilliams06@qub.ac.uk; Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen' s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Verheest, F. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, M. A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Anowar, M. G. M. [Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400 (Bangladesh)
2014-09-15
An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.
Nonextensive dust acoustic waves in a charge varying dusty plasma
Bacha, Mustapha; Tribeche, Mouloud
2012-01-01
Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.
Modulated envelope localized wavepackets associated with electrostatic plasma waves
Kourakis, I; Kourakis, Ioannis; Shukla, Padma Kant
2004-01-01
The nonlinear amplitude modulation of known electrostatic plasma modes is examined in a generic manner, by applying a collisionless fluid model. Both cold (zero-temperature) and warm fluid descriptions are discussed and the results are compared. The moderately nonlinear oscillation regime is investigated by applying a multiple scale technique. The calculation leads to a Nonlinear Schrodinger-type Equation (NLSE), which describes the evolution of the slowly varying wave amplitude in time and space. The NLSE admits localized envelope (solitary wave) solutions of bright- (pulses) or dark- (holes, voids) type, whose characteristics (maximum amplitude, width) depend on intrinsic plasma parameters. Effects like amplitude perturbation obliqueness, finite temperature and defect (dust) concetration are explicitly considered. The relevance with similar highly localized modulated wave structures observed during recent satellite missions is discussed.
Solitary and freak waves in superthermal plasma with ion jet
Abdelsalam, U. M.; Abdelsalam
2013-06-01
The nonlinear solitary and freak waves in a plasma composed of positive and negative ions, superthermal electrons, ion beam, and stationary dust particles have been investigated. The reductive perturbation method is used to obtain the Korteweg-de Vries (KdV) equation describing the system. The latter admits solitary wave solution, while the dynamics of the modulationally unstable wavepackets described by the KdV equation gives rise to the formation of freak/rogue excitation described by the nonlinear Schrödinger equation. In order to show that the characteristics of solitary and freak waves are influenced by plasma parameters, relevant numerical analysis of appropriate nonlinear solutions are presented. The results from this work predict nonlinear excitations that may associate with ion jet and superthermal electrons in Herbig-Haro objects.
Coherent structures and transport in drift wave plasma turbulence
DEFF Research Database (Denmark)
Korsholm, Søren Bang
for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa- Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa......-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important...
Surface characters of internal waves generated by Rankine ovoid
Institute of Scientific and Technical Information of China (English)
Zhaoting Xu; Xu Chen; Izolda V. Sturova
2006-01-01
A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.
Potential role of kinetic Alfvén waves and whistler waves in solar wind plasmas
Nandal, P.; Yadav, N.; Sharma, R. P.; Goldstein, M. L.
2016-07-01
Spacecraft observations indicate the signatures of highly oblique kinetic Alfvén waves (KAWs) and whistler waves in the solar wind plasma. In the present work, we explore the possible role of KAWs and whistler waves in the observed solar wind magnetic turbulent spectrum. The nonlinear spatial evolution of KAW is studied including the effects of the ponderomotive force which results in intense localized structures due to the background density modification. Weak quasi-transverse whistler wave propagating through these localized structures also gets localized in the form of small-scale localized structures. We present numerically calculated magnetic power spectra for both KAW as well as for whistler wave. Our obtained results demonstrate the important role that KAWs and whistler waves play in the energy cascading from larger to smaller scales. The relevance of these results to recent spacecraft observations is also pointed out.
Energy Technology Data Exchange (ETDEWEB)
Lecz, Zs. [ELI-ALPS, ELI-HU Nkft., Szeged (Hungary); Andreev, A. [ELI-ALPS, ELI-HU Nkft., Szeged (Hungary); Max-Born Institute, Berlin (Germany)
2015-04-15
The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.
Obliquely propagating large amplitude solitary waves in charge neutral plasmas
Directory of Open Access Journals (Sweden)
F. Verheest
2007-01-01
Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.
Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.
Schroeder, C B; Esarey, E
2010-05-01
A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.
Waves spontaneously generated by heterogeneity in oscillatory media.
Cui, Xiaohua; Huang, Xiaodong; Hu, Gang
2016-05-04
Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.
Plasma generated during underwater pulsed laser processing
Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt
2017-09-01
The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.
Electron beam generated whistler emissions in a laboratory plasma
Energy Technology Data Exchange (ETDEWEB)
Van Compernolle, B., E-mail: bvcomper@physics.ucla.edu; Pribyl, P.; Gekelman, W. [Department of Physics, University of California, Los Angeles (United States); An, X.; Bortnik, J.; Thorne, R. M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (United States)
2015-12-10
Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.
Electron beam generated whistler emissions in a laboratory plasma
Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.
2015-12-01
Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.
Pc5 waves generated by substorm injection: a case study
Directory of Open Access Journals (Sweden)
N. A. Zolotukhina
2008-07-01
Full Text Available We analyzed the spectral-polarized characteristics of Pc5 ULF waves observed on 17 September 2000 after the 03:20:25 UT substorm onset with the satellites GOES 8 and 10 located east and west of the onset location. In the course of the event, the wave polarization changed from mixed (between toroidal and poloidal to poloidal, and then to mixed again. The hodogram of magnetic field oscillations rotated counterclockwise at GOES 8, and clockwise at GOES 10. It is suggested that the satellites detected the waves generated by the substorm injected clouds of the charged particles drifting in the magnetosphere in the opposite azimuthal directions: GOES 8 (located east of the substorm onset detected the wave generated by an electron cloud, and GOES 10 (west of the onset detected the wave generated by a positive ion cloud. This interpretation is confirmed by the energetic particles data recorded by LANL satellites.
Local Magnetohydrodynamic Characteristics of the Plasma Stream generated by MPC
Directory of Open Access Journals (Sweden)
Tatyana N. Cherednychenko
2013-01-01
Full Text Available This paper investigates the spatial distributions of electrical current which flows inside the plasma stream generated by a magnetoplasma compressor (MPC. Two different modes of MPC operation with different gas supply scenarios have been applied in the experiments presented here. The first is the operation mode with a pulse injection of xenon into the interelectrode space, and the second is the operation mode with residual helium in the chamber and local injection of xenon directly into the compression zone. The maximum value of the electric current observed outside the MPC channel is 15 ÷ 20% of the total discharge current. Electric current vortices were discovered in the plasma stream. The amplitude of the current in the vortices reaches 50% of the total discharge current. The maximum EUV radiation power was measured in the mode of MPC operation with local xenon injection. Power in the wave range 12.2 ÷ 15.8 nm achieves up to 16 ÷ 18 kW.
Plasma-ﬁlled rippled wall rectangular backward wave oscillator driven by sheet electron beam
Indian Academy of Sciences (India)
A Hadap; J Mondal; K C Mittal; K P Maheshwari
2011-03-01
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-ﬁlled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor = 1.5 (i.e. / = 0.741), average waveguide height 0 = 1.445 cm, axial corrugation period 0 = 1.67 cm, and corrugation amplitude = 0.225 cm. The plasma density is varied from zero to 2 × 1012 cm-3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GH at 2 × 1012 cm-3 plasma density) relative to the vacuum cut-off frequency (5 GH) which also causes a decrease in the group velocity everywhere, resulting in a ﬂattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.
Oblique solitary waves in a five component plasma
Energy Technology Data Exchange (ETDEWEB)
Sijo, S.; Manesh, M.; Sreekala, G.; Venugopal, C., E-mail: cvgmgphys@yahoo.co.in [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, 686 560 Kerala (India); Neethu, T. W. [Department of Physics, CMS College, Mahatma Gandhi University, Kottayam, 686 001 Kerala (India); Renuka, G. [Kerala State Council for Science, Technology and Environment, Thiruvananthapuram, 695 004 Kerala (India)
2015-12-15
We investigate the influence of a second electron component on oblique dust ion acoustic solitary waves in a five component plasma consisting of positively and negatively charged dust, hydrogen ions, and hotter and colder electrons. Of these, the heavier dust and colder photo-electrons are of cometary origin while the other two are of solar origin; electron components are described by kappa distributions. The K-dV equation is derived, and different attributes of the soliton such as amplitude and width are plotted for parameters relevant to comet Halley. We find that the second electron component has a profound influence on the solitary wave, decreasing both its amplitude and width. The normalized hydrogen density strongly influences the solitary wave by decreasing its width; the amplitude of the solitary wave, however, increases with increasing solar electron temperatures.
Electromagnetic ion cyclotron waves observed in the plasma depletion layer
Anderson, B. J.; Fuselier, S. A.; Murr, D.
1991-01-01
Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.
Quantum ion-acoustic solitary waves in weak relativistic plasma
Indian Academy of Sciences (India)
Biswajit Sahu
2011-06-01
Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects signiﬁcantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.
Nonlinear propagation of planet-generated tidal waves
Rafikov, Roman
2001-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process sp...
Exploring the Sensitivity of Next Generation Gravitational Wave Detectors
Evans, M; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Ackley, K; Adams, C; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arun, K G; Ashton, G; Ast, M; Aston, S M; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barr, B; Barsotti, L; Bartlett, J; Bartos, I; Bassiri, R; Batch, J C; Baune, C; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Biwer, C; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bock, O; Bogan, C; Bohe, A; Bond, C; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Buonanno, A; Byer, R L; Cabero, M; Cadonati, L; Cahillane, C; Bustillo, J Calder'on; Callister, T; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Caride, S; Caudill, S; Cavagli`a, M; Cepeda, C B; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chung, S; Ciani, G; Clara, F; Clark, J A; Collette, C G; Cominsky, L; Constancio, M; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S B; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Canton, T Dal; Danilishin, S L; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dave, I; Davies, G S; Daw, E J; De, S; DeBra, D; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Palma, I; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, T M; Everett, R; Factourovich, M; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferreira, E C; Fisher, R P; Fletcher, M; Frei, Z; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gaonkar, S G; Gaur, G; Gehrels, N; Geng, P; George, J; Gergely, L; Ghosh, Abhirup; Ghosh, Archisman; Giaime, J A; Giardina, K D; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Graef, C; Graff, P B; Grant, A; Gras, S; Gray, C; Green, A C; Grote, H; Grunewald, S; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heintze, M C; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jang, H; Jani, K; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kozak, D B; Kringel, V; Krishnan, B; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leong, J R; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lormand, M; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Miao, H; Middleton, H; Mikhailov, E E; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Mohapatra, S R P; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nayak, R K; Nedkova, K; Nelson, T J N; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nitz, A; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Patrick, Z; Pearlstone, B L; Pedraza, M; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Pierro, V; Pinto, I M; Pitkin, M; Poe, M; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prokhorov, L; Puncken, O; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Raymond, V; Read, J; Reed, C M; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Rollins, J G; Roma, V J; Romano, J D; Romanov, G; Romie, J H; Rowan, S; R"udiger, A; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sergeev, A; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Szczepa'nczyk, M J; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Traylor, G; Trifir`o, D; Tse, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vander-Hyde, D C; van Veggel, A A; Vass, S; Vaulin, R; Vecchio, A; Veitch, J; Veitch, P J; Venkateswara, K; Vinciguerra, S; Vine, D J; Vitale, S; Vo, T; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Weaver, B; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Zanolin, M; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-01-01
With the development of extremely sensitive ground-based gravitational wave detectors, and the recent detection of gravitational waves by LIGO, extensive theoretical work is going into understanding potential gravitational wave sources. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the universe.
Full wave simulation of waves in ECRIS plasmas based on the finite element method
Energy Technology Data Exchange (ETDEWEB)
Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)
2014-02-12
This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.
Institute of Scientific and Technical Information of China (English)
GUO Bin
2009-01-01
Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method,the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied.The dispersion relations for both the P-polarization waves and S-polarization waves,depending on the plasma density,plasma thickness and period,are discussed.
Excitation and evolution of finite-amplitude plasma wave
Energy Technology Data Exchange (ETDEWEB)
Hou, Y. W.; Wu, Y. C., E-mail: yican.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, M. X. [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Yu, M. Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44780 Bochum (Germany); Wu, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2015-12-15
The evolution of a small spatially periodic perturbation in the electron velocity distribution function in collisionless plasma is reconsidered by numerically solving the Vlasov and Poisson equations. The short as well as long time behaviors of the excited oscillations and damping/modulation are followed. In the small but finite-amplitude excited plasma wave, resonant electrons become trapped in the wave potential wells and their motion affects the low-velocity electrons participating in the plasma oscillations, leading to modulation of the latter at an effective trapping frequency. It is found that the phase space of the resonant and low-velocity electrons becomes chaotic, but then self-organization takes place but remains fine-scale chaotic. It is also found that as long as particles are trapped, there is only modulation and no monotonic damping of the excited plasma wave. The modulation period/amplitude increases/decreases as the magnitude of the initial disturbance is reduced. For the initial and boundary conditions used here, linear Landau damping corresponds to the asymptotic limit of the modulation period becoming infinite, or no trapping of the resonant electrons.
Dust Acoustic Wave Excitation in a Plasma with Warm Dust
Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.
2008-11-01
Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).
New Generation of ELF/VLF Wave Injection Experiments for HAARP
Sonwalkar, V. S.; Reddy, A.; Watkins, B. J.
2016-12-01
We present a ray tracing study to investigate the feasibility of a new generation of wave injection experiments from HAARP transmitter (L 4.9). Highly successful whistler mode wave injection experiments from SIPLE station, Antarctica, have established the importance of such experiments to study magnetospheric wave-particle interactions, and for cold and hot plasma diagnostics [Helliwell and Katsufrakis, 1974; Carpenter and Miller, 1976; Sonwalkar et al., 1997]. Modulated heating experiments from HAARP have shown that it is possible to launch ELF/VLF waves into the magnetosphere that can be observed on the ground after one-, two-, and multi-hop ducted propagation [Inan et al., 2004]. Recent research has also shown that ionospheric heating experiments using HAARP can lead to the formation of magnetospheric ducts [e.g. Milikh et al., 2010; Fallen et al., 2011]. Collectively, these results indicate that the HAARP (or similar) transmitter can be used first to form ducts on nearby L shells, and then to inject and trap transmitter generated ELF/VLF waves in those ducts. Ray tracing studies using a model magnetosphere shows that ELF/VLF waves in a few kilohertz range can be trapped in ducts with L shells near the HAARP transmitter. For example, 1.5 kHz waves injected from L shell = 4.9 and altitude = 200 km can be trapped in ducts located within 0.3 L of the transmitter L-shell. The duct parameters needed for ray-trapping are typically duct width dL 0.1-0.3 and duct enhancement factor dNe/Ne 10-20% or more. The location of plasmapause with respect to transmitter plays a role in the nature of trapping. The duct locations and parameters required for trapping ELF/VLF waves inside the ducts are consistent with past observations of ducts generated by the HAARP transmitter. Ray tracing calculations provide trapped wave normal angles, time delays, resonant energetic electron energy, estimates of wave intensity inside the duct, on the ground, and on satellites such DEMETER, Van
Compressional Alfvénic rogue and solitary waves in magnetohydrodynamic plasmas
Energy Technology Data Exchange (ETDEWEB)
Panwar, Anuraj; Rizvi, H.; Ryu, C. M. [Department of Physics, POSTECH, Hyoja-Dong San 31, KyungBuk, Pohang 790-784 (Korea, Republic of)
2013-08-15
Generation of compressional Alfvénic rogue and solitary waves in magnetohydrodynamic plasmas is investigated. Dispersive effect caused by non-ideal electron inertia currents perpendicular to the ambient magnetic field can balance the nonlinear steepening of waves leading to the formation of a soliton. The reductive perturbation method is used to obtain a Korteweg–de Vries (KdV) equation describing the evolution of the solitary wave. The height of a soliton is proportional to the soliton speed “U” and inversely proportional to plasma “β” (ratio of plasma thermal pressure to pressure of the confining magnetic field) and the width of soliton is proportional to the electron inertial length. KdV equation is used to study the nonlinear evolution of modulationally unstable compressional Alfvénic wavepackets via the nonlinear Schrödinger equation. The characteristics of rogue wave influenced by plasma “β” and the electron inertial length are described.
Mathematical modelling of generation and forward propagation of dispersive waves
Lie She Liam, L.S.L.
2013-01-01
This dissertation concerns the mathematical theory of forward propagation and generation of dispersive waves. We derive the AB2-equation which describes forward traveling waves in two horizontal dimension. It is the generalization of the Kadomtsev-Petviashvilli (KP) equation. The derivation is based
Interpretation of nonlinearity in wind generated ocean surface waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...
Resonant dispersive waves generated with multi-input femtosecond pulses
Wang, Kai; Peng, Jiahui; Sokolov, Alex
2010-10-01
We investigated the resonant dispersive waves generated by high-order dispersion theoretically. We considered different femtosecond pulses propagating in the kagome-lattice hollow-core photonics crystal fibers. The two third order and fourth order resonant dispersive waves would be produced in the visible range to produce the ultrashort pulse.
Wave and tidal generation devices reliability and availability
Tavner, Peter John
2017-01-01
To some extent the wave and tidal generation industry is following in the wake of the wind industry, learning from the growing experience of offshore wind farm deployment. This book combines wind industry lessons with wave and tidal field knowledge to explore the main reliability and availability issues facing this growing industry.
Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath
Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats
2016-01-01
Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab "pump" the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in ...
The incomplete plasma dispersion function: properties and application to waves in bounded plasmas
Baalrud, Scott D
2013-01-01
The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations.
Coherent keV backscattering from plasma-wave boosted relativistic electron mirrors
Li, F Y; Chen, M; Wu, H C; Liu, Y; Meyer-ter-Vehn, J; Mori, W B; Zhang, J
2014-01-01
A new parameter regime of laser wakefield acceleration driven by sub-petawatt femotsecond lasers is proposed, which enables the generation of relativistic electron mirrors further accelerated by the plasma wave. Integrated particle-in-cell simulation including the mirror formation and Thomson scattering demonstrates that efficient coherent backscattering up to keV photon energy can be obtained with moderate driver laser intensities and high density gas targets.
Wave Generated by the NACA4412 Hydrofoil near Free Surface
Directory of Open Access Journals (Sweden)
Hassan Ghassemi
2013-01-01
Full Text Available The generation of wave due to moving hydrofoil in steady streams close to a free surface is presented. The potential-based boundary element method is employed to the NACA4412 hydrofoil with linearized dynamic and kinematic boundary conditions on the free surface. The perturbation velocity potential is calculated using the Green formulation and Kutta condition. The numerical results of waves generated by the hydrofoil are presented and discussed at various Froude numbers and immersion depths.
Numerical simulation of landslide-generated impulse wave
Institute of Scientific and Technical Information of China (English)
赵兰浩; 毛佳; 刘晓青; 李同春
2014-01-01
A numerical model is proposed for the simulation of impulse waves generated by landslides. The fluid-like landslide is modeled as a generalized non-Newtonian visco-plastic fluid. The conservative level set method is extended to the n-phase flow and applied to capture the interfaces of air, water and landslide. Numerical results show an excellent performance of the current model to capture the whole process of the landslide and the impulse wave generation.
Exploring the Sensitivity of Next Generation Gravitational Wave Detectors
2016-01-01
The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.
Exploring the sensitivity of next generation gravitational wave detectors
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bock, O.; Bogan, C.; Bohe, A.; Bond, C.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C. B.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dave, I.; Davies, G. S.; Daw, E. J.; De, S.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur, G.; Gehrels, N.; Geng, P.; George, J.; Gergely, L.; Ghosh, Abhirup; Ghosh, Archisman; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.
2017-02-01
The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.
Laboratory Modeling of Internal Wave Generation in Straits
2014-06-13
Peacock 2010). 3. The suitability of the double ridge configuration of the Luzon Strait to give rise to resonant forcing of the semi-diurnal...Figure 6. 6 Figure 6: PIV visualization of the magnitude of the in-plane velocity of the 3D conical internal wave field generated by a...Visualization of the conical 3D internal wave field generated by an oscillating sphere using stereo-PIV, Experiments in Fluids, 54, 1454. Mathur
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Energy Technology Data Exchange (ETDEWEB)
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Wave propagation in a moving cold magnetized plasma
Hebenstreit, H.
1980-03-01
Polarization relations and dispersion equations are derived for media that are electrically anisotropic in the comoving frame. Three-dimensional calculations for media at rest recover the known dispersion equations, i.e., Astrom's dispersion equation for magnetized cold plasmas and Fresnel's wave normal equation for uniaxial crystals. An analogous four-dimensional calculation yields the generalization to moving media. The dispersion equations so obtained for moving gyrotropic media are then discussed qualitatively for various special media and special directions of wave propagation. Finally, the polarization relations are specialized to media gyrotropic in the comoving frame.
Ladder Climbing and Autoresonant Acceleration of Plasma Waves
Barth, Ido; Fisch, Nathaniel J
2015-01-01
Classical plasma waves are predicted to exhibit quantumlike ladder climbing, which is achieved by chirped modulations of the background density. An equivalence with the quantum particle in a box is identified and used to calculate the efficiency and the rate of this effect. In the limit of densely spaced spectrum, ladder climbing transforms into continuous autoresonance; plasmons may then be manipulated by chirped background modulations much like electrons are autoresonantly manipulated by chirped fields. Such ladder climbing and autoresonance effects are also predicted for other classical waves by means of a unifying Lagrangian theory.
Gravity Wave Generation by Largescale Bubbles
Brandenburg, A.
The response of an isothermal atmosphere to small disturbances in entropy is studied taking compressible effects fully into account. The method of Green's functions is applied to solve the linearized hydrodynamic equations by Fourier transformation. A bubble may be created by perturbing the entropy within a finite volume. At first Lamb waves will be then emitted radially and the bubble undergoes a series of Brunt-Väisälä oscillations.
Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.
2017-01-01
We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of 0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions' polarization drift in the electric field of an EMIC wave.
Caldera collapse and the generation of waves
Gray, J. P.; Monaghan, J. J.
2003-02-01
The aim of this paper is to begin a study of the waves produced by the collapse of a caldera connected to the sea. An example is the bronze age collapse of the caldera of Santorini (Thera), which is thought to have involved an area of approximately 70 km2 subsiding to a depth close to the present 390 m. In this paper, we concentrate on the purely mechanical aspects of the flow and adopt a simple geometry that replicates some of the features of the pre-bronze age caldera of Santorini. By combining laboratory experiments with computer simulations, we have been able to determine the amplitude of the waves for a wide range of cavity parameters. For cavities with a width comparable to the depth of water entering the cavity, we have determined a scaling relation for the amplitude in terms of the geometry of the system. In the case of wider cavities, the flow begins like a breaking dam flow; it then becomes similar to a classical bore before breaking up into waves. The computer simulations agree well with experiment and will allow us to simulate more complicated geometries.
Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma
Kaplan, A E
2010-01-01
An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.
2011-10-01
In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
Transport of time-varying plasma currents by whistler wave packets
Stenzel, R. L.; Urrutia, J. M.; Rousculp, C.
1992-01-01
The relationship between pulsed currents and electromagnetic waves is examined in a regime characterized by electron MHD. Pulsed currents are generated by (1) collection/emission of charged particles by/from biased electrodes and (2) induction of currents by time-varying and moving magnetic fields. Pulsed currents are observed to propagate at the speed of whistler wave packets. Their field structure forms ropelike configurations which are electromagnetically force-free. Moving sources induce 'eddy' currents which excite waves and form Cerenkov-like whistler 'wings'. The radiation patterns of moving magnetic antennas and electrodynamic tethers are investigated. Nonlinear effects of large-amplitude, antenna-launched whistler pulses are observed. These involve a new modulational instability in which a channel of high conductivity which permits the wave/currents to penetrate deeply into a collisional plasma is formed.
Cylindrical and spherical soliton collision of electron-acoustic waves in non-Maxwellian plasma
El-Labany, S. K.; Sabry, R.; Moslem, W. M.; Elghmaz, E. A.
2014-02-01
Generation of quasielastic electron-acoustic (EA) waves head-on collision are investigated in non-planar (cylindrical/spherical) plasma composed of cold electrons fluid, hot electrons obeying nonthermal distribution, and stationary ions. The cylindrical/spherical Korteweg-de Vries (KdV) equations describing two bidirectional EA waves are derived and solved analytically. Numerical investigation have shown that only positive electron-acoustic (EA) structures can propagate and collide. The analytical phase shift |Δ A | due to the non-Maxwellian (nonthermal) electrons is different from the Maxwellian case. Both the hot-to-cold electron number density ratio α and nonthermal parameter β have opposite effect on the phase shift behavior. The phase shift of the spherical EA waves is smaller than the cylindrical case, which indicates that the former is more stable for collision. The relevance of the present study to EA waves propagating in the Earth's auroral zone is highlighted.
Excitation and diagnosis of cascading Langmuir waves in ionospheric plasmas at Gakona, Alaska
Energy Technology Data Exchange (ETDEWEB)
Burton, L M; Cohen, J A; Pradipta, R; Labno, A; Lee, M C; Batishchev, O; Rokusek, D L [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Kuo, S P [Polytechnic University, Brooklyn, NY 11201 (United States); Watkins, B J; Oyama, S [University of Alaska Fairbanks, Fairbanks, AK 99775 (United States)], E-mail: mclee@mit.edu
2008-12-15
Ionospheric plasma heating experiments were conducted at Gakona, Alaska to investigate cascading spectra of Langmuir wave turbulence, excited by parametric instabilities diagnosed by Modular UHF Ionospheric Radar (MUIR). This work is aimed at testing the recent theory of Kuo and Lee (2005 J. Geophys. Res. 110 A01309) that addresses how the cascade of Langmuir waves can distribute spatially via the resonant and non-resonant decay processes. The non-resonant cascade proceeds at the location where parametric decay instability (PDI) or oscillating two-stream instability (OTSI) is excited and severely hampered by the frequency mismatch effect. By contrast, the resonant cascade, which takes place at lower matching heights, has to overcome the propagation loss of the Langmuir pump waves in each cascade step. Our experimental results have corroborated these predictions about the generation of cascading Langmuir waves by the HAARP heater.
Energy dissipation through wind-generated breaking waves
Institute of Scientific and Technical Information of China (English)
ZHANG Shuwen; CAO Ruixue; XIE Lingling
2012-01-01
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.
Air-borne sound generated by sea waves.
Bolin, Karl; Åbom, Mats
2010-05-01
This paper describes a semi-empiric model and measurements of air-borne sound generated by breaking sea waves. Measurements have been performed at the Baltic Sea. Shores with different slopes and sediment types have been investigated. Results showed that the sound pressure level increased from 60 dB at 0.4 m wave height to 78 dB at 2.0 m wave height. The 1/3 octave spectrum was dependent on the surf type. A scaling model based on the dissipated wave power and a surf similarity parameter is proposed and compared to measurements. The predictions show satisfactory agreement to the measurements.
Generation of sheet currents by high frequency fast MHD waves
Energy Technology Data Exchange (ETDEWEB)
Núñez, Manuel, E-mail: mnjmhd@am.uva.es
2016-07-01
The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.
Vainchtein, Dmitri; Fridman, Greg; Artemyev, Anton
2017-10-01
The wave-particle resonant interaction plays an important role in the charged particle energization by trapping (capture) into resonance. For the systems with waves propagating through inhomogeneous plasma, the key small parameter is the ratio of the wave wavelength to a characteristic spatial scale of inhomogeneity. When that parameter is very small, the asymptotic methods are applicable for the system description, and the resultant energy distribution of trapped particle ensemble has a typical Gaussian profile around some mean value. However, for moderate values of that parameter, the energy distribution has a fine structure including several maxima, each corresponding to the discrete number of oscillations a particle makes in the trapped state. We explain this novel effect which can play important role for generation of unstable distributions of accelerated particles in many space plasma systems.
Numerical simulations of impulsively generated Alfvén waves in solar magnetic arcades
Energy Technology Data Exchange (ETDEWEB)
Chmielewski, P.; Murawski, K. [Group of Astrophysics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Musielak, Z. E. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Srivastava, A. K. [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)
2014-09-20
We perform numerical simulations of impulsively generated Alfvén waves in an isolated solar arcade, which is gravitationally stratified and magnetically confined. We study numerically the propagation of Alfvén waves along the magnetic structure that extends from the lower chromosphere, where the waves are generated, to the solar corona, and analyze the influence of the arcade size and the width of the initial pulses on the wave propagation and reflection. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical VAL-C model and specifying the curved magnetic field lines that constitute the asymmetric magnetic arcade. The propagation and reflection of Alfvén waves in this arcade is described by 2.5-dimensional magnetohydrodynamic equations that are numerically solved by the FLASH code. Our numerical simulations reveal that the Alfvén wave amplitude decreases as a result of a partial reflection of Alfvén waves in the solar transition region, and that the waves that are not reflected leak through the transition region and reach the solar corona. We also find the decrement of the attenuation time of Alfvén waves for wider initial pulses. Moreover, our results show that the propagation of Alfvén waves in the arcade is affected by the spatial dependence of the Alfvén speed, which leads to phase mixing that is stronger for more curved and larger magnetic arcades. We discuss the processes that affect the Alfvén wave propagation in an asymmetric solar arcade and conclude that besides phase mixing in the magnetic field configuration, the plasma properties of the arcade, the size of the initial pulse, and the structure of the solar transition region all play a vital role in the Alfvén wave propagation.
Numerical Simulations of Impulsively Generated Alfvén Waves in Solar Magnetic Arcades
Chmielewski, P.; Murawski, K.; Musielak, Z. E.; Srivastava, A. K.
2014-09-01
We perform numerical simulations of impulsively generated Alfvén waves in an isolated solar arcade, which is gravitationally stratified and magnetically confined. We study numerically the propagation of Alfvén waves along the magnetic structure that extends from the lower chromosphere, where the waves are generated, to the solar corona, and analyze the influence of the arcade size and the width of the initial pulses on the wave propagation and reflection. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical VAL-C model and specifying the curved magnetic field lines that constitute the asymmetric magnetic arcade. The propagation and reflection of Alfvén waves in this arcade is described by 2.5-dimensional magnetohydrodynamic equations that are numerically solved by the FLASH code. Our numerical simulations reveal that the Alfvén wave amplitude decreases as a result of a partial reflection of Alfvén waves in the solar transition region, and that the waves that are not reflected leak through the transition region and reach the solar corona. We also find the decrement of the attenuation time of Alfvén waves for wider initial pulses. Moreover, our results show that the propagation of Alfvén waves in the arcade is affected by the spatial dependence of the Alfvén speed, which leads to phase mixing that is stronger for more curved and larger magnetic arcades. We discuss the processes that affect the Alfvén wave propagation in an asymmetric solar arcade and conclude that besides phase mixing in the magnetic field configuration, the plasma properties of the arcade, the size of the initial pulse, and the structure of the solar transition region all play a vital role in the Alfvén wave propagation.
Analysis of circular wave packets generated by pulsed electric fields
Energy Technology Data Exchange (ETDEWEB)
Yoshida, S., E-mail: shuhei@concord.itp.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Reinhold, C.O. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Burgdoerfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Wyker, B.; Ye, S.; Dunning, F.B. [Department of Physics and Astronomy and the Rice Quantum Institute, Rice University, Houston, TX 77005-1892 (United States)
2012-05-15
We demonstrate that circular wave packets in high Rydberg states generated by a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wave packets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficients.
Harnessing and control of optical rogue waves in supercontinuum generation.
Dudley, John M; Genty, Goëry; Eggleton, Benjamin J
2008-03-17
We present a numerical study of the evolution dynamics of "optical rogue waves", statistically-rare extreme red-shifted soliton pulses arising from supercontinuum generation in photonic crystal fiber [D. R. Solli, et al. Nature 450, 1054-1058 (2007)]. Our specific aim is to use nonlinear Schrödinger equation simulations to identify ways in which the rogue wave dynamics can be actively controlled, and we demonstrate that rogue wave generation can be enhanced by an order of magnitude through a small modulation across the input pulse envelope and effectively suppressed through the use of a sliding frequency filter.
Isentropic compressive wave generator and method of making same
Barker, L.M.
An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.
Measurements of the interaction of wave groups with shorter wind-generated waves
Chu, Jacob S.; Long, Steven R.; Phillips, O. M.
1992-01-01
Fields of statistically steady wind-generated waves produced in a wind wave facility were perturbed by the injection of groups of longer, mechanically generated waves with various slopes. The time histories of the surface displacements were measured at four fetches in ensembles consisting of 100 realizations of each set of experimental conditions; the data were stored and analyzed digitally. Four distinct stages in the overall interaction are identified and characterized. The properties of the wave energy front are documented, and a preliminary discussion is given of the dynamic processes involved in its formation.
Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions
Gong, Jingyu; Du, Jiulin
2012-01-01
The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.
Directory of Open Access Journals (Sweden)
S. S. Ghosh
2004-01-01
Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.
New Wave in the Perception of New Generations
Directory of Open Access Journals (Sweden)
Marija Ristivojević
2016-02-01
Full Text Available The paper represents an analysis of contemporary ideas about new wave music formed by generations born after 1980, in the "post-new wave" period. The ever more evident tendency to revitalize and re-actualize the new wave phenomenon at the local level, as well as the identities which stem from it, is indicative not only of the importance of this musical concept but its interdependence with the local community. The echoes of different contemporary narratives about this phenomenon influence the forming of a set of notions about, on the one hand, new wave itself, and on the other – notions about Belgrade of that time period, among generations which form their opinions and perceptions of it indirectly, and after the fact. The aim of the paper is to answer the question of the extent to which young people today are familiar with new wave and what the concept represents for them.
Dust acoustic waves in strongly coupled dissipative plasmas
Xie, B. S.; Yu, M. Y.
2000-12-01
The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
Material measurement method based on femtosecond laser plasma shock wave
Zhong, Dong; Li, Zhongming
2017-03-01
The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.
Ionization wave propagation on a micro cavity plasma array
Wollny, Alexander; Gebhardt, Markus; Brinkmann, Ralf Peter; Boettner, Henrik; Winter, Joerg; der Gathen, Volker Schulz-von; Mussenbrock, Thomas
2011-01-01
Microcavity plasma arrays are regular arrays of inverse pyramidal cavities created on positive doped silicon wafers. Each cavity acts as a microscopic dielectric barrier discharge. Operated at atmospheric pressure in argon and excited with high voltage at about 10 kHz frequency each cavity develops a localized microplasma. Experiments show a strong interaction of the individual cavities, leading to the propagation of wave-like emission structures along the array surface. This paper studies the ignition process of a micro cavity plasma array by means of a numerical simulation and confirms the experimental results. The propagation of an ionization wave is observed. Its propagation speed of 1 km/s matches experimental findings.
Coherent and Incoherent Rogue Waves in Seeded Supercontinuum Generation
DEFF Research Database (Denmark)
Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe Visbech
2013-01-01
The shot-to-shot stability of a supercontiuum (SC) can be controlled both in terms of coherence and intensity stability by modulating the input pulse with a weak seed [1-3]. In the long-pulse regime, the SC generation is initiated by noise-seeded modulation instability (MI), which breaks the pump......,2]. Seeding the pulse break-up has likewise been used to control the generation of otherwise statistically rare large-amplitude rogue solitons [2-4]. In this work, we numerically investigate the influence of the MI gain spectrum on the pulse break-up and rogue wave generation. We find that the results can...... be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process and demonstrate that seeding can be used to generate coherent and incoherent rogue waves. Figure 1 shows simulation results of seeded SC generation in a fiber with a zero-dispersion wavelength...
Generator of chemically active low-temperature plasma
Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.
2016-11-01
A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.
Structures of Strong Shock Waves in Dense Plasmas
Institute of Scientific and Technical Information of China (English)
JIANG Zhong-He; HE Yong; HU Xi-Wei; LV Jian-Hong; HU Ye-Min
2007-01-01
@@ Structures of strong shock waves in dense plasmas are investigated via the steady-state Navier-Stokes equations and Poisson equation. The structures from fluid simulation agree with the ones from kinetic simulation. The effects of the transport coefficients on the structures are analysed. The enhancements of the electronic heat conduction and ionic viscosity both will broaden the width of the shock fronts, and decrease the electric fields in the fronts.
Elastic-wave generation in the evolution of displacement peaks
Energy Technology Data Exchange (ETDEWEB)
Zhukov, V.P.; Boldin, A.A.
1988-06-01
This paper investigated the character of elastic shock wave generation and damping in irradiated materials along with the possibility of their long-range influence on the structure of the irradiated materials. Dispersion at the elastoplastic stage of atomic displacement peak development was taken into account. The three-dimensional nonlinear wave was described by an equation in the approximation of weak nonlinearity and weak spatial dispersion. Numerical modeling of the propagation of a plane shock wave in a crystal lattice was conducted. The distribution of the density and mass velocity of the material at the instant of complete damping of the plastic shock-wave component was determined. The appearance of solitary waves (solitons) at large amplitudes, localized in space, which propagate without distortion to arbitrary distances and retain their amplitude and form in interacting with one another, was investigated. Some physical consequences of the influence of solitary waves on the irradiated materials were considered.
The nonlinear evolution of rogue waves generated by means of wave focusing technique
Hu, HanHong; Ma, Ning
2011-01-01
Generating the rogue waves in offshore engineering is investigated, first of all, to forecast its occurrence to protect the offshore structure from being attacked, to study the mechanism and hydrodynamic properties of rouge wave experimentally as well as the rouge/structure interaction for the structure design. To achieve these purposes demands an accurate wave generation and calculation. In this paper, we establish a spatial domain model of fourth order nonlinear Schrödinger (NLS) equation for describing deep-water wave trains in the moving coordinate system. In order to generate rogue waves in the experimental tank efficiently, we take care that the transient water wave (TWW) determines precisely the concentration of time/place. First we simulate the three-dimensional wave using TWW in the numerical tank and modeling the deepwater basin with a double-side multi-segmented wave-maker in Shanghai Jiao Tong University (SJTU) under the linear superposing theory. To discuss its nonlinearity for guiding the experiment, we set the TWW as the initial condition of the NLS equation. The differences between the linear and nonlinear simulations are presented. Meanwhile, the characteristics of the transient water wave, including water particle velocity and wave slope, are investigated, which are important factors in safeguarding the offshore structures.
High power, fast, microwave components based on beam generated plasmas
Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.
1998-10-01
It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.
Secondary fast magnetoacoustic waves trapped in randomly structured plasmas
Yuan, Ding; Walsh, Robert W
2016-01-01
Fast magnetoacoustic wave is an important tool for inferring solar atmospheric parameters. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas mimicking the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the fast wave speed, we quantify the properties of secondary waves by examining the dependence of the average temporal period ($\\bar{p}$) on the initial pulse width ($w_0$) as well as the density contrast ($\\delta_\\rho$) and correlation length ($L_c$) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, $\\delta_\\rho$ does not alter $\\bar{p}$ significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when $\\delta_\\rho$ is small but have a smoothing effect when $\\delta_\\rho$ is suffic...
Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu
1988-12-01
An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.
FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma
Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun
2016-08-01
The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Characteristics of Wave-Particle Interaction in a Hydrogen Plasma
Institute of Scientific and Technical Information of China (English)
HE Hui-Yong; CHEN Liang-Xu; LI Jiang-Fan
2008-01-01
We study the characteristics of cyclotron wave-particle interaction in a typical hydrogen plasma. The numerical calculations of minimum resonant energy Emin, resonant wave frequency w, and pitch angle diffusion coefficient Dαα for interactions between R-mode/L-mode and electrons/protons are presented. It is found that Emin decreases with ω for R-mode/electron, L-mode/proton and L-mode/electron interactions, but increase with w for R-mode/proton interaction. It is shown that both R-mode and L-mode waves can efficiently scatter energetic (10 keV～100 keV) electrons and protons and cause precipitation loss at L=4, indicating that perhaps waveparticle interaction is a serious candidate for the ring current decay.
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
High harmonic fast waves in high beta plasmas
Energy Technology Data Exchange (ETDEWEB)
Ono, Masayuki
1995-04-01
High harmonic fast magnetosonic wave in high beta/high dielectric plasmas is investigated. including the finite-Larmor-radius effects. In this regime, due to the combination of group velocity slow down and the high beta enhancement, the electron absorption via electron Landau and electron magnetic pumping becomes significant enough that one can expect a strong ({approximately} 100%) single pass absorption. By controlling the wave spectrum, the prospect of some localized electron heating and current drive appears to be feasible in high beta low-aspect-ratio tokamak regimes. Inclusion of finite-Larmor-radius terms shows an accessibility limit in the high ion beta regime ({beta}{sub i} = 50% for a deuterium plasma) due to mode-conversion into an ion Bernstein-wave-like mode while no beta limit is expected for electrons. With increasing ion beta, the ion damping can increase significantly particularly near the beta limits. The presence of energetic ion component expected during intense NBI and {alpha}-heating does not appear to modify the accessibility condition nor cause excessive wave absorption.
Singh, Navpreet; Gupta, Naveen; Singh, Arvinder
2016-12-01
This paper investigates second harmonic generation (SHG) of an intense Cosh-Gaussian (ChG) laser beam propagating through a preformed underdense collisional plasma with nonlinear absorption. Nonuniform heating of plasma electrons takes place due to the nonuniform irradiance of intensity along the wavefront of laser beam. This nonuniform heating of plasma leads to the self-focusing of the laser beam and thus produces strong density gradients in the transverse direction. The density gradients so generated excite an electron plasma wave (EPW) at pump frequency that interacts with the pump beam to produce its second harmonics. To envision the propagation dynamics of the ChG laser beam, moment theory in Wentzel-Kramers-Brillouin (W.K.B) approximation has been invoked. The effects of nonlinear absorption on self-focusing of the laser beam as well as on the conversion efficiency of its second harmonics have been theoretically investigated.
Low frequency waves in streaming quantum dusty plasmas
Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.
2017-09-01
The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.
Dynamic Thomson Scattering from Nonlinear Electron Plasma Waves in a Raman Plasma Amplifier
Davies, A.; Katz, J.; Bucht, S.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.
2016-10-01
Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-pulse seed laser through the Raman scattering instability. Successful implementation of Raman amplification could open an avenue to producing high-intensity pulses beyond the capabilities of current laser technology ( 1022 W / cm 2). This three-wave interaction takes advantage of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for high-efficiency Raman amplification. A dynamic Thomson-scattering diagnostic is being developed to spatially and temporally resolve the amplitude of the driven and thermal EPW's. By imaging the scattered probe light onto a novel pulse-front tilt compensated streaked optical spectrometer, the diffraction efficiency of this plasma wave can be measured as a function of space and time. These data will be used in conjunction with particle-in-cell simulations to determine the EPW's spatial and temporal profile. This will allow the effect of the EPW profile on Raman scattering to be experimentally determined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Generation of powerful terahertz emission in a beam-driven strong plasma turbulence
Arzhannikov, A V
2012-01-01
Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps. It is shown that the power density of electromagnetic emission at the second harmonic of plasma frequency in the terahertz range for these laboratory experiments can reach the level of 1 ${MW/cm}^3$ with 1% conversion efficiency of beam energy losses to electromagnetic emission.
Generation of internal solitary waves in a pycnocline by an internal wave beam: a numerical study
Grisouard, N.; Staquet, C.; Gerkema, T.
2011-01-01
Oceanic observations from western Europe and the south-western Indian ocean have provided evidence of the generation of internal solitary waves due to an internal tidal beam impinging on the pycnocline from below - a process referred to as 'local generation' (as opposed to the more direct generation
Generation of realistic tsunami waves using a bottom-tilting wave maker
Park, Yong Sung; Hwang, Jin Hwan
2016-11-01
Tsunamis have caused more than 260,000 human losses and 250 billion in damage worldwide in the last ten years. Observations made during 2011 Japan Tohoku Tsunami revealed that the commonly used waves (solitary waves) to model tsunamis are at least an order-of-magnitude shorter than the real tsunamis, which calls for re-evaluation of the current understanding of tsunamis. To prompt the required paradigm shift, a new wave generator, namely the bottom-tilting wave generator, has been developed at the University of Dundee. The wave tank is fitted with an adjustable slope and a bottom flap hinged at the beginning of the slope. By moving the bottom flap up and down, we can generate very long waves. Here we will report characteristics of waves generated by simple bottom motions, either moving it upward or downward from an initial displacement ending it being horizontal. Two parameters, namely the initial displacement of the bottom and the speed of the motion, determine characteristics of the generated waves. Wave amplitudes scale well with the volume flux of the displaced water. On the other hand, due to combined effects of nonlinearity and dispersion, wavelengths show more complicated relationship with the two bottom motion parameters. We will also demonstrate that by combining simple up and down motions, it is possible to generate waves resembling the one measured during 2011 tsunami. YSP acknowledges financial support from the Royal Society of Edinburgh through the Royal Society of Edinburgh and Scottish Government Personal Research Fellowship Co-Funded by the Marie-Curie Actions.
High density plasma production in a multicusp plasma generator with RF antenna
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Yasuo; Hanada, Masaya; Okumura, Yoshikazu; Tanaka, Masanobu [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1992-10-01
A high density plasma was produced by radio-frequency in a multicusp plasma generator. The generator is a cylindrical chamber of 200 mm in inner diameter and 270 mm in length with 1-3 turn copper tube antenna. By injecting a 2 MHz, 20 kW RF into the multicusp plasma generator, hydrogen plasma of an ion saturation current density of 120 mA/cm{sup 2} and a hydrogen plasma of a density of 6.0 x 10{sup 11} cm{sup -3} was produced at a pressure of 0.6 Pa in the generator. The ion saturation current density was uniform over the central area of 100 mm in diameter. Coating the antenna with an insulator, we proved that the efficiency of the plasma production was improved. (author).
High density plasma production in a multicusp plasma generator with RF antenna
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Yasuo; Hanada, Masaya; Okumura, Yoshikazu; Tanaka, Masanobu (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment)
1992-10-01
A high density plasma was produced by radio-frequency in a multicusp plasma generator. The generator is a cylindrical chamber of 200 mm in inner diameter and 270 mm in length with 1-3 turn copper tube antenna. By injecting a 2 MHz, 20 kW RF into the multicusp plasma generator, hydrogen plasma of an ion saturation current density of 120 mA/cm[sup 2] and a hydrogen plasma of a density of 6.0 x 10[sup 11] cm[sup -3] was produced at a pressure of 0.6 Pa in the generator. The ion saturation current density was uniform over the central area of 100 mm in diameter. Coating the antenna with an insulator, we proved that the efficiency of the plasma production was improved. (author).
Development of full wave code for modeling RF fields in hot non-uniform plasmas
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.
Slot-Antenna/Permanent-Magnet Device for Generating Plasma
Foster, John E.
2007-01-01
A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma-generating
Leifer, I.; Caulliez, G.; Leeuw, G.de
2006-01-01
Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically
Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Umeda, Takayuki; Saito, Shinji [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya City, Aichi 464-8601 (Japan); Nariyuki, Yasuhiro, E-mail: umeda@stelab.nagoya-u.ac.jp, E-mail: saito@stelab.nagoya-u.ac.jp, E-mail: nariyuki@edu.u-toyama.ac.jp [Faculty of Human Development, University of Toyama, Toyama City, Toyama 930-8555 (Japan)
2014-10-10
Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.
Scattering of Electromagnetic Waves by Drift Vortex in Plasma
Institute of Scientific and Technical Information of China (English)
WANG Dong; CHEN Yinhua; WANG Ge
2008-01-01
In a quasi-two-dimensional model, the scattering of incident ordinary electromag-netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia << 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approxi-mation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then ki<< 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
Niti Kant
2013-01-01
Third harmonic generation of a Gaussian short pulse laser in a tunnel ionizing plasma is investigated. A Gaussian short pulse laser propagating through a tunnel ionizing plasma generates third harmonic wave. Inhomogeneity of the electric field along the wavefront of the fundamental laser pulse causes more ionization along the axis of propagation while less ionization off axis, leading to strong density gradient with its maximum on the axis of propagation. The medium acts like a diverging lens...
Magnetic flux tubes as sources of wave generation
Musielak, Z. E.; Rosner, R.; Ulmschneider, P.
1987-01-01
The structure of solar, and very likely stellar, surface magnetic fields is highly inhomogeneous: at the photospheric level, the fields are locally strong, and show concentration into a flux tube structure. In this case, the wave energy generated in stellar convection zones may be largely carried away by flux tube waves, which can then become important sources for the heating of the outer atmospheric layers. Such flux tube wave generation may help to explain the UV and X-ray fluxes observed by the IUE and Einstein observatories. The generation of longitudinal tube waves in magnetic flux tubes embedded in an otherwise magnetic field-free, turbulent, and stratified medium was considered. It is shown that compressible tube waves are generated by dipole emission and that the generation efficiency is a strong function of the magnetic field strength. Energy flux calculations are presented for different magnetic flux tubes, and show how the results depend on the magnetic field strength and the characteristics of the convective turbulence.
Finite-amplitude shear-Alfv\\'en waves do not propagate in weakly magnetized collisionless plasmas
Squire, J; Schekochihin, A A
2016-01-01
It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfv\\'en fluctuations above a critical amplitude $\\delta B_{\\perp}/B_{0} \\sim \\beta^{\\,-1/2}$, where $\\beta$ is the ratio of thermal to magnetic pressure. Above this cutoff, a developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive bound on shear-Alfv\\'en-wave amplitudes has far-reaching implications for the physics of magnetized turbulence in the high-$\\beta$ conditions prevalent in many astrophysical plasmas, as well as for the solar wind at $\\sim 1 \\mathrm{AU}$ where $\\beta \\gtrsim 1$.
Decay of Langmuir wave in dense plasmas and warm dense matter
Son, S; Moon, Sung Joon
2010-01-01
The decays of the Langmuir waves in dense plasmas are computed using the dielectric function theory widely used in the solid state physics. Four cases are considered: a classical plasma, a Maxwellian plasma, a degenerate quantum plasma, and a partially degenerate plasma. The result is considerably different from the conventional Landau damping theory.
Generation of internal gravity waves by penetrative convection
Pinçon, C; Goupil, M J
2015-01-01
The rich harvest of seismic observations over the past decade provides evidence of angular momentum redistribution in stellar interiors that is not reproduced by current evolution codes. In this context, transport by internal gravity waves can play a role and could explain discrepancies between theory and observations. The efficiency of the transport of angular momentum by waves depends on their driving mechanism. While excitation by turbulence throughout the convective zone has already been investigated, we know that penetrative convection into the stably stratified radiative zone can also generate internal gravity waves. Therefore, we aim at developing a semianalytical model to estimate the generation of IGW by penetrative plumes below an upper convective envelope. We derive the wave amplitude considering the pressure exerted by an ensemble of plumes on the interface between the radiative and convective zones as source term in the equation of momentum. We consider the effect of a thermal transition from a c...
Sensitivity Studies for Third-Generation Gravitational Wave Observatories
Hild, S; Acernese, F; Amaro-Seoane, P; Andersson, N; Arun, K; Barone, F; Barr, B; Barsuglia, M; Beker, M; Beveridge, N; Birindelli, S; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Bulik, T; Calloni, E; Cella, G; Mottin, E Chassande; Chelkowski, S; Chincarini, A; Clark, J; Coccia, E; Colacino, C; Colas, J; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S; Danzmann, K; De Salvo, R; Dent, T; De Rosa, R; Di Fiore, L; Di Virgilio, A; Doets, M; Fafone, V; Falferi, P; Flaminio, R; Franc, J; Frasconi, F; Freise, A; Friedrich, D; Fulda, P; Gair, J; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Glampedakis, K; Gräf, C; Granata, M; Grote, H; Guidi, G; Gurkovsky, A; Hammond, G; Hannam, M; Harms, J; Heinert, D; Hendry, M; Heng, I; Hennes, E; Hough, J; Husa, S; Huttner, S; Jones, G; Khalili, F; Kokeyama, K; Kokkotas, K; Krishnan, B; Li, T G F; Lorenzini, M; Lück, H; Majorana, E; Mandel, I; Mandic, V; Mantovani, M; Martin, I; Michel, C; Minenkov, Y; Morgado, N; Mosca, S; Mours, B; Müller-Ebhardt, H; Murray, P; Nawrodt, R; Nelson, J; Oshaughnessy, R; Ott, C D; Palomba, C; Paoli, A; Parguez, G; Pasqualetti, A; Passaquieti, R; Passuello, D; Pinard, L; Plastino, W; Poggiani1, R; Popolizio, P; Prato, M; Punturo, M; Puppo, P; Rabeling, D; Rapagnani, P; Read, J; Regimbau, T; Rehbein, H; Reid, S; Ricci, F; Richard, F; Rocchi, A; Rowan, S; Rüdiger, A; Santamaría, L; Sassolas, B; Sathyaprakash, B; Schnabel, R; Schwarz, C; Seidel, P; Sintes, A; Somiya, K; Speirits, F; Strain, K; Strigin, S; Sutton, P; Tarabrin, S; Thüring, A; Brand, J van den; van Veggel, M; Broeck, C van den; Vecchio, A; Veitch, J; Vetrano, F; Vicere, A; Vyatchanin, S; Willke, B; Woan, G; Yamamoto, K
2010-01-01
Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.
Sensitivity studies for third-generation gravitational wave observatories
Energy Technology Data Exchange (ETDEWEB)
Hild, S; Abernathy, M; Barr, B; Beveridge, N [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Amaro-Seoane, P [Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1, D-14476 Potsdam (Germany); Andersson, N [University of Southampton, Southampton SO17 1BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Mottin, E Chassande [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris, Universite Denis Diderot, Paris VII (France); Beker, M [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Birindelli, S [Universite Nice ' Sophia-Antipolis' , CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: stefan.hild@glasgow.ac.uk [Astronomical Observatory, University of warsaw, Al Ujazdowskie 4, 00-478 Warsaw (Poland)
2011-05-07
Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope (ET), a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this paper we describe sensitivity models for ET and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.
The Einstein Telescope: a third-generation gravitational wave observatory
Energy Technology Data Exchange (ETDEWEB)
Punturo, M; Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Abernathy, M; Barr, B; Beveridge, N [Department of Physics and Astronomy, The University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Allen, B [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Andersson, N [University of Southampton, Southampton SO17 1BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Mottin, E Chassande [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris-Universite Denis Diderot-Paris VII (France); Beker, M [VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam (Netherlands); Birindelli, S [Universite Nice ' Sophia-Antipolis' , CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: michele.punturo@pg.infn.i [Astro. Obs. Warsaw Univ. 00-478, CAMK-PAM 00-716 Warsaw, Bialystok Univ. 15-424, IPJ 05-400 Swierk-Otwock, Inst. of Astronomy 65-265 Zielona Gora (Poland)
2010-10-07
Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation ground-based observatory Einstein Telescope (ET) promise to achieve the required sensitivity improvements in frequency ranges. The vastly improved sensitivity of the third generation of gravitational wave observatories could permit detailed measurements of the sources' physical parameters and could complement, in a multi-messenger approach, the observation of signals emitted by cosmological sources obtained through other kinds of telescopes. This paper describes the progress of the ET project which is currently in its design study phase.
On the Self-Focusing of Whistler Waves in a Radial Inhomogeneous Plasma
DEFF Research Database (Denmark)
Balmashnov, A. A.
1980-01-01
The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation...... of the latter wave is accompanied by a density modification, which leads to trapping of the whistler wave in a density trough in the center of the plasma column....
Ultra-High Intensity Magnetic Field Generation in Dense Plasma
Energy Technology Data Exchange (ETDEWEB)
Fisch, Nathaniel J. [Princeton Univ., NJ (United States)
2014-01-08
The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-energy-density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-energy-density plasma the ideas for steady-state current drive developed for low-energy-density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-energy-density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.
Ultra-High Intensity Magnetic Field Generation in Dense Plasma
Energy Technology Data Exchange (ETDEWEB)
Fisch, Nathaniel J
2014-01-08
I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-energy-density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-energy-density plasma the ideas for steady-state current drive developed for low-energy-density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-energy-density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.
Adhesion-Dependent Wave Generation in Crawling Cells.
Barnhart, Erin L; Allard, Jun; Lou, Sunny S; Theriot, Julie A; Mogilner, Alex
2017-01-09
Dynamic actin networks are excitable. In migrating cells, feedback loops can amplify stochastic fluctuations in actin dynamics, often resulting in traveling waves of protrusion. The precise contributions of various molecular and mechanical interactions to wave generation have been difficult to disentangle, in part due to complex cellular morphodynamics. Here we used a relatively simple cell type-the fish epithelial keratocyte-to define a set of mechanochemical feedback loops underlying actin network excitability and wave generation. Although keratocytes are normally characterized by the persistent protrusion of a broad leading edge, increasing cell-substrate adhesion strength results in waving protrusion of a short leading edge. We show that protrusion waves are due to fluctuations in actin polymerization rates and that overexpression of VASP, an actin anti-capping protein that promotes actin polymerization, switches highly adherent keratocytes from waving to persistent protrusion. Moreover, VASP localizes both to adhesion complexes and to the leading edge. Based on these results, we developed a mathematical model for protrusion waves in which local depletion of VASP from the leading edge by adhesions-along with lateral propagation of protrusion due to the branched architecture of the actin network and negative mechanical feedback from the cell membrane-results in regular protrusion waves. Consistent with our model simulations, we show that VASP localization at the leading edge oscillates, with VASP leading-edge enrichment greatest just prior to protrusion initiation. We propose that the mechanochemical feedbacks underlying wave generation in keratocytes may constitute a general module for establishing excitable actin dynamics in other cellular contexts.
Statistical Analysis of EMIC Waves in Multiple Component Plasma Including Heavy Ions
Matsuda, S.; Kasahara, Y.; Goto, Y.
2013-12-01
It is well known that Earth's radiation belts are located around geomagnetic equator, where wide ranges of energetic particles from several hundred keV to several tens MeV are contained. According to the recent study, it is suggested that ELF/VLF waves such as EMIC waves and chorus emissions deeply contribute to the generation and loss mechanism of relativistic electrons in the radiation belt. The ERG mission[1] is expected to provide important clues for solving plasma dynamics in the Earth's radiation belts by means of integrated observation of wide energy range of plasma particles and high resolution plasma waves. On the other hand, long-term observation data which covers over 2 cycles of solar activity obtained by the Akebono satellite is very valuable to work out the strategy of the ERG mission. The ELF receiver, which is a sub-system of the VLF instruments onboard Akebono, measures waveforms below 50 Hz for one component of electric field and three components of magnetic field, or waveforms below 100 Hz for one component of electric and magnetic field, respectively. It was reported that ion cyclotron waves were observed near magnetic equator by the receiver[2]. In our previous study[3], we introduced four events of characteristic EMIC waves observed by Akebono in April, 1989. These waves have sudden decrease of intensity just above half of proton cyclotron frequency changing along the trajectories of Akebono. Comparing the observed data with the dispersion relation in multiple species of ions under cold plasma approximation, we demonstrate that a few percent of 'M / Z = 2 ions (M = mass of ions, Z = charge of ions)' such as alpha particles (He++) or deuterons (D+) cause such characteristic attenuation of EMIC at lower hybrid frequency. In the present study, we performed polarization analysis and direction finding of the waves. It was found that these EMIC waves were left-handed polarized in the higher frequency part, while the polarization gradually changes to
Generation of High Pressure and Temperature by Converging Detonation Waves
Directory of Open Access Journals (Sweden)
V. P. Singh
1987-07-01
Full Text Available Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.
Generation of High Pressure and Temperature by Converging Detonation Waves
Singh, V. P.; Shukla, S K
1987-01-01
Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.
Generation of high pressure and temperature by converging detonation waves
Singh, V. P.; Shukla, S. K.
1987-07-01
Generation of high pressure and temperature has various applications in defense. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In this paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, are studied by using Whitham's characteristics rule. Results are compared with those reported elsewhere.
Piezoelectric Generation and Damping of Extensional Waves in Bars
Jansson, Anders
2007-01-01
This thesis focuses on the electromechanical processes of generation and damping of transient waves in bars with attached piezoelectric members. In particular, the influence of amplifier and electrical circuitry on the mechanical waves is of interest. A straight bar element containing piezoelectric members is viewed as a linear system with one electrical and two mechanical ports where it interacts with external electrical and mechanical devices through voltage, current, forces and velocities....
Resonant excitation of waves by a spiraling ion beam on the large plasma device
Tripathi, Shreekrishna
2015-11-01
The resonant interaction between energetic-ions and plasma waves is a fundamental topic of importance in the space, controlled magnetic-fusion, and laboratory plasma physics. We report new results on the spontaneous generation of traveling shear Alfvén waves and high-harmonic beam-modes in the lower-hybrid range of frequencies by an intense ion beam. In particular, the role of Landau and Doppler-shifted ion-cyclotron resonances (DICR) in extracting the free-energy from the ion-beam and destabilizing Alfvén waves was explored on the Large Plasma Device (LAPD). In these experiments, single and dual-species magnetized plasmas (n ~1010 -1012 cm-3, Te ~ 5.0-10.0 eV, B = 0.6-1.8 kG, He+ and H+ ions, 19.0 m long, 0.6 m diameter) were produced and a spiraling hydrogen ion beam (5-15 keV, 2-10 A, beam-speed/Alfvén-speed = 0.2-1.5, J ~ 50-150 mA/cm2, pitch-angle ~53°) was injected into the plasma. The interaction of the beam with the plasma was diagnosed using a retarding-field energy analyzer, three-axis magnetic-loop, and Langmuir probes. The resonance conditions for the growth of shear Alfvén waves were examined by varying the parameters of the ion-beam and ambient plasma. The experimental results demonstrate that the DICR process is particularly effective in exciting left-handed polarized shear Alfvén waves that propagate in the direction opposite to the ion beam. The high-harmonic beam modes were detected in the vicinity of the spiraling ion beam and contained more than 80 harmonics of Doppler-shifted gyro-frequency of the beam. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.
Lateral Flooding Associated to Wave Flood Generation on River Surface
Ramírez-Núñez, C.; Parrot, J.-F.
2016-06-01
This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico) defining the successive areas where lateral flooding occurs on its downstream movement.
Investigation of beat-waves generation with high efficiency
Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.
2013-10-01
A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.
Investigation of beat-waves generation with high efficiency
Energy Technology Data Exchange (ETDEWEB)
Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G. [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shanxi 710024 (China)
2013-10-21
A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.
Verma, Prabal Singh; Sengupta, Sudip; Kaw, Predhiman
2012-07-01
A one-dimensional particle in cell simulation of large amplitude plasma oscillations is carried out to explore the physics beyond wave breaking in a cold homogeneous unmagnetized plasma. It is shown that after wave breaking, all energy of the plasma oscillation does not end up as random kinetic energy of particles, but some fraction, which is decided by Coffey's wave breaking limit in warm plasma, always remains with two oppositely propagating coherent Bernstein-Greene-Kruskal like modes with supporting trapped particle distributions. The randomized energy distribution of untrapped particles is found to be characteristically non-Maxwellian with a preponderance of energetic particles.
Generation of Focused Shock Waves in Water for Biomedical Applications
Lukeš, Petr; Šunka, Pavel; Hoffer, Petr; Stelmashuk, Vitaliy; Beneš, Jiří; Poučková, Pavla; Zadinová, Marie; Zeman, Jan
The physical characteristics of focused two-successive (tandem) shock waves (FTSW) in water and their biological effects are presented. FTSW were generated by underwater multichannel electrical discharges in a highly conductive saline solution using two porous ceramic-coated cylindrical electrodes of different diameter and surface area. The primary cylindrical pressure wave generated at each composite electrode was focused by a metallic parabolic reflector to a common focal point to form two strong shock waves with a variable time delay between the waves. The pressure field and interaction between the first and the second shock waves at the focus were investigated using schlieren photography and polyvinylidene fluoride (PVDF) shock gauge sensors. The largest interaction was obtained for a time delay of 8-15 μs between the waves, producing an amplitude of the negative pressure phase of the second shock wave down to -80 MPa and a large number of cavitations at the focus. The biological effects of FTSW were demonstrated in vitro on damage to B16 melanoma cells, in vivo on targeted lesions in the thigh muscles of rabbits and on the growth delay of sarcoma tumors in Lewis rats treated in vivo by FTSW, compared to untreated controls.
Study of nonlinear waves in astrophysical quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Hossen, M.R.; Mamun, A.A., E-mail: rasel.plasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2015-10-01
The nonlinear propagation of the electron acoustic solitary waves (EASWs) in an unmagnetized, collisionless degenerate quantum plasma system has been investigated theoretically. Our considered model consisting of two distinct groups of electrons (one of inertial non-relativistic cold electrons and other of inertialess ultrarelativistic hot electrons) and positively charged static ions. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method and numerically examined to identify the basic features (speed, amplitude, width, etc.) of EASWs. It is shown that only rarefactive solitary waves can propagate in such a quantum plasma system. It is found that the effect of degenerate pressure and number density of hot and cold electron fluids, and positively charged static ions, significantly modify the basic features of EASWs. It is also noted that the inertial cold electron fluid is the source of dispersion for EA waves and is responsible for the formation of solitary structures. The applications of this investigation in astrophysical compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are briefly discussed. (author)
Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave
Energy Technology Data Exchange (ETDEWEB)
Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)
2012-08-15
Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.
Coherent structures and transport in drift wave plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Bang Korsholm, S.
2011-12-15
Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)