WorldWideScience

Sample records for plasma vortex structures

  1. Coherent vortex structures in fluids and plasmas

    CERN Document Server

    Tur, Anatoli

    2017-01-01

    This monograph introduces readers to the hydrodynamics of vortex formation, and reviews the last decade of active research in the field, offering a unique focus on research topics at the crossroads of traditional fluids and plasmas. Vortices are responsible for the process of macroscopic transport of momentum, energy and mass, and are formed as the result of spontaneous self-organization. Playing an important role in nature and technology, localized, coherent vortices are regularly observed in shear flows, submerged jets, afterbody flows and in atmospheric boundary layers, sometimes taking on the form of vortex streets. In addition, the book addresses a number of open issues, including but not limited to: which singularities are permitted in a 2D Euler equation besides point vortices? Which other, even more complex, localized vortices could be contained in the Euler equation? How do point vortices interact with potential waves?

  2. Electron vortex magnetic holes: a nonlinear coherent plasma structure

    CERN Document Server

    Haynes, Christopher T; Camporeale, Enrico; Sundberg, Torbjorn

    2014-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional PIC simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is ...

  3. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Science.gov (United States)

    Haynes, Christopher T.; Burgess, David; Camporeale, Enrico; Sundberg, Torbjorn

    2015-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  4. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  5. Long-Lived Vortex Structures in Collisional Pure and Gas-Discharge Nonneutral Electron Plasmas

    OpenAIRE

    Kervalishvili, N. A.

    2013-01-01

    The analysis of experimental investigations of equilibrium, interaction and dynamics of vortex structures in pure electron and gas-discharge electron nonneutral plasmas during the time much more than the electron-neutral collision time has been carried out. The problem of long confinement of the column of pure electron plasma in Penning-Malmberg trap is considered. The mechanism of stability of long-lived vortex structure in gas-discharge nonneutral electron plasma is investigated. The collap...

  6. Formation and Dynamics of Vortex Structures in Pure and Gas-Discharge Nonneutral Collisionless Electron Plasmas

    CERN Document Server

    Kervalishvili, N A

    2013-01-01

    The comparative analysis of the results of experimental investigations of the processes of formation, interaction and dynamics of vortex structures in pure electron and gas-discharge electron nonneutral plasmas taking place for the period of time much less than the electron-neutral collision time has been given. The general processes of formation and behavior of vortex structures in these two plasmas were considered. The phenomena, taking place only in one of these plasmas were also considered. It is shown that the existing difference in behavior of vortex structures is caused by different initial states of nonneutral electron plasmas. The role of vortex structures in the processes taking place in nonneutral electron plasma is discussed.

  7. Long-Lived Vortex Structures in Collisional Pure and Gas-Discharge Nonneutral Electron Plasmas

    CERN Document Server

    Kervalishvili, N A

    2013-01-01

    The analysis of experimental investigations of equilibrium, interaction and dynamics of vortex structures in pure electron and gas-discharge electron nonneutral plasmas during the time much more than the electron-neutral collision time has been carried out. The problem of long confinement of the column of pure electron plasma in Penning-Malmberg trap is considered. The mechanism of stability of long-lived vortex structure in gas-discharge nonneutral electron plasma is investigated. The collapse of electron sheath in gas-discharge nonneutral electron plasma in Penning cell at high pressures of neutral gas is described. The interaction between the stable vortex structure and the annular electron sheath, and the action of vortex structures on the transport of electrons along and across the magnetic field are discussed.

  8. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    NARCIS (Netherlands)

    Haynes, C.T.; Burgess, D.; Camporeale, E.; Sundberg, T.

    2015-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic

  9. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: IV. Pulse Ejection of Electrons at the mutual interaction of Vortex Structures

    CERN Document Server

    Kervalishvili, N A

    2015-01-01

    The results of experimental investigations of the ejection of electrons from gas-discharge nonneutral electron plasma at interaction of vortex structures have been given. The periodical approach of vortex structures causes the ejection of electrons both from the vortex structures themselves and from the adjacent regions of electron sheath to the end cathodes of discharge device. The ejection takes place in the form of short and long pulses following each other. The nature of these pulses and the dynamics of interaction of vortex structures at their approach were studied.

  10. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: I. Experimental Technique

    CERN Document Server

    Kervalishvili, N A

    2015-01-01

    The nonperturbing experimental methods have been described, by means of which the solitary vortex structures in gas-discharge nonneutral electron plasma were detected and investigated. The comparison with the experimental methods used in devices with pure electron plasma was made. The problems of shielding the electrostatic perturbations in nonneutral plasmas were considered.

  11. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: II. Vortex Formation, Evolution and Dynamics

    CERN Document Server

    Kervalishvili, N A

    2015-01-01

    The results of experimental investigations of inhomogeneities of gas-discharge nonneutral electron plasma obtained by using the nonperturbing experimental methods [N.A. Kervalishvili, arXiv:1502.02516 [physics.plasm-ph] (2015)] have been presented. Inhomogeneities are the dense solitary vortex structures stretched along the magnetic field, the lifetime of which is much greater than the time of electron-neutral collisions. The processes of formation, evolution and dynamics of vortex structures were studied. The periodic sequence of these processes is described for different geometries of discharge device.

  12. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: III. Pulse Ejection of Electrons at the Formation and Radial Oscillations of Vortex Structure

    CERN Document Server

    Kervalishvili, N A

    2015-01-01

    The results of experimental investigations of electron ejection from gas-discharge nonneutral electron plasma at the formation and radial oscillations of vortex structure have been presented. The electrons are injected from the vortex structure and the adjacent region of electron sheath in the form of pulses the duration and periodicity of which are determined by the processes of evolution and dynamics of this structure. The possible mechanisms of pulse ejection of electrons are considered. The influence of electron ejection on other processes in discharge electron sheath is analyzed.

  13. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  14. Dust vortex flows in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.K

    2002-12-30

    Coherent nonlinear structures in the form of dust vortex flows have been observed in unmagnetized laboratory dusty plasmas. Our objective here is show that the dynamics of such dust vortices is governed by a modified Navier-Stokes equation (MNSE) and that the stationary solutions of the MNSE can be represented as monopolar as well as a row of identical Stuart and a row of counter-rotating vortices.

  15. Propinquity of current and vortex structures: effects on collisionless plasma heating

    CERN Document Server

    Parashar, Tulasi N

    2016-01-01

    Intermittency of heating in weakly collisional plasma turbulence is an active subject of research, with significant potential impact on understanding of the solar wind, solar corona and astrophysical plasmas. Recent studies suggest a role of vorticity in plasma heating. In magnetohydrodynamics small scale vorticity is generated near current sheets and this effect persists in kinetic plasma, as demonstrated here with hybrid and fully kinetic Particle-In-Cell (PIC) simulations. Furthermore, vorticity enhances local kinetic effects, with a generalized resonance condition selecting sign-dependent enhancements or reductions of proton heating and thermal anisotropy. In such plasmas heating is correlated with vorticity and current density, but more strongly with vorticity. These results help explain several prior results that find kinetic effects and energization near to, but not centered on, current sheets. Evidently intermittency in kinetic plasma involves multiple physical quantities, and the associated coherent ...

  16. Evolution of an electron plasma vortex in a strain flow

    Science.gov (United States)

    Danielson, J. R.

    2016-10-01

    Coherent vortex structures are ubiquitous in fluids and plasmas and are examples of self-organized structures in nonlinear dynamical systems. The fate of these structures in strain and shear flows is an important issue in many physical systems, including geophysical fluids and shear suppression of turbulence in plasmas. In two-dimensions, an inviscid, incompressible, ideal fluid can be modeled with the Euler equations, which is perhaps the simplest system that supports vortices. The Drift-Poisson equations for pure electron plasmas in a strong, uniform magnetic field are isomorphic to the Euler equations, and so electron plasmas are an excellent test bed for the study of 2D vortex dynamics. This talk will describe results from a new experiment using pure electron plasmas in a specially designed Penning-Malmberg (PM) trap to study the evolution of an initially axisymmetric 2D vortex subject to externally imposed strains. Complementary vortex-in-cell simulations are conducted to validate the 2D nature of the experimental results and to extend the parameter range of these studies. Data for vortex destruction using both instantaneously applied and time dependent strains with flat (constant vorticity) and extended radial profiles will be presented. The role of vortex self-organization will be discussed. A simple 2D model works well for flat vorticity profiles. However, extended profiles exhibit more complicated behavior, such as filamentation and stripping; and these effects and their consequences will be discussed. Work done in collaboration with N. C. Hurst, D. H. E. Dubin, and C. M. Surko.

  17. Numerical Simulation of Tripolar Vortex in Dusty Plasma with Sheared Flow and Sheared Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Wang Ge; Chen Yinhua; Tan Liwei

    2005-01-01

    This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space plasma, we have simulated the dynamics of the tripolar vortex.The results show that the tripolar vortex is largely stable in most cases, but a strongly sheared magnetic field will make the structure less stable, and lead it to decays into single vortices with the large space scale. These results are consistent with findings from former research about the dipolar vortex.

  18. Plasma spectroscopy using optical vortex laser

    Science.gov (United States)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Toda, Yasunori; Czarnetzki, Uwe; Shikano, Yutaka

    2014-10-01

    Laser spectroscopy is a useful tool for nonintrusive plasma diagnostics; it can provide many important quantities in a plasma such as temperature, density, and flow velocity of ions and neutrals from the spectrum obtained by scanning the frequency of narrow bandwidth laser. Obtainable information is, however, limited in principle to the direction parallel to the laser path. The aim of this study is to introduce a Laguerre-Gaussian beam, which is called as optical vortex, in place of a widely used Hermite-Gaussian beam. One of the remarkable properties of the Laguerre-Gaussian beam is that it carries an angular momentum in contrast to the Hermite-Gaussian beam. It follows that particles in the laser beam feel the Doppler effect even in the transverse direction of the laser path. Therefore it is expected that the limitation imposed by the laser path can be overcome by using an optical vortex laser. The concept of optical vortex spectroscopy, the development of the laser system, and some preliminary results of a proof-of-principle experiment will be presented. This work is performed with the support and under the auspices of NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI Grant Number 25287152.

  19. Observation of Vortex Patterns in a Magnetized Dusty Plasma System

    Institute of Scientific and Technical Information of China (English)

    HUANG Feng; YE Maofu; WANG Long; LIU Yanhong

    2007-01-01

    Vortex patterns of dust particles have been observed in a magnetized dusty plasma system. The formation mechanism of two-dimensional (2D) vortex patterns has been investigated by analysing the forces acting on dust particles and molecular dynamics (MD) simulations in a 2D confined magnetized dusty plasma. It has been found that with a weak confining electric field and a strong magnetic field, the particles' trajectories will form a vortex shape. The simulation results agree with our experimental observations. In our experiments, vortex patterns can be induced via circular rotation of particles by changing the rf (radio-frequency) power in a magnetized dusty plasma.

  20. Model of strong stationary vortex turbulence in space plasmas

    Directory of Open Access Journals (Sweden)

    G. D. Aburjania

    2009-01-01

    Full Text Available This paper investigates the macroscopic consequences of nonlinear solitary vortex structures in magnetized space plasmas by developing theoretical model of plasma turbulence. Strongly localized vortex patterns contain trapped particles and, propagating in a medium, excite substantial density fluctuations and thus, intensify the energy, heat and mass transport processes, i.e., such vortices can form strong vortex turbulence. Turbulence is represented as an ensemble of strongly localized (and therefore weakly interacting vortices. Vortices with various amplitudes are randomly distributed in space (due to collisions. For their description, a statistical approach is applied. It is supposed that a stationary turbulent state is formed by balancing competing effects: spontaneous development of vortices due to nonlinear twisting of the perturbations' fronts, cascading of perturbations into short scales (direct spectral cascade and collisional or collisionless damping of the perturbations in the short-wave domain. In the inertial range, direct spectral cascade occurs through merging structures via collisions. It is shown that in the magneto-active plasmas, strong turbulence is generally anisotropic Turbulent modes mainly develop in the direction perpendicular to the local magnetic field. It is found that it is the compressibility of the local medium which primarily determines the character of the turbulent spectra: the strong vortex turbulence forms a power spectrum in wave number space. For example, a new spectrum of turbulent fluctuations in k−8/3 is derived which agrees with available experimental data. Within the framework of the developed model particle diffusion processes are also investigated. It is found that the interaction of structures with each other and particles causes anomalous diffusion in the medium. The effective coefficient of diffusion has a square root dependence on the stationary level of noise.

  1. Vortex Lines and Monopoles in Electrically Conducting Plasmas

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-Biao; REN Ji-Rong; LI Ran

    2009-01-01

    Based on the C-mapping topological current theory and the decomposition of gauge potential theory, the vortex lines and the monopoles in electrically conducting plasmas are studied.It is pointed out that these two topological structures respectively inhere in two-dimensional and three-dimensional topological currents, which can be derived from the same topological term , and both these topological structures are characterized by the φ-mapping topological numbers-Hopf indices and Brouwer degrees.Furthermore, the spatial bifurcation of vortex lines and the generation and annihilation of monopoles are also discussed.At last, we point out that the Hopf invariant is a proper topological invariant to describe the knotted solitons.

  2. Vortex stabilized electron beam compressed fusion grade plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  3. Investigation of aircraft vortex wake structure

    Science.gov (United States)

    Baranov, N. A.; Turchak, L. I.

    2014-11-01

    In this work we analyze the mechanisms of formation of the vortex wake structure of aircraft with different wing shape in the plan flying close to or away from the underlying surface cleaned or released mechanization wing.

  4. Vortex dynamics in plasmas and fluids

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Lynov, Jens-Peter; Hesthaven, J.S.;

    1994-01-01

    The existence and dynamics of vortical structures in both homogeneous and inhomogeneous systems will be discussed. In particular the dynamics of monopolar and dipolar vortices in a plasma with nonuniform density and in a rotating fluid with varying Coriolis force is described. The role of vortical...

  5. Structure of a Steady Bathtub Vortex

    Science.gov (United States)

    Andersen, Anders; Bøhling, Lasse; Fabre, David

    2010-11-01

    Bathtub vortex flows constitute an important class of concentrated vortex flows which are characterised by intense axial down-flow and stress free surface. We use direct numerical simulations to explore the flow structure of a steady bathtub vortex in a cylindrical tank with a central drain-hole. We find that the qualitative structure of the meridional flow does not depend on the radial Reynolds number, whereas we observe a weak overall rotation at low radial Reynolds number and a concentrated vortex above the drain-hole at high radial Reynolds number. We present a simple analytical model which shows the same qualitative dependence on the radial Reynolds number as the simulations and which compares favourably with the results for the radial velocity and the azimuthal velocity at the surface. Finally, we describe the height dependence of the radius of the vortex core and the maximum of the azimuthal velocity at high radial Reynolds number, and we show that the data on the radius of the vortex core and the maximum of the azimuthal velocity as functions of height collapse on single curves by appropriate scaling.

  6. Riemannian geometrical constraints on magnetic vortex filaments in plasmas

    OpenAIRE

    de Andrade, L. C. Garcia

    2005-01-01

    Two theorems on the Riemannian geometrical constraints on vortex magnetic filaments acting as dynamos in (MHD) flows are presented. The use of Gauss-Mainard-Codazzi equations allows us to investigate in detail the influence of curvature and torsion of vortex filaments in the MHD dynamos. This application follows closely previous applications to Heisenberg spin equation to the investigations in magnetohydrostatics given by Schief (Plasma Physics J. 10, 7, 2677 (2003)). The Lorentz force on vor...

  7. Plasma enhanced vortex fluidic device manipulation of graphene oxide.

    Science.gov (United States)

    Jones, Darryl B; Chen, Xianjue; Sibley, Alexander; Quinton, Jamie S; Shearer, Cameron J; Gibson, Christopher T; Raston, Colin L

    2016-08-25

    A vortex fluid device (VFD) with non-thermal plasma liquid processing within dynamic thin films has been developed. This plasma-liquid microfluidic platform facilitates chemical processing which is demonstrated through the manipulation of the morphology and chemical character of colloidal graphene oxide in water.

  8. Development of plasma streamwise vortex generators for increased boundary layer control authority

    Science.gov (United States)

    Bowles, Patrick; Schatzman, David; Corke, Thomas; Thomas, Flint

    2009-11-01

    This experimental study focuses on active boundary layer flow control utilizing streamwise vorticity produced by a single dielectric barrier discharge plasma actuator. A novel plasma streamwise vortex generator (PSVG) layout is presented that mimics the passive flow control characteristics of the trapezoidal vane vortex generator. The PSVG consists of a common insulated electrode and multiple, exposed streamwise oriented electrodes used to produce counter-rotating vortical structures. Smoke and oil surface visualization of boundary layer flow over a flat plate compare the characteristics of passive control techniques and different PSVG designs. Passive and active control over a generic wall-mounted hump model, Rec = 288,000-575,000, are compared through static wall pressure measurements along the model's centerline. Different geometric effects of the PSVG electrode configuration were investigated. PSVG's with triangular exposed electrodes outperformed ordinary PSVG's under certain circumstances. The electrode arrangement produced flow control mechanisms and effectiveness similar to the passive trapezoidal vane vortex generators.

  9. Scattering of Electromagnetic Waves by Drift Vortex in Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; CHEN Yinhua; WANG Ge

    2008-01-01

    In a quasi-two-dimensional model, the scattering of incident ordinary electromag-netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia << 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approxi-mation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then ki<< 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.

  10. Vortex structures in exponentially shaped Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Semerdjieva, E. G.; Boyadjiev, T. L.

    2005-04-01

    We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.

  11. Vortex Stabilized Plasma for Rapid Water Disinfection & Pharmaceutical Degradation

    Science.gov (United States)

    Hershcovitch, Ady

    2016-10-01

    Good quality drinking water is dwindling for large segments of the world population. Aggravating the problem is proliferation of antibiotics in the water supply, which give rise to drug resistant pathogens. One option for water supply increase is recycling waste and polluted water by inexpensive, environmentally friendly methods. Presently disinfection uses chemicals and UV radiation. Chemicals are limited by residual toxicity, while UV consumes much electricity. Current methods can remove only certain classes of drugs due to their large variety of physical and chemical properties. Plasmas in water are very attractive for degrading all pharmaceuticals and deactivating pathogens: intense arc current can physically break up any molecular bonds. UV radiation, ozone, etc. generation inside the water volume disinfects. Present utilized plasmas: glow, pulsed arcs are not power efficient; vortex stabilized plasmas are power efficient that can advance water treatment state-of-the-art by orders of magnitude. Proposed techniquefeatures novel components facilitating large diameter vortex stabilized in-water arcs with optimized plasma parameters for maximal UV-C emission; and harvests hydrogen centered by the vortex.

  12. Competing stability modes in vortex structure formation

    Science.gov (United States)

    Garrett, Stephen; Gostelow, J. Paul; Rona, Aldo; McMullan, W. Andrew

    2015-11-01

    Nose cones and turbine blades have rotating components and represent very practical geometries for which the behavior of vortex structures is not completely understood. These two different physical cases demonstrate a common theme of competition between mode and vortex types. The literature concerning boundary-layer transition over rotating cones presents clear evidence of an alternative instability mode leading to counter-rotating vortex pairs, consistent with a centrifugal instability. This is in contrast to co-rotating vortices present over rotating disks that arise from crossflow effects. It is demonstrated analytically that this mode competes with the crossflow mode and is dominant only over slender cones. Predictions are aligned with experimental measurements over slender cones. Concurrent experimental work on the flow over swept cylinders shows that organized fine-scale streamwise vorticity occurs more frequently on convex surfaces than is appreciated. The conventional view of purely two-dimensional laminar boundary layers following blunt leading edges is not realistic and such boundary layers need to be treated three-dimensionally, particularly when sweep is present. The vortical structures are counter-rotating for normal cylinders and co-rotating under high sweep conditions. Crossflow instabilities may have a major role to play in the transition process but the streamline curvature mode is still present, and seemingly unchanged, when the boundary layer becomes turbulent.

  13. Controlling multiple filaments by relativistic optical vortex beams in plasmas

    Science.gov (United States)

    Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.

    2016-09-01

    Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

  14. Dominant Vortex Structures in Transverse Jets

    Directory of Open Access Journals (Sweden)

    Seyfettin Bayraktar

    2016-01-01

    Full Text Available In this paper, formation and development of one of the most dominant vortex structures, namely, counter-rotating vortex pair (CVP which is seen in the jet in crossflow are investigated numerically. Influences of the inclination angles between the nozzle(s and channel on the CVP are presented for three inclination angles, =30, 60 and 90 at velocity ratio, R=2.0. Effects of the number of the nozzles on the evolution of CVP is analyzed by considering the single and three side-by-side positioned circular nozzles. In addition to the CVP, some secondary vortices are also reported by considered relatively a narrow channel because their existence cannot be showed in wider channel. Simulations reveal that higher the inclination angle the more jet penetration into the channel in all directions and increasing the inclination angle causes larger CVPs in size. Although the flow structure of the CVP formed in the single and three side-by-side nozzles are similar their evolution is quite different.

  15. Coupled particle dispersion by three-dimensional vortex structures

    Energy Technology Data Exchange (ETDEWEB)

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.

    1996-12-31

    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  16. U-shaped Vortex Structures in Large Scale Cloud Cavitation

    Science.gov (United States)

    Cao, Yantao; Peng, Xiaoxing; Xu, Lianghao; Hong, Fangwen

    2015-12-01

    The control of cloud cavitation, especially large scale cloud cavitation(LSCC), is always a hot issue in the field of cavitation research. However, there has been little knowledge on the evolution of cloud cavitation since it is associated with turbulence and vortex flow. In this article, the structure of cloud cavitation shed by sheet cavitation around different hydrofoils and a wedge were observed in detail with high speed camera (HSC). It was found that the U-shaped vortex structures always existed in the development process of LSCC. The results indicated that LSCC evolution was related to this kind of vortex structures, and it may be a universal character for LSCC. Then vortex strength of U-shaped vortex structures in a cycle was analyzed with numerical results.

  17. Nonlinear effects in the bounded dust-vortex flow in plasma

    Science.gov (United States)

    Laishram, Modhuchandra; Sharma, Devendra; Chattopdhyay, Prabal K.; Kaw, Predhiman K.

    2017-03-01

    The vortex structures in a cloud of electrically suspended dust in a streaming plasma constitutes a driven system with a rich nonlinear flow regime. Experimentally recovered toroidal formations of this system have motivated study of its volumetrically driven-dissipative vortex flow dynamics using two-dimensional hydrodynamics in the incompressible Navier-Stokes regime. Nonlinear equilibrium solutions are obtained for this system where a nonuniformly driven two-dimensional dust flow exhibits distinct regions of localized accelerations and strong friction caused by stationary fluids at the confining boundaries resisting the dust flow. In agreement with observations in experiments, it is demonstrated that the nonlinear effects appear in the limit of small viscosity, where the primary vortices form scaling with the most dominant spatial scales of the domain topology and develop separated virtual boundaries along their periphery. This separation is triggered beyond a critical dust viscosity that signifies a structural bifurcation. Emergence of uniform vorticity core and secondary vortices with a newer level of identical dynamics highlights the applicability of the studied dynamics to gigantic vortex flows, such as the Jovian great red spot, to microscopic biophysical intracellular activity.

  18. Vortex-Induced Vibrations of Marine Cables and Structures.

    Science.gov (United States)

    2014-09-26

    10. D.T. Tsahalis, "Vortex-induced Vibrations of a Flexible Cylinder Near a Plane Boundary Exposed to Steady and Wave -Induced Currents," Trans...ASME, J. Energy Resources Tech., Vol. 106, 206- 213, 1984. 11. D.T. Tsahalis, "Vortex-Induced Vibrations Due to Steady and Wave -Induced Currents of a...AD-Ai57 481 VORTEX-INDUCED VIBRATIONS OF MARINE CABLES AND i/i STRUCTURES(U) NAVAL RESEARCH LAB WASHINGTON DC 0 M GRIFFIN 19 JUN 85 NRL-5600

  19. Topological Structure of Knotted Vortex Lines in Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi-Shi; ZHAO Li; ZHANG Xin-Hui

    2007-01-01

    In this paper, a novel decomposition expression for the U(1) gauge field in liquid crystals (LCs) is derived.Using this decomposition expression and the φ-mapping topological current theory,.we investigate the topological structure of the vortex lines in LCs in detail. A topological invariant, i.e., the Chern-Simons (CS) action for the knotted vortex lines is presented, and the CS action is shown to be the total sum of all the self-linking and linking numbers of the knot family. Moreover, it is pointed out that the CS action is preserved in the branch processes of the knotted vortex lines.

  20. Nonlinear vortex structures with perpendicular shear flow, hot ions, and nonthermal distribution of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Gul-e-Ali,; Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Masood, W. [COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan)

    2016-02-15

    Coupling of drift vortex and the ion acoustic modes in the linear and nonlinear regimes are investigated with sheared ion flow perpendicular to the ambient magnetic field in a plasma comprising of hot ions and nonthermal population of electrons. In this regard, generation of nonlinear vortex structures in the presence of kappa, Cairns, and q-nonextensive electron distributions are investigated in detail, and comparison with the Maxwellian distribution is also made. The appositeness of the present investigation in the matter of auroral F-region is also pointed out.

  1. Optimization of steam-vortex plasma-torch start-up

    Science.gov (United States)

    Mikhailov, B. I.

    2011-12-01

    We propose a new optimal method of steam-vortex plasma-torches start-up; this method completely prevents the danger of water steam condensation in the arc chamber and all undesirable consequences of it.

  2. Three-dimensional vortex structures under breaking waves

    OpenAIRE

    WATANABE Yasunori; Saeki, Hiroshi; Hosking, Roger J.

    2005-01-01

    The large-scale vortex structures under spilling and plunging breakers are investigated, using a fully three-dimensional large-eddy simulation (LES). When an overturning jet projecting from the crest in a breaking wave rebounds from the water surface ahead, the vorticity becomes unstable in a saddle region of strain between the rebounding jet and a primary spanwise vortex, resulting in spanwise undulations of the vorticity. The undulations are amplified on a braid in this saddle region, leadi...

  3. IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence

    CERN Document Server

    Borisov, Alexey V; Mamaev, Ivan S; Sokolovskiy, Mikhail A; IUTAM BOOKSERIES : Volume 6

    2008-01-01

    This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important. The last few decades have shown that serious possibilities for progress in the research of real turbulent vortex motions are essentially related to the combined use of mathematical methods, computer simulation and laboratory experiments. These approaches have led to a series of interesting results which allow us to study these processes from new perspectives. Based on this principle, the papers collected in this proceedings volume present new results on theoretical and applied aspects of the processes of formation and evolution of various flows, wave a...

  4. Investigation of fine and complex vortex circulation structures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The formation and evolution of fine and complicated vortex circulation structures were investigated using a two-dimensional quasi-geostrophic barotropic model simulation.We find that the highly localized asymmetric and complex configuration of energy transfer flux between large-and small-scale components is caused by the nonlinear interaction between a large-scale vortex with an initial axi-symmetric flow and four beta meso-scale vortices.The complex structure is characterized by a fine pattern,which contains seven closed systems with spatial scales of less than 100 km,embedded in a positive flux wave train and a negative wave train,respectively.The average wind speed decreased with time in the positive flux region,but was nearly unchanged in the negative flux region.This pattern reveals the evolutionary asymmetry and localization of wind speed of the major vortex.The track of the major vortex center has a trend toward the center of the negative flux center,indicating that there is a certain relation between the complex structure of the energy transfer flux and the motion of the major vortex center.These results imply that the formation and evolution of the fine and complex structure should be attributed to the nonlinear interaction between the vortices at different spatial scales.

  5. New Vortex States in Mesoscopic Aluminum Structures

    Science.gov (United States)

    Terai, Y.; Yakabe, T.; Terakura, C.; Terashima, T.; Yasuzuka, S.; Takamasu, T.; Uji, S.

    2003-03-01

    We report resistance measurements in mesoscopic Al ring and disks whose sizes are much smaller than the superconducting coherence length of Al bulk. In the magnetic filed, the ring sample shows periodic oscillations in the resistance known as Little-Park oscillations in superconducting rings. In the disks, non-periodic resistance peaks are observed, which are due to transitions between the quantized states with different orbital quantum numbers. When the sample size is sufficiently small, the circular and square disks show a remarkable difference in the field intervals of the non-periodic resistance peaks. The results suggest that a new vortex state is induced by the effect of the sample topology.

  6. Phase spectral evidence for vortex structures in turbulent mixing

    Science.gov (United States)

    Davis, M. R.

    1987-07-01

    A slab schlieren beam system is shown to give rise to signals which have a quadrature phase relationship to near field microphone signals when vortex structures are present in the flow. The effect is confirmed by signal recovery observations for the transient step induced by a shock tube behind the nozzle settling chamber. Close to the nozzle, the phase spectra noted for a natural unexcited jet show the presence of vortex-like structures in the flow, while further away from the nozzle the phase spectra show phase delays which increase at low Strouhal number. Phase spectral observations at a greater distance from the nozzle show that the constraint of a protruding centerbody, shock tube, or spark excitation gives rise to sets of discrete components in the flow which appear to preserve their vortex ring-like character.

  7. The dynamics of vortex structures and states of current in plasma-like fluids and the electrical explosion of conductors; 1, the model of a non-equilibrium phase transition

    CERN Document Server

    Volkov, N B

    1993-01-01

    A set of equations according to which the conducting medium consists of two fluids - laminar and vortex, has been obtained in the present paper by transforming MHD equations. In a similar way, an electronic fluid is assumed to consist of a laminar and a vortex fluid. This system allows one to study the formation and the dynamics of large-scale hydrodynamic fluctuations. From this model a model of a non-equilibrium phase transition belonging to a class of the Lorenz-type models has been developed [Lorenz E N 1963 J. Atmos. Sci. {\\bf 20} 130]. Vortex structures resulting in the increase in an effective resistance of the conducting medium and the interruption of current have been shown to appear even at constant transport coefficients in a laminar electronic fluid. Critical exponents of the parameters of an order (amplitudes), which for a direct current coincide with the critical exponents in the Lorenz model, have been found. A spatial scale of the structure described by the theory is in good agreement with exp...

  8. Vortex structures downstream a lobed nozzle/mixer

    Institute of Scientific and Technical Information of China (English)

    Hui Hu; Toshio Kobayashi

    2008-01-01

    An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle. A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time. The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures. While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process, the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted. In addition to quantitatively confirming conjectures of previous studies, further insight about the formation, evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.

  9. Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Cho, C.H.; Shin, D.H. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Hong, Y.C., E-mail: ychong@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Shin, Y.W. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); School of Advanced Green Energy and Environments, Handong Global University, Heunghae-eup, Buk-gu, Pohang-city, Gyeongbuk (Korea, Republic of)

    2015-08-30

    Highlights: • We developed a microwave plasma torch with reverse vortex reactor (RVR). • We calculated a volume fraction and temperature distribution of discharge gas and waste. • The performance of reverse vortex reactor increased from 29% to 43% than conventional vortex reactor. - Abstract: Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45 GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF{sub 6}, NF{sub 3} by varying plasma power and N{sub 2} flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF{sub 3} and SF{sub 6} in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF{sub 3} was achieved without an additive gas at the N{sub 2} flow rate of 150 liter per minute (L/min) by applying a microwave power of 6 kW with RVR. Also, a DRE of SF{sub 6} was 99.99% at the N{sub 2} flow rate of 60 L/min using an applied microwave power of 6 kW. The performance of reverse vortex reactor increased about 43% of NF{sub 3} and 29% of SF{sub 6} abatements results definition by decomposition energy per liter more than conventional vortex reactor.

  10. Analysis of the structure of different Tibetan Plateau vortex types

    Science.gov (United States)

    Feng, Xinyuan; Liu, Changhai; Fan, Guangzhou; Zhang, Jie

    2017-06-01

    Knowledge of the structure of the Tibetan Plateau vortex (TPV) is of considerable importance for understanding the generation and development mechanisms of this mesoscale system. However, our understanding of vortex structures and our ability to classify them on a physical basis is limited due to insufficient observations. The highresolution new-generation NCEP-CFSR (Climate Forecast System Reanalysis) dataset is used in the present paper to investigate the general structural features of various types of mature TPV through classification and composite structure analysis. Results indicate that the dynamic and thermodynamic structures show regional and seasonal dependency, as well as being influenced by attributes of translation, associated precipitation, and the South Asian high (SAH). The common precipitating TPV (type I), frequently occurring in the west-east-oriented zonal region between 33° and 36°N, is a notably low-level baroclinic and asymmetric system. It resides within a large-scale confluent zone and preferentially travels eastward, potentially moving out of the plateau. The heavy rain vortex (type II) corresponds to a deep vortex circulation occurring in midsummer. The low-level baroclinic sub-category (type IIa) is associated with a low-level jet and mainly originates in the area 32°-35°N, 86°-94°E, preferentially moving east of 90°E and even away from the plateau; meanwhile, the nearly upright sub-category (type IIb), which has a cold center at low levels and a warm center at mid-upper levels, is a quasi-stationary and quasi-symmetric system favorably occurring west of 92°E. A western-pattern SAH exists in the upper troposphere for these two sub-categories. The springtime dry vortex in the western plateau (type III) is warm and shallow (approximately 100 hPa deep), and zonal circulation dominates the large-scale environmental flows in the middle and upper troposphere. The precipitating vortex in the southern plateau occurring during July

  11. Current-vortex filament model of nonlinear Alfven perturbations in a finite-pressure plasma

    NARCIS (Netherlands)

    Lakhin, V. P.; Schep, T. J.; Westerhof, E.

    1998-01-01

    A low-beta, two-fluid model is shown to possess solutions in the form of current-vortex filaments. The model can be viewed as that of reduced magnetohydrodynamics, extended with electron inertia, the Hall term and parallel electron pressure. These drift-Alfven filaments are the plasma analogs of poi

  12. TOPOLOGY AND VORTEX STRUCTURES OF A CURVING TURBINE CASCADE WITH TIP CLEARANCE ( Ⅱ )- TOPOLOGICAL FLOW PATTERN AND VORTEX STRUCTURE IN THE TRANSVERSE SECTION OF A BLADE CASCADE

    Institute of Scientific and Technical Information of China (English)

    杨庆海; 黄洪雁; 韩万今

    2002-01-01

    By means of ink trace visualization of the flows in conventional straight,positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.

  13. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging

    Science.gov (United States)

    Zhang, Chonglei; Min, Changjun; Du, Luping; Yuan, X.-C.

    2016-05-01

    We propose an all-optical technique for plasmonic structured illumination microscopy (PSIM) with perfect optical vortex (POV). POV can improve the efficiency of the excitation of surface plasma and reduce the background noise of the excited fluorescence. The plasmonic standing wave patterns are excited by POV with fractional topological charges for accurate phase shift of {-2π/3, 0, and 2π/3}. The imaging resolution of less than 200 nm was produced. This PSIM technique is expected to be used as a wide field, super resolution imaging technique in dynamic biological imaging.

  14. Coherent vortical structures in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Pécseli, H.L.; Coutsias, E.A.; Huld, T.;

    1992-01-01

    A laboratory experiment was carried out in order to study the nonlinear saturated stage of the cross-field electrostatic Kelvin-Helmholtz instability in a strongly magnetized plasma. The presence of large vortex-like structures in a background of wide-band turbulent fluctuations was demonstrated...... simulations. The importance of the large scale structures for the turbulent plasma transport across magnetic field lines was analyzed in detail....

  15. Experimental research on electrical propulsion. Note 2: Experimental research on a plasma jet with vortex type stabilization for propulsion

    Science.gov (United States)

    Robotti, A. C.; Oggero, M.

    1985-01-01

    Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.

  16. Vortex structure in a long Josephson junction with two inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, O.Yu. [Tumen Thermal Networks OAO ' TRGK' , Tobolsk 626150 (Russian Federation); Boyadjiev, T.L. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)], E-mail: shukrinv@theor.jinr.ru

    2007-09-01

    We study the vortex structure in the long Josephson junctions with one and two rectangular inhomogeneities in the barrier layer. In case of one inhomogeneity we demonstrate the existence of the asymmetric fluxon states. The disappearance of the mixed fluxon-antifluxon states is shown when the position of the inhomogeneity shifted to the end of the junction. In case of two inhomogeneities the change of the amplitude of Josephson current through the inhomogeneity in the end of the junction makes strong effect on the stability of the fluxon states and smoothes the maximums on the dependence 'critical current-magnetic field'.

  17. Vortex structure in a long Josephson junction with two inhomogeneities

    Science.gov (United States)

    Andreeva, O. Yu.; Boyadjiev, T. L.; Shukrinov, Yu. M.

    2007-09-01

    We study the vortex structure in the long Josephson junctions with one and two rectangular inhomogeneities in the barrier layer. In case of one inhomogeneity we demonstrate the existence of the asymmetric fluxon states. The disappearance of the mixed fluxon-antifluxon states is shown when the position of the inhomogeneity shifted to the end of the junction. In case of two inhomogeneities the change of the amplitude of Josephson current through the inhomogeneity in the end of the junction makes strong effect on the stability of the fluxon states and smoothes the maximums on the dependence “critical current-magnetic field”.

  18. Generation of intense plasma jets and microparticle beams by an arc in a supersonic vortex

    Science.gov (United States)

    Winterberg, F.

    1990-04-01

    Temperatures up to 50000 have been reached in water vortex stabilized Gerdien arcs. In arcs confined within the cores of supersonic hydrogen vortices much higher temperatures should be possible. Furthermore if these arcs are thermally insulated by a strong magnetic field temperatures up to a 106 K may be attainable. At these temperatures and in passing through a Laval nozzle the arc plasma can reach jet velocities of 100km/sec. If small quantities of heavy elements are entrained by this high velocity plasma jet these heavy elements are carried along reaching the same speed and upon condensation can form beams of clusters and microparticles.

  19. Spectro-Polarimetric Properties of Small-Scale Plasma Eruptions Driven by Magnetic Vortex Tubes

    CERN Document Server

    Kitiashvili, Irina N

    2014-01-01

    Highly turbulent nature of convection on the Sun causes strong multi-scale interaction of subsurface layers with the photosphere and chromosphere. According to realistic 3D radiative MHD numerical simulations ubiquitous small-scale vortex tubes are generated by turbulent flows below the visible surface and concentrated in the intergranular lanes. The vortex tubes can capture and amplify magnetic field, penetrate into chromospheric layers and initiate quasi-periodic flow eruptions that generates Alfv\\'enic waves, transport mass and energy into the solar atmosphere. The simulations revealed high-speed flow patterns, and complicated thermodynamic and magnetic structures in the erupting vortex tubes. The spontaneous eruptions are initiated and driven by strong pressure gradients in the near-surface layers, and accelerated by the Lorentz force in the low chromosphere. In this paper, the simulation data are used to further investigate the dynamics of the eruptions, their spectro-polarimetric characteristics for the...

  20. Vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, D.G. [Lavrentiev Institute of Hydrodynamics, Novosibirsk (Russian Federation)

    2009-07-01

    This book presents a comprehensive coverage of the wide field of vortex rings. The book presents the results of systematic experimental investigations, theoretical foundation, as well as the practical applications of vortex rings, such as the extinction of fires at gushing gas and oil wells. All the basic properties of vortex rings as well as their hydrodynamic structures are presented. Special attention is paid to the formation and motion of turbulent vortex rings. (orig.)

  1. Periodic vortex pinning by regular structures in Nb thin films: magnetic vs. structural effects

    Science.gov (United States)

    Montero, Maria Isabel; Jonsson-Akerman, B. Johan; Schuller, Ivan K.

    2001-03-01

    The defects present in a superconducting material can lead to a great variety of static and dynamic vortex phases. In particular, the interaction of the vortex lattice with regular arrays of pinning centers such as holes or magnetic dots gives rise to commensurability effects. These commensurability effects can be observed in the magnetoresistance and in the critical current dependence with the applied field. In recent years, experimental results have shown that there is a dependence of the periodic pinning effect on the properties of the vortex lattice (i.e. vortex-vortex interactions, elastic energy and vortex velocity) and also on the dots characteristics (i.e. dot size, distance between dots, magnetic character of the dot material, etc). However, there is not still a good understanding of the nature of the main pinning mechanisms by the magnetic dots. To clarify this important issue, we have studied and compared the periodic pinning effects in Nb films with rectangular arrays of Ni, Co and Fe dots, as well as the pinning effects in a Nb film deposited on a hole patterned substrate without any magnetic material. We will discuss the differences on pinning energies arising from magnetic effects as compared to structural effects of the superconducting film. This work was supported by NSF and DOE. M.I. Montero acknowledges postdoctoral fellowship by the Secretaria de Estado de Educacion y Universidades (Spain).

  2. Vortex structure in superfluid color-flavor locked quark matter

    CERN Document Server

    Alford, Mark G; Vachaspati, Tanmay; Windisch, Andreas

    2016-01-01

    The core region of a neutron star may feature quark matter in the color-flavor- locked (CFL) phase. The CFL condensate breaks the baryon number symmetry, such that the phenomenon of superfluidity arises. If the core of the star is rotating, vortices will form in the superfluid, carrying the quanta of angular momentum. In a previous study we have solved the question of stability of these vortices, where we found numerical proof of a conjectured instability, according to which superfluid vortices will decay into an arrangement of so-called semi-superfluid fluxtubes. Here we report first results of an extension of our framework that allows us to study multi-vortex dynamics. This will in turn enable us to investigate the structure of semi-superfluid string lattices, which could be relevant to study pinning phenomena at the boundary of the core.

  3. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    Science.gov (United States)

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  4. Three dimensional Lagrangian structures in the Antarctic Polar Vortex.

    Science.gov (United States)

    Mancho, Ana M.; Garcia-Garrido, Victor J.; Curbelo, Jezabel; Niang, Coumba; Mechoso, Carlos R.; Wiggins, Stephen

    2017-04-01

    Dynamical systems theory has supported the description of transport processes in fluid dynamics. For understanding trajectory patterns in chaotic advection the geometrical approach by Poincaré seeks for spatial structures that separate regions corresponding to qualitatively different types of trajectories. These structures have been referred to as Lagrangian Coherent Structures (LCS), which typically in geophysical flows are well described under the approach of incompressible 2D flows. Different tools have been used to visualize LCS. In this presentation we use Lagrangian Descriptors [1,2,3,4] (function M) for visualizing 3D Lagrangian structures in the atmosphere, in particular in the Antarctic Polar Vortex. The function M is computed in a fully 3D incompressible flow obtained from data provided by the European Centre for Medium-Range Weather Forecast and it is represented in 2D surfaces. We discuss the findings during the final warming that took place in the spring of 1979 [5]. This research is supported by MINECO grant MTM2014-56392-R. Support is acknowledged also from CSIC grant COOPB20265, U.S. NSF grant AGS-1245069 and ONR grant No. N00014- 01-1-0769. C. Niang acknowledges Fundacion Mujeres por Africa and ICMAT Severo Ochoa project SEV-2011-0087 for financial support. [1] C. Mendoza, A. M. Mancho. The hidden geometry of ocean flows. Physical Review Letters 105 (2010), 3, 038501-1-038501-4. [2] A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems. Communications in Nonlinear Science and Numerical Simulation. 18 (2013) 3530-3557. [3] C. Lopesino, F. Balibrea-Iniesta, S. Wiggins and A. M. Mancho. Lagrangian descriptors for two dimensional, area preserving autonomous and nonautonomous maps. Communications in Nonlinear Science and Numerical Simulations, 27 (2015) (1-3), 40-51. [4] C. Lopesino, F. Balibrea-Iniesta, V. J. García-Garrido, S. Wiggins, and A

  5. Vortex shedding noise reduction by single dielectric barrier discharge plasma actuators

    OpenAIRE

    Al-Sadawi, L; Chong, TP

    2016-01-01

    An experimental study of active control of vortex shedding narrow band tonal noise from both blunt and rounded trailing edge of a profiled body at zero incidences was performed using Single Dielectric Barrier plasma actuators (DBD). Acoustics and flow measurements were carried out in an open jet, aerocoustic wind tunnel at Reynolds numbers ranging from 7x104 to 4x105. The noise results were obtained using single microphone, while both PIV and hot-wire were used for flow measurement in order t...

  6. On the peculiar structure of a helical wake vortex behind an inclined prolate spheroid

    DEFF Research Database (Denmark)

    Jiang, Fengjian; Andersson, Helge I.; Gallardo, José P.;

    2016-01-01

    The self-similarity law for axisymmetric wakes has for the first time been examined and verified in a complex helical vortex in the far part of an asymmetric wake by means of direct numerical simulation (DNS). The helical vortex is the main coherent flow structure in the transitional non......-axisymmetric wake behind an inclined 6:1 prolate spheroid at Reynolds number 3000 based on the minor axis. The gradual development of the complex helical vortex structure has been described in detail all the way from its inception at the spheroid and into the far wake. We observed a complex vortex composition...... in the generation stage, a rare jet-like wake pattern in the near wake and an abrupt change of helical symmetry in the vortex core without an accompanying change in flow topology, i.e. with no recirculation bubble....

  7. Large-eddy simulations and vortex structures of turbulent jets in crossflow

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using the method of large-eddy simulation, the 3-dimensional turbulent jets in crossflow with stream-wise and transverse arrangements of nozzle are simulated, emphasizing on the dynamical process of generation and evolution of vortex structures in these flows. The results show that the basic vortex structures in literatures, such as the counter-rotating vortex pair, leading-edge vortices, lee-side vortices, hanging vortices, kidney vortices and anti-kidney vortices, are not independent physical substances, but local structures of the basic vortex structure of turbulent jets in crossflow-the 3-D stretching vortex rings originating from the orifice of the nozzle, which is discovered in this study. Therefore, the most important large-scale structures of turbulent jets in crossflow are unified to the 3-D vortex rings which stretch and twist in stream-wise and swing in transverse directions. We also found that the shedding frequencies of vortex rings are much lower than the one corresponding to the appearance of leading-edge and lee-side vortices in the turbulent jets.

  8. Large-eddy simulations and vortex structures of turbulent jets in crossflow

    Institute of Scientific and Technical Information of China (English)

    GUAN Hui; WU ChuiJie

    2007-01-01

    Using the method of large-eddy simulation,the 3-dimensional turbulent jets in crossflow with stream-wise and transverse arrangements of nozzle are simulated,emphasizing on the dynamical process of generation and evolution of vortex structures in these flows.The results show that the basic vortex structures in literatures,such as the counter-rotating vortex pair,leading-edge vortices,lee-side vortices,hanging vortices,kidney vortices and anti-kidney vortices,are not independent physical substances,but local structures of the basic vortex structure of turbulent jets in crossflow-the 3-D stretching vortex rings originating from the orifice of the nozzle,which is discovered in this study.Therefore,the most important large-scale structures of turbulent jets in crossflow are unified to the 3-D vortex rings which stretch and twist in stream-wise and swing in transverse directions.We also found that the shedding frequencies of vortex rings are much lower than the one corresponding to the appearance of leading-edge and lee-side vortices in the turbulent jets.

  9. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  10. World Encircling Tectonic Vortex Street - Geostreams Revisited: The Southern Ring Current EM Plasma-Tectonic Coupling in the Western Pacific Rim

    Science.gov (United States)

    Leybourne, Bruce; Smoot, Christian; Longhinos, Biju

    2014-05-01

    Interplanetary Magnetic Field (IMF) coupling to south polar magnetic ring currents transfers induction energy to the Southern Geostream ringing Antarctica and underlying its encircling mid-ocean ridge structure. Magnetic reconnection between the southward interplanetary magnetic field and the magnetic field of the earth is the primary energy transfer mechanism between the solar wind and the magnetosphere. Induced telluric currents focused within joule spikes along Geostreams heat the southern Pacific. Alignment of the Australian Antarctic Discordance to other tectonic vortexes along the Western Pacific Rim, provide electrical connections to Earths core that modulate global telluric currents. The Banda Sea Triple Junction, a mantle vortex north of Australia, and the Lake Baikal Continental Rift vortex in the northern hemisphere modulate atmospheric Jetstream patterns gravitationally linked to internal density oscillations induced by these telluric currents. These telluric currents are driven by solar magnetic power, rotation and orbital dynamics. A solar rotation 40 day power spectrum in polarity controls north-south migration of earthquakes along the Western Pacific Rim and manifest as the Madden Julian Oscillation a well-documented climate cycle. Solar plasma turbulence cycles related to Hale flares trigger El Nino Southern Oscillations (ENSO's), while solar magnetic field strength frequencies dominate global warming and cooling trends indexed to the Pacific Decadal Oscillation. These Pacific climate anomalies are solar-electro-tectonically modulated via coupling to tropical geostream vortex streets. Particularly the section along the Central Pacific Megatrend connecting the Banda Sea Triple Junction (up welling mantle vortex) north of Australia with the Easter Island & Juan Fernandez twin rotating micro-plates (twin down welling mantle vortexes) along the East Pacific Rise modulating ENSO. Solar eruptions also enhance the equatorial ring current located

  11. Flux-flow resistivity in UPt3: Evidence for nonsingular vortex-core structure

    Science.gov (United States)

    Lütke-Entrup, N.; Blaauwgeers, R.; Plaçais, B.; Huxley, A.; Kambe, S.; Krusius, M.; Mathieu, P.; Simon, Y.

    2001-07-01

    We have investigated the core structure of B-phase vortex lines in two clean UPt3 crystals, using flux-flow dissipation as the probe. The flux-flow resistivity is determined from the skin depth of the high-frequency oscillations of the vortex lines in the pinned state. With Ĥ⊥ĉ, our data agree with the previously established scaling law of the moderately clean limit with anisotropic gap. When Ĥ||ĉ, the resistivity is three times larger. We interpret this increase as evidence for a vortex-core structure with two length scales, as predicted for UPt3 with a two-component order parameter.

  12. 立方体人工鱼礁背涡流的三维涡结构%The 3D vortex structure of cube artificial reef's wake vortex

    Institute of Scientific and Technical Information of China (English)

    李晓磊; 栾曙光; 陈勇; 张瑞瑾

    2012-01-01

    The paper takes cube artificial reef as an example to make numerical simulation of 3 D flow field under the action of steady flow with CFD software. The simulation reveals the 3D vortex structure of cube artificial reef. The result shows that two symmetrical crosswise vortexes are formed and have opposite directions behind the reef af-ter water flows from the sides of reef, that a streamwise vortex is formed after water flows and falls from the top sur-face of reef, that the size of streamwise vortex is similar to the reef, that crosswise vortex determines the width of wake vortex, that streamwise vortex determines the height of wake vortex, that crosswise vortex and streamwise vor-tex have similar length and determine the length of wake vortex together, and that crosswise vortex and streamwise vortex constitute the 3D vortex structure of cube artificial reefs wake vortex.%以立方体人工鱼礁为例,应用CFD软件对其在定常流作用下的三维流场进行了数值模拟试验,以揭示立方体人工鱼礁背涡流的三维涡结构.结果表明:流过礁体侧面的水体在礁体后形成两个对称的旋转方向相反的展向涡,流经礁体上表面的水体脱落后形成一个尺寸与礁体尺寸相当的流向涡,展向涡宽度决定背涡流流场宽度,流向涡高度决定背涡流流场高度;展向涡和流向涡长度近似相等,二者的长度共同决定背涡流流场的长度;展向涡、流向涡共同构成了人工鱼礁背涡流的三维涡结构.

  13. Vortex Structures in a Rotating BEC Dark Matter Component

    Directory of Open Access Journals (Sweden)

    N. T. Zinner

    2011-01-01

    Full Text Available We study the effects of a dark matter component that consists of bosonic particles with ultralight masses in the condensed state. We compare previous studies for both noninteracting condensates and with repulsive two-body terms and show consistency between the proposals. Furthermore, we explore the effects of rotation on a superfluid dark matter condensate, assuming that a vortex lattice is formed as seen in ultracold atomic gas experiments. The influence of such a lattice in virialization of gravitationally bound structures and on galactic rotation velocity curves is explored. With fine-tuning of the bosonic particle mass and the two-body repulsive interaction strength, we find that one can have substructure on rotation curves that resembles some observations in spiral galaxies. This occurs when the dark matter halo has an array of hollow cylinders. This can cause oscillatory behavior in the galactic rotation curves in similar fashion to the well-known effect of the spiral arms. We also consider how future experiments and numerical simulations with ultracold atomic gases could tell us more about such exotic dark matter proposals.

  14. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  15. Study of aerodynamic structure of flow in a model of vortex furnace using Stereo PIV method

    Science.gov (United States)

    Anufriev, I. S.; Kuibin, P. A.; Shadrin, E. Yu.; Sharaborin, D. K.; Sharypov, O. V.

    2016-07-01

    The aerodynamic structure of flow in a lab model of a perspective design of vortex furnace was studied. The chamber has a horizontal rotation axis, tangential inlet for fuel-air jets and vertical orientation of secondary injection nozzles. The Stereo PIV method was used for visualization of 3D velocity field for selected cross sections of the vortex combustion chamber. The experimental data along with "total pressure minimum" criterion were used for reconstruction of the vortex core of the flow. Results fit the available data from LDA and simulation.

  16. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure

    Science.gov (United States)

    Wang, Tian; Ke, Manzhu; Li, Weiping; Yang, Qian; Qiu, Chunyin; Liu, Zhengyou

    2016-09-01

    In this work, we give direct demonstration of acoustic radiation force and acoustic torque on particles exerted by an acoustic vortex beam, which is realized by an acoustic artificial structure plate instead of traditional transducer arrays. First, the first order acoustic vortex beam, which has the distinctive features of a linear and continuous phase variation from -π to π around its propagation axis and a magnitude null at its core, is obtained through one single acoustic source incident upon a structured brass plate with Archimedean spiral grating engraved on the back surface. Second, annular self-patterning of polystyrene particles with a radius of 90 μm is realized in the gradient field of this acoustic vortex beam. In addition, we further exhibit acoustic angular momentum transfer to an acoustic absorptive matter, which is verified by a millimeter-sized polylactic acid disk self-rotating in water in the acoustic field of the generated vortex beam.

  17. Vortex structure analysis of unsteady cloud cavitating flows around a hydrofoil

    Science.gov (United States)

    Zhao, Yu; Wang, Guoyu; Huang, Biao

    2016-01-01

    In this paper, time dependent vortex structures are numerically analyzed for both noncavitating and cloud cavitating flows around a Clark-Y hydrofoil with angle of attack α = 8∘ at a moderate Reynolds number, Re = 7 × 105. The numerical simulations are performed using a transport equation-based cavitation model and the large eddy simulation (LES) approach with a classical eddy viscosity subgrid scale (SGS) model. Compared with experimental results, present numerical predictions are capable of capturing the initiation of cavity, growth toward the trailing edge and subsequent shedding process. Results indicate that in noncavitating conditions, the trailing edge vortex and induced positive vortex shed periodically into the wake region to form the vortex street. In cloud cavitating conditions, interrelations between cavity and vortex induce different vortex dynamics at different cavity developing stages. (i) As attached cavity grows, vorticity production is greatly enhanced by the favorable pressure gradient at the leading edge. The trailing edge flow does not have a direct impact on the attached cavity expansion process. Furthermore, the liquid-vapor interface that moves toward the trailing edge enhances the vorticity in the attached cavity closure region. (ii) When the stable attached sheet cavity grows to its maximum length, the accumulation process of vorticity is eventually interrupted by the formation of the re-entrant jet. Re-entrant jet’s moving upstream leads to a higher spreading rate of the attached cavity and the formation of a large coherent structure inside the attached cavity. Moreover, the wavy/bubbly cavity interface enhances the vorticity near the trailing edge. (iii) As the attached sheet cavity breaks up, this large vortex structure converts toward the trailing edge region, which will eventually couple with a trailing edge vortex shedding from the lower surface to form the cloud cavity. The breakup of the stable attached cavity is the main

  18. Dipole AlfvenVortex with Finite Ion Larmor Radius in a Low-Beta Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Xu-Yu; HE Xian-Tu; LIU Zhen-Xing; CAO Jin-Bin

    2000-01-01

    A set of nonlinear fluid equations which include the effects of ion gyroradius is derived to describe Alfven vortex. The correction of finite ion gyroradius to the Alfven vortex in the inertial region is much more significant than that in the kinetic region. The amplitude of the vortex is enhanced in both regions. The scale of the vortex in the kinetic region becomes larger whereas it becomes smaller in the inertial region.

  19. The structure and evolution of the stratospheric vortex in response to natural forcings

    Science.gov (United States)

    Mitchell, D. M.; Gray, L. J.; Charlton-Perez, A. J.

    2011-08-01

    The structure and evolution of the Arctic stratospheric polar vortex is assessed during opposing phases of, primarily, the El Niño-Southern Oscillation (ENSO) and the Quasi-Biennial Oscillation (QBO), but the 11 year solar cycle and winters following large volcanic eruptions are also examined. The analysis is performed by taking 2-D moments of vortex potential vorticity (PV) fields which allow the area and centroid of the vortex to be calculated throughout the ERA-40 reanalysis data set (1958-2002). Composites of these diagnostics for the different phases of the natural forcings are then considered. Statistically significant results are found regarding the structure and evolution of the vortex during, in particular, the ENSO and QBO phases. When compared with the more traditional zonal mean zonal wind diagnostic at 60°N, the moment-based diagnostics are far more robust and contain more information regarding the state of the vortex. The study details, for the first time, a comprehensive sequence of events which map the evolution of the vortex during each of the forcings throughout an extended winter period.

  20. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    Science.gov (United States)

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO3 nanoparticle.

  1. Controllability of vortex domain structure in ferroelectric nanodot: fruitful domain patterns and transformation paths.

    Science.gov (United States)

    Wu, C M; Chen, W J; Zheng, Yue; Ma, D C; Wang, B; Liu, J Y; Woo, C H

    2014-02-04

    Ferroelectric vortex domain structure which exists in low-dimensional ferroelectrics is being intensively researched for future applications in functional nanodevices. Here we demonstrate that adjusting surface charge screening in combination with temperature can provide an efficient way to gain control of vortex domain structure in ferroelectric nanodot. Systematical simulating experiments have been conducted to reveal the stability and evolution mechanisms of domain structure in ferroelectric nanodot under various conditions, including processes of cooling-down/heating-up under different surface charge screening conditions, and increasing/decreasing surface charge screening at different temperatures. Fruitful phase diagrams as functions of surface screening and temperature are presented, together with evolution paths of various domain patterns. Calculations discover up to 25 different kinds of domain patterns and 22 typical evolution paths of phase transitions. The fruitful controllability of vortex domain structure by surface charge screening in combination with temperature should shed light on prospective nanodevice applications of low-dimensional ferroelectric nanostructures.

  2. Measurements and modeling of flow structure in the wake of a low profile wishbone vortex generator

    Science.gov (United States)

    Wendt, B. J.; Hingst, W. R.

    1994-01-01

    The results of an experimental examination of the vortex structures shed from a low profile 'wishbone' generator are presented. The vortex generator height relative to the turbulent boundary layer was varied by testing two differently sized models. Measurements of the mean three-dimensional velocity field were conducted in cross-stream planes downstream of the vortex generators. In all cases, a counter-rotating vortex pair was observed. Individual vortices were characterized by three descriptors derived from the velocity data; circulation, peak vorticity, and cross-stream location of peak vorticity. Measurements in the cross plane at two axial locations behind the smaller wishbone characterize the downstream development of the vortex pairs. A single region of stream wise velocity deficit is shared by both vortex cores. This is in contrast to conventional generators, where each core coincides with a region of velocity deficit. The measured cross-stream velocities for each case are compared to an Oseen model with matching descriptors. The best comparison occurs with the data from the larger wishbone.

  3. Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma

    DEFF Research Database (Denmark)

    Xu, G.S.; Naulin, Volker; Fundamenski, W.

    2010-01-01

    Drift-Alfvén vortex filaments associated with electromagnetic turbulence were recently identified in reversed field pinch devices. Similar propagating filamentary structures were observed in the Earth magnetosheath, magnetospheric cusp and Saturn’s magnetosheath by spacecrafts. The characteristic......, heat, and momentum in the fusion plasmas can be interpreted in terms of the ballistic motion of these solitary electromagnetic filamentary structures....

  4. X-ray imaging of vortex cores in confined magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P; Im, M -Y; Kasai, S; Yamada, K; Ono, T; Thiaville, A

    2011-02-11

    Cores of magnetic vortices in micron-sized NiFe disk structures, with thicknesses between 150 and 50 nm, were imaged and analyzed by high-resolution magnetic soft x-ray microscopy. A decrease of the vortex-core radius was observed from approximately 38 to 18 nm with decreasing disk thickness. By comparing with full three-dimensional micromagnetic simulations showing the well-known barrel structure, we obtained excellent agreement, taking into account instrumental broadening and a small perpendicular anisotropy. The proven magnetic spatial resolution of better than 25 nm was sufficient to identify a negative dip close to the vortex core, originating from stray fields of the core. Magnetic vortex structures can serve as test objects for evaluating sensitivity and spatial resolution of advanced magnetic microscopy techniques.

  5. Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure.

    Science.gov (United States)

    Cheng, J Y; Chahine, G L

    2001-12-01

    The slender body theory, lifting surface theories, and more recently panel methods and Navier-Stokes solvers have been used to study the hydrodynamics of fish swimming. This paper presents progress on swimming hydrodynamics using a boundary integral equation method (or boundary element method) based on potential flow model. The unsteady three-dimensional BEM code 3DynaFS that we developed and used is able to model realistic body geometries, arbitrary movements, and resulting wake evolution. Pressure distribution over the body surface, vorticity in the wake, and the velocity field around the body can be computed. The structure and dynamic behavior of the vortex wakes generated by the swimming body are responsible for the underlying fluid dynamic mechanisms to realize the high-efficiency propulsion and high-agility maneuvering. Three-dimensional vortex wake structures are not well known, although two-dimensional structures termed 'reverse Karman Vortex Street' have been observed and studied. In this paper, simulations about a swimming saithe (Pollachius virens) using our BEM code have demonstrated that undulatory swimming reduces three-dimensional effects due to substantially weakened tail tip vortex, resulting in a reverse Karman Vortex Street as the major flow pattern in the three-dimensional wake of an undulating swimming fish.

  6. Response Analyses of Tuned Mass Dampers to Structures Exposed to Vortex Loading of Simiu-Scanlan Type

    DEFF Research Database (Denmark)

    Andersen, Lars; Birch, N. W.; Hansen, A. H.

    2001-01-01

    Vortex-induced loads on slender one-dimensional structures vibrating at lock-in conditions consist of a self-induced part in phase with the velocity of the structure in addition to an additive, almost harmonially varying component representing the same type of load as the vortex-induced force on ...

  7. Modeling and full-scale tests of vortex plasma-fuel systems for igniting high-ash power plant coal

    Science.gov (United States)

    Messerle, V. E.; Ustimenko, A. B.; Karpenko, Yu. E.; Chernetskiy, M. Yu.; Dekterev, A. A.; Filimonov, S. A.

    2015-06-01

    The processes of supplying pulverized-coal fuel into a boiler equipped with plasma-fuel systems and its combustion in the furnace of this boiler are investigated. The results obtained from 3D modeling of conventional coal combustion processes and its firing with plasma-assisted activation of combustion in the furnace space are presented. The plasma-fuel system with air mixture supplied through a scroll is numerically investigated. The dependence of the swirled air mixture flow trajectory in the vortex plasma-fuel system on the scroll rotation angle is revealed, and the optimal rotation angle at which stable plasma-assisted ignition of pulverized coal flame is achieved is determined.

  8. Direct observation of the thermal demagnetization of magnetic vortex structures in nonideal magnetite recorders

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Kovács, András

    2016-01-01

    heating is achieved through the construction and examination of magnetic-induction maps. Stepwise demagnetization of the remanence-induced Fe3O4 particle upon heating to above the Curie temperature, performed in a similar fashion to bulk thermal demagnetization measurements, revealed that its vortex state......The thermal demagnetization of pseudo-single-domain (PSD) magnetite (Fe3O4) particles, which govern the magnetic signal in many igneous rocks, is examined using off-axis electron holography. Visualization of a vortex structure held by an individual Fe3O4 particle (~250nm in diameter) during in situ...

  9. Controlling multipolar surface plasmon excitation through the azimuthal phase structure of electron vortex beams

    Science.gov (United States)

    Ugarte, Daniel; Ducati, Caterina

    2016-05-01

    We have theoretically studied how the azimuthal phase structure of an electron vortex beam excites surface plasmons on metal particles of different geometries as observed in electron energy loss spectroscopy (EELS). We have developed a semiclassical approximation combining a ring-shaped beam and the dielectric formalism. Our results indicate that for the case of total orbital angular momentum transfer, we can manipulate surface plasmon multipole excitation and even attain an enhancement factor of several orders of magnitude. Since electron vortex beams interact with particles mostly through effects due to azimuthal symmetry, i.e., in the plane perpendicular to the electron beam, anisotropy information (longitudinal and transversal) of the sample may be derived in EELS studies by comparing nonvortex and vortex beam measurements.

  10. Wake Vortex Structure Characteristics of a Flexible Oscillating Fin

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong Wang; Pei Chen; Xiao-qing Zhang

    2008-01-01

    We compute the wake of a two-dimensional and three-dimensional flexible fin in an unsteady flow field with heaving and pitching motions using FLUENT. Deflexion mode is used for a non-uniform cantilever beam with non-uniformly distributed load. The effect of chordwise deflexion length on the characteristics of propulsion is discussed for two-dimensional flexible fin.The thrust coefficient decreases, propulsive efficiency increases and the intensity of turbulence attenuates gradually as the deflexion length increases. For a three-dimensional flexible fin, the intensity of the vortex in the plane of symmetry is higher than that in the plane at 3/4 span length of the caudal fro. But the propulsive performance achieved is not what we expected with the given deflexion mode.

  11. Structure of a steady drain-hole vortex in a viscous fluid

    DEFF Research Database (Denmark)

    Bøhling, Lasse; Andersen, Anders Peter; Fabre, D.

    2010-01-01

    We use direct numerical simulations to study a steady bathtub vortex in a cylindrical tank with a central drain-hole, a fiat stress-free surface and velocity prescribed at the inlet. We find that the qualitative structure of the meridional flow does not depend on the radial Reynolds number, whereas...

  12. Dust-acoustic solitary and shock waves in a strongly coupled liquid state dusty plasma with a vortex-like ion distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, A.A. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Eliasson, B. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)]. E-mail: bengt@tp4.rub.de; Shukla, P.K. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2004-11-22

    It is shown that the nonlinear propagation of dust-acoustic waves in a strongly coupled dusty plasma is governed by a modified Korteweg-de-Vries-Burgers (KdV-Burgers) equation. The latter is derived from a set of generalized hydrodynamic equations for strongly correlated dust grains in a liquid-like state, a Boltzmann electron distribution, and a non-isothermal vortex-like ion distribution. The numerical solutions of the modified KdV-Burgers equation are presented in order to provide some salient features of dust-acoustic solitary and shock structures that may exist in laboratory dusty plasmas where the dust grains are in a strongly coupled liquid phase.

  13. Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere

    Directory of Open Access Journals (Sweden)

    C. Kalicinsky

    2013-11-01

    Full Text Available The CRISTA-NF (Cryogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers instrument is an airborne infrared limb sounder operated aboard the Russian research aircraft M55-Geophysica. The instrument successfully participated in a large Arctic aircraft campaign within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions project in Kiruna (Sweden from January to March 2010. This paper concentrates on the measurements taken during one flight of the campaign, which took place on 2 March in the vicinity of the polar vortex. We present two-dimensional cross-sections of derived volume mixing ratios for the trace gases CFC-11, O3, and ClONO2 with an unprecedented vertical resolution of about 500 to 600 m for a large part of the observed altitude range (≈ 6–19 km and a dense horizontal sampling along flight direction of ≈ 15 km. The trace gas distributions show several structures, for example a part of the polar vortex and a vortex filament, which can be identified by means of O3–CFC-11 tracer–tracer correlations. The observations made during this flight are interpreted using the chemistry and transport model CLaMS (Chemical Lagrangian Model of the Stratosphere. Comparisons of the observations with the model results are used to assess the performance of the model with respect to advection, mixing, and the chemistry in the polar vortex. These comparisons confirm the capability of CLaMS to reproduce even very small-scale structures in the atmosphere, which partly have a vertical extent of only 1 km. Based on the good agreement between simulation and observation, we use artificial (passive tracers, which represent different air mass origins (e.g. vortex, tropics, to further analyse the CRISTA-NF observations in terms of the composition of air mass origins. These passive tracers clearly illustrate the observation of

  14. Vortex structures in the near field of a transversely forced jet

    Science.gov (United States)

    Hanssen-Bauer, Oyvind; Mistry, Dhiren; Worth, Nicholas; Dawson, James

    2016-11-01

    We investigate the effect of transverse acoustic forcing on the formation of vortex structures in the near field of an axisymmetric jet using stereoscopic particle image velocimetry. The jet is placed at different locations between the pressure anti-node and node within a standing wave, and velocity and vorticity fields were measured in the x - r plane. At the pressure anti-node, the jet response exhibited an axisymmetric mode, m = 0 , as harmonic fluctuations in pressure and the streamwise velocity components result in the periodic formation of vortex rings at the forcing frequency. As the jet was moved away from the anti-node, the shear layer roll-up and resulting vortex structures become increasingly asymmetric and three-dimensional due to time-varying spatial pressure gradients across the jet exit. The location where the transverse and streamwise velocity fluctuations were of equal magnitude coincided with sudden change in the jet response, characterised by shear layer roll-up and resulting vortex structures either side of the jet being in anti-phase. At the pressure node, harmonic transverse oscillations of the jet were observed forming vortices of equal circulation on either side of the jet in anti-phase. Meandering of the potential core was also observed.

  15. Fine-Structured Plasma Flows in Prominences

    Science.gov (United States)

    Panasenco, O.; Velli, M.; Landi, S.

    2008-12-01

    Plasmas in prominences (filaments against the disk) exhibit a very wide spectrum of different kind of motions. Here we analyze the plasma motions inside prominences observed by Hinode/SOT during 2006-2007 with focus on two spectacular examples from 25 April 2007 in Halpha line and 30 November 2006 in CaH line and then carry out some simulations of the possible dynamics. Most filaments are composed of fine threads of similar dimensions rooted in the chromosphere/photosphere. Recent observations of counter-streaming motions together with oscillations along the threads provide strong evidence that the threads are field aligned. To more correctly interpret the nature of observed downward flows of dense and cool plasma as well as the upward dark flows of less dense plasma, we take into account the geometry of the prominence structures and the viewing angle. The dark upflows exhibit turbulent patterns such as vortex formation and shedding that are consistent with the motions predicted by instabilities of the interchange type. Sometimes an appearance of dark motions is generated by dark voids opened in the prominence sheet after initiation of nearby downflow streams, implying mass drainage in the downflows. Based on 304 A observations, there is more filament mass in prominences than is visible in either the Halpha or CaH lines. The source of the downward moving plasma may be located either higher above the visible upper edge of the prominence or on the far end of the prominence spine. The bright downward motions of the more cool and dense plasma may be partly due to the counter-streaming motion along the magnetic fields lines and also to the presence of Rayleigh-Taylor type or ballooning/interchange instabilities in the upper regions of the prominence. Transverse motions of filament threads caused by magnetic instabilities constantly provide the conditions for reconnection in the low part of the corona and the chromosphere. We suggest that the combination of flows along

  16. Formation and structure of vortex zones arising upon explosion welding of carbon steels

    Science.gov (United States)

    Bataev, I. A.; Bataev, A. A.; Mali, V. I.; Burov, V. G.; Prikhod'ko, E. A.

    2012-03-01

    Presented are the results of investigation of vortex zones arising upon explosion welding of thin plates of steel 20. Specific features of the structure of the vortices and zones of the deformed material adjacent to them have been revealed by methods of structure analysis. It has been shown that in the process of explosive loading the central regions of the vortices characterized by an enhanced carbon content were in the molten state. The microhardness in the region of vortex zones reaches 5700 MPa. The character of the arrangement of ferrite grains and martensite microvolumes in peripheral regions of vortices is caused by intense rotation of the material. The intense intermixing of materials in different states of aggregation in vortex zones is one of the factors responsible for the formation of cavities, whose volume exceeds the volume shrinkage occurring upon casting of carbon steels. It has been established that traces of vortex zones are retained even after one-hour annealing of welded packets at 800°C.

  17. Development of a cyber physical apparatus for investigating fluid structure interaction on leading edge vortex evolution

    Science.gov (United States)

    Raghu Gowda, Belagumba Venkatachalaiah

    This dissertation examines how simple structural compliance impacts a specific transient vortex phenomenon that occurs on high angle of attack lifting surfaces termed dynamic stall. In many Fluid structure interaction (FSI) research efforts, a purely physical or purely computational approach is taken. In this work a low cost cyber-physical (CPFD) system is designed and developed for representing the FSI in the leading edge vortex (LEV) development problem. The leading edge compliance appears to be favorable in a specific spring constant range for a given wing. When the leading edge compliance prescribed via CPFD system is too low compared with the moment due to dynamic pressure or fluid unsteady effect, the LEV behavior is similar to that of a rigid wing system. When the leading edge compliance is too high, excessive compliance is introduced into the wing system and the leading edge vortex evolution is affected by the large change in wing angle. At moderate leading edge compliance, a balance appears to be achieved in which the leading edge vorticity shedding rate supports the long term evolution of the leading edge vortex. Further investigation is required to determine specific parameters governing these leading edge compliance ranges.

  18. A water tunnel flow visualization study of the vortex flow structures on the F/A-18 aircraft

    Science.gov (United States)

    Sandlin, Doral R.; Ramirez, Edgar J.

    1991-01-01

    The vortex flow structures occurring on the F/A-18 aircraft at high angles of attack were studied. A water tunnel was used to gather flow visualization data on the forebody vortex and the wing leading edge extension vortex. The longitudinal location of breakdown of the leading edge vortex was found to be consistently dependent on the angle of attack. Other parameters such as Reynolds number, model scale, and model fidelity had little influence on the overall behavior of the flow structures studied. The lateral location of the forebody vortex system was greatly influenced by changes in the angle of sideslip. Strong interactions can occur between the leading edge extension vortex and the forebody vortex. Close attention was paid to vortex induced flows on various airframe components of the F/A-18. Reynolds number and angle of attack greatly affected the swirling intensity, and therefore the strength of the studied vortices. Water tunnel results on the F/A-18 correlated well with those obtained in similar studies at both full and sub scale levels. The water tunnel can provide, under certain conditions, good simulations of realistic flows in full scale configurations.

  19. Identifying coherent structures and vortex clusters in Taylor-Couette turbulence

    Science.gov (United States)

    Spandan, Vamsi; Ostilla-Monico, Rodolfo; Lohse, Detlef; Verzicco, Roberto

    2016-04-01

    The nature of the underlying structures in Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders is investigated by two methods. First, the quadrant analysis technique for identifying structures with intense radial-azimuthal stresses (also referred to as ‘Q’s) of Lozano-Durán et al., (J. Fluid Mech. 694, 100-130) is used to identify the main structures responsible for the transport of angular velocity. Second, the vortex clusters are identified based on the analysis by del Álamo et al., (J. Fluid. Mech., 561, 329-358). In order to test these criteria, two different radius ratios η = ri/ro are considered, where ri and ro are the radii of inner and outer cylinder, respectively: (i) η = 0.5 and (ii) η = 0.909, which correspond to high and low curvature geometries, respectively and have different underlying structures. The Taylor rolls, i.e. the large-scale coherent structures, are effectively captured as ‘Q’s for the low curvature setup and it is observed that curvature plays a dominant role in influencing the size and volumes of these ‘Q’s. On the other hand, the vortex clusters are smaller in size when compared to the ‘Q’ structures. These vortex clusters are found to be taller in the case of η = 0.909, while the distribution of the lengths of these clusters is almost homogenous for both radius ratios.

  20. Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna).

    Science.gov (United States)

    Wolf, M; Ortega-Jimenez, V M; Dudley, R

    2013-12-22

    Hummingbirds are specialized hoverers for which the vortex wake has been described as a series of single vortex rings shed primarily during the downstroke. Recent findings in bats and birds, as well as in a recent study on Anna's hummingbirds, suggest that each wing may shed a discrete vortex ring, yielding a bilaterally paired wake. Here, we describe the presence of two discrete rings in the wake of hovering Anna's hummingbirds, and also infer force production through a wingbeat with contributions to weight support. Using flow visualization, we found separate vortices at the tip and root of each wing, with 15% stronger circulation at the wingtip than at the root during the downstroke. The upstroke wake is more complex, with near-continuous shedding of vorticity, and circulation of approximately equal magnitude at tip and root. Force estimates suggest that the downstroke contributes 66% of required weight support, whereas the upstroke generates 35%. We also identified a secondary vortex structure yielding 8-26% of weight support. Lift production in Anna's hummingbirds is more evenly distributed between the stroke phases than previously estimated for Rufous hummingbirds, in accordance with the generally symmetric down- and upstrokes that characterize hovering in these birds.

  1. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures.

    Science.gov (United States)

    Töger, Johannes; Kanski, Mikael; Carlsson, Marcus; Kovács, Sándor J; Söderlind, Gustaf; Arheden, Håkan; Heiberg, Einar

    2012-12-01

    Recent studies suggest that vortex ring formation during left ventricular (LV) rapid filling is an optimized mechanism for blood transport, and that the volume of the vortex ring is an important measure. However, due to lack of quantitative methods, the volume of the vortex ring has not previously been studied. Lagrangian Coherent Structures (LCS) is a new flow analysis method, which enables in vivo quantification of vortex ring volume. Therefore, we aimed to investigate if vortex ring volume in the human LV can be reliably quantified using LCS and magnetic resonance velocity mapping (4D PC-MR). Flow velocities were measured using 4D PC-MR in 9 healthy volunteers and 4 patients with dilated ischemic cardiomyopathy. LV LCS were computed from flow velocities and manually delineated in all subjects. Vortex volume in the healthy volunteers was 51 ± 6% of the LV volume, and 21 ± 5% in the patients. Interobserver variability was -1 ± 13% and interstudy variability was -2 ± 12%. Compared to idealized flow experiments, the vortex rings showed additional complexity and asymmetry, related to endocardial trabeculation and papillary muscles. In conclusion, LCS and 4D PC-MR enables measurement of vortex ring volume during rapid filling of the LV.

  2. Elliptical vortex solutions, integrable Ermakov structure, and Lax pair formulation of the compressible Euler equations.

    Science.gov (United States)

    An, Hongli; Fan, Engui; Zhu, Haixing

    2015-01-01

    The 2+1-dimensional compressible Euler equations are investigated here. A power-type elliptic vortex ansatz is introduced and thereby reduction obtains to an eight-dimensional nonlinear dynamical system. The latter is shown to have an underlying integral Ermakov-Ray-Reid structure of Hamiltonian type. It is of interest to notice that such an integrable Ermakov structure exists not only in the density representations but also in the velocity components. A class of typical elliptical vortex solutions termed pulsrodons corresponding to warm-core eddy theory is isolated and its behavior is simulated. In addition, a Lax pair formulation is constructed and the connection with stationary nonlinear cubic Schrödinger equations is established.

  3. Influence of Structural Parameters on the Performance of Vortex Valve Variable-Thrust Solid Rocket Motor

    Science.gov (United States)

    Wei, Xianggeng; Li, Jiang; He, Guoqiang

    2017-04-01

    The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.

  4. Vortex methods for fluid-structure interaction problems with deforming geometries and their application to swimming

    Science.gov (United States)

    Gazzola, Mattia; Chatelain, Philippe; Koumoutsakos, Petros

    2010-11-01

    We present a vortex particle-mesh method for fluid-structure interaction problems. The proposed methodology combines implicit interface capturing, Brinkmann penalization techniques, and the self-consistent computation of momentum transfer between the fluid and the structure. In addition, our scheme is able to handle immersed bodies characterized by non-solenoidal deformations, allowing the study of arbitrary deforming geometries. This attractively simple algorithm is shown to accurately reproduce reference simulations for rigid and deforming structures. Its suitability for biological locomotion problems is then demonstrated with the simulation of self-propelled anguilliform swimmers.

  5. IUTAM Symposium on Vortex Dynamics: Formation, Structure and Function, 10-14 March 2013, Fukuoka, Japan

    Science.gov (United States)

    Fukumoto, Yasuhide

    2014-06-01

    This special issue of Fluid Dynamics Research contains the first of a two-part publication of the papers presented at the IUTAM Symposium on Vortex Dynamics: Formation, Structure and Function, held at the Centennial Hall, Kyushu University School of Medicine, Fukuoka, Japan, during the week of 10-14 March 2013. Vortices are ubiquitous structures in fluid mechanics spanning the range of scales from nanofluidics and microfluidics to geophysical and astrophysical flows. Vortices are the key to understanding many different phenomena. As a result, the subject of vortex dynamics continues to evolve and to constantly find new applications in biology, biotechnology, industrial and environmental problems. Vortices can be created by the separation of a flow from the surface of a body or at a density interface, and evolve into coherent structures. Once formed, a vortex acquires a function, depending on its individual structure. In this way, for example, insects gain lift and fish gain thrust. Surprisingly, despite the long history of vortex dynamics, only recently has knowledge about formation, structure and function of vortices been combined to yield new perspectives in the subject, thereby helping to solve outstanding problems brought about by modern advances in computer technology and improved experimental techniques. This symposium is a continuation, five years on, of the IUTAM Symposium '50 Years of Vortex Dynamics', Lyngby, Denmark that took place between 12-16 October 2008, organized by the late Professor Hassan Aref. Originally, Professor Aref was a member of the International Scientific Committee of this symposium and offered his enthusiasm and great expertise, to support its organization. To our shock, he suddenly passed away on 9 September 2011. Furthermore, Professor Slava Meleshko, a leading scientist of fluid and solid mechanics and an intimate friend of Professor Aref, was expected to make an eminent contribution to the symposium. Soon after this sad loss

  6. Dynamic and Structural Studies of Metastable Vortex Lattice Domains in MgB2

    Science.gov (United States)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. The VL can be driven to the GS through successive application of an AC magnetic field. Here we report on detailed studies of the transition kinetics and structure of the VL domains. Stroboscopic studies of the transition revealed a stretched exponential decrease of the metastable volume fraction as a function of the number of applied AC cycles, with subtle differences depending on whether the AC field is oriented parallel or perpendicular to the DC field used to create the VL. We speculate the slower transition kinetics for the transverse AC field may be due to vortex cutting. Spatial studies include scanning SANS measurements showing the VL domain distribution within the MgB2 single crystal as well as measurements of VL correlation lengths. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  7. STRUCTURAL AND EVOLUTION CHARACTERISTICS OF THE EASTERLY VORTEX OVER THE TROPICAL REGION

    Institute of Scientific and Technical Information of China (English)

    YAO Xiu-ping; WU Guo-xiong; LIU Huan-zhu

    2008-01-01

    By employing the NCEP/NCAR reanalysis data sets (1000-10hPa, 2.5°×2.5°), the characteristics have been analyzed of the structure and evolution of an easterly vortex over the tropical upper troposphere relating to the east-west direction shift of the subtropical anticyclone over the Western Pacific Ocean. It is shown that there exists a westward shift simultaneously between the anticyclone and the vortex locating south of it. The anticyclone retreats eastward abnormally while the easterly encounters with the westerly around the same longitudes as they move from the opposite directions. The former is an upper weather system, extending from mid-troposphere to the height of 50 hPa with the center locating on 200 hPa.The vertical thermal distribution illustrates the characteristics of being "warm in the upper layer but cold in the lower layer". The divergence effect and the vertical motion change largely within the east and west sides of the easterly vortex and ascending branch transforms to descending branch near its center.

  8. Bifurcation structure and stability in models of opposite-signed vortex pairs

    Energy Technology Data Exchange (ETDEWEB)

    Luzzatto-Fegiz, Paolo, E-mail: Paolo.Luzzatto-Fegiz@damtp.cam.ac.uk [Churchill College, Cambridge CB3 0DS (United Kingdom)

    2014-06-01

    We employ a recently developed numerical method to examine in detail the properties of opposite-signed, translating vortex pairs. We first consider a uniform-vortex approximation; for this flow, previous studies have found essential differences between rotating and translating configurations, and have encountered numerical difficulties at the boundary between the two types of equilibria. Recently, Luzzatto-Fegiz and Williamson (2012 J. Fluid Mech. 706 323–50) used an imperfect velocity-impulse (IVI) diagram to show that the rotating pairs have a translating counterpart, arising from a bifurcation of the classical translating configurations. In this paper, we expand this IVI diagram to find two new branches of steady vortices, including antisymmetric pairs, as well as vortices without any symmetry. We next consider more realistic models for flows at moderate Reynolds number Re, by computing solution families based on a discretized Chaplygin–Lamb dipole. We find that, as the accuracy of the discretization improves, the bifurcated branches shrink rapidly, while the unstable portion of the basic solution family becomes smaller. These results indicate that the bifurcation structure of moderate-Re flows can be very different from that of solutions that use a single patch per vortex. (papers)

  9. Nonaxisymmetric Rossby vortex instability with toroidal magnetic fields in structured disks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cong [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2009-01-01

    We investigate the global nonaxisymmetric Rossby vortex instability (RVI) in a differentially rotating, compressible magnetized accretion disk with radial density structures. Equilibrium magnetic fields are assumed to have only the toroidal component. Using linear theory analysis, we show that the density structure can be unstable to nonaxisymmetric modes. We find that, for the magnetic field profiles we have studied, magnetic fields always provide a stabilizing effect to the unstable RVI modes. We discuss the physical mechanism of this stabilizing effect. The threshold and properties of the unstable modes are also discussed in detail. In addition, we present linear stability results for the global magnetorotational instability when the disk is compressible.

  10. Imaging of the Space-time Structure of a Vortex Generator in Supersonic Flow

    Institute of Scientific and Technical Information of China (English)

    WANG Dengpan; XIA Zhixun; ZHAO Yuxin; WANG Bo; ZHAO Yanhui

    2012-01-01

    The fine space-time structure of a vortex generator (VG) in supersonic flow is studied with the nanoparticle-based planar laser scattering (NPLS) method in a quiet supersonic wind tunnel.The fine coherent structure at the symmetrical plane of the flow field around the VG is imaged with NPLS.The spatial structure and temporal evolution characteristics of the vortical structure are analyzed,which demonstrate periodic evolution and similar geometry,and the characteristics of rapid movement and slow change.Because the NPLS system yields the flow images at high temporal and spatial resolutions,from these images the position of a large scale structure can be extracted precisely.The position and velocity of the large scale structures can be evaluated with edge detection and correlation algorithms.The shocklet structures induced by vortices are imaged,from which the generation and development of shocklets are discussed in this paper.

  11. Three-dimensional thermal structure of the South Polar Vortex of Venus

    Science.gov (United States)

    Hueso, Ricardo; Garate-Lopez, Itziar; Garcia-Muñoz, Antonio; Sánchez-Lavega, Agustín

    2014-11-01

    We have analyzed thermal infrared images provided by the VIRTIS-M instrument aboard Venus Express (VEX) to obtain high resolution thermal maps of the Venus south polar region between 55 and 85 km altitudes. The maps investigate three different dynamical configurations of the polar vortex including its classical dipolar shape, a regularly oval shape and a transition shape between the different configurations of the vortex. We apply the atmospheric model described by García Muñoz et al. (2013) and a variant of the retrieval algorithm detailed in Grassi et al. (2008) to obtain maps of temperature over the Venus south polar region in the quoted altitude range. These maps are discussed in terms of cloud motions and relative vorticity distribution obtained previously (Garate-Lopez et al. 2013). Temperature maps retrieved at 55 - 63 km show the same structures that are observed in the ~5 µm radiance images. This altitude range coincides with the optimal expected values of the cloud top altitude at polar latitudes and magnitudes derived from the analysis of ~5 µm images are measured at this altitude range. We also study the imprint of the vortex on the thermal field above the cloud level which extends up to 80 km. From the temperature maps, we also study the vertical stability of different atmospheric layers. The cold collar is clearly the most statically stable structure at polar latitudes, while the vortex and subpolar latitudes show lower stability values. Furthermore, the hot filaments present within the vortex at 55-63 km exhibit lower values of static stability than their immediate surroundings.ReferencesGarate-Lopez et al. Nat. Geosci. 6, 254-257 (2013).García Muñoz et al. Planet. Space Sci. 81, 65-73 (2013).Grassi, D. et al. J. Geophys. Res. 113, 1-12 (2008).AcknowledgementsWe thank ESA for supporting Venus Express, ASI, CNES and the other national space agencies supporting VIRTIS on VEX and their principal investigators G. Piccioni and P. Drossart. This work

  12. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets

    Science.gov (United States)

    Yang, Shao-Qiong; Li, Shan; Tian, Hai-Ping; Wang, Qing-Yi; Jiang, Nan

    2016-04-01

    Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect. In the present study, the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer (TBL) is investigated. This is done by means of tomographic particle image velocimetry (TPIV) measurements in channel flows over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190. The turbulent flows over drag-reducing riblets are verified by a planar time-resolved particle image velocimetry (TRPIV) system initially, and then the TPIV measurements are performed. Two-dimensional (2D) experimental results with a drag-reduction rate of around 4.81 % are clearly visible over triangle riblets with a peak-to-peak spacing s+ of 14, indicating from the drag-reducing performance that the buffer layer within the TBL has thickened; the logarithmic law region has shifted upward and the Reynolds shear stress decreased. A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudes of the spanwise vorticity when ejection (Q2) and sweep (Q4) events occur at the near wall, having the greatest effect on Q4 events in particular. The so-called quadrupole statistical model for coherent structures in the whole TBL is verified. Meanwhile, their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent flow over riblets are changed, suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events (Q2 and Q4), thereby reducing the skin friction drag.

  13. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures

    Science.gov (United States)

    Sugioka, Hideyuki

    2011-05-01

    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process.

  14. Diagnostics of spatial structure of vortex multiplets in a swirl flow

    DEFF Research Database (Denmark)

    Naumov, I. V.; Okulov, Valery; Sørensen, Jens Nørkær

    2011-01-01

    for different heights of this cylinder. The working liquid was 80-percent water-glycerin mixture, and small air bubbles were used as the tracers. The lid was rotated with a constant angular velocity under the studied conditions, and air was accumulated in the zones of decreased pressure on axes of vortices....... Visualization of flow structure for unstable swirl flows and cylinder aspect ratios from 3.2 to 5.5 allowed first identification of these regimes as multispiral breakdowns with formation of helical-like vortex duplets, triplets and quadruplets....

  15. Influence of position and parameters of inhomogeneities on vortex structure in long Josephson junctions

    Science.gov (United States)

    Andreeva, O. Yu; Boyadjiev, T. L.; Shukrinov, Yu M.

    2008-10-01

    Numerical experiment results on long Josephson junction with one and two rectangular inhomogeneities in the barrier layer are presented. We demonstrate the efiect of the shifting of the inhomogeneity and the value of the Josephson current on the vortex structure. The disappearance of mixed fluxon-antifluxon states is shown when the position of inhomogeneity shifted to the end of the junction. A change of the amplitude of Josephson current at the end makes a strong efiect on the stability of the fluxon states and smoothes the maximums of the dependence 'critical current-magnetic field'.

  16. Influence of position and parameters of inhomogeneities on vortex structure in long Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, O Yu [OAO ' Ural Thermal Network Company' , Tumen, 625023 (Russian Federation); Boyadjiev, T L; Shukrinov, Yu M [Joint Institute for Nuclear Research, Dubna (Russian Federation)], E-mail: shukrinv@theor.jinr.ru

    2008-10-15

    Numerical experiment results on long Josephson junction with one and two rectangular inhomogeneities in the barrier layer are presented. We demonstrate the effect of the shifting of the inhomogeneity and the value of the Josephson current on the vortex structure. The disappearance of mixed fluxon-antifluxon states is shown when the position of inhomogeneity shifted to the end of the junction. A change of the amplitude of Josephson current at the end makes a strong effect on the stability of the fluxon states and smoothes the maximums of the dependence 'critical current-magnetic field'.

  17. Miniaturized vortex transitional Josephson memory cell by a vertically integrated device structure

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Shuichi; Tahara, Shuichi; Numata, Hideaki; Tsuchida, Sanae (NEC Corp., Tsukuba (Japan))

    1994-03-01

    We have developed the smallest Josephson nondestructive read-out (NDRO) memory cell, called a vortex transitional (VT) memory cell, for a Josephson high-speed 16-Kbit RAM. Its size is 22 x 22 microns(sup 2), which is only 16% of the size of previously developed VT memory cells used in Josephson 4-Kbit RAM. This is achieved by developing a vertically integrated device structure and refining small-junction technology. The cell consists of Nb/AlO(sub x)/Nb junctions, three Nb wirings, SiO2 insulators and Mo resistors. The VT memory cells operate properly, with a large operating margin of +/- 20%. 13 refs.

  18. Solitary waves in a dusty plasma with charge fluctuation and dust size distribution and vortex like ion distribution

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, K. [Department of Physics, J.C.C. College, Kolkata 700 033 (India); Mishra, Amar P. [High Energy Physics Division, Department of Physics Jadavpur University, Kolkata 700 032 (India); Roy Chowdhury, A. [High Energy Physics Division, Department of Physics Jadavpur University, Kolkata 700 032 (India)

    2006-07-15

    A modified KdV equation is derived for the propagation of non-linear waves in a dusty plasma, containing N different dust grains with a size distribution and charge fluctuation with electrons in the background. The ions are assumed to obey a vortex like distribution due to their non-isothermal nature. The standard distribution for the dust size is a power law. The variation of the soliton width is studied with respect to normalized size of the dust grains. A numerical solution of the equation is done by considering the soliton solution of the modified KdV as the initial pulse. It shows considerable broadening of the pulse variation of width with {beta} {sub 1} is shown.

  19. Combustion of pulverized coal in vortex structures. Final report, October 1, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gollahalli, S.R.; Butuk, N.

    1996-03-01

    The objectives of the project were: (i) to understand the effects of heating one of the streams on the characteristics of shear layers, (ii) to investigate the changes in the characteristics of large scale vortex structures in the shear layer caused by the introduction of inert solid particles in one of the feed streams; (iii) to understand the effects of pyrolyzing solids on the shear layer behavior; and (iv) to study the effects of combustion of particles and their pyrolysis products on the shear layer structure, heat release rate, and pollutant emission characteristics. An experimental facility for generating two-dimensional shear layers containing vortex structures has been designed and fabricated. The experimental facility is essentially a low speed wind tunnel designed to (i) provide two gas streams, initially with uniform velocity profiles and isotropic turbulence, mixing at the end of a splitter plate, (ii) introduce vorticity by passively perturbing one of the streams, (iii) allow heating of one of the streams to temperatures high enough to cause pyrolysis of coal particles, and (iv) provide a natural gas flame in one of the streams to result in ignition and burning of coal particles.

  20. Vortex and structural dynamics of a flexible cylinder in cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Jessica K., E-mail: jshang@princeton.edu; Stone, Howard A. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Smits, Alexander J. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Monash University, VIC 3800 (Australia)

    2014-05-15

    A low-density, flexible cantilevered cylinder was permitted to vibrate freely under the influence of vortex shedding in the laminar flow regime. We find that the vortex-induced vibrations (VIV) of a flexible cantilever depart from those of a flexible cylinder that is fixed at both ends. In particular, we find discontinuous regions of VIV behavior – here called states – as a function of the reduced velocity U{sup *}. These states are demarcated by discrete changes in the dominant eigenmodes of the structural response as the cylinder vibrates in progressively higher structural modes with increasing U{sup *}. The contribution of structural modes can be identified readily by a modal projection of the cylinder oscillation onto known cantilever beam modes. Oscillation frequencies do not monotonically increase with U{sup *}. The wake response between different states is also found to have distinct characteristics; of particular note is the occurrence of a P+S wake over one of these regions, which is associated with a high-amplitude vibration of the cylinder that is due to the constructive interference of contributing eigenmodes.

  1. Generation of Optical Vortex Using a Spiral Phase Plate Fabricated in Quartz by Direct Laser Writing and Inductively Coupled Plasma Etching

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; KUANG Deng-Feng; GUI Min; FANG Zhi-Liang

    2009-01-01

    A simple, economical and reliable technique is proposed for fabricating a spiral phase plate (SPP) in a quartz substrate to generate optical vortex with a unit topological charge at the wavelengths of 632.8nm. The spiral phase plate is first formed in the photoresist by direct laser writing lithography and then transferred into the quartz substrate by inductively coupled plasma etching. The performance of the fabricated SPP is verified by using beam intensity distribution, which is in agreement with the theoretical calculation result. The interference measurement suggests that we have succeeded to generate opticM vortex with a unit topological charge with the fabricated SPP.

  2. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Science.gov (United States)

    Galvis, J. A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-02-01

    Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  3. Vortex magnetic structure in circularly magnetized microwires as deduced from magneto-optical Kerr measurements

    KAUST Repository

    Ivanov, Yurii P.

    2014-02-14

    The magneto-optic Kerr effect has been employed to determine the magnetization process and estimate the domain structure of microwires with circular magnetic anisotropy. The diameter of microwires was 8 μm, and pieces 2 cm long were selected for measurements. The analysis of the local surface longitudinal and transverse hysteresis loops has allowed us to deduce a vortex magnetic structure with axial core and circular external shell. Moreover, a bamboo-like surface domain structure is confirmed with wave length of around 10 to 15 μm and alternating chirality in adjacent circular domains. The width of the domain wall is estimated to be less than 3 μm. Finally, closure domain structures with significant helical magnetization component are observed extending up to around 1000 μm from the end of the microwire.

  4. Analysis of the horizontal two-dimensional near-surface structure of a winter tornadic vortex using high-resolution in situ wind and pressure measurements

    Science.gov (United States)

    Kato, Ryohei; Kusunoki, Kenichi; Sato, Eiichi; Mashiko, Wataru; Inoue, Hanako Y.; Fujiwara, Chusei; Arai, Ken-ichiro; Nishihashi, Masahide; Saito, Sadao; Hayashi, Syugo; Suzuki, Hiroto

    2015-06-01

    The horizontal two-dimensional near-surface structure of a tornadic vortex within a winter storm was analyzed. The tornadic vortex was observed on 10 December 2012 by the high-resolution in situ observational linear array of wind and pressure sensors (LAWPS) system in conjunction with a high-resolution Doppler radar. The 0.1 s maximum wind speed and pressure deficit near the ground were recorded as 35.3 m s-1 and -3.8 hPa, respectively. The horizontal two-dimensional distributions of the tornadic vortex wind and pressure were retrieved by the LAWPS data, which provided unprecedented observational detail on the following important features of the near-surface structure of the tornadic vortex. Asymmetric convergent inflow toward the vortex center existed. Total wind speed was strong to the right and rear side of the translational direction of the vortex and weak in the forward part of the vortex possibly because of the strong convergent inflow in that region. The tangential wind speed profile of the vortex was better approximated using a modified Rankine vortex rather than the Rankine vortex both at 5 m above ground level (agl) and 100 m agl, and other vortex models (Burgers-Rott vortex and Wood-White vortex) were also compared. The cyclostrophic wind balance was violated in the core radius R0 and outside the core radius in the forward sector; however, it was held with a relatively high accuracy of approximately 14% outside the core of the vortex in the rearward sector (from 2 R0 to 5 R0) near the ground.

  5. Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter.

    Science.gov (United States)

    Tung, J C; Liang, H C; Lu, T H; Huang, K F; Chen, Y F

    2016-10-03

    It is theoretically demonstrated that the planar geometric mode with a π/2 mode converter, so called the circularly geometric mode, can be solved from the inhomogeneous Helmholtz equation by considering the pump distribution on the lasing mode. Theoretical analysis clearly reveal that the vortex structures of circularly geometric modes are determined by the minimum order of transverse lasing modes, the total number of transverse lasing modes and the degenerate condition in the cavity. Moreover, we experimentally manifest that the circularly geometric mode can be generated from the selective pumped solid-state laser with an external π/2 mode converter. To explore the vortex structures of the generated geometric modes, the interference patterns are performed by an experimental apparatus consisting of a Mach-Zehnder interferometer. The good agreement between experimental observations and numerical calculations confirms the analysis of vortex structures is reliable.

  6. Structural Studies of Metastable and Ground State Vortex Lattice Domains in MgB2

    Science.gov (United States)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    2015-03-01

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. Application of an AC magnetic field to drive the VL to the ground state revealed a two-step power law behavior, indicating a slow nucleation of ground state domains followed by a faster growth. The dependence on the number of applied AC cycles is reminiscent of jamming of soft, frictionless spheres. Here, we report on detailed structural studies of both metastable and ground state VL domains. These include measurements of VL correlation lengths as well as spatially resolved SANS measurements showing the VL domain distribution within the MgB2 single crystal. We discuss these results and how they may help to resolve the mechanism responsible for stabilizing the metastable VL phases. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  7. Moisture Management Behaviour of Knitted Fabric from Structurally Modified Ring and Vortex Spun Yarn

    Science.gov (United States)

    Sharma, Navendu; Kumar, Pawan; Bhatia, Dinesh; Sinha, Sujit Kumar

    2016-10-01

    The acceptability of a new product is decided by its performance, level of improvement in quality and economy of production. The basic aim of generating micro pores in a textile structure is to provide better thermo-physiological comfort by enhancing the breathability and hence improving moisture management behaviour. In the present study, an attempt has been made to create a relatively more open structure through removal of a component. A comparative assessment with a homogeneous and parent yarn was also made. Yarns of two linear densities, each from ring and vortex spinning systems were produced using 100 % polyester and 80:20 polyester/cotton blend. The modified yarn was produced by removing a component, viz; cotton, by treatment with sulphuric acid from the blended yarn. The knitted fabric from modified yarn was found to show significant improvement in air permeability, water vapour permeability and total absorbency while the wicking characteristic was found to decline.

  8. NONLINEAR FLUID DAMPING IN STRUCTURE-WAKE OSCILLATORS IN MODELING VORTEX-INDUCED VIBRATIONS

    Institute of Scientific and Technical Information of China (English)

    LIN Li-ming; LING Guo-can; WU Ying-xiang; ZENG Xiao-hui

    2009-01-01

    A Nonlinear Fluid Damping(NFD)in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations(VIV).Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated.A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics,such as the amplification of body displacement at lock-in and frequency lock-in,both at high and low mass ratios.Particularly,the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation,indicating the significant effect of the NFD on the structure motion.

  9. Streamwise Vortex Interaction with a Horseshoe Vortex

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Pawel Flaszynski; Franco Magagnato

    2003-01-01

    Flow control in turbomachinery is very difficult because of the complexity of its fully 3-D flow structure. The authors propose to introduce streamwise vortices into the control of internal flows. A simple configuration of vortices was investigated in order to better understand the flow control methods by means of streamwise vortices.The research presented here concerns streamwise vortex interaction with a horseshoe vortex. The effects of such an interaction are significantly dependent on the relative location of the streamwise vortex in respect to the leading edge of the profile. The streamwise vortex is induced by an air jet. The horseshoe vortex is generated by the leading edge of a symmetric profile. Such a configuration gives possibility to investigate the interaction of these two vortices alone. The presented analysis is based on numerical simulations by means of N-S compressible solver with a two-equation turbulence model.

  10. Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study

    DEFF Research Database (Denmark)

    Laver, M.; Bowell, C.J.; Forgan, E.M.;

    2009-01-01

    High-purity niobium exhibits a surprisingly rich assortment of vortex lattice (VL) structures for fields applied parallel to a fourfold symmetry axis, with all observed VL phases made up of degenerate domains that spontaneously break some crystal symmetry. Yet a single regular hexagonal VL domain...

  11. Vortex magnetic structure in framboidal magnetite reveals existence of water droplets in an ancient asteroid.

    Science.gov (United States)

    Kimura, Yuki; Sato, Takeshi; Nakamura, Norihiro; Nozawa, Jun; Nakamura, Tomoki; Tsukamoto, Katsuo; Yamamoto, Kazuo

    2013-01-01

    The majority of water has vanished from modern meteorites, yet there remain signatures of water on ancient asteroids. How and when water disappeared from the asteroids is important, because the final fluid-concentrated chemical species played critical roles in the early evolution of organics and in the final minerals in meteorites. Here we show evidence of vestigial traces of water based on a nanometre-scale palaeomagnetic method, applying electron holography to the framboids in the Tagish Lake meteorite. The framboids are colloidal crystals composed of three-dimensionally ordered magnetite nanoparticles and therefore are only able to form against the repulsive force induced by the surface charge of the magnetite as a water droplet parches in microgravity. We demonstrate that the magnetites have a flux closure vortex structure, a unique magnetic configuration in nature that permits the formation of colloidal crystals just before exhaustion of water from a local system within a hydrous asteroid.

  12. Short-Time Structural Stability of Compressible Vortex Sheets with Surface Tension

    Science.gov (United States)

    Stevens, Ben

    2016-11-01

    Assume we start with an initial vortex-sheet configuration which consists of two inviscid fluids with density bounded below flowing smoothly past each other, where a strictly positive fixed coefficient of surface tension produces a surface tension force across the common interface, balanced by the pressure jump. We model the fluids by the compressible Euler equations in three space dimensions with a very general equation of state relating the pressure, entropy and density such that the sound speed is positive. We prove that, for a short time, there exists a unique solution of the equations with the same structure. The mathematical approach consists of introducing a carefully chosen artificial viscosity-type regularisation which allows one to linearise the system so as to obtain a collection of transport equations for the entropy, pressure and curl together with a parabolic-type equation for the velocity which becomes fairly standard after rotating the velocity according to the interface normal. We prove a high order energy estimate for the non-linear equations that is independent of the artificial viscosity parameter which allows us to send it to zero. This approach loosely follows that introduced by Shkoller et al. in the setting of a compressible liquid-vacuum interface. Although already considered by Coutand et al. [10] and Lindblad [17], we also make some brief comments on the case of a compressible liquid-vacuum interface, which is obtained from the vortex sheets problem by replacing one of the fluids by vacuum, where it is possible to obtain a structural stability result even without surface tension.

  13. Depicting Vortex Stretching and Vortex Relaxing Mechanisms

    Institute of Scientific and Technical Information of China (English)

    符松; 李启兵; 王明皓

    2003-01-01

    Different from many existing studies on the paranetrization of vortices, we investigate the effectiveness of two new parameters for identifying the vortex stretching and vortex relaxing mechanisms. These parameters are invariants and identify three-dimensional flow structures only, i.e. they diminish in two-dimensional flows. This is also unlike the existing vortex identification approaches which deliver information in two-dimensional flows. The present proposals have been successfully applied to identify the stretching and relaxing vortices in compressible mixing layers and natural convection flows.

  14. Reconnection of superfluid vortex bundles.

    Science.gov (United States)

    Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F

    2008-11-21

    Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows.

  15. Large-Scale Structure of Magnetospheric Plasma

    Science.gov (United States)

    Moore, T. E.; Delcourt, D. C.

    1995-01-01

    Recent investigations of magnetospheric plasma structure are summarized under the broad categories of empirical models, transport across boundaries, formation, and dynamics of the plasma sheet. This report reviews work in these areas during the period 1991 to 1993. Fully three-dimensional empirical models and simulations have become important contributors to our understanding of the magnetospheric system. Some new structural concepts have appeared in the literature: the 'entry boundary' and 'geo-pause', the plasma sheet 'region 1 vortices', the 'low-energy layer', the 'adia-baticity boundary' or 'wall region', and a region in the tail to which we refer as the 'injection port'. Traditional structural concepts have also been the subject of recent study, notably the plasmapause, the magnetopause, and the plasma sheet. Significant progress has been made in understanding the nature of plasma sheet formation and dynamics, but the acceleration of electrons to high energy remains somewhat mysterious.

  16. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. R. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina) and Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales UBA Ciudad Universitaria Pab. I, (1428) Buenos Aires (Argentina)

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  17. Introduction to vortex filaments in equilibrium

    CERN Document Server

    Andersen, Timothy D

    2014-01-01

    This book presents fundamental concepts and seminal results to the study of vortex filaments in equilibrium. It also presents new discoveries in quasi-2D vortex structures with applications to geophysical fluid dynamics and magnetohydrodynamics in plasmas.  It fills a gap in the vortex statistics literature by simplifying the mathematical introduction to this complex topic, covering numerical methods, and exploring a wide range of applications with numerous examples. The authors have produced an introduction that is clear and easy to read, leading the reader step-by-step into this topical area. Alongside the theoretical concepts and mathematical formulations, interesting applications are discussed. This combination makes the text useful for students and researchers in mathematics and physics.

  18. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...

  19. Vulcanized Vortex

    CERN Document Server

    Cho, Inyong

    2008-01-01

    We investigate vortex configurations with the "vulcanization" term introduced for renormalization of $\\phi_\\star^4$ theory in canonical $\\theta$-deformed noncommutativity. In the small-$\\theta$ limit, we perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  20. Vortex domain structures and dc current dependence of magneto-resistances in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Wei Hong-Xiang; Lu Qing-Feng; Zhao Su-Fen; Zhang Xie-Qun; Feng Jia-Feng; Han Xiu-Feng

    2004-01-01

    Microfabrication and the magneto-transport characteristics of the magnetic tunnel junctions (MTJs) with a spin-valve-type structure of Ta (5nm)/Ni7gFe21 (25nm)/Ir22Mn78 (12nm)/Co75Fe25 (4nm)/Al(0.8nm) oxide/Co75Fe25(4nm)/Ni7gFe21 (20nm)/Ta(5nm) were investigated in this paper. A series of experimental data measured with a MTJ was used to verify a magnon-assisted tunnelling model and theory. Furthermore, a micromagnetics simulation shows that the butterfly-like vortex domain structures can be formed under a current-induced Oersted field, which decreases the net magnetization values of the ferromagnetic electrodes under a large dc current (i.e., in high voltage regimes). It is one of the main reasons for the tunnel magnetoresistance ratios to decrease significantly at high voltage biasing.

  1. An accelerated stochastic vortex structure method for particle collision and agglomeration in homogeneous turbulence

    Science.gov (United States)

    Dizaji, Farzad F.; Marshall, Jeffrey S.

    2016-11-01

    Modeling the response of interacting particles, droplets, or bubbles to subgrid-scale fluctuations in turbulent flows is a long-standing challenge in multiphase flow simulations using the Reynolds-Averaged Navier-Stokes approach. The problem also arises for large-eddy simulation for sufficiently small values of the Kolmogorov-scale particle Stokes number. This paper expands on a recently proposed stochastic vortex structure (SVS) method for modeling of turbulence fluctuations for colliding or otherwise interacting particles. An accelerated version of the SVS method was developed using the fast multipole expansion and local Taylor expansion approach, which reduces computation speed by two orders of magnitude compared to the original SVS method. Detailed comparisons are presented showing close agreement of the energy spectrum and probability density functions of various fields between the SVS computational model, direct numerical simulation (DNS) results, and various theoretical and experimental results found in the literature. Results of the SVS method for particle collision rate and related measures of particle interaction exhibit excellent agreement with DNS predictions for homogeneous turbulent flows. The SVS method was also used with adhesive particles to simulate formation of particle agglomerates with different values of the particle Stokes and adhesion numbers, and various measures of the agglomerate structure are compared to the DNS results.

  2. Investigating coherent vortex structures in the near wake of a utility-scale wind turbine using flow visualization with natural snowfalls

    Science.gov (United States)

    Dasari, Teja; Hong, Jiarong

    2016-11-01

    Flow visualization techniques using natural snowfall have been shown as an effective tool to probe coherent flow structures around utility-scale wind turbines. Here we present a follow-up study using the data collected during multiple deployments from 2014 to 2016 around the 2.5 MW turbine at EOLOS wind energy research station. The data include flow visualization from different perspectives in the near wake of the turbine. Coherent wake structures, including blade tip vortex, trailing vortex sheet, nacelle-generated structures, and tower vortex characterized by the snow voids, are correlated with atmospheric conditions (e.g. turbulence intensity), turbine operational conditions (e.g. power and tip-speed ratio) as well as turbine response (e.g. tower and blade strain). Physical factors and processes that affect the features and the behaviors of tip vortices including their void size and shape, their stability (e.g. meandering and intermittent appearance) and vortex interaction (e.g. vortex merging and leapfrogging) are analyzed. In particular, a strong influence of the tower on tip-vortex structures is demonstrated through simultaneous comparison of vortex voids at elevations below and above the height of nacelle and the plan view visualization. Sponsored by NSF Fluid Dynamics Program.

  3. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  4. Fractal structures in nonlinear plasma physics.

    Science.gov (United States)

    Viana, R L; da Silva, E C; Kroetz, T; Caldas, I L; Roberto, M; Sanjuán, M A F

    2011-01-28

    Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

  5. Structure of a bathtub vortex: importance of the bottom boundary layer

    Science.gov (United States)

    Yukimoto, Shinji; Niino, Hiroshi; Noguchi, Takashi; Kimura, Ryuji; Moulin, Frederic Y.

    2010-03-01

    A bathtub vortex in a cylindrical tank rotating at a constant angular velocity Ω is studied by means of a laboratory experiment, a numerical experiment and a boundary layer theory. The laboratory and numerical experiments show that two regimes of vortices in the steady-state can occur depending on Ω and the volume flux Q through the drain hole: when Q is large and Ω is small, a potential vortex is formed in which angular momentum outside the vortex core is constant in the non-rotating frame. However, when Q is small or Ω is large, a vortex is generated in which the angular momentum decreases with decreasing radius. Boundary layer theory shows that the vortex regimes strongly depend on the theoretical radial volume flux through the bottom boundary layer under a potential vortex : when the ratio of Q to the theoretical boundary-layer radial volume flux Q b (scaled by {2π R^2 ( Ω ν )^1/2}) at the outer rim of the vortex core is larger than a critical value (of order 1), the radial flow in the interior exists at all radii and Regime I is realized, where R is the inner radius of the tank and ν the kinematic viscosity. When the ratio is less than the critical value, the radial flow in the interior nearly vanishes inside a critical radius and almost all of the radial volume flux occurs only in the boundary layer, resulting in Regime II in which the angular momentum is not constant with radius. This criterion is found to explain the results of the laboratory and numerical experiments very well.

  6. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Tommy

    2017-01-09

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  7. TOPOLOGY AND VORTEX STRUCTURES OF A CURVING TURBINE CASCADE WITH TIP CLEARANCE ( Ⅰ )- EXPERIMENTAL MODEL AND TOPOLOGICAL FLOW PATTERNS ON BOTH ENDWALLS AND BLADE SURFACES

    Institute of Scientific and Technical Information of China (English)

    杨庆海; 黄洪雁; 韩万今

    2002-01-01

    By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in the transverse section, and by appling topology theory, the structures on both endwalls and blade surfaces were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex and leads the secondary vortex to change from close separation to open separation,while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.

  8. STM studies of the electronic structure of vortex cores in Bi(2)Sr(2)CaCu(2)O(8+delta)

    Science.gov (United States)

    Pan; Hudson; Gupta; Ng; Eisaki; Uchida; Davis

    2000-08-14

    We report on low temperature scanning tunneling microscopy (STM) studies of the electronic structure of vortex cores in Bi 2Sr 2CaCu 2O (8+delta). At the vortex core center, an enhanced density of states is observed at energies near Omega = +/-7 meV. Spectroscopic imaging at these energies reveals an exponential decay of these "core states" with a decay length of 22+/-3 A. The fourfold symmetry sometimes predicted for d-wave vortices is not seen in spectroscopic vortex images. A locally nodeless order parameter induced by the magnetic field may be consistent with these measurements.

  9. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    Science.gov (United States)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  10. A numerical method for three-dimensional vortical structure of spiral vortex in wind turbine with two-dimensional velocity data at plural azimuthal angles

    Science.gov (United States)

    Nakayama, Katsuyuki; Mizushima, Lucas Dias; Murata, Junsuke; Maeda, Takao

    2016-06-01

    A numerical method is presented to extract three-dimensional vortical structure of a spiral vortex (wing tip vortex) in a wind turbine, from two-dimensional velocity data at several azimuthal angles. This numerical method contributes to analyze a vortex observed in experiment where three-dimensional velocity field is difficult to be measured. This analysis needs two-dimensional velocity data in parallel planes at different azimuthal angles of a rotating blade, which facilitates the experiment since the angle of the plane does not change. The vortical structure is specified in terms of the invariant flow topology derived from eigenvalues and eigenvectors of three-dimensional velocity gradient tensor and corresponding physical properties. In addition, this analysis enables to investigate not only vortical flow topology but also important vortical features such as pressure minimum and vortex stretching that are derived from the three-dimensional velocity gradient tensor.

  11. Studying the mesoscale structure of inhomogeneities within the high-latitude stratosphere during the evolution of the circumpolar vortex on the basis of aircraft measurements

    Science.gov (United States)

    Shur, G. N.; Volkov, V. V.; Sitnikov, N. M.; Ulanovskii, A. E.; Sitnikova, V. I.

    2014-03-01

    Mesoscale inhomogeneities in the fields of wind, temperature, and ozone concentrations have been studied on the basis of aircraft measurements performed within the international EUPLEX and RECONCILE projects in the northern polar region in the presence of the circumpolar vortex. Data have been obtained on the structure of turbulence inside and outside the circumpolar vortex. The zones of enhanced turbulence have been studied. The spectrum of coherence between ozone and wind velocity are found to have high values.

  12. Dusty plasma liquid: structure and transfer phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Vaulina, Olga S; Petrov, Oleg F [Institute for High Energy Densities, Russian Academy of Sciences, Izhorskaya 13/19, Moscow (Russian Federation)

    2005-12-15

    Results are given of the experimental investigation of three-particle correlation for liquid plasma-dust structures formed in the electrode layer of a capacitive rf discharge. The obtained three-particle correlation functions for experimental and numerical data are analysed and compared with the superposition approximation. The forming of clusters of macroparticles in plasma-dust systems being analysed is revealed. The experiments in heat transfer were performed in plasma of a capacitive radio-frequency (rf) discharge in argon (P {approx} 20 Pa) with particles 4 {mu}m in mean diameter. The results are given of an experimental investigation of processes of heat transfer for fluid dust structures in rf-discharge. The analysis of steady-state, and unsteady-state heat transfer are used to obtain the thermal conductivity and diffusivity constants.

  13. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2014-06-01

    imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  14. Microscopic Structure of a Vortex Line in a Dilute Superfluid Fermi Gas

    DEFF Research Database (Denmark)

    Nygaard, Nicolai; Bruun, G. M.; Clark, C. W.;

    2003-01-01

    The microscopic properties of a single vortex in a dilute superfluid Fermi gas at zero temperature are examined within the framework of self-consistent Bogoliubov–de Gennes theory. Using only physical parameters as input, we study the pair potential, the density, the energy, and the current...

  15. Sheath Structures of Strongly Electronegative Plasmas

    Institute of Scientific and Technical Information of China (English)

    段萍; 王正汹; 王文春; 刘金远; 刘悦; 王晓钢

    2005-01-01

    The sheath structures of strongly electronegative plasmas are investigated on basis of the accurate Bohm criterion obtained by Sagdeev potential. It is found that the presheath transition between the bulk plasma and the sheath almost does not exist there, and that distributions of electrons, negative and positive ions in the sheath form a pure positive ion sheath near the boundary of the electrode. Furthermore, the density distribution of space net charge has a peak near the sheath edge, the spatial potential within the sheath falls faster, and the sheath thickness becomes thinner.

  16. Theoretical Studies of Long Lived Plasma Structures

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We construct the model of a long lived plasma structure based on spherically symmetric oscillations of electrons in plasma. Oscillations of electrons are studied in frames of both classical and quantum approaches. We obtain the density profile of electrons and the dispersion relations for these oscillations. The differences between classical and quantum approaches are discussed. Then we study the interaction between electrons participating in spherically symmetric oscillations. We find that this interaction can be attractive and electrons can form bound states. The applications of the obtained results to the theory of natural plasmoids are considered.

  17. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    Science.gov (United States)

    Boyadjiev, T. L.; Semerdjieva, E. G.; Shukrinov, Yu. M.

    2007-09-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves “critical current-magnetic field” are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.

  18. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, T.L. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Semerdjieva, E.G. [Plovdiv University, 24 Tzar Asen Str., Plovdiv 4000 (Bulgaria); Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)], E-mail: shukrinv@theor.jinr.ru

    2007-09-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one.

  19. Devil’s Vortex Phase Structure as Frequency Plane Mask for Image Encryption Using the Fractional Mellin Transform

    Directory of Open Access Journals (Sweden)

    Sunanda Vashisth

    2014-01-01

    Full Text Available A frequency plane phase mask based on Devil’s vortex structure has been used for image encryption using the fractional Mellin transform. The phase key for decryption is obtained by an iterative phase retrieval algorithm. The proposed scheme has been validated for grayscale secret target images, by numerical simulation. The efficacy of the scheme has been evaluated by computing mean-squared-error between the secret target image and the decrypted image. Sensitivity analysis of the decryption process to variations in various encryption parameters has been carried out. The proposed encryption scheme has been seen to exhibit reasonable robustness against occlusion attack.

  20. Structure formation of aerated concrete containing waste coal combustion products generated in the thermal vortex power units

    Science.gov (United States)

    Ivanov, A. I.; Stolboushkin, A. Yu; Temlyanstev, M. V.; Syromyasov, V. A.; Fomina, O. A.

    2016-10-01

    The results of fly ash research, generated in the process of waste coal combustion in the thermal vortex power units and used as an aggregate in aerated concrete, are provided. It is established that fly ash can be used in the production of cement or concrete with low loss on ignition (LOI). The permitted value of LOI in fly ash, affecting the structure formation and operational properties of aerated concrete, are defined. During non-autoclaved hardening of aerated concrete with fly ash aggregate and LOI not higher than 2%, the formation of acicular crystals of ettringite, reinforcing interporous partitions, takes place.

  1. Numerical investigation of quasi-periodic flow and vortex structure in a twin rectangular subchannel geometry using detached eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Home, D., E-mail: deep_aeros@yahoo.co.in; Lightstone, M.F.

    2014-04-01

    Highlights: • Dynamics of the subchannel gap vortex street was captured using the DES-SST model. • Gap vortical structures were qualified as eddy zones with low pressure cores. • Gap vortex formation is due to interaction between the low and high speed fluids. • Quasi-periodic gap flow was associated with an inflectional velocity profile. - Abstract: The hybrid Unsteady Reynolds-Averaged Navier–Stokes (URANS)/Large Eddy Simulation (LES) methodology was used to investigate the flow dynamics and associated gap vortex structure in compound rectangular channels for isothermal flows. The specific form of the hybrid URANS/LES approach that was used is the Strelets (2001) version of the Shear Stress Transport (SST) based Detached Eddy Simulation (DES). The DES-SST model was used to study quasi-periodic flow across a gap connecting two rectangular sub-channels on which extensive experiments were conducted by Meyer and Rehme (1994). It was found that the DES-SST model was successful in predicting the characteristics of the flow field in the vicinity of the gap region. The span-wise velocity contours, velocity vector plots, and time traces of the velocity components showed the expected cross flow mixing between the sub-channels through the gap. The dynamics of the flow field were quantitatively described through temporal auto-correlations, spatial cross-correlations and power spectral functions. The numerical predictions were in general agreement with the experiments. Predictions from the model were used to identify different flow mixing patterns. As expected, the simulation predicted the formation of a gap vortex street which results in a quasi-periodic flow through the gap. Coherent structures were identified in the flow field to be comprised of eddies, shear zones and streams. Eddy structures with high vorticity and low pressure cores were found to exist near the vicinity of the gap edge region. A three dimensional vorticity field was identified and found to

  2. Structure and structure-preserving algorithms for plasma physics

    Science.gov (United States)

    Morrison, P. J.

    2016-10-01

    Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.

  3. Optical Vortex Solitons in Parametric Wave Mixing

    CERN Document Server

    Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    2000-01-01

    We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.

  4. Magnetisation reversal in cylindrical nickel nanobars involving magnetic vortex structure: A micromagnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Barpanda, Prabeer, E-mail: prabeer.barpanda@u-picardie.f [Laboratoire de Reactivite et Chimie des Solides, Universite de Picardie Jules Verne, 33 rue Saint Leu, Amiens Cedex 80039 (France); Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada)

    2011-03-15

    A three-dimensional, Fast-Fourier-Transformed (3D-FFT) micromagnetic simulation was employed to study the magnetization reversal mechanisms in cylindrical nickel nanobars possessing magnetic vortices. Individual Ni nanobars of height 150-250 nm with aspect ratio varying from 2.1 to 2.5 were considered, all of them supporting magnetic vortices domains. Magnetization reversal in these nanobars involves the vortex-creation-annihilation (VCA) mechanism with an inversion symmetry feature observed mid-way during reversal process. The effect of incidence angle of externally applied field on overall magnetization reversal process is examined in detail. The corresponding variations in coercivity, squareness, exchange energy and vortex parameters are described by the micromagnetic study that can shed insights for building practical Ni nanobars magnetic nanostructures/devices.

  5. The Effects of Vortex Generator Types on Heat Transfer and Flow Structure in a Rectangular Duct Flows

    Directory of Open Access Journals (Sweden)

    Laith J.H

    2008-01-01

    Full Text Available In this numerical study a detailed evaluation of the heat transfer characteristics and flow structure in a laminar and turbulent flow through a rectangular channel containing built-in of different type vortex generator has been a accomplished in a range of Reynolds number between 500 and 100,000.A modified version of ESCEAT code has been used to solve Navier-Stokes and energy equations. The purpose of this paper is to present numerical comparisons in terms of temperature, Nusselt number and flow patterns on several configurations of longitudinal vortex generator including new five cases. The structures of heat and flow were studied, using iso-contours of velocity components, vortices, temperature and Nusselt number. This study shows that the predicted structures of fluid flow, temperature fields and Nusselt number variation are strongly affected by the presence of the turbulators. Staggered arrangement gains high Nusselt number, also the lower and upper arrangements have higher Nusselt number than plane duct. High Reynolds number (higher air inlet velocity will enhance the Nusselt number. Increase in ribs height will enhance the heat transfer as it works as surface area and turbulator at the same time.

  6. Full-scale field measurements of wave kinematics and vortex shedding induced vibrations in slender structures

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, J.R.; Pedersen, B. [LIC Engineering (Denmark); Nielsen, K.G.; Bryndum, M.B. [Dansk Hydraulisk Inst., (Denmark)

    1999-07-01

    Vortex induced vibrations of pipes generated by high and steep waves in the crest zone have been investigated by full-scale field testing, An instrumented cylinder has been suspended from a platform bridge in the North Sea. Adjacent to it a newly developed acoustic system capable of measuring the three dimensional wave kinematics was placed. The kinematics were measured all the way up to the instantaneous water surface elevation, i.e. it included the wave crest. The paper presents time series of measured water surface elevations and orbital velocities at the instantaneous water surface together with the response of the instrumented pipe in a storm. The sea state was measured to H{sub s} {approx_equal} 6.4 m and T{sub z} = 8.4 sec. It was clearly seen that vortex shedding locking-on takes place in some of the rather high modes at the passage of large waves. Intermittent cross flow vortex induced vibrations of between 0.3 diameters up to 0.8 diameters were found in the 8th and the 4th mode respectively. The Reynolds numbers and KC numbers were up to 5 . 10{sup 5} and KC {approx} 250 respectively. (au)

  7. Sheath Structure of an Electronegative Plasma

    Institute of Scientific and Technical Information of China (English)

    王正汹; 刘金远; 邹秀; 刘悦; 王晓钢

    2003-01-01

    We investigate the sheath structure of an electronegative plasma at steady state with the assumptions of cold positive ions and hot negative ions. The modified Bohm criterion is obtained with the Sagdeev potential by introducing a modified ion sound velocity. At the same time the electric potential, net space charge and particles densities in the sheath are analysed in several cases of different temperature ratios of electrons to negative ions and different density ratios of negative ions to positive ions.

  8. Stress Analysis for the Formation of En Echelon Veins and Vortex Structures: a Lesson Plan with a Brief Illumination

    Science.gov (United States)

    Zeng, Z.; Birnbaum, S.

    2006-12-01

    An English lesson plan exploring stress analysis of En Echelon veins and vortex structures used in the bilingual course in Structural Geology at the National Science Training Base of China is described. Two mechanical models are introduced in class and both mathematical and mechanical analyses are conducted. Samples, pictures and case studies are selected from Britain, Switzerland, and China. These case studies are augmented from the previous research results of the first author. Students are guided through the entire thought process, including methods and procedures used in the stress analysis of geologic structures. The teaching procedures are also illustrated. The method showed is effective to help students to get the initial knowledge of quantitative analysis for the formation of geological structures. This work is supported by the Ministry of Education of China, the Education Bureau of Hubei Province of China and China University of Geosciences (Wuhan).

  9. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    Science.gov (United States)

    2015-10-16

    a) Main vortex structures developing on a typical submarine hull; (b) Schematic illustrating a horseshoe vortex at a wing-body junction of a " Rood ...secondary vortices. Firstly, looking at Figure 7, showing only the secondary vortices being visualized by our technique , we see that a tongue of secondary

  10. Spatially evolving vortex-gas turbulent free shear layers: Part 2. Coherent structure dynamics in vorticity and concentration fields

    CERN Document Server

    Suryanarayanan, Saikishan

    2015-01-01

    This paper examines the mechanisms of coherent structure interactions in spatially evolving turbulent free shear layers at different values of the velocity ratio parameter {\\lambda}=$(U_1-U_2)/(U_1+U_2)$, where $U_1$ and $U_2 (\\leq U_1)$ are the free stream velocities on either side of the layer. The study employs the point-vortex (or vortex-gas) model presented in part I (arXiv:1509.00603) which predicts spreading rates that are in the close neighborhood of results from most high Reynolds number experiments and 3D simulations. The present (2D) simulations show that the well-known steep-growth merger events among neighboring structures of nearly equal size (Brown & Roshko 1974) account for more than 70% of the overall growth at {\\lambda}< 0.63. However the relative contribution of such 'hard merger' events decreases gradually with increasing {\\lambda}, and accounts for only 27% of the total growth at the single-stream limit ({\\lambda} = 1). It is shown that the rest of the contribution to layer growth ...

  11. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FREE SURFACE VORTEX

    Institute of Scientific and Technical Information of China (English)

    LI Hai-feng; CHEN Hong-xun; MA Zheng; ZHOU Yi

    2008-01-01

    An experimental model was set up to investigate the formation and evolution of the free surface vortex. A Particle Image Velocimetry (PIV) was used to measure the free surface vortex flow field at different development stages. Flow visualization was used to locate the vortex position and find its structure. Empirical formulas about the critical submergence and the whole field structure were obtained. It is found that the tangential velocity distribution is similar to that of the Rankine vortex and the radial velocity changes little in the vortex functional scope. Vortex starts from the free surface and gradually intensifies to air entrainment vortex. The vortex core moves during the formation and evolution of the free surface vortex. Based on the experimental model, the vortex position and structure were predicted by numerical simulation combined with a vortex model and compared with that of the experiments, which shows satisfactory agreement.

  12. Formation of Vortex Structures in the Prenozzle Space of an Engine with a Vectorable Thrust Nozzle

    Science.gov (United States)

    Volkov, K. N.; Emel'yanov, V. N.; Denisikhin, S. V.

    2016-05-01

    A numerical simulation of the hydrodynamic effects arising in the process of work of the vectorable thrust nozzle of a solid-propellant rocket engine has been performed. The fields of the flows of combustion products in the channel of a charge, the prenozzle space, and the nozzle unit were calculated for different angles of vectoring of the nozzle. The distributions of the gasdynamic parameters of the flow of combustion products in the prenozzle space, corresponding to their efflux from the cylindrical and star-shaped channels of charges, were compared. The formation of a vortex flow in the neighborhood of the back cover of the nozzle was considered.

  13. Clouds and hazes vertical structure of a Saturn's giant vortex from Cassini/VIMS-V data analysis

    Science.gov (United States)

    Oliva, F.; Adriani, A.; Moriconi, M. L.; Liberti, G. L.; D'Aversa, E.; Filacchione, G.

    2016-11-01

    We studied the evolution of a giant tropospheric vortex formed in the wake of the storm that encircled Saturn from December 2010 to July 2011 (Fletcher et al. [2011a] Science, 332, 1413-1417; Fletcher et al. [2012] Icarus, 221, 560-586; Sánchez-Lavega et al. [2011] Nature, 475, 71-74; Sánchez-Lavega et al. [2012] Icarus, 220, 561-576; Sayanagi et al. [2013] Icarus, 223, 460-478; Fischer et al. [2011] Nature, 475, 75-77) taking advantage of the observations acquired by the instruments on board the Cassini spacecraft. In particular, the Visual and Infrared Mapping Spectrometer (VIMS) imaged the vortex several times. In this work we analyzed two observations registered by the visual channel of VIMS (VIMS-V) on 08/24/2011 and 01/04/2012, both after the active phase of the storm, and characterized quantitatively the vertical structure of the clouds and hazes above the vortex. Until now, VIMS-V dataset has been scarcely exploited to perform such an analysis. The IR channel of VIMS has always been preferred since it covers wavelengths containing spectral information on a wider range of altitudes in the atmosphere. Nevertheless, in our analysis we investigate the information content of VIMS-V observations and demonstrate that the covered spectral range contains valuable information that are helpful to improve our knowledge on the properties of Saturn's upper atmosphere. We developed a forward radiative transfer model to describe Saturn's atmosphere and simulate VIMS-V spectra in the 0.35-1.05 μm wavelength range. The analysis has then been performed by means of an inverse model that we built on the basis of the Bayesian approach. Spatial distributions of effective radii, column number densities and top pressures of the cloud decks have been mapped and as a by-product of our analysis we also suggest a modified spectral shape for the imaginary part of the refractive index of the tropospheric haze, with respect to the shape described in the study of Karkoschka and Tomasko

  14. Convective cells and their relationship to vortex diffusion in the Wisconsin Levitated Octupole

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, A.B.

    1978-01-01

    The purpose of this thesis is two-fold: first, to present floating potential structure for different plasmas and operating parameters in the Wisconsin Levitated Octupole. Second, to show how the observed potential structure can be used, within the framework of vortex diffusion, to account for enhanced diffusion in the appropriate parameter regimes.

  15. Resistive interchange modes and plasma flow structures

    Science.gov (United States)

    Paccagnella, Roberto

    2011-10-01

    Interchange modes are ubiquitous in magnetic confinement systems and are likely to determine or influence their transport properties. For example a good agreement between theory predictions for linear interchange modes and experimental results has been found recently in a Reverse Field Pinch device. In this work a set of magneto-hydro-dynamic (MHD) equations that describe the dynamical evolution for the pressure driven interchange modes in a magnetic confinement system are studied. Global and local solutions relevant for tokamaks and Reversed Field Pinches (RFPs) configurations are considered. The emphasis is especially in the characterization of the plasma flow structures associated with the dominant modes.

  16. Coherent structures in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Huld, T.; Nielsen, A.H.; Pécseli, H.L.;

    1991-01-01

    -band turbulent fluctuations is demonstrated by a conditional sampling technique. Depending on plasma parameters, the dominant structures can appear as monopole or multipole vortices, dipole vortices in particular. The importance of large structures for the turbulent plasma diffusion is discussed. A statistical...... analysis of the randomly varying plasma flux is presented....

  17. Fine velocity structures collisional dissipation in plasmas

    Science.gov (United States)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2016-04-01

    In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures

  18. The magnetic vortex gyration mediated by spin-polarized current in a confined off-centered nanocontact structure

    Science.gov (United States)

    Li, Huanan; Li, Dongfei; Wang, Yaxin; Hua, Zhong

    2017-02-01

    We study the magnetic vortex dynamical behaviors in a confined off-centered nanocontact system through micromagnetic simulations. It is found that the vortex core could be pinned when the nanocontact is shifted to large enough distance from the center of the nanodisk. We also find that the position of nanocontact exerts great influence on the vortex core gyration, including trajectory, eigenfrequency, excitation time, and instantaneous velocity. The simulations show that it is possible to utilize the nanocontact position to change the total effective potential energy of the system so as to realize both the pinning of the vortex core and the controllability of vortex core gyration. The characteristic gyration in this system is advantageous to control the polarity switching and other dynamical behaviors of magnetic vortex.

  19. Vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Chorin, A.J. [California Univ., Berkeley, CA (United States). Dept. of Mathematics]|[Lawrence Berkeley Lab., CA (United States)

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  20. Transverse and vortex domain wall structure in magnetic nanowires with uniaxial in-plane anisotropy.

    Science.gov (United States)

    Bryan, M T; Bance, S; Dean, J; Schrefl, T; Allwood, D A

    2012-01-18

    Micromagnetic and analytical models are used to investigate how in-plane uniaxial anisotropy affects transverse and vortex domain walls in nanowires where shape anisotropy dominates. The effect of the uniaxial anisotropy can be interpreted as a modification of the effective wire dimensions. When the anisotropy axis is aligned with the wire axis (θ(a) = 0), the wall width is narrower than when no anisotropy is present. Conversely, the wall width increases when the anisotropy axis is perpendicular to the wire axis (θ(a) = π/2). The anisotropy also affects the nanowire dimensions at which transverse walls become unstable. This phase boundary shifts to larger widths or thicknesses when θ(a) = 0, but smaller widths or thicknesses when θ(a) = π/2.

  1. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    Energy Technology Data Exchange (ETDEWEB)

    Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  2. Explosion of relativistic electron vortices in laser plasmas

    CERN Document Server

    Lezhnin, K V; Esirkepov, T Zh; Bulanov, S V; Gu, Y; Weber, S; Korn, G

    2016-01-01

    The interaction of high intensity laser radiation with underdense plasma may lead to the formation of electron vortices. Though being quasistationary on an electron timescales, these structures tend to expand on a proton timescale due to Coloumb repulsion of ions. Using a simple analytical model of a stationary vortex as initial condition, 2D PIC simulations are performed. A number of effects are observed such as vortex boundary field intensification, multistream instabilities at the vortex boundary, and bending of the vortex boundary with the subsequent transformation into smaller electron vortices.

  3. Shed Vortex Structure and Phase-Averaged Velocity Statistics in Symmetric/Asymmetric Turbulent Flat Plate Wakes

    Science.gov (United States)

    Rai, Man Mohan

    2017-01-01

    The near wake of a flat plate is investigated via direct numerical simulations (DNS). Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large theta divided by D (sub TE) values (theta is the boundary layer momentum thickness towards the end of the plate and D (sub TE) is the trailing edge thickness). In the present study the emphasis is on relatively thick plates with circular trailing edges (CTE) resulting in theta divided by D values less than one (D is the plate thickness and the diameter of the CTE), and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 x 10 (sup 6) and 10,000, respectively. Two cases are computed; one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and, a second with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained is of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor 1.27 weaker in terms of peak phase-averaged spanwise vorticity at first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x divided by D) that occurs nears the positive vortex cores. This behavior is

  4. Lagrangian coherent structures and plasma transport processes

    CERN Document Server

    Falessi, M V; Schep, T J

    2015-01-01

    A dynamical system framework is used to describe transport processes in plasmas embedded in a magnetic field. For periodic systems with one degree of freedom the Poincar\\'e map provides a splitting of the phase space into regions where particles have different kinds of motion: periodic, quasi-periodic or chaotic. The boundaries of these regions are transport barriers; i.e., a trajectory cannot cross such boundaries during the whole evolution of the system. Lagrangian Coherent Structure (LCS) generalize this method to systems with the most general time dependence, splitting the phase space into regions with different qualitative behaviours. This leads to the definition of finite-time transport barriers, i.e. trajectories cannot cross the barrier for a finite amount of time. This methodology can be used to identify fast recirculating regions in the dynamical system and to characterize the transport between them.

  5. Research on EM pulse protection property of plasma-microwave absorptive material-plasma sandwich structure

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A plasma-microwave absorptive material (MAM)-plasma sandwich structure is presented to protect the electronic device against high power electromagnetic pulse. The model of electromagnetic wave reflected by and transmitting through the structure is established. Based on the characteristic parameters of plasma generated by discharge and usual MAM, the electromagnetic transmissive properties of the sandwich structure are investigated by the method of finite difference in time domain. The results indicate that in a rather broad frequency range, the electromagnetic attenuations by the structure are obviously better than the sum of attenuations resulted from plasma and MAM respectively. The models and results presented are instructive for electromagnetic pulse protection.

  6. Dissipative nonlinear structures in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    K. A. Razumova

    2001-01-01

    Full Text Available A lot of different kinds of instabilities may be developed in high temperature plasma located in a strong toroidal magnetic field (tokamak plasma. Nonlinear effects in the instability development result in plasma self-organization. Such plasma has a geometrically complicated configuration, consisting of the magnetic surfaces imbedded into each other and split into islands with various characteristic numbers of helical twisting. The self-consistency of the processes means that the transport coefficients in plasma do not depend just on the local parameters, being a function of the whole plasma configuration and of the forces affecting it. By disrupting the bonds between separate magnetic surfaces filled with islands, one can produce zones of reduced transport in the plasma, i.e. “internal thermal barriers”, allowing one essentially to increase the plasma temperature and density.

  7. Course of organized structures in thermal plasma inside and outside argon plasma torch

    Science.gov (United States)

    Gruber, Jan; Sonsky, Jiri; Hlina, Jan

    2016-09-01

    Arc chamber of direct-current (dc) argon plasma torch and area just above the nozzle outside of this dc plasma torch were observed by hi-speed camera. System of reflecting mirrors and transparent silica arc chamber walls were used to obtain simultaneous records of both i) cathode area with electric arc inside the plasma torch and ii) nozzle exit with resulting plasma jet outside the plasma torch. Such experimental arrangement allowed us to track localized repeating patterns (organized structures) in the arc chamber and in the plasma flow. Identification of various organized structures - for different experimental conditions - according to their origin and typical development is presented in this paper. Impact of 300 Hz ripple in arc current was compared between different areas of the plasma. Additional simultaneous observation of plasma flow in the same system by series of photodiodes was used for verification of the results. The work was possible with institutional support RVO:61388998.

  8. Brownian vortexes

    Science.gov (United States)

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y.; Grier, David G.

    2009-07-01

    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle’s thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle’s fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power.

  9. Vortex transmutation.

    Science.gov (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  10. Vortex state in ferromagnetic nanoparticles

    Science.gov (United States)

    Betto, Davide; Coey, J. M. D.

    2014-05-01

    The evolution of the magnetic state of a soft ferromagnetic nanoparticle with its size is usually thought to be from superparamagnetic single domain to blocked single domain to a blocked multidomain structure. Néel pointed out that a vortex configuration produces practically no stray field at the cost of an increase in the exchange energy, of the order of RJS2lnR /c, where JS2 is the bond energy, R is the particle radius, and c is of the order of the exchange length. A vortex structure is energetically cheaper than single domain when the radius is greater than a certain value. The correct sequence should include a vortex configuration between the single domain and the multidomain states. The critical size is calculated for spherical particles of four important materials (nickel, magnetite, permalloy, and iron) both numerically and analytically. A vortex state is favored in materials with high magnetisation.

  11. Optimization of vortex pinning at grain boundaries on ex-situ MgB2 bulks synthesized by spark plasma sintering

    Science.gov (United States)

    Naito, Tomoyuki; Endo, Yuri; Fujishiro, Hiroyuki

    2017-09-01

    Grain boundaries are well known to be the predominant pinning centers in MgB2 superconductors. To study the effects of grain boundaries on the trapped field properties of MgB2 bulk, we prepared MgB2 bulks by a spark plasma sintering method using a ball-milled starting powder. The trapped field was maximized for the bulk made from the ball-milled powder with crystallite size, τ, of 27 nm; the highest trapped field, {B}{{T}}, of 2.3 T achieved at 19.3 K was 1.2 times larger than that of the bulk made from the non ball-milled powder (τ = 50 nm). The degradation of the trapped field for the bulk from finer powder (τ = 6 nm) originated mainly from the lowered {T}{{c}}. The critical current density, {J}{{c}}, and the pinning force density, {F}{{p}}, were also maximized for the bulk from τ = 27 nm. The competition between the increase of the numerical density of grain boundaries and the degradation of superconductivity determined the vortex pinning properties for the MgB2 bulks with mechanically refined grains. The scaling analysis for the pinning force density suggested that the change in the dimension of the dominant pinning source from 2D (surface) to 0D (point) was induced by grain refining. Although the nanometric impurity particles such as MgB4, MgO and Mg-B-O were created in the bulk during both ball-milling and spark plasma sintering processes, we considered the point-contact between the refined grains was the predominant point pinning source.

  12. Evolution of fast magnetoacoustic pulses in randomly structured coronal plasmas

    CERN Document Server

    Yuan, D; Nakariakov, V M; Li, B; Keppens, R

    2014-01-01

    Magnetohydrodynamic waves interact with structured plasmas and reveal the internal magnetic and thermal structures therein, thereby having seismological applications in the solar atmosphere. We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-$\\beta$ plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. A randomly structured plasma acts as a dispersive medium for a fast magnetoacoustic pulse, causing amplitude attenuation and broadening of the pulse width. After the passage of the main pulse, secondary propagating and standing fast waves appear in the plasma. Width evolution of both...

  13. Electronic Structure of Dense Plasmas by X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Rogers, F J; Pollaine, S M; Froula, D H; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R; Landen, O L

    2003-10-07

    We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

  14. Control of powerful microwaves using EBG plasma structures

    Science.gov (United States)

    Simonchik, Leanid; Callegari, Thierry; Sokoloff, Jerome; Usachonak, Maxim

    2016-09-01

    Glow discharge plasmas have great potential for application as control elements in microwave devices designed on the basis of electromagnetic band gap (EBG) structures. In this report, a plasma control of powerful microwave propagation by means of 1D and 2D EBG structures is under investigation. Three pulsed discharges in argon (or helium) at atmospheric pressure are applied in the capacity of plasma inhomogeneities. Temporal behavior of electron concentration in discharge is determined. The transmission spectra of 1D EBG structure formed solely by plasma in the X-waveguide are measured. The amplitudes of short ( 200 ns) and powerful (50 kW) microwave pulses at frequency of 9.15 GHz are strongly suppressed (more than on 40 dB) when plasma structure exists. The propagation of these powerful microwave pulses through the triangular metallic 2D EBG structure with the plasma control elements is investigated, too. It is shown that the transmission of the 2D EBG structure at the angle of 45o ceases quickly (during a few tenth of nanoseconds) when plasma acts as a compensator of defect in the front row of the structure. On the contrary, the transmission arises quickly once plasma acts as an additional defect. The support of BRFBR-CNRS grant F15F-004 is acknowledged.

  15. Sculptured 3D twister superlattices embedded with tunable vortex spirals.

    Science.gov (United States)

    Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Denz, Cornelia; Joseph, Joby

    2011-09-01

    We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

  16. Large vortex-like structure of dipole field in computer models of liquid water and dipole-bridge between biomolecules.

    Science.gov (United States)

    Higo, J; Sasai, M; Shirai, H; Nakamura, H; Kugimiya, T

    2001-05-22

    We propose a framework to describe the cooperative orientational motions of water molecules in liquid water and around solute molecules in water solutions. From molecular dynamics (MD) simulation a new quantity "site-dipole field" is defined as the averaged orientation of water molecules that pass through each spatial position. In the site-dipole field of bulk water we found large vortex-like structures of more than 10 A in size. Such coherent patterns persist more than 300 ps although the orientational memory of individual molecules is quickly lost. A 1-ns MD simulation of systems consisting of two amino acids shows that the fluctuations of site-dipole field of solvent are pinned around the amino acids, resulting in a stable dipole-bridge between side-chains of amino acids. The dipole-bridge is significantly formed even for the side-chain separation of 14 A, which corresponds to five layers of water. The way that dipole-bridge forms sensitively depends on the side-chain orientations and thereby explains the specificity in the solvent-mediated interactions between biomolecules.

  17. Effects of Bulbous Bow on Cross-Flow Vortex Structures Around a Streamlined Submersible Body at Intermediate Pitch Maneuver:A Numerical Investigation

    Institute of Scientific and Technical Information of China (English)

    Saeed Abedi; Ali Akbar Dehghan; Ali Saeidinezhad; Mojtaba Dehghan Manshadi

    2016-01-01

    A flow field around a streamlined body at an intermediate angle of incidence is dominated by cross-flow separation and vortical flow fields. The separated flow leads to a pair of vortices on the leeside of the body; therefore, it is essential to accurately determine this pair and estimate its size and location. This study utilizes the element-based finite volume method based on RANS equations to compute a 3D axisymmetric flow around a SUBOFF bare submarined hull. Cross-flow vortex structures are then numerically simulated and compared for a submarine with SUBOFF and DRDC STR bows. Computed results of pressure and shear stress distribution on the hull surface and the strength and locations of the vortex structures are presented at an intermediate incidence angle of 20°. A wind tunnel experiment is also conducted to experimentally visualize the vortex structures and measure their core locations. These experimental results are compared with the numerical data, and a good agreement is found.

  18. Effects of bulbous bow on cross-flow vortex structures around a streamlined submersible body at intermediate pitch maneuver: A numerical investigation

    Science.gov (United States)

    Abedi, Saeed; Dehghan, Ali Akbar; Saeidinezhad, Ali; Manshadi, Mojtaba Dehghan

    2016-03-01

    A flow field around a streamlined body at an intermediate angle of incidence is dominated by cross-flow separation and vortical flow fields. The separated flow leads to a pair of vortices on the leeside of the body; therefore, it is essential to accurately determine this pair and estimate its size and location. This study utilizes the element-based finite volume method based on RANS equations to compute a 3D axisymmetric flow around a SUBOFF bare submarined hull. Cross-flow vortex structures are then numerically simulated and compared for a submarine with SUBOFF and DRDC STR bows. Computed results of pressure and shear stress distribution on the hull surface and the strength and locations of the vortex structures are presented at an intermediate incidence angle of 20°. A wind tunnel experiment is also conducted to experimentally visualize the vortex structures and measure their core locations. These experimental results are compared with the numerical data, and a good agreement is found.

  19. Electronegative Plasma Sheath Structure in a Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiu; LIU Jin-Yuan; WANG Zheng-Xiong; GONG Ye; LIU Yue; WANG Xiao-Gang

    2004-01-01

    @@ The structure of an electronegative plasma sheath in an oblique magnetic field is investigated with a fluid model. We assume the system consists of hot electrons and negative ions as well as cold positive ions. Densities of particles and distributions of the spacious potential in various states of magnetic field are studied. The result shows that the existence of magnetic field and negative ions has great effects on the plasma sheath structures. In addition, the effects of negative ion density and temperature on the structure of the electronegative plasma sheath are discussed.

  20. Vortex tube reconnection at Re = 104

    Science.gov (United States)

    van Rees, Wim M.; Hussain, Fazle; Koumoutsakos, Petros

    2012-07-01

    We present simulations of the long-time dynamics of two anti-parallel vortex tubes with and without initial axial flow, at Reynolds number Re = Γ/ν = 104. Simulations were performed in a periodic domain with a remeshed vortex method using 785 × 106 particles. We quantify the vortex dynamics of the primary vortex reconnection that leads to the formation of elliptical rings with axial flow and report for the first time a subsequent collision of these rings. In the absence of initial axial flow, a -5/3 slope of the energy spectrum is observed during the first reconnection of the tubes. The resulting elliptical vortex rings experience a coiling of their vortex lines imparting an axial flow inside their cores. These rings eventually collide, exhibiting a -7/3 slope of the energy spectrum. Studies of vortex reconnection with an initial axial flow exhibit also the -7/3 slope during the initial collision as well as in the subsequent collision of the ensuing elliptical vortex rings. We quantify the detailed vortex dynamics of these collisions and examine the role of axial flow in the breakup of vortex structures.

  1. Three-dimensional vortex wake structure of a flapping-wing micro aerial vehicle in forward flight configuration

    Science.gov (United States)

    Percin, M.; van Oudheusden, B. W.; Eisma, H. E.; Remes, B. D. W.

    2014-09-01

    This paper investigates the formation and evolution of the unsteady three-dimensional wake structures generated by the flapping wings of the DelFly II micro aerial vehicle in forward flight configuration. Time-resolved stereoscopic particle image velocimetry (Stereo-PIV) measurements were carried out at several spanwise-aligned planes in the wake, so as to allow a reconstruction of the temporal development of the wake of the flapping wings throughout the complete flapping cycle. Simultaneous thrust-force measurements were performed to explore the relation between the wake formation and the aerodynamic force generation mechanisms. The three-dimensional wake configuration was subsequently reconstructed from the planar PIV measurements by two different approaches: (1) a spatiotemporal wake reconstruction obtained by convecting the time-resolved, three-component velocity field data of a single measurement plane with the free-stream velocity; (2) for selected phases in the flapping cycle a direct three-dimensional spatial wake reconstruction is interpolated from the data of the different measurement planes, using a Kriging regression technique. Comparing the results derived from both methods in terms of the behavior of the wake formations, their phase and orientation indicate that the spatiotemporal reconstruction method allows to characterize the general three-dimensional structure of the wake, but that the spatial reconstruction method can reveal more details due to higher streamwise resolution. Comparison of the wake reconstructions for different values of the reduced frequency allows assessing the impact of the flapping frequency on the formation and interaction characteristics of the vortical structures. For low values of the reduced frequency, it is observed that the vortex structure formation of instroke and outstroke is relatively independent of each other, but that increasing interaction occurs at higher reduced frequencies. It is further shown that there is a

  2. Numerical Study of Mechanism of U-shaped Vortex Formation

    CERN Document Server

    Lu, Ping; Liu, Chaoqun

    2014-01-01

    This paper illustrates the mechanism of U-shaped vortex formation which is found both by experiment and DNS. The main goal of this paper is to explain how the U-shaped vortex is formed and further develops. According to the results obtained by our direct numerical simulation with high order accuracy, the U-shaped vortex is part of the coherent vortex structure and is actually the tertiary streamwise vortices induced by the secondary vortices. The new finding is quite different from existing theories which describe that the U-shaped vortex is newly formed as the head of young turbulence spot and finally break down to small pieces. In addition, we find that the U-shaped vortex has the same vorticity sign as the original {\\lambda}-shaped vortex tube legs and serves as a second neck to supply vorticity to the ringlike vortex when the original vortex tube is stretched and multiple rings are generated.

  3. New omega vortex identification method

    Science.gov (United States)

    Liu, ChaoQun; Wang, YiQian; Yang, Yong; Duan, ZhiWei

    2016-08-01

    A new vortex identification criterion called Ω-method is proposed based on the ideas that vorticity overtakes deformation in vortex. The comparison with other vortex identification methods like Q-criterion and λ 2-method is conducted and the advantages of the new method can be summarized as follows: (1) the method is able to capture vortex well and very easy to perform; (2) the physical meaning of Ω is clear while the interpretations of iso-surface values of Q and λ 2 chosen to visualize vortices are obscure; (3) being different from Q and λ 2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, Ω is pretty universal and does not need much adjustment in different cases and the iso-surfaces of Ω=0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated; (4) both strong and weak vortices can be captured well simultaneously while improper Q and λ 2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared; (5) Ω=0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate Ω, the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow, the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.

  4. Birth and evolution of an optical vortex

    CERN Document Server

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-01-01

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  5. Topology of Vortex-Wing Interaction

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  6. Vortex loops entry into type-II superconductors

    CERN Document Server

    Samokhvalov, A V

    1996-01-01

    The magnetic field distribution, the magnetic flux, and the free energy of an Abrikosov vortex loop near a flat surface of type--II superconductors are calculated in the London approximation. The shape of such a vortex line is a semicircle of arbitrary radius. The interaction of the vortex half--ring and an external homogeneous magnetic field applied along the surface is studied. The magnitude of the energy barrier against the vortex expansion into superconductor is found. The possibilities of formation of an equilibrium vortex line determined by the structure of the applied magnetic field by creating the expanding vortex loops near the surface of type--II superconductor are discussed.

  7. Zurek-Kibble domain structures: The dynamics of spontaneous vortex formation in annular Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Rivers, R.J.

    2002-01-01

    Phase transitions create a domain structure with defects, which has been argued by Zurek and Kibble (ZK) to depend in a characteristic way on the quench rate. We present an experiment to measure the ZK scaling exponent sigma. Using long symmetric Josephson tunnel junctions, for which the predicted...

  8. Small angle neutron diffraction studies of vortex structures in high temperature superconductors

    DEFF Research Database (Denmark)

    Cubitt, R.; Forgan, E.M.; Wylie, M.T.

    1994-01-01

    We have used neutron scattering to provide direct information about flux structures in the bulk of crystals of the superconductor Bi2Sr2CaCu2O8. Its extremely high effective mass anisotropy, makes the flux lattice susceptable to melting and also to decomposition into 'pancake' vortices, which would...

  9. Multiple vortex structures in the wake of a rectangular winglet in ground effect

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Okulov, Valery L.

    2016-01-01

    between the axial and the rotational flow. In the current work, even the longitudinal secondary structures detected from measured streamwise vorticity display similar behavior. A regime map depicting the observed stable far wake states of the multiple vortices as a function of winglet height and angle...

  10. Rossby vortices, spiral structures, solitons astrophysics and plasma physics in shallow water experiments

    CERN Document Server

    Nezlin, Mikhail V

    1993-01-01

    This book can be looked upon in more ways than one. On the one hand, it describes strikingly interesting and lucid hydrodynamic experiments done in the style of the "good old days" when the physicist needed little more than a piece of string and some sealing wax. On the other hand, it demonstrates how a profound physical analogy can help to get a synoptic view on a broad range of nonlinear phenomena involving self-organization of vortical structures in planetary atmo­ spheres and oceans, in galaxies and in plasmas. In particular, this approach has elucidated the nature and the mechanism of such grand phenomena as the Great of galaxies. A number of our Red Spot vortex on Jupiter and the spiral arms predictions concerning the dynamics of spiral galaxies are now being confirmed by astronomical observations stimulated by our experiments. This book is based on the material most of which was accumulated during 1981-88 in close cooperation with our colleagues, experimenters from the Plasma Physics Department of the...

  11. Numerical Investigation of Flow Separation Control on a Highly Loaded Compressor Cascade by Plasma Aerodynamic Actuation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaohu; LI Yinghong; WU Yun; ZHU Tao; LI Yiwen

    2012-01-01

    To discover the characteristic of separated flows and mechanism of plasma flow control on a highly loaded compressor cascade,numerical investigation is conducted.The simulation method is validated by oil flow visualization and pressure distribution.The loss coefficients,streamline patterns,and topology structure as well as vortex structure are analyzed.Results show thai the numbers of singular points increase and three pairs of additional singular points of topology structure on solid surface generate with the increase of angle of attack,and the total pressure loss increases greatly.There are several principal vortices inside the cascade passage.The pressure side leg of horse-shoe vortex coexists within a specific region together with passage vortex,but finally merges into the latter.Comer vortex exists independently and does not evolve from the suction side leg of horse-shoe vortex.One pair of radial coupling-vortex exists near blade trailing edge and becomes the main part of backflow on the suction surface.Passage vortex interacts with the concentrated shedding vortex and they evolve into a large-scale vortex rotating in the direction opposite to passage vortex.The singular points and separation lines represent the basic separation feature of cascade passage.Plasma actuation has better effect at low freestream velocity,and the relative reductions of pitch-averaged total pressure loss coefficient with different actuation layouts of five and two pairs of electrodes are up to 30.8% and 26.7% while the angle of attack is 2°.Plasma actuation changes the local topology structure,but does not change the number relation of singular points.One pair of additional singular point of topology structure generates with plasma actuation and one more reattachment line appears,both of which break the separation line on the suction surface.

  12. Numerical modeling of roll structures in mesoscale vortexes over the Black Sea

    CERN Document Server

    Iarova, D A

    2014-01-01

    This paper is a case study of horizontal atmospheric rolls that formed over the Black Sea on 16 August 2007. The rolls were discovered in WRF modeling results for a mesoscale cyclone that originated over the sea on 15 August 2007. The roll formation mechanisms, such as Rayleigh-Benard convective instability, dynamic instability, advection and stretching of vertical velocity field inhomogeneities, are considered. It is shown that indeed convective instability played an important role in the roll formation but dynamic instability did not occur. In order to distinguish other possible mechanisms of the roll formation numerical experiments were performed. In these experiments sea surface temperature in the initial conditions was decreased in order to prevent convective instability. Even though convective instability was suppressed roll-like structures still appeared in the modeling results, although their height and circulation velocity were smaller than in the control run. It was found that these structures were ...

  13. Investigating aspects of dark spot structure and environment in relation to vortex drift on the Ice Giants

    Science.gov (United States)

    Le Beau, Raymond P.; Palotai, Csaba J.

    2016-10-01

    Geophysical vortices called Dark Spots, whether directly observed like the original Great Dark Spot (GDS-89) or inferred as with "The Berg" cloud feature, that drift meridionally are distinctive atmospheric features of Uranus and Neptune. Numerical simulations of GDS-89 suggest a possible link between the environmental gradient of potential vorticity and the vortex drift rate (starting with LeBeau and Dowling, 1998). This mechanism could be similar to the "beta gyre" concept proposed for hurricane drift (Fiorino and Elsberry, 1989) in which the advection of environmental potential vorticity by and about the vortex generates a residual vortex dipole, effectively propelling the original vortex away or towards the equator. In the case of hurricanes, this effect is considered one part of the overall environmental wind that forms the steering flow driving hurricane drift. For the dark spots, such a gyre might be the dominant mechanism for north-south motions.Similar numerical simulations of vortices on Uranus have not been fully consistent with the GDS-89 results. Some vortices like the original Uranus Dark Spot (UDS) do appear to favor regions of low environmental PV gradients, which in simulations suggest increased stability (Hammel et al., 2009). However, even near-zero PV gradients result in significant drift on Uranus in contrast to Neptune. The effect of companion clouds on vortex drift also requires greater understanding, particularly on Uranus.To better understand these vortex dynamics, a parametric approach is now being applied in which vortex characteristics such as size and wind strength as well as environmental conditions are varied through a range of possible values. While these simulations are not necessarily designed to capture a particular known dark spots, the goal of these simulations is to determine what conditions lead to what types of vortex behavior.References:M. Fiorino and R.L. Elsberry. Journal of the Atmospheric Sciences 46:975-990, 1989H

  14. Effect of vortex generators on the power conversion performance and structural dynamic loads of the Mod-2 wind turbine

    Science.gov (United States)

    Sullivan, T. L.

    1984-01-01

    Applying vortex generators from 20 to 100 percent span of the Mod-2 rotor resulted in a projected increase in annual energy capture of 20 percent and reduced the wind speed at which rated power is reached by nearly 3 m/sec. Application of vortex generators from 20 to 70 percent span, the fixed portion of the Mod-2 rotor, resulted in a projected increase in annual energy capture of about half this. This improved performance came at the cost of a small increase in cyclic blade loads in below rated power conditions. Cyclic blade loads were found to correlate well with the change in wind speed during one rotor revolution.

  15. Vortex bursting and tracer transport of a counter-rotating vortex pair

    Science.gov (United States)

    Misaka, T.; Holzäpfel, F.; Hennemann, I.; Gerz, T.; Manhart, M.; Schwertfirm, F.

    2012-02-01

    Large-eddy simulations of a coherent counter-rotating vortex pair in different environments are performed. The environmental background is characterized by varying turbulence intensities and stable temperature stratifications. Turbulent exchange processes between the vortices, the vortex oval, and the environment, as well as the material redistribution processes along the vortex tubes are investigated employing passive tracers that are superimposed to the initial vortex flow field. It is revealed that the vortex bursting phenomenon, known from photos of aircraft contrails or smoke visualization, is caused by collisions of secondary vortical structures traveling along the vortex tube which expel material from the vortex but do not result in a sudden decay of circulation or an abrupt change of vortex core structure. In neutrally stratified and weakly turbulent conditions, vortex reconnection triggers traveling helical vorticity structures which is followed by their collision. A long-lived vortex ring links once again establishing stable double rings. Key phenomena observed in the simulations are supported by photographs of contrails. The vertical and lateral extents of the detrained passive tracer strongly depend on environmental conditions where the sensitivity of detrainment rates on initial tracer distributions appears to be low.

  16. Fine structure of charge exchange lines observed in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ida, K.; Nishimura, S. [National Inst. for Fusion Science, Nagoya (Japan); Kondo, K.

    1997-01-01

    The influence of the fine structure of charge exchange lines appears only at the plasma edge or in the recombining phase where the ion temperature is low enough. The observed spectra in Li III and C VI are consistent with the sum of fine-structure components populated by statistical weights (assuming complete l-mixing) not by direct charge exchange cross sections. Some discrepancy was observed in the intensity ratio of fine-structure components between the observation and calculation for C VI in the recombining phase. The fine-structure of charge exchange lines gives an apparent Doppler shift in plasma rotation velocity measurement using charge exchange spectroscopy. (author)

  17. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.

    2006-01-01

    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...

  18. Contrasting vortex-gyration dispersions for different lattice bases in one-dimensional magnetic vortex arrays

    Science.gov (United States)

    Han, Dong-Soo; Jeong, Han-Byeol; Kim, Sang-Koog

    2013-09-01

    We performed micromagnetic numerical and analytical calculations in studying the effects of change in the primitive unit cells of one-dimensional (1D) vortex arrays on collective vortex-gyration dispersion. As the primitive basis, we consider alternating constituent materials (NiMnSb vs. Permalloy) and alternating dimensions including constituent disk diameter and thickness. In the simplest case, that of one vortex-state disk of given dimensions and single material in the primitive cell, only a single branch of collective vortex-gyration dispersion appears. By contrast, two constituent disks' different alternating materials, thicknesses, and diameters yield characteristic two-branch dispersions, the band widths and gaps of which differ in each case. This work offers not only an efficient means of manipulating collective vortex-gyration band structures but also a foundation for the development of a rich variety of 1D or 2D magnonic crystals and their band structures based on dipolar-coupled-vortex arrays.

  19. Magnetohydrodynamic Vortex Behavior in Free-Surface Channel Flow

    Science.gov (United States)

    Kubricht, J.; Rhoads, J.; Spence, E.; Ji, H.

    2011-10-01

    Flowing liquid plasma-facing systems have been proposed for fusion devices due to their structural consistency and capability to withstand enormous heat fluxes. In support of these designs, the effects of magnetic field on the thermal mixing of conductive fluids need to be studied and understood. The Princeton Liquid Metal Experiment (LMX) consists of a free-surface, externally driven channel flow subjected to a strong vertical magnetic field. LMX uses an infrared camera and non-intrusive heat signatures to visually study the vortex street of a vertical cylinder while an array of potential probes has been installed to map the velocity profile for varying magnetic field strengths. Our studies show a decrease in surface activity with increasing field strength as well as distinct changes in vortex behavior. Velocity distributions across the channel are compared with infrared observations and the relationship between Strouhal number and magnetic field strength is examined.

  20. Coherent phase space matching for staging plasma and traditional accelerator using longitudinally tailored plasma structure

    CERN Document Server

    Xu, X L; Zhang, C J; Li, F; Wan, Y; Hua, J F; Pai, C -H; Lu, W; Yu, P; An, W; Mori, W B; Joshi, C; Hogan, M J

    2014-01-01

    For the further development of plasma based accelerators, phase space matching between plasma acceleration stages and between plasma stages and traditional accelerator components becomes a very critical issue for high quality high energy acceleration and its applications in light sources and colliders. Without proper matching, catastrophic emittance growth in the presence of finite energy spread may occur when the beam propagating through different stages and components due to the drastic differences of transverse focusing strength. In this paper we propose to use longitudinally tailored plasma structures as phase space matching components to properly guide the beam through stages. Theoretical analysis and full 3-dimensional particle-in-cell simulations are utilized to show clearly how these structures may work in four different scenarios. Very good agreements between theory and simulations are obtained.

  1. SAUSAGE OSCILLATIONS OF CORONAL PLASMA STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Nakariakov, V. M.; Hornsey, C. [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Melnikov, V. F., E-mail: V.Nakariakov@warwick.ac.uk [Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, 196140 St Petersburg (Russian Federation)

    2012-12-20

    The dependence of the period of sausage oscillations of coronal loops on length together with the depth and steepness of the radial profile are determined. We performed a parametric study of linear axisymmetric fast magnetoacoustic (sausage) oscillations of coronal loops modeled as a field-aligned low-{beta} plasma cylinder with a smooth inhomogeneity of the plasma density in the radial direction. The density decreases smoothly in the radial direction. Sausage oscillations are impulsively excited by a perturbation of the radial velocity, localized at the cylinder axis and with a harmonic dependence on the longitudinal coordinate. The initial perturbation results in either a leaky or a trapped sausage oscillation, depending upon whether the longitudinal wavenumber is smaller or greater than a cutoff value, respectively. The period of the sausage oscillations was found to always increase with increasing longitudinal wavelength, with the dependence saturating in the long-wavelength limit. Deeper and steeper radial profiles of the Alfven speed correspond to more efficient trapping of sausage modes: the cutoff value of the wavelength increases with the steepness and the density (or Alfven speed) contrast ratio. In the leaky regime, the period is always longer than the period of a trapped mode of a shorter wavelength in the same cylinder. For shallow density profiles and shorter wavelengths, the period increases with wavelength. In the long-wavelength limit, the period becomes independent of the wavelength and increases with the depth and steepness of the radial profile of the Alfven speed.

  2. Electric-Arc Plasma Installation for Preparing Nanodispersed Carbon Structures

    Institute of Scientific and Technical Information of China (English)

    P. STEFANOV; D. GARLANOV; G. VISSOKOV

    2008-01-01

    An electric-arc plasma installation operated in the hidden anode arrangement is constructed and used for the preparation of carbon nanostructures. A contracted plasma arc gen-erated by a plasma torch using an inert gas is used as heat source. The average mass temperature of arc is higher than 104 K, while its power density, which is directly transferred onto the electrode (anode), is ~ 2 kW/mm2. The anode contact area formed on the electrode moves against the arc by way of shifting the electrode and is hidden completely in the interior of plasma gas stream moving towards it. As a result of both the direct plasma attack and the opposite movement of streams in the hidden anode contact area, a temperature higher than 6000 K is reached. Thus, intensive vaporization takes place, which forms a saturated plasma-gas-aerosol phase of the initial material of electrode (anode). This gas phase is mixed in and carried by the plasma stream. Over that mixed plasma stream, a controlled process of quenching (fixation) is carried out by twisted turbulent fluid streams. After the fixation, the resultant carbon nano-structures are caught by a filter and collected in a bunker.

  3. Ion structure in dense plasmas: MSA versus HNC

    Energy Technology Data Exchange (ETDEWEB)

    Wuensch, K; Vorberger, J; Gericke, D O [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)], E-mail: k.wuensch@warwick.ac.uk

    2009-05-29

    We present results for the ionic structure in dense, moderately to strongly coupled plasmas using two models: the mean spherical approximation (MSA) and the hypernetted chain (HNC) approach. While the first method allows for an analytical solution, the latter has to be solved iteratively. Independent of the coupling strength, the results show only small differences when the ions are considered to form an unscreened one-component plasma (OCP) system. If the electrons are treated as a polarizable background, the different ways to incorporate the screening yield, however, large discrepancies between the models, particularly for more strongly coupled plasmas.

  4. Scanning transmission X-ray microscop e observation and quantitative study of magnetic vortex structure%利用扫描透射X射线显微镜观测磁涡旋结构∗

    Institute of Scientific and Technical Information of China (English)

    孙璐; 火炎; 周超; 梁建辉; 张祥志; 许子健; 王勇; 吴义政

    2015-01-01

    Magnetic recording has now played an important role in the development of non-volatile information storage tech-nologies, so it becomes essential to quantitatively understand the magnetization distribution in magnetic microstructures. In ferromagnetic disks, squares and triangles with submicron sizes, it is energetically favorable for the magnetization to form a closed in-plane vortex and a perpendicular vortex core at the center. This vortex magnetic structure is a new candidate for future magnetic memory device because both the vortex chirality and the core polarity can be manipulated by applying an external magnetic field or a spin-polarized current. Further development of vortex-based memory devices requires quantitative measurement of vortex domain structures, which is still lacking. In this paper, magnetization configuration in a vortex structure has been quantitatively studied by scanning trans-mission X-ray microscope (STXM) utilizing X-ray magnetic circular dichroism (XMCD) effect in Shanghai Synchrotron Radiation Facility. Samples have been fabricated on the 100 nm silicon-nitride membranes. The patterns are first transferred to PMMA photoresist using e-beam lithography, then a 50 nm thick Ni80Fe20 film is deposited by e-beam evaporation. Magnetic vortex configurations are characterized with the X-ray energy at Fe L3 absorption edge and Ni L3 absorption edge, respectively. The image taken at Fe edge shows greater contrast than that at Ni edge. Experimental results indicate that the magnetic vortex state remains stable in permalloy circle, square and triangle structures with diameters from 2 to 5 µm. The STXM images indicate that the magnetization in circular geometry changes continuously along the concentric circles without clear domain boundaries. In contrast, magnetization in square geometry consists of four distinct domains with clear diagonal domain boundaries. Similarly, three domains can be observed in triangle geometry. In order to quantify the in

  5. On the use of the double floating probe method to infer the difference between the electron and the heavy particles temperatures in an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L., E-mail: prevosto@waycom.com.ar; Mancinelli, B. R. [Grupo de Descargas Eléctricas, Departamento Ingeniería Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, 2600 Venado Tuerto, Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ingeniería Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, 2600 Venado Tuerto, Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2014-05-15

    Sweeping double probe measurements in an atmospheric pressure direct current vortex-stabilized plasma jet are reported (plasma conditions: 100 A discharge current, N{sub 2} gas flow rate of 25 Nl/min, thoriated tungsten rod-type cathode, copper anode with 5 mm inner diameter). The interpretation of the double probe characteristic was based on a generalization of the standard double floating probe formulae for non-uniform plasmas coupled to a non-equilibrium plasma composition model. Perturbations caused by the current to the probe together with collisional and thermal processes inside the probe perturbed region were taken into account. Radial values of the average electron and heavy particle temperatures as well as the electron density were obtained. The calculation of the temperature values did not require any specific assumption about a temperature relationship between different particle species. An electron temperature of 10 900 ± 900 K, a heavy particle temperature of 9300 ± 900 K, and an electron density of about 3.5 × 10{sup 22} m{sup −3} were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found toward the outer border of the plasma jet. These results showed good agreement with those previously reported by the authors by using a single probe technique. The calculations have shown that this method is particularly useful for studying spraying-type plasma torches operated at power levels of about 15 kW.

  6. On the use of the double floating probe method to infer the difference between the electron and the heavy particles temperatures in an atmospheric pressure, vortex-stabilized nitrogen plasma jet.

    Science.gov (United States)

    Prevosto, L; Kelly, H; Mancinelli, B R

    2014-05-01

    Sweeping double probe measurements in an atmospheric pressure direct current vortex-stabilized plasma jet are reported (plasma conditions: 100 A discharge current, N2 gas flow rate of 25 Nl/min, thoriated tungsten rod-type cathode, copper anode with 5 mm inner diameter). The interpretation of the double probe characteristic was based on a generalization of the standard double floating probe formulae for non-uniform plasmas coupled to a non-equilibrium plasma composition model. Perturbations caused by the current to the probe together with collisional and thermal processes inside the probe perturbed region were taken into account. Radial values of the average electron and heavy particle temperatures as well as the electron density were obtained. The calculation of the temperature values did not require any specific assumption about a temperature relationship between different particle species. An electron temperature of 10,900 ± 900 K, a heavy particle temperature of 9300 ± 900 K, and an electron density of about 3.5 × 10(22) m(-3) were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found toward the outer border of the plasma jet. These results showed good agreement with those previously reported by the authors by using a single probe technique. The calculations have shown that this method is particularly useful for studying spraying-type plasma torches operated at power levels of about 15 kW.

  7. Coherent Structures in Numerically Simulated Plasma Turbulence

    DEFF Research Database (Denmark)

    Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.

    1989-01-01

    Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...

  8. Turbulent transport and structural transition in confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1996-10-01

    Theory of the far-nonequilibrium transport of plasmas is described. Analytic as well as simulation studies are developed. The subcritical nature of turbulence and the mechanism for self-sustaining are discussed. The transport coefficient is obtained. The pressure gradient is introduced as an order parameter, and the bifurcation from the collisional transport to the turbulent one is shown. The generation of the electric field and its influence on the turbulent transport are analyzed. The bifurcation of the radial electric field structure is addressed. The hysteresis appears in the flux-gradient relation. This bifurcation causes the multifold states in the plasma structure, driving the transition in transport coefficient or the self-generating oscillations in the flux. Structural formation and dynamics of plasma profiles are explained. (author)

  9. Turbulent transport and structural transition in confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae-I; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi [Okayama Univ. (Japan). School of Engineering

    1997-05-01

    The theory of far-nonequilibrium transport of plasmas is described. Analytic as well as simulation studies are developed. The subcritical nature coefficient is obtained. The pressure gradient is introduced as an order parameter, and the bifurcation from collisional to turbulent transport is shown. The generation of the electric field and its influence on the turbulent transport are analysed. The bifurcation of the radial electric field structure is addressed. Hysteresis appears in the flux-gradient relation. This bifurcation causes the multifold states in the plasma structure, driving the transition in the transport coefficient or the self-generating oscillations in the flux. The structural formation and dynamics of plasma profiles are explained. (Author).

  10. Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure.

    Science.gov (United States)

    Flammang, Brooke E; Lauder, George V; Troolin, Daniel R; Strand, Tyson

    2011-12-22

    Understanding how moving organisms generate locomotor forces is fundamental to the analysis of aerodynamic and hydrodynamic flow patterns that are generated during body and appendage oscillation. In the past, this has been accomplished using two-dimensional planar techniques that require reconstruction of three-dimensional flow patterns. We have applied a new, fully three-dimensional, volumetric imaging technique that allows instantaneous capture of wake flow patterns, to a classic problem in functional vertebrate biology: the function of the asymmetrical (heterocercal) tail of swimming sharks to capture the vorticity field within the volume swept by the tail. These data were used to test a previous three-dimensional reconstruction of the shark vortex wake estimated from two-dimensional flow analyses, and show that the volumetric approach reveals a different vortex wake not previously reconstructed from two-dimensional slices. The hydrodynamic wake consists of one set of dual-linked vortex rings produced per half tail beat. In addition, we use a simple passive shark-tail model under robotic control to show that the three-dimensional wake flows of the robotic tail differ from the active tail motion of a live shark, suggesting that active control of kinematics and tail stiffness plays a substantial role in the production of wake vortical patterns.

  11. Structures of Strong Shock Waves in Dense Plasmas

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhong-He; HE Yong; HU Xi-Wei; LV Jian-Hong; HU Ye-Min

    2007-01-01

    @@ Structures of strong shock waves in dense plasmas are investigated via the steady-state Navier-Stokes equations and Poisson equation. The structures from fluid simulation agree with the ones from kinetic simulation. The effects of the transport coefficients on the structures are analysed. The enhancements of the electronic heat conduction and ionic viscosity both will broaden the width of the shock fronts, and decrease the electric fields in the fronts.

  12. Laser fields in dynamically ionized plasma structures for coherent acceleration

    CERN Document Server

    Luu-Thanh, Ph.; Pukhov, A.; Kostyukov, I.

    2015-01-01

    With the emergence of the CAN (Coherent Amplification Network) laser technology, a new scheme for direct particle acceleration in periodic plasma structures has been proposed. By using our full electromagnetic relativistic particle-in-cell (PIC) simulation code equipped with ionisation module, we simulate the laser fields dynamics in the periodic structures of different materials. We study how the dynamic ionization influences the field structure.

  13. Fractional vortex Hilbert's Hotel

    CERN Document Server

    Gbur, Greg

    2015-01-01

    We demonstrate how the unusual mathematics of transfinite numbers, in particular a nearly perfect realization of Hilbert's famous hotel paradox, manifests in the propagation of light through fractional vortex plates. It is shown how a fractional vortex plate can be used, in principle, to create any number of "open rooms," i.e. topological charges, simultaneously. Fractional vortex plates are therefore demonstrated to create a singularity of topological charge, in which the vortex state is completely undefined and in fact arbitrary.

  14. Coherent structure and Intermittent Turbulence in the Solar Wind Plasma

    Science.gov (United States)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar

    2016-07-01

    We analyze the coherent structures and intermittent turbulence in the solar wind plasma using measurements from the Wind spacecraft. Previously established novel wavelet and higher order statistics are used in this work. We analyze the wavelet power spectrum of various solar wind plasma parameters. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data. We analyze each wavelet power spectra for transient coherency, and global periodicities resulting from the superposition of repeating coherent structures. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. These results offer a new understanding of various processes in a turbulent regime. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field. Keywords: Wavelet Power Spectrum, Coherent structure and Solar wind plasma

  15. Structure of nonlocality of plasma turbulence

    Science.gov (United States)

    Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team

    2013-07-01

    Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.

  16. Periodical Plasma Structures Controlled by Oblique Magnetic Field

    CERN Document Server

    Schweigert, Irina

    2016-01-01

    The propulsion type plasma in oblique external magnetic field is studied in 2D3V PIC MCC simulations. A periodical structure with maxima of electron and ion densities appears with an increase of an obliqueness of magnetic field. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. As a result the two-dimensional double-layers structure forms in cylindrical plasma chamber. The ion and electron currents on the side wall are essential modulated by the oblique magnetic field.

  17. Sadovskii vortex in strain

    Science.gov (United States)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  18. Flow visualization of a vortex ring interaction with porous surfaces

    Science.gov (United States)

    Hrynuk, John T.; Van Luipen, Jason; Bohl, Douglas

    2012-03-01

    The interaction of vortex rings of constant Reynolds number with porous surfaces composed of wire meshes of constant open area, i.e., surface porosity, but variable wire diameter is studied using flow visualization. The results indicate that several regimes of flow behavior exist in the parameter space investigated. The vortex ring passes through and immediately reforms downstream of the surface for porous surfaces with small wire mesh diameters. The transmitted vortex ring has the same diameter, but lower convection speed and circulation than the pre-interaction vortex ring. For these cases, secondary vortex rings are formed on the upstream side of the porous surface that convect upstream away from the screen. As the wire diameter of the porous surface is increased, smaller sub-scale vortical structures are formed on the transmitted vortex ring as it passes through the surface. The spatial scale of these structures is dependent on the diameter of the mesh wire. The vortex ring is disrupted but is able to reform downstream when these structures are small compared to the scale of the vortex ring. When these structures are large enough the transmitted vortex ring is disrupted and does not reform. The results indicate that the dynamics governing the vortex ring/mesh surface interaction are dependent not only on the strength of the vortex ring and the porosity of the surface, as previously thought, but also on the length scales (i.e., the diameter and spacing of the wire mesh) of the porous surface.

  19. Bifurcation and instability problems in vortex wakes

    Energy Technology Data Exchange (ETDEWEB)

    Aref, H [Center for Fluid Dynamics and Department of Physics, Technical University of Denmark, Kgs. Lyngby, DK-2800 (Denmark); Broens, M [Center for Fluid Dynamics and Department of Mathematics, Technical University of Denmark, Kgs. Lyngby, DK-2800 (Denmark); Stremler, M A [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2007-04-15

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal-Reynolds number relation for vortex wakes, the bifurcation diagram for 'exotic' wake patterns behind an oscillating cylinder first determined experimentally by Williamson and Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices in a periodic strip is considered. The classical results of von Karman concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued to be relevant to the wake behind an oscillating body.

  20. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  1. Plasma depletion layer: Magnetosheath flow structure and forces

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-03-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to the corresponding upstream magnetosheath values. In a previous study, we have validated the UCLA global (MHD model in studying the formation of the PDL by comparing model results, using spacecraft solar wind observations as the driver, with in situ PDL observations. In this study, we extend our previous work and examine the detailed MHD forces responsible for the PDL formation. We argue that MHD models, instead of gasdynamic models, should be used to study the PDL, because gasdynamic models cannot produce the PDL on the sunward side of the magnetopause. For northward (IMF, flux tube depletion occurs in almost all the subsolar magnetosheath. However, the streamlines closest to the magnetopause and the stagnation line show the greatest depletion. The relative strength of the various MHD forces changes along these streamlines. Forces along a flux tube at different stages of its depletion in the magnetosheath are analyzed. We find that a strong plasma pressure gradient force along the magnetic field at the bow shock and a pressure gradient force along the flux tube within the magnetosheath usually exist pushing plasma away from the equatorial plane to deplete the flux tube. More complex force structures along the flux tube are found close to the magnetopause. This new, more detailed description of flux tube depletion is compared with the results of Zwan and Wolf (1976 and differences are found. Near the magnetopause, the pressure gradient force along the flux tube either drives plasma away from the equatorial plane or pushes plasma toward the equatorial plane. As a result, a slow mode structure is seen along the flux tube which might be responsible for the observed two-layered slow mode structures.

    Key words. Magnetospheric physics (magnetosheath; solar wind-magnetosphere interactions. Space

  2. Intrinsic and extrinsic pinning in NdFeAs(O,F): vortex trapping and lock-in by the layered structure

    Science.gov (United States)

    Tarantini, C.; Iida, K.; Hänisch, J.; Kurth, F.; Jaroszynski, J.; Sumiya, N.; Chihara, M.; Hatano, T.; Ikuta, H.; Schmidt, S.; Seidel, P.; Holzapfel, B.; Larbalestier, D. C.

    2016-10-01

    Fe-based superconductors (FBS) present a large variety of compounds whose properties are affected to different extents by their crystal structures. Amongst them, the REFeAs(O,F) (RE1111, RE being a rare-earth element) is the family with the highest critical temperature Tc but also with a large anisotropy and Josephson vortices as demonstrated in the flux-flow regime in Sm1111 (Tc ∼ 55 K). Here we focus on the pinning properties of the lower-Tc Nd1111 in the flux-creep regime. We demonstrate that for H//c critical current density Jc at high temperatures is dominated by point-defect pinning centres, whereas at low temperatures surface pinning by planar defects parallel to the c-axis and vortex shearing prevail. When the field approaches the ab-planes, two different regimes are observed at low temperatures as a consequence of the transition between 3D Abrikosov and 2D Josephson vortices: one is determined by the formation of a vortex-staircase structure and one by lock-in of vortices parallel to the layers. This is the first study on FBS showing this behaviour in the full temperature, field, and angular range and demonstrating that, despite the lower Tc and anisotropy of Nd1111 with respect to Sm1111, this compound is substantially affected by intrinsic pinning generating a strong ab-peak in Jc.

  3. Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain.

    Science.gov (United States)

    Liansheng, Sui; Bei, Zhou; Xiaojuan, Ning; Ailing, Tian

    2016-01-11

    A novel multiple-image encryption scheme using the nonlinear iterative phase retrieval algorithm in the gyrator transform domain under the illumination of an optical vortex beam is proposed. In order to increase the randomness, the chaotic structured phase mask based on the logistic map, Fresnel zone plate and radial Hilbert mask is proposed. With the help of two chaotic phase masks, each plain image is encoded into two phase-only masks that are considered as the private keys by using the iterative phase retrieval process in the gyrator domain. Then, the second keys of all plain images are modulated into the ciphertext, which has the stationary white noise distribution. Due to the use of the chaotic structured phase masks, the problem of axis alignment in the optical setup can easily be solved. Two private keys are directly relative to the plain images, which makes that the scheme has high resistance against various potential attacks. Moreover, the use of the vortex beam that can integrates more system parameters as the additional keys into one phase mask can improve the security level of the cryptosystem, which makes the key space enlarged widely. Simulation results are given to verify the feasibility and robustness of the proposed encryption scheme.

  4. Reduced-order modeling of fluid-structure interaction and vortex-induced vibration systems using an extension of Jourdain's principle

    Science.gov (United States)

    Mottaghi, S.; Benaroya, H.

    2016-11-01

    A first-principles variational approach is proposed for reduced-order modeling of fluid-structure interaction (FSI) systems, specifically vortex-induced vibration (VIV). FSI has to be taken into account in the design and analysis of many engineering applications, yet a comprehensive theoretical development where analytical equations are derived from first principles is nonexistent. An approach where Jourdain's principle is modified and extended for FSI is used to derive reduced-order models from an extended variational formulation where assumptions are explicitly stated. Two VIV models are considered: an elastically supported, inverted pendulum and a translating cylinder, both immersed in a flow and allowed to move transversely to the flow direction. Their reduced-order models are obtained in the form of (i) a single governing equation and (ii) two general coupled equations as well as the coupled lift-oscillator model. Comparisons are made with three existing models. Based on our theoretical results, and especially the reduced-order model, we conclude that the first principles development herein is a viable framework for the modeling of complex fluid-structure interaction problems such as vortex-induced oscillations.

  5. Dynamic Optimization for Vortex Shedding Suppression

    Directory of Open Access Journals (Sweden)

    Bonis Ioannis

    2016-01-01

    Full Text Available Flows around structures exhibiting vortex shedding induce vibrations that can potentially damage the structure. A way to avoid it is to suppress vortex shedding by controlling the wake. Wake control of laminar flow behind a rotating cylinder is formulated herein as a dynamic optimization problem. Angular cylinder speed is the manipulated variable that is adjusted to suppress vortex shedding by minimizing lift coefficient variation. The optimal angular speed is assumed to be periodic like wake formation. The control problem is solved for different time horizons tH. The impact of tH to control is evaluated and the need for feedback is assessed.

  6. Attractive interaction between ions inside a quantum plasma structure

    CERN Document Server

    Dvornikov, Maxim

    2013-01-01

    We construct the model of a quantum spherically symmetric plasma structure based on radial oscillations of ions. We suppose that ions are involved in ion-acoustic waves. We find the exact solution of the Schrodinger equation for an ion moving in the self-consistent oscillatory potential of an ion-acoustic wave. The system of ions is secondly quantized and its ground state is constructed. Then we consider the interaction between ions by the exchange of an acoustic wave. It is shown that this interaction can be attractive. We describe the formation of pairs of ions inside a plasma structure and demonstrate that such a plasmoid can exist in dense astrophysical medium. The application of our results for terrestrial plasmas is also discussed.

  7. Vortex mechanism in hydrocyclones

    Institute of Scientific and Technical Information of China (English)

    徐继润; 刘正宁; 邢军; 李新跃; 黄慧; 徐海燕; 罗茜

    2001-01-01

    On the basis of analyzing the vortex characteristics, a new mechanism of the vortex formation in hydrocyclones is developed. The main concept of the mechanism is that the vortex flow in a hydrocyclone is resulted from the overlapping of container rotation and hole leakage. The model is then used to explain the compound distribution of free vortex and forced vortex, predict the similarity of tangential velocity at different input pressures, and make count of the principle of small hydrocyclone with lower cut-size than large one. Meanwhile a new possible approach to a large hydro-cyclone with lower cut-size by minimizing or eliminating the air core is discussed briefly.

  8. Melting of heterogeneous vortex matter: The vortex `nanoliquid'

    Indian Academy of Sciences (India)

    S S Banerjee; S Goldberg; Y Myasoedov; M Rappaport; E Zeldov; A Soibel; F de la Cruz; C J van der Beek; M Konczykowski; T Tamegai; V Vinokur

    2006-01-01

    Disorder and porosity are parameters that strongly influence the physical behavior of materials, including their mechanical, electrical, magnetic and optical properties. Vortices in superconductors can provide important insight into the effects of disorder because their size is comparable to characteristic sizes of nanofabricated structures. Here we present experimental evidence for a novel form of vortex matter that consists of inter-connected nanodroplets of vortex liquid caged in the pores of a solid vortex structure, like a liquid permeated into a nanoporous solid skeleton. Our nanoporous skeleton is formed by vortices pinned by correlated disorder created by high-energy heavy ion irradiation. By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered nanocrystals through either a first-order or a continuous transition, whereas at high temperatures a uniform liquid phase is formed upon delocalization-induced melt- ing of the solid skeleton. This new vortex nanoliquid displays unique properties and symmetries that are distinct from both solid and liquid phases.

  9. Observations of Solitary Structures in a Magnetized, Plasma Loaded Waveguide

    DEFF Research Database (Denmark)

    Lynov, Jens-Peter; Michelsen, Poul; Pécseli, Hans;

    1979-01-01

    Two types of solitary structure were investigated experimentally and numerically in a magnetized, plasma-loaded waveguide. One was identified as an ordinary KdV soliton and its properties were investigated with particular attention to the damping by resonant particles. The other type of pulse...

  10. Vortex reconnections and rebounds in trapped atomic Bose-Einstein condensates

    Science.gov (United States)

    Galantucci, Luca; Serafini, Simone; Iseni, Elena; Bienaime', Tom; Bisset, Russell; Dalfovo, Franco; Lamporesi, Giacomo; Ferrari, Gabriele; Barenghi, Carlo F.

    2016-11-01

    Reconnections and interactions of filamentary coherent structures play a fundamental role in the dynamics of classical and quantum fluids, plasmas and nematic liquid crystals. In quantum fluids vorticity is concentrated into discrete (quantised) vortex lines (unlike ordinary fluids where vorticity is a continuous field), turning vortex reconnections into isolated events, conceptually easier to study. In order to investigate the impact of non-homogeneous density fields on the dynamics of quantum reconnections, we perform a numerical study of two-vortex interactions in magnetically trapped elongated Bose-Einstein condensates in the T=0 limit. We observe different vortex interactions regimes depending on the vortex orientations and their relative velocity: unperturbed orbiting, bounce dynamics, single and double reconnection events. The key ingredients driving the dynamics are the anti-parallel preferred alignment of the vortices and the impact of density gradients arising from the inhomogeneity of the trapping potential. The results are confirmed by ongoing experiments in Trento performed employing an innovative non-destrutive real-time imaging technique capable of determining the axial dynamics and the orientation of the vortices.

  11. Structural Engineering Vacuum-plasma Coatings Interstitial Phases

    Directory of Open Access Journals (Sweden)

    O.V. Sobol'

    2016-06-01

    Full Text Available The analysis of possible structural conditions defined nonequilibrium processes in vacuum-plasma methods of obtaining interstitial phase coatings. It is shown that nonequilibrium conditions the deposition of ion-plasma flows significantly expands the range of possible structural states formed material from amorphous like to highly ordered crystalline. High speed determines the thermalization phase forming cubic crystal lattice (in most cases the structural type NaCl. On examples of W-C and Ta-N system with a hexagonal lattice type in equilibrium conditions and shows the mechanism of the transition from a metastable state with a cubic lattice in equilibrium with a hexagonal crystal lattice. The transition is performed by diffusion-shear transformation with the formation of stacking faults in the alternation of the most densely packed planes along the [111] axis. The formation of stacking faults contribute to a small area of the shift in nanocrystalline materials and the availability of jobs, and shift the conversion itself (through the formation of stacking faults is accompanied by a sudden relaxation of the structural stresses. Based on the atomic mobility criterion discussed mechanisms of structural transformations in the vacuum-plasma coatings and the necessary physical and technological conditions for structural changes aimed at the stage of precipitation and high temperature annealing.

  12. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine

    Science.gov (United States)

    Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang

    2015-02-01

    The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.

  13. Structures of quantum 2D electron-hole plasmas

    CERN Document Server

    Filinov, V S; Fehske, H; Levashov, P R; Fortov, V E

    2008-01-01

    We investigate structures of 2D quantum electron-hole (e-h) plasmas by the direct path integral Monte Carlo method (PIMC) in a wide range of temperature, density and hole-to-electron mass ratio. Our simulation includes a region of appearance and decay of the bound states (excitons and biexcitons), the Mott transition from the neutral e-h plasma to metallic-like clusters, formation from clusters the hexatic-like liquid and formation of the crystal-like lattice.

  14. The vortex street as a statistical-mechanical phenomenon

    Science.gov (United States)

    Montgomery, D.

    1974-01-01

    An explanation of the Karman vortex street is presented on the basis of the two-temperature canonical distribution for inviscid two-dimensional flows in Navier-Stokes fluids or guiding-center plasmas.

  15. Study of the vortex matter in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} using the Josephson plasma resonance; Etude de la matiere de vortex dans Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} a l'aide de la resonance de plasma Josephson

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S

    2003-10-01

    The Josephson plasma resonance (JPR) is a tool of choice to measure the inter-plane phase coherence in the layered superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (BSCCO). It enables us to evaluate the wandering length r{sub w}, defined as the thermal average of the relative thermal excursions of two pancake vortices belonging to the same flux line and localized in two consecutive superconducting layers. In this work, using two experimental techniques to probe the JPR (the resonant cavity perturbation technique and the bolometric method), we have measured r{sub w} in the vortex solid in pristine or heavy-ion irradiated (dose n{sub d} = 5 x 10{sup 10} ions.cm{sup -2}, i.e. B{sub {phi}} n-d{phi}{sub 0} = 1 T) under-doped BSCCO single crystals. In the pristine samples, at low magnetic fields, the temperature dependence of r{sub w} and its increase with the applied field can only be accounted for by the dominant role of the line tension (due to Josephson coupling) and its renormalization due to thermal fluctuations. The latter are responsible for the softening of the line tension for the large-wave vector modes, which eventually leads to the first order phase transition between the vortex solid and the vortex liquid. The field and temperature dependence of r{sub w} in the irradiated crystals for B << B{sub {phi}}, is the same as observed in the pristine samples. This observation is a validation for a description in term of 'discrete superconductor' of the material. (author)

  16. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, D.; Li, B. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209 (China); Pascoe, D. J.; Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Keppens, R., E-mail: Ding.Yuan@wis.kuleuven.be, E-mail: bbl@sdu.edu.cn [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium)

    2015-02-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere.

  17. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Buch-Pedersen, Morten J; Morth, Jens Preben

    2007-01-01

    define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle......A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi 1, 2......, 3 , and Na+,K+-ATPase (the sodium–potassium pump) in animals 4 . The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis 5 . The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na...

  18. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Buch-Pedersen, Morten J; Morth, Jens Preben;

    2007-01-01

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi 1, 2......, 3 , and Na+,K+-ATPase (the sodium–potassium pump) in animals 4 . The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis 5 . The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na...... define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle...

  19. Symmetry-constrained electron vortex propagation

    CERN Document Server

    Clark, L; Béché, A; Lubk, A; Verbeeck, J

    2016-01-01

    Electron vortex beams hold great promise for development in transmission electron microscopy, but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM and topology. We present multiple simulations, alongside experimental data to study the behaviour of a variety of electron vortex beams after interacting with apertures of different symmetries, and investigate the effect on their OAM and vortex structure, both in the far-field and under free-space propagation.

  20. One-dimensional electromagnetic band gap plasma structure formed by atmospheric pressure plasma inhomogeneities

    Science.gov (United States)

    Babitski, V. S.; Callegari, Th.; Simonchik, L. V.; Sokoloff, J.; Usachonak, M. S.

    2017-08-01

    The ability to use plasma columns of pulse discharges in argon at atmospheric pressure to form a one-dimensional electromagnetic band gap structure (or electromagnetic crystal) in the X-band waveguide is demonstrated. We show that a plasma electromagnetic crystal attenuates a microwave propagation in the stopband more than by 4 orders of magnitude. In order to obtain an effective control of the transmission spectrum comparable with a metallic regular structure, the electron concentration in plasma inhomogeneities should vary within the range from 1014 cm-3 to 1016 cm-3, while gas temperature and mean electron energy must be in the range of 2000 K and 0.5 eV, respectively, to lower electron collision frequency around 1010 s-1. We analyze in detail the time evolution response of the electromagnetic crystal according to the plasma parameters for the duration of the discharge. The interest of using atmospheric pressure discharges is to increase the microwave breakdown threshold in discharge volumes, whereby it becomes possible to perform dynamic control of high power microwaves.

  1. Integrable four-vortex motion on sphere with zero moment of vorticity

    Science.gov (United States)

    Sakajo, Takashi

    2007-01-01

    We consider the motion of N vortex points on sphere, called the N-vortex problem, which is a Hamiltonian dynamical system. The three-vortex problem is integrable and its motion has already been resolved. On the other hand, when the moment of vorticity vector, which consists of weighed sums of the vortex positions, is zero at the initial moment, the four-vortex problem is integrable, but it has not been investigated yet. The present paper gives a description of the integrable four-vortex problem with the reduction method to a three-vortex problem used by Aref and Stremler. Moreover, we examine whether the vortex points collide self-similarly in finite time. The four-vortex collapse is proved to be impossible. We consider if it is possible for not all but part of the vortex points to collapse self-similarly. Moreover, we discuss the topological structure of periodic orbits obtained in the present problem.

  2. Experimental observation of the collision of three vortex rings

    Science.gov (United States)

    Hernández, R. H.; Monsalve, E.

    2015-06-01

    We investigate for the first time the motion, interaction and simultaneous collision between three initially stable vortex rings arranged symmetrically, making an angle of 120 degrees between their straight path lines. We report results with laminar vortex rings in air and water obtained through measurements of the ring velocity field with a hot-wire anemometer, both in free flight and during the entire collision. In the air experiment, our flow visualizations allowed us to identify two main collision stages. A first ring-dominated stage where the rings slowdown progressively, increasing their diameter rapidly, followed by secondary vortex structures resulting after the rings make contact. Local portions of the vortex tubes of opposite circulation are coupled together thus creating local arm-like vortex structures moving radially in outward directions, rapidly dissipating kinetic energy. From a similar water experiment, we provide detailed shadowgraph visualizations of both the ring bubble and the full size collision, showing clearly the final expanding vortex structure. It is accurately resolved that the physical contact between vortex ring tubes gives rise to three symmetric expanding vortex arms but also the vortex reconnection of the top and lower vortex tubes. The central collision zone was found to have the lowest kinetic energy during the entire collision and therefore it can be identified as a safe zone. The preserved collision symmetries leading to the weak kinematic activity in the safe zone is the first step into the development of an intermittent hydrodynamic trap for small and lightweight particles.

  3. Alfvénic localized structures in partially ionized plasmas

    Science.gov (United States)

    Borhanian, Jafar; Rezaei, Arash

    2017-02-01

    The existence and dynamics of Alfvénic localized structures are investigated in partially ionized plasmas. We have employed the Hall magnetohydrodynamics model for partially ionized plasmas and shown that the evolution of a weakly nonlinear and weakly dispersive Alfvén wave is governed by a derivative nonlinear Schrödinger (DNLS) type equation. In the Hall effect domination limit, this equation reduces to a standard DNLS equation that possesses localized solutions in the form of solitons and rogue waves. The dependence of the profile of these structures on the Hall parameter is addressed. When the ohmic and ambipolar effects are small but finite in comparison to the Hall effect, the evolution equation takes the form of a perturbed DNLS equation. In this limit, the dynamics of envelope soliton solution is examined by means of the soliton perturbation method, the moment method, to be precise.

  4. Coherent structures in the boundary plasma of EAST Tokamak

    DEFF Research Database (Denmark)

    Yan, Ning

    filaments in the SOL or slightly inside the separatrix. It is observed that the topological configuration of density and potential in the ELM filaments deviate from each other. Furthermore, isolated electromagnetic filaments have been clearly identified during the type-I-like ELMs. They propagate radially......In recent years, with the application of fast camera in fusion plasma, as well as other diagnostic of spatial-temporal resolution such as Langmuir probe, it has become generally clear that the turbulence transport is mostly dominant by cross-field propagation of coherent structures, namely blobs...... turbulence-simulation code based on the interchange instability as the main drive for the turbulence and structure motion in the scrape-off layer (SOL) plasma, with the input parameters from the EAST experiments. The simulations successfully reproduce the statistical characteristics of the SOL turbulence...

  5. Entangled vector vortex beams

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  6. Structural properties of complex plasmas in a homogeneous dc discharge.

    Science.gov (United States)

    Mitic, S; Klumov, B A; Konopka, U; Thoma, M H; Morfill, G E

    2008-09-19

    We report on the first three-dimensional (3D) complex plasma structure analysis for an experiment that was performed in an elongated discharge tube in the absence of striations. The low frequency discharge was established with 1 kHz alternating dc current through a cylindrical glass tube filled with neon at 30 Pa. The injected particle cloud consisted of monodisperse microparticles. A scanning laser sheet and a camera were used to determine the particle position in 3D. The observed cylindrical-shaped particle cloud showed an ordered structure with a distinct outer particle shell. The observations are in agreement with performed molecular dynamics simulations.

  7. Structure of non-equilibrium seeded plasma excited with microwave; Micro ha reiki hiheiko seed plasma no kozo

    Energy Technology Data Exchange (ETDEWEB)

    Miyakawa, M.; Murakami, T.; Suekane, T.; Okuno, Y.; Kabashima, S. [Tokyo Institute of Technology, Tokyo (Japan)

    1996-10-20

    Structure of non-equilibrium cesium seeded argon plasma excited with microwave power is simulated numerically. The plasmas produced at suitable microwave powers are found to consist of three regimes, that is, the region limited by charged particle loss toward the wall, the full seed ionization and the diffusion limited regions. The fully ionized seed plasma is produced within the skin-depth determined by the electrical conductivity of the plasma, and the thickness of the fully ionized seed plasma depends on the seed fractions gas pressure and microwave power. 15 refs., 6 figs.

  8. A Study of Structure and Mechanism of a Meso-beta-scale Convective Vortex and Associated Heavy Rainfall in the Dabie Mountain Area Part Ⅰ: Diagnostic Analysis of the Structure

    Institute of Scientific and Technical Information of China (English)

    XU Wenhui; NI Yunqi; WANG Xiaokang; QIU Xuexing; BAO Xinghua; JIN Wenyan

    2011-01-01

    An analysis was conducted on the evolutional process of a mesoscale convective vortex (MCV) and associated heavy rainfall in the Dabie Mountain area on 21-22 June 2008,as well as their structural characteristics in different stages,by using the mesoscale reanalysis data with 3 km and 1 h resolution generated by the Local Analysis and Prediction System (LAPS) in the Southern China Heavy Rainfall Experiment.The results showed that the latent heat released by convection in the midtroposphere was the main energy source for the development of a low-level vortex.There was a positive feedback interaction between the convection and the vortex,and the evolution of the MCV was closely related to the strength of the positive interaction.The most typical characteristics of the thermal structure in different stages were that,there was a relatively thin diabatic heating layer in the midtroposphere in the formative stage; the thickness of diabatic heating layer significantly increased in the mature stage; and it almost disappeared in the decay stage.The characteristics of the dynamic structure were that,in the formative stage,there was no anticyclonic circulation at the high level; in the mature stage,an anticyclonic circulation with strong divergence was formed at the high level; in the decay stage,the anticyclonic circulation was damaged and the high-level atmosphere was in a disordered state of turbulence.Finally,the structural schematics of the MCV in the formative and mature stage were established respectively.

  9. Vortex energy landscape from real space imaging analysis of YBa{sub 2}Cu{sub 3}O{sub 7} with different defect structures

    Energy Technology Data Exchange (ETDEWEB)

    Luccas, R.F.; Granados, X.; Obradors, X.; Puig, T.

    2014-10-15

    Highlights: • A model based on real space vortex image is proposed to analyze energy densities of an arbitrary array of vortices. • A map of interaction energies is the base for identifying defects pinning strengths. • Vortex interactions with twin boundaries and surface nanoscratches are compared to pristine untwined crystals. • The combined study presented should assess in future engineering vortex pinning novel devices. - Abstract: A methodology based on real space vortex image analysis is presented able to estimate semi-quantitatively the relevant energy densities of an arbitrary array of vortices, map the interaction energy distributions and evaluate the pinning energy associated to particular defects. The combined study using nanostructuration tools, a vortex visualization technique and the energy method is seen as an opportunity to estimate vortex pinning potentials strengths. Particularly, spatial distributions of vortex energy densities induced by surface nanoindented scratches are evaluated and compared to those of twin boundaries. This comparative study underlines the remarkable role of surface nanoscratches in pinning vortices and its potentiality in the design of novel devices for pinning and guiding vortex motion.

  10. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian;

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws ...

  11. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  12. Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyi, L. M.; Malova, H. V.; Artemyev, A. V.; Popov, V. Yu.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2011-02-15

    The review is devoted to plasma structures with an extremely small transverse size, namely, thin current sheets that have been discovered and investigated by spacecraft observations in the Earth's magnetotail in the last few decades. The formation of current sheets is attributed to complicated dynamic processes occurring in a collisionless space plasma during geomagnetic perturbations and near the magnetic reconnection regions. The models that describe thin current structures in the Earth's magnetotail are reviewed. They are based on the assumption of the quasi-adiabatic ion dynamics in a relatively weak magnetic field of the magnetotail neutral sheet, where the ions can become unmagnetized. It is shown that the ion distribution can be represented as a function of the integrals of particle motion-the total energy and quasi-adiabatic invariant. Various modifications of the initial equilibrium are considered that are obtained with allowance for the currents of magnetized electrons, the contribution of oxygen ions, the asymmetry of plasma sources, and the effects related to the non-Maxwellian particle distributions. The theoretical results are compared with the observational data from the Cluster spacecraft mission. Various plasma instabilities developing in thin current sheets are investigated. The evolution of the tearing mode is analyzed, and the parameter range in which the mode can grow are determined. The paradox of complete stabilization of the tearing mode in current sheets with a nonzero normal magnetic field component is thereby resolved based on the quasi-adiabatic model. It is shown that, over a wide range of current sheet parameters and the propagation directions of large-scale unstable waves, various modified drift instabilities-kink and sausage modes-can develop in the system. Based on the concept of a turbulent electromagnetic field excited as a result of the development and saturation of unstable waves, a mechanism for charged particle

  13. Front surface structured targets for enhancing laser-plasma interactions

    Science.gov (United States)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  14. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  15. Observations of plasma density structures in association with the passage of traveling convection vortices and the occurrence of large plasma jets

    Directory of Open Access Journals (Sweden)

    C. E. Valladares

    Full Text Available We report important results of the first campaign specially designed to observe the formation and the initial convection of polar cap patches. The principal instrumentation used in the experiments comprised the EISCAT, the Sondrestrom, and the Super DARN network of radars. The experiment was conducted on February 18, 1996 and was complemented with additional sensors such as the Greenland chain of magnetometers and the WIND and IMP-8 satellites. Two different types of events were seen on this day, and in both events the Sondrestrom radar registered the formation and evolution of large-scale density structures. The first event consisted of the passage of traveling convection vortices (TCV. The other event occurred in association with the development of large plasma jets (LPJ embedded in the sunward convection part of the dusk cell. TCVs were measured, principally, with the magnetometers located in Greenland, but were also confirmed by the line-of-sight velocities from the Sondrestrom and SuperDARN radars. We found that when the magnetic perturbations associated with the TCVs were larger than 100 nT, then a section of the high-latitude plasma density was eroded by a factor of 2. We suggest that the number density reduction was caused by an enhancement in the O+ recombination due to an elevated Ti, which was produced by the much higher frictional heating inside the vortex. The large plasma jets had a considerable (>1000 km longitudinal extension and were 200-300 km in width. They were seen principally with the Sondrestrom, and SuperDARN radars. Enhanced ion temperature (Ti was also observed by the Sondrestrom and EISCAT radars. These channels of high Ti were exactly collocated with the LPJs and some of them with regions of eroded plasma number density. We suggest that the LPJs bring less dense plasma from later local times. However, the recent time history of the plasma flow is important to define the

  16. Correlating structural order with structural rearrangement in dusty plasma liquids: can structural rearrangement be predicted by static structural information?

    Science.gov (United States)

    Su, Yen-Shuo; Liu, Yu-Hsuan; I, Lin

    2012-11-09

    Whether the static microstructural order information is strongly correlated with the subsequent structural rearrangement (SR) and their predicting power for SR are investigated experimentally in the quenched dusty plasma liquid with microheterogeneities. The poor local structural order is found to be a good alarm to identify the soft spot and predict the short term SR. For the site with good structural order, the persistent time for sustaining the structural memory until SR has a large mean value but a broad distribution. The deviation of the local structural order from that averaged over nearest neighbors serves as a good second alarm to further sort out the short time SR sites. It has the similar sorting power to that using the temporal fluctuation of the local structural order over a small time interval.

  17. Dynamic Evolution Equations for Isolated Smoke Vortexes in Rational Mechanics

    OpenAIRE

    2011-01-01

    Smoke circle vortexes are a typical dynamic phenomenon in nature. The similar circle vortexes phenomenon appears in hurricane, turbulence, and many others. A semi-empirical method is constructed to get some intrinsic understanding about such circle vortex structures. Firstly, the geometrical motion equations for smoke circle is formulated based on empirical observations. Based on them, the mechanic dynamic motion equations are established. Finally, the general dynamic evolution equations for ...

  18. Convectively driven vortex flows in the Sun

    CERN Document Server

    Bonet, J A; Almeida, J Sanchez; Cabello, I; Domingo, V

    2008-01-01

    We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. These observed properties are strongly biased by our type of measurement, unable to detect vortexes except when they are engulfing magnetic BPs.

  19. Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas

    Science.gov (United States)

    2014-09-26

    Plasma Physics , Magneto-optical imaging , Space Plasma Physics , Multiscale Phenomena 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT... plasma is rich research field to understand basic physics of various phenomena through the observation of dust particles by naked eyes with the help of...TERMS Plasma Physics , Magneto-optical imaging , Space Plasma Physics , Multiscale Phenomena 16. SECURITY CLASSIFICATION OF: 17.

  20. Computational investigation of the temperature separation in vortex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Anish, S. [National Institute of Technology Karnataka, Mangalore (India); Setoguchi, T. [Institute of Ocean Energy, Saga University (Japan); Kim, H. D. [Andong National University, Andong (Korea, Republic of)

    2014-06-15

    The vortex chamber is a mechanical device, without any moving parts that separates compressed gas into a high temperature region and a low temperature region. Functionally vortex chamber is similar to a Ranque-Hilsch vortex tube (RVHT), but it is a simpler and compact structure. The objective of the present study is to investigate computationally the physical reasoning behind the energy separation mechanism inside a vortex chamber. A computational analysis has been performed using three-dimensional compressible Navier Stokes equations. A fully implicit finite volume scheme was used to solve the governing equations. A commercial software ANSYS CFX is used for this purpose. The computational predictions were validated with existing experimental data. The results obtained show that the vortex chamber contains a large free vortex zone and a comparatively smaller forced vortex region. The physical mechanism that causes the heating towards periphery of the vortex chamber is identified as the work done by the viscous force. The cooling at the center may be due to expansion of the flow. The extent of temperature separation greatly depends on the outer diameter of the vortex chamber. A small amount of compression is observed towards the periphery of the vortex chamber when the outer diameter is reduced.

  1. Model for vortex turbulence with discontinuities in the solar wind

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2003-01-01

    Full Text Available A model of vortex with embedded discontinuities in plasma flow is developed in the framework of ideal MHD in a low b plasma. Vortex structures are considered as a result of 2-D evolution of nonlinear shear Alfvén waves in the heliosphere. Physical properties of the solutions and vector fields are analyzed and the observational aspects of the model are discussed. The ratio of normal components to the discontinuity Br /Vr can be close to -2. The alignment between velocity and magnetic field vectors takes place. Spacecraft crossing such vortices will typically observe a pair of discontinuities, but with dissimilar properties. Occurrence rate for different discontinuity types is estimated and agrees with observations in high-speed solar wind stream. Discontinuity crossing provides a backward rotation of magnetic field vector and can be observed as part of a backward arc. The Ulysses magnetometer data obtained in the fast solar wind are compared with the results of theoretical modelling.

  2. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    Science.gov (United States)

    2010-10-28

    instrumentation will be used in this Project to study plasma and gas flow parameters, including new shadow device with excimer KrF laser, MW...vortex decay (attenuation) by HF plasma. The additional experiments with small helium jet injection prove the conclusion about vortex attenuation by a...equilibrium HF plasma. Plasma and airflow parameters are measured by different diagnostic instrumentation including shadow optical device with excimer

  3. Plasma structures inside boundary layers of magnetic clouds

    Institute of Scientific and Technical Information of China (English)

    WEI Fengsi; FENG Xueshang; YANG Fang; ZHONG Dingkun

    2004-01-01

    We analyze the plasma structures for 50 magnetic cloud boundary layers (BLs) which were observed by the spacecraft WIND from February, 1995 to June 2003. Main discoveries are: (ⅰ) The BL is a non-pressure balanced structure, its total pressure, PT,L, (the thermal pressure, Pth,L, plus the magnetic pressure, PM,L) is generally less than the total pressure PT,S and PT,C of the front solar wind (SW) and the following magnetic clouds (MC), respectively. The rising of the Pth,L inside the BLs is often not enough to compensate the declining of PM,L; (ⅱ) The ratio of electron and proton temperatures, (Te/Tp)L, inside the BLs is offen less than (Te/Tp)s and (Te/Tp)c in the SW and the MC, respectively, because the heating of proton is more obvious than that of electron; and (ⅲ) The reversal jet is observed in 80% BLs investigated, in which the reversal jets from all of three directions (±Vx, ±Vy, ±Vz), were observed in ≈25% BLs. These basic characteristics could be associated with a possible magnetic reconnection process inside the BLs. The results above suggest that the cloud BL owns the plasma structures different from those in the SW and MC. It is a manifestation for the existing significant dynamic interaction between the magnetic cloud and the solar wind.

  4. Plasma suppression of large scale structure formation in the universe.

    Science.gov (United States)

    Chen, Pisin; Lai, Kwang-Chang

    2007-12-07

    We point out that during the reionization epoch of the cosmic history, the plasma collective effect among the ordinary matter would suppress the large scale structure formation. The imperfect Debye shielding at finite temperature would induce an electrostatic pressure which, working together with the thermal pressure, would counter the gravitational collapse. As a result, the effective Jeans length, lambda[over ]_{J} is increased by a factor lambda[over ]_{J}/lambda_{J}=sqrt[8/5], relative to the conventional one. For scales smaller than the effective Jeans scale the plasma would oscillate at the ion-acoustic frequency. The modes that would be influenced by this effect lie roughly in the range 0.5h Mpc;{-1}plasma suppression of the matter power spectrum would approach 1-(Omega_{dm}/Omega_{m});{2} approximately 1-(5/6);{2} approximately 30%.

  5. An optical vortex coronagraph

    Science.gov (United States)

    Palacios, David M.

    2005-08-01

    An optical vortex may be characterized as a dark core of destructive interference in a beam of spatially coherent light. This dark core may be used as a filter to attenuate a coherent beam of light so an incoherent background signal may be detected. Applications of such a filter include: eye and sensor protection, forward-scattered light measurement, and the detection of extra-solar planets. Optical vortices may be created by passing a beam of light through a vortex diffractive optical element, which is a plate of glass etched with a spiral pattern, such that the thickness of the glass increases in the azimuthal direction. An optical vortex coronagraph may be constructed by placing a vortex diffractive optical element near the image plane of a telescope. An optical vortex coronagraph opens a dark window in the glare of a distant star so nearby terrestrial sized planets and exo-zodiacal dust may be detected. An optical vortex coronagraph may hold several advantages over other techniques presently being developed for high contrast imaging, such as lower aberration sensitivity and multi-wavelength operation. In this manuscript, I will discuss the aberration sensitivity of an optical vortex coronagraph and the key advantages it may hold over other coronagraph architectures. I will also provide numerical simulations demonstrating high contrast imaging in the presence of low-order static aberrations.

  6. Application of vortex method; Uzuho no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Tsukiji, T. [Ashikaga Inst. of Technology, Tochigi (Japan); Shimizu, S. [Hiroshima Univ., Hiroshima (Japan). Faculty of Engineering

    1995-07-15

    Basic jets such as two dimensional free jet, impact jet, axisymmetric circular free jet, and jet flowing out from a nozzle equipped with a collar at the outlet, as well as flow in such valves as disc valves, spool valves, and poppet valves are taken up to discuss their applications using the vortex method, and the results of studies made using vortex method on the analysis of jet and conditions inside valves are reported. The state of the development of large scale vortex structure in the shear layer can be simulated comparatively simply by using the vortex method. The effects of the radius and the lift of a valve on the fluid outlet angle of jet and on the discharge coefficient of orifice are analyzed. Although the shape of the spool valve near the throttle is very complicated, simplified models are used for numerical analysis. An example of calculated result in the case where the spool reciprocates is introduced. Actual vibrating phenomena can be simulated well by the vortex method for minute vibration of the poppet caused by the discharge of lump vortex. 17 refs., 16 figs., 1 tab.

  7. Robust and adjustable C-shaped vortex beams

    CERN Document Server

    Mousley, M; Babiker, M; Yuan, J

    2016-01-01

    Wavefront engineering is an important quantum technology. Here, we demonstrate the design and production of a robust C-shaped and orbital angular momentum (OAM) carrying beam in which the doughnut shaped structure contains an adjustable gap. We find that the presence of the vortex line in the core of the beam is crucial for the robustness of the C-shape against beam propagation. The topological charge of the vortex core controls mainly the size of the C, while its opening angle is controlled by the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. Applications of C-shaped vortex beams include lithography, dynamical atom sorting and atomtronics.

  8. Characterization of Vortex Generator Induced Flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika

    The aim of this thesis is the characterization and modeling of the longitudinal structures actuated by vortex generators. Results from generic studies performed at low Reynolds numbers have shown that the device induced vortices possess helical structure of the vortex core. Further, their ability...... to control separation and downstream evolution across the chord of a circular sector have been studied. Similar flow structures to the ones found in the generic experiments have been found in a higher Reynolds number setting, more applicable to realistic cases common to, e.g., aeronautical applications...

  9. Dynamic Evolution Equations for Isolated Smoke Vortexes in Rational Mechanics

    CERN Document Server

    Jianhua, Xiao

    2011-01-01

    Smoke circle vortexes are a typical dynamic phenomenon in nature. The similar circle vortexes phenomenon appears in hurricane, turbulence, and many others. A semi-empirical method is constructed to get some intrinsic understanding about such circle vortex structures. Firstly, the geometrical motion equations for smoke circle is formulated based on empirical observations. Based on them, the mechanic dynamic motion equations are established. Finally, the general dynamic evolution equations for smoke vortex are formulated. They are dynamic evolution equations for exact stress field and dynamic evolution equations for average stress field. For industrial application and experimental data processing, their corresponding approximation equations for viscous fluid are given. Some simple discussions are made.

  10. Helicity conservation under quantum reconnection of vortex rings

    CERN Document Server

    Zuccher, Simone

    2016-01-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross- Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion and intrinsic twist of the reconnecting vortex rings.

  11. Fast Josephson vortex

    Energy Technology Data Exchange (ETDEWEB)

    Malishevskii, A.S.; Silin, V.P.; Uryupin, S.A

    2002-12-30

    For the magnetically coupled waveguide and long Josephson junction we gave the analytic description of two separate velocity domains where the free motion of traveling vortex (2{pi}-kink) exists. The role of the mutual influence of waveguide and long Josephson junction is discussed. It is shown the possibility of the fast vortex motion with the velocity much larger than Swihart velocity of Josephson junction and close to the speed of light in the waveguide. The excitation of motion of such fast Josephson vortex is described.

  12. The calculation of satellite line structures in highly stripped plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J. Jr.; Kilcrease, D.P. [Los Alamos National Lab., NM (United States); Faenov, A.Ya.; Pikuz, T.A. [Multicharged Ion Spectra Data Center, Moscow (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Recently developed high-resolution x-ray spectrographs have made it possible to measure satellite structures from various plasma sources with great detail. These lines are weak optically thin lines caused by the decay of dielectronic states and generally accompany the resonance lines of H-like and He-like ions. The Los Alamos atomic physics and kinetics codes provide a unique capability for calculating the position and intensities of such lines. These programs have been used to interpret such highly resolved spectral measurements from pulsed power devices and laser produced plasmas. Some of these experiments were performed at the LANL Bright Source and Trident laser facilities. The satellite structures are compared with calculations to diagnose temperatures and densities. The effect of non-thermal electron distributions of electrons on calculated spectra was also considered. Collaborations with Russian scientists have added tremendous value to this research die to their vast experience in x-ray spectroscopy.

  13. Plasma-enhanced Deposition of Nano-Structured Carbon Films

    Institute of Scientific and Technical Information of China (English)

    Yang Qiaoqin (杨巧勤); Xiao Chijin (肖持进); A. Hirose

    2005-01-01

    By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Filament Chemical Vapor Deposition (PE-HFCVD).Through two-step processing in an HFCVD reactor, novel nano-structured composite diamond films containing a nanocrystalline diamond layer on the top of a nanocone diamond layer have been synthesized. Well-aligned carbon nanotubes, diamond and graphitic carbon nanocones with controllable alignment orientations have been synthesized by using PE-HFCVD. The orientation of the nanostructures can be controlled by adjusting the working pressure. In a Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) reactor, high-quality diamond films have been synthesized at low temperatures (310 ℃~550 ℃) without adding oxygen or halogen gas in a newly developed processing technique. In this process, carbon source originates from graphite etching, instead of hydrocarbon. The lowest growth temperature for the growth of nanocrystalline diamond films with a reasonable growth rate without addition of oxygen or halogen is 260 ℃.

  14. Pulsating jet-like structures in magnetized plasma

    Science.gov (United States)

    Goncharov, V. P.; Pavlov, V. I.

    2016-08-01

    The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as "radio pulsars." The estimates of their frequencies are made for conditions typical for the neutron star's ocean.

  15. Boson-Vortex Duality in 3+1 Dimensions for Open Vortex Lines Ending on Dark Solitons

    CERN Document Server

    Mateo, A Muñoz; Nian, Jun

    2016-01-01

    We propose a boson-vortex duality in 3+1 dimensions for open vortex lines together with planar dark solitons to which the endpoints of vortex lines are attached. Combining the one-form gauge field living on the soliton plane which couples to the endpoints of vortex lines and the two-form gauge field which couples to vortex lines, we obtain a gauge-invariant dual action of open vortex lines with their endpoints attached to dark solitons. We demonstrate numerically the existence of such stationary composite topological excitations in scalar Bose-Einstein condensates. Dynamically stable states of this type are found at low values of the chemical potential in channeled condensates, where the long-wavelength instability of dark solitons is prevented. Our results are reported for parameters typical of current experiments, and open up a way to explore the interplay of different topological structures in scalar Bose-Einstein condensations.

  16. Process for forming exoergic structures with the use of a plasma

    Science.gov (United States)

    Kelly, M.D.

    1987-05-29

    A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.

  17. Evolution of a Vortex in a Strain Flow

    Science.gov (United States)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2016-12-01

    Experiments and vortex-in-cell simulations are used to study an initially axisymmetric, spatially distributed vortex subject to an externally imposed strain flow. The experiments use a magnetized pure electron plasma to model an inviscid two-dimensional fluid. The results are compared to a theory assuming an elliptical region of constant vorticity. For relatively flat vorticity profiles, the dynamics and stability threshold are in close quantitative agreement with the theory. Physics beyond the constant-vorticity model, such as vortex stripping, is investigated by studying the behavior of nonflat vorticity profiles.

  18. Polymer masks for structured surface and plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Groupe de Recherches sur l’Énergétique des Milieux Ionisés (GREMI), Polytech’Orléans, 14 rue d’Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène, E-mail: marylene.vayer@univ-orleans.fr [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Sinturel, Christophe [Centre de Recherche sur la Matière Divisée (CRMD), 1b rue de la Férollerie, F45071 Orléans Cedex (France); Tillocher, Thomas; Lefaucheux, Philippe; Dussart, Rémi [Groupe de Recherches sur l’Énergétique des Milieux Ionisés (GREMI), Polytech’Orléans, 14 rue d’Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France)

    2015-03-30

    Graphical abstract: - Highlights: • Sub-micrometric silicon structures were prepared by cryogenic plasma etching. • Polymer templates based on phase-separated films of PS/PLA were used. • Silica structured masks were prepared by filling the polymer templates. • Etching of underlying silicon through silica templates gave original structures. - Abstract: Silica and silicon structures have been prepared at the sub-micrometer length-scale, using laterally phase-separated thin films of poly(styrene) (PS) and poly(lactic acid) (PLA) homopolymer blends. The selective removal of one polymer and the filling of the released space by silica precursor solution led, after calcination, to silica structures on silicon such as arrays of bowl-shape features or pillars, layers with through or non-through cylindrical holes, which has not been observed for some of them. The control of the morphology of the initial polymer film was a key point to achieve such type of structures. Particularly relevant was the use of solvent vapor annealing (vs thermal annealing) of the initial spin-coated films that favored and stabilized laterally phase-separated morphologies. Characteristic dimension of the domains were shown to be coupled with the thickness of the film, thinner films giving smaller domain sizes. Despite a relatively high incompatibility of the two polymers, a macro-phase separation was prevented in all the studied conditions. Sub-micrometric domains were formed, and for the thinner films, nanometric domains as small as 74 nm in size can be obtained. The silica structures formed by the infiltration of the polymer templates were used as hard masks for the cryogenic etching of underlying silicon. New structured surfaces, arrays of silicon pillars which can be plain or hollow at the upper part or arrays of cylindrical holes were formed. A selectivity as high as 21 was obtained using this type of mask for 1.5 μm deep holes having a typical diameter of 200 nm.

  19. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O’Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition.

  20. Vortex flow hysteresis

    Science.gov (United States)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  1. Modeling gasodynamic vortex cooling

    Science.gov (United States)

    Allahverdyan, A. E.; Fauve, S.

    2017-08-01

    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  2. Supersonic Vortex Gerdien Arc with Magnetic Thermal Insulation

    Science.gov (United States)

    Winterberg, F.

    1988-02-01

    Temperatures up to ~ 5 x 104 oK have been obtained with water vortex Gerdien arcs, and temperatures of ~ 105oK have been reached in hydrogen plasma arcs with magnetic thermal insulation through an externally applied strong magnetic field. It is suggested that a further increase in arc temperatures up to 106oK can conceivably be attained by a combination of both techniques, using a Gerdien arc with a supersonic hydrogen gas vortex.

  3. Spontaneous formation of circular and vortex ferroelectric domain structure in hexagonal YMnO{sub 3} and YMn{sub 0.9}Fe{sub 0.1}O{sub 3} prepared by low temperature solution synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Harunsani, M. H.; Walton, R. I., E-mail: r.i.walton@warwick.ac.uk, E-mail: hxyang@iphy.ac.cn [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Li, J.; Qin, Y. B.; Tian, H. T.; Li, J. Q.; Yang, H. X., E-mail: r.i.walton@warwick.ac.uk, E-mail: hxyang@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-08-10

    We report an experimental study of the domain structure of ferroelectric YMnO{sub 3} and YMn{sub 0.9}Fe{sub 0.1}O{sub 3} using polycrystalline samples prepared by direct hydrothermal crystallisation at 240 °C, well below their structural phase transition temperatures. Powder X-ray diffraction shows the expected P6{sub 3}cm space group for both samples with an increase in a and a small decrease in c with Fe incorporation, consistent with an adjustment of MnO{sub 5} tilting, while XANES spectra at the Mn and Fe K edges show the oxidation state of both metals are maintained at +3 in the doped sample. High resolution TEM shows that curved stripe, annular and vortex domains can all be observed in the YMnO{sub 3} crystals, proving that the structural phase transition is not the only driving force for the occurrence of the annular and vortex domains. Furthermore, the absence of the annular and vortex domains in YMn{sub 0.9}Fe{sub 0.1}O{sub 3} indicates that the tilting state of MnO{sub 5} bipyramids plays an important role in the domain formation. Atomic resolution STEM images confirm that the ferroelectric domain walls correspond to structural antiphase boundaries similar to the crystals made via high temperature solid-state reactions.

  4. Vector Lattice Vortex Solitons

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping

    2005-01-01

    @@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.

  5. Bifurcation of Vortex Density Current in Trapped Bose Condensates

    Institute of Scientific and Technical Information of China (English)

    XU Tao; ZHANG ShengLi

    2002-01-01

    Vortex density current in the Gross-Pitaevskii theory is studied. It is shown that the inner structure of the topological vortices can be classified by Brouwer degrees and Hopf indices of φ-mapping. The dynamical equations of vortex density current have been given. The bifurcation behavior at the critical points of the current is discussed in detail.

  6. Buoyant Norbury's vortex rings

    Science.gov (United States)

    Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder

    2014-11-01

    Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.

  7. Secondary Fast Magnetoacoustic Waves Trapped in Randomly Structured Plasmas

    Science.gov (United States)

    Yuan, Ding; Li, Bo; Walsh, Robert W.

    2016-09-01

    Fast magnetoacoustic waves are an important tool for inferring parameters of the solar atmosphere. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas that mimic the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the speed of the fast wave, we quantify the properties of secondary waves by examining the dependence of the average temporal period (\\bar{p}) on the initial pulse width (w 0) and studying the density contrast ({δ }ρ ) and correlation length (L c ) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, {δ }ρ does not alter \\bar{p} significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when {δ }ρ is small but have a smoothing effect when {δ }ρ is sufficiently large. We found that \\bar{p} scales linearly with L c and that the scaling factor is larger for a narrower pulse. However, in terms of the absolute values of \\bar{p}, broader pulses generate secondary waves with longer periods, and this effect is stronger in random plasmas with shorter correlation lengths. Secondary waves carry the signatures of both the leading wave pulse and the background plasma. Our study may find applications in magnetohydrodynamic seismology by exploiting the secondary waves detected in the dimming regions after coronal mass ejections or extreme ultraviolet waves.

  8. Rotating shallow water modeling of planetary,astrophysical and plasma vortical structures (plasma transport across a magnetic field,model of the jupiter's GRS, prediction of existence of giant vortices in spiral galaxies

    Directory of Open Access Journals (Sweden)

    M. V. Nezlin

    1999-01-01

    Full Text Available Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridman et al. (Astrophysics and Space Science, 1997, 252, 115.

  9. Giant electromagnetic vortex and MeV monoenergetic electrons generated by short laser pulses in underdense plasma near quarter critical density region.

    Science.gov (United States)

    Zhidkov, Alexei; Nemoto, Koshichi; Nayuki, Takuya; Oishi, Yuji; Fuji, Takashi

    2007-07-01

    Very efficient generation of monoenergetic, about 1MeV , electrons from underdense plasma with its electron density close to the critical, when irradiated by an intense femtosecond laser pulse, is found via two dimensional particle-in-cell simulation. The stimulated Raman scattering of a laser pulse with frequency omega300 keV .

  10. Molecular shear heating and vortex dynamics in thermostatted two-dimensional Yukawa liquids

    CERN Document Server

    Gupta, Akanksha; Joy, Ashwin

    2016-01-01

    It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and MD studies of shear flows in strongly coupled Yukawa liquids, indicated occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to destruction of macroscale vorticity. To understand the vortex dynamics of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve while at the same time, "removes" the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way...

  11. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  12. Installation Structure Optimization and Vortex Noise Analysis for Appendages of Deepwater AUV%深水自主水下航行器附体安装结构参数 优化及涡流噪声分析

    Institute of Scientific and Technical Information of China (English)

    姜欣; 刘玉红; 朱光; 吴芝亮; 赵黎明

    2015-01-01

    深水自主水下航行器(Autonomous underwater vehicle, AUV)是主要依靠声学设备实现导航、定位以及任务操作的机电装备.声通信调制解调器是保证深水AUV正常水下作业的唯一数据通路,其周围的涡流噪声对其信号精度有着不容忽视的影响.以降低涡流噪声对声通信传感器信号干扰为目的,研究声通信传感器的安装结构设计.依据AUV上声通信传感器的安装结构抽象出几何模型,即圆柱凸体–孔腔组合结构,采用LES-Lighthill等效声源混合法对该结构的流场、声场进行模拟仿真,探讨组合结构涡流流动机制及辐射噪声特征.分析影响组合结构涡流噪声的因素,以降低涡流噪声为目的,利用正交试验的方法优化圆柱凸体–孔腔组合结构参数.结果表明,在较低速度范围内,水下航行器速度对组合结构水动噪声的影响不如组合结构参数对水动噪声的作用显著,安装结构参数对涡流噪声的影响顺序为高深比>直径比>深径比.研究成果为水下航行器声学传感器的合理安装及提高信号精度提供了理论指导.%Autonomous underwater vehicles (AUV) depend on acoustic instruments to realize navigation, locating and orientation, task operation. Acoustic communication modem (ACM) is the only data path to ensure the normal underwater operation of AUV in deepwater area. Interference of the vortex noise on the signal of the ACM cannot be ignored. Aiming to reduce the interference of vortex noise on the signal of ACM, the installation structure of the ACM is designed. Based on the structure of the ACM mounted on the AUV, a geometric model, i.e. the cavity–appendage composite structure, is extracted. The large eddy simulation (LES) –Lighthill equivalent source method is used to investigate the unsteady flow mechanism and vortex noise of the composite structure. Factors influencing the vortex noise generated by the composite structure are analyzed. Aiming

  13. Magnetic apatite for structural insights on the plasma membrane.

    Science.gov (United States)

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  14. Magnetic apatite for structural insights on the plasma membrane

    Science.gov (United States)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  15. Tomographic PIV measurements of a regenerating hairpin vortex

    Science.gov (United States)

    Sabatino, D. R.; Rossmann, T.

    2016-01-01

    The three-dimensional formation and regeneration of a hairpin vortex in a laminar boundary layer is studied in a free-surface water channel. The vortex is generated by fluid injection through a narrow slot into a laminar boundary layer (Re_{δ ^*} = 485) and recorded with tomographic particle image velocimetry. The swirling strength based on the λ _2 criterion shows that the hairpin initially forms at the upstream edge of the elongated ring vortex produced by the injection. The elongated ring vortex decays while the hairpin vortex strengthens. Because the hairpin vortex is of sufficient strength, it forms a kink in the legs as a result of inviscid induction. A bridging structure forms between the legs initially upstream of the kink. As this structure dissipates, another bridging structure forms downstream of the kink and closes the vortex loop between the legs. This pinches off the original hairpin head such that two distinct vortices result. The formation of the secondary hairpin head does not appear to be preceded by a reduction in the spanwise gap between the legs or significant change in height above the wall as has been seen when exposed to a mean turbulent profile. Instead, the formation is preceded by the stretching of the hairpin legs downstream of the kink, exposes the ejected fluid between the legs to boundary layer flow producing conditions similar to those that formed the initial hairpin vortex.

  16. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales

    Science.gov (United States)

    Curran, P. J.; Desoky, W. M.; Milos̆ević, M. V.; Chaves, A.; Laloë, J.-B.; Moodera, J. S.; Bending, S. J.

    2015-01-01

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications. PMID:26492969

  17. Mechanism and scaling for convection of isolated structures in nonuniformly magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Naulin, V.

    2005-01-01

    Large-scale radial advection of isolated structures in nonuniformly magnetized plasmas is investigated. The underlying mechanism considered is due to the nonlinear evolution of interchange motions, without any presumption of plasma sheaths. Theoretical arguments supported by numerical simulations...... of the structures, compares favorably with recent experimental measurements of radially propagating blob structures in the scrape-off layer of magnetically confined plasmas. (C) 2005 American Institute of Physics....

  18. Steady mirror structures in a plasma with pressure anisotropy

    CERN Document Server

    Kuznetsov, E A; Ruban, V P; Sulem, P L

    2015-01-01

    In the first part we present a review of our results concerning the weakly nonlinear regime of the mirror instability in the framework of an asymptotic model. This model belongs to the class of gradient type systems for which the free energy can only decrease in time. It reveals a behavior typical for subcritical bifurcations: below the mirror instability threshold, all localized stationary structures are unstable, while above threshold, the system displays a blow-up behavior. It is shown that taking the electrons into account (non-zero temperature) does not change the structure of the asymptotic model. For bi-Maxwellian distribution functions for both electrons and ions, the model predicts the formation of magnetic holes. The second part contains original results concerning two-dimensional steady mirror structures which can form in the saturated regime. Based on Grad-Shafranov-like equations, a gyrotropic plasma, where the pressures in the static regime are only functions of the amplitude of the local magnet...

  19. Axisymmetric Nonlinear Waves And Structures in Hall Plasmas

    CERN Document Server

    Islam, Tanim

    2011-01-01

    A Hall plasma consists of a plasma with not all species frozen into the magnetic field. In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature -- whistler drift modes that propagate along the electron drift as a Burger's shock, and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral -- are analyzed. We derive analytical and numerical solutions in an electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to electron-ion-gas Hall plasmas, in which the ions are coupled to the motion of gases in low ionized plasmas (lower ionosphere and protostellar disks), and to dusty Hall plasmas (such as molecular clouds), in which the much heavier charged dust may be collisionally coupled to the gas.

  20. STRUCTURE OF PROMINENCE LEGS: PLASMA AND MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Levens, P. J.; Labrosse, N. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Schmieder, B. [Observatoire de Paris, Meudon, F-92195 (France); Ariste, A. López, E-mail: p.levens.1@research.gla.ac.uk [Institut de Recherche en Astrophysique et Planétologie, Toulouse (France)

    2016-02-10

    We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are strongly absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca ii (SOT), are not visible in the IRIS Mg ii slit-jaw images. This is explained by the large optical thickness of the structures in Mg ii, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s{sup −1} in the tornado-like structure. Between the two legs we see loops in Mg ii, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.

  1. Anatomy of a bathtub vortex.

    Science.gov (United States)

    Andersen, A; Bohr, T; Stenum, B; Rasmussen, J Juul; Lautrup, B

    2003-09-05

    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Surrounding this drainpipe is a region with slow upward flow generated by the Ekman layer at the bottom of the container. This flow structure leads us to a theoretical model similar to one obtained earlier by Lundgren [J. Fluid Mech. 155, 381 (1985)

  2. Vortex-Based Aero- and Hydrodynamic Estimation

    Science.gov (United States)

    Hemati, Maziar Sam

    Flow control strategies often require knowledge of unmeasurable quantities, thus presenting a need to reconstruct flow states from measurable ones. In this thesis, the modeling, simulation, and estimator design aspects of flow reconstruction are considered. First, a vortex-based aero- and hydrodynamic estimation paradigm is developed to design a wake sensing algorithm for aircraft formation flight missions. The method assimilates wing distributed pressure measurements with a vortex-based wake model to better predict the state of the flow. The study compares Kalman-type algorithms with particle filtering algorithms, demonstrating that the vortex nonlinearities require particle filters to yield adequate performance. Furthermore, the observability structure of the wake is shown to have a negative impact on filter performance regardless of the algorithm applied. It is demonstrated that relative motions can alleviate the filter divergence issues associated with this observability structure. In addition to estimator development, the dissertation addresses the need for an efficient unsteady multi-body aerodynamics testbed for estimator and controller validation studies. A pure vortex particle implementation of a vortex panel-particle method is developed to satisfy this need. The numerical method is demonstrated on the impulsive startup of a flat plate as well as the impulsive startup of a multi-wing formation. It is clear, from these validation studies, that the method is able to accommodate the unsteady wake effects that arise in formation flight missions. Lastly, successful vortex-based estimation is highly dependent on the reliability of the low-order vortex model used in representing the flow of interest. The present treatise establishes a systematic framework for vortex model improvement, grounded in optimal control theory and the calculus of variations. By minimizing model predicted errors with respect to empirical data, the shortcomings of the baseline vortex model

  3. Etching and structure transformations in uncured epoxy resin under rf-plasma and plasma immersion ion implantation

    Science.gov (United States)

    Kondyurin, Alexey; Bilek, Marcela

    2010-05-01

    Uncured epoxy resin was spun onto silicon wafer and treated by plasma and plasma immersion ion implantation (PIII) by argon ions with energy up to 20 keV. Ellipsometry, FTIR spectroscopy and optical microscopy methods were used for analysis. The etching, carbonization, oxidation and crosslinking effects were observed. The curing reactions in modified epoxy resin are observed without a hardening agent. A model of structural transformations in epoxy resin under plasma and ion beam irradiation is proposed and discussed in relation to processes in a space environment.

  4. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1997-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  5. Fermi Surface and Order Parameter Driven Vortex Lattice Structure Transitions in Twin-Free YBa2Cu3O7

    DEFF Research Database (Denmark)

    White, J.S.; Hinkov, V.; Heslop, R.W.;

    2009-01-01

    fields. It is separated from a low-field hexagonal phase of different orientation and distortion by a first-order transition at 2.0(2) T that is probably driven by Fermi surface effects. We argue that another first-order transition at 6.7(2) T, into a rhombic structure with a distortion of opposite sign......, marks a crossover from a regime where Fermi surface anisotropy is dominant, to one where the VL structure and distortion is controlled by the order-parameter anisotropy....

  6. Formation of vortex structures in channels with mass injection and their interaction with surfaces in solid-fuel rocket engines

    Science.gov (United States)

    Benderskiy, B. Ya.; Chernova, A. A.

    2015-03-01

    The topological features of the structure of combustion products flow in the flow paths with different shapes of channel cross sections at power installations are considered. The results of mathematical modeling of internal gas dynamics of the flow paths of power installations are compared with experimental data.

  7. BOOK REVIEW: Transport and Structural Formation in Plasmas

    Science.gov (United States)

    Thyagaraja, A.

    1999-06-01

    The book under review is one of a series of monographs on plasma physics published by the Institute of Physics under the editorship of Peter Stott and Hans Wilhelmsson. It is nicely produced and is aimed at research workers and advanced students of both laboratory (i.e. tokamak plasmas) and astrophysical plasma physics. The authors are prolific contributors to the subject of plasma turbulence and transport with a well-defined message: ``The authors' view is that the plasma structure, fluctuations and turbulent transport are continually regulating each other and, in addition, that the structural formation and structural transition of plasmas are typical of the physics of far from equilibrium systems. The book presents and explains why the plasma inhomogeneity is the ordering parameter governing transport and how self-sustained fluctuations can be driven through subcritical excitation even beyond linear instability''. This point of view is expounded in 24 chapters, including topics such as transport phenomena in toroidal plasmas (Chapters 2-4), low frequency modes and instabilities of confined systems (Chapters 5-7), renormalization (Chapter 8), self-sustained turbulence due to the current diffusive mode and resistive effects (Chapters 9-11), subcritical turbulence and numerical simulations (Chapters 12-14), scale invariance arguments (Chapter 15), electric field effects (Chapters 17-21) and self-organized dynamics (Chapter 22). The material is essentially drawn from the authors' many and varied original contributions to the plasma turbulence and transport literature. Whatever view one might have about the merits of this work, there is little doubt in this reviewer's mind that it is indeed thought-provoking and presents a worthy intellectual challenge to plasma theorists and experimentalists alike. The authors take a consistent stance and discuss the issues from their own standpoint. They observe that the plasmas one encounters in practice (for definiteness, the

  8. Nano magnetic vortex wall guide

    Directory of Open Access Journals (Sweden)

    H. Y. Yuan

    2015-11-01

    Full Text Available A concept of nano magnetic vortex wall guide is introduced. Two architectures are proposed. The first one is properly designed superlattices while the other one is bilayer nanostrips. The concept is verified by micromagnetic simulations. Both guides can prevent the vortex core in a magnetic vortex wall from colliding with sample surface so that the information stored in the vortex core can be preserved during its transportation from one location to another one through the guides.

  9. Vortex Characterization for Engineering Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  10. Vortex knots in tangled quantum eigenfunctions

    CERN Document Server

    Taylor, Alexander J

    2016-01-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic 3-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex 3-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose-Einstein condensates.

  11. Jet vortex methods

    CERN Document Server

    Holm, Darryl D

    2015-01-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the the dynamics are trivial for isolated blobs. In this article we will find that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularised Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularised Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also characterise the Hamiltonian dynamics of the higher-order singular vortices. Applications to the design of numerical meth- ods similar to vortex blob methods are also discussed. Such findings shed light onto the rich dynamics which occur below the regularization length scale and enlighten our perspective on the multiscale aspects of regularized fluid m...

  12. Vortex tube optimization theory

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, Jeffery [Cambridge Univ., Magdalene Coll., Cambridge (United Kingdom); Bejan, Adrian [Duke Univ., Dept. of Mechanical Engineering and Materials Science, Durham, NC (United States)

    1999-11-01

    The Ranque-Hilsch vortex tube splits a single high pressure stream of gas into cold and warm streams. Simple models for the vortex tube combined with regenerative precooling are given from which an optimisation can be undertaken. Two such optimisations are needed: the first shows that at any given cut or fraction of the cold stream, the best refrigerative load, allowing for the temperature lift, is nearly half the maximum loading that would result in no lift. The second optimisation shows that the optimum cut is an equal division of the vortex streams between hot and cold. Bounds are obtainable within this theory for the performance of the system for a given gas and pressure ratio. (Author)

  13. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  14. SIMULATION STUDY OF THE VORTEX DYNAMICS IN FERROMAGNETIC STRUCTURE%铁磁结构中涡旋的动力学特性模拟研究

    Institute of Scientific and Technical Information of China (English)

    范永生; 鲁毅; 赵建军; 金香; 吴鸿业

    2013-01-01

    A model was build about the relation of the Vortex Number and time in the process of paramagnetic-ferromagnetic transition in the soft ferromagnetic permalloy (Py) thin films based on,LLG equations (LLG).Equation of the magnetization was solved by numerical methods of Runge-Kutta.The results shows:the process of vortex number vs time can be divided into two stages:in the first stage,vortex number reduces drastically,in the second stage,the vortex numbers slowly decrease to a steady state.The smaller exchange coefficient is,the more remaining Vortex Numbers will be.Demagnetization has little effects on the process of phase change,Vortex number decrease can be observed only in the smallest exchange fofficient (1.3E-12) situation.%基于微磁学基本方程Landau-Lifshitz-Gilbert(LLG)方程,我们建立了软磁薄膜体系顺磁-铁磁转变过程中涡旋数目随时间的变化关系模型.磁化强度运动方程采用了传统的Runge-Kutta数值方法求解.计算结果发现:不同的交换场下,涡旋数变化可以分为两个阶段:第一阶段涡旋数目随时间急剧减少;第二阶段涡旋数目缓慢减少,直至不再变化,交换系数越小剩余的涡旋数会越多.退磁能对相变过程影响甚微,只有在交换系数(1.3E-12)较小时有可观察到的效应:有退磁场涡旋数目稍小.

  15. Exploring novel structures for manipulating relativistic laser-plasma interaction

    Science.gov (United States)

    Ji, Liangliang

    2016-10-01

    The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).

  16. Temporal structure of double plasma frequency emission of thin beam-heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Postupaev, V. V.; Ivanov, I. A.; Arzhannikov, A. V.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Burdakov, A. V.; Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Sklyarov, V. F.; Gavrilenko, D. Ye.; Kandaurov, I. V.; Kurkuchekov, V. V.; Mekler, K. I.; Popov, S. S.; Rovenskikh, A. F.; Sudnikov, A. V.; Sulyaev, Yu. S.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Kasatov, A. A. [Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2013-09-15

    In the work presented here dynamics of spiky microwave emission of a beam-heated plasma near the double plasma frequency in ∼100 GHz band was studied. The plasma is heated by 80 keV, ∼2 MW, sub-ms electron beam that is injected into the multiple-mirror trap GOL-3. The beam-heated plasma diameter is of the order of the emitted wavelength. Modulation of individual emission spikes in the microwave radiation is found. The radiation dynamics observed can be attributed to a small number of compact emitting zones that are periodically distorted.

  17. Wing tip vortex control by the pulsed MHD actuator

    Science.gov (United States)

    Moralev, I. A.; Biturin, V. A.; Kazansky, P. N.; Zaitsev, M. Yu.; Kopiev, Vl. A.

    2016-10-01

    The paper presents the experimental results and the analysis of the wingtip vortex control by magnetohydrodynamic (MHD) plasma actuator [1]. The actuator is installed on the surface of the asymmetric wing of a finite span. In a single cycle of actuator operation, the pulsed discharge is created between two electrodes and then driven by the Lorentz force in the spanwise direction. The evolution of the vortex after the actuator pulse is studied directly downstream of the wing trailing edge. The shift of the vortex position, without a significant change in the vortex circulation is the main effect obtained after the discharge pulse. The effect of the external flow velocity and the position of the actuator on the shift amplitude were studied. The authority of the flow control by the actuator is shown to reduce at higher velocity values; the position on the suction side of the airfoil is shown to be crucial for the effective actuator operation.

  18. (Non)-universality of vortex reconnections in superfluids

    CERN Document Server

    Villois, Alberto; Proment, Davide

    2016-01-01

    An insight into vortex reconnections in superfluids is presented making use of analytical results and numerical simulations of the Gross--Pitaevskii model. Universal aspects of the reconnection process are investigated by considering different initial vortex configurations and making use of a recently developed tracking algorithm to reconstruct the vortex filaments. We show that about the reconnection event the vortex lines approach and separate always accordingly to the time scaling $ \\delta \\sim t^{-1/2} $ with pre-factors that depend on the vortex configuration. We also investigate the behavior of curvature and torsion close to the reconnection point, demonstrating analytically that the curvature can exhibit a self-similar behavior that might be broken by the development of shock-like structures in the torsion.

  19. Vortex identification in the analysis on the topology structure of vortical flow in cavity%涡判据在孔腔涡旋流动拓扑结构分析中的应用

    Institute of Scientific and Technical Information of China (English)

    胡子俊; 张楠; 姚惠之; 杨子轩

    2012-01-01

    Vortex which is a classical flow pattern has not a strict mathematical definition so far, and vortex identification is still an important approach to distinguish them. Different vortex identifications and physical meaning are summarized in this paper as well as the Q and λ2 identifications are employed to distinguish the actual various vortices in the cavity and analyze the topologic structure of vortices, the good results are obtained.%涡作为一种经典的流动现象目前仍没有严格的数学定义,涡判据是人们识别涡的重要途径.文章对涡的各种判据及其物理意义进行了调研和总结,并将目前较为常用的Q判据和λ2判据应用于二维和三维孔腔流动中涡的识别,并对其拓扑结构进行了分析,得到了有意义的结果.

  20. Comparative study of structural and optical properties of pulsed and RF plasma polymerized aniline films

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Tapan; Pal, Arup R., E-mail: arpal@iasst.gov.in; Chutia, Joyanti

    2014-09-15

    Graphical abstract: - Highlights: • Pulse DC and RF plasma is used for synthesis of conducting polymer films. • Conjugated structure retention is better at optimum powers in both the processes. • Conjugated structure retention is better in case of RF plasma prepared films. • Band gap is lower in case of RF plasma prepared films at higher power. • Defect in pulse plasma prepared film is less than RF plasma prepared thin films. - Abstract: Plasma polymerization of aniline is carried out by means of continuous RF and pulsed DC glow discharge plasma in a common reactor at different applied powers. The discharge control variables are optimized for good quality film growth and the role of fragmentation of the molecular structure on the structural, optical, morphological and optophysical properties of the deposited plasma polymerized aniline (PPAni) layers is investigated. Retention of the conjugated structure is found to be prominent at optimum applied power to the plasma in both the continuous RF and pulsed DC polymerization techniques. Improvement in conjugated structure and chain length have been observed in both the continuous RF and pulse DC PPAni thin films with the increase in applied power to the plasma up to a certain limit of applied power when working pressure is fixed at 0.15 mbar. A decrease in optical bandgap with the increase in applied power to the plasma is observed in both the pulsed DC and RF PPAni thin films, but it is more significant in case of RF PPAni films. The plasma polymerized aniline thin films are found to emit photoluminescence due to band to band transition and defects generated in the structure.

  1. Cavitating vortex characterization based on acoustic signal detection

    Science.gov (United States)

    Digulescu, A.; Murgan, I.; Candel, I.; Bunea, F.; Ciocan, G.; Bucur, D. M.; Dunca, G.; Ioana, C.; Vasile, G.; Serbanescu, A.

    2016-11-01

    In hydraulic turbines operating at part loads, a cavitating vortex structure appears at runner outlet. This helical vortex, called vortex rope, can be cavitating in its core if the local pressure is lower that the vaporization pressure. An actual concern is the detection of the cavitation apparition and the characterization of its level. This paper presents a potentially innovative method for the detection of the cavitating vortex presence based on acoustic methods. The method is tested on a reduced scale facility using two acoustic transceivers positioned in ”V” configuration. The received signals were continuously recorded and their frequency content was chosen to fit the flow and the cavitating vortex. Experimental results showed that due to the increasing flow rate, the signal - vortex interaction is observed as modifications on the received signal's high order statistics and bandwidth. Also, the signal processing results were correlated with the data measured with a pressure sensor mounted in the cavitating vortex section. Finally it is shown that this non-intrusive acoustic approach can indicate the apparition, development and the damping of the cavitating vortex. For real scale facilities, applying this method is a work in progress.

  2. Nanostructuring superconducting vortex matter with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guillamón, I. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Kulkarni, P.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Córdoba, R.; Sesé, J. [Laboratorio de Microscopías Avanzadas (LMA) – Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza 50009 (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); and others

    2014-08-15

    Highlights: • Nanostructuring vortex matter with focused ion beams. • Nanofabrication produces high vortex density gradients. • Patterning gives nanocrystalline vortex lattice. - Abstract: Focused ion beams provide new opportunities to create small nanofabricated structures. Materials where this technique is successfully applied are different from those that are widely used in e-beam or photolithography processes. Arrays of holes have been fabricated in several layered superconductors, such as the transition metal dichalcogenides. A focused ion beam system can be also used to deposit superconducting material. A Ga beam is used to decompose a precusor W(CO){sub 6} molecule, giving an amorphous mixture of W–C–Ga–O which is superconducting below liquid helium temperatures. The amorphous nature of the deposit gives isotropic superconducting features, and vortex pinning is determined by the surface topography (or film thickness). Here we present vortex lattice images in an amorphous thin film with a nanofabricated array of dots. We find vortex confinement within the dots and inhomogeneous vortex distributions with large magnetic field gradients (around a Tesla in 10–20 nm). We discuss scaling behavior of the vortex lattice after nanofabrication.

  3. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    Directory of Open Access Journals (Sweden)

    Kevin Sunderland

    2016-01-01

    Full Text Available This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD simulations. Modified versions of known λ2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  4. Experimental Vortex Identification and Characterization in Reacting Jets in Crossflow

    Science.gov (United States)

    Nair, Vedanth; Emerson, Ben; Lieuwen, Timothy

    2016-11-01

    Reacting jets in crossflow (JICF) is an important canonical flow field in combustion problems where there is strong coupling between heat release and the evolution of vortical structures. We use vortex identification studies to experimentally characterize the spatial evolution of vortex dynamics in a reacting JICF. A vortex identification algorithm was designed to operate on particle image velocimetry (PIV) data and its raw Mie scattering images. The algorithm uses the velocity fields to obtain comparisons between the strain rate and the rotation rate. Additionally, the algorithm uses the raw Mie scattering data to identify regions where the high acceleration at vortex cores has centrifuged seeding particles out of the vortex cores. Together, these methods are used to estimate the vortex location and circulation. Analysis was done on 10 kHz PIV data from a reacting JICF experiment, and the resulting vortex trajectory, and growth rate statistics are presented. Results are compared between non-reacting JICF and reacting studies performed with different jet density ratios and different levels of acoustic forcing. We observed how the density ratio, the frequency and amplitude of the acoustic forcing affected the vortex characteristics and growth rate.

  5. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    Science.gov (United States)

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172

  6. Secondary fast magnetoacoustic waves trapped in randomly structured plasmas

    CERN Document Server

    Yuan, Ding; Walsh, Robert W

    2016-01-01

    Fast magnetoacoustic wave is an important tool for inferring solar atmospheric parameters. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas mimicking the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the fast wave speed, we quantify the properties of secondary waves by examining the dependence of the average temporal period ($\\bar{p}$) on the initial pulse width ($w_0$) as well as the density contrast ($\\delta_\\rho$) and correlation length ($L_c$) that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, $\\delta_\\rho$ does not alter $\\bar{p}$ significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when $\\delta_\\rho$ is small but have a smoothing effect when $\\delta_\\rho$ is suffic...

  7. Optical vortex conversion in the elliptic vortex-beam propagating orthogonally to the crystal optical axis: the experiment

    Science.gov (United States)

    Sokolenko, Bogdan; Kudryavtseva, Maria; Zinovyev, Alexey; Konovalenko, Victor; Rubass, Alex

    2012-01-01

    We have experimentally analyzed the topological reactions occurred in the elliptic vortex-beam transmitting orthogonally to the optical axis of the SiO2 crystal. We have revealed that the oscillations of the polarization state when propagating the beam are accompanied by reconstruction of the polarization singularities at the beam cross-section that, in turn, entails the reconstruction of the wavefront in each circularly polarized beam component. Both synchronic oscillations of the spin angular momentum and the sign of the vortex topological charge are expressing in a field structure as birth and annihilation of topological dipoles. Also periodical conversion of the vortex ellipticity along the crystal length z and huge splash of spin angular momentum were analysed. The run of the dislocation reactions in the beam component results in converting the sign of the topological charge in the centered optical vortex, the distance of the vortex conversion being about 0.05 of the wavelength.

  8. Investigation of the Electronic Structure of Solid Density Plasmas by X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Forest, F J; Kuhlbrodt, S; Redmer, R; Faussurier, G; Blancard, C; Renaudin, P; Landen, O L

    2003-05-19

    We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

  9. Electronic Structure Measurement of Solid Density Plasmas using X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Rogers, F J; Landen, O L; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R

    2003-08-23

    We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

  10. Combination of plasma with a honeycomb-structured catalyst for automobile exhaust treatment.

    Science.gov (United States)

    Kang, Woo Seok; Lee, Dae Hoon; Lee, Jae-Ok; Hur, Min; Song, Young-Hoon

    2013-10-01

    To activate a catalyst efficiently at low temperature by plasma for environmental control, we developed a hybrid reactor that combines plasma with a honeycomb-structured catalyst in a practical manner. The reactor developed generated stable cold plasma at atmospheric pressure because of the dielectric and conductive nature of the honeycomb catalyst by consuming low amounts of power. In this reactor, the applied voltage and temperature determined the balance between the oxidation and adsorption by the plasma and catalyst. The synergistic reaction of the plasma and catalyst was more effective at low temperatures, resulting in a reduction in a lowered light-off temperature.

  11. Properties and evolution of anisotropic structures in collisionless plasmas

    CERN Document Server

    Karimov, A R; Stenflo, L

    2016-01-01

    A new class of exact electrostatic solutions of the Vlasov-Maxwell equations based on the Jeans's theorem is proposed for studying the evolution and properties of two-dimensional anisotropic plasmas that are far from thermodynamic equilibrium. In particular, the free expansion of a slab of electron-ion plasma into vacuum is investigated.

  12. Dynamics of Vortex Cavitation

    NARCIS (Netherlands)

    Pennings, P.C.

    2016-01-01

    This thesis describes the mechanisms with which tip vortex cavitation is responsible for broadband pressure fluctuations on ship propellers. Hypotheses for these are described in detail by Bosschers (2009). Validation is provided by three main cavitation-tunnel experiments, one on a model propeller

  13. Direct Numerical Simulation of Twin Swirling Flow Jets: Effect of Vortex-Vortex Interaction on Turbulence Modification

    Directory of Open Access Journals (Sweden)

    Wenkai Xu

    2014-01-01

    Full Text Available A direct numerical simulation (DNS was carried out to study twin swirling jets which are issued from two parallel nozzles at a Reynolds number of Re = 5000 and three swirl levels of S = 0.68, 1.08, and 1.42, respectively. The basic structures of vortex-vortex interaction and temporal evolution are illustrated. The characteristics of axial variation of turbulent fluctuation velocities, in both the near and far field, in comparison to a single swirling jet, are shown to explore the effects of vortex-vortex interaction on turbulence modifications. Moreover, the second order turbulent fluctuations are also shown, by which the modification of turbulence associated with the coherent or correlated turbulent fluctuation and turbulent kinetic energy transport characteristics are clearly indicated. It is found that the twin swirling flow has a fairly strong localized vortex-vortex interaction between a pair of inversely rotated vortices. The location and strength of interaction depend on swirl level greatly. The modification of vortex takes place by transforming large-scale vortices into complex small ones, whereas the modulation of turbulent kinetic energy is continuously augmented by strong vortex modification.

  14. Axisymmetric nonlinear waves and structures in Hall plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Tanim [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551-0808 (United States)

    2012-06-15

    In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature-whistler drift modes that propagate along the electron drift as a Burger's shock and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral-are analyzed. We derive analytical and numerical solutions in a classical electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to the following low-ionized astrophysical plasmas: in protostellar disks, in which the ions may be coupled to the motion of gases; and in molecular clouds and protostellar jets, in which the much heavier charged dust in a dusty Hall plasma may be collisionally coupled to the gas.

  15. Two-Way Coupling Vortex Method and Its Application

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    Because of the success of the discrete vortex method for the simulation of large-scale vortex structure.many researchers extend this method to two-phase flow simulations,especially,to the simulation of particle dispersion in mixing layer,which is characterized by large-scale vortex structure,But the previous work is limited to one-way couplin,which neglects the effect of particles on fluid flow.In this paper a discrete vortex method involving two-way coupling for two-phase flows is frist proposed and then used in numerical simulation of two-dimensional gas-particle mixin layers The numerical results show that the introduction of particles into the mixing layer has significant effects on the creation,development and merging process of large-scale vortex structures.It makes the mean size of large-scale vortex stucture large and the distance needed for development of large-scale vortex sturcture shorter.

  16. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.

    Science.gov (United States)

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor

    2012-10-20

    In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable.

  17. Fundamental and vortex solitons in a two-dimensional optical lattice

    CERN Document Server

    Yang, J; Yang, Jianke; Musslimani, Ziad

    2003-01-01

    Fundamental and vortex solitons in a two-dimensional optically induced waveguide array are reported. In the strong localization regime, the fundamental soliton is largely confined to one lattice site, while the vortex state comprises of four fundamental modes superimposed in a square configuration with a phase structure that is topologically equivalent to the conventional vortex. However, in the weak localization regime, both the fundamental and vortex solitons spread over many lattice sites. We further show that fundamental and vortex solitons are stable against small perturbations in the strong localization regime.

  18. A simple mechanism for controlling vortex breakdown in a closed flow

    CERN Document Server

    Cabeza, C; Martí, A C; Sarasua, G; Bove, Italo; Marti, Arturo C.; Sarasua, Gustavo

    2005-01-01

    Vortex breakdown can be described as a change in vortex core structures in which a recirculation flux induces the formation of bubbles in the rotation axis. The development and control of a laminar vortex breakdown of a flow enclosed in a cylinder is studied both theoretical and experimentally. We show that the vortex breakdown can be controlled by the introduction of a small fixed rod in the axis of the cylinder. This method is simpler than those previously proposed, since it does not require any auxiliary device system. The experimental observations are consistent with the results of a simple model to predict the onset of vortex breakdown.

  19. Passive Wake Vortex Control

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging

  20. Phase space structures in gyrokinetic simulations of fusion plasma turbulence

    Science.gov (United States)

    Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure

    2014-10-01

    Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference

  1. Structure and phase transition of a two-dimensional dusty plasma

    Institute of Scientific and Technical Information of China (English)

    刘斌; 刘艳红; 陈雁萍; 杨思泽; 王龙

    2003-01-01

    The structure and phase transition of a two-dimensional (2D) dusty plasma have been investigated in detail by molecular dynamics simulation. Pair correlation function, static structure factor, mean square displacement, and bond angle correlation function have been calculated to characterize the structural properties. The variation of internal energy, shear modulus, particle trajectories and structural properties with temperature has been monitored to study the phase transition of the 2D dusty plasma system. The simulation results are in favour of a two-step continuous transition for this kind of plasma.

  2. The Globe of Science and Innovation's central vortex

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    The central vortex of the Globe of Science and Innovation is a crown measuring 6.15 m in diameter and 4.5 m in height. Having been lifted by a crane to a height of over 22 m, the vortex is placed on a support structure which will be removed once the 36 arcs providing the building's structure have been secured in place.

  3. Rare gas flow structuration in plasma jet experiments

    Science.gov (United States)

    Robert, E.; Sarron, V.; Darny, T.; Riès, D.; Dozias, S.; Fontane, J.; Joly, L.; Pouvesle, J.-M.

    2014-02-01

    Modifications of rare gas flow by plasma generated with a plasma gun (PG) are evidenced through simultaneous time-resolved ICCD imaging and schlieren visualization. The geometrical features of the capillary inside which plasma propagates before in-air expansion, the pulse repetition rate and the presence of a metallic target are playing a key role on the rare gas flow at the outlet of the capillary when the plasma is switched on. In addition to the previously reported upstream offset of the laminar to turbulent transition, we document the reverse action leading to the generation of long plumes at moderate gas flow rates together with the channeling of helium flow under various discharge conditions. For higher gas flow rates, in the l min-1 range, time-resolved diagnostics performed during the first tens of ms after the PG is turned on, evidence that the plasma plume does not start expanding in a laminar neutral gas flow. Instead, plasma ignition leads to a gradual laminar-like flow build-up inside which the plasma plume is generated. The impact of such phenomena for gas delivery on targets mimicking biological samples is emphasized, as well as their consequences on the production and diagnostics of reactive species.

  4. Gene structure and chromosomal localization of plasma kallikrein

    Energy Technology Data Exchange (ETDEWEB)

    Beaubien, G.; Mbikay, M.; Chretien, M.; Seidah, N.G. (Clinical Research Institute of Montreal, Quebec (Canada)); Rosinski-Chupin, I. (Inst. Pasteur, Paris (France)); Mattei, M.G. (Groupe hospitalier de a Timone, Marseille (France))

    1991-02-12

    Plasma kallikrein (Fletcher factor) is a hepatic serine proteinase that participates in the early phase of blood coagulation. From two genomic libraries, the authors succeeded to isolate four overlapping clones representing the entire rat plasma kallikrein gene. Using selective DNA sequencing, polymerase chain reactions, and restriction mapping, the authors demonstrated that the gene for rat plasma kallikrein was 22 kb in length. Similar to human factor XI the authors also found that the plasma kallikrein gene is composed of 15 exons and 14 introns. A potential transcription initiation step was determined by a novel application of the polymerase chain reaction technique. Computer analysis of the 5{prime}-promoter region of this gene revealed some putative control elements that might regulate the rat plasma kallikrein gene expression. These data and the results of chromosomal localization reported in the present study for mouse (chromosome 8) and human (chromosome 4) plasma kallikrein genes strongly corroborate a genic duplication event from a common ancestor to both plasma kallikrein and factor XI.

  5. Coherent Vortex Evolution in Drift Wave Turbulence

    Science.gov (United States)

    Gatto, R.; Terry, P. W.

    1998-11-01

    Localized structures in turbulence are subject to loss of coherence by mixing. Phase space structures, such as drift-hole, (P. W. Terry, P. H. Diamond, T. S. Hahm, Phys. Fluids B) 2 9 2048 (1990) possess a self-electric field, which if sufficiently large maintains particle trapping against the tidal deformations of ambient turbulence. We show here that intense vortices in fluid drift wave turbulence avoid mixing by suppressing ambient turbulence with the strong flow shear of the vortex edge. Analysis of turbulence evolution in the vortex edge recovers Rapid Distortion Theory (G. K. Batchelor and I. Proudman, Q. J. Mech. Appl. Math.) 7 83 (1954) as the short time limit and the shear suppression scaling theory (H. Biglari, P. H. Diamond and P. W. Terry, Phys. Fluids B) 2 1 (1990) as the long time limit. Shear suppression leads to an amplitude condition for coherence and delineates the Gaussian core from the non Gaussian tail of the probability distribution function. The amplitude condition of shear suppression is compared with the trapping condition for phase space holes. The possibility of nonlinear vortex growth will be examined by considering electron dynamics in the vortex evolution.

  6. Vortex dynamics in $R^4$

    CERN Document Server

    Shashikanth, Banavara N

    2011-01-01

    The vortex dynamics of Euler's equations for a constant density fluid flow in $R^4$ is studied. Most of the paper focuses on singular Dirac delta distributions of the vorticity two-form $\\omega$ in $R^4$. These distributions are supported on two-dimensional surfaces termed {\\it membranes} and are the analogs of vortex filaments in $R^3$ and point vortices in $R^2$. The self-induced velocity field of a membrane is shown to be unbounded and is regularized using a local induction approximation (LIA). The regularized self-induced velocity field is then shown to be proportional to the mean curvature vector field of the membrane but rotated by 90 degrees in the plane of normals. Next, the Hamiltonian membrane model is presented. The symplectic structure for this model is derived from a general formula for vorticity distributions due to Marsden and Weinstein (1983). Finally, the dynamics of the four-form $\\omega \\wedge \\omega$ is examined. It is shown that Ertel's vorticity theorem in $R^3$, for the constant density...

  7. The shock-vortex interaction patterns affected by vortex flow regime and vortex models

    Science.gov (United States)

    Chang, Keun-Shik; Barik, Hrushikesh; Chang, Se-Myong

    2009-08-01

    We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock-vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock-vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock-vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock-vortex interaction.

  8. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.

    Science.gov (United States)

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V

    2016-06-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  9. The metal-organic framework MIL-101(Cr) as efficient adsorbent in a vortex-assisted dispersive solid-phase extraction of imatinib mesylate in rat plasma coupled with ultra-performance liquid chromatography/mass spectrometry: Application to a pharmacokinetic study.

    Science.gov (United States)

    Qi, Chao; Cai, Qianqian; Zhao, Pan; Jia, Xiuna; Lu, Nan; He, Lu; Hou, Xiaohong

    2016-06-03

    Metal-organic framework MIL-101(Cr) was successfully used as an efficient sorbent in a vortex-assisted dispersive solid-phase extraction (VA-DSPE) and applied for the determination and the pharmacokinetic of imatinib mesylate in rat plasma by UPLC-MS/MS. In the enrichment of imatinib from rat plasma, the analyte was efficiently adsorbed on MIL-101(Cr) and simply recovered by using initial mobile phase (0.1% formic acid-methanol (6:4 v/v)) as elution solvent. Meanwhile, the protein in the plasma samples was excluded from the porous structure of MIL-101(Cr), leading to direct extraction of drug molecule from protein-rich biological samples without any other pretreatment procedure. After being removed, the supernatant was filtered and directly injected into the UPLC-MS/MS for the analysis of the target. The experimental parameters, including nature of MOFs, amount of MIL-101(Cr), pH value of aqueous solution, extraction time, type and volume of elution solvent, were systematically optimized. After VA-DSPE, chromatographic separation was performed on an ACQUITY UPLC(®) BEH C18 column (2.1mm×100mm, 1.7μm) with a 3min gradient elution using 0.1% formic acid and methanol as mobile phase at a flow rate of 0.3mL/min. The detection was accomplished on a tandem mass spectrometer via an electrospray ionization (ESI) source by multiple reaction monitoring (MRM) in the positive ionization mode. The lower limit of quantification of 1ng/mL was achieved and the mean recovery of the analyte was higher than 81.2%. Moreover, computational simulation was primarily applied to predict the adsorption behavior and revealed the molecular interactions and free binding energies between MIL-101(Cr) and imatinib with the molecular modeling method, providing certain explanation of the adsorption mechanism. The originally established pretreatment and detection method has some merits, such as less solvent consumption, easy operation, higher sensitivity and lower matrix effect. And the MIL-101

  10. Static and Dynamic Structure Factors with Account of the Ion Structure for High-temperature Alkali and Alkaline Earth Plasmas

    CERN Document Server

    Sadykova, S P; Tkachenko, I M

    2010-01-01

    The $e-e$, $e-i$, $i-i$ and charge-charge static structure factors are calculated for alkali and Be$^{2+}$ plasmas using the method described by Gregori et al. in \\cite{bibGreg2006}. The dynamic structure factors for alkali plasmas are calculated using the method of moments \\cite{bibAdam83}, \\cite{bibAdam93}. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the ion structure \\cite{bib73}. PACS: 52.27.Aj (Alkali and alkaline earth plasmas, Static and dynamic structure factors), 52.25.Kn (Thermodynamics of plasmas), 52.38.Ph (X-ray scattering)

  11. A Preliminary Study on the Self-Orgnization Process of Multi-Vortex

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jialing; MA Jingxian; CHEN Lianshou; LUO Zhexian

    2007-01-01

    In this paper, the self-organization process of the initially scattered 12 meso-β and -γscale vortices evolving into a synoptic-scale typhoon-like vortex in the context of advection dynamics is numerically explored with an f-plane 2-D quasi-geostrophic vorticity equation model. The results show that the self-organization process was a step-by-step merging course, namely the two adjacent vortices first merged, then formed a tri-vortex flow pattern, and finally evolved into a resultant vortex of meso-c scale. Thus it can be seen as an interaction of binary vortices self-organization. Each initial vortex or vorticity lump confronted two ways out: it merged with an adjacent vortex, and thus became a source of the inner region vorticity of the new formed vortex; or it was stretched by the circulation of an adjacent vortex, and then became the vorticity source of the spiral band of new vortex. Similarly, each new formed vortex also confronted the two ways out, until the multi-vortex self-organized into a single vortex of lager scale. The representation precision of the initial vortex structure directly affected the speeds of the mutual rotation and merging of the resultant vortex. Therefore, it is important to provide an accurate description of initial vortex profiles. Finally, a property of the numerical solution of the self-organization for the 2-D quasi-geostrophic flow is that the total kinetic energy decays slowly, the total enstrophy decreases rapidly, and the circulation of the largest scale vortex grows quickly.

  12. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I.; Bellaiche, Laurent M.; Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  13. Vortex dominated flows. Analysis and computation for multiple scale phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Ting, L. [New York Univ., NY (United States). Courant Inst. of Mathematical Sciences; Klein, R. [Freie Univ. Berlin (Germany). Fachbereich Mathematik und Informatik; Knio, O.M. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Mechanical Engineering

    2007-07-01

    This monograph provides in-depth analyses of vortex dominated flows via matched and multiscale asymptotics, and demonstrates how insight gained through these analyses can be exploited in the construction of robust, efficient, and accurate numerical techniques. The book explores the dynamics of slender vortex filaments in detail, including fundamental derivations, compressible core structure, weakly non-linear limit regimes, and associated numerical methods. Similarly, the volume covers asymptotic analysis and computational techniques for weakly compressible flows involving vortex-generated sound and thermoacoustics. The book is addressed to both graduate students and researchers. (orig.)

  14. A computational study of the topology of vortex breakdown

    Science.gov (United States)

    Spall, Robert E.; Gatski, Thomas B.

    1991-01-01

    A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.

  15. Excitation of surface plasma waves over corrugated slow-wave structure

    Indian Academy of Sciences (India)

    Ashim P Jain; Jetendra Parashar

    2005-08-01

    A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between dielectric and slow-wave structure. These slow SPW can couple the microwave energy to the plasma and can sustain the discharge. The efficiency of the power coupling is few per cent and is sensitive to separation between dielectric and slow-wave structure.

  16. Are tornado-like magnetic structures able to support solar prominence plasma?

    CERN Document Server

    Luna, Manuel; Priest, Eric

    2015-01-01

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloida...

  17. Analysis on dynamic and thermal structure and development mechanism in a cold vortex over North China%一次华北冷涡动力热力结构及发展机制分析

    Institute of Scientific and Technical Information of China (English)

    郁珍艳; 何立富; 李泽椿

    2011-01-01

    通过对2008年6月22-30日产生强对流天气过程中的华北冷涡动力、热力结构和演变特征的分析,发现:此次冷涡发展深厚,300 hPa冷涡中心明显,冷涡还在地面诱发了锋面气旋.在冷涡发展直至初步减弱阶段对流层整层都为正涡度区,中高层正涡度逐渐向低层传播.冷涡发展加强阶段,冷涡南侧高空西风急流发展加强,东西两侧的经向风分布趋于对称,东部和南部伴随较强的垂直上升运动.华北冷涡中心干冷,对流层中层西北干冷空气的侵入,对冷涡的发展加强起着重要作用.此次过程中,持续的东南气流将渤海的水汽向华北地区输送,水汽以东西向辐合为主.冷涡后部冷空气南下的日变化活动规律明显,10-13时侵入至京津冀地区,维持时间为15~20 h.冷涡后部干冷空气的向南侵入易造成强对流天气发生.%Through analyses on the structure and evolution characteristics of cold vortex from June 22 to 30, 2008, it was found that this cold vortex developed strongly, its center at 300 hPa was evident, it also had induced frontal cyclone on the ground. In the process from the development phase to the initial weakening stage, the entire troposphere consisted of positive vorticity, which spread from middle and high level to low level gradually. In the development stage, high-altitude westerly jet strengthened in the south of the cold vortex, the longitude direction wind distribution tended to become symmetry on the east and west sides, in the east and south a strong vertical ascending motion appeared. The center of the cold vortex was dry and cold, the intrusion of dry and cold northwest air in middle troposphere played an important role in further development of the cold vortex. In this process, continuous southeast water vapor stream was transported from the Bohai Sea to north China, the convergence of water vapor was limited on the east and west sides mainly. The daily change's activities of

  18. Holographic Imaging of Evolving Laser-Plasma Structures

    Energy Technology Data Exchange (ETDEWEB)

    Downer, Michael [Univ. of Texas, Austin, TX (United States); Shvets, G. [Univ. of Texas, Austin, TX (United States)

    2014-07-31

    In the 1870s, English photographer Eadweard Muybridge captured motion pictures within one cycle of a horse’s gallop, which settled a hotly debated question of his time by showing that the horse became temporarily airborne. In the 1940s, Manhattan project photographer Berlin Brixner captured a nuclear blast at a million frames per second, and resolved a dispute about the explosion’s shape and speed. In this project, we developed methods to capture detailed motion pictures of evolving, light-velocity objects created by a laser pulse propagating through matter. These objects include electron density waves used to accelerate charged particles, laser-induced refractive index changes used for micromachining, and ionization tracks used for atmospheric chemical analysis, guide star creation and ranging. Our “movies”, like Muybridge’s and Brixner’s, are obtained in one shot, since the laser-created objects of interest are insufficiently repeatable for accurate stroboscopic imaging. Our high-speed photographs have begun to resolve controversies about how laser-created objects form and evolve, questions that previously could be addressed only by intensive computer simulations based on estimated initial conditions. Resolving such questions helps develop better tabletop particle accelerators, atmospheric ranging devices and many other applications of laser-matter interactions. Our photographic methods all begin by splitting one or more “probe” pulses from the laser pulse that creates the light-speed object. A probe illuminates the object and obtains information about its structure without altering it. We developed three single-shot visualization methods that differ in how the probes interact with the object of interest or are recorded. (1) Frequency-Domain Holography (FDH). In FDH, there are 2 probes, like “object” and “reference” beams in conventional holography. Our “object” probe surrounds the light-speed object, like a fleas swarming around a

  19. Simulations of vortex generators

    Science.gov (United States)

    Koumoutsakos, P.

    1995-01-01

    We are interested in the study, via direct numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the stream direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise vorticity is generated and ejected due to the oscillatory motion of the lid. The present simulations complement relevant experimental investigations of active vortex generators at NASA Ames and Stanford University (Saddoughi, 1994, and Jacobson and Reynolds, 1993). Jacobson and Reynolds (1993) used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and he observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. Our task is to simulate the flows generated by these devices and to conduct a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin (1994). The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands of particles allow for high resolution simulations. The results of the present simulations would help us assess some of the effects of three-dimensionality in experiments and investigate the role

  20. 双能隙介观超导体的涡旋结构模拟*%Numerical simulation of vortex structure in mesoscopic two-gap superconductor∗

    Institute of Scientific and Technical Information of China (English)

    史良马; 张世军; 朱仁义

    2013-01-01

      本文运用了含时Ginzburg-Landau理论研究了双能带结构的介观超导体在外磁场作用下涡旋随时间的演化。给出了实际温度在s波和d波的临界温度之间s波、d波以及磁场的分布,从理论上模拟得到涡旋进入和退出样品的磁场“过热”与“过冷”现象,以及介观超导样品边界对涡旋结构分布的影响。%In this paper, the evolution of vortex configuration for mesoscopic two-gap superconductor is investigated by the time-dependent Ginzburg-Landau theory in the presence of an externally applied field. The vortex configurations of s-wave and d-wave, and the distribution of magnetic field are given when the temperature is between critical temperatures of s-wave and d-wave. In theory, the over-cold and the over-hot field, and the boundary effect on vortex are simulated when the magnetic flux penetrates the superconductor.

  1. Vortex ring breakdown induced by topographic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Geiser, J; Kiger, K T, E-mail: kkiger@umd.edu [Department of Mechanical Engineering, University of Maryland, College Park, MD 20910 (United States)

    2011-12-22

    Detailed measurements of the vortex breakdown within a strongly forced impinging jet are presented, with the goal of studying the effects of a small topographic disturbance on the breakdown and turbulence structure. This work is related to an ongoing effort to understand the dynamics of sediment suspension within a landing rotorcraft where a mobile boundary is subject to rapid erosion and deposition. The current work compares the results of a uniform surface to that of a small radial fence placed upstream of the vortex impingement location. The result is a dramatic increase in the coherence of the three-dimensional looping exhibited by the secondary vortex, leading to a more organized and strongly perturbed mean flow. Specifically, a triple decomposition of the velocity fluctuations indicates a very intense periodic stress in the vicinity of the impingement site, followed by a significant decay. Conversely, the random component of the fluctuating stresses gradually increases to modest levels as the coherent contributions decrease, eventually becoming greater than the coherent stress. The fence produces a bifurcation in the flow through the perturbation of the secondary vortex, which in turn creates a high-and low-speed streak on either side of the fence. The subsequent dynamics leads to increased fluctuating stress in the high-speed region, and a dramatically lower stress in the low-speed region, favoring preferential erosion on either side of the topographic disturbance.

  2. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  3. Axisymmetric Vortex Simulations with Various Turbulence Models

    Directory of Open Access Journals (Sweden)

    Brian Howard Fiedler

    2010-10-01

    Full Text Available The CFD code FLUENTTM has been applied to a vortex within an updraft above a frictional lower boundary. The sensitivity of vortex intensity and structure to the choice of turbulent model is explored. A high Reynolds number of 108 is employed to make the investigation relevant to the atmospheric vortex known as a tornado. The simulations are axisymmetric and are integrated forward in time to equilibrium.  In a variety of turbulence models tested, the Reynolds Stress Model allows for the greatest intensification of the vortex, with the azimuthal wind speed near the surface being 2.4 times the speed of the updraft, consistent with the destructive nature of tornadoes.  The Standard k-e Model, which is simpler than the Reynolds Stress Model but still more detailed than what is commonly available in numerical weather prediction models, produces an azimuthal wind speed near the surface of at most 0.6 times the updraft speed.        

  4. Multiply Phased Traveling BPS Vortex

    CERN Document Server

    Kimm, Kyoungtae; Cho, Y M

    2016-01-01

    We present the multiply phased current carrying vortex solutions in the U(1) gauge theory coupled to an $(N+1)$-component SU(N+1) scalar multiplet in the Bogomolny limit. Our vortex solutions correspond to the static vortex dressed with traveling waves along the axis of symmetry. What is notable in our vortex solutions is that the frequencies of traveling waves in each component of the scalar field can have different values. The energy of the static vortex is proportional to the topological charge of $CP^N$ model in the BPS limit, and the multiple phase of the vortex supplies additional energy contribution which is proportional to the Noether charge associated to the remaining symmetry.

  5. Self-organization of ULF electromagnetic wave structures in the shear flow driven dissipative ionosphere

    Directory of Open Access Journals (Sweden)

    G. Aburjania

    2014-08-01

    Full Text Available This work is devoted to investigation of nonlinear dynamics of planetary electromagnetic (EM ultra-low-frequency wave (ULFW structures in the rotating dissipative ionosphere in the presence of inhomogeneous zonal wind (shear flow. Planetary EM ULFW appears as a result of interaction of the ionospheric medium with the spatially inhomogeneous geomagnetic field. The shear flow driven wave perturbations effectively extract energy of the shear flow increasing own amplitude and energy. These perturbations undergo self organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation's front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices, or dipole vortex, or vortex streets and vortex chains. From analytical calculation and plots we note that the formation of stationary nonlinear vortex structure requires some threshold value of translation velocity for both non-dissipation and dissipation complex ionospheric plasma. The space and time attenuation specification of the vortices is studied. The characteristic time of vortex longevity in dissipative ionosphere is estimated. The long-lived vortices transfer the trapped medium particles, energy and heat. Thus they represent structural elements of turbulence in the ionosphere.

  6. Direct numerical simulations of vortex rings at ReΓ = 7500

    OpenAIRE

    Bergdorf, Michael; Koumoutsakos, Petros; Leonard, Anthony

    2007-01-01

    We present direct numerical simulations of the turbulent decay of vortex rings with ReΓ = 7500. We analyse the vortex dynamics during the nonlinear stage of the instability along with the structure of the vortex wake during the turbulent stage. These simulations enable the quantification of vorticity dynamics and their correlation with structures from dye visualization and the observations of circulation decay that have been reported in related experimental works. Movies are available with th...

  7. Coherent structures and transport in drift wave plasma turbulence

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang

    for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa- Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa......-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important...

  8. Study of periodic band gap structure of the magnetized plasma photonic crystals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-feng; MA Li; LIU Shao-bin

    2009-01-01

    The characteristics of the periodic band gaps of the one dimension magnetized plasma photonic crystals are studied with the piecewise linear current density recursive convolution (PLCDRC) finite-differential time-domain (FDTD) method. In fre-quency-domain, the transmission coefficients of electromagnetic Gaussian pulses are computed, and the effects of the periodic structure constant, plasma layer thickness and parameters of plasma on the properties of periodic band gaps of magnetized photonic crystals are analyzed. The results show that the periodic band gaps depend strongly on the plasma parameters.

  9. Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight

    Science.gov (United States)

    2014-08-06

    Office P.O. Box 12211 Research Triangle Park , NC 27709-2211 Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing REPORT...observed on rotating insect wing investigations2,9–13. A common theme among most of these investigations is the existence of a strong span-wise flow...structures by considering only the topology of the flow field. It is specifically designed to identify a large scale vortex superposed on a small-scale

  10. Vortex solitons at the interface separating square and hexagonal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Jović Savić, Dragana, E-mail: jovic@ipb.ac.rs; Piper, Aleksandra; Žikić, Radomir; Timotijević, Dejan

    2015-06-19

    Vortex solitons at the interface separating two different photonic lattices – square and hexagonal – are demonstrated numerically. We consider the conditions for the existence of discrete vortex states at such interfaces and develop a concise picture of different scenarios of the vortex solutions behavior. Various vortices with different size and topological charges are considered, as well as various lattice interfaces. A novel type of discrete vortex surface solitons in a form of five-lobe solution is observed. Besides stable three-lobe and six-lobe discrete surface modes propagating for long distances, we observe various oscillatory vortex surface solitons, as well as dynamical instabilities of different kinds of solutions and study their angular momentum. Dynamical instabilities occur for higher values of the propagation constant, or at higher beam powers. - Highlights: • We demonstrate vortex solitons at the square–hexagonal photonic lattice interface. • A novel type of five-lobe surface vortex solitons is observed. • Different phase structures of surface solutions are studied. • Orbital angular momentum transfer of such solutions is investigated.

  11. A New Vortex Initialization Scheme Coupled with WRF-ARW

    Directory of Open Access Journals (Sweden)

    Jimmy Chi Hung Fung

    2017-01-01

    Full Text Available The ability of numerical simulations to predict typhoons has been improved in recent decades. Although the track prediction is satisfactory, the intensity prediction is still far from adequate. Vortex initialization is an efficient method to improve the estimations of the initial conditions for typhoon forecasting. In this paper, a new vortex initialization scheme is developed and evaluated. The scheme requires only observational data of the radius of maximum wind and the max wind speed in addition to the global analysis data. This scheme can also satisfy the vortex boundary conditions, which means that the vortex is continuously merged into the background environment. The scheme has a low computational cost and has the flexibility to adjust the vortex structure. It was evaluated with 3 metrics: track, center sea-level pressure (CSLP, and maximum surface wind speed (MWSP. Simulations were conducted using the WRF-ARW numerical weather prediction model. Super and severe typhoon cases with insufficiently strong initial MWSP were simulated without and with the vortex initialization scheme. The simulation results were compared with the 6-hourly observational data from Hong Kong Observatory (HKO. The vortex initialization scheme improved the intensity (CSLP and MWSP prediction results. The scheme was also compared with other initialization methods and schemes.

  12. Vortex formation and instability in the left ventricle

    CERN Document Server

    Le, Trung; Coffey, Dane; Keefe, Daniel

    2011-01-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale int...

  13. Manipulation of Leading-Edge Vortex Evolution by Applied Suction

    Science.gov (United States)

    Buchholz, James; Akkala, James

    2016-11-01

    The generation and shedding of vortices from unsteady maneuvering bodies can be characterized within a framework of vorticity transport, accounting for the effects of multiple sources and sinks of vorticity on the overall circulation of the vortex system. On a maneuvering wing, the diffusive flux of secondary vorticity from the surface is a critical contributor to the strength and dynamics of the leading-edge vortex, suggesting that flow control strategies targeting the manipulation of the secondary vorticity flux and the secondary vortex may provide an effective means of manipulating vortex development. Suction has been applied in the vicinity of the secondary vortex during the downstroke of a periodically-plunging flat-plate airfoil, and the flow evolution and aerodynamic loads are compared to the baseline case in which suction is not applied. Observation of the resulting surface pressure distribution and flow evolution suggest that the secondary flux of vorticity and the evolution of the flow field can be altered subject to appropriate position of the suction ports relative to the developing vortex structures, and at a specific temporal window in the development of the vortex. This work was supported by the Air Force Office of Scientific Research, Grant Number FA9550-16-1-0107 and NSF EPSCoR Grant Number EPS1101284.

  14. Electron Emission from Nano and MicroStructured Materials for Plasma Applications

    Science.gov (United States)

    Patino, Marlene; Raitses, Yevgeny; Wirz, Richard

    2016-09-01

    Secondary electron emission (SEE) from plasma-confining walls can lead to adverse effects (e.g. increased plasma heat flux to the wall) in plasma devices, including plasma processing, confinement fusion, and plasma thrusters. Reduction in SEE from engineered materials with nm to mm-sized structures (grooves, pores, fibers), has been previously observed for primary electrons incident normal to the material. Here we present SEE measurements from one such engineered material, carbon velvet with microfibers (5 μm diameter, 1-2 mm length), and from a plasma-structured material, tungsten fuzz with nm fibers (35-50 nm diameter, 100-200 nm length). Additionally, dependence of SEE on incident angle was explored for tungsten fuzz. Results for carbon velvet and tungsten fuzz at normal incidence show 75% and 50% decrease in total yield from smooth graphite and tungsten, respectively. More notable is the independence of SEE on the incident angle for tungsten fuzz, as opposed to inverse cosine dependence for smooth materials. Hence, the reduction in SEE from tungsten fuzz is more pronounced at grazing angles. This is important for plasma-facing materials where a retarding plasma sheath leads to increased likelihood of plasma electrons impacting at grazing angles. This work was supported by DOE contract DE-AC02-09CH11466; AFOSR grants FA9550-14-1-0053, FA9550-11-1-0282, AF9550-09-1-0695, and FA9550-14-10317; and DOE Office of Science Graduate Student Research Program.

  15. Plasmonic emission and plasma lattice structures induced by pulsed laser in Purcell cavity on silicon

    Institute of Scientific and Technical Information of China (English)

    黄伟其; 黄忠梅; 苗信建; 刘世荣; 秦朝建

    2015-01-01

    The lattice structure image of a plasma standing wave in a Purcell cavity of silicon is observed. The plasma wave produced by the pulsed laser could be used to fabricate the micro-nanostructure of silicon. The plasma lattice structures induced by the nanosecond pulsed laser in the cavity may be similar to the Wigner crystal structure. It is interesting that the beautiful diffraction pattern could be observed in the plasma lattice structure. The radiation lifetime could be shortened to the nanosecond range throughout the entire spectral range and the relaxation time could be lengthened for higher emission efficiency in the Purcell cavity, which results in the fact that the plasmonic emission is stronger and its threshold is lower.

  16. A generalization of vortex lines

    CERN Document Server

    Fecko, Marian

    2016-01-01

    Helmholtz theorem states that, in ideal fluid, vortex lines move with the fluid. Another Helmholtz theorem adds that strength of a vortex tube is constant along the tube. The lines may be regarded as integral surfaces of an 1-dimensional integrable distribution (given by the vorticity 2-form). In general setting of theory of integral invariants, due to Poincare and Cartan, one can find $d$-dimensional integrable distribution whose integral surfaces show both properties of vortex lines: they move with (abstract) fluid and, for appropriate generalization of vortex tube, strength of the latter is constant along the tube.

  17. Superconducting Josephson vortex flow transistors

    CERN Document Server

    Tavares, P A C

    2002-01-01

    The work reported in this thesis focuses on the development of high-temperature superconducting Josephson vortex-flow transistors (JVFTs). The JVFT is a particular type of superconducting transistor, i.e. an electromagnetic device capable of delivering gain while keeping the control and output circuits electrically isolated. Devices were fabricated from (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta thin films grown by Pulsed Laser Deposition on 24 deg magnesium oxide and strontium titanate bicrystals. The design of the JVFTs was guided by numerical simulations and the devices were optimised for current gain. Improvements were made to the fabrication process in order to accurately pattern the small structures required. The devices exhibited current gains higher than 60 in liquid nitrogen. Gains measured at lower temperatures were significantly higher. As part of the work a data acquisition suite was developed for the characterisation of three-terminal devices and, in particular, of JVFTs.

  18. Cascade of vortex tube collisions at ReΓ = 10 000

    Science.gov (United States)

    van Rees, Wim; Hussain, Fazle; Koumoutsakos, Petros

    2011-11-01

    We present simulations of the collision of two anti-parallel vortex tubes, with and without axial flow in a periodic box at ReΓ = 10 000 using a remeshed vortex method. In the non-axial flow case, after the first, well-known vortex reconnection of the tubes, a quiescent period is followed by a second vortex collision of the remaining structures. The characteristics of this second collision are an increase of energy in the small scales of the flow; remnant vorticity left behind in thread-like structures; a persistent - 7 / 3 slope in the three-dimensional energy spectrum; and a significant increase in enstrophy and helicity in the flow. Characteristics of the secondary collision are also observed during the first reconnection of the vortex tubes with axial flow. The simulations indicate that vortical flows containing initially large-scale vortical structures can transfer energy from large scales to smaller scales through a cascade of vortex collisions.

  19. The analysis of flow stability in a vortex furance model

    Directory of Open Access Journals (Sweden)

    Anufriev Igor S.

    2017-01-01

    Full Text Available Results of experimental study of the pulsation characteristics of a flow in isothermal model of vortex furnace with vertically oriented nozzles of secondary blast are obtained. With use of laser Doppler measuring system and pressure pulsations analyzer the data about the pressure and velocity pulsations has been received. Spectra of pressure and velocity pulsations at various regime parameters are presented. Absence of non-stationary structures, such as precessing vortex core of a flow, is shown.

  20. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extens

  1. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an

  2. Formation of InN nanoparticle and nanorod structures by nitrogen plasma annealing method

    Indian Academy of Sciences (India)

    Ajay Kumar Mann; Deepak Varandani; Bodh Raj Mehta; Lalit Kumar Malhotra; G Mangamma; A K Tyagi

    2008-06-01

    In the present study, a novel method involving nitrogen plasma annealing has been reported for preparing InN nanoparticle/nanorod structures and for improving the properties of InN nanoparticle layers. Plasma annealed structures have been characterized by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy techniques. InN nanoparticle layers have been prepared using activated reactive evaporation set up. It has been observed that there is a remarkable improvement in the conductivity and crystallinity of InN nanoparticle layers on annealing in nitrogen plasma. This has been attributed to the increase in the nitrogen content of the samples. Experiments involving plasma annealing of In nanorods deposited oxide template has also been carried out. It was found that on plasma treatment In nanorods get converted to mixed phase InN nanorods with hexagonal and cubic fractions.

  3. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  4. Synthesis and Characterization of PEG-like Structures on Nitinol Surface under ECR-cold-plasma

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; WANG Jianhua; Tong Sheyi

    2005-01-01

    The synthesis and characterization of PEG-like macromolecular structures on Nitinol surface from tri (ethylene glycol) dimethyl-ether under ECR-cold-plasma conditions were discussed. It was demonstrated that based on high-resolution ESCA, ATR-FTIR and contact angle investigations, the deposited PEG-like layers are composed mainly of -CH2-CH2-O- linkages. These structures have a relatively low contact angle. Compared to the unmodified surfaces, the plasma-treated Nitinol surfaces are more hydrophilic. Plasma enhanced coatings of PEG-like layers can prevent Ni ion from releasing, thereby improving the biocompatibility of Nitinol.

  5. Vortex patterns in moderately rotating Bose-condensed gas

    Science.gov (United States)

    Imran, Mohd; Ahsan, M. A. H.

    2017-02-01

    Using exact diagonalization, we investigate the many-body ground state for regular vortex patterns in a rotating Bose-condensed gas of N spinless particles, confined in a quasi-two-dimensional harmonic trap and interacting repulsively via finite-range Gaussian potential. The N-body Hamiltonian matrix is diagonalized in given subspaces of quantized total angular momentum L z , to obtain the lowest-energy eigenstate. Further, the internal structure of these eigenstates is analyzed by calculating the corresponding conditional probability distribution. Specifically, the quantum mechanically stable as well as unstable states in a co-rotating frame are examined in the moderately rotating regime corresponding to angular momenta 4N≤slant {L}zimpressed rotation, the patterns of singly quantized vortices are formed, shaping into canonical polygons with a central vortex at the trap center. The internal structure of unstable states reveals the mechanism of entry, nucleation and pattern formation of vortices with structural phase transition, as the condensate goes from one stable vortical state to the other. The stable polygonal vortex patterns having discrete p-fold rotational symmetry with p = 5 and p = 6 are observed. The hexagonal vortex pattern with p = 6 symmetry is a precursor to the triangular vortex lattice of singly quantized vortices in the thermodynamic limit. For unstable states, quantum melting of vortex patterns due to uncertainty in positions of individual vortices, is also briefly discussed.

  6. Evolution of optical vortex distributions in stochastic vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2011-01-01

    Full Text Available dipole,? Opt. Commun. 236, 433?440 (2004). [23] Dana, I. and Freund, I., ?Vortex-lattice wave fields,? Opt. Commun. . [24] Jenkins, R., Banerji, J., and Davies, A., ?The generation of optical vortices and shape preserving vortex arrays in hollow...

  7. Solitary vortex couples in viscoelastic Couette flow

    CERN Document Server

    Groisman, A; Groisman, Alexander; Steinberg, Victor

    1996-01-01

    We report experimental observation of a localized structure, which is of a new type for dissipative systems. It appears as a solitary vortex couple ("diwhirl") in Couette flow with highly elastic polymer solutions. A unique property of the diwhirls is that they are stationary, in contrast to the usual localized wave structures in both Hamiltonian and dissipative systems which are stabilized by wave dispersion. It is also a new object in fluid dynamics - a couple of vortices that build a single entity somewhat similar to a magnetic dipole. The diwhirls arise as a result of a purely elastic instability through a hysteretic transition at negligible Reynolds numbers. It is suggested that the vortex flow is driven by the same forces that cause the Weissenberg effect. The diwhirls have a striking asymmetry between the inflow and outflow, which is also an essential feature of the suggested elastic instability mechanism.

  8. Numerical study of the properties of optical vortex array laser tweezers.

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-01

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  9. Relation between current sheets and vortex sheets in stationary incompressible MHD

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2012-03-01

    Full Text Available Magnetohydrodynamic configurations with strong localized current concentrations and vortices play an important role in the dissipation of energy in space and astrophysical plasma. Within this work we investigate the relation between current sheets and vortex sheets in incompressible, stationary equilibria. For this approach it is helpful that the similar mathematical structure of magnetohydrostatics and stationary incompressible hydrodynamics allows us to transform static equilibria into stationary ones. The main control function for such a transformation is the profile of the Alfvén-Mach number MA, which is always constant along magnetic field lines, but can change from one field line to another. In the case of a global constant MA, vortices and electric current concentrations are parallel. More interesting is the nonlinear case, where MA varies perpendicular to the field lines. This is a typical situation at boundary layers like the magnetopause, heliopause, the solar wind flowing around helmet streamers and at the boundary of solar coronal holes. The corresponding current and vortex sheets show in some cases also an alignment, but not in every case. For special density distributions in 2-D, it is possible to have current but no vortex sheets. In 2-D, vortex sheets of field aligned-flows can also exist without strong current sheets, taking the limit of small Alfvén Mach numbers into account. The current sheet can vanish if the Alfvén Mach number is (almost constant and the density gradient is large across some boundary layer. It should be emphasized that the used theory is not only valid for small Alfvén Mach numbers MA << 1, but also for MA ≲ 1. Connection to other theoretical approaches and observations and physical effects in space plasmas are presented. Differences in the various aspects of theoretical investigations of current sheets and vortex

  10. Transient evolution of solitary electron holes in low pressure laboratory plasma

    CERN Document Server

    Choudhary, Mangilal; Mukherjee, Subroto

    2015-01-01

    Solitary electrons holes (SEHs) are localized electrostatic positive potential structures in collisionless plasmas. These are vortex-like structures in the electron phase space. Its existence is cause of distortion of the electron distribution in the resonant region. These are explained theoretically first time by Schamel et.al [Phys. Scr. 20, 336 (1979) and Phys. Plasmas 19, 020501 (2012)]. Propagating solitary electron holes can also be formed in a laboratory plasma when a fast rising high positive voltage pulse is applied to a metallic electrode [Kar et. al., Phys. Plasmas 17, 102113 (2010)] immersed in a low pressure plasma. The temporal evolution of these structures can be studied by measuring the transient electron distribution function (EDF). In the present work, transient EDF is measured after formation of a solitary electron hole in nearly uniform, unmagnetized, and collisionless plasma for applied pulse width and, where and are applied pulse width and inverse of ion plasma frequency respectively. Fo...

  11. Three dimensional complex plasma structures in a combined radio frequency and direct current discharge

    CERN Document Server

    Mitic, S; Khrapak, S A; Morfill, G E; 10.1063/1.4798418

    2013-01-01

    We report on the first detailed analysis of large three dimensional (3D) complex plasma structures in experiments performed in pure rf and combined rf+dc discharge modes. Inductively coupled plasma (ICP) is generated by an rf coil wrapped around the vertically positioned cylindrical glass tube at a pressure of 0.3 mbar. In addition, dc plasma can be generated by applying voltage to the electrodes at the ends of the tube far from the rf coil. The injected monodisperse particles are levitated in the plasma below the coil. A scanning laser sheet and a high resolution camera are used to determine the 3D positions of about $10^5$ particles. The observed bowl-shaped particle clouds reveal coexistence of various structures, including well-distinguished solid-like, less ordered liquid-like, and pronounced string-like phases. New criteria to identify string-like structures are proposed.

  12. Collisionless shocks in space plasmas structure and accelerated particles

    CERN Document Server

    Burgess, David

    2015-01-01

    Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.

  13. Structures and turbulent relaxation in non-neutral plasmas

    Science.gov (United States)

    Romé, M.; Chen, S.; Maero, G.

    2017-01-01

    The transverse dynamics of a magnetized pure electron plasma confined in a Penning-Malmberg trap is analogous to that of a two-dimensional (2D) ideal fluid. The dynamics of a system in a regime of external forcing due to the application of time-dependent potentials on different azimuthal sectors of the confining circular wall is studied numerically by means of 2D particle-in-cell simulations. The evolution of turbulence starting from an annular initial density distribution is investigated for different kinds and parameters of forcing by means of wavelet-based multiresolution analysis. From an experimental point of view, the analyzed forcing technique is useful to excite or damp different diocotron perturbations and therefore for the control and manipulation of plasma evolution. Nonetheless, the numerical results indicate that even in a weak forcing regime the system evolution is sensitive to small initial density fluctuations.

  14. Arbitrary amplitude magnetosonic solitary and shock structures in spin quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India); Sinha, Anjana; Roychoudhury, Rajkumar; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata-700 032 (India)

    2013-11-15

    A nonlinear analysis is carried out for the arbitrary amplitude magnetosonic solitary and shock structures in spin quantum plasmas. A quantum magnetohydrodynamic model is used to describe the magnetosonic quantum plasma with the Bohm potential and the pressure like spin force for electrons. Analytical calculations are used to simplify the basic equations, which are then studied numerically. It is shown that the magnetic diffusivity is responsible for dissipation, which causes the shock-like structures rather than the soliton structures. Additionally, wave speed, Zeeman energy, and Bohm potential are found to have significant impact on the shock wave structures.

  15. Coherent structures and transport in drift wave plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bang Korsholm, S.

    2011-12-15

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  16. Structure and photoconductivity in synthesized poly thiophene by plasma; Estructura y fotoconductividad en politiofeno sintetizado por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, M.A.; Colin, E.; Cruz, G.J.; Olayo, M.G.; Ordonez, E. [ININ, A.P. 18-1027, Mexico, D.F. (Mexico); Morales, J.; Olayo, R. [UAM-I, A.P. 55-534 Mexico D.F. (Mexico); Romero, M. [UAM-A, DEP, 02200 Mexico D.F. (Mexico)]. e-mail: angelenrimx@hotmail.com

    2006-07-01

    his work the electric answer of poly thiophene is studied (PTh) to pulses of light to evaluate its luminescence potential. The synthesis of the polymers is made by plasma with different energy to study its effects on the structure of the material. The electric conductivity was calculated by means of the resistance of the polymers in a parallel arrangement of badges between 10 to 250 V, stimulated with ultraviolet light (250 nm) to promote the transfer of electric loads to different temperatures. The results indicate that the aromatic structure of the PTh depends on the power applied during the synthesis. (Author)

  17. Off-centred immobile magnetic vortex under influence of spin-transfer torque

    Energy Technology Data Exchange (ETDEWEB)

    Kravchuk, Volodymyr P; Sheka, Denis D; Gaididei, Yuri [Institute for Theoretical Physics, 03143 Kiev (Ukraine); Mertens, Franz G, E-mail: vkravchuk@bitp.kiev.ua [Physics Institute, University of Bayreuth, 95440 Bayreuth (Germany)

    2011-07-20

    Formation of the 'dip' structure which foregoes switching of magnetic vortex polarity is studied numerically in magnetic nanodisc. A new method based on influence of the spin-transfer torque is used. The method allows one to obtain the dip structure for immobile vortex which significantly improves studying accuracy in comparison with the case of moving vortex. Free out-of-plane vortices as well as in-plane vortices pinned on hole defects are considered. It is shown that the process of the dip formation is different for free and pinned vortices and direction of the dip does not directly depend on the vortex polarity.

  18. Dynamics and structure analysis of coherent turbulent structures at the boundary of toroidally confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fuchert, Golo

    2013-12-13

    The safe and reliable satisfaction of the world's increasing energy demand at affordable costs is one of the major challenges of our century. Nuclear fusion power plants following the magnetic confinement approach may play an essential role in solving this issue. The energy loss of the fusion plasma due to plasma turbulence reduces the efficiency and poses a threat to the first wall of a fusion reactor. Close to the wall, in the scrape-off layer, this transport is dominated by blobs or filaments: Localized structures of increased pressure, which transport energy and particles towards the wall by propagating radially outwards. Their contribution to the transport depends on their size, propagation velocity and generation rate. An analytical model for the evolution of blobs predicts their velocity and size, but not the generation rate. Experiments indicate that edge turbulence in the vicinity of the last closed flux surface (the boundary between the confined plasma and the scrape-off layer) is involved in the blob generation process and should influence the generation rate. The present thesis aims at answering two main questions: How well do the blob properties predicted from the simple model compare to experimental observations in more complex magnetic field configurations of actual fusion experiments and does the edge turbulence influence the blob properties during the generation process. A fast camera was used to measure blob properties in two devices, TJ-K and ASDEX Upgrade. In TJ-K, blob sizes and velocities were determined together with the generation rate. An overall agreement with the predictions from the simple model is found. For the first time a clear influence of the edge dynamics on the analyzed blob properties is demonstrated. These measurements include the first systematic comparison of the structure-size scaling inside and outside of the last closed flux surface. Furthermore, measurements with a multi-probe array are used to reconstruct the blob

  19. Spiral and Taylor vortex fronts and pulses in axial through flow.

    Science.gov (United States)

    Pinter, A; Lücke, M; Hoffmann, Ch

    2003-02-01

    The influence of an axial through flow on the spatiotemporal growth behavior of different vortex structures in the Taylor-Couette system with radius ratio eta=0.5 is determined. The Navier-Stokes equations (NSE) linearized around the basic Couette-Poiseuille flow are solved numerically with a shooting method in a wide range of through flow strengths Re and different rates of co-rotating and counter-rotating cylinders for toroidally closed vortices with azimuthal wave number m=0 and for spiral vortex flow with m=+/-1. For each of these three different vortex varieties we have investigated (i) axially extended vortex structures, (ii) axially localized vortex pulses, and (iii) vortex fronts. The complex dispersion relations of the linearized NSE for vortex modes with the three different m are evaluated for real axial wave numbers for (i) and over the plane of complex axial wave numbers for (ii) and (iii). We have also determined the Ginzburg-Landau amplitude equation (GLE) approximation in order to analyze its predictions for the vortex structures (ii) and (iii). Critical bifurcation thresholds for extended vortex structures are evaluated. The boundaries between absolute and convective instability of the basic state for vortex pulses are determined with a saddle-point analysis of the dispersion relations. Fit parameters for power-law expansions of the boundaries up to Re4 are listed in two tables. Finally, the linearly selected front behavior of growing vortex structures is investigated using saddle-point analyses of the dispersion relations of NSE and GLE. For the two front intensity profiles (increasing in positive or negative axial direction) we have determined front velocities, axial growth rates, and the wave numbers and frequencies of the unfolding vortex patterns with azimuthal wave numbers m=0,+/-1, respectively.

  20. Steady vortex force theory and slender-wing flow diagnosis

    Institute of Scientific and Technical Information of China (English)

    Y.T.Yang; R.K.Zhang; Y.R.An; J.Z.Wu

    2007-01-01

    The concept vortex force in aerodynamics is sys-tematically examined based on a new steady vortex-force theory (Wu et al., Vorticity and vortex dynamics, Springer, 2006) which expresses the aerodynamic force (and moment) by the volume and boundary integrals of the Lamb vector.In this paper, the underlying physics of this theory is explo-red, including the general role of the Lamb vector in non-linear aerodynamics, its initial formation, and its relevance to the total-pressure non-uniformity. As a typical example, the theory is applied to the flow over a slender delta wing at a large angle of attack. The highly localized flow structures with high Lamb-vector peaks are identified in terms of their net contribution to various constituents of the total aerody-namic force. This vortex-force diagnosis sheds new light on the flow control and configuration optimization.

  1. Mean intensity of vortex Bessel beams propagating in turbulent atmosphere.

    Science.gov (United States)

    Lukin, Igor P

    2014-05-20

    Transformation of vortex Bessel beams during propagation in turbulent atmosphere is theoretically analyzed. Deforming influence of the random inhomogeneity of the turbulent medium on propagation of diffraction-free beams leads to disappearance of their invariant properties. In the given research, features of evolution of the spatial structure of distribution of mean intensity of vortex Bessel beams in turbulent atmosphere are analyzed. A quantitative criterion of possibility of carrying over of a dark central domain by vortex Bessel beams in a turbulent atmosphere is derived. The analysis of the behavior of several physical parameters of mean-level optical radiation shows that the shape stability of a vortex Bessel beam increases with the topological charge of this beam during its propagation in a turbulent atmosphere.

  2. Vortex Interaction on Low Aspect Ratio Membrane Wings

    Science.gov (United States)

    Waldman, Rye M.; Breuer, Kenneth S.

    2013-11-01

    Inspired by the flight of bats and by recent interest in Micro Air Vehicles, we present measurements on the steady and unsteady behavior of low aspect ratio membrane wings. We conduct wind tunnel experiments with coupled force, kinematic, and flow field measurements, both on the wing and in the near wake. Membrane wings interact strongly with the vortices shed from the leading- and trailing-edges and the wing tips, and the details of the membrane support play an important role in the fluid-structure interaction. Membranes that are supported at the wing tip exhibit less membrane flutter, more coherent tip vortices, and enhanced lift. The interior wake can exhibit organized spanwise vortex shedding, and shows little influence from the tip vortex. In contrast, membranes with an unsupported wing tip show exaggerated static deformation, significant membrane fluttering and a diffuse, unsteady tip vortex. The unsteady tip vortex modifies the behavior of the interior wake, disrupting the wake coherence.

  3. Vortex Tubes in Turbulence Velocity Fields at High Reynolds Numbers

    CERN Document Server

    Mouri, H

    2008-01-01

    The elementary structures of turbulence, i.e., vortex tubes, are studied using velocity data obtained in laboratory experiments for boundary layers and duct flows at microscale Reynolds numbers 332-1934. While past experimental studies focused on intense vortex tubes, the present study focuses on all vortex tubes with various intensities. We obtain the mean velocity profile. The radius scales with the Kolmogorov length. The circulation velocity scales with the Kolmogorov velocity, in contrast to the case of intense vortex tubes alone where the circulation velocity scales with the rms velocity fluctuation. Since these scaling laws are independent of the configuration for turbulence production, they appear to be universal at high Reynolds numbers.

  4. Solitary vortexes in magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vainshtein, S.I.

    1985-12-01

    Stationary configurations in magnetohydrodynamics are investigated for the following two particular cases: (1) there is no motion, which corresponds to a state of magnetostatic equilibrium; and (2) the magnetic field intensity becomes zero, i.e., hydrodynamic vortexes are involved. It is shown that in certain cases the line-of-force topology must be sufficiently simple in order before a stationary or equilibrium state can be achieved. It is also shown that in the two-dimensional case, the magnetic surfaces of an equilibrium configuration represent coaxial cylindrical surfaces. 12 references.

  5. Vortex Flow Correlation

    Science.gov (United States)

    1981-01-01

    j . 1978. 93. Grabowski , W.J.; "Solutions of the Navier-Stokes Equations for Vortex Breakdown," NASA CR...including foreign nations. This technical report has been reviewed and is approved for publication. LAWRENCE W. ROGERS Q LOWELL C. KEEL, Major, USAF Project...or’ a w U - a LU LU U- LU C - J ’di 2 2 C LU I- 4 S Ua * - w x 2 40 20 I- 2 LU W S ~ 00 * U. 4 I- 𔃾 LU a 4 U 4 2 C C LU 4 a 4a 2 I- 4 a 3 9

  6. Robustness of a coherence vortex.

    Science.gov (United States)

    Alves, Cleberson R; Jesus-Silva, Alcenisio J; Fonseca, Eduardo J S

    2016-09-20

    We study, experimentally and theoretically, the behavior of a coherence vortex after its transmission through obstacles. Notably, we find that such a vortex survives and preserves its effective topological charge. Despite suffering changes on the modulus of the coherence function, these changes disappear during propagation.

  7. Vortex duality in higher dimensions

    NARCIS (Netherlands)

    Beekman, Aron Jonathan

    2011-01-01

    A dynamic vortex line traces out a world sheet in spacetime. This thesis shows that the information of all its dynamic behaviour is completely contained in the world sheet. Furthermore a mathematical framework for order–disorder phase transitions in terms of the proliferation of such vortex world sh

  8. Gas-Liquid Interfacial Non-Equilibrium Plasmas for Structure Controlled Nanoparticles

    Science.gov (United States)

    Kaneko, Toshiro

    2013-10-01

    Plasmas generated in liquid or in contact with liquid have attracted much attention as a novel reactive field in the nano-bio material creation because the brand-new chemical and biological reactions are yielded at the gas-liquid interface, which are induced by the physical actions of the non-equilibrium plasmas. In this study, first, size- and structure-controlled gold nanoparticles (AuNPs) covered with DNA are synthesized using a pulse-driven gas-liquid interfacial discharge plasma (GLIDP) for the application to next-generation drug delivery systems. The size and assembly of the AuNPs are found to be easily controlled by changing the plasma parameters and DNA concentration in the liquid. On the other hand, the mono-dispersed, small-sized, and interval-controlled AuNPs are synthesized by using the carbon nanotubes (CNTs) as a template, where the CNTs are functionalized by the ion and radical irradiation in non-equilibrium plasmas. These new materials are now widely applied to the solar cell, optical devices, and so on. Second, highly-ordered periodic structures of the AuNPs are formed by transcribing the periodic plasma structure to the surface of the liquid, where the spatially selective synthesis of the AuNPs is realized. This phenomenon is well explained by the reduction and oxidation effects of the radicals which are generated by the non-equilibrium plasma irradiation to the liquid and resultant dissociation of the liquid. In addition, it is attempted to form nano- or micro-scale periodic structures of the AuNPs based on the self-organizing behavior of turbulent plasmas generated by the nonlinear development of plasma fluctuations at the gas-liquid interface.

  9. Merging of aircraft vortex trails - Similarities to magnetic field merging

    Science.gov (United States)

    Gurnett, Donald A.

    1989-01-01

    This paper discusses the phenomenological and formal similarities between the merging of aircraft vortex trails and the merging of magnetic field lines in a plasma. High-resolution photographs are shown of smoke trails from the wing tips of an airplane. These photographs show that the two vortex trails merge together downstream of the aircraft in a way similar to the merging of oppositely directed magnetic field lines in a plasma. Although there are some differences, this correspondence is apparently related to the fact that the vorticity equation in a fluid has the same mathematical form as the magnetic field equation in an MHD plasma. In both cases the merging proceeds at a rate considerably faster than would be predicted from classical estimates of the viscosity and resistivity. The enhanced merging rate in the fluid case appears to result from turbulence that increases the diffusion rate in the merging region.

  10. A Hybrid Vortex Sheet / Point Vortex Model for Unsteady Separated Flows

    Science.gov (United States)

    Darakananda, Darwin; Eldredge, Jeff D.; Colonius, Tim; Williams, David R.

    2015-11-01

    The control of separated flow over an airfoil is essential for obtaining lift enhancement, drag reduction, and the overall ability to perform high agility maneuvers. In order to develop reliable flight control systems capable of realizing agile maneuvers, we need a low-order aerodynamics model that can accurately predict the force response of an airfoil to arbitrary disturbances and/or actuation. In the present work, we integrate vortex sheets and variable strength point vortices into a method that is able to capture the formation of coherent vortex structures while remaining computationally tractable for control purposes. The role of the vortex sheet is limited to tracking the dynamics of the shear layer immediately behind the airfoil. When parts of the sheet develop into large scale structures, those sections are replaced by variable strength point vortices. We prevent the vortex sheets from growing indefinitely by truncating the tips of the sheets and transfering their circulation into nearby point vortices whenever the length of sheet exceeds a threshold. We demonstrate the model on a variety of canonical problems, including pitch-up and impulse translation of an airfoil at various angles of attack. Support by the U.S. Air Force Office of Scientific Research (FA9550-14-1-0328) with program manager Dr. Douglas Smith is gratefully acknowledged.

  11. Observation of the vortex ring interacting with free surface of water

    OpenAIRE

    Nagata, Hiroshi; Sugaya, Shuji; 永田 拓; 菅谷 修士

    2002-01-01

    Vortex structures of the vortex rings ejected parallel or perpendicular to a free surface of water were studied by means of flow visualization experiments. The emphasis is on the process of vortex deformation, induction of the flow on the free surface, evolution of surface vortices and interaction between the surface vortices and vortices in the water. Experiments were conducted under the two surface conditions, i.e. a clean surface and a surface contaminated with surfactant droplets. The ele...

  12. Magnetic vortex dynamics on a picosecond timescale in a hexagonal permalloy pattern

    Energy Technology Data Exchange (ETDEWEB)

    Shim, J.-H.; Kim, D.-H.; Mesler, B.; Moon, J.-H.; Lee, K.-J.; Anderson, E. H.; Fischer, P.

    2009-12-02

    We have observed a motion of magnetic vortex core in a hexagonal Permalloy pattern by means of Soft X-ray microscopy. Pump-probe stroboscopic observation on a picosecond timescale has been carried out after exciting a ground state vortex structure by an external field pulse of 1 ns duration. Vortex core is excited off from the center position of the hexagonal pattern but the analysis of the core trajectory reveals that the motion is nongyrotropic.

  13. Structural analysis of converging jets in a triple torch plasma system

    CERN Document Server

    Ramachandran, K

    2003-01-01

    A three-dimensional numerical model is developed to clarify the structure of the converging jets in a triple torch plasma system. Three individual argon plasma jets, issued into atmospheric argon, are mixed with given angle of convergence and form a converged plasma jet. Predicted results show that thermo-fluid fields of the converging plasma jets are symmetric with three symmetric sections at an interval 120 deg. Symmetry and uniformity of thermo-fluid fields increase with decreasing angle of convergence. Temperature field is more sensitive to angle of convergence than the velocity field. Symmetry of thermo-fluid fields is improved in downstream direction. A dip in the velocity fields corresponds to poor mixing and diffusion of velocity fields of three individual plasma jets. Central gas injection decreases converging jets temperature significantly.

  14. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  15. Superfluid Vortex Cooler

    Science.gov (United States)

    Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.

    2004-06-01

    A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.

  16. Formation Flight: Upstream Influence of a Wing on a Streamwise Vortex

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald; Lehigh University Fluids Lab Team

    2015-11-01

    Aircraft flying together in formation can experience aerodynamic advantages. Impingement of the tip vortex of the leader wing on the trailer wing can increase the lift to drag ratio L/D and the unsteady loading on the trailer wing. These increases are sensitive to the impingement location of the vortex on the wing. Particle image velocimetry is employed to determine patterns of velocity and vorticity on successive crossflow planes along the vortex, which lead to volume representations and thereby characterization of the streamwise evolution of the vortex structure as it approaches the trailer wing. This evolution of the incident vortex is affected by the upstream influence of the trailer wing, and is highly dependent on the location of vortex impingement. As the spanwise impingement location of the vortex moves from outboard of the wing tip to inboard, the upstream influence on the development of the vortex increases. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the in-plane vorticity; decrease the downwash; and increase the root-mean-square of both streamwise velocity and vorticity.

  17. The Distribution of Ozone in the Early Stages of Polar Vortex Development

    Science.gov (United States)

    Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Bevilacqua, R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season, 1999-2000 has a characteristic distribution, which is consistent between in situ and satellite measurements [Kawa et al., The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex, submitted manuscript, 2001 ]. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx.10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of POAM data shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer in September before the vortex circulation sets up. This suggests a possible feedback role between O3 chemistry and the formation of the vortex, which is dominated by the seasonal radiation balance. Here we show that these characteristic O3 distributions are consistent from year to year and between the hemispheres. We will attempt to determine whether variations in fall vortex O3 are related in any way to O3 abundances and vortex structure later during winter and into spring.

  18. Structural and optical properties of chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas, Campinas, SP (Brazil); Schreiner, Wido [Departamento de Fisica, Universidade Federal de Parana, PR (Brazil); Dias da Silva, Jose Humberto [Faculdade de Ciencias, Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil); Appolinario, Marcelo Borgatto [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Durrant, Steven F., E-mail: steve@sorocaba.unesp.br [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil)

    2011-12-30

    Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R{sub C}, which was varied from 0 to 80%. Deposition rates of 80 nm min{sup -1} were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at {approx} 47 at.% for R{sub C} {>=} 40%. The refractive index and optical gap, E{sub 04}, of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from {approx} 40 Degree-Sign to {approx} 77 Degree-Sign .

  19. Structure and function of thyroid hormone plasma membrane transporters.

    Science.gov (United States)

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-09-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.

  20. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    of plasma membrane H+-ATPases. Studies on the plasma membrane H+-ATPases have involved both in vivo and in vitro approaches, with the latter employing either solubilisation by detergent micelles, or reconstitution into lipid vesicles. Despite resulting in a large body of information on structure, function...... into soluble nanoscale lipid bilayers, also termed nanodiscs. Extensive analysis confirms the correct assembly and reconstitution of active proton pump into nanodiscs. The pump inserts as a monomer, which through activity analysis confirms this as the minimal functional unit of the plasma membrane H......+-ATPase. Reconstitution of the H+-ATPase into nanodiscs has the potential to enable structural and functional characterization using various techniques, exemplified by the specific immobilization of reconstituted proton pump using surface plasma resonance. The ability to efficiently separate empty from membrane protein...

  1. Effect of ionized plasma medium on the radiation from a RITMA structure on ferrite substrate

    Indian Academy of Sciences (India)

    V Bhardwaj; V K Tiwari; D Bhatnagar; J S Saini; K B Sharma

    2003-12-01

    This paper presents theoretical investigations on the radiation properties of a right isosceles triangular microstrip antenna (RITMA) printed on a magnetized ferrite substrate Ni0.62Co0.02Fe1.948O4 in the presence of ionized plasma medium. The theoretical study on RITMA structure in free space is carried out in TM11 mode of excitation by applying cavity model-based modal expansion technique while hydrodynamic theory is used for its analysis in plasma medium. By varying the bias magnetic field, far-field radiation patterns in free space and plasma medium are obtained which in turn are applied in computing radiated power, directivity, quality factor and bandwidth of antenna. It is found that the presence of plasma medium affects the performance of RITMA structure significantly.

  2. Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

    Science.gov (United States)

    Morita, T.; Kugland, N. L.; Wan, W.; Crowston, R.; Drake, R. P.; Fiuza, F.; Gregori, G.; Huntington, C.; Ishikawa, T.; Koenig, M.; Kuranz, C.; Levy, M. C.; Martinez, D.; Meinecke, J.; Miniati, F.; Murphy, C. D.; Pelka, A.; Plechaty, C.; Presura, R.; Quirós, N.; Remington, B. A.; Reville, B.; Ross, J. S.; Ryutov, D. D.; Sakawa, Y.; Steele, L.; Takabe, H.; Yamaura, Y.; Woolsey, N.; Park, H.-S.

    2016-03-01

    We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock.

  3. Influence of plasma discharge on the structure of polytetrafluoroethylene film and step coverage on polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Grytsenko, K.P. [Institute of Semiconductor Physics, 45 Nauki pr., Kyiv, 03028 (Ukraine); Institute of Photonics, Laser and Plasma Technology, University of Applied Sciences Wildau, F.-Engels-Str. 63, 15745, Wildau (Germany)], E-mail: d_gryts@isp.kiev.ua; Lytvyn, P.M. [Institute of Semiconductor Physics, 45 Nauki pr., Kyiv, 03028 (Ukraine); Friedrich, J.; Schulze, R.D. [Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Schrader, S. [Institute of Photonics, Laser and Plasma Technology, University of Applied Sciences Wildau, F.-Engels-Str. 63, 15745, Wildau (Germany)

    2007-09-15

    Polytetrafluoroethylene (PTFE) films have been deposited onto polycarbonate (PC) substrates from the products of PTFE evaporation, activated by a cloud of accelerated electrons. A 40.68 MHz glow discharge was used during the deposition process. The polymer films have been characterised by XPS, FTIR and AFM. The use of the low power plasma during film growth led to the formation of PTFE films with modified structure. Films are amorphous and contain more cross-links, but in general, the structure of their macromolecules is still linear. An increase of RF-power leads to the formation of films with large amount of double bonds and enhanced internal stresses. Deposition of PTFE on PC without plasma treatment led to the formation of PTFE clusters up to 50 nm in diameter. The RMS roughness of the films, deposited without plasma, was about 4 nm, while the films deposited with plasma treatment had a roughness of 1.5 nm. The use of plasma has an additional effect if a PTFE coating is deposited on the PC substrate with submicrometer-sized steps. Without plasma the steps retain a rectangular shape. Deposited with the RF-discharge the PTFE layers resemble plasma-polymerised films. Under certain conditions the deposited films can fill trenches in the substrate like a wetting liquid, while under other conditions they avoid trenches and grow in between them.

  4. Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.;

    2004-01-01

    In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...

  5. Three dimensional filamentary structures of a relativistic electron beam in Fast Ignition plasmas

    CERN Document Server

    Karmakar, Anupam; Pukhov, Alexander

    2008-01-01

    The filamentary structures and associated electromagnetic fields of a relativistic electron beam have been studied by three dimensional particle-in-cell (PIC) simulations in the context of Fast Ignition fusion. The simulations explicitly include collisions in return plasma current and distinctly examine the effects of beam temperature and collisions on the growth of filamentary structures generated.

  6. Finite size effects in the static structure factor of dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Davletov, A. E., E-mail: askar@physics.kz; Yerimbetova, L. T.; Mukhametkarimov, Ye. S.; Ospanova, A. K. [Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040 Almaty (Kazakhstan)

    2014-07-15

    Based on the previously developed pseudopotential model of the dust particles interaction, which takes into account both the finite size and screening effects, the equilibrium distribution functions are investigated in a broad range of plasma parameters. The treatment stems entirely from the renormalization theory of plasma particles interactions which leads to the so-called generalized Poisson-Boltzmann equation. In particular, an analytical expression for the static structure factor of the dust particles is proposed and its non-monotonic behavior in the hyper-netted chain approximation is found in a specified domain of plasma parameters to indicate the formation of short- or even long-range order in the system.

  7. Mixing in plasma and low density jets

    Science.gov (United States)

    Russ, S.; Strykowski, P. J.; Pfender, E.

    1994-04-01

    This study was undertaken to examine the mechanisms which produce the large entrainment measured near the exit of thermal plasma torches. A research facility was constructed to examine low density jet behavior under similar dimensionless conditions as those produced by thermal plasma spray torches; the Reynolds number based on jet diameter and average properties was 1000, and the ratio of jet to ambient density was 0.07. This very low density jet produced organized vortex structures which were partially responsible for the rapid entrainment of external air. The formation of these organized structures could be disrupted by introducing turbulence, but the rapid entrainment process was not significantly affected. The structure of the jet produced by a commercial plasma torch was examined and compared to the low density research jet. At low gas flow rates the plasma jet also displayed the formation of coherent vortex structures, the passage frequency of which compared favorably with that measured in the low density research jet. At higher gas flow rates the shear layer of the plasma jet rapidly broke down producing relatively small scale turbulence. Visualizations of the hot plasma core were compared against measurements of the torch voltage fluctuations caused by arc instabilities. At low flow rates the arc voltage fluctuations were quite low and the plume was very steady. At higher flow rates the arc voltage fluctuations increased and produced “surging” and “whipping” in the hot potential core. It is believed that this low frequency unsteadiness is partially responsible for the rapid entrainment measured in plasma torches.

  8. Plasma Boundaries and Kinetic-Scale Electric Field Structures in the Inner Magnetosphere

    Science.gov (United States)

    Malaspina, David; Larsen, Brian; Ergun, R. E.; Skoug, Ruth; Wygant, John; Reeves, Geoffrey; Jaynes, Allison

    2016-07-01

    Recent advances in spacecraft instrumentation have enabled fresh examination of coupling between macro-scale and micro-scale physics in the terrestrial magnetosphere, demonstrating not only that cross-scale interactions are a key component of magnetospheric dynamics, but also that plasma boundaries play a crucial role in mediating cross-scale coupling. We use Van Allen Probe observations to study the cross-scale interaction between inner magnetospheric plasma boundaries (including the plasmapause and injection fronts) and kinetic-scale electric field structures including kinetic Alfven waves, double layers, phase space holes, and nonlinear whistler mode waves. We focus on the spatial distribution of these kinetic structures in the inner magnetosphere and their interaction with plasma boundaries. We demonstrate that both the occurrence probability and amplitude of these structures peak at plasma boundaries. Further, it is found that regions of kinetic-scale electric field structure activity travel with plasma boundaries. These observations imply that kinetic-scale electric field structures are continually generated by instabilities localized to these boundaries, constraining their ability to energize radiation belt particles over large spatial regions.

  9. The structure of standing Alfvén waves in a dipole magnetosphere with moving plasma

    Directory of Open Access Journals (Sweden)

    D. A. Kozlov

    2006-03-01

    Full Text Available The structure and spectrum of standing Alfvén waves were theoretically investigated in a dipole magnetosphere with moving plasma. Plasma motion was simulated with its azimuthal rotation. The model's scope allowed for describing a transition from the inner plasmasphere at rest to the outer magnetosphere with convecting plasma and, through the magnetopause, to the moving plasma of the solar wind. Solutions were found to equations describing longitudinal and transverse (those formed, respectively, along field lines and across magnetic shells structures of standing Alfvén waves with high azimuthal wave numbers m>>1. Spectra were constructed for a number of first harmonics of poloidal and toroidal standing Alfvén waves inside the magnetosphere. For charged particles with velocities greatly exceeding the velocity of the background plasma, an effective parallel wave component of the electric field appears in the region occupied by such waves. This results in structured high-energy-particle flows and in the appearance of multiband aurorae. The transverse structure of the standing Alfvén waves' basic harmonic was shown to be analogous to the structure of a discrete auroral arc.

  10. Self-organization and coherent structures in plasmas and fluids

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Juul Rasmussen, J.; Schmidt, M.R.

    1996-01-01

    momentum the development into propagating dipolar structures is observed. This development is discussed by employing self-organization principles. The detailed structures of the evolving dipoles depends on the initial condition. It seems that there are no unique dipolar solutions, but a large class...

  11. 100% N2 atmospheric-pressure microwave-line-plasma production with a modified waveguide structure

    Science.gov (United States)

    Suzuki, Haruka; Tamura, Yuto; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2016-09-01

    Large-scale atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. Microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production, and we have developed a long-scale AP microwave plasma (AP microwave line plasma: AP-MLP) source using loop-structured waveguide and travelling wave and have reported spatially-uniform AP-MLP of 40 cm in length using Ar or He gas discharge. However, rare gas discharge is not always suitable for industrial applications because usage of large volume rare gas degrades the AP cost benefit. Furthermore, many industrial applications require chemically-reactive species and the AP-MLP using molecular gas will drastically increase the applications of the AP-MLP. In this study, we demonstrate 100% N2 discharge of the AP-MLP with a modified waveguide structure. Cross-sectional structure of the waveguide is improved to enhance the microwave electric field in the slot. 100% N2 plasma of 15 cm-long is successfully produced using CW microwave power of 2 kW. Low gas temperature of 1000 K is confirmed by optical emission spectroscopy, suggesting applications of the AP-MLP to low temperature processes. Part of this work is supported by JSPS KAKENHI Grant Number 25286079.

  12. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first.

  13. Wigner function and the entanglement of a quantized Bessel-Gaussian vortex state of a quantized radiation field

    Institute of Scientific and Technical Information of China (English)

    Zhu Kai-Cheng; Li Shao-Xin; Tang Ying; Zheng Xiao-Juan; Tang Hui-Qin

    2012-01-01

    A new kind of quantum non-Gaussian state with a vortex structure,termed a Bessel-Gaussian vortex state,is constructed,which is an eigenstate of the sum of squared annihilation operators a2 + b2.The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality.It is also found that a quantized vortex state is always in entanglement.And a scheme for generating such quantized vortex states is proposed.

  14. Some discussions on Arctic vortex

    Institute of Scientific and Technical Information of China (English)

    Li Hai; Sun Lantao; Wu Huiding; Li Xiang

    2006-01-01

    The Arctic vortex is a persistent large-scale cyclonic circulation in the middle and upper troposphere and the stratosphere. Its activity and variation control the semi-permanent active centers of Pan-Arctic and the short-time cyclone activity in the subarctic areas. Its strength variation, which directly relates to the atmosphere, ocean, sea ice and ecosystem of the Arctic, can affect the lower atmospheric circulation, the weather of subarctic area and even the weather of middle latitude areas. The 2003 Chinese Second Arctic Research Expedition experienced the transition of the stratosphereic circulation from a warm anticyclone to a cold cyclone during the ending period of Arctic summertime, a typical establishing process of the polar vortex circulation. The impact of the polar vortex variation on the low-level circulation has been investigated by some scientists through studying the coupling mechanisms of the stratosphere and troposphere. The impact of the Stratospheric Sudden Warming (SFW) events on the polar vortex variation was drawing people's great attention in the fifties of the last century. The Arctic Oscillation (AO) , relating to the variation of the Arctic vortex, has been used to study the impact of the Arctic vortex on climate change. The recent Arctic vortex studies are simply reviewed and some discussions on the Arctic vertex are given in the paper. Some different views and questions are also discussed.

  15. Motion of a helical vortex

    CERN Document Server

    Fuentes, Oscar Velasco

    2015-01-01

    We study the motion of a single helical vortex in an unbounded, inviscid, incompressible fluid. The vortex is an infinite tube whose centerline is a helix and whose cross section is a circle of small radius (compared to the radius of curvature) where the vorticity is uniform and parallel to the centerline. Ever since Joukowsky (1912) deduced that this vortex translates and rotates steadily without change of form, numerous attempts have been made to compute these self-induced velocities. Here we use Hardin's (1982) solution for the velocity field to find new expressions for the vortex's linear and angular velocities. Our results, verified by numerically computing the Helmholtz integral and the Rosenhead-Moore approximation to the Biot-Savart law, are more accurate than previous results over the whole range of values of the vortex pitch and cross-section. We then use the new formulas to study the advection of passive particles near the vortex; we find that the vortex's motion and capacity to transport fluid dep...

  16. Verification of an analytic fit for the vortex core profile in superfluid Fermi gases

    Energy Technology Data Exchange (ETDEWEB)

    Verhelst, Nick, E-mail: nick.verhelst@uantwerpen.be [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Klimin, Serghei, E-mail: sergei.klimin@uantwerpen.be [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Department of Theoretical Physics, State University of Moldova, Republic of Moldova (Moldova, Republic of); Tempere, Jacques [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University (United States)

    2017-02-15

    Highlights: • The vortex profile in an imbalanced Fermi condensate is investigated. • The analytic fit for the vortex profile is compared with numerical simulations. • The analytic fit excellently agrees with numeric results in the BCS-BEC crossover. - Abstract: A characteristic property of superfluidity and -conductivity is the presence of quantized vortices in rotating systems. To study the BEC-BCS crossover the two most common methods are the Bogoliubov-De Gennes theory and the usage of an effective field theory. In order to simplify the calculations for one vortex, it is often assumed that the hyperbolic tangent yields a good approximation for the vortex structure. The combination of a variational vortex structure, together with cylindrical symmetry yields analytic (or numerically simple) expressions. The focus of this article is to investigate to what extent this analytic fit truly reflects the vortex structure throughout the BEC-BCS crossover at finite temperatures. The vortex structure will be determined using the effective field theory presented in [Eur. Phys. Journal B 88, 122 (2015)] and compared to the variational analytic solution. By doing this it is possible to see where these two structures agree, and where they differ. This comparison results in a range of applicability where the hyperbolic tangent will be a good fit for the vortex structure.

  17. Near wake vortex dynamics of a hovering hawkmoth

    Institute of Scientific and Technical Information of China (English)

    Hikaru Aono; Wei Shyy; Hao Liu

    2009-01-01

    Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerody-namics is conducted to support the development of a biology-inspired dynamic flight simulator for flapping wing-based micro air vehicles. Realistic wing-body morphologies and kinematics are adopted in the numerical simulations. The computed results show 3D mechanisms of vortical flow structures in hawkmoth-like hovering. A horseshoe-shaped primary vortex is observed to wrap around each wing during the early down- and upstroke; the horseshoe-shaped vortex subsequently grows into a doughnut-shaped vortex ring with an intense jet-flow present in its core, forming a downwash. The doughnut-shaped vortex rings of the wing pair eventu-ally break up into two circular vortex rings as they propagate downstream in the wake. The aerodynamic yawing and roll-ing torques are canceled out due to the symmetric wing kine-matics even though the aerodynamic pitching torque shows significant variation with time. On the other hand, the time-varying the aerodynamics pitching torque could make the body a longitudinal oscillation over one flapping cycle.

  18. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture

    CERN Document Server

    Naify, Christina J; Martin, Theodore P; Nicholas, Michael; Guild, Matthew D; Orris, Gregory J

    2016-01-01

    Vortex waves, which carry orbital angular momentum, have found use in a range of fields from quantum communications to particle manipulation. Due to their widespread influence, significant attention has been paid to the methods by which vortex waves are generated. For example, active phased arrays generate diverse vortex modes at the cost of electronic complexity and power consumption. Conversely, analog apertures, such as spiral phase plates, metasurfaces, and gratings require separate apertures to generate each mode. Here we present a new class of metamaterial-based acoustic vortex generators, which are both geometrically and electronically simple, and topologically tunable. Our metamaterial approach generates vortex waves by wrapping an acoustic leaky wave antenna back upon itself. Exploiting the antennas frequency-varying refractive index, we demonstrate experimentally and analytically that this analog structure generates both integer, and non-integer vortex modes. The metamaterial design makes the apertu...

  19. Low-frequency unsteadiness of vortex wakes over slender bodies at high angle of attack

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2014-08-01

    Full Text Available A type of flow unsteadiness with low frequencies and large amplitude was investigated experimentally for vortex wakes around an ogive-tangent cylinder. The experiments were carried out at angles of attack of 60–80° and subcritical Reynolds numbers of 0.6–1.8 × 105. The reduced frequencies of the unsteadiness are between 0.038 and 0.072, much less than the frequency of Karman vortex shedding. The unsteady flow induces large fluctuations of sectional side forces. The results of pressure measurements and particle image velocimetry indicate that the flow unsteadiness comes from periodic oscillation of the vortex wakes over the slender body. The time-averaged vortex patterns over the slender body are asymmetric, whose orientation is dependent on azimuthal locations of tip perturbations. Therefore, the vortex oscillation is a type of unsteady oscillation around a time-averaged asymmetric vortex structure.

  20. Topological properties of the SU(3) random vortex world-surface model

    CERN Document Server

    Engelhardt, M

    2008-01-01

    The random vortex world-surface model is an infrared effective model of Yang-Mills dynamics based on center vortex degrees of freedom. These degrees of freedom carry topological charge through writhe and self-intersection of their world-surfaces. A practical implementation of the model realizes the vortex world-surfaces by composing them of elementary squares on a hypercubic lattice. The topological charge for specifically such configurations is constructed in the case of SU(3) color. This necessitates a proper treatment of vortex color structure at vortex branchings, a feature which is absent in the SU(2) color case investigated previously. On the basis of the construction, the topological susceptibility is evaluated in the random vortex world-surface ensemble, both in the confined low-temperature as well as in the deconfined high-temperature phase.

  1. Influence of polymer structure on plasma-polymer interactions in resist materials

    Science.gov (United States)

    Bruce, Robert Lawson

    The controlled patterning of polymer resists by plasma plays an essential role in the fabrication of integrated circuits and nanostructures. As the dimensions of patterned structures continue to decrease, we require an atomistic understanding underlying the morphological changes that occur during plasma-polymer interactions. In this work, we investigated how plasma surface modifications and the initial polymer structure influenced plasma etch behavior and morphological changes in polymer resists. Using a prototypical argon discharge, we observed polymer modification by ions and vacuum ultraviolet (VUV) radiation from the plasma. A thin, highly dense modified layer was formed at the polymer surface due to ion bombardment. The thickness and physical properties of this ion-damaged layer was independent of polymer structure for the systems examined here. A relationship was observed that strongly suggests that buckling caused by ion-damaged layer formation on a polymer is the origin of roughness that develops during plasma etching. Our results indicate that with knowledge of the mechanical properties of the ion-damaged layer and the polymer being processed, plasma-induced surface roughness can be predicted and the surface morphology calculated. Examining a wide variety of polymer structures, the polymer poly(4-vinylpyridine) (P4VP) was observed to produce extremely smooth surfaces during high-ion energy plasma etching. Our data suggest that VUV crosslinking of P4VP below the ion-damaged layer may prevent wrinkling. We also studied another form of resists, silicon-containing polymers that form a SiO2 etch barrier layer during O2 plasma processing. In this study, we examined whether assisting SiO2 layer formation by adding Si-O bonds to the polymer structure would improve O2 etch behavior and reduce polymer surface roughness. Our results showed that while adding Si-O bonds decreased etch rates and silicon volatilization during O2 plasma exposure, the surface roughness

  2. Space time development of the onset of a shallow-water vortex

    Science.gov (United States)

    Lin, J.-C.; Ozgoren, M.; Rockwell, D.

    2003-06-01

    An impulsively started jet in shallow water gives rise to vortices having a characteristic diameter larger than the water depth. A technique of high-image-density particle image velocimetry allows characterization of the space time development of the instantaneous flow patterns along planes representing the quasi-two-dimensional and three-dimensional vortex structure. The quasi-two-dimensional patterns exhibit different categories of vortex development and interaction, depending upon the depth of the shallow water layer. Despite these distinctions, the variations of normalized vortex position, diameter, and circulation, as well as peak vorticity within the vortex, are very similar for sufficiently small water depth.

  3. Method and apparatus for enhancing vortex pinning by conformal crystal arrays

    Science.gov (United States)

    Janko, Boldizsar; Reichhardt, Cynthia; Reichhardt, Charles; Ray, Dipanjan

    2015-07-14

    Disclosed is a method and apparatus for strongly enhancing vortex pinning by conformal crystal arrays. The conformal crystal array is constructed by a conformal transformation of a hexagonal lattice, producing a non-uniform structure with a gradient where the local six-fold coordination of the pinning sites is preserved, and with an arching effect. The conformal pinning arrays produce significantly enhanced vortex pinning over a much wider range of field than that found for other vortex pinning geometries with an equivalent number of vortex pinning sites, such as random, square, and triangular.

  4. Bathtub vortex induced by instability

    Science.gov (United States)

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

    2014-10-01

    The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic.

  5. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems

    Science.gov (United States)

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-08-01

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization.

  6. Coherent structures and anomalous transport in reversed field pinch plasmas

    Science.gov (United States)

    Antoni, V.; Drake, J. R.; Spada, E.; Spolaore, M.; Vianello, N.; Bergsåker, H.; Cavazzana, R.; Cecconello, M.; Martines, E.; Serianni, G.

    2006-02-01

    The results leading to the identification of coherent structures emerging from the background turbulence in the edge region of the reversed field pinch experiments EXTRAP-T2R and RFX are reviewed. These structures have traits of vortices in velocity field and blobs in density, and the reconstruction of their spatial structure and of their time evolution is discussed focusing on the analysis tools applied. The role of these structures in the particle anomalous transport is addressed, showing that their collisions can contribute up to 50% the total particle losses.This process is shown to be responsible for bursts in particle flux and it is found to set a characteristic collision time, which is in agreement with the statistical properties of laminar times for particle flux bursts.

  7. Ionospheric plasma flow over large high-voltage space platforms. I - Ion-plasma-time scale interactions of a plate at zero angle of attack. II - The formation and structure of plasma wake

    Science.gov (United States)

    Wang, J.; Hastings, D. E.

    1992-01-01

    The paper presents the theory and particle simulation results for the ionospheric plasma flow over a large high-voltage space platform at a zero angle of attack and at a large angle of attack. Emphasis is placed on the structures in the large, high-voltage regime and the transient plasma response on the ion-plasma time scale. Special consideration is given to the transient formation of the space-charge wake and its steady-state structure.

  8. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  9. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  10. Vortex loops and Majoranas

    Energy Technology Data Exchange (ETDEWEB)

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  11. Jovian Plasmas Torus Interaction with Europa. Plasma Wake Structure and Effect of Inductive Magnetic Field: 3D Hybrid Kinetic Simulation

    Science.gov (United States)

    Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.

    2013-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive

  12. Influence of plasma-treatments on the structure, superstructure, and function of membrane lipids

    Science.gov (United States)

    Hammer, Malte U.; Forbrig, Enrico; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    Every cell, eu- or prokaryotic, has a membrane as an interface to the environment. Every substance that is applied from outside the cell has to interact with it. This includes plasma-generated reactive species in the liquid cell environment created by plasma-treatment. By the Singer and Nicolson model, proteins are embedded in a lipid bilayer. Proteins are the functional elements, lipids are the structural elements. Due to the amphiphilic nature of the lipids, they form (super-) structures in an aqueous environment. The exact superstructure is determined by a structural parameter of the lipid, its shape. Here, we show experiments on lipids by fluorophore-based liposome assays and raman spectroscopy. The results show a membrane-activity of plasma-born reactive species against lipids and lipid structures. Based on this results and literature, we propose a model for a lesion-forming mechanism in membranes of some reactive species created by plasma-treatment. It is based on a hydrophobic-hydrophilic mismatch due to lipid peroxidization induced by reactive species generated in liquids by plasma-treatment.

  13. Direct observation of imprinted antiferromagnetic vortex state in CoO/Fe/Ag(001) disks

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Carlton, D.; Park, J. S.; Meng, Y.; Arenholz, E.; Doran, A.; Young, A.T.; Scholl, A.; Hwang, C.; Zhao, H. W.; Bokor, J.; Qiu, Z. Q.

    2010-12-21

    In magnetic thin films, a magnetic vortex is a state in which the magnetization vector curls around the center of a confined structure. A vortex state in a thin film disk, for example, is a topological object characterized by the vortex polarity and the winding number. In ferromagnetic (FM) disks, these parameters govern many fundamental properties of the vortex such as its gyroscopic rotation, polarity reversal, core motion, and vortex pair excitation. However, in antiferromagnetic (AFM) disks, though there has been indirect evidence of the vortex state through observations of the induced FM-ordered spins in the AFM disk, they have never been observed directly in experiment. By fabricating single crystalline NiO/Fe/Ag(001) and CoO/Fe/Ag(001) disks and using X-ray Magnetic Linear Dichroism (XMLD), we show direct observation of the vortex state in an AFM disk of AFM/FM bilayer system. We observe that there are two types of AFM vortices, one of which has no analog in FM structures. Finally, we show that a frozen AFM vortex can bias a FM vortex at low temperature.

  14. Measurement of Vortex Strength and Core Diameter in the Wake of a Hovering Rotor

    Science.gov (United States)

    Wadcock, Alan J.

    1997-01-01

    Detailed hot wire measurements have been acquired in the tip vortex of a three-bladed model tilt rotor in hover. Testing was conducted at a rotor tip speed of 752 ft/sec, a Reynolds number (based on blade tip chord) of 1.77 x 10(exp 6), for thrust coefficients up to 0.0160. A figure shows the hot wire mounted above the inverted rotor at the Outside Aerodynamic Rotor Facility (OARF) at NASA Ames Research Center. Strobed shadowgraph flow visualization was used to define the vortex trajectory as an aid in hot wire positioning. Considerable variations in tip vortex structure with time were observed, even from the same blade, under essentially uniform test conditions. The only velocity signatures analyzed were those corresponding to passage of the probe directly through the center of the vortex. These time histories were ensemble averaged after compensating for jitter in the vortex arrival time at the probe, thereby retaining the core structure with minimal smearing. An example of a mean velocity signature, after ensemble averaging, is shown. The mean velocity signature was analyzed under the assumption of constant (unknown) translation speed of the vortex filament past the fixed probe. The translation speed of the vortex is deduced and the vortex strength and core diameter inferred. The results were highly unexpected. The indicated vortex strength is seen to decrease rapidly after first blade passage. In addition, the core radius is seen to decrease with increasing wake age, not increase as might be expected from simple diffusion.

  15. Probing the molecular structures of plasma-damaged and surface-repaired low-k dielectrics.

    Science.gov (United States)

    Zhang, Xiaoxian; Myers, John N; Lin, Qinghuang; Bielefeld, Jeffery D; Chen, Zhan

    2015-10-21

    Fully understanding the effect and the molecular mechanisms of plasma damage and silylation repair on low dielectric constant (low-k) materials is essential to the design of low-k dielectrics with defined properties and the integration of low-k dielectrics into advanced interconnects of modern electronics. Here, analytical techniques including sum frequency generation vibrational spectroscopy (SFG), Fourier transform infrared spectroscopy (FTIR), contact angle goniometry (CA) and X-ray photoelectron spectroscopy (XPS) have been employed to provide a comprehensive characterization of the surface and bulk structure changes of poly(methyl)silsesquioxane (PMSQ) low-k thin films before and after O2 plasma treatment and silylation repair. O2 plasma treatment altered drastically both the molecular structures and water structures at the surfaces of the PMSQ film while no bulk structural change was detected. For example, ∼34% Si-CH3 groups were removed from the PMSQ surface, and the Si-CH3 groups at the film surface tilted toward the surface after the O2 plasma treatment. The oxidation by the O2 plasma made the PMSQ film surface more hydrophilic and thus enhanced the water adsorption at the film surface. Both strongly and weakly hydrogen bonded water were detected at the plasma-damaged film surface during exposure to water with the former being the dominate component. It is postulated that this enhancement of both chemisorbed and physisorbed water after the O2 plasma treatment leads to the degradation of low-k properties and reliability. The degradation of the PMSQ low-k film can be recovered by repairing the plasma-damaged surface using a silylation reaction. The silylation method, however, cannot fully recover the plasma induced damage at the PMSQ film surface as evidenced by the existence of hydrophilic groups, including C-O/C[double bond, length as m-dash]O and residual Si-OH groups. This work provides a molecular level picture on the surface structural changes of low

  16. Vortex fluctuations in underdoped Bi(2)Sr(2)CaCu(2)O(8+delta) crystals.

    Science.gov (United States)

    Colson, Sylvain; Konczykowski, Marcin; Gaifullin, Marat B; Matsuda, Yuji; Gierłowski, Piotr; Li, Ming; Kes, Peter H; Van Der Beek, Cornelis J

    2003-04-04

    Vortex thermal fluctuations in heavily underdoped Bi(2)Sr(2)CaCu(2)O(8+delta) (T(c)=69.4 K) are studied using Josephson plasma resonance. From the zero-field data, we obtain the c-axis penetration depth lambda(L,c)(0)=230+/-10 micrometer and the anisotropy ratio gamma(T). The low plasma frequency allows us to study phase correlations over the whole vortex solid state and to extract a wandering length r(w) of vortex pancakes. The temperature dependence of r(w) as well as its increase with dc magnetic field is explained by the renormalization of the vortex line tension by the fluctuations, suggesting that this softening is responsible for the dissociation of the vortices at the first order transition.

  17. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    Science.gov (United States)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  18. Plasma electrons as tracers of distant magnetotail structure: ISEE-3

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.N.; Bame, S.J.; Gosling, J.T.; Gussenhoven, M.S.

    1988-01-01

    Electrons in the 50-500 eV energy range commonly exhibit strong, field-aligned bidirectional anisotropies in the distant (r > 100 Rg) geomagnetic tail lobes and are found to occur predominantly in the lobe directly connected to the sun along the interplanetary magnetic field in the open magnetosphere model (north lobe for away interplanetary sectors and south lobe for toward sectors). Data show the transition from unidirectional (sheath) electron populations to bidirectional (lobe) populations at the distant magnetopause. This demonstrates the open nature of the distant magnetotail and shows that the source of the higher-energy, bidirectional lobe electrons is the tailward-directed electron heat flux population in the magnetosheath. The field-aligned lobe electron phase space densities above 200 eV at ISEE-3 agree well with DMSP-measured polar rain phase space densities near the polar cap and the spectral slopes above 200 eV also are similar. Below 100-200 eV there is a thermal electron population in the distant tail, arising from local entry of plasma through the distant magnetopause, which is not present at DMSP altitudes. These data show that the suprathermal tail lobe electrons are essentially a test particle population which can move freely along field lines to form polar rain; in contrast, the thermal electrons are bound to the tailward-flowing lobe ion population far down the tail and thus cannot reach the polar cap regions.

  19. Plasma electrons as tracers of distant magnetotail structure - ISEE-3

    Science.gov (United States)

    Baker, D. N.; Bame, S. J.; Gosling, J. T.; Gussenhoven, M. S.

    1988-01-01

    This paper compares the electron spectra and phase space densities measured concurrently by ISEE-3 at 200 R(E), with those measured by DMSP at low altitudes. The field-aligned lobe electron phase space densities above 200 eV at ISEE were found to agree well with the DMSP-measured polar rain phase space densities near the polar cap; the spectral slopes above 200 eV were also similar. Below 100-200 eV, a thermal electron population was measured by ISEE in the distant tail, which arose from local entry of plasma through the distant magnetopause, which is not present at DMSP altitudes. These data show that the suprathermal tail lobe electrons are essentially a test particle population which can move freely along field lines to form polar rain; in contrast, the thermal electrons are bound to the tailward-flowing lobe ion population far down the tail and, thus, cannot reach the polar cap regions.

  20. Monopole-Antimonopole and Vortex Rings

    CERN Document Server

    Teh, R; Teh, Rosy; Wong, Khai-Ming

    2004-01-01

    The SU(2) Yang-Mills-Higgs theory supports the existence of monopoles, antimonopoles, and vortex rings. In this paper, we would like to present new exact static antimonopole-monopole-antimonopole (A-M-A) configurations. The net magnetic charge of these configurations is always negative one, whilst the net magnetic charge at the origin is always positive one for all positive integer values of the solution parameter $m$. However, when $m$ increases beyond one, vortex rings appear coexisting with these A-M-A configurations. The number of vortex rings increases proportionally with the value of $m$. They are magnetically neutral and are located in space where the Higgs field vanishes. We also show that a single point singularity in the Higgs field need not corresponds to a structureless 1-monopole at the origin but to a zero size monopole-antimonopole-monopole (MAM) structure. These exact solutions are a different kind of BPS solutions as they satisfy the first order Bogomol'nyi equation but possess infinite energ...

  1. Monopole-antimonopole and vortex rings

    Science.gov (United States)

    Teh, Rosy; Wong, Khai-Ming

    2005-08-01

    The SU(2) Yang-Mills-Higgs theory supports the existence of monopoles, antimonopoles, and vortex rings. In this paper, we would like to present new exact static antimonopole-monopole-antimonopole (A-M-A) configurations. The net magnetic charge of these configurations is always -1, while the net magnetic charge at the origin is always +1 for all positive integer values of the solution's parameter m. However, when m increases beyond 1, vortex rings appear coexisting with these AMA configurations. The number of vortex rings increases proportionally with the value of m. They are located in space where the Higgs field vanishes along rings. We also show that a single-point singularity in the Higgs field does not necessarily correspond to a structureless 1-monopole at the origin but to a zero-size monopole-antimonopole-monopole (MAM) structure when the solution's parameter m is odd. This monopole is the Wu-Yang-type monopole and it possesses the Dirac string potential in the Abelian gauge. These exact solutions are a different kind of Bogomol'nyi-Prasad-Sommerfield (BPS) solutions as they satisfy the first-order Bogomol'nyi equation but possess infinite energy due to a point singularity at the origin of the coordinate axes. They are all axially symmetrical about the z-axis.

  2. Preparation of Hollow Spherical and Core/shell Structured Powders by Plasma Processing

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaofeng; ZHOU; Kesong; DENG; Changguang; SONG; Jinbing; ZHANG; Jifu; DONG; Shujuan

    2015-01-01

    Four types of hollow spherical micro- and nano-szied powders of ZrO2-7wt.%Y2O3(7YSZ), ZrO2-7wt.%Y2O3, Al2O3-13 wt.% TiO2(AT) and WC as well as one type of core/shell structured powder of ZrB2-30 wt.%Mo Si2 were prepared via plasma processing. In addition, the formation mechanisms of hollow spherical and core/shell structured powders prepared via plasma processing were also proposed.

  3. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity.

    Science.gov (United States)

    Clayton, C E; Adli, E; Allen, J; An, W; Clarke, C I; Corde, S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Xu, X; Yakimenko, V

    2016-08-16

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

  4. Ionization-potential depression and dynamical structure factor in dense plasmas

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi

    2017-07-01

    The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.

  5. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    Science.gov (United States)

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-08-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within +/-3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m-1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

  6. Effect of structural steel ion plasma nitriding on material durability in pulsed high magnetic fields

    Science.gov (United States)

    Spirin, A. V.; Krutikov, V. I.; Koleukh, D. S.; Mamaev, A. S.; Paranin, S. N.; Gavrilov, N. V.; Kaigorodov, A. S.

    2017-05-01

    The work was aimed to study the influence of plasma nitriding on electrical and mechanical properties of structural steels and their durability in pulsed high magnetic field. The plates and cylindrical magnetic flux concentrators were made of several steel grades (30KhGS, 40Kh, 50KhGA, 38Kh2MYuA, and U8A), heat-treated, and subjected to the low-temperature (400, 500°C) plasma nitriding. Electrical and mechanical properties of materials, phase composition of steel surface layer, microstructure and microhardness profiles were investigated on the plates before and after plasma treatment. Microstructure and microhardness profiles across the subsurface layer of plasma treated and untreated concentrators applied for high magnetic field generation were also studied. Magnetic field of 50 T under tens of microseconds in duration inside the flux concentrators was generated by long-life outer coil.

  7. WAVE BOTTOM LAYERS DYNAMIC WITH SUSPENDED SEDIMENT OVER VORTEX RIPPLES

    Institute of Scientific and Technical Information of China (English)

    JIANG Chang-bo; BAI Yu-chuan; ZHAO Zi-dan; ZHANG Hong-wu

    2004-01-01

    Vortex ripple is widely formed in the coastal region, and the dynamic of vortex is quite important because it is responsible for sediment transport. The flow structure around the vortex ripples can be modeled as 2D flow due to the geometry of the flow boundaries. In this paper, 2D Large-Ed dy-Simulation (LES) method was used to predict the flow structure and the dynamic of vortex in the bottom layers under the action of the wave, the numerical simulation results show a completely process of vortex formation, evolvement and disappearance. Based on the study of flow structure, the suspended sediment transport was modeled in present paper. The simulated sediment concentrations were compared to measurements from the literature. The agreement between the time averaged simulated concentration profiles and measurements is satisfactory. For a high setting velocity, the suspended sediment is confined to the vicinity of the bed, and it is dominated by the local bottom shear stress. For a small setting velocity,the suspension is more dominated by the characteristic of vor tex. There are two suspended sediment transport peaks observed in the cross-section at the trough and crest in the half period, the second peak is due to the separation bubble taking the sediment.

  8. Analysis of band structure, transmission properties, and dispersion behavior of THz wave in one-dimensional parabolic plasma photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Askari, Nasim; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir [Department of Physics, Iran University of Science & Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Mirzaie, Reza [Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-15

    The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.

  9. Particle-vortex symmetric liquid

    CERN Document Server

    Mulligan, Michael

    2016-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...

  10. Vortex migration in protoplanetary discs

    Directory of Open Access Journals (Sweden)

    Papaloizou John C. B.

    2013-04-01

    Full Text Available Vortices embedded in protoplanetary discs can act as obstacles to the unperturbed disc flow. The resulting velocity perturbations propagate away from the vortex in the form of density waves that transport angular momentum. Any asymmetry between the inner and the outer density wave means that the region around the vortex has to change its angular momentum. We find that this leads to orbital migration of the vortex. Asymmetric waves always arise except in the case of a disc with constant pressure, for isothermal as well as non-isothermal discs. Depending on the size and strength of the vortex, the resulting migration time scales can be as short as a few thousand orbits.

  11. On the modelling of space plasma dynamics and structure

    Science.gov (United States)

    Albert, Jay; Anderson, Stephen; Silevitch, Michael; Villalon, Elena

    1995-11-01

    The research described in this report was focused into two related areas. These were: (1) A study of nonadiabatic particle orbits and the electrodynamic structure of the coupled magnetosphere ionosphere auroral arc System; and (2) An examination of electron acceleration and pitch angle scattering due to wave actions in the ionosphere and radiation belts.

  12. Optoelectronic and structural properties of InGaN nanostructures grown by plasma-assisted MOCVD

    Science.gov (United States)

    Seidlitz, Daniel; Senevirathna, M. K. I.; Abate, Y.; Hoffmann, A.; Dietz, N.

    2015-09-01

    This paper presents optoelectronic and structural layer properties of InN and InGaN epilayers grown on sapphire templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPA-MOCVD). Real-time characterization techniques have been applied during the growth process to gain insight of the plasma-assisted decomposition of the nitrogen precursor and associated growth surface processes. Analyzed Plasma Emission Spectroscopy (PES) and UV Absorption Spectroscopy (UVAS) provide detection and concentrations of plasma generated active species (N*/NH*/NHx*). Various precursors have been used to assess the nitrogen-active fragments that are directed from the hollow cathode plasma tube to the growth surface. The in-situ diagnostics results are supplemented with ex-situ materials structures investigation results of nanoscale structures using Scanning Near-field Optical Microscopy (SNOM). The structural properties have been analyzed by Raman spectroscopy and Fourier transform infrared (FTIR) reflectance. The Optoelectronic and optical properties were extracted by modeling the FTIR reflectance (e.g. free carrier concentration, high frequency dielectric constant, mobility) and optical absorption spectroscopy. The correlation and comparison between the in-situ metrology results with the ex-situ nano-structural and optoelectronic layer properties provides insides into the growth mechanism on how plasma-activated nitrogen-fragments can be utilized as nitrogen precursor for group III-nitride growth. The here assessed growth process parameter focus on the temporal precursor exposure of the growth surface, the reactor pressure, substrate temperature and their effects of the properties of the InN and InGaN epilayers.

  13. Vortex line in a neutral finite-temperature superfluid Fermi gas

    DEFF Research Database (Denmark)

    Nygaard, Nicolai; Bruun, G. M.; Schneider, B. I.;

    2004-01-01

    The structure of an isolated vortex in a dilute two-component neutral superfluid Fermi gas is studied within the context of self-consistent Bogoliubov-de Gennes theory. Various thermodynamic properties are calculated, and the shift in the critical temperature due to the presence of the vortex...

  14. ARE TORNADO-LIKE MAGNETIC STRUCTURES ABLE TO SUPPORT SOLAR PROMINENCE PLASMA?

    Energy Technology Data Exchange (ETDEWEB)

    Luna, M.; Moreno-Insertis, F. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Priest, E. [Mathematics Institute, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2015-07-20

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present.

  15. SPATIO-TEMPORAL COMPLEXITY OF THE AORTIC SINUS VORTEX.

    Science.gov (United States)

    Moore, Brandon; Dasi, Lakshmi Prasad

    2014-06-01

    The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calific aortic valve disease. We characterize the spatio-temporal characteristics of aortic sinus voxtex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High resolution time-resolved (2KHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water-glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in time-scales as revealed using time bin averaged vectors and corresponding instantaneous streamlines. There exist small time-scale vortices and a large time-scale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatio-temporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and time-scales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics.

  16. Formation number for vortex dipoles

    Science.gov (United States)

    Sadri, Vahid; Krueger, Paul S.

    2016-11-01

    This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.

  17. Vortex migration in protoplanetary disks

    CERN Document Server

    Paardekooper, S -J; Papaloizou, J C B

    2010-01-01

    We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a time scale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migrat...

  18. Magneto-Vortex Dynamo Model in Solar convection zone

    CERN Document Server

    Ershkov, Sergey V

    2011-01-01

    Here is presented a new magneto-vortex dynamo model for modeling & predicting of a processes in Solar plasma convection zone. Solar convection zone is located above the level r > 0,6-0,7 R, where R is a Solar radius. A key feature of such a model is that equation of Solar plasma motion as well as equation of magnetic fields evolution - are reduced to Helmholtz's vortex equation, which is up-graded in according with alpha-effect (Coriolis force forms an additional vorticity field or magnetic field due to Sun's differential rotation). Such an additional vorticity or magnetic field are proved to be concentrated at the proper belt in Solar convection zone under the influence of Coriolis force (at the middle latitudes of the Sun in respect to equator). Besides, such an an additional vorticity & magnetic fields are to be the basic sources of well-known phenomena "Maunder's butterfly" diagram.

  19. Analytical theory of self-consistent current structures in a collisionless plasma

    Science.gov (United States)

    Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Tarasov, S. V.

    2017-03-01

    The most-studied classes of exact solutions to Vlasov–Maxwell equations for stationary neutral current structures in a collisionless relativistic plasma, which allow the particle distribution functions (PDFs) to be chosen at will, are reviewed. A general classification is presented of the current sheets and filaments described by the method of invariants of motion of particles whose PDF is symmetric in a certain way in coordinate and momentum spaces. The possibility is discussed of using these explicit solutions to model the observed and/or expected features of current structures in cosmic and laboratory plasmas. Also addressed are how the magnetic field forms and the analytical description of the so-called Weibel instability in a plasma with an arbitrary PDF.

  20. Structure of the plasma fireball produced by a CO2 laser.

    Science.gov (United States)

    George, E. V.; Bekefi, G.; Ya'akobi, B.

    1971-01-01

    Study of the space and time resolved structure of a helium plasma produced with a repetitive CO2 laser during the first 15 microsec of the afterglow period. The spectra of several neutral and ionized helium lines are used in the determination of the density and temperature profiles of the luminous fireball. It is found that the plasma is comprised of a dense hot core, which emits primarily ionic lines, and a well-defined tenuous outer shell, which is primarily the source of neutral emission lines. This ?two-component' plasma structure develops at about 0.4 microsec after breakdown, at about the time when the luminous fireball dissipates its expansion energy and comes to a virtual standstill.