WorldWideScience

Sample records for plasma transport coefficients

  1. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1976-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained

  2. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1977-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount

  3. Calculation of Transport Coefficients in Dense Plasma Mixtures

    Science.gov (United States)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during

  4. Transport coefficients in Lorentz plasmas with the power-law kappa-distribution

    International Nuclear Information System (INIS)

    Jiulin, Du

    2013-01-01

    Transport coefficients in Lorentz plasma with the power-law κ-distribution are studied by means of using the transport equation and macroscopic laws of Lorentz plasma without magnetic field. Expressions of electric conductivity, thermoelectric coefficient, and thermal conductivity for the power-law κ-distribution are accurately derived. It is shown that these transport coefficients are significantly modified by the κ-parameter, and in the limit of the parameter κ→∞ they are reduced to the standard forms for a Maxwellian distribution

  5. A thermal transport coefficient for ohmic and ICRF plasmas in alcator C-mode

    International Nuclear Information System (INIS)

    Daughton, W.; Coppi, B.; Greenwald, M.

    1996-01-01

    The energy confinement in plasmas produced by Alcator C-Mod machine is markedly different from that observed by previous high field compact machines such as Alcator A and C, FT, and more recently FTU. For ohmic plasmas at low and moderate densities, the confinement times routinely exceed those expected from the so-called open-quotes neo-Alcatorclose quotes scaling by a factor as high as three. For both ohmic and ICRF heated plasmas, the energy confinement time increases with the current and is approximately independent of the density. The similarity in the confinement between the ohmic and ICRF regimes opens the possibility that the thermal transport in Alcator C-Mod may be described by one transport coefficient for both regimes. We introduce a modified form of a transport coefficient previously used to describe ohmic plasmas in Alcator C-Mod. The coefficient is inspired by the properties of the so-called open-quotes ubiquitousclose quotes mode that can be excited in the presence of a significant fraction of trapped electrons and also includes the constraint of profile consistency. A detailed series of transport simulations are used to show that the proposed coefficient can reproduce the observed temperature profiles, loop voltage and energy confinement time for both ohmic and ICRF discharges. A total of nearly two dozen ohmic and ICRF Alcator C-Mod discharges have been fit over the range of parameter space available using this transport coefficient

  6. Elemental transport coefficients in viscous plasma flows near local thermodynamic equilibrium

    International Nuclear Information System (INIS)

    Orsini, Alessio; Kustova, Elena V.

    2009-01-01

    We propose a convenient formulation of elemental transport coefficients in chemically reacting and plasma flows locally approaching thermodynamic equilibrium. A set of transport coefficients for elemental diffusion velocities, heat flux, and electric current is introduced. These coefficients relate the transport fluxes with the electric field and with the spatial gradients of elemental fractions, pressure, and temperature. The proposed formalism based on chemical elements and fully symmetric with the classical transport theory based on chemical species, is particularly suitable to model mixing and demixing phenomena due to diffusion of chemical elements. The aim of this work is threefold: to define a simple and rigorous framework suitable for numerical implementation, to allow order of magnitude estimations and qualitative predictions of elemental transport phenomena, and to gain a deeper insight into the physics of chemically reacting flows near local equilibrium.

  7. Transport coefficients for the plasma thermal energy and empirical scaling ''laws''

    International Nuclear Information System (INIS)

    Coppi, B.

    1989-01-01

    A set of transport coefficients has been identified for the electron and nuclei thermal energy of plasmas with temperatures in the multi-keV range, taking into account the available experimental information including the temperature spatial profiles and the inferred scaling ''laws'' for the measured energy replacement times. The specific form of these coefficients is suggested by the theory of a mode, so-called ''ubiquitous,'' that can be excited when a significant fraction of the electron population has magnetically trapped orbits. (author)

  8. Line photon transport in a non-homogeneous plasma using radiative coupling coefficients

    International Nuclear Information System (INIS)

    Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Minguez, E.

    2006-01-01

    We present a steady-state collisional-radiative model for the calculation of level populations in non-homogeneous plasmas with planar geometry. The line photon transport is taken into account following an angle- and frequency-averaged escape probability model. Several models where the same approach has been used can be found in the literature, but the main difference between our model and those ones is that the details of geometry are exactly treated in the definition of coupling coefficients and a local profile is taken into account in each plasma cell. (authors)

  9. Two-temperature transport coefficients of SF6–N2 plasma

    International Nuclear Information System (INIS)

    Yang, Fei; Chen, Zhexin; Wu, Yi; Rong, Mingzhe; Wang, Chunlin; Guo, Anxiang; Liu, Zirui

    2015-01-01

    Sulfur hexafluoride (SF 6 ) is widely adopted in electric power industry, especially in high-voltage circuit breakers and gas-insulated switchgear. However, the use of SF 6 is limited by its high liquidation temperature and high global warming potential. Recently, research shows SF 6 –N 2 mixture, which shows environmental friendliness and good electrical properties, may be a feasible substitute for pure SF 6 . This paper is devoted to the calculation of and transport coefficients of SF 6 –N 2 mixture under both LTE (local thermodynamic equilibrium) and non-LTE condition. The two–temperature mass action law was used to determine the composition. The transport coefficients were calculated by classical Chapman–Enskog method simplified by Devoto. The thermophysical properties are presented for electron temperatures of 300–40 000 K, ratios of electron to heavy species temperature of 1–10 and N 2 mole fraction of 0%–100% at atmospheric pressure. The ionization processes under both LTE and non-LTE have been discussed. The results show that deviations from local thermodynamic equilibrium significantly affect the properties of SF 6 –N 2 plasma, especially before the plasma is fully ionized. The different influence of N 2 on properties for SF 6 –N 2 plasma in and out of LTE has been found. The results will serve as reliable reference data for computational simulation of the behavior of SF 6 –N 2 plasmas

  10. Diffusion coefficient for anomalous transport

    International Nuclear Information System (INIS)

    1986-01-01

    A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport

  11. Transport coefficients of Quark-Gluon Plasma in a Kinetic Theory approach

    International Nuclear Information System (INIS)

    Puglisi, A; Plumari, S; Scardina, F; Greco, V

    2014-01-01

    One of the main results of heavy ions collision at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s = 1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green- Kubo relations give us an exact expression to compute these coefficients. We computed shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigated different cases of particles, for one component system (gluon matter), interacting via isotropic or anisotropic cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. Another transport coefficient of interest is the electric conductivity σ el which determines the response of QGP to the electromagnetic fields present in the early stage of the collision. We study the σ el dependence on microscopic details of interaction and we find also in this case that Relaxation Time Approximation is a good approximation only for isotropic cross-section.

  12. Two-temperature transport coefficients of SF{sub 6}–N{sub 2} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fei; Chen, Zhexin; Wu, Yi, E-mail: wuyic51@mail.xjtu.edu.cn; Rong, Mingzhe; Wang, Chunlin [State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Guo, Anxiang; Liu, Zirui [Electric Power Research Institute of State Grid Shaanxi Electric Power Company, Xian (China)

    2015-10-15

    Sulfur hexafluoride (SF{sub 6}) is widely adopted in electric power industry, especially in high-voltage circuit breakers and gas-insulated switchgear. However, the use of SF{sub 6} is limited by its high liquidation temperature and high global warming potential. Recently, research shows SF{sub 6}–N{sub 2} mixture, which shows environmental friendliness and good electrical properties, may be a feasible substitute for pure SF{sub 6}. This paper is devoted to the calculation of and transport coefficients of SF{sub 6}–N{sub 2} mixture under both LTE (local thermodynamic equilibrium) and non-LTE condition. The two–temperature mass action law was used to determine the composition. The transport coefficients were calculated by classical Chapman–Enskog method simplified by Devoto. The thermophysical properties are presented for electron temperatures of 300–40 000 K, ratios of electron to heavy species temperature of 1–10 and N{sub 2} mole fraction of 0%–100% at atmospheric pressure. The ionization processes under both LTE and non-LTE have been discussed. The results show that deviations from local thermodynamic equilibrium significantly affect the properties of SF{sub 6}–N{sub 2} plasma, especially before the plasma is fully ionized. The different influence of N{sub 2} on properties for SF{sub 6}–N{sub 2} plasma in and out of LTE has been found. The results will serve as reliable reference data for computational simulation of the behavior of SF{sub 6}–N{sub 2} plasmas.

  13. Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients

    Science.gov (United States)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Murphy, Anthony B.; Rong, Mingzhe; Yang, Fei; Chen, Zhexin; Niu, Chunpin; Wang, Xiaohua

    2018-04-01

    The thermophysical properties, including composition, thermodynamic properties, transport coefficients and net emission coefficients, of thermal plasmas formed from pure iso-C4 perfluoronitrile C4F7N and C4F7N–CO2 mixtures are calculated for temperatures from 300 to 30 000 K and pressures from 0.1 to 20 atm. These gases have received much attention as alternatives to SF6 for use in circuit breakers, due to the low global warming potential and good dielectric properties of C4F7N. Since the parameters of the large molecules formed in the dissociation of C4F7N are unavailable, the partition function and enthalpy of formation were calculated using computational chemistry methods. From the equilibrium composition calculations, it was found that when C4F7N is mixed with CO2, CO2 can capture C atoms from C4F7N, producing CO, since the system consisting of small molecules such as CF4 and CO has lower energy at room temperature. This is in agreement with previous experimental results, which show that CO dominates the decomposition products of C4F7N–CO2 mixtures; it could limit the repeated breaking performance of C4F7N. From the point of view of chemical stability, the mixing ratio of CO2 should therefore be chosen carefully. Through comparison with common arc quenching gases (including SF6, CF3I and C5F10O), it is found that for the temperature range for which electrical conductivity remains low, pure C4F7N has similar ρC p (product of mass density and specific heat) properties to SF6, and higher radiative emission coefficient, properties that are correlated with good arc extinguishing capability. For C4F7N–CO2 mixtures, the electrical conductivity is very close to that of SF6 while the ρC p peak at 7000 K caused by decomposition of CO implies inferior interruption capability to that of SF6. The calculated properties will be useful in arc simulations.

  14. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan

    2006-01-01

    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  15. Poloidal density variation of impurities in a rotating tokamak plasma - flux surface coordinates and effect on transport coefficients

    International Nuclear Information System (INIS)

    Romanelli, M.

    1999-09-01

    The poloidal variation of impurity densities over magnetic surfaces brings about an enhancement of neoclassical transport coefficients, as shown by Romanelli and Ottaviani for impurities in the Pfirsch Schlueter regime and by Helander for particles in the banana-plateau regime, both in a large aspect ratio tokamak. The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to be relevant for inclusion in transport codes for comparison with the experimental measurements of impurity transport. Here an expression for the impurity-density poloidal-variation generated by the fast toroidal rotation of the plasma column is presented in general coordinates. (author)

  16. Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients

    Science.gov (United States)

    Basiuk, V.; Huynh, P.; Merle, A.; Nowak, S.; Sauter, O.; Contributors, JET; the EUROfusion-IM Team

    2017-12-01

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  17. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    Science.gov (United States)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  18. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    International Nuclear Information System (INIS)

    Wang, Haiyan; Qi, Haiyang; Wang, Weizong; Yan, Joseph D; Geng, Jinyue; Wu, Yaowu

    2017-01-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg–Waage equation according to van de Sanden et al ’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman–Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes. (paper)

  19. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo-Vazquez, F J [Instituto de Astrofisica de Andalucia (IAA), CSIC, PO Box 3004, 18080 Granada (Spain); Donko, Z [Research Institute for Solid State Physics and Optics, H-1525 Budapest, PO Box, 49 (Hungary)

    2009-08-15

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, {approx}215 K (at 11 km) and {approx}198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N {<=} 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas

  20. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    International Nuclear Information System (INIS)

    Gordillo-Vazquez, F J; Donko, Z

    2009-01-01

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, ∼215 K (at 11 km) and ∼198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N ≤ 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas temperature is only slightly

  1. Elastic scattering and transport coefficients for a quark plasma in SUf(3) at finite temperatures

    Science.gov (United States)

    Rehberg, P.; Klevansky, S. P.; Hüfner, J.

    1996-02-01

    The temperature dependence of the elastic-scattering processes qq' → qq' and q overlineq' → q overlineq' , with q, q' = u, d, s is studied as a function of the scattering angle and the center-of-mass energy of the collision within the framework of the SUf(3) Nambu-Jona-Lasinio model. Critical scattering at threshold is observed in the q overlineq' → q overlineq' process, leading to an enhancement of the cross section as occurs in the phenomenon of critical opalescence. Transport properties such as viscosity, mean free paths and thermal relaxation times are calculated. Strangeness enhancement is investigated via the chemical relaxation times, which are found to be considerably higher than those calculated via perturbative QCD. A comparison with the experimental values for the strangeness enhancement in S + S collisions leads to an upper limit of 4 fm/ c for the lifetime of the plasma.

  2. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    Science.gov (United States)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  3. Transport coefficients of Quark-Gluon plasma with full QCD potential

    Science.gov (United States)

    J. P., Prasanth; Bannur, Vishnu M.

    2018-05-01

    The shear viscosity η, bulk viscosity ζ and their ratio with the entropy density, η / s, ζ / s have been studied in a quark-gluon plasma (QGP) within the cluster expansion method. The cluster expansion method allows us to include the interaction between the partons in the deconfined phase and to calculate the equation of state of quark-gluon plasma. It has been argued that the interactions present in the equation of state, the modified Cornell potential significantly contributes to the viscosity. The results obtained within our approaches agree with lattice quantum chromodynamics (LQCD) equation of state. We obtained η / s ≈ 0 . 128 within the temperature range T /Tc ∈ [ 0 . 9 , 1 . 5 ] which is very close to the theoretical lower bound η / s ≥ 1 /(4 π) in Yang-Mills theory. We also demonstrate that the effects of ζ / s at freezeout are possibly large.

  4. Kinetic coefficients for quark-antiquark plasma

    International Nuclear Information System (INIS)

    Czyz, W.; Florkowski, W.

    1986-03-01

    The quark-antiquark plasma near equilibrium is studied. The results are based on the Heinz kinetic equations with the Boltzmann collision operator approximated by a relaxation term with the relaxation time, τ, treated as a small parameter. Linear in τ solutions of these equations are used to calculate the transport coefficients: the non-abelian version of Ohm's law, and the shear and volume viscosities. We introduce new chemical potentials which determine the color density matrix of quarks (antiquarks). Gradients of these potentials generate color currents. 12 refs. (author)

  5. Calculation of thermodynamic properties and transport coefficients of C5F10O-CO2 thermal plasmas

    Science.gov (United States)

    Li, Xingwen; Guo, Xiaoxue; Murphy, Anthony B.; Zhao, Hu; Wu, Jian; Guo, Ze

    2017-10-01

    The thermodynamic properties and transport coefficients of C5F10O-CO2 gas mixtures, which are being considered as substitutes for SF6 in circuit breaker applications, are calculated for the temperature range from 300 K to 30 000 K and the pressure range from 0.05 MPa to 1.6 MPa. Special attention is paid on investigating the evolution of thermophysical properties of C5F10O-CO2 mixtures with different mixing ratios and with different pressures; both the mixing ratio and pressure significantly affect the properties. This is explained mainly in terms of the changes in the temperatures at which the dissociation and ionization reactions take place. Comparisons of different thermophysical properties of C5F10O-CO2 mixtures with those of SF6 are also carried out. It is found that most of the thermophysical properties of the C5F10O-CO2 mixtures, such as thermal conductivity, viscosity, and electrical conductivity, become closer to those of SF6 as the C5F10O concentration increases. The composition and thermophysical properties of pure C5F10O in the temperature range from 300 K to 2000 K based on the decomposition pathway are also given. The calculation results provide a basis for further study of the insulation and arc-quenching capability of C5F10O-CO2 gas mixtures as substitutes for SF6.

  6. Factorization of Transport Coefficients in Macroporous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2000-01-01

    We prove the fundamental theorem about factorization of the phenomenological coefficients for transport in macroporous media. By factorization we mean the representation of the transport coefficients as products of geometric parameters of the porous medium and the parameters characteristic...

  7. Study of transport coefficients of nanodiamond nanofluids

    Science.gov (United States)

    Pryazhnikov, M. I.; Minakov, A. V.; Guzei, D. V.

    2017-09-01

    Experimental data on the thermal conductivity coefficient and viscosity coefficient of nanodiamond nanofluids are presented. Distilled water and ethylene glycol were used as the base fluid. Dependences of transport coefficients on concentration are obtained. It was shown that the thermal conductivity coefficient increases with increasing nanodiamonds concentration. It was shown that base fluids properties and nanodiamonds concentration affect on the rheology of nanofluids.

  8. Statistical analyses of local transport coefficients in Ohmic ASDEX discharges

    International Nuclear Information System (INIS)

    Simmet, E.; Stroth, U.; Wagner, F.; Fahrbach, H.U.; Herrmann, W.; Kardaun, O.J.W.F.; Mayer, H.M.

    1991-01-01

    Tokamak energy transport is still an unsolved problem. Many theoretical models have been developed, which try to explain the anomalous high energy-transport coefficients. Up to now these models have been applied to global plasma parameters. A comparison of transport coefficients with global confinement time is only conclusive if the transport is dominated by one process across the plasma diameter. This, however, is not the case in most Ohmic confinement regimes, where at least three different transport mechanisms play an important role. Sawtooth activity leads to an increase in energy transport in the plasma centre. In the intermediate region turbulent transport is expected. Candidates here are drift waves and resistive fluid turbulences. At the edge, ballooning modes or rippling modes could dominate the transport. For the intermediate region, one can deduce theoretical scaling laws for τ E from turbulent theories. Predicted scalings reproduce the experimentally found density dependence of τ E in the linear Ohmic confinement regime (LOC) and the saturated regime (SOC), but they do not show the correct dependence on the isotope mass. The relevance of these transport theories can only be tested in comparing them to experimental local transport coefficients. To this purpose we have performed transport calculations on more than a hundred Ohmic ASDEX discharges. By Principal Component Analysis we determine the dimensionless components which dominate the transport coefficients and we compare the results to the predictions of various theories. (author) 6 refs., 2 figs., 1 tab

  9. Electronic transport coefficients in plasmas using an effective energy-dependent electron-ion collision-frequency

    Science.gov (United States)

    Faussurier, G.; Blancard, C.; Combis, P.; Decoster, A.; Videau, L.

    2017-10-01

    We present a model to calculate the electrical and thermal electronic conductivities in plasmas using the Chester-Thellung-Kubo-Greenwood approach coupled with the Kramers approximation. The divergence in photon energy at low values is eliminated using a regularization scheme with an effective energy-dependent electron-ion collision-frequency. Doing so, we interpolate smoothly between the Drude-like and the Spitzer-like regularizations. The model still satisfies the well-known sum rule over the electrical conductivity. Such kind of approximation is also naturally extended to the average-atom model. A particular attention is paid to the Lorenz number. Its nondegenerate and degenerate limits are given and the transition towards the Drude-like limit is proved in the Kramers approximation.

  10. Transfer coefficients in ultracold strongly coupled plasma

    Science.gov (United States)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  11. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  12. Transport barriers in plasmas

    International Nuclear Information System (INIS)

    Caldas, I L; Szezech, J D Jr; Kroetz, T; Marcus, F A; Roberto, M; Viana, R L; Lopes, S R

    2012-01-01

    We discuss the creation of transport barriers in magnetically confined plasmas with non monotonic equilibrium radial profiles. These barriers reduce the transport in the shearless region (i.e., where the twist condition does not hold). For the chaotic motion of particles in an equilibrium electric field with a nonmonotonic radial profile, perturbed by electrostatic waves, we show that a nontwist transport barrier can be created in the plasma by modifying the electric field radial profile. We also show non twist barriers in chaotic magnetic field line transport in the plasma near to the tokamak wall with resonant modes due to electric currents in external coils.

  13. Transport Coefficients from Large Deviation Functions

    Directory of Open Access Journals (Sweden)

    Chloe Ya Gao

    2017-10-01

    Full Text Available We describe a method for computing transport coefficients from the direct evaluation of large deviation functions. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which are scaled cumulant generating functions analogous to the free energies. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green–Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  14. Transport Coefficients from Large Deviation Functions

    Science.gov (United States)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  15. Atomic rate coefficients in a degenerate plasma

    Science.gov (United States)

    Aslanyan, Valentin; Tallents, Greg

    2015-11-01

    The electrons in a dense, degenerate plasma follow Fermi-Dirac statistics, which deviate significantly in this regime from the usual Maxwell-Boltzmann approach used by many models. We present methods to calculate the atomic rate coefficients for the Fermi-Dirac distribution and present a comparison of the ionization fraction of carbon calculated using both models. We have found that for densities close to solid, although the discrepancy is small for LTE conditions, there is a large divergence from the ionization fraction by using classical rate coefficients in the presence of strong photoionizing radiation. We have found that using these modified rates and the degenerate heat capacity may affect the time evolution of a plasma subject to extreme ultraviolet and x-ray radiation such as produced in free electron laser irradiation of solid targets.

  16. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  17. Plasma transport in mixed magnetic topologies

    International Nuclear Information System (INIS)

    Hegna, C.C.; Callen, J.D.

    1992-12-01

    A simple model is introduced to illustrate some features concerning anomalous transport associated with magnetic turbulence. For magnetic topologies that are described as bands of stochasticity separated by regions with good flux surfaces, the transport coefficients deviate significantly from those describing completely stochastic magnetic fields. It is possible to have the electron heat diffusivity exceed a runaway electron diffusion coefficient, despite the existence of widespread magnetic stochasticity. Comparing the ratios of transport coefficients is not an accurate way to determine whether anomalous plasma transport is controlled by electrostatic or electromagnetic fluctuations

  18. Measurement of particle transport coefficients on Alcator C-Mod

    International Nuclear Information System (INIS)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial (∼ 2 cm) and high temporal (≤ 1.0 ms) resolution. The system consists of 10 CO 2 (10.6 μm) and 4 HeNe (.6328 μm) chords that are used to measure the line integrated density to within 0.08 CO 2 degrees or 2.3 x 10 16 m -2 theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment

  19. Measurement of particle transport coefficients on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  20. Diffusion and transport coefficients in synthetic opals

    International Nuclear Information System (INIS)

    Sofo, J. O.; Mahan, G. D.

    2000-01-01

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society

  1. Transport Coefficients from Large Deviation Functions

    OpenAIRE

    Gao, Chloe Ya; Limmer, David T.

    2017-01-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation functions. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which are scaled cumulant generating functions analogous to the free energies. A diffusion Monte Carlo algorithm is used to evaluate th...

  2. Transport coefficients of a dissociating gas

    International Nuclear Information System (INIS)

    Lebed', I.V.

    1987-01-01

    The calculation of the transport coefficients of a dissociating gas involves fundamental difficulties which arise when the internal degrees of freedom of the molecules are taken strictly into account. In practical calculations extensive use is made of the approximation in the context of which the dependence of a diffusion velocity of the molecule on its internal state is totally neglected. In this case the expressions for the stress tensor and the diffusion velocities coincide with the corresponding expressions for a mixture of structureless particles; in the expression for the heat flux the diffusion transport of internal energy is taken only approximately into account. Here, analytic expressions for the diffusion velocities, heat flux and stress tensor are obtained without introducing simplifying assumptions. The calculation method is based on an approximate method of calculating the transport coefficients of a multicomponent mixture of structureless particles. The relations obtained are analyzed and compared with the existing results; their accuracy is estimated. A closed system of equations of gas dynamics is presented for a number of cases of practical importance

  3. Thermodynamic theory of transport in magnetized plasmas

    International Nuclear Information System (INIS)

    Misguich, J.H.

    1990-10-01

    Transport laws relating thermodynamic flows to forces by means of transport coefficients in a magnetized plasma are derived here from basic plasmadynamics and nonequilibrium thermodynamics. Macroscopic balance equations are derived in the first part, taking into account the energy of relative diffusion between species in an exact way. The resulting plasmadynamical equations appear to be more general than the usual ones. In the second part, the particular features of a two-temperature diffusing plasma are taken into account in deriving the balance equation for the entropy density, the differences with thermodynamics of neutral fluid mixtures or metals are explained. The general expressions obtained for the entropy production rate are used in part III to derive transport laws. Onsager symmetry relations are applied to interrelate crossed transport coefficients. Basic transport coefficients are the electrical conductivity, the thermo-electric coefficient, along with the thermal conductivities and the viscosities for each species. The slight difference between thermo-electric effect and thermo-diffusion is explained. An important resistive thermo-electric effect appears which describes crossed transport coefficients between thermal and electric flows. Because of the anisotropy introduced by the magnetic field, the transport coefficients are tensors, with non diagonal elements associated with the Hall, Nernst and Ettinghausen effects in the plasma. The field geometry and applications to several particular cases are treated explicitly in part IV, namely the neo-classical transport laws. The Ettinghausen effect appears to play an important role in the transport laws for radial electron heat flow and particle flow in confined plasmas. Practical prescriptions are given to apply the Onsager symmetry relations in a correct way

  4. Nonlinear electron transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Kho, T.H.; Haines, M.G.

    1986-01-01

    Electron transport in a magnetized plasma heated by inverse bremsstrahlung is studied numerically using a nonlinear Fokker--Planck model with self-consistent E and B fields. The numerical scheme is described. Nonlocal transport is found to alter many of the transport coefficients derived from linear transport theory, in particular, the Nernst and Righi--Leduc effects, in addition to the perpendicular heat flux q/sub perpendicular/, are substantially reduced near critical surface. The magnetic field, however, remains strongly coupled to the nonlinear q/sub perpendicular/ and, as has been found in hydrosimulations, convective amplification of the magnetic field occurs in the overdense plasma

  5. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the classical transport theory in plasmas. Ch. 1 is a chapter of 'pure' hamiltonian mechanics and starts with the study of the motion of an individual charged particle in the presence of an electromagnetic field. Ch. 2 introduces the tools of statistical mechanics for the study of large collections of charged particles. A kinetic theory is derived as a basic tool for transport theory. In ch. 3 the hydro-dynamic - or plasmadynamic - balance equations are derived. The macroscopic dynamical equations have the structure of an infinite hierarchy. This introduces the necessity of construction of a transport theory, by which te infinite set of equations can be reduced to a finite, closed set. This can only be done by a detailed analysis of the kinetic equation under well defined conditions. The tools for such nan analysis are developed in ch. 4. In ch. 5 the transport equations, relating the unknown fluxes of matter, momentum, energy and electricity to the hydrodynamic variables, are derived and discussed. In ch. 6 the results are incorporated into the wider framework of non-equilibrium thermodynamics by connecting the transport processes to the central concept of entropy production. In ch. 7 the results of transport theory are put back into the equations of plasmadynamics

  6. Transport coefficients of strongly interacting matter

    International Nuclear Information System (INIS)

    Heckmann, Klaus

    2011-01-01

    In this thesis, we investigate the dissipative transport phenomena of strongly interacting matter. The special interest is in the shear viscosity and its value divided by entropy density. The performed calculations are based on effective models for Quantum Chromodynamics, mostly focused on the 2-flavor Nambu-Jona-Lasinio model. This allows us to study the hadronic sector as well as the quark sector within one single model. We expand the models up to next-to-leading order in inverse numbers of colors. We present different possibilities of calculating linear transport coefficients and give an overview over qualitative properties as well as over recent ideas concerning ideal fluids. As present methods are not able to calculate the quark two-point function in Minkowski space-time in the self-consistent approximation scheme of the Nambu-Jona-Lasinio model, a new method for this purpose is developed. This self-energy parametrization method is applied to the expansion scheme, yielding the quark spectral function with meson back-coupling effects. The usage of this spectral function in the transport calculation is only one result of this work. We also test the application of different transport approaches in the NJL model, and find an interesting behavior of the shear viscosity at the critical end point of the phase diagram. We also use the NJL model to calculate the viscosity of a pion gas in the dilute regime. After an analysis of other models for pions and their interaction, we find that the NJL-result leads to an important modification of transport properties in comparison with the calculations which purely rely on pion properties in the vacuum. (orig.)

  7. Analysis of pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Groebner, R.J.; Osborne, T.H.; Canik, J.M.; Owen, L.W.; Pankin, A.Y.; Rafiq, T.; Rognlien, T.D.; Stacey, W.M.

    2010-01-01

    An H-mode edge pedestal plasma transport benchmarking exercise was undertaken for a single DIII-D pedestal. Transport modelling codes used include 1.5D interpretive (ONETWO, GTEDGE), 1.5D predictive (ASTRA) and 2D ones (SOLPS, UEDGE). The particular DIII-D discharge considered is 98889, which has a typical low density pedestal. Profiles for the edge plasma are obtained from Thomson and charge-exchange recombination data averaged over the last 20% of the average 33.53 ms repetition time between type I edge localized modes. The modelled density of recycled neutrals is largest in the divertor X-point region and causes the edge plasma source rate to vary by a factor ∼10 2 on the separatrix. Modelled poloidal variations in the densities and temperatures on flux surfaces are small on all flux surfaces up to within about 2.6 mm (ρ N > 0.99) of the mid-plane separatrix. For the assumed Fick's-diffusion-type laws, the radial heat and density fluxes vary poloidally by factors of 2-3 in the pedestal region; they are largest on the outboard mid-plane where flux surfaces are compressed and local radial gradients are largest. Convective heat flows are found to be small fractions of the electron (∼ 2 s -1 . Electron heat transport is found to be best characterized by electron-temperature-gradient-induced transport at the pedestal top and paleoclassical transport throughout the pedestal. The effective ion heat diffusivity in the pedestal has a different profile from the neoclassical prediction and may be smaller than it. The very small effective density diffusivity may be the result of an inward pinch flow nearly balancing a diffusive outward radial density flux. The inward ion pinch velocity and density diffusion coefficient are determined by a new interpretive analysis technique that uses information from the force balance (momentum conservation) equations; the paleoclassical transport model provides a plausible explanation of these new results. Finally, the measurements

  8. Neoclassical transport coefficients for tokamaks with bean-shaped flux surfaces

    International Nuclear Information System (INIS)

    Chang, C.S.; Kaye, S.M.

    1990-11-01

    Simple analytic representations of the neoclassical transport coefficients for indented flux surfaces are presented. It is shown that a transport coefficient for an indented flux surface can be expressed in terms of a linear combination of the previously known transport coefficients for two nonindented flux surfaces. Numerical calculations based on actual equilibria from the PBX-M tokamak indicate that, even for modestly indented flux surfaces, the ion neoclassical thermal transport can be over a factor of two smaller than in a circular plasma with the same midplane radius or with the equivalent areas. 6 refs., 5 figs., 1 tab

  9. Axially symmetric reconstruction of plasma emission and absorption coefficients

    International Nuclear Information System (INIS)

    Yang Lixin; Jia Hui; Yang Jiankun; Li Xiujian; Chen Shaorong; Liu Xishun

    2013-01-01

    A layered structure imaging model is developed in order to reconstruct emission coefficients and absorption coefficients simultaneously, in laser fusion core plasma diagnostics. A novel axially symmetric reconstruction method that utilizes the LM (Levenberg-Marquardt) nonlinear least squares minimization algorithm is proposed based on the layered structure. Numerical simulation results demonstrate that the proposed method is sufficiently accurate to reconstruct emission coefficients and absorption coefficients, and when the standard deviation of noise is 0.01, the errors of emission coefficients and absorption coefficients are 0.17, 0.22, respectively. Furthermore, this method could perform much better on reconstruction effect compared with traditional inverse Abel transform algorithms. (authors)

  10. Kinetic theory of the interdiffusion coefficient in dense plasmas

    International Nuclear Information System (INIS)

    Boercker, D.B.

    1986-08-01

    Naive applications of Spitzer's theory to very dense plasmas can lead to negative diffusion coefficients. The interdiffusion coefficients in Binary Ionic Mixtures (two species of point ions in a uniform neutralizing background) have been calculated recently using molecular dynamics techniques. These calculations can provide useful benchmarks for theoretical evaluations of the diffusion coefficient in dense plasma mixtures. This paper gives a brief description of a kinetic theoretic approximation to the diffusion coefficient which generalizes Spitzer to high density and is in excellent agreement with the computer simulations. 15 refs., 1 fig., 2 tabs

  11. Numerical resolution of a bi-temperature MHD model with a general Ohm's law: Roe solver - Front-tracking - Nonlinear transport equations with discontinuous coefficients. Simulation of a Plasma Opening Switch

    International Nuclear Information System (INIS)

    Brassier, Stephane

    1998-01-01

    The Magnetohydrodynamic (MHD) equations represent the coupling between fluid dynamics equations and Maxwell's equations. We consider here a new MHD model with two temperatures. A Roe scheme is first constructed in the one dimensional case, for a multi-species model and a general equation of state. The multidimensional case is treated thanks to the Powell approach. The notion of Roe-Powell matrix, generalization of the notion of Roe matrix for multidimensional MHD, allows us to develop an original scheme on a curvilinear grid. We focus on a second part on the modelling of a Plasma Opening Switch (POS). A front-tracking method is first set up, in order to correctly handle the deformation of the front between the vacuum and the plasma. Besides, by taking into account a general Ohm's law, we have to deal with the Hall effect, which leads to nonlinear transport equations with discontinuous coefficients. Several numerical schemes are proposed and tested on a variety of test cases. This work has allowed us to construct an industrial MHD code, intended to handle complex flows and in particular to correctly simulate the behaviour of the POS. (author) [fr

  12. Improved method for calculating neoclassical transport coefficients in the banana regime

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, M., E-mail: taguchi.masayoshi@nihon-u.ac.jp [College of Industrial Technology, Nihon University, Narashino 275-8576 (Japan)

    2014-05-15

    The conventional neoclassical moment method in the banana regime is improved by increasing the accuracy of approximation to the linearized Fokker-Planck collision operator. This improved method is formulated for a multiple ion plasma in general tokamak equilibria. The explicit computation in a model magnetic field shows that the neoclassical transport coefficients can be accurately calculated in the full range of aspect ratio by the improved method. The some neoclassical transport coefficients for the intermediate aspect ratio are found to appreciably deviate from those obtained by the conventional moment method. The differences between the transport coefficients with these two methods are up to about 20%.

  13. Transport, chaos and plasma physics

    International Nuclear Information System (INIS)

    Benkadda, S.; Doveil, F.; Elskens, Y.

    1993-01-01

    This workshop made it possible to gather for the first time plasma physicists, dynamical systems physicists and mathematicians, around a general theme focusing on the characterisation of chaotic transport. The participations have been divided into 4 topics: - dynamical systems and microscopic models of chaotic transport, - magnetic fluctuations and transport in tokamaks, - drift wave turbulence, self-organisation and intermittency, and - Wave-particle interactions

  14. Contribution to the evaluation of diffusion coefficients in plasmas containing argon and fluorine

    International Nuclear Information System (INIS)

    Novakovic, N V

    2006-01-01

    The theoretical values of the numerical evaluation of the electron and ion diffusion coefficients in plasmas from mixtures of argon and fluorine are presented. The temperature dependence of the diffusion coefficients for low-pressure (from 0.1 to 1.0 kPa) and low-temperature (from 500 to 5000 K) argon plasmas with 20% and 30% of added fluorine are investigated. These values are results of the applications of the specific numerical model to the evaluation plasma composition and transport coefficients in argon plasma with fluorine as additive. It is assumed that the system is kept under constant pressure and that a corresponding state of local thermodynamical equilibrium (LTE) is attained. Since the LTE can be assumed, a Maxwellian electron distribution function will be adopted. The hypothesis of LTE, which is commonly used in most of the numerical evaluations, is analysed with the modified Debye radius r D *. The binary electron and ion diffusion coefficients are calculated with the equilibrium plasma composition and with the collision frequencies. Strictly speaking, Maxwellian distribution function (in the state LTE) is not valid for low pressure, but in this case with the aid of the modified Debye radius, a Maxwellian f e M is assumed correctly. It is shown that the electron diffusion coefficients are about four orders of magnitude larger than the corresponding overall diffusion coefficients of ions. Both diffusion coefficients are lower in argon plasma with 30% than with 20% of fluorine additives, in the whole temperature range examined

  15. Transport Coefficients for dense hard-disk systems

    NARCIS (Netherlands)

    Garcia-Rojo, R.; Luding, Stefan; Brey, J. Javier; Ooms, G.; Hoogendoorn, C.J.

    2007-01-01

    A study of the transport coefficients of a system of elastic hard disks, based on the use of Helfand-Einstein expressions is reported. The pressure, the viscosity, and the heat conductivity are examined for different density and system-size. While most transport coefficients agree with Enskog theory

  16. Transport processes in space plasmas

    International Nuclear Information System (INIS)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth's magnetosphere and associated waves, the Earth's magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth's magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior

  17. Turbulent transport in magnetized plasmas

    CERN Document Server

    Horton, Wendell

    2012-01-01

    This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.

  18. Theory of anomalous transport in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.

    1992-03-01

    Theoretical model of the anomalous transport in Torsatron/Heliotron plasmas is developed, based on the current-diffusive interchange instability which is destabilized due to the averaged magnetic hill near edge. Analytic formula of transport coefficient is derived. This model explains the high edge transport, the power degradation and energy confinement scaling law and the enhanced heat-pulse thermal conduction. (author)

  19. Physics of electron internal transport barrier in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Toda, S.; Fujisawa, A.; Ida, K.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.; Diamond, P.H.

    2006-10-01

    The role of zonal flows in the formation of the transport barrier in the helical plasmas is analyzed using the transport code. A set of one-dimensional transport equations is analyzed, including the effect of zonal flows. The turbulent transport coefficient is shown to be suppressed when the plasma state changes from the weak negative radial electric field to the strong positive one. This bifurcation of the turbulent transport is newly caused by the change of the damping rate of zonal flows. It is theoretically demonstrated that the damping rate of zonal flows governs the global confinement in toroidal plasmas. (author)

  20. Quantum Non-Markovian Langevin Equations and Transport Coefficients

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.

    2005-01-01

    Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed

  1. Uranium plasma emission coefficient in the visible and near UV.

    Science.gov (United States)

    Mack, J. M., Jr.; Usher, J. L.; Schneider, R. T.; Campbell, H. D.

    1971-01-01

    Measurements of the specific emission coefficient in the near ultra-violet and visible region of a uranium arc plasma are reported. Spatial unfolding of the intensity profile is used to determine the emission coefficient in the spectral range of 2000 A to 6000 A. The uranium partial pressure is estimated to range between .001 and .01 atmosphere, and the corresponding temperature range is 5000 - 10,000 K.

  2. Collisional transport in nonneutral plasmas

    International Nuclear Information System (INIS)

    Dubin, D.H.E.

    1999-01-01

    Classical transport theory grossly underestimates collisionally-driven cross-field transport for plasmas in the parameter regime of r c D , where r c ≡ v-bar/Ω c , λ D 2 ≡ T/4πe 2 n. In current experiments operating in this regime, cross-field test particle transport is observed to be a factor of 10 larger than the prediction of classical theory. Heat conduction is enhanced by up to 300 times over classical theory, and viscosity is up to 10 4 times larger. New guiding center theories of transport due to long-range collisions have been developed that agree with the measurements. Theory also predicts that emission and absorption of plasma waves may further enhance the thermal conduction and viscosity, providing a possible mechanism for anomalous thermal conductivity in the electron channel of fusion plasmas. (author)

  3. Transport coefficients in superfluid neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  4. Coefficient of electrical transport vacuum arc for metals and alloys

    International Nuclear Information System (INIS)

    Markov, G.V.; Ehjzner, B.A.

    1998-01-01

    In this article the authors propose formulas for estimation coefficient of electrical transport vacuum arc for metals and alloys. They also represent results of analysis principal physical processes which take place in cathode spot vacuum arc

  5. Behavior of the particle transport coefficients near the density limit in MTX

    International Nuclear Information System (INIS)

    Marinak, M.M.

    1993-04-01

    The perturbed particle transport coefficients were determined for a range of plasma conditions in the Alcator C tokamak, a component of the Microwave Tokamak Experiment (MTX), from analysis of density perturbations created in gas modulation experiments. Density measurements from a 15 chord far-infrared interferometer were sufficiently detailed to allow radial profiles of the transport coefficients to be resolved. Gas modulation experiments were carried out on plasmas over a range of relatively low currents and a wide variety of line-averaged densities, including values near the Greenwald density limit. With this technique the perturbed diffusion coefficient D and the perturbed convection velocity V can be determined simultaneously. Measured profiles of D rise toward the outside of the plasma column in a manner generally similar to those determined previously for χ e,HP from sawtooth heat pulse propagation. Values of D are typically smaller than those of χ e,HP given for the same line-averaged densities by a factor of 2-5. Diffusion coefficients from a series of discharges at constant current showed little variation with density through most of the saturated ohmic confinement regime. At the Greenwald density limit threshold a dramatic increase occurred in both the perturbed convective and diffusive transport coefficients in the outer region of the plasma. The increases were most pronounced at the outermost range of the radii where coefficients were determined (r/a = 0.8), but were apparent over a region which extended well into the plasma interior. Density profiles maintained a similar shape near the density limit, congruous with the similar behavior of the transport coefficients. No dramatic deterioration was evident in the global energy confinement

  6. Transport of plasma impurities and the role of the plasma edge layers for the hot plasma production

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1987-01-01

    The first problem of impurity transport is removal of alpha particles from the interior outward. The second problem is the control of impurities produced in the plasma-wall interaction. Finally there is the problem of using injected impurities for assessment of transport coefficients. The influence of impurity radiation on the power balance of a DT plasma is considered. Limiters and divertors as impurity sources are mentioned and transport equations for impurities are given. As an example iron impurities transport in a hydrogen plasma is considered. The role of the edge layer is emphasized. Finally requirements for plasma diagnostics are stated. 50 refs., 10 figs. (qui)

  7. Electron cyclotron absorption in Tokamak plasmas in the presence of radial transport of particles

    International Nuclear Information System (INIS)

    Rosa, Paulo R. da S.; Ziebell, Luiz F.

    1998-01-01

    We use quasilinear theory to study effects of particle radial transport on the electron cyclotron absorption coefficient by a current carrying plasma, in a tokamak modelated as a plasma slab. Our numerical results indicate significant modification in the profile of the electron cyclotron absorption coefficient when transport is taken into account relative to the situation without transport. (author)

  8. Transport processes in plasmas

    International Nuclear Information System (INIS)

    Balescu, R.

    1988-01-01

    This part is devoted to the neoclassical transport theory. Ch. 8 deals with toroidal magnetic confinement. Ch. 9 studies the motion of an individual particle in a toroidal field. Ch.'s 10 and 11 are devoted to the study of the kinetic equation appropriate to the situation that prevails in the neoclassical theory. Ch. 12 is devoted to the general study of the macroscopic moment equations in toroidal geometry. In ch. 13 the first new transport equations are derived. They include the strange Pfirsch-Schlueter effect. In ch. 14 the method of solution of the kinetic equation in the long free path regime is developed. In ch. 15 the typical long mean free path neoclassical transport equations are obtained and discussed; their very pecular differences with the classicial ones are emphasized. Ch. 16 introduces a mean free path regime as well as a method of interpolation of the results over the whole range of collisionalities. Ch. 17 provides the connection of the transport theory with non-equilibrium thermodynamics in a regime (long mean free path) where the applicability of the latter seems, at first sight, questionable. Nevertheless a complete and consistent thermodynamic theory can be set up, even in this regime. Finally, ch. 18 goes back to the hydrodynamical equations and treats the problem of their closure (in toroidal geometry)

  9. Time correlation functions and transport coefficients in a dilute superfluid

    International Nuclear Information System (INIS)

    Kirkpatrick, T.R.; Dorfman, J.R.

    1985-01-01

    Time correlation functions for the transport coefficients in the linear Landau-Khalatnikov equations are derived on the basis of a formal theory. These Green--Kubo expressions are then explicitly evaluated for a dilute superfluid and the resulting transport coefficiencts are shown to be identical to those obtained previously by using a distribution function method

  10. Jetto a free boundary plasma transport code

    International Nuclear Information System (INIS)

    Cenacchi, G.; Taroni, A.

    1988-01-01

    JETTO is a one-and-a-half-dimensional transport code calculating the evolution of plasma parameters in a time dependent axisymmetric MHD equilibrium configuration. A splitting technique gives a consistent solution of coupled equilibrium and transport equations. The plasma boundary is free and defined either by its contact with a limiter (wall) or by a separatrix or by the toroidal magnetic flux. The Grad's approach to the equilibrium problem with adiabatic (or similar) constraints is adopted. This method consists of iterating by alternately solving the Grad-Schluter-Shafranov equation (PDE) and the ODE obtained by averaging the PDE over the magnetic surfaces. The bidimensional equation of the poloidal flux is solved by a finite difference scheme, whereas a Runge-Kutta method is chosen for the averaged equilibrium equation. The 1D transport equations (averaged over the magnetic surfaces) for the electron and ion densities and energies and for the rotational transform are written in terms of a coordinate (ρ) related to the toroidal flux. Impurity transport is also considered, under the hypothesis of coronal equilibrium. The transport equations are solved by an implicit scheme in time and by a finite difference scheme in space. The centering of the source terms and transport coefficients is performed using a Predictor-Corrector scheme. The basic version of the code is described here in detail; input and output parameters are also listed

  11. Efficient calculation of atomic rate coefficients in dense plasmas

    Science.gov (United States)

    Aslanyan, Valentin; Tallents, Greg J.

    2017-03-01

    Modelling electron statistics in a cold, dense plasma by the Fermi-Dirac distribution leads to complications in the calculations of atomic rate coefficients. The Pauli exclusion principle slows down the rate of collisions as electrons must find unoccupied quantum states and adds a further computational cost. Methods to calculate these coefficients by direct numerical integration with a high degree of parallelism are presented. This degree of optimization allows the effects of degeneracy to be incorporated into a time-dependent collisional-radiative model. Example results from such a model are presented.

  12. Nonlinear dynamics and plasma transport

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.

    1992-01-01

    In this paper we summarize the progress made over the last year in three different areas of research: (a) shear flow generation and reduced transport in fluids and plasma, (b) nonlinear dynamics and visualization of 3D flows, and (c) application of wavelet analysis to the study of fractal dimensions in experimental and numerical data

  13. Plasma transport near material boundaries

    International Nuclear Information System (INIS)

    Singer, C.E.

    1985-06-01

    The fluid theory of two-dimensional (2-d) plasma transport in axisymmetric devices is reviewed. The forces which produce flow across the magnetic field in a collisional plasma are described. These flows may lead to up-down asymmetries in the poloidal rotation and radial fluxes. Emphasis is placed on understanding the conditions under which the known 2-d plasma fluid equations provide a valid description of these processes. Attempts to extend the fluid treatment to less collisional, turbulent plasmas are discussed. A reduction to the 1-d fluid equations used in many computer simulations is possible when sources or boundary conditions provide a large enough radial scale length. The complete 1-d fluid equations are given in the text, and 2-d fluid equations are given in the Appendix

  14. Transport Coefficients for Holographic Hydrodynamics at Finite Energy Scale

    International Nuclear Information System (INIS)

    Ge, Xian-Hui; Fang, Li Qing; Yang, Guo-Hong; Leng, Hong-Qiang

    2014-01-01

    We investigate the relations between black hole thermodynamics and holographic transport coefficients in this paper. The formulae for DC conductivity and diffusion coefficient are verified for electrically single-charged black holes. We examine the correctness of the proposed expressions by taking charged dilatonic and single-charged STU black holes as two concrete examples, and compute the flows of conductivity and diffusion coefficient by solving the linear order perturbation equations. We then check the consistence by evaluating the Brown-York tensor at a finite radial position. Finally, we find that the retarded Green functions for the shear modes can be expressed easily in terms of black hole thermodynamic quantities and transport coefficients

  15. Fluctuations and transport in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nevins, W.M.; Chen, L.

    1979-11-01

    A formalism is developed for calculating the equilibrium fluctuation level in an inhomogeneous plasma. This formalism is applied to the collisionless drift wave in a sheared magnetic field. The fluctuation level is found to be anomalously large due to both the presence of weakly damped normal modes and convective amplification. As the magnetic shear is reduced, the steady-state fluctuation spectrum is found to increase both in coherence and in amplitude. The transport associated with this mode is evaluated. The diffusion coefficient is found to scale as D is proportional to B 2 /nT/sup 1/2/

  16. Transport coefficients for dense hard-disk systems.

    Science.gov (United States)

    García-Rojo, Ramón; Luding, Stefan; Brey, J Javier

    2006-12-01

    A study of the transport coefficients of a system of elastic hard disks based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for event-driven molecular dynamics algorithms with periodic boundary conditions. The density and size dependence of the results are analyzed, and comparison with the predictions from Enskog's theory is carried out. In particular, the behavior of the transport coefficients in the vicinity of the fluid-solid transition is investigated and a striking power law divergence of the viscosity with density is obtained in this region, while all other examined transport coefficients show a drop in that density range in relation to the Enskog's prediction. Finally, the deviations are related to shear band instabilities and the concept of dilatancy.

  17. Plasma transport through magnetic boundaries

    International Nuclear Information System (INIS)

    Treumann, R.A.

    1992-01-01

    We examine the overall plasma diffusion processes across tangential discontinuities of which the best known example is the Earth's magnetopause during northward interplanetary magnetic field conditions. The existence of the low latitude boundary layer (LLBL) adjacent to the magnetopause during those periods is ample evidence for the presence of so far poorly defined and understood entry processes acting at the magnetopause. We conclude that microscopic instabilities are probably not efficient enough to account for the LLBL. They affect only a small number of resonant particles. It is argued that macroscopic nonresonant turbulence is the most probable mechanism for plasma transport

  18. Instabilities, turbulence and transport in a magnetized plasma; Instabilites, turbulence et transport dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Garbet, X

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  19. Kinetic coefficients for quark-antiquark plasma with quantal treatment of color

    International Nuclear Information System (INIS)

    Dyrek, A.; Florkowski, W.

    1986-07-01

    We discuss the near-equilibrium state of the q-bar q plasma treated as a system of classical particles with quantized color charges. The matrix of the kinetic coefficients is calculated (in the relaxation approximation of the transport equation) and compared with its classical version. The color Ohm law is recovered but the structure of the kinetic matrix is different. 5 refs. (author)

  20. Novel Technique for Direct Measurement of the Plasma Diffusion Coefficient in Magnetized Plasma

    Czech Academy of Sciences Publication Activity Database

    Brotánková, Jana; Martines, E.; Adámek, Jiří; Stöckel, Jan; Popa, G.; Costin, C.; Ionita, G.; Schrittwieser, R.; Van Oost, G.

    2008-01-01

    Roč. 48, 5-7 (2008), s. 418-423 ISSN 0863-1042. [International Workshop on Electrical Probes in Magnetized Plasmas/7th./. Praha, 22.07.2007-25.07.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * probe diagnostics * diffusion coefficient Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.250, year: 2008

  1. Transport coefficients for dense hard-disk systems

    NARCIS (Netherlands)

    García-Rojo, R.; Luding, S.; Brey, J.J.

    2006-01-01

    A study of the transport coefficients of a system of elastic hard disks based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for event-driven molecular dynamics

  2. Numerical studies of transport processes in Tokamak plasma

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1984-09-01

    The paper contains the summary of a set of studies of the transport processes in tokamak plasma, performed with a one-dimensional computer code. The various transport models (which are implemented by the expressions of the transport coefficients) are presented in connection with the regimes of the dynamical development of the discharge. Results of studies concerning the skin effect and the large scale MHD instabilities are also included

  3. Theory of anomalous transport in H-mode plasmas

    International Nuclear Information System (INIS)

    Itoh, S.; Itoh, K.; Fukuyama, A.; Yagi, M.

    1993-05-01

    Theory of the anomalous transport is developed, and the unified formula for the L- and H-mode plasmas is presented. The self-sustained ballooning-mode turbulence is solved in the presence of the inhomogeneous radial electric field, E r . Reductions in transport coefficients and the amplitude and decorrelation length of fluctuations due to E r ' are quantitatively analyzed. Combined with the E r -bifurcation model, the thickness of the transport barrier is simultaneously determined. (author)

  4. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1991-01-01

    We have developed a Monte Carlo method to estimate the transport of different groups of particles for plasmas in toroidal geometries. This method can determine the important transport mechanisms driving the anomalous transport by comparing the numerical results with the experimental data. The important groups of particles whose transport can be estimated by this method include runaway electrons, thermal electrons, both passing and trapped diagnostic beam ions etc. The three basic mechanisms driving the anomalous transport are: spatial variation of magnetic field strength, spatial variation of electrostatic potential within the flux surfaces, and the loss of flux surfaces. The equation of motion are obtained from the drift hamiltonian. The equations of motion are developed in the canonical and in the non-canonical, practical co-ordinates as well. The effects of collisions are represented by appropriate stochastic changes in the constants of motion at each time-step. Here we present the results of application of this method to three cases: superathermal alphas in the rippled field of tokamaks, motion in the magnetic turbulence of takapole II, and transport in the stochastic fields of ZT40. This work is supported by DOE OFE and ORAU HBCU program

  5. Nonlinear dynamics and plasma transport

    International Nuclear Information System (INIS)

    Liu, C.S.; Sagdeev, R.; Antonsen, T.; Drake, J.; Hassma, A.; Guzdar, P.N.

    1995-12-01

    This progress report reports work done on a program in nonlinear dynamical aspects of plasma turbulence and transport funded by DOE from 1992-1995. The purpose of this program has been to promote the utilization of recent pathbreaking developments in nonlinear science in plasma turbulence and transport and to fully utilize the scientific expertise of Russian fusion and plasma community in collaboration with our group to address outstanding fusion theory problems. In the work reported in our progress report, we have studied simple models which are motivated by observation on actual fusion devices. The models focus on the important physical processes without incorporating the complexity of the geometry of real devices. We have also studied linear stability problems which incorporated important physics issues related to geometry involving closed field lines and open field lines. This allows for a deeper analysis and understanding of the system both analytically and numerically. The strong collaboration between the Russian visitors and the US participants has led to a fruitful and strong research program that taps the complementary analytic and numerical capabilities of the two groups. Over the years several distinguished Russian visitors have interacted with various members of the group and set up collaborative work which forms a significant part of proposed research. Dr. Galeev, Director of the Space Research Institute of Moscow and Dr. Novakovskii from the Kurchatov Institute are two such ongoing collaborations. 21 refs

  6. Quenching of Einstein A-Coefficients in plasmas and lasers

    International Nuclear Information System (INIS)

    Suckewer, S.; Princeton Univ., NJ

    1991-03-01

    The coefficient of spontaneous emission (Einstein A-coefficient) is considered to be one of the basic constants of a given transition in atom or ion. The formula for the Einstein A-coefficient was derived in the pioneering works of Weisskopf and Wigner (WW) based on Dirac's theory of light. More recently, however, it was noted in several papers that the rate of spontaneous radiative decay can deviate significantly from the WW expression in certain conditions, for example in a laser cavity. A different type of change in A- coefficients was inferred from measurements of changes in the intensity branching ratio of spectral lines in a plasma. A change of branching ratio of up to a factor of 10 was observed in CIV for 3p-3s (580.1--581.2nm) and 3p-2s (31.2-nm) transitions when the electron density changed from approximately N e ∼ 1 x 10 18 to 5 x 10 18 cm -3 . This effect was also observed in CIII and NV. An initial theoretical approach to the problem based on the integration of the Schroedinger equation with the ion Coulomb potential modified by the electron cloud within the Debye radius was unsuccessfully in predicting the experimental observations. The effect of quenching of spontaneous emission coefficients was observed also in an Ar-ion laser as a function of the intracavity power density (photon density) for lines originating from the same upper level as the lasing line. Measurements of these line profiles absorption for different lasing conditions and related discussions are also presented. 14 refs., 6 figs

  7. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  8. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  9. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1989-12-01

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  10. Effect of anomalous transport coefficients on the thermal structure of the storm time auroral ionosphere

    International Nuclear Information System (INIS)

    Fontheim, E.G.; Ong, R.S.B.; Roble, R.G.; Mayr, H.G.; Hoegy, W.H.; Baron, M.J.; Wickwar, V.B.

    1978-01-01

    By analyzing an observed storm time auroral electron temperature profile it is shown that anomalous transport effects strongly influence the thermal structure of the disturbed auroral ionosphere. Such anomalous transport effects are a consequence of plasma turbulence, the existence of which has been established by a large number of observations in the auroral ionosphere. The electron and composite ion energy equations are solved with anomalous electron thermal conductivity and parallel electrical resistivity coefficients. The solutions are parameterized with respect to a phenomenological altitude-dependent anomaly coefficient A and are compared with an observed storm time electron temperature profile above Chatanika. The calculated temperature profile for the classical case (A=1)disagrees considerably with the measured profile over most of the altitude range up to 450km. It is shown that an anomaly coefficient with a sharp peak of the order of 10 4 centered aroung the F 2 peak is consistent with observations

  11. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    International Nuclear Information System (INIS)

    Sonnino, Giorgio; Peeters, Philippe

    2008-01-01

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10 2 . The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10 2 when the nonlinear contributions are duly taken into account but, there is still a factor of 10 2 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work

  12. Study of neoclassical transport in LHD plasmas by applying the DCOM/NNW neoclassical transport database

    International Nuclear Information System (INIS)

    Wakasa, Arimitsu; Oikawa, Shun-ichi; Murakami, Sadayoshi

    2008-01-01

    In helical systems, neoclassical transport is one of the important issues in addition to anomalous transport, because of a strong temperature dependency of heat conductivity and an important role in the radial electric field determination. Therefore, the development of a reliable tool for the neoclassical transport analysis is necessary for the transport analysis in Large Helical Device (LHD). We have developed a neoclassical transport database for LHD plasmas, DCOM/NNW, where mono-energetic diffusion coefficients are evaluated by the Monte Carlo method, and the diffusion coefficient database is constructed by a neural network technique. The input parameters of the database are the collision frequency, radial electric field, minor radius, and configuration parameters (R axis , beta value, etc). In this paper, database construction including the plasma beta is investigated. A relatively large Shafranov shift occurs in the finite beta LHD plasma, and the magnetic field configuration becomes complex leading to rapid increase in the number of the Fourier modes in Boozer coordinates. DCOM/NNW can evaluate neoclassical transport accurately even in such a configuration with a large number of Fourier modes. The developed DCOM/NNW database is applied to a finite-beta LHD plasma, and the plasma parameter dependences of neoclassical transport coefficients and the ambipolar radial electric field are investigated. (author)

  13. Characteristics of equilibrium and perturbed transport coefficients in tokamaks

    International Nuclear Information System (INIS)

    Gentle, K.W.

    1995-01-01

    Although the evolution of a perturbation to a tokamak equilibrium can generally be described by local transport coefficients modestly enhanced above the equilibrium values, there are some significant cases for which this is inadequate. The density profile evolution in ASDEX-U occurs far more rapidly than is consistent with reasonable particle confinement times, and the evolution of cold pulses in TEXT requires nonlocal behavior in the core and some kind of anomaly near the periphery. The experiments are suggesting effects beyond standard local turbulent transport models. (orig.)

  14. Transport processes in multicomponent plasma

    International Nuclear Information System (INIS)

    Zissis, G.

    2002-01-01

    Full text: This book treats in detail, as indicated in the title, the transport phenomena in multicomponent plasmas. Here, the term 'transport' applies to the study of mass and energy transfer in plasmas due to the interactions between pairs of particles only. Radiation is legitimately omitted; anyway, radiative transfer is another field of study. As the author himself mentions in the introduction, 'the term multicomponent plasma implies a partially or fully ionized mixture of arbitrary number of species of neutral and charged particles satisfying the condition of quasi-neutrality'. In fact, this book treats a large variety of plasmas applying to different systems ranging from low-pressure systems which may be far from local thermodynamic equilibrium (LTE) conditions, to thermal plasmas in LTE or near-LTE states with special attention to two-temperature systems; partially ionized plasmas with low ionization degree for which electron-neutral interactions are predominant, to systems with higher ionization degrees in which charged particle interactions are no more negligible. In addition, for all the above stated situations, the author treats both plasmas which are subjected to an external electromagnetic field and those which are not (homogeneous and inhomogeneous cases). Furthermore, in the last chapters a special discussion concerning molecular plasmas is presented. Taking into account the evolution of plasma modelling in the last few years, the subject is of current interest and the reader will find in the book a large amount of information necessary for a good understanding of transport phenomena in plasmas: for a plasma simulation specialist, this book may be regarded as reference text, which includes all necessary mathematical relations for his work. However, it should not be considered a simple formulary; the reader will also find here an excellent description of the theoretical basis necessary for the derivation of all given expressions. To this point of view

  15. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  16. On helicon wave induced radial plasma transport

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-04-01

    Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs

  17. Influence of plasma shape on transport in the TCV tokamak

    International Nuclear Information System (INIS)

    Moret, J.M.; Franke, S.; Weisen, H.

    1996-11-01

    The energy confinement time of TCV ohmic, L-mode plasmas is observed to depend on the shape, improving slightly with elongation and degrading strongly with positive triangularity. This dependence can be explained by combination of geometrical effects on the temperature gradient and power degradation, without invoking a shape dependence of the transport coefficients. (author) 5 figs., 8 refs

  18. Transport of a multiple ion species plasma in the Pfirsch--Schluter regime

    International Nuclear Information System (INIS)

    Hirshman, S.P.

    1976-10-01

    The classical parallel friction coefficients, which relate the collisional friction forces to the flow of particles and heat along the magnetic field, are calculated for a multiple ion species plasma. In the short mean free path regime, the neoclassical Pfirsch--Schlueter transport coefficients for a toroidally confined multispecies plasma are computed in terms of the classical friction coefficients. The dependence of the neoclassical cross-field transport on the equilibration of the parallel ion temperature profiles is determined

  19. Non-Markovian dynamics of quantum systems: formalism, transport coefficients

    International Nuclear Information System (INIS)

    Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.

    2004-01-01

    Full text: The generalized Linbland equations with non-stationary transport coefficients are derived from the Langevin equations for the case of nonlinear non-Markovian noise [1]. The equations of motion for the collective coordinates are consistent with the generalized quantum fluctuation dissipation relations. The microscopic justification of the Linbland axiomatic approach is performed. Explicit expressions for the time-dependent transport coefficients are presented for the case of FC- and RWA-oscillators and a general linear coupling in coordinate and in momentum between the collective subsystem and heat bath. The explicit equations for the correlation functions show that the Onsanger's regression hypothesis does not hold exactly for the non-Markovian equations of motion. However, under some conditions the regression of fluctuations goes to zero in the same manner as the average values. In the low and high temperature regimes we found that the dissipation leads to long-time tails in correlation functions in the RWA-oscillator. In the case of the FC-oscillator a non-exponential power-like decay of the correlation function in coordinate is only obtained only at the low temperature limit. The calculated results depend rather weakly on the memory time in many applications. The found transient times for diffusion coefficients D pp (t), D qp (t) and D qq (t) are quite short. The value of classical diffusion coefficients in momentum underestimates the asymptotic value of quantum one D pp (t), but the asymptotic values of classical σ qq c and quantum σ qq second moments are close due to the negativity of quantum mixed diffusion coefficient D qp (t)

  20. Transport Coefficients for the NASA Lewis Chemical Equilibrium Program

    Science.gov (United States)

    Svehla, Roger A.

    1995-01-01

    The new transport property data that will be used in the NASA Lewis Research Center's Chemical Equilibrium and Applications Program (CEA) is presented. It complements a previous publication that documented the thermodynamic and transport property data then in use. Sources of the data and a brief description of the method by which the data were obtained are given. Coefficients to calculate the viscosity, thermal conductivity, and binary interactions are given for either one, or usually, two temperature intervals, typically 300 to 1000 K and 1000 to 5000 K. The form of the transport equation is the same as used previously. The number of species was reduced from the previous database. Many species for which the data were estimated were eliminated from the database. Some ionneutral interactions were added.

  1. Turbulence and abnormal transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Garbet, X.

    1988-09-01

    Microinstabilities in linear and nonlinear tokamak plasmas were studied. A variational method based on the existence of a system of angular variables and action for the charged particles in the magnetic configuration of a tokamak is described. The corresponding functional, extremal in relation to the fluctuating electromagnetic field, is calculated analytically, taking into account the effects of the toroidal geometry. A numerical code, TORRID, was derived from these principles and the main instabilities, especially ion instabilities and microtearing, were studied linearly. Nonlinear methods were also applied to microtearing. Quasi-linear transport coefficients are derived from a principle of minimum entropy production. Thermal ionic conductivity and viscosity are calculated for an ionic turbulence [fr

  2. Turbulence and abnormal transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Garbet, X.

    1988-06-01

    The objective of this thesis is the study of plasma microinstabilities in linear and nonlinear tokamak regime. After a brief review of experimental results the theoretical tools used in this study are presented. A variational method founded on the existence of angular variables system and on action for charged particles in tokamak configurations is detailed. The correspondent functional extreme with regard to fluctuating electromagnetic field, is calculated analytically with taking into account the toroidal geometry. A numerical code, TORRID, has been constructed on this principle and the main instabilities, particularly ionic instabilities and microtearing, has been linearly studied. The most simple non linear methods are rewieved and applied at the microtearing instabilities. The quasilinear transport coefficients are deducted of an entropy minimum production principle. The ionic thermic conductivity and the viscosity are calculated for an ionic turbulence [fr

  3. Energy transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Key, M.H.

    1989-06-01

    The study of energy transport in laser produced plasmas is of great interest both because it tests and develops understanding of several aspects of basic plasma physics and also because it is of central importance in major applications of laser produced plasmas including laser fusion, the production of intense X-ray sources, and X-ray lasers. The three sections cover thermal electrons (energy transport in one dimension, plane targets and lateral transport from a focal spot, thermal smoothing, thermal instabilities), hot electrons (preheating in one dimension, lateral transport from a focal spot) and radiation (preheating in one dimension, lateral transport and smoothing, instabilities). (author)

  4. Reciprocal relations of transport coefficients in simple materials

    International Nuclear Information System (INIS)

    Lam, L.

    1977-01-01

    The cross effects of viscosity and heat conduction in anisotropic simple materials (solids or liquids) are given in the linear regime, using our dissipation function theory introduced recently. Depending on whether the temperature gradient or the heat flux is used in the dissipation function, we show that two different but unambiguous reciprocal relations between the transport coefficients follow. These are compared and contrasted with the confusing predictions from the Onsager theory, and to the results of rational thermodynamics. The uncertain experimental situation in regard to these reciprocal relations is discussed. Experimental tests are strongly urged. (orig.) [de

  5. Nonlocal transport in hot plasma. Part I

    International Nuclear Information System (INIS)

    Brantov, A. V.; Bychenkov, V. Yu.

    2013-01-01

    The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a self-consistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclassical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 10 13 –10 16 W/cm 2

  6. Transport quasiparticles and transverse interactions in quark-gluon plasmas

    International Nuclear Information System (INIS)

    Baym, Gordon

    1996-01-01

    Calculations of the properties of interacting quark-gluon plasmas are beset by infrared divergences associated with the fact that magnetic interactions, i.e., those occurring through exchange of transverse gluons, are, in the absence of a 'magnetic mass''in QCD, not screened. In this lecture we discuss the effects of magnetic interactions on the transport coefficients and the quasiparticle structure of quark-gluon plasmas. We describe how inclusion of dynamical screening effects - corresponding to Landau damping of the virtual quanta exchanged - leads to finite transport scattering rates. In the weak coupling limit, dynamical screening effects dominate over a magnetic mass. We illustrate the breakdown of the quasi particle structure of degenerate plasmas caused by long-ranged magnetic interactions, describe the structure of fermion quasiparticles in hot relativistic plasmas, and touch briefly on the problem of the lifetime of quasiparticle in the presence of long-ranged magnetic interactions. (author)

  7. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Mense, A.T.; Attenberger, S.E.; Milora, S.L.

    1977-01-01

    The effects of cold particle fueling profiles on particle and energy transport in an ignition sized tokamak plasma are investigated in this study with a one-dimensional, multifluid transport model. A density gradient driven trapped particle microinstability model for plasma transport is used to demonstrate potential effects of fueling profiles on ignition requirements. Important criteria for the development of improved transport models under the conditions of shallow particle fueling profiles are outlined. A discrete pellet fueling model indicates that large fluctuations in density and temperature may occur in the outer regions of the plasma with large, shallowly penetrating pellets, but fluctuations in the pressure profile are small. The hot central core of the plasma remains unaffected by the large fluctuations near the plasma edge

  8. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  9. Turbulent transport in low-beta plasmas

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Pécseli, H.L.; Juul Rasmussen, J.

    1996-01-01

    Low-frequency electrostatic fluctuations are studied experimentally in a low-P plasma, with particular attention to their importance for the anomalous plasma transport across magnetic field lines. The presence of large coherent structures in a turbulent background at the edge of the plasma column...... is demonstrated by a statistical analysis. The importance of these structures for the turbulent transport is investigated. The study is extended by a multichannel conditional analysis to illustrate detailed properties and parameter dependences of the turbulent transport. (C) 1996 American Institute of Physics....

  10. Rotation and transport in Alcator C-Mod ITB plasmas

    Science.gov (United States)

    Fiore, C. L.; Rice, J. E.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.; Hughes, J. W.; Reinke, M.

    2010-06-01

    Internal transport barriers (ITBs) are seen under a number of conditions in Alcator C-Mod plasmas. Most typically, radio frequency power in the ion cyclotron range of frequencies (ICRFs) is injected with the second harmonic of the resonant frequency for minority hydrogen ions positioned off-axis at r/a > 0.5 to initiate the ITBs. They can also arise spontaneously in ohmic H-mode plasmas. These ITBs typically persist tens of energy confinement times until the plasma terminates in radiative collapse or a disruption occurs. All C-Mod core barriers exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles and thermal transport coefficients that approach neoclassical values in the core. The strongly co-current intrinsic central plasma rotation that is observed following the H-mode transition has a profile that is peaked in the centre of the plasma and decreases towards the edge if the ICRF power deposition is in the plasma centre. When the ICRF resonance is placed off-axis, the rotation develops a well in the core region. The central rotation continues to decrease as long as the central density peaks when an ITB develops. This rotation profile is flat in the centre (0 ITB density profile is observed (0.5 ITB foot that is sufficiently large to stabilize ion temperature gradient instabilities that dominate transport in C-Mod high density plasmas.

  11. Plasma thermal energy transport: theory and experiments

    International Nuclear Information System (INIS)

    Coppi, B.

    Experiments on the transport across the magnetic field of electron thermal energy are reviewed (Alcator, Frascati Torus). In order to explain the experimental results, a transport model is described that reconfirmed the need to have an expression for the local diffusion coefficient with a negative exponent of the electron temperature

  12. Modeling of impurity transport in the core plasma

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1992-01-01

    This paper presents a brief overview of computer modeling of impurity transport in the core region of controlled thermonuclear fusion plasmas. The atomic processes of importance in these high temperature plasmas and the numerical formulation of the model are described. Selected modeling examples are then used to highlight some features of the physics of impurity behavior in large tokamak fusion devices, with an emphasis on demonstrating the sensitivity of such modeling to uncertainties in the rate coefficients used for the atomic processes. This leads to a discussion of current requirements and opportunities for generating the improved sets of comprehensive atomic data needed to support present and future fusion impurity modeling studies

  13. Oxygen transport in waterlogged soils, Part II. Diffusion coefficients

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    Several equations are available for Oxygen Transport in Waterlogged Soils and have been used for soils and plants. All of them are some form of first Fick's law as given by dQ = - DA(dc/dx)/dt. This equation illustrates some important aspects of aeration in waterlogged soils; first, D is a property of the medium and the gas, and is affected by temperature T. Likewise, the amount of diffusing substance dQ in dt is a direct function of the cross sectional area A and inversely proportional to the distance x. In fact, increasing the water content of air-dry soil, drastically decreases A and creates a further resistance for the flow of oxygen through water films around root plants, soil micro organisms and soil aggregates. The solid phase is also limiting the cross-section of surface of the free gaseous diffusion and the length and tortuosity of diffusion path in soil. In most of cases, soil gas porosity and tortuosity of soil voids are expressed in the equations of diffusion as a broad 'diffusion coefficient' (apparent coefficient diffusion). The process of soil respiration is complicated, involves many parameters, and is difficult to realistically quantify. With regard to the oxygen supply, it is convenient to distinguish macro and micro models, and hence, the flux of oxygen is assumed to have two steps. The first step is related to oxygen diffusion from the atmosphere and the air-filled porosity. The second step is related to the oxygen diffusion through water-films in and around plant roots, soil micro organisms and aggregates. Because of these models we obtain coefficients of macro or micro diffusion, rates of macro or micro diffusion, etc. In the macro diffusion process oxygen is transferred in the soil profile, mainly from the soil surface to a certain depth of the root zone, while micro diffusion deals with the flux over very short distances. Both processes, macro and micro diffusion are highly influenced by soil water content. Of course, if water is added to

  14. Instabilities, turbulence and transport in a magnetized plasma

    International Nuclear Information System (INIS)

    Garbet, X.

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  15. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  16. Estimation of the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties into account

    International Nuclear Information System (INIS)

    Van Berkel, M; Hogeweij, G M D; Van den Brand, H; De Baar, M R; Zwart, H J; Vandersteen, G

    2014-01-01

    In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be shown that formulas found in the literature often result in a thermal diffusivity that has a bias (a difference between the estimated value and the actual value that remains even if more measurements are added) or have an unnecessarily large uncertainty. This will be shown by modeling a plasma using only diffusion as heat transport mechanism and measurement noise based on ASDEX Upgrade measurements. The Fourier coefficients of a temperature perturbation will exhibit noise from the circular complex normal distribution (CCND). Based on Fourier coefficients distributed according to a CCND, it is shown that the resulting probability density function of the thermal diffusivity is an inverse non-central chi-squared distribution. The thermal diffusivity that is found by sampling this distribution will always be biased, and averaging of multiple estimated diffusivities will not necessarily improve the estimation. Confidence bounds are constructed to illustrate the uncertainty in the diffusivity using several formulas that are equivalent in the noiseless case. Finally, a different method of averaging, that reduces the uncertainty significantly, is suggested. The methodology is also extended to the case where damping is included, and it is explained how to include the cylindrical geometry. (paper)

  17. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    Berg, van den M.A.; Bystrov, K.E.; Pasquet, R.; Zielinski, J.J.; De Temmerman, G.C.

    2013-01-01

    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m-3) and plasma composition (H2, Ar, N2) relevant for the ITER divertor plasma. The 2D surface

  18. Spectral functions and transport coefficients from the functional renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Tripolt, Ralf-Arno

    2015-06-03

    In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.

  19. Effects of pressure anisotropy on plasma transport

    International Nuclear Information System (INIS)

    Zawaideh, E.; Najmabadi, F.; Conn, R.W.

    1986-03-01

    In a recent paper a new set of generalized two-field equations is derived which describes plasma transport along the field lines of a space and time dependent magnetic field. These equations are valid for collisional to weakly collisional plasmas; they reduce to the conventional fluid equations of Braginskii for highly collisional plasmas. An important feature of these equations is that the anisotropy in the ion pressure is explicitly included. In this paper, these generalized transport equations are applied to a model problem of plasma flow through a magnetic mirror field. The profiles of the plasma parameters (density, flow speed, and pressures) are numerically calculated for plasma in different collisionality regimes. These profiles are explained by examining the competing terms in the transport equation. The pressure anisotropy is found to profoundly impact the plasma flow behavior. As a result, the new generalized equations predict flow behavior more accurately than the conventional transport equations. A large density and pressure drop is predicted as the flow passes through a magnetic mirror. Further, the new equations uniquely predict oscillations in the density profile, an effect missing in results from the conventional equations

  20. Classical dissipation and transport in plasmas

    International Nuclear Information System (INIS)

    Hinton, F.L.

    1989-01-01

    This paper reviews the subject of classical and neoclassical transport. The paper is organized into four main parts, dealing with plasma kinetic theory, classical transport, neoclassical transport, and the present state of the subject. The results of the neoclassical theory of transport are still being used to give the lower limit on the transport rates in tokamaks, which would apply if instabilities and turbulence could be suppressed. So far, only the ion thermal conductivity and the current density have been found experimentally to agree with this theory, and only under special conditions. The electron thermal conductivity has been found experimentally to be much larger than the neoclassical prediction

  1. Introduction to turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Garbet, X.

    2006-01-01

    This introduction presents the main instabilities responsible for turbulence in tokamak plasmas, and the prominent features of the resulting transport. The usual techniques to construct reduced transport models are described. These models can be tested by analysing steady state and transient regimes. Another way to test the theory is to use a similarity principle, similar to the one used in fluid mechanics. Finally, the physics involved in the formation and sustainment of transport barriers is presented. (author)

  2. Positron transport: The plasma-gas interface

    International Nuclear Information System (INIS)

    Marler, J. P.; Petrovic, Z. Lj.; Bankovic, A.; Dujko, S.; Suvakov, M.; Malovic, G.; Buckman, S. J.

    2009-01-01

    Motivated by an increasing number of applications, new techniques in the analysis of electron transport have been developed over the past 30 years or so, but similar methods had yet to be applied to positrons. Recently, an in-depth look at positron transport in pure argon gas has been performed using a recently established comprehensive set of cross sections and well-established Monte Carlo simulations. The key novelty as compared to electron transport is the effect of positronium formation which changes the number of particles and has a strong energy dependence. This coupled with spatial separation by energy of the positron swarm leads to counterintuitive behavior of some of the transport coefficients. Finally new results in how the presence of an applied magnetic field affects the transport coefficients are presented.

  3. Symmetry properties of the transport coefficients of charged particles in disordered materials

    International Nuclear Information System (INIS)

    Baird, J.K.

    1979-01-01

    The transport coefficients of a charged particle in an isotropic material are shown to be even functions of the applied electric field. We discuss the limitation which this result and its consequences place upon formulae used to represent these coefficients

  4. Suprathermal ion transport in turbulent magnetized plasmas

    International Nuclear Information System (INIS)

    Bovet, A. D.

    2015-01-01

    Suprathermal ions, which have an energy greater than the quasi-Maxwellian background plasma temperature, are present in many laboratory and astrophysical plasmas. In fusion devices, they are generated by the fusion reactions and auxiliary heating. Controlling their transport is essential for the success of future fusion devices that could provide a clean, safe and abundant source of electric power to our society. In space, suprathermal ions include energetic solar particles and cosmic rays. The understanding of the acceleration and transport mechanisms of these particles is still incomplete. Basic plasma devices allow detailed measurements that are not accessible in astrophysical and fusion plasmas, due to the difficulty to access the former and the high temperatures of the latter. The basic toroidal device TORPEX offers an easy access for diagnostics, well characterized plasma scenarios and validated numerical simulations of its turbulence dynamics, making it the ideal platform for the investigation of suprathermal ion transport. This Thesis presents three-dimensional measurements of a suprathermal ion beam injected in turbulent TORPEX plasmas. The combination of uniquely resolved measurements and first principle numerical simulations reveals the general non-diffusive nature of the suprathermal ion transport. A precise characterization of their transport regime shows that, depending on their energies, suprathermal ions can experience either a super diffusive transport or a subdiffusive transport in the same background turbulence. The transport character is determined by the interaction of the suprathermal ion orbits with the turbulent plasma structures, which in turn depends on the ratio between the ion energy and the background plasma temperature. Time-resolved measurements reveal a clear difference in the intermittency of suprathermal ions time-traces depending on the transport regime they experience. Conditionally averaged measurements uncover the influence of

  5. Transport of plasma across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1976-10-01

    Transport rates are calculated for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which the magnetic surfaces are destroyed. Such a magnetic condition, termed magnetic braiding, may be brought about by asymmetric magnetic perturbations, perhaps quite weak, which typically produce overlap of two sets of magnetic islands. Plasma transport is calculated for this environment, using both a fluid and a kinetic drift model. The latter gives an appreciably higher rate, namely, a fast-particle diffusion coefficient equal to ( 1 / 2 )D/sub M/ [absolute value of v/sub ''/], where D/sub M/ is the coefficient of spatial diffusion for the magnetic lines of force. Correction terms, due to polarization-associated E/sub ''/ fields, are small unless components of the braiding field resonate with ion-acoustic or drift waves. Insertion of a Bhatnager--Gross--Krook collision term shows the diffusion rate is unaffected by weak collisions. Diffusion due to magnetic braiding is of interest for tokamaks, particularly with respect to enhanced electron heat transport, enhanced current penetration, plasma disruption, and internal sawtooth oscillations

  6. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  7. Hydrocarbon transport in the laboratory plasma (MAP)

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Seiji; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Tanaka, Satoru

    1996-10-01

    Hydrocarbons are admitted in the laboratory plasma in order to investigate the transport processes of carbon - containing molecules in relation to redeposition processes in the fusion boundary plasma. When CH{sub 4} was introduced into the plasma, CH radical band spectra were optically identified, while in the case of C{sub 2}H{sub 2} introduction, C{sub 2} radicals were also identified in addition to CH radicals. Excitation temperature was determined from CH and C{sub 2} spectra band, which was observed to increase on approaching to the target. (author)

  8. Measurements of recombination coefficient of hydrogen atoms on plasma deposited thin films

    International Nuclear Information System (INIS)

    Drenik, A.; Vesel, A.; Mozetic, M.

    2006-01-01

    We have performed experiments in plasma afterglow in order to determine the recombination coefficients of plasma deposited thin films of tungsten and graphite. Plasma deposited films rather than bulk material were used in order to more closely emulate surface structure of plasma-facing material deposits in fusion reactors. We have also determined the recombination coefficient of 85250 borosilicate glass and Teflon. Plasma was created by means of a radio frequency generator in a mixture of argon and hydrogen at the pressures between 60 Pa and 280 Pa. The degree of dissociation of hydrogen molecules was found to be between 0.1 and 1. The H-atom density was measured by Fiber Optic Catalytic Probe. The recombination coefficient was determined by measuring the axial profile of the H-atom density and using Smith's side arm diffusion model. (author)

  9. Visualization of intermittent blobby plasma transport in attached and detached plasmas of the NAGDIS-II

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Furuta, Katsuhiro; Takamura, Shuichi

    2004-01-01

    We investigated the intermittent convective plasma transport in a attached and/or detached plasma condition of the linear divertor plasma simulator, NAGDIS-II. Images taken by a fast-imaging camera clearly show that in attached plasmas, blobs are peeled off the bulk plasma, and propagate outward with an azimuthal motion. In detached plasmas, plasma turbulence observed near the plasma recombining region drives strong intermittent radial plasma transport, which could broaden the radial density profile. (author)

  10. Transport coefficients for carbon, hydrogen, and the organic mixture C2H3

    International Nuclear Information System (INIS)

    Rinker, G.

    1986-02-01

    Electrical and thermal transport coefficients are calculated for amorphous elemental carbon and hydrogen, using the best available systematic theoretical methods. The density range considered is 10 -3 g/cm 3 less than or equal to rho less than or equal to 10 6 g/cm 3 for carbon, and 10 -4 g/cm 3 less than or equal to rho less than or equal to 10 5 g/cm 3 for hydrogen. The temperature range considered is 10 -2 eV less than or equal to kT less than or equal to 10 4 eV. Calculational methods include relativistic partial-wave analysis of the extended Ziman theory, and nonrelativistic plane-wave analysis (Born approximation) of the original Ziman theory. Physical models include relativistic Dirac-Fock-Slater and nonrelativistic Thomas-Fermi-Dirac electron-ion potentials, and one-component-plasma ion-ion structure factors. A mixing algorithm is used to obtain approximate transport coefficients for the atomic ratio C 2 H 3 . 10 refs., 31 figs

  11. Mathematical modeling plasma transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 1020/m3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  12. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  13. Dynamical interplay between fluctuations, electric fields and transport in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Goncalves, B.

    2003-01-01

    A view of recent experimental results and progress in the characterization of the statistical properties of electrostatic turbulence in magnetically confined devices is given. An empirical similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shows that these parameters are strongly coupled both in tokamak and stellarator plasmas. The bursty behaviour of turbulent transport is linked with a departure from the most probable radial gradient. The dynamical relation between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows which organized themselves near marginal stability. These results emphasize the importance of the statistical description of transport processes in fusion plasmas as an alternative approach to the traditional way to characterize transport based on the computation of effective transport coefficients. (author)

  14. Effects of electrostatic trapping on neoclassical transport in an impure plasma

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Ware, A.A.

    1976-01-01

    Contamination of a toroidally confined plasma by highly charged impurity ions can produce substantial variation of the electrostatic potential within a magnetic surface. The resulting electrostatic trapping and electrostatic drifts, of hydrogen ions and electrons, yields significant alterations in neoclassical transport theory. A transport theory which includes these effects is derived from the drift-kinetic equation, with an ordering scheme modeled on the parameters of recent tokamak experiments. The theory self-consistently predicts that electrostatic trapping should be fully comparable to magnetic trapping, and provides transport coefficients which, depending quadratically upon the temperature and pressure gradients, differ markedly from the standard neoclassical coefficients for a pure plasma

  15. Neoclassical transport of impurtities in tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Sigmar, D.J.

    1981-05-01

    Tokamak plasmas are inherently comprised of multiple ion species. This is due to wall-bred impurities and, in future reactors, will result from fusion-born alpha particles. Relatively small concentrations of highly charged non-hydrogenic impurities can strongly influence plasma transport properties whenever n/sub I/e/sub I/ 2 /n/sub H/e 2 greater than or equal to (m/sub e//m/sub H/)/sup 1/2/. The determination of the complete neoclassical Onsager matrix for a toroidally confined multispecies plasma, which provides the linear relation between the surface averaged radial fluxes and the thermodynamic forces (i.e., gradients of density and temperature, and the parallel electric field), is reviewed. A closed set of one-dimensional moment equations is presented for the time evolution of thermodynamic and magnetic field quantities which results from collisional transport of the plasma and two dimensional motion of the magnetic flux surface geometry. The effects of neutral beam injection on the equilibrium and transport properties of a toroidal plasma are consistently included

  16. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Mense, A.T.; Houlberg, W.A.; Attenberger, S.E.; Milora, S.L.

    1978-04-01

    A one-dimensional (1-D), multifluid transport model is used to investigate the effects of particle fueling profiles on plasma transport in an ignition-sized tokamak (TNS). Normal diffusive properties of plasmas will likely maintain the density at the center of the discharge even if no active fueling is provided there. This significantly relaxes the requirements for fuel penetration. Not only is lower fuel penetration easier to achieve, but it may have the advantage of reducing or eliminating density gradient-driven trapped particle microinstabilities. Simulation of discrete pellet fueling indicates that relatively low velocity (approximately 10 3 m/sec) pellets may be sufficient to fuel a TNS-sized device (approximately 1.25-m minor radius), to produce a relatively broad, cool edge region of plasma which should reduce the potential for sputtering, and also to reduce the likelihood of trapped particle mode dominated transport. Low penetrating pellets containing up to 10 to 20 percent of the total plasma ions can produce fluctuations in density and temperature at the plasma edge, but the pressure profile and fusion alpha production remain almost constant

  17. Electron thermal transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Konings, J A

    1994-11-30

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).

  18. Plasma channels for electron beam transport

    International Nuclear Information System (INIS)

    Schneider, R.F.; Smith, J.R.; Moffatt, M.E.; Nguyen, K.T.; Uhm, H.S.

    1988-01-01

    In recent years, there has been much interest in transport of intense relativistic electron beams using plasma channels. These channels are formed by either: ionization of an organic gas by UV photoionization or electron impact ionization of a low pressure gas utilizing a low energy (typically several hundred volts) electron gun. The second method is discussed here. As their electron gun, the authors used a 12 volt lightbulb filament which is biased to -400 volts with respect to the grounded 15 cm diameter drift tube. The electrons emitted from the filament are confined by an axial magnetic field of --100 Gauss to create a plasma channel which is less than 1 cm in radius. The channel density has been determined with Langmuir probes and the resulting line densities were found to be 10 11 to 10 12 per cm. When a multi-kiloamp electron beam is injected onto this channel, the beam space charge will eject the plasma electrons leaving the ions behind to charge neutralize the electron beam, hence allowing the beam to propagate. In this work, the authors performed experimental studies on the dynamics of the plasma channel. These include Langmuir probe measurements of a steady state (DC) channel, as well as time-resolved Langmuir probe studies of pulsed channels. In addition they performed experimental studies of beam propagation in these plasma channels. Specifically, they observed the behavior of current transport in these channels. Detailed results of beam transport and channel studies are presented

  19. Plasma transport across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1978-01-01

    Simple fluid and particle models are used to estimate the transport of density, current, and electron heat for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which magnetic surfaces are destroyed. (author)

  20. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  1. Plasma transport in a compact ignition tokamak

    International Nuclear Information System (INIS)

    Singer, C.E.; Ku, L.P; Bateman, G.

    1987-02-01

    Nominal predicted plasma conditions in a compact ignition tokamak are illustrated by transport simulations using experimentally calibrated plasma transport models. The range of uncertainty in these predictions is explored by using various models which have given almost equally good fits to experimental data. Using a transport model which best fits the data, thermonuclear ignition occurs in a Compact Ignition Tokamak design with major radius 1.32 m, plasma half-width 0.43 m, elongation 2.0, and toroidal field and plasma current ramped in six seconds from 1.7 to 10.4 T and 0.7 to 10 MA, respectively. Ignition is facilitated by 20 MW of heating deposited off the magnetic axis near the 3 He minority cyclotron resonance layer. Under these conditions, sawtooth oscillations are small and have little impact on ignition. Tritium inventory is minimized by preconditioning most discharges with deuterium. Tritium is injected, in large frozen pellets, only after minority resonance preheating. Variations of the transport model, impurity influx, heating profile, and pellet ablation rates, have a large effect on ignition and on the maximum beta that can be achieved

  2. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    1999-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  3. Determiantion of elasticity coefficient of demand for suburban passenger transport

    Directory of Open Access Journals (Sweden)

    Тетяна Михайлівна Григорова

    2015-06-01

    Full Text Available The regularity of changes in demand for suburban passenger road transport, depending on the value, is investigated. The results of the survey of passengers about changes of fare on the chosen route are given. It is built the curve of elasticity of demand for suburban bus transport use in labor and cultural and social movements. The equilibrium tariff for suburban road transport is defined

  4. Transport coefficients for deeply inelastic scattering from the Feynman path integral method

    International Nuclear Information System (INIS)

    Brink, D.M.; Neto, J.; Weidenmueller, H.A.

    1979-01-01

    Friction and diffusion coefficients can be derived simply by combining statistical arguments with the Feynman path integral method. A transport equation for Feynman's influence functional is obtained, and transport coefficients are deduced from it. The expressions are discussed in the limits of weak, and of strong coupling. (Auth.)

  5. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Helander, P.

    2001-01-01

    In conventional neoclassical theory, the density and temperature gradients are not allowed to be as steep as frequently observed in the tokamak edge. In this paper the theory of neoclassical transport in a collisional, impure plasma is extended to allow for steeper profiles than normally assumed. The dynamics of highly charged impurity ions then becomes nonlinear, which affects the transport of all species. As earlier found in the banana regime, when the bulk plasma gradients are large the impurity ions undergo a poloidal redistribution, which reduces their parallel friction with the bulk ions and suppresses the neoclassical ion particle flux. The neoclassical confinement is thus improved in regions with large radial gradients. When the plasma is collisional and the gradients are large, the impurities accumulate on the inboard side of the torus

  6. Magnetic-flutter-induced pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.; Cole, A.J.

    2013-01-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an

  7. Magnetic-flutter-induced pedestal plasma transport

    Science.gov (United States)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron

  8. Energy transport in ASDEX in relation to theoretical and semi-empirical transport coefficients

    International Nuclear Information System (INIS)

    Gruber, O.; Wunderlich, R.; Lackner, K.; Schneider, W.

    1989-09-01

    A comparison of measurements with theoretically predicted energy transport coefficients has been done for Ohmic and NBI-heated discharges using both analysis and simulation codes. The contribution of strong electrostatic turbulence given by the η i -driven modes to the ion heat conductivity is very successful in explaining the observed response of confinement to density profile changes and is found to be even in good quantitative agreement. Regarding the electron branch, a combination of trapped electron driven turbulence and resistive ballooning modes might be a promising model to explain both the correct power and density dependence of confinement time, and the observed radial dependence of the electron heat conductivity. (orig.)

  9. Surface transport in plasma-balls

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles andInternational Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Bhattacharya, Jyotirmoy [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Kundu, Nilay [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211019 (India)

    2016-06-06

    We study the surface transport properties of stationary localized configurations of relativistic fluids to the first two non-trivial orders in a derivative expansion. By demanding that these finite lumps of relativistic fluid are described by a thermal partition function with arbitrary stationary background metric and gauge fields, we are able to find several constraints among surface transport coefficients. At leading order, besides recovering the surface thermodynamics, we obtain a generalization of the Young-Laplace equation for relativistic fluid surfaces, by considering a temperature dependence in the surface tension, which is further generalized in the context of superfluids. At the next order, for uncharged fluids in 3+1 dimensions, we show that besides the 3 independent bulk transport coefficients previously known, a generic localized configuration is characterized by 3 additional surface transport coefficients, one of which may be identified with the surface modulus of rigidity. Finally, as an application, we study the effect of temperature dependence of surface tension on some explicit examples of localized fluid configurations, which are dual to certain non-trivial black hole solutions via the AdS/CFT correspondence.

  10. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density gradient control to suppress heavy impurity accumulation. (author)

  11. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density control to suppress heavy impurity accumulation. (author)

  12. Plasma transport in the Scrape-off-Layer of magnetically confined plasma and the plasma exhaust

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Naulin, Volker; Nielsen, Anders Henry

    An overview of the plasma dynamics in the Scrape-off-Layer (SOL) of magnetically confined plasma is presented. The SOL is the exhaust channel of the warm plasma from the core, and the understanding of the SOL plasma dynamics is one of the key issues in contemporary fusion research. It is essential...... for operation of fusion experiments and ultimately fusion power plants. Recent results clearly demonstrate that the plasma transport through the SOL is dominated by turbulent intermittent fluctuations organized into filamentary structures convecting particles, energy, and momentum through the SOL region. Thus......, the transport cannot be described and parametrized by simple diffusive type models. The transport leads to strong localized power loads on the first wall and the plasma facing components, which have serious lasting influence....

  13. RMP-Flutter-Induced Pedestal Plasma Transport

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J. D.; Hegna, C., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison (United States); Cole, A. J. [Columbia University, New York (United States)

    2012-09-15

    Full text: Plasma toroidal rotation can prevent or limit reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational magnetic flux surfaces. Hence, it causes the induced radial perturbations to vanish or be small there, and thereby inhibits magnetic island formation and stochasticity in the edge of high (H-mode) confinement tokamak plasmas. However, the radial component of the spatial magnetic flutter induced by RMP fields off rational surfaces causes a radial electron thermal diffusivity of (1/2)({delta}B{sub p}/B){sup 2} times a magnetic-shear-influenced effective parallel electron thermal diffusivity. The resultant RMP-flutter-induced electron thermal diffusivity can be comparable to experimentally inferred values at the top of H-mode pedestals. This process also causes a factor of about 3 smaller RMP-induced electron density diffusivity there. Because this electron density transport is non-ambipolar, it produces a toroidal torque on the plasma, which is usually in the co-current direction. Kinetic-based cylindrical screw-pinch and toroidal models of these RMP-flutter-induced plasma transport effects have been developed. The RMP-induced increases in these diffusive plasma transport processes are typically spatially inhomogeneous in that they are strongly peaked near the rational surfaces in low collisionality pedestals, which may lead to resonant sensitivities to the local safety factor q. The effects can be large enough to reduce the radially averaged gradients of the electron temperature and density at the top of H-mode edge pedestals, and modify the plasma toroidal rotation and radial electric field there. At high collisionality the various effects are less strongly peaked at rational surfaces and thus less likely to exhibit RMP-induced resonant behavior. These RMP-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize

  14. EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas

    International Nuclear Information System (INIS)

    Colonna, G.; D'Angola, A.

    2012-01-01

    EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.

  15. Three dimensional transport model for toroidal plasmas

    International Nuclear Information System (INIS)

    Copenhauer, C.

    1980-12-01

    A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory

  16. Temperature dependence of transport coefficients of 'simple liquid ...

    African Journals Online (AJOL)

    ... has been investigated. The study carried out at two densities, r* = 0.60 and r* = 0.95. Result shows erratic variations of the shear viscosity in the two lattices structures. KeyWords: Temperature effect, face centred, simple cubic, transport properties, simple liquid. [Global Jnl Pure & Appl. Sci. Vol.9(3) 2003: 403-406] ...

  17. 'Complexity' and anomalous transport in space plasmas

    International Nuclear Information System (INIS)

    Chang, Tom; Wu Chengchin

    2002-01-01

    'Complexity' has become a hot topic in nearly every field of modern physics. Space plasma is of no exception. In this paper, it is demonstrated that the sporadic and localized interactions of magnetic coherent structures are the origin of 'complexity' in space plasmas. The intermittent localized interactions, which generate the anomalous diffusion, transport, and evolution of the macroscopic state variables of the overall dynamical system, may be modeled by a triggered (fast) localized chaotic growth equation of a set of relevant order parameters. Such processes would generally pave the way for the global system to evolve into a 'complex' state of long-ranged interactions of fluctuations, displaying the phenomenon of forced and/or self-organized criticality. An example of such type of anomalous transport and evolution in a sheared magnetic field is provided via two-dimensional magnetohydrodynamic simulations. The coarse-grained dissipation due to the intermittent triggered interactions among the magnetic coherent structures induces a 'fluctuation-induced nonlinear instability' that reconfigures the sheared magnetic field into an X-point magnetic geometry (in the mean field sense), leading to the anomalous acceleration of the magnetic coherent structures. A phenomenon akin to such type of anomalous transport and acceleration, the so-called bursty bulk flows, has been commonly observed in the plasma sheet of the Earth's magnetotail

  18. Measurement of the local particle diffusion coefficient in a magnetized plasma

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Levinton, F.M.

    1987-02-01

    Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions

  19. Investigation of steady plasma actuation effect on aerodynamic coefficients of oscillating airfoil at low Reynolds number

    Directory of Open Access Journals (Sweden)

    Arash Mahboubidoust

    2017-07-01

    Full Text Available In this work, numerical study of two dimensional laminar incompressible flow around an oscillating NACA0012 airfoil is proceeded using the open source code OpenFOAM. Oscillatory motion types including pitching and flapping are considered. Reynolds number for these motions is assumed to be 12000 and effects of these motions and also different unsteady parameters such as amplitude and reduced frequency on aerodynamic coefficients are studied. For flow control on airfoil, dielectric barrier discharge plasma actuator is used in two different positions on airfoil and its effect is compared for the two types of considered oscillating motions. It is observed that in pitching motion, imposing plasma leads to an improvement in aerodynamic coefficients, but it does not have any positive effect on flapping motion. Also, for the amplitudes and frequencies investigated in this paper, the trailing edge plasma had a more desirable effect than other positions. Keywords: Airfoil, Flapping, Oscillating, Plasma, Pitching

  20. Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder

    Science.gov (United States)

    Akbıyık, Hürrem; Erkan Akansu, Yahya; Yavuz, Hakan; Ertuğrul Bay, Ahmet

    2016-03-01

    In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.

  1. Weighted congestion coefficient feedback in intelligent transportation systems

    International Nuclear Information System (INIS)

    Dong Chuanfei; Ma Xu; Wang Binghong

    2010-01-01

    In traffic systems, a reasonable information feedback can improve road capacity. In this Letter, we study dynamics of traffic flow with real-time information. And the influence of a feedback strategy named Weighted Congestion Coefficient Feedback Strategy (WCCFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  2. Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2012-01-01

    The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (∼0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (∼10 −4 s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.

  3. Multispecies transport theory for axisymmetric rotating plasmas

    International Nuclear Information System (INIS)

    Tessarotto, M.; White, R.B.

    1992-01-01

    A reduced gyrokinetic equation is derived for a multi-species toroidal axisymmetric plasma with arbitrary toroidal differential rotation speeds and in the presence of a finite induced electric field. The kinetic equation obtained, extending previous results obtained by Hinton and Wong and by Catto, Bernstein and Tessarotto, has a form suited for transport applications, via variational techniques; in particular it exhibits the feature that all source terms, including the Spitzer source term, carrying the contribution due to the inductive electric field, appear to be acted upon by the collision operator. Moreover, the equation displays a new contribution due to ''explicit'' velocity perturbations, here proven to be consistent with transport ordering, whose evaluation appears relevant for transport calculations. In addition, general expressions are obtained for the neoclassical fluxes in terms of a variational principle, as well as for the classical ones, retaining, in both cases, the contributions due to the Spitzer's inductive terms

  4. Vesicular and Plasma Membrane Transporters for Neurotransmitters

    Science.gov (United States)

    Blakely, Randy D.; Edwards, Robert H.

    2012-01-01

    The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity. PMID:22199021

  5. Transport coefficients of Dirac ferromagnet: Effects of vertex corrections

    Science.gov (United States)

    Fujimoto, Junji

    2018-03-01

    As a strongly spin-orbit-coupled metallic model with ferromagnetism, we have considered an extended Stoner model to the relativistic regime, named Dirac ferromagnet in three dimensions. In a previous paper [J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014), 10.1103/PhysRevB.90.214418], we studied the transport properties giving rise to the anisotropic magnetoresistance (AMR) and the anomalous Hall effect (AHE) with the impurity potential being taken into account only as the self-energy. The effects of the vertex corrections (VCs) to AMR and AHE are reported in this paper. AMR is found not to change quantitatively when the VCs are considered, although the transport lifetime is different from the one-electron lifetime and the charge current includes additional contributions from the correlation with spin currents. The side-jump and the skew-scattering contributions to AHE are also calculated. The skew-scattering contribution is dominant in the clean case as can be seen in the spin Hall effect in the nonmagnetic Dirac electron system.

  6. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    Science.gov (United States)

    Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong

    2014-10-01

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.

  7. Criticality coefficient calculation for a small PWR using Monte Carlo Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Trombetta, Debora M.; Su, Jian, E-mail: dtrombetta@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Chirayath, Sunil S., E-mail: sunilsc@tamu.edu [Department of Nuclear Engineering and Nuclear Security Science and Policy Institute, Texas A and M University, TX (United States)

    2015-07-01

    Computational models of reactors are increasingly used to predict nuclear reactor physics parameters responsible for reactivity changes which could lead to accidents and losses. In this work, preliminary results for criticality coefficient calculation using the Monte Carlo transport code MCNPX were presented for a small PWR. The computational modeling developed consists of the core with fuel elements, radial reflectors, and control rods inside a pressure vessel. Three different geometries were simulated, a single fuel pin, a fuel assembly and the core, with the aim to compare the criticality coefficients among themselves.The criticality coefficients calculated were: Doppler Temperature Coefficient, Coolant Temperature Coefficient, Coolant Void Coefficient, Power Coefficient, and Control Rod Worth. The coefficient values calculated by the MCNP code were compared with literature results, showing good agreement with reference data, which validate the computational model developed and allow it to be used to perform more complex studies. Criticality Coefficient values for the three simulations done had little discrepancy for almost all coefficients investigated, the only exception was the Power Coefficient. Preliminary results presented show that simple modelling as a fuel assembly can describe changes at almost all the criticality coefficients, avoiding the need of a complex core simulation. (author)

  8. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.

    2002-01-01

    Edge plasma processes play a critical role for the global confinement of the plasma in a tokamak. In the edge region, where impurity ions are abundant and the temperature and density gradients are large, the assumptions of standard neoclassical theory break down. This paper reviews recent extensions of neoclassical theory to treat this problem, in particular our own work, which focuses on the nonlinear aspects of transport in a plasma with heavy impurity ions. In this theory, the pressure and temperature gradients are allowed to be steeper than in conventional theory neoclassical theory, so that the friction force between the bulk ions and heavy impurities is comparable to the parallel impurity pressure gradient. The impurity ions are then found to undergo a spontaneous rearrangement on each flux surface. This reduces their parallel friction with the bulk ions and causes the neoclassical ion flux to become a non-monotonic function of the gradients for plasma parameters typical of the tokamak edge. Thus, the neoclassical confinement is improved in regions where the gradients are large, such as in the edge pedestal. (orig.)

  9. Parametric dependencies of the experimental tungsten transport coefficients in ICRH and ECRH assisted ASDEX Upgrade H-modes

    Science.gov (United States)

    Sertoli, M.; Angioni, C.; Odstrcil, T.; ASDEX Upgrade Team; Eurofusion MST1 Team

    2017-11-01

    The profiles of the W transport coefficients have been experimentally calculated for a large database of identical ASDEX Upgrade H-mode discharges where only the radio-frequency (RF) power characteristics have been varied [Angioni et al., Nucl. Fusion 57, 056015 (2017)]. Central ion cyclotron resonance heating (ICRH) in the minority heating scheme has been compared with central and off-axis electron cyclotron resonance heating (ECRH), using both localized and broad heat deposition profiles. The transport coefficients have been calculated applying the gradient-flux relation to the evolution of the intrinsic W density in-between sawtooth cycles as measured using the soft X-ray diagnostic. For both ICRH and ECRH, the major player in reducing the central W density peaking is found to be the reduction of inward pinch and, in the case of ECRH, the rise of an outward convection. The impurity convection increases, from negative to positive, almost linearly with RF-power, while no appreciable changes are observed in the diffusion coefficient, which remains roughly at neoclassical levels independent of RF power or background plasma conditions. The ratio vW/DW is consistent with the equilibrium ∇ n W / n W prior to the sawtooth crash, corroborating the separate estimates of diffusion and convection. These experimental findings are slightly different from previous results obtained analysing the evolution of impurity injections over many sawtooth cycles. Modelling performed using the drift-kinetic code NEO and the gyro-kinetic code GKW (assuming axisymmetry) overestimates the diffusion coefficient and underestimates the experimental positive convection. This is a further indication that magneto-hydrodynamic/neoclassical models accounting for 3D effects may be needed to characterize impurity transport in sawtoothing tokamak plasmas.

  10. The influence of impurities on the coefficients of transportation

    International Nuclear Information System (INIS)

    Selmi, Aloine

    2011-01-01

    The goal of this Masters project was to build a water filtration plant using a Micromegas detector. (You need to explain at least how Micromegas can be used in filtration plants, and to filtrate what.) This new generation of devices have good resolution, low background, fast response with the highest efficiency and good sensitivity in the range of natural radioactivity. The central part of this work was to describe the development of a detection plane. A small Micomegas prototype, was built in CNSTN (Tunisia), and is devoted to study electron transport properties in a gas. This manuscript describes the development of a filtration plant using a Micromegas gas detector. This detector must be filled with Xenon 98 pour cent and C F 4 2 pour cent at pressure varying between 1 and 4 bar. I realized the need to have a rigorously high purity gas; I studied in depth the influence of impurities on the parameters characterizing the detector: drift velocity of electron in the gas, their longitudinal and transverse diffusion and the gas gain, the electron attachment while varying the proportions of impurities and the gas pressure. These studies have been done using a simulation program called M agboltz . Another simulation program G EANT4 w as used to better understand the interactions and radiation field. I also used two other programs, G arfield a nd M axwell , to simulate the electric field in the detector. I reached the stage of near completion of this treatment plant but the necessary equipment could not be purchased, simply because its cost was too high. To complete my masters, I started the design of a gamma camera filled by Xenon gas at high pressure and based on Micromegas - micro pattern.

  11. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    Science.gov (United States)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  12. Ion transport in turbulent edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Massachusetts Inst. of Tech., Cambridge, MA; Hazeltine, R.D.; Catto, P.J.

    1996-02-01

    Edge plasmas, such as the tokamak scrape-off layer, exist as a consequence of a balance between cross-field diffusion and parallel losses. The former is usually anomalous, and is widely thought to be driven by strong electrostatic turbulence. It is shown that the anomalous diffusion affects the parallel ion transport by giving rise to a new type of thermal force between different ion species. This force is parallel to the magnetic field, but arises entirely because of perpendicular gradients, and could be important for impurity retention in the tokamak divertor. (author)

  13. Plasmator. A numerical code for simulation of plasma transport in Tokamaks

    International Nuclear Information System (INIS)

    Guasp, J.

    1979-01-01

    Plasmator is a flexible monodimensional numerical code for plasma transport in Tokamaks of circular cross-section, it allows neutral particle transport and impurity effects. The code leaves a total freedom in the analytical form of transport coefficients. It has been writen in Fortran-V for the UNIVAC-1100/80 from JEN and allows for the possibility of graphics for radial profiles and temporal evolution of the main plasma magnitudes, as well in three-dimensional as in two-dimensional representation either on a Calcomp plotter or in the printer. (author)

  14. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Science.gov (United States)

    Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong

    2013-03-01

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  15. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  16. Net emission coefficient for CO–H2 thermal plasmas with the consideration of molecular systems

    International Nuclear Information System (INIS)

    Billoux, T.; Cressault, Y.; Gleizes, A.

    2015-01-01

    This paper deals with the calculation of net emission coefficients (NECs) for CO–H 2 thermal plasmas. This task required the elaboration of a complete spectroscopic database including atoms and molecules formed by carbon, oxygen and hydrogen elements. We have used a systematic line by line method to calculate all the main radiative contributions which are the atomic and molecular continua, the atomic lines and the molecular (diatomic and polyatomic) lines. The main diatomic electronic systems for CO–H 2 plasmas and the triatomic molecular bands were considered. We present some variations of the net emission coefficient versus temperature, for various pressures and for two relative proportions of the components. The role of the diatomic molecules is important at temperatures lower than 5000 K whereas the net emission coefficient presents an unusual peak at temperature around 1000 K, due to the presence of the CO 2 molecule presenting a strong infrared radiation. Finally, the results show that the NEC slightly depends on the relative proportion of CO and H 2 . - highlights: • We calculate radiative losses from CO–H 2 thermal plasmas. • We use the up-to-date atomic and molecular databases. • The influence of CO 2 molecule is very important at low temperature. • The relative maximum of the net emission coefficient at low temperature is unusual

  17. Fractional Transport in Strongly Turbulent Plasmas

    Science.gov (United States)

    Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana

    2017-07-01

    We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.

  18. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  19. EU-US transport task force workshop on transport in fusion plasmas: transport near operational limits

    International Nuclear Information System (INIS)

    Connor, J W; Garbet, X; Giannone, L; Greenwald, M; Hidalgo, C; Loarte, A; Mantica, P

    2003-01-01

    This conference report summarizes the contributions to, and discussions at, the 9th EU-US transport task force workshop on 'transport in fusion plasmas: transport near operational limits', held in Cordoba, Spain, during 9-12 September 2002. The workshop was organized under three main headings: edge localized mode physics and confinement, profile dynamics and confinement and confinement near operational limits: density and beta limits; this report follows the same structure

  20. Anomalous energy transport in hot plasmas: solar corona and Tokamak

    International Nuclear Information System (INIS)

    Beaufume, P.

    1992-04-01

    Anomalous energy transport is studied in two hot plasmas and appears to be associated with a heating of the solar corona and with a plasma deconfining process in tokamaks. The magnetic structure is shown to play a fundamental role in this phenomenon through small scale instabilities which are modelized by means of a nonlinear dynamical system: the Beasts' Model. Four behavior classes are found for this system, which are automatically classified in the parameter space thanks to a neural network. We use a compilation of experimental results relative to the solar corona to discuss current-based heating processes. We find that a simple Joule effect cannot provide the required heating rates, and therefore propose a dimensional model involving a resistive reconnective instability which leads to an efficient and discontinuous heating mechanism. Results are in good agreement with the observations. We give an analytical expression for a diffusion coefficient in tokamaks when magnetic turbulence is perturbing the topology, which we validate thanks to the standard mapping. A realistic version of the Beasts' Model allows to test a candidate to anomalous transport: the thermal filamentation instability

  1. Observation of internal transport barrier in ELMy H-mode plasmas on the EAST tokamak

    Science.gov (United States)

    Yang, Y.; Gao, X.; Liu, H. Q.; Li, G. Q.; Zhang, T.; Zeng, L.; Liu, Y. K.; Wu, M. Q.; Kong, D. F.; Ming, T. F.; Han, X.; Wang, Y. M.; Zang, Q.; Lyu, B.; Li, Y. Y.; Duan, Y. M.; Zhong, F. B.; Li, K.; Xu, L. Q.; Gong, X. Z.; Sun, Y. W.; Qian, J. P.; Ding, B. J.; Liu, Z. X.; Liu, F. K.; Hu, C. D.; Xiang, N.; Liang, Y. F.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Wan, Y. X.; EAST Team

    2017-08-01

    The internal transport barrier (ITB) has been obtained in ELMy H-mode plasmas by neutron beam injection and lower hybrid wave heating on the Experimental Advanced Superconducting Tokamak (EAST). The ITB structure has been observed in profiles of ion temperature, electron temperature, and electron density within ρ safety factor q(0) ˜ 1. Transport coefficients are calculated by particle balance and power balance analysis, showing an obvious reduction after the ITB formation.

  2. Collective effects on transport coefficients of relativistic nuclear matter. Pt. 2

    International Nuclear Information System (INIS)

    Mornas, L.

    1993-04-01

    The transport coefficients (thermal conductivity, shear and bulk viscosities) of symmetric nuclear matter and neutron matter are calculated in the Walecka model with a Boltzmann-Uehling-Uhlenbeck collision term by means of a Chapman-Enskog expansion in first order. The order of magnitude of the influence of collective effects induced by the presence of the mean σ and ω fields on these coefficients is evaluated. (orig.). 9 figs

  3. Density Modulation Experiments to Determine Particle Transport Coefficients on HT-7 Tokamak

    International Nuclear Information System (INIS)

    Jie Yinxian; Gao Xiang; Tanaka, K; Sakamoto, R; Toi, K; Liu Haiqing; Gao Li; Asif, M; Liu Jin; Xu Qiang; Tong Xingde; Cheng Yongfei

    2006-01-01

    The particle diffusion coefficient and the convection velocity were studied based on the density modulation using D 2 gas puffing on the HT-7 tokamak. The density was measured by a five-channel FIR interferometer. The density modulation amplitude was 10% of the central chord averaged background density and the modulation frequency was 10 Hz in the experiments. The particle diffusion coefficient (D) and the convection velocity (V) were obtained for different background plasmas with the central chord averaged density e > = 1.5x10 19 m -3 and 3.0x10 19 m -3 respectively. It was observed that the influence of density modulation on the main plasma parameters was very weak. This technology is expected to be useful for the analysis of LHW and IBW heated plasmas on HT-7 tokamak in the near future

  4. Cross-field blob transport in tokamak scrape-off-layer plasmas

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Krasheninnikov, S.I.

    2002-01-01

    Recent measurements show that nondiffusive, intermittent transport of particles can play a major role in the scrape-off-layer (SOL) of fusion experiments. A possible mechanism for fast convective plasma transport is related to the plasma filaments or 'blobs' observed in the SOL with fast cameras and probes. In this paper, physical arguments suggesting the importance of blob transport [S. I. Krasheninnikov, Phys. Lett. A 283, 368 (2001)] have been extended by calculations using a three-field fluid model, treating the blobs as coherent propagating structures. The properties of density, temperature and vorticity blobs, and methods of averaging over ensembles of blobs to get the average SOL profiles, are illustrated. The role of ionization of background neutrals in sustaining the density blob transport is also discussed. Many qualitative features of the experiments, such as relatively flat density profiles and transport coefficients increasing toward the wall, are shown to emerge naturally from the blob transport paradigm

  5. Experimental study of electron temperature gradient influence on impurity turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Villegas, D.

    2010-01-01

    Understanding impurity transport is a key to an optimal regime for a future fusion device. In this thesis, the theoretical and experimental influence of the electron temperature gradient R/L Te on heavy impurity transport is analyzed both in Tore Supra and ASDEX Upgrade. The electron temperature profile is modified locally by heating the plasma with little ECRH power deposited at two different radii. Experimental results have been obtained with the impurity transport code (ITC) which has been completed with a genetic algorithm allowing to determine the transport coefficient profiles with more accuracy. Transport coefficient profiles obtained by a quasilinear gyrokinetic code named QuaLiKiz are consistent with the experimental ones despite experimental uncertainties on gradients. In the core dominated by electron modes, the lower R/L Te the lower the nickel diffusion coefficient. The latter tends linearly to the neoclassical level when the instability threshold is approached. The experimental threshold is in agreement with the one computed by QuaLiKiz. Further out, where the plasma is dominated by ITG, which are independent of R/L Te , both experimental and simulated results show no modification in the diffusion coefficient profile. Furthermore, the convection velocity profile is not modified. This is attributed to a very small contribution of the thermodiffusion (1/Z dependence) in the total convection. On ASDEX, the preliminary results, very different from the Tore Supra ones, show a internal transport barrier for impurities located at the same radius as the strong ECRH power deposit. (author) [fr

  6. Transport Bifurcation in a Rotating Tokamak Plasma

    International Nuclear Information System (INIS)

    Highcock, E. G.; Barnes, M.; Schekochihin, A. A.; Parra, F. I.; Roach, C. M.; Cowley, S. C.

    2010-01-01

    The effect of flow shear on turbulent transport in tokamaks is studied numerically in the experimentally relevant limit of zero magnetic shear. It is found that the plasma is linearly stable for all nonzero flow shear values, but that subcritical turbulence can be sustained nonlinearly at a wide range of temperature gradients. Flow shear increases the nonlinear temperature gradient threshold for turbulence but also increases the sensitivity of the heat flux to changes in the temperature gradient, except over a small range near the threshold where the sensitivity is decreased. A bifurcation in the equilibrium gradients is found: for a given input of heat, it is possible, by varying the applied torque, to trigger a transition to significantly higher temperature and flow gradients.

  7. Tokamak transport phenomenology and plasma dynamic response

    International Nuclear Information System (INIS)

    Moret, J.M.; Association Euratom CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance

    1991-07-01

    A system identification method is developed to estimate the transfer function of the system from the time evolution of its parameters to any excitation. The form of the identified transfer function is linked to a representation of the transport in terms of poles (eigenvalues) and eigenmodes. These eigenvalues and eigenvectors are thus directly deduced from the raw data with no restriction on the underlying processes and there is consequently no need to adjust any simplified transport model to the experimental data. This method is illustrated in this paper by analysing the injection of pellets on Tore Supra. The density and the temperature transfer functions were observed to share the same poles with the corresponding eigenmodes grouped in pairs with identical profiles. This implies the presence of a coupling between the particle and heat flow. A criterion is developed to select amongst the possible coupling mechanisms, based on compatibility with the observed transfer function. The selection suggests a model in which the particle diffusion coefficient depends on the density and on the temperature gradient

  8. Two-dimensional transport of tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Jardin, S.C.

    1979-01-01

    A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape

  9. Transport coefficients for electrons in argon in crossed electric and magnetic rf fields

    International Nuclear Information System (INIS)

    Raspopovic, Z M; Dujko, S; Makabe, T; Petrovic, Z Lj

    2005-01-01

    Monte Carlo simulations of electron transport have been performed in crossed electric and magnetic rf fields in argon. It was found that a magnetic field strongly affects electron transport, producing complex behaviour of the transport coefficients that cannot be predicted on the basis of dc field theory. In particular, it is important that a magnetic field, if it has sufficiently high amplitude, allows energy gain from the electric field only over a brief period of time, which leads to a pulse of directed motion and consequently to cyclotron oscillations being imprinted on the transport coefficients. Furthermore, this may lead to negative diffusion. The behaviour of drift velocities is also interesting, with a linear (sawtooth) dependence for the perpendicular drift velocity and bursts of drift for the longitudinal. Non-conservative effects are, on the other hand, reduced by the increasing magnetic field

  10. Empirical evaluation of the radiative cooling coefficient for krypton gas in the FTU plasma

    International Nuclear Information System (INIS)

    Fournier, K.B.; Pacella, D.; Mazzitelli, G.; Stutman, D.; Soukanovskii, V.; Goldstein, W.H.

    1997-01-01

    For future fusion reactors, a careful balance must be achieved between the cooling of the outer plasma via impurity radiation and the deleterious effects of inevitable core penetration by impurity ions. We have injected krypton gas into the Frascati Tokamak Upgrade (FTU) plasma. The measured visible bremsstrahlung and bolometric signals from krypton have been inverted and the resulting radial impurity density profile and power loss profile for krypton gas are extracted. Using the measured electron density and temperature profiles, the radiative cooling coefficient for krypton is derived. The level of intrinsic impurities (Mo, Cr, Mn and Fe) in the plasma during the krypton puffing is monitored with a VUV SPRED spectrometer. Models for krypton emissivity from the literature are compared to our measured results. 7 figs

  11. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  12. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    Pots, B.F.M.

    1979-01-01

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  13. Developing the theory of nonstationary neutron transport in a homogeneous infinite medium. γk coefficients

    International Nuclear Information System (INIS)

    Trukhanov, G.Ya.

    2005-01-01

    Time-dependent neutron transport theory of G.Ya. Trukhanov and S.A. Podosenov is developed. Errors of calculating of power series expansion coefficients, γ k , in this theory were estimated. It has been found that power series convergence radius R=|χ 1,2 |= 0.9595. Power series convergence speed were estimated [ru

  14. Interchange Instability and Transport in Matter-Antimatter Plasmas

    Science.gov (United States)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-01

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  15. Interchange Instability and Transport in Matter-Antimatter Plasmas.

    Science.gov (United States)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-09

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  16. Transport coefficients of multi-particle collision algorithms with velocity-dependent collision rules

    International Nuclear Information System (INIS)

    Ihle, Thomas

    2008-01-01

    Detailed calculations of the transport coefficients of a recently introduced particle-based model for fluid dynamics with a non-ideal equation of state are presented. Excluded volume interactions are modeled by means of biased stochastic multi-particle collisions which depend on the local velocities and densities. Momentum and energy are exactly conserved locally. A general scheme to derive transport coefficients for such biased, velocity-dependent collision rules is developed. Analytic expressions for the self-diffusion coefficient and the shear viscosity are obtained, and very good agreement is found with numerical results at small and large mean free paths. The viscosity turns out to be proportional to the square root of temperature, as in a real gas. In addition, the theoretical framework is applied to a two-component version of the model, and expressions for the viscosity and the difference in diffusion of the two species are given

  17. Plasma stream transport method (2) Use of charge exchange plasma source

    International Nuclear Information System (INIS)

    Tsuchimoto, T.

    1978-01-01

    The plasma stream transport method using a single plasma source has limitations for practical film deposition. Using a charge exchange phenomenon, a new plasma source is devised and tested by the plasma stream transport machine. Metals, silicon dioxide, and nitride films are deposited by this system. The mechanism of deposition under relatively high vacuum surrounding a silicon wafer is discussed as is the effect of radical atoms

  18. Observation of neoclassical transport in reverse shear plasmas on TFTR

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Goeler, S. von; Houlberg, W.A.

    1999-01-01

    Perturbative experiments on TFTR have investigated the transport of multiple ion species in reverse shear (RS) plasmas. The profile evolutions of trace tritium and helium and intrinsic carbon indicate the formation of core particle transport barriers in enhanced reverse shear (ERS) plasmas. There is an order of magnitude reduction in the particle diffusivity inside the RS region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  19. Bremsstrahlung emission coefficient of a plasma in a uniform magnetic field

    International Nuclear Information System (INIS)

    Pangborn, R.J.

    1976-01-01

    The leading (electron-ion, dipole) contribution to the bremsstrahlung spectrum of a Maxwellian plasma in a constant, uniform magnetic field is calculated. The plasma is assumed infinite and fully ionized. A simpler, more direct derivation of Kirchoff's Law for anisotropic media is presented. The plasma dispersion relation is then found using previously obtained expressions for the conductivity tensor (accurate to first order in collisional effects). From the dispersion the collisional damping, assumed small, is obtained and by means of Kirchoff's Law an expression for the bremsstrahlung emission coefficient is written. No terms of order (kappa 2 lambda 2 0 ) or higher are included. For wave frequencies large compared with the plasma and electron cyclotron frequencies (ω 2 much greater than ω 2 rho, ω 2 much greater than Ω 3 ) an expansion of the exact result is given accurate to fourth order in Ω/ω and ω rho/ω. The result is found to disagree with previous high frequency expressions. Analysis of the exact expression reveals that for certain frequencies and directions of propagation the emission spectrum exhibits a resonance quality. The results are presented in such fashion that for various magnetic field strengths the frequency of the resonant emission at arbitrary angle relative to the field is easily obtained. These phenomena arise due to the influence of the magnetic fieldon the dielectric properties of the plasma and not because of its effect on the binary collision process. A physical explanation of the results is presented

  20. SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma

    International Nuclear Information System (INIS)

    Yang Hongwei; Nanjing Agricultural Univ., Nanjing; Chen Rushan; Zhang Yun

    2006-01-01

    The dielectric property of dispersive media is written as rational polynomial function, the relation between D and E is derived in time domain. It is named shift operator FDTD (SO-FDTD) method. The high accuracy and efficiency of this method is confirmed by computing the reflection coefficients of electromagnetic waves by a collisional plasma slab. The reflection coefficients between plasma and the atmosphere or vacuum can be calculated by using the SO-FDTD method. The result is that the reflection coefficients are affected by plasma thickness, electron numerical density, the distributing orderliness of electron density, and incidence wave frequency. (authors)

  1. A two-dimensional transport-problem in magnetized plasmas

    International Nuclear Information System (INIS)

    Sigmar, D.J.; Adam, G.; Hittmair, O.

    1975-01-01

    It is shown that by a generalization of the classical theory for a cylindrical plasma the expression for the so-called banana-diffusion in a toroidal plasma may be deduced. The ratio of the coefficient of the banana-diffusion to the one of classical diffusion is discussed. (Auth.)

  2. 13th EU-US Transport Task Force Workshop on transport in fusion plasmas

    DEFF Research Database (Denmark)

    Connor, J.W.; Fasoli, A.; Hidalgo, C.

    2009-01-01

    This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape-off-layer ......This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape...

  3. Hydrogen transport behavior of metal coatings for plasma facing components

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1990-01-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3-keV D 3 + ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 K to 825 K and implanting particle fluxes of approximately 5 x 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. 18 refs., 3 figs., 3 tabs

  4. Determination of Unbound Partition Coefficient and in Vitro-in Vivo Extrapolation for SLC13A Transporter-Mediated Uptake.

    Science.gov (United States)

    Riccardi, Keith; Li, Zhenhong; Brown, Janice A; Gorgoglione, Matthew F; Niosi, Mark; Gosset, James; Huard, Kim; Erion, Derek M; Di, Li

    2016-10-01

    Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  5. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    International Nuclear Information System (INIS)

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  6. Electron-transport, ionization, attachment, and dissociation coefficients in SF6 and its mixtures

    International Nuclear Information System (INIS)

    Phelps, A.V.; Van Brunt, R.J.

    1988-01-01

    An improved set of electron-collision cross sections is derived for SF 6 and used to calculate transport, ionization, attachment, and dissociation coefficients for pure SF 6 and mixtures of SF 6 with N 2 , O 2 , and Ne. The SF 6 cross sections differ from previously published sets primarily at very low and high electron energies. At energies below 0.03 eV the attachment cross section is adjusted to fit recent electron swarm experiments, while the elastic momentum transfer cross section is increased to the theoretical limit. At high energies an allowance is made for the excitation of highly excited levels as observed in electron beam experiments. The cross-section sets used for the admixed gases have previously been published. Electron kinetic energy distributions computed from numerical solutions of the electron-transport (Boltzmann) equation using the two-term, spherical harmonic expansion approximation were used to obtain electron-transport and reaction coefficients as functions of E/N and the fractional concentration of SF 6 . Here E is the electric field strength and N is the gas number density. Attachment rate data for low concentrations of SF 6 in N 2 are used to test the attachment cross sections. Particular attention is given to the calculation of transport and reaction coefficients at the critical E/N = (E/N)/sub c/ at which the ionization and attachment rates are equal

  7. Transport of high fluxes of hydrogen plasma in a linear plasma generator

    NARCIS (Netherlands)

    Vijvers, W.A.J.; Al, R.S.; Lopes Cardozo, N.J.; Goedheer, W.J.; Groot, de B.; Kleyn, A.W.; Meiden, van der H.J.; Peppel, van de R.J.E.; Schram, D.C.; Shumack, A.E.; Westerhout, J.; Rooij, van G.J.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    A study was made to quantify the losses during the convective hydrogen plasma transport in the linear plasma generator Pilot-PSI due to volume recombination. A transport efficiency of 35% was achieved at neutral background pressures below ~7 Pa in a magnetic field of 1.2 T. This efficiency decreased

  8. Self-consistent transport coefficients for average collective motion at moderately high temperatures

    International Nuclear Information System (INIS)

    Yamaji, Shuhei; Hofmann, H.; Samhammer, R.

    1987-01-01

    Linear response theory is applied to compute the coefficients for inertia, friction and local stiffness for slow, large scale nuclear collective motion. It is shown how these coefficients can be defined within a locally harmonic approximation. The latter allows to study the implications arising from a finite local collective frequency. It is only for temperatures around 2 MeV that the zero frequency limit becomes a fair approximation. Friction is found to have a marked temperature dependence. The numerical computations are performed on the basis of a two-center shell model, but allowing the particles and holes to become dressed through effects of the medium. The dependence of the transport coefficients on the parameters of these self-energies is studied. It is argued that the uncertainties are smaller than a factor of 2. (orig.)

  9. A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients

    Directory of Open Access Journals (Sweden)

    Hale Gonce Kocken

    2011-01-01

    Full Text Available This paper deals with the Multiobjective Linear Transportation Problem that has fuzzy cost coefficients. In the solution procedure, many objectives may conflict with each other; therefore decision-making process becomes complicated. And also due to the fuzziness in the costs, this problem has a nonlinear structure. In this paper, fuzziness in the objective functions is handled with a fuzzy programming technique in the sense of multiobjective approach. And then we present a compensatory approach to solve Multiobjective Linear Transportation Problem with fuzzy cost coefficients by using Werner's and operator. Our approach generates compromise solutions which are both compensatory and Pareto optimal. A numerical example has been provided to illustrate the problem.

  10. Transport coefficients for electrolytes in arbitrarily shaped nano- and microfluidic channels

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Olesen, Laurits Højgaard; Bruus, Henrik

    2006-01-01

    for the hydraulic and electrical transport coefficients which satisfy Onsager relations. In the limit of non-overlapping Debye layers, the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the geometrical correction factor for the Hagen-Poiseuille part of the problem....... In particular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.......We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the general problem of an arbitrary cross-section and obtain general results in linear-response theory...

  11. Lifshitz black branes and DC transport coefficients in massive Einstein-Maxwell-dilaton gravity

    Science.gov (United States)

    Kuang, Xiao-Mei; Papantonopoulos, Eleftherios; Wu, Jian-Pin; Zhou, Zhenhua

    2018-03-01

    We construct analytical Lifshitz massive black brane solutions in massive Einstein-Maxwell-dilaton gravity theory. We also study the thermodynamics of these black brane solutions and obtain the thermodynamical stability conditions. On the dual nonrelativistic boundary field theory with Lifshitz symmetry, we analytically compute the DC transport coefficients, including the electric conductivity, thermoelectric conductivity, and thermal conductivity. The novel property of our model is that the massive term supports the Lifshitz black brane solutions with z ≠1 in such a way that the DC transport coefficients in the dual field theory are finite. We also find that the Wiedemann-Franz law in this dual boundary field theory is violated, which indicates that it may involve strong interactions.

  12. Novel diagrammatic method for computing transport coefficients - beyond the Boltzmann approximation

    International Nuclear Information System (INIS)

    Hidaka, Y.; Kunihiro, T.

    2010-01-01

    We propose a novel diagrammatic method for computing transport coefficients in relativistic quantum field theory. Our method is based on a reformulation and extension of the diagrammatic method by Eliashberg given in the imaginary-time formalism to the relativistic quantum field theory in the real-time formalism, in which the cumbersome analytical continuation problem can be avoided. The transport coefficients are obtained from a two-point function via Kubo formula. It is know that naive perturbation theory breaks down owing to a so called pinch singularity, and hence a resummation is required for getting a finite and sensible result. As a novel resummation method, we first decompose the two point function into the singular part and the regular part, and then reconstruct the diagrams. We find that a self-consistent equation for the two-point function has the same structure as the linearized Boltzmann equation. It is known that the two-point function at the leading order is equivalent to the linearized Boltzmann equation. We find the higher order corrections are nicely summarized as a renormalization of the vertex function, spectral function, and collision term. We also discuss the critical behavior of the transport coefficients near a phase transition, applying our method. (author)

  13. Calculus of the amplification and absorption coefficients of the electromagnetic waves in a cylindrical over dense plasma

    International Nuclear Information System (INIS)

    Arzate P, N.

    1994-01-01

    Based on the fundamental theory of cylindrical waveguides and resonant cavities, the main characteristic parameters of the microwave plasma source reported in [1] are calculated. The absorption coefficient of an electromagnetic wave which is excited in H 11 mode in a cylindrical waveguide that contains a cold, inhomogeneous and magnetized plasma column is determined by using the perturbative method describe in [2]. In similar way, due to the presence of the plasma column, the shifts of the resonant frequency and of the inverse of the quality of a cylindrical resonant cavity where a TE 111 mode is oscilating are obtained. Finally, based on the linear theory, an analysis of the penetration of electromagnetic fields in a semi-bounded plasma and a plasma layer is done. The reflexion, transmission and absorption coefficients of H waves for the cases of an isotropic homogeneous and weak inhomogeneous plasma are calculated. (Author)

  14. Theoretical modeling of transport barriers in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  15. Collisionality dependent transport in TCV SOL plasmas

    DEFF Research Database (Denmark)

    Garcia, Odd Erik; Pitts, R.A.; Horacek, J.

    2007-01-01

    Results are presented from probe measurements in the low field side scrape-off layer (SOL) region of TCV during plasma current scan experiments. It is shown that with decreasing plasma current the radial particle density profile becomes broader and the fluctuation levels and turbulence driven...... radial particle flux increase. In the far SOL the fluctuations exhibit a high degree of statistical similarity and the particle density and flux at the wall radius scale inversely with the plasma current. Together with previous TCV density scan experiments, this indicates that plasma fluctuations...

  16. Radio-frequency heating and neutral atom transport in a fluid-magnetohydrodynamic treatment of burning tokamak plasmas

    International Nuclear Information System (INIS)

    Conn, R.W.; Mau, T.K.; Prinja, A.K.

    1983-01-01

    A physical model for the space and time evolution of the primary parameters of ordinary and burning tokamak plasmas is described by employing a fluid plasma treatment coupled to a magnetohydrodynamic equilibrium description, the solution to the appropriate Maxwell equations, and the solution of the linear transport equation describing neutral atom transport in plasmas. The specific problems of plasma heating by ion cyclotron radiofrequency (ICRF) waves and neutral atom transport in the plasma edge and in complicated geometrical components such as divertor channels or pumped limiter structures are analyzed. A theoretical, onedimensional slab model of ICRF heating at ω = 2ω/SUB cD/ is developed and applied to determine the space-time response of tokamak plasmas. Generally, strong single-pass absorption is found for high-density, high (β) plasmas using a low k 11 spectrum (0.05 to 0.1 cm -1 ) although for (β > 1%, electron Landau damping becomes important. Deterministic and Monte Carlo methods to solve the neutral atom transport problem are described. Specific application to determine the spectrum of neutral atoms emerging from the duct of a pump limiter shows it to be hard (mean energy > 20 eV), indicating very incomplete energy thermalization. Uncertainties are identified in the overall problem of dynamic burning plasma analysis caused by the complexity of the problem itself and by uncertainties in fundamental areas such as plasma transport coefficients, stability, and plasma edge physics

  17. TFTR/JET INTOR workshop on plasma transport tokamaks

    International Nuclear Information System (INIS)

    Singer, C.E.

    1985-01-01

    This report summarizes the proceedings of a Workshop on transport models for prediction and analysis of tokamak plasma confinement. Summaries of papers on theory, predictive modeling, and data analysis are included

  18. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    Science.gov (United States)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  19. Positron deposition in plasmas by positronium beam ionization and transport of positrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1986-11-01

    In a recently proposed positron transport experiment, positrons would be deposited in a fusion plasma by forming a positronium (Ps) beam and passing it through the plasma. Positrons would be deposited as the beam is ionized by plasma ions and electrons. Radial transport of the positrons to the limiter could then be measured by detecting the gamma radiation produced by annihilation of positrons with electrons in the limiter. This would allow measurements of the transport of electron-mass particles and might shed some light on the mechanisms of electron transport in fusion plasmas. In this paper, the deposition and transport of positrons in a tokamak are simulated and the annihilation signal determined for several transport models. Calculations of the expected signals are necessary for the optimal design of a positron transport experiment. There are several mechanisms for the loss of positrons besides transport to the limiter. Annihilation with plasma electrons and reformation of positronium in positron-hydrogen collisions are two such processes. These processes can alter the signal and place restrictions ons on the plasma conditions in which positron transport experiments can be effectively performed

  20. Plasma transport studies using transient techniques

    International Nuclear Information System (INIS)

    Simonen, T.C.; Brower, D.L.; Efthimion, P.

    1991-01-01

    Selected topics from the Transient Transport sessions of the Transport Task Force Workshop, held February 19-23, 1990, in Hilton Head, South Carolina are summarized. Presentations on sawtooth propagation, ECH modulation, particle modulation, and H-mode transitions are included. The research results presented indicated a growing theoretical understanding and experimental sophistication in the application of transient techniques to transport studies. (Author)

  1. Evaluation of soft x-ray average recombination coefficient and average charge for metallic impurities in beam-heated plasmas

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Bitter, M.; Hill, K.W.; Hiroe, S.; Hulse, R.; Shimada, M.; Stratton, B.; von Goeler, S.

    1986-05-01

    The soft x-ray continuum radiation in TFTR low density neutral beam discharges can be much lower than its theoretical value obtained by assuming a corona equilibrium. This reduced continuum radiation is caused by an ionization equilibrium shift toward lower states, which strongly changes the value of the average recombination coefficient of metallic impurities anti γ, even for only slight changes in the average charge, anti Z. The primary agent for this shift is the charge exchange between the highly ionized impurity ions and the neutral hydrogen, rather than impurity transport, because the central density of the neutral hydrogen is strongly enhanced at lower plasma densities with intense beam injection. In the extreme case of low density, high neutral beam power TFTR operation (energetic ion mode) the reduction in anti γ can be as much as one-half to two-thirds. We calculate the parametric dependence of anti γ and anti Z for Ti, Cr, Fe, and Ni impurities on neutral density (equivalent to beam power), electron temperature, and electron density. These values are obtained by using either a one-dimensional impurity transport code (MIST) or a zero-dimensional code with a finite particle confinement time. As an example, we show the variation of anti γ and anti Z in different TFTR discharges

  2. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...

  3. Modelling of ion thermal transport in ergodic region of collisionless toroidal plasma

    International Nuclear Information System (INIS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Ohyabu, Nobuyoshi; Takamaru, Hisanori; Okamoto, Masao

    2009-09-01

    In recent tokamak experiments it has been found that so-called diffusion theory based on the 'diffusion of magnetic field lines' overestimates the radial energy transport in the ergodic region of the collisionless plasma affected by resonant magnetic perturbations (RMPs), though the RMPs induce chaotic behavior of the magnetic field lines. The result implies that the modelling of the transport should be reconsidered for low collisionality cases. A computer simulation study of transport in the ergodic region is required for understanding fundamental properties of collisionless ergodized-plasmas, estimating the transport coefficients, and reconstructing the modelling of the transport. In this paper, we report the simulation study of thermal transport in the ergodic region under the assumption of neglecting effects of an electric field, impurities and neutrals. Because of the simulations neglecting interactions with different particle-species and saving the computational time, we treat ions (protons) in our numerical-study of the transport. We find that the thermal diffusivity in the ergodic region is extremely small compared to the one predicted by the theory of field-line diffusion and that the diffusivity depends on both the collision frequency and the strength of RMPs even for the collisionless ergodized-plasma. (author)

  4. Fokker--Planck/transport analyses of fusion plasmas in contemporary beam-driven tokamaks

    International Nuclear Information System (INIS)

    Mirin, A.A.; McCoy, M.G.; Killeen, J.; Rensink, M.E.; Shumaker, D.E.; Jassby, D.L.; Post, D.E.

    1978-04-01

    The properties of deuterium plasmas in experimental tokamaks heated and fueled by intense neutral-beam injection are evaluated with a Fokker-Planck/radial transport code coupled with a Monte Carlo neutrals treatment. Illustrative results are presented for the Poloidal Divertor Experiment at PPPL as a function of beam power and plasma recycling coefficient, R/sub c/. When P/sub beam/ = 8 MW at E/sub b/ = 60 keV, and R/sub c/ = 0.2, then approximately 0.5, [ 2 / 3 ] = 22 keV approximately 6 , and the D-D neutron intensity is 10 16 n/sec

  5. Calculation of the net emission coefficient of an air thermal plasma at very high pressure

    International Nuclear Information System (INIS)

    Billoux, T; Cressault, Y; Teulet, Ph; Gleizes, A

    2012-01-01

    The aim of this paper is to present an accurate evaluation of the phenomena appearing for high pressure air plasmas supposed to be in local thermodynamic equilibrium (LTE). In the past, we already calculated the net emission coefficient for air mixtures at atmospheric pressure and for temperatures up to 30kK (molecular contribution being restricted to 10kK). Unfortunately, the existence of high pressures does not allow us to use this database due to the non-ideality of the plasma (Viriel and Debye corrections, energy cut-off ...), and due to the significant shifts of molecular reactions towards upper temperatures. Consequently, this paper proposes an improvement of our previous works with a consideration of high pressure corrections in the composition algorithm in order to take into account the pressure effects, and with a new calculation of all the contributions of the plasma radiation (atomic lines and continuum, molecular continuum, and molecular bands) using an updated database. A particular attention is paid to calculate the contribution of all the major molecular band systems to the radiation: O 2 (Schumann–Runge), N 2 (VUV, 1st and 2nd positive), NO (IR, β, γ, δ, element of ) and N 2 + (1st negative and Meinel). The discrete atomic lines and molecular bands radiation including the overlapping are calculated by a line-by-line method up to 30kK and 100 bar. This updated database is validated in the case of optically thin plasmas and pressure of 1bar by the comparison of our integrated emission strength with the published results. Finally, this work shows the necessity to extend the molecular radiation database up to 15kK at high pressure (bands and continuum) since their corresponding contributions could not be neglected at high temperature.

  6. Plasma Transport at the Magnetospheric Flank Boundary. Final report

    International Nuclear Information System (INIS)

    Otto, Antonius

    2012-01-01

    Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary; 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF; 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes; 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning; 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF; 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport; 7. Examination of entropy and plasma transport in the magnetotail; 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma; 9. Entropy and plasma transport in the magnetotail - tail reconnection; and, 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves

  7. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Sakamoto, R.; Tanaka, K.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; Sakamoto, Yoshiteru; Takenaga, Hidenobu; Isayama, Akihiko; Ide, Shunsuke; Fujita, Takaaki

    2006-10-01

    A transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and JT-60U tokamak is described. In the dynamic transport study 1) a slow transition between two transport branches is observed, 2) the time of the transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of the flattening of the temperature profile in the core region and 3) a spontaneous phase transition from a weak, wide ITB to a strong, narrow ITB and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a wide ITB and a narrow ITB suggest the strong interaction of turbulent transport in space, where turbulence suppression at certain locations in the plasma causes the enhancement of turbulence and thermal diffusivity nearby. (author)

  8. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    International Nuclear Information System (INIS)

    Alves, Giselle M; Kremer, Gilberto M; Marques, Wilson Jr; Soares, Ana Jacinta

    2011-01-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman–Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal–diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode

  9. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    Science.gov (United States)

    Alves, Giselle M.; Kremer, Gilberto M.; Marques, Wilson, Jr.; Jacinta Soares, Ana

    2011-03-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman-Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal-diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode.

  10. Transport in the tokamak plasma edge

    International Nuclear Information System (INIS)

    Vold, E.L.

    1989-01-01

    Experimental observations characterize the edge plasma or boundary layer in magnetically confined plasmas as a region of great complexity. Evidence suggests the edge physics plays a key role in plasma confinement although the mechanism remains unresolved. This study focuses on issues in two areas: observed poloidal asymmetries in the Scrape Off Layer (SOL) edge plasma and the physical nature of the plasma-neutral recycling. A computational model solves the coupled two dimensional partial differential equations governing the plasma fluid density, parallel and radial velocities, electron and ion temperatures and neutral density under assumptions of toroidal symmetry, ambipolarity, anomalous diffusive radial flux, and neutral-ion thermal equilibrium. Drift flow and plasma potential are calculated as dependent quantities. Computational results are compared to experimental data for the CCT and TEXTOR:ALT-II tokamak limiter cases. Comparisons show drift flux is a major component of the poloidal flow in the SOL along the tangency/separatrix. Plasma-neutral recycling is characterized in several tokamak divertors, including the C-MOD device using magnetic flux surface coordinates. Recycling is characterized by time constant, τ rc , on the order of tens of milliseconds. Heat flux transients from the core into the edge on shorter time scales significantly increase the plasma temperatures at the target and may increase sputtering. Recycling conditions in divertors vary considerably depending on recycled flux to the core. The high density, low temperature solution requires that the neutral mean free path be small compared to the divertor target to x-point distance. The simulations and analysis support H-mode confinement and transition models based on the recycling divertor solution bifurcation

  11. Plasma flow and transport on the tokamak ISTTOK boundary plasma

    International Nuclear Information System (INIS)

    Figueiredo, H.; Silva, C.; Goncalves, B.; Duarte, P.; Fernandes, H.

    2011-01-01

    The ISTTOK boundary plasma velocity near the outer midplane is measured on the parallel and perpendicular directions in four different configurations by reversing independently the toroidal magnetic field and the plasma current directions. The parallel flow is found to not depend significantly on both the toroidal magnetic field and plasma current directions, being always directed towards the nearest limiter in the scrape-off layer. On the contrary, the perpendicular flow is found to follow the E r x B drift direction. The poloidal velocity has also been derived from the correlation of floating potential signals measured on poloidally separated probes and a good agreement with the value derived with the Gundestrup probe is found. Finally, the dynamical interplay between parallel momentum and turbulent particle flux has been investigated and a clear dynamical coupling between these quantities is found in the region inside the limiter.

  12. Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence

    International Nuclear Information System (INIS)

    Sandberg, I.; Benkadda, S.; Garbet, X.; Ropokis, G.; Hizanidis, K.; Castillo-Negrete, D. del

    2009-01-01

    Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.

  13. A variable-coefficient unstable nonlinear Schroedinger model for the electron beam plasmas and Rayleigh-Taylor instability in nonuniform plasmas: Solutions and observable effects

    International Nuclear Information System (INIS)

    Gao Yitian; Tian Bo

    2003-01-01

    A variable-coefficient unstable nonlinear Schroedinger model is hereby investigated, which arises in such applications as the electron-beam plasma waves and Rayleigh-Taylor instability in nonuniform plasmas. With computerized symbolic computation, families of exact analytic dark- and bright-soliton-like solutions are found, of which some previously published solutions turn out to be the special cases. Similarity solutions also come out, which are expressible in terms of the elliptic functions and the second Painleve transcendent. Some observable effects caused by the variable coefficient are predicted, which may be detected in the future with the relevant space or laboratory plasma experiments with nonuniform background existing

  14. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars

    Science.gov (United States)

    Warnecke, J.; Rheinhardt, M.; Tuomisto, S.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.

    2018-01-01

    Aims: We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory. Methods: We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives a large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally (φ) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which six are related to the α tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and is applied here for the first time to fully compressible simulations of solar-like dynamos. Results: We find that the φφ-component of the α tensor does not follow the profile expected from that of kinetic helicity. The turbulent pumping velocities significantly alter the effective mean flows acting on the magnetic field and therefore challenge the flux transport dynamo concept. All coefficients are significantly affected by dynamically important magnetic fields. Quenching as well as enhancement are being observed. This leads to a modulation of the coefficients with the activity cycle. The temporal variations are found to be comparable to the time-averaged values and seem to be responsible for a nonlinear feedback on the magnetic field generation. Furthermore, we quantify the validity of the Parker-Yoshimura rule for the equatorward propagation of the mean magnetic field in the present case.

  15. Consequences of nonlinear heat transport laws on expected plasma profiles

    International Nuclear Information System (INIS)

    Lackner, K.

    1987-03-01

    The expected variation of plasma pressure profiles against changes in power deposition is investigated by using a simple linear heat transport law as well as a quadratic one. Applying the quadratic transport law it can be shown that the stiffening of the resulting profiles is sufficient to understand the experimentally measured phenomenon of 'profile consistence' without further assumptions of nonlocal effects. (orig.) [de

  16. Transport proteins of the plant plasma membrane

    Science.gov (United States)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  17. Derivation of the formula for the filtration coefficient by application of Poiseuille's law in membrane transport

    Directory of Open Access Journals (Sweden)

    Maria Jarzyńska

    2011-01-01

    Full Text Available On the basis of Kedem-Katchalsky equations a mathematical analysis of volume flow (Jv of a binary solution through a membrane (M is presented. Two cases of transport generators have been considered: hydrostatic (Δp as well as osmotic (Δπ pressure difference. Based on the Poiseuille's law we derive the formula for the membrane filtration coefficient (Lp which takes into account the membrane properties, kinetic viscosity and density of a solution flowing across the membrane. With use of this formula we have made model calculations of the filtration coefficient Lp and volume flow Jv for a polymer membrane in the case when the solutions on both sides of the membrane are mixed.

  18. Time dependent plasma viscosity and relation between neoclassical transport and turbulent transport

    International Nuclear Information System (INIS)

    Shaing, K.C.

    2005-01-01

    Time dependent plasma viscosities for asymmetric toroidal plasmas in various collisionality regimes are calculated. It is known that in the symmetric limit the time dependent plasma viscosities accurately describe plasma flow damping rate. Thus, time dependent plasma viscosities are important in modeling the radial electric field of the zonal flow. From the momentum balance equation, it is shown that, at the steady state, the balance of the viscosity force and the momentum source determines the radial electric field of the zonal flow. Thus, for a fixed source, the smaller the viscous force is, the larger the value of the radial electric field is, which in turn suppresses the turbulence fluctuations more and improves turbulence transport. However, the smaller the viscous force also implies the smaller the neoclassical transport fluxes based on the neoclassical flux-force relationship. We thus show that when neoclassical transport fluxes are improved so are the turbulent fluxes in toroidal plasmas. (author)

  19. Plasma Interactions with Mixed Materials and Impurity Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chernov, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magee, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Umansky, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  20. Plasma Interactions with Mixed Materials and Impurity Transport

    International Nuclear Information System (INIS)

    Rognlien, T. D.; Beiersdorfer, Peter; Chernov, A.; Frolov, T.; Magee, E.; Rudd, R.; Umansky, M.

    2016-01-01

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  1. Momentum Injection in Tokamak Plasmas and Transitions to Reduced Transport

    International Nuclear Information System (INIS)

    Parra, F. I.; Highcock, E. G.; Schekochihin, A. A.; Barnes, M.; Cowley, S. C.

    2011-01-01

    The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. The optimal level of momentum injection is determined. The reduction in transport is maximized in the regions of low or zero magnetic shear.

  2. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.

    Science.gov (United States)

    Ramakrishnan, T S; Goode, P A

    2015-07-01

    The prevalent description of low capillary number two-phase flow in porous media relies on the independence of phase transport. An extended Darcy's law with a saturation dependent effective permeability is used for each phase. The driving force for each phase is given by its pressure gradient and the body force. This diagonally dominant form neglects momentum transfer from one phase to the other. Numerical and analytical modeling in regular geometries have however shown that while this approximation is simple and acceptable in some cases, many practical problems require inclusion of momentum transfer across the interface. Its inclusion leads to a generalized form of extended Darcy's law in which both the diagonal relative permeabilities and the off-diagonal terms depend not only on saturation but also on the viscosity ratio. Analogous to application of thermodynamics to dynamical systems, any of the extended forms of Darcy's law assumes quasi-static interfaces of fluids for describing displacement problems. Despite the importance of the permeability coefficients in oil recovery, soil moisture transport, contaminant removal, etc., direct measurements to infer the magnitude of the off-diagonal coefficients have been lacking. The published data based on cocurrent and countercurrent displacement experiments are necessarily indirect. In this paper, we propose a null experiment to measure the off-diagonal term directly. For a given non-wetting phase pressure-gradient, the null method is based on measuring a counter pressure drop in the wetting phase required to maintain a zero flux. The ratio of the off-diagonal coefficient to the wetting phase diagonal coefficient (relative permeability) may then be determined. The apparatus is described in detail, along with the results obtained. We demonstrate the validity of the experimental results and conclude the paper by comparing experimental data to numerical simulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Transport and turbulence in a magnetized plasma (application to tokamak plasmas); Transport et turbulence dans un plasma magnetise (application aux plasmas de tokamaks)

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y

    2004-03-01

    This document gathers the lectures made in the framework of a Ph.D level physics class dedicated to plasma physics. This course is made up of 3 parts : 1) collisions and transport, 2) transport and turbulence, and 3) study of a few exchange instabilities. More precisely the first part deals with the following issues: thermonuclear fusion, Coulomb collisions, particles trajectories in a tokamak, neo-classical transport in tokamaks, the bootstrap current, and ware pinch. The second part involves: particle transport in tokamaks, quasi-linear transport, resonance islands, resonance in tokamaks, from quasi to non-linear transport, and non-linear saturation of turbulence. The third part deals with: shift velocities in fluid theory, a model for inter-change instabilities, Rayleigh-Benard instability, Hasegawa-Wakatani model, and Hasegawa-Mima model. This document ends with a series of appendices dealing with: particle-wave interaction, determination of the curvature parameter G, Rossby waves.

  4. Transport in a toroidally confined pure electron plasma

    International Nuclear Information System (INIS)

    Crooks, S.M.; ONeil, T.M.

    1996-01-01

    O close-quote Neil and Smith [T.M. O close-quote Neil and R.A. Smith, Phys. Plasmas 1, 8 (1994)] have argued that a pure electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The transport mechanism is similar to magnetic pumping and may be understood by considering a single flux tube of plasma. As the flux tube of plasma undergoes poloidal ExB drift rotation about the center of the plasma, the length of the flux tube and the magnetic field strength within the flux tube oscillate, and this produces corresponding oscillations in T parallel and T perpendicular . The collisional relaxation of T parallel toward T perpendicular produces a slow dissipation of electrostatic energy into heat and a consequent expansion (cross-field transport) of the plasma. In the limit where the cross section of the plasma is nearly circular the radial particle flux is given by Γ r =1/2ν perpendicular,parallel T(r/ρ 0 ) 2 n/(-e∂Φ/∂r), where ν perpendicular,parallel is the collisional equipartition rate, ρ 0 is the major radius at the center of the plasma, and r is the minor radius measured from the center of the plasma. The transport flux is first calculated using this simple physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter calculation is not limited to a plasma with a circular cross section. copyright 1996 American Institute of Physics

  5. Orbit effects on impurity transport in a rotating tokamak plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-05-01

    Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster with a higher bounce frequency, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle orbits near the surface of a rotating tokamak are also analyzed. Orbit effects indicate that more impurities can penetrate into a plasma rotating with counter-beam injection. Particle simulation is carried out with realistic experimental parameters and the results are in qualitative agreement with some experimental observations in the Tokamak Fusion Test Reactor (TFTR). 19 refs., 15 figs

  6. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    International Nuclear Information System (INIS)

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-01-01

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  7. Transport coefficients in neutron star cores in BHF approach. Comparison of different nucleon potentials

    Science.gov (United States)

    Shternin, P. S.; Baldo, M.; Schulze, H.-J.

    2017-12-01

    Thermal conductivity and shear viscosity of npeµ matter in non-superfluid neutron star cores are considered in the framework of Brueckner-Hartree-Fock many-body theory. We extend our previous work (Shternin et al 2013 PRC 88 065803) by analysing different nucleon-nucleon potentials and different three-body forces. We find that the use of different potentials leads up to one order of magnitude variations in the values of the nucleon contribution to transport coefficients. The nucleon contribution dominates the thermal conductivity, but for all considered models the shear viscosity is dominated by leptons.

  8. Calculating the Jet Transport Coefficient q-hat in Lattice Gauge Theory

    International Nuclear Information System (INIS)

    Majumder, Abhijit

    2013-01-01

    The formalism of jet modification in the higher twist approach is modified to describe a hard parton propagating through a hot thermalized medium. The leading order contribution to the transverse momentum broadening of a high energy (near on-shell) quark in a thermal medium is calculated. This involves a factorization of the perturbative process of scattering of the quark from the non-perturbative transport coefficient. An operator product expansion of the non-perturbative operator product which represents q -hat is carried out and related via dispersion relations to the expectation of local operators. These local operators are then evaluated in quenched SU(2) lattice gauge theory

  9. Effect of transport on MAR in detached divertor plasma

    International Nuclear Information System (INIS)

    Miyamoto, Kenji; Hatayama, A.; Ishii, Y.; Miyamoto, T.; Fukano, A.

    2003-01-01

    The effect of H 2 transport on the onset of MAR in the relatively lower plasma parameter regime of a detached state (n e =1x10 19 m -3 , T e =1 eV) is investigated theoretically. The vibrationally excited molecular densities and the degree of MAR are evaluated by using a 1-D Monte Carlo method (with transport effect), and by solving time-dependent 0-D rate equations without the transport term (without transport effect), respectively. It is found that the degree of MAR with transport is smaller than that without transport under the same H 2 flow rate. Especially, the degree of MAR is negligible near the gas inlet. This smaller degree of MAR with transport is due to the lack of highly excited vibrational molecules which contribute to MAR. The hydrogen molecular density available for MAR is determined by the external hydrogen molecular source and the outflow due to transport, i.e., a 'net' confinement time

  10. The effect of resonant magnetic perturbations on the impurity transport in TEXTOR-DED plasmas

    International Nuclear Information System (INIS)

    Greiche, Albert Josef

    2009-01-01

    Thermonuclear fusion provides a new mechanism for the generation of electrical power which has the perspective to serve humanity for several millions of years. One possibility to implement fusion on earth is to magnetically confine hot deuterium tritium plasmas in so called tokamaks. The fusion reactions take place in the hot plasma core. Each of the fusion reactions between deuterium and tritium yields 17.6 MeV which can be used in the process of generating electrical power. Impurities contaminate the plasma which then is cooled down and diluted. This leads to a reduction of the fusion reactions and in consequence the energy yield. The transport behaviour of the impurities in the plasma is not fully understood up to now. Nevertheless, experiments have shown that the application of resonant magnetic perturbations (RMP) can control the impurity content in the plasma. The dynamic ergodic divertor (DED) on the tokamak Textor is able to induce static and dynamic RMPs. During the application of RMPs transient impurity transport experiments with argon have been performed and the time evolution of the impurity concentrations have been monitored. The line emission intensity of the impurities in the plasma is measured in the vacuum ultraviolet (VUV) and in the soft X-ray (SXR) with the absolutely calibrated VUV spectrometer Hexos and SXR PIN diodes, respectively. The analysis of the transient impurity transport experiments is performed with the help of the transport code Strahl. The impurity flows in Strahl are described by a combination of a diffusive and a convective flow. In the computing process the code solves the coupled set of continuity equations of each of the ionization stages of an impurity. With this method the time evolution of the impurity ion densities and the line emission intensities of the ionization stages can be computed. The adaption to the experimental measurements is performed with the help of the diffusion coefficient and the drift velocity which

  11. GAPER-1D, 1-D Multigroup 1. Order Perturbation Transport Theory for Reactivity Coefficient

    International Nuclear Information System (INIS)

    Koch, P.K.

    1976-01-01

    1 - Description of problem or function: Reactivity coefficients are computed using first-order transport perturbation theory for one- dimensional multi-region reactor assemblies. The number of spatial mesh-points and energy groups is arbitrary. An elementary synthesis scheme is employed for treatment of two- and three-dimensional problems. The contributions to the change in inverse multiplication factor, delta(1/k), from perturbations in the individual capture, net fission, total scattering, (n,2n), inelastic scattering, and leakage cross sections are computed. A multi-dimensional prompt neutron lifetime calculation is also available. 2 - Method of solution: Broad group cross sections for the core and perturbing or sample materials are required as input. Scalar neutron fluxes and currents, as computed by SN transport calculations, are then utilized to solve the first-order transport perturbation theory equations. A synthesis scheme is used, along with independent SN calculations in two or three dimensions, to treat a multi- dimensional assembly. Spherical harmonics expansions of the angular fluxes and scattering source terms are used with leakage and anisotropic scattering treated in a P1 approximation. The angular integrations in the perturbation theory equations are performed analytically. Various reactivity coefficients and material worths are then easily computed at specified positions in the assembly. 3 - Restrictions on the complexity of the problem: The formulation of the synthesis scheme used for two- and three-dimensional problems assumes that the fluxes and currents were computed by the DTF4 code (NESC Abstract 209). Therefore, fluxes and currents from two- or three-dimensional transport or diffusion theory codes cannot be used

  12. Analysis of Rotation and Transport Data in C-Mod ITB Plasmas

    Science.gov (United States)

    Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2009-11-01

    Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.

  13. Statistical properties of transport in plasma turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Garcia, O.E.; Nielsen, A.H.

    2004-01-01

    The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...

  14. Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current

    Energy Technology Data Exchange (ETDEWEB)

    Mollén, A., E-mail: albertm@chalmers.se [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Landreman, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Braun, S. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-11-15

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503 (2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/ν-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z{sub eff} of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.

  15. General approach to the computation of local transport coefficients with finite Larmor effects in the collision contribution

    International Nuclear Information System (INIS)

    Ghendrih, P.

    1986-10-01

    We expand the distribution functions on a basis of Hermite functions and obtain a general scheme to compute the local transport coefficients. The magnetic field dependence due to finite Larmor radius effects during the collision process is taken into account

  16. Plasma confinement theory and transport simulation

    International Nuclear Information System (INIS)

    Ross, D.W.

    1989-06-01

    An overview of the program has been given in the contract proposal. The principal objectives are: to provide theoretical interpretation and computer modelling for the TEXT tokamak, and to advance the simulation studies of tokamaks generally, functioning as a National Transport Center. We also carry out equilibrium and stability studies in support of the TEXT upgrade, and work has continued on Alfven waves and MFENET software development. The focus of the program is to lay the groundwork for detailed comparison with experiment of the various transport theories to improve physics understanding and confidence in predictions of future machine behavior. This involves: to collect, in retrievable form, the data from TEXT and other tokamaks; to make the data available through easy-to-use interfaces; to develop criteria for success in fitting models to the data; to maintain the Texas transport code CHAPO and make it available to users; to collect theoretical models and implement them in the transport code; and to carry out simulation studies and evaluate fits to the data. In the following we outline the progress made in fiscal year 1989. Of special note are the proposed participation of our data base project in the ITER program, and a proposed q-profile diagnostic based on our neutral transport studies. We have emphasized collaboration with the TEXT experimentalists, making as much use as possible of the measured fluctuation spectra. 52 refs

  17. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  18. The use of internal transport barriers in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Challis, C D [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2004-12-01

    Internal transport barriers (ITBs) can provide high tokamak confinement at modest plasma current. This is desirable for operation with most of the current driven non-inductively by the bootstrap mechanism, as currently envisaged for steady-state power plants. Maintaining such plasmas in steady conditions with high plasma purity is challenging, however, due to MHD instabilities and impurity transport effects. Significant progress has been made in the control of ITB plasmas: the pressure profile has been varied using the barrier location; q-profile modification has been achieved with non-inductive current drive, and means have been found to affect density peaking and impurity accumulation. All these features are, to some extent, interdependent and must be integrated self-consistently to demonstrate a sound basis for extrapolation to future devices.

  19. Finite beta effects on turbulent transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Hein, Tobias

    2011-01-01

    The research on the transport properties of magnetically confined plasmas plays an essential role towards the achievement of practical nuclear fusion energy. An economically viable fusion reactor is expected to operate at high plasma pressure. This implies that the detailed study of the impact of electromagnetic effects, whose strength increases with increasing pressure, is of critical importance. In the present work, the electromagnetic effects on the particle, momentum and heat transport channels have been investigated, with both analytical and numerical calculations. Transport processes due to a finite plasma pressure have been identified, their physical mechanisms have been explained, and their contributions have been quantified, showing that they can be significant under experimentally relevant conditions.

  20. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  1. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    Science.gov (United States)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  2. Heating and transport in TFTR D-T plasmas

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Scott, S.D.

    1994-01-01

    The confinement and heating of supershot plasmas are significantly enhanced with tritium beam injection relative to deuterium injection in TFTR. The global energy confinement and local thermal transport are analyzed for deuterium and tritium fueled plasmas to quantify their dependence on the average mass of the hydrogenic ions. The radial profiles of the deuterium and tritium densities are determined from the DT fusion neutron emission profile

  3. Solitary Model of the Charge Particle Transport in Collisionless Plasma

    International Nuclear Information System (INIS)

    Simonchik, L.V.; Trukhachev, F.M.

    2006-01-01

    The one-dimensional MHD solitary model of charged particle transport in plasma is developed. It is shown that self-consistent electric field of ion-acoustic solitons can displace charged particles in space, which can be a reason of local electric current generation. The displacement amount is order of a few Debye lengths. It is shown that the current associated with soliton cascade has pulsating nature with DC component. Methods of built theory verification in dusty plasma are proposed

  4. BALDUR: a one-dimensional plasma transport code

    International Nuclear Information System (INIS)

    Singer, C.E.; Post, D.E.; Mikkelsen, D.R.

    1986-07-01

    The purpose of BALDUR is to calculate the evolution of plasma parameters in an MHD equilibrium which can be approximated by concentric circular flux surfaces. Transport of up to six species of ionized particles, of electron and ion energy, and of poloidal magnetic flux is computed. A wide variety of source terms are calculated including those due to neutral gas, fusion, and auxiliary heating. The code is primarily designed for modeling tokamak plasmas but could be adapted to other toroidal confinement systems

  5. Extended fluid transport theory in the tokamak plasma edge

    Science.gov (United States)

    Stacey, W. M.

    2017-06-01

    Fluid theory expressions for the radial particle and energy fluxes and the radial distributions of pressure and temperature in the edge plasma are derived from fundamental conservation (particle, energy, momentum) relations, taking into account kinetic corrections arising from ion orbit loss, and integrated to illustrate the dependence of the observed edge pedestal profile structure on fueling, heating, and electromagnetic and thermodynamic forces. Solution procedures for the fluid plasma and associated neutral transport equations are discussed.

  6. Plasma confinement theory and transport simulation

    International Nuclear Information System (INIS)

    Ross, D.W.

    1993-10-01

    The objectives of the Fusion Research Center Theory Program continue to be: (1) to advance the transport studies of tokamaks, including development and maintenance of the Magnetic Fusion Energy Database; and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for the TEXT-Upgrade tokamak. Publications and reports and conference presentations for the grant period are listed. Work is described in five basic categories: A. Magnetic Fusion Energy Database; B. Computational Support and Numerical Modeling; C. Support for TEXT-Upgrade and Diagnostics; D. Transport Studies; E. Alfven Waves

  7. Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Pochelon, A.; Behn, R.; Bottino, A.; Bortolon, A.; Coda, S.; Karpushov, A.; Sauter, O.; Zhuang, G.

    2007-01-01

    The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of -0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated

  8. Light-induced modification of plant plasma membrane ion transport.

    Science.gov (United States)

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  9. Kinetic theory of nonlinear transport phenomena in complex plasmas

    International Nuclear Information System (INIS)

    Mishra, S. K.; Sodha, M. S.

    2013-01-01

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  10. Plasma confinement theory and transport simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.W.

    1992-04-01

    The objectives are: (1) to advance the transport studies of tokamaks, including development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for TEXT-Upgrade. Recent reports, publications, and conference presentations of the Fusion Research Center are listed.

  11. Plasma confinement theory and transport simulation

    International Nuclear Information System (INIS)

    Ross, D.W.

    1990-04-01

    The objectives of this page are to advance the transport studies of tokamaks, including development and maintenance of the Magnetic Fusion Energy Database, and to provide theoretical interpretation and modelling for TEXT, and equilibrium and stability studies for TEXT-Upgrade

  12. Plasma confinement theory and transport simulation

    International Nuclear Information System (INIS)

    Ross, D.W.

    1993-02-01

    The objectives continue to be: (1) to advance the transport studies of tokamaks, including development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability for TEXT-Upgrade. Recent publications and reports, and conference presentations of the Fusion Research Center theory group are listed

  13. Isotopic scaling of transport in deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Scott, S.D.; Adler, H.; Bell, M.G.; Bell, R.; Budny, R.V.; Bush, C.E.; Chang, Z.; Duong, H.

    1995-01-01

    Both global and thermal energy confinement improve in high-temperature supershot plasmas in the Tokamak Fusion Test Reactor (TFTR) when deuterium beam heating is partially or wholly replaced by tritium beam heating. For the same heating power, the tritium-rich plasmas obtain up to 22% higher total energy, 30% higher thermal ion energy, and 20-25% higher central ion temperature. Kinetic analysis of the temperature and density profiles indicates a favorable isotopic scaling of ion heat transport and electron particle transport, with τ Ei (a/2) ∝ (A) 0.7-0.8 and τ pe (a) ∝ (A) 0.8

  14. Collisional transport in a plasma with steep gradients

    International Nuclear Information System (INIS)

    Wang, W.; Okamoto, M.; Nakajima, N.; Murakami, S.

    1999-06-01

    The validity is given to the newly proposed two δf method for neoclassical transport calculation, which can be solve the drift kinetic equation considering effects of steep plasma gradients, large radial electric field, finite banana width, and an orbit topology near the axis. The new method is applied to the study of ion transport with steep plasma gradients. It is found that the ion thermal diffusivity decreases as the scale length of density gradient decreases, while the ion particle flux due to ion-ion self collisions increases with increasing gradient. (author)

  15. Coarse Grained Transport Model for Neutrals in Turbulent SOL Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Mekkaoui, A.; Genesio, P.; Rosato, J.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R., E-mail: yannick.marandet@univ-amu.fr [PIIM, CNRS/Aix-Marseille University, Marseille (France); Reiter, D.; Boerner, P. [IEK4, FZJ, Juelich (Germany)

    2012-09-15

    Full text: Edge plasmas of magnetic fusion devices exhibit strong intermittent turbulence, which governs perpendicular transport of particles and heat. Turbulent fluxes result from the coarse graining procedure used to derive the transport equation, which entails time averaging of the underlying equations governing the turbulent evolution of the electron and ion fluids. In previous works, we have pointed out that this averaging is not carried out on the Boltzmann equation that describes the transport of neutral particles (atoms, molecules) in current edge code suites (such as SOLPS). Since fluctuations in the far SOL are of order unity, calculating the transport of neutral particles, hence the source terms in plasma fluid equations, in the average plasma background might lead to misleading results. In particular, retaining the effects of fluctuations could affect the estimation of the importance of main chamber recycling, hence first wall sputtering by charge exchange atoms, as well as main chamber impurity contamination and transport. In this contribution, we obtain an exact coarse-grained equation for the average neutral density, assuming that density fluctuations are described by multivariate Gamma statistics. This equation is a scattering free Boltzmann equation, where the ionization rate has been renormalized to account for fluctuations. The coarse grained transport model for neutrals has been implemented in the EIRENE code, and applications in 2D geometry with ITER relevant plasma parameters are presented. Our results open the way for the implementation of the effects of turbulent fluctuations on the transport of neutral particles in coupled plasma/neutral edge codes like B2-EIRENE. (author)

  16. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Sakamoto, R.; Tanaka, K.; Fujita, T.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; Sakamoto, Y.; Takenaga, H.; Isayama, A.; Matsunaga, G.; Ide, S.

    2009-01-01

    Transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and the JT-60U tokamak is described. In the dynamic transport study the time of transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of flattening of the temperature profile in the core region and a spontaneous phase transition from a zero curvature ITB (hyperbolic tangent shaped ITB) or a positive curvature ITB (concaved shaped ITB) to a negative curvature ITB (convex shaped ITB) and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a zero curvature ITB and a convex ITB suggest the strong interaction of turbulent transport in space.

  17. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  18. Combined core/boundary layer plasma transport simulations in tokamaks

    International Nuclear Information System (INIS)

    Prinja, A.K.; Schafer, R.F. Jr.; Conn, R.W.; Howe, H.C.

    1987-01-01

    Significant new numerical results are presented from self-consistent core and boundary or scrape-off layer plasma simulations with 3-D neutral transport calculations. For a symmetric belt limiter it is shown that, for plasma conditions considered here, the pump limiter collection efficiency increases from 11% to 18% of the core efflux as a result of local reionization of blade deflected neutrals. This hitherto unobserved effect causes a significant amplification of upstream ion flux entering the pump limiter. Results from coupling of an earlier developed two-zone edge plasma model ODESSA to the PROCTR core plasma simulation code indicates that intense recycling divertor operation may not be possible because of stagnation of upstream flow velocity. This results in a self-consistent reduction of density gradient in an intermediate region between the central plasma and separatrix, and a concomitant reduction of core-efflux. There is also evidence of increased recycling at the first wall. (orig.)

  19. Final technical report on studies of plasma transport

    International Nuclear Information System (INIS)

    O'Neil, T.M.; Driscoll, C.F.; Malmberg, J.H.

    1997-01-01

    This document gives an overview of the scientific results obtained under the DOE grant, and references the journal articles which give more complete descriptions of the various topics. Recently, the research has been focused on 2-dimensional vortices and turbulence: experiments using a new camera-diagnosed electron plasma apparatus have given surprising results which both clarify and challenge theories. Here, the crossfield E x B flow of the electron plasma is directly analogous to the 2-d flow of an ideal fluid such as water, and may also give insight into more complicated poloidal flows exhibited in toroidal plasmas. The shear-flow instabilities, turbulence, and vortices can be accurately observed, and the free relaxation of this turbulence has been characterized. The physical processes underlying the complicated turbulent evolution can also be studied in more controlled near-linear regimes. The original experimental focus of this program was on radial particle transport from applied external field asymmetries. Here, this research program clearly identified the importance of the collective response of the plasma, giving smaller fields from shielding, or enhanced fields from resonant modes. Experiments and theory work have also elucidated the flow of a plasma along the magnetic field. Finally, some theory was pursued for direct application to fusion plasmas, and to gravitating gas clouds in astrophysics. This program was highly successful in clarifying basic plasma transport processes

  20. Convective cells and transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  1. Turbulence and anomalous transport in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, H

    1990-12-31

    In present-day Tokamak fusion machines, instabilities and turbulence driven by temperature gradients can have a considerable impact on the confinement qualities. This thesis is mainly devoted to analyzing the nonlinear evolution of these instabilities and the associated turbulent transport. A combined analytical and numerical study of the ion temperature gradient driven turbulence is presented. An analytical expression for the ion thermal conductivity is derived and found to be in good agreement with the simulation results. The scaling properties of chi{sub i} are investigated and compared with experimental results. The transport due to the simultaneous presence of a trapped electron mode and an ion temperature gradient mode is analysed. It is found that the coupling of the modes can give rise to inward diffusive fluxes of both particles and energy. The tendency of the system to equilibrate density and temperature scale lengths is compared with recent experimental trends. The nonlinear behaviour of the instabilities is also studied in the context of low dimensional dynamical systems. Here, the relation between the fully nonlinear fluid models and the low dimensional models is discussed. The influence of a high frequency RF-field on the ion temperature gradient driven mode is investigated analytically. The consequences for mode stability and transport are considered. 23 refs.

  2. Turbulence and anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Nordman, H.

    1989-01-01

    In present-day Tokamak fusion machines, instabilities and turbulence driven by temperature gradients can have a considerable impact on the confinement qualities. This thesis is mainly devoted to analyzing the nonlinear evolution of these instabilities and the associated turbulent transport. A combined analytical and numerical study of the ion temperature gradient driven turbulence is presented. An analytical expression for the ion thermal conductivity is derived and found to be in good agreement with the simulation results. The scaling properties of chi i are investigated and compared with experimental results. The transport due to the simultaneous presence of a trapped electron mode and an ion temperature gradient mode is analysed. It is found that the coupling of the modes can give rise to inward diffusive fluxes of both particles and energy. The tendency of the system to equilibrate density and temperature scale lengths is compared with recent experimental trends. The nonlinear behaviour of the instabilities is also studied in the context of low dimensional dynamical systems. Here, the relation between the fully nonlinear fluid models and the low dimensional models is discussed. The influence of a high frequency RF-field on the ion temperature gradient driven mode is investigated analytically. The consequences for mode stability and transport are considered. 23 refs

  3. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Nicolas, T.

    2013-01-01

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author) [fr

  4. Transport modelling including radial electric field and plasma rotation

    International Nuclear Information System (INIS)

    Fukuyama, A.; Fuji, Y.; Itoh, S.-I.

    1994-01-01

    Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)

  5. Flowchart on Choosing Optimal Method of Observing Transverse Dispersion Coefficient for Solute Transport in Open Channel Flow

    Directory of Open Access Journals (Sweden)

    Kyong Oh Baek

    2018-04-01

    Full Text Available There are a number of methods for observing and estimating the transverse dispersion coefficient in an analysis of the solute transport in open channel flow. It may be difficult to select an optimal method to calculate dispersion coefficients from tracer data among numerous methodologies. A flowchart was proposed in this study to select an appropriate method under the transport situation of either time-variant or steady condition. When making the flowchart, the strengths and limitations of the methods were evaluated based on its derivation procedure which was conducted under specific assumptions. Additionally, application examples of these methods on experimental data were illustrated using previous works. Furthermore, the observed dispersion coefficients in a laboratory channel were validated by using transport numerical modeling, and the simulation results were compared with the experimental results from tracer tests. This flowchart may assist in choosing the better methods for determining the transverse dispersion coefficient in various river mixing situations.

  6. Fluid/gravity correspondence: second order transport coefficients in compactified D4-branes

    International Nuclear Information System (INIS)

    Wu, Chao; Chen, Yidian; Huang, Mei

    2017-01-01

    We develop the boundary derivative expansion (BDE) formalism of fluid/gravity correspondence to nonconformal version through the compactified, near-extremal black D4-brane. We offer an explicit calculation of 9 second order transport coefficients, i.e., the τ π , τ π ∗ , τ Π , λ 1,2,3 and ξ 1,2,3 for the strongly coupled, uncharged and nonconformal relativistic fluid which is the holographic dual of compactified, near extremal black D4-brane. We also show that the nonconformal fluid considered in this work is free of causal problem and admits the Haack-Yarom relation 4λ 1 −λ 2 =2ητ π .

  7. Towards next-to-leading order transport coefficients from the four-particle irreducible effective action

    International Nuclear Information System (INIS)

    Carrington, M. E.; Kovalchuk, E.

    2010-01-01

    Transport coefficients can be obtained from two-point correlators using the Kubo formulas. It has been shown that the full leading order result for electrical conductivity and (QCD) shear viscosity is contained in the resummed two-point function that is obtained from the three-loop three-particle irreducible resummed effective action. The theory produces all leading order contributions without the necessity for power counting, and in this sense it provides a natural framework for the calculation. In this article we study the four-loop four-particle irreducible effective action for a scalar theory with cubic and quartic interactions, with a nonvanishing field expectation value. We obtain a set of integral equations that determine the resummed two-point vertex function. A next-to-leading order contribution to the viscosity could be obtained from this set of coupled equations.

  8. Dynamic Structure Factor and Transport Coefficients of a Homogeneously Driven Granular Fluid in Steady State

    Science.gov (United States)

    Vollmayr-Lee, Katharina; Zippelius, Annette; Aspelmeier, Timo

    2011-03-01

    We study the dynamic structure factor of a granular fluid of hard spheres, driven into a stationary nonequilibrium state by balancing the energy loss due to inelastic collisions with the energy input due to driving. The driving is chosen to conserve momentum, so that fluctuating hydrodynamics predicts the existence of sound modes. We present results of computer simulations which are based on an event driven algorithm. The dynamic structure factor F (q , ω) is determined for volume fractions 0.05, 0.1 and 0.2 and coefficients of normal restitution 0.8 and 0.9. We observe sound waves, and compare our results for F (q , ω) with the predictions of generalized fluctuating hydrodynamics which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory. K.V.L. thanks the Institute of Theoretical Physics, University of Goettingen, for financial support and hospitality.

  9. Transition phenomena and thermal transport properties in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.; Inagaki, S.; Tamura, N.; Tokuzawa, T.; Morisaki, T.; Watanabe, K.Y.; Ida, K.; Yamada, I.; Narihara, K.; Muto, S.; Yokoyama, M.; Yoshimura, Y.; Notake, T.; Ohkubo, K.; Seki, T.; Saito, K.; Kumazawa, R.; Mutoh, T.; Watari, T.; Komori, A.

    2005-01-01

    Two types of improved core confinement were observed during centrally focused electron cyclotron heating (ECH) into plasmas sustained by counter (CNTR) and Co neutral beam injections (NBI) in the Large Helical Device. The CNTR NBI plasma displayed transition phenomena to the high-electron-temperature state and had a clear electron internal transport barrier, while the Co NBI plasma did not show a clear transition or an ECH power threshold but showed broad high temperature profiles with moderate temperature gradient. This indicated that the Co NBI plasma with additional ECH also had an improved core confinement. The electron heat transport characteristics of these plasmas were directly investigated using heat pulse propagation excited by modulated ECH. These effects appear to be related to the m/n = 2/1 rational surface or the island induced by NBI beam-driven current

  10. On transport and the bootstrap current in toroidal plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The recently reported observation of the bootstrap current in a tokamak plasma highlights the problem of reconciling this neoclassical effect with the anomalous (i.e., non-neoclassical) electron thermal transport. This Comment reviews the bootstrap current and considers the implications of a self-consistent modification of neoclassical theory based on an enhanced electron-electron interaction. (author)

  11. Fast ions and momentum transport in JET tokamak plasmas

    International Nuclear Information System (INIS)

    Salmi, A.

    2012-01-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  12. Fast ions and momentum transport in JET tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, A.

    2012-07-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  13. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    Science.gov (United States)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  14. Tornado-like transport in a magnetized plasma

    Science.gov (United States)

    Poulos, Matthew; van Compernolle, Bart; Morales, George

    2017-10-01

    Recent heat transport experiments conducted in the LAPD device at UCLA in which avalanche events have been previously documented have also lead to the identification of a new tornado-like transport phenomenon. These tornados occur much earlier than the avalanches events, essentially in the interval following the application of the bias voltage that causes the injection of an electron beam from a ring-shaped LaB6 cathode into the afterglow of a cold, magnetized plasma. The tornados exhibit a low-frequency (4 kHz) (much lower than drift-waves), spiraling, global eigenmode whose transient behavior is responsible for significant radial transport well outside the heated region. Detailed experimental observations are compared with a Braginskii transport code that includes the effects of ExB convection induced by the spiraling global eigenmode. New insights are gained into the necessary modifications of classical transport to accurately simulate the spiraling effects and the possible interaction with avalanches. This work is supported by the NSF/DOE partnership in basic plasma science and engineering, Grant Number 1619505, and is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF. Sponsored by DOE/NSF at BaPSF and NSF 1619505.

  15. Perturbative transport experiments in JET Advanced Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantica, P.; Gorini, G.; Sozzi, C. [Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Milan (Italy); Imbeaux, F.; Sarazin, Y.; Garbet, X. [Association Euratom-CEA, St. Paul-lez-Durance Cedex (France); Kinsey, J. [Lehigh Univ., Bethlehem, Pennsylvania (United States); Budny, R. [Princeton Plasma Physics Lab, New Jersey (United States); Coffey, I.; Parail, V.; Walden, A. [Euratom/UKAEA Fusion Association, Abingdon, Oxon (United Kingdom); Dux, R. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Garzotti, L. [Istituto Gas Ionizzati, Padova (Italy); Ingesson, C. [FOM-Instituut voor Plasmafysica, Nieuwegein (Netherlands); Kissick, M. [University of California, Los Angeles (United States)

    2003-07-01

    Perturbative transport experiments have been performed in JET Advanced Tokamak plasmas either in conditions of fully developed Internal Transport Barrier (ITB) or during a phase where an ITB was not observed. Transient peripheral cooling was induced by either Laser Ablation or Shallow Pellet Injection and the ensuing travelling cold pulse was used to probe the plasma transport in the electron and, for the first time, also in the ion channel. Cold pulses travelling through ITBs are observed to erode the ITB outer part, but, if the inner ITB portion survives, it strongly damps the propagating wave. The result is discussed in the context of proposed possible pictures for ITB formation. In the absence of an ITB, the cold pulse shows a fast propagation in the outer plasma half, which is consistent with a region of stiff transport, while in the inner half it slows down but shows the peculiar feature of amplitude growing while propagating. The data are powerful tests for the validation of theoretical transport models. (author)

  16. Electromagnetic effects on trace impurity transport in tokamak plasmas

    Science.gov (United States)

    Hein, T.; Angioni, C.

    2010-01-01

    The impact of electromagnetic effects on the transport of light and heavy impurities in tokamak plasmas is investigated by means of an extensive set of linear gyrokinetic numerical calculations with the code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and of analytical derivations with a fluid model. The impurity transport is studied by appropriately separating diffusive and convective contributions, and conditions of background microturbulence dominated by both ion temperature gradient (ITG) and trapped electron modes (TEMs) are analyzed. The dominant contribution from magnetic flutter transport turns out to be of pure convective type. However it remains small, below 10% with respect to the E ×B transport. A significant impact on the impurity transport due to an increase in the plasma normalized pressure parameter β is observed in the case of ITG modes, while for TEM the overall effect remains weak. In realistic conditions of high β plasmas in the high confinement (H-) mode with dominant ITG turbulence, the impurity diffusivity is found to decrease with increasing β in qualitative agreement with recent observations in tokamaks. In contrast, in these conditions, the ratio of the total off-diagonal convective velocity to the diagonal diffusivity is not strongly affected by an increase in β, particularly at low impurity charge, due to a compensation between the different off-diagonal contributions.

  17. Gyrokinetic theory for particle and energy transport in fusion plasmas

    Science.gov (United States)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  18. METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas

    Science.gov (United States)

    Rabie, M.; Franck, C. M.

    2016-06-01

    We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.

  19. Transport analysis of oscillatory state for plasma dynamics in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2012-11-01

    In helical plasmas, two kinds of the oscillation for the plasma quantities are experimentally observed. Firstly, the limit cycle phenomena in the temporal evolution of the electrostatic potential, namely the electric pulsation, have been observed in the core region. The temporally self-generated oscillation of the radial electric field is shown as a simulation result in the core region. The dependence of the transition point for the radial electric field on the source is examined. Secondly, the density limit oscillation in the helical device was reported. To realize the oscillation phenomena at the density limit, the temporal evolution of the density profile is newly included in a simulation when the radiative loss is calculated in the edge region. Two stationary plasma states, where the transport loss or radiative loss is dominant in the edge region, are obtained. The dynamics of the plasma quantity is found to show the transition from the transport-dominated state to the radiation-dominated state. (author)

  20. Impurity toroidal rotation and transport in Alcator C-Mod ohmic high confinement mode plasmas

    International Nuclear Information System (INIS)

    Rice, J. E.; Goetz, J. A.; Granetz, R. S.; Greenwald, M. J.; Hubbard, A. E.; Hutchinson, I. H.; Marmar, E. S.; Mossessian, D.; Pedersen, T. Sunn; Snipes, J. A.

    2000-01-01

    Central toroidal rotation and impurity transport coefficients have been determined in Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] Ohmic high confinement mode (H-mode) plasmas from observations of x-ray emission following impurity injection. Rotation velocities up to 3x10 4 m/sec in the co-current direction have been observed in the center of the best Ohmic H-mode plasmas. Purely ohmic H-mode plasmas display many characteristics similar to ion cyclotron range of frequencies (ICRF) heated H-mode plasmas, including the scaling of the rotation velocity with plasma parameters and the formation of edge pedestals in the electron density and temperature profiles. Very long impurity confinement times (∼1 sec) are seen in edge localized mode-free (ELM-free) Ohmic H-modes and the inward impurity convection velocity profile has been determined to be close to the calculated neoclassical profile. (c) 2000 American Institute of Physics

  1. Two-temperature thermodynamic and transport properties of SF6–Cu plasmas

    International Nuclear Information System (INIS)

    Wu, Yi; Chen, Zhexin; Yang, Fei; Rong, Mingzhe; Sun, Hao; Cressault, Yann; Murphy, Anthony B; Guo, Anxiang; Liu, Zirui

    2015-01-01

    SF 6 and Cu are widely adopted in electrical equipment as a dielectric medium and for conductive components, respectively. SF 6 –Cu plasmas are frequently formed, particularly in high-voltage circuit breaker arcs and fault current arcs, due to erosion of the Cu components. In this paper, calculated values of the thermodynamic and transport properties of plasmas in SF 6 –Cu mixtures are presented for both thermal equilibrium and non-equilibrium conditions. The composition is determined by the two-temperature Saha equation and Guldberg–Waage equation in the form derived by van de Sanden. The composition and the thermodynamic properties are evaluated through a classical statistical mechanics approach. For the transport coefficients, the simplified Chapman–Enskog method developed by Devoto, which decouples the electrons and heavy species, has been applied using the most recent collision integrals. The thermodynamic and transport properties are calculated for different electron temperatures (300–40 000 K), ratios of electron to heavy-species temperature (1–10), pressures (0.1–10 atm) and copper molar proportions (0–50%). It is found that deviations from thermal equilibrium strongly affect the thermodynamic and transport properties of the SF 6 –Cu plasmas. Further, the presence of copper has different effects on some of the properties for plasmas in and out of thermal equilibrium. The main reason for these changes is that dissociation reactions are delayed for non-thermal equilibrium plasmas, which in turn influences the ionization reactions that occur. (paper)

  2. Stefan-Maxwell Relations and Heat Flux with Anisotropic Transport Coefficients for Ionized Gases in a Magnetic Field with Application to the Problem of Ambipolar Diffusion

    Science.gov (United States)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2018-01-01

    The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.

  3. Possible effects of drift wave turbulence on magnetic structure and plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.

    1977-07-01

    A new mechanism is proposed by which low level, drift wave type fluctuations, such as those observed in the ATC and TFR experiments, can cause anomalous radial electron heat transport in tokamaks. The model is based on the fact that since transport processes parallel to the magnetic field are many orders of magnitude more rapid than perpendicular ones, very small helically resonant magnetic perturbations that cause field lines to move radially allow the parallel transport process to contribute to radial electron heat transport. It is hypothesized that the small magnetic perturbations accompanying drift waves at any nonzero plasma β are large enough to produce significant effects in present tokamak experiments. The helical magnetic component of drift waves produces magnetic island structures whose spatial widths can easily exceed the ion gyroradius. In a drift wave oscillation period, electrons circumnavigate a magnetic island, whereas the slower moving ions see only a tilt of the magnetic field lines. Thus, electrons try to diffuse radially more rapidly than ions; however, a radialpotential builds up on a very short time scale to confine the electrons electrostatically and thereby keep the particle diffusion ambipolar. Nonetheless, this parallel electron diffusion process does cause net radial electron heat conduction through an ensemble of closely packed island structures. The heat conduction coefficient is estimated. Other effects that these magnetic flutters may have on plasma transport and runaway electron processes are also discussed

  4. Internal transport barrier in tokamak and helical plasmas

    Science.gov (United States)

    Ida, K.; Fujita, T.

    2018-03-01

    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the

  5. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  6. Modelling of neutral particle transport in divertor plasma

    International Nuclear Information System (INIS)

    Kakizuka, Tomonori; Shimizu, Katsuhiro

    1995-01-01

    An outline of the modelling of neutral particle transport in the diverter plasma was described in the paper. The characteristic properties of divertor plasma were largely affected by interaction between neutral particles and divertor plasma. Accordingly, the behavior of neutral particle should be investigated quantitatively. Moreover, plasma and neutral gas should be traced consistently in the plasma simulation. There are Monte Carlo modelling and the neutral gas fluid modelling as the transport modelling. The former need long calculation time, but it is able to make the physical process modelling. A ultra-large parallel computer is good for the former. In spite of proposing some kinds of models, the latter has not been established. At the view point of reducing calculation time, a work station is good for the simulation of the latter, although some physical problems have not been solved. On the Monte Carlo method particle modelling, reducing the calculation time and introducing the interaction of particles are important subjects to develop 'the evolutional Monte Carlo Method'. To reduce the calculation time, two new methods: 'Implicit Monte Carlo method' and 'Free-and Diffusive-Motion Hybrid Monte-Carlo method' have been developing. (S.Y.)

  7. Recent developments in plasma turbulence and turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  8. Fractional diffusion models of transport in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Carreras, B. A.; Lynch, V. E.

    2005-01-01

    Experimental and theoretical evidence suggests that transport in magnetically confined fusion plasmas deviates from the standard diffusion paradigm. Some examples include the confinement time scaling in L-mode plasmas, rapid pulse propagation phenomena, and inward transport in off-axis fueling experiments. The limitations of the diffusion paradigm can be traced back to the restrictive assumptions in which it is based. In particular, Fick's law, one of the cornerstones of diffusive transport, assumes that the fluxes only depend on local quantities, i. e. the spatial gradient of the field (s). another key issue is the Markovian assumption that neglects memory effects. Also, at a microscopic level, standard diffusion assumes and underlying Gaussian, uncorrelated stochastic process (i. e. a Brownian random walk) with well defined characteristic spatio-temporal scales. Motivated by the need to develop models of non-diffusive transport, we discuss here a class of transport models base on the use of fractional derivative operators. The models incorporates in a unified way non-Fickian transport, non-Markovian processes or memory effects, and non-diffusive scaling. At a microscopic level, the models describe an underlying stochastic process without characteristic spatio-temporal scales that generalizes the Brownian random walk. As a concrete case study to motivate and test the model, we consider transport of tracers in three-dimensional, pressure-gradient-driven turbulence. We show that in this system transport is non-diffusive and cannot be described in the context of the standard diffusion parading. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit super-diffusive scaling. there is quantitative agreement between the turbulence transport calculations and the proposed fractional diffusion model. In particular, the model

  9. Fast electron generation and transport in a turbulent, magnetized plasma

    International Nuclear Information System (INIS)

    Stoneking, W.R.

    1994-05-01

    The nature of fast electron generation and transport in the Madison Symmetric Torus (MST) reversed field pinch (RFP) is investigated using two electron energy analyzer (EEA) probes and a thermocouple calorimeter. The parallel velocity distribution of the fast electron population is well fit by a drifted Maxwellian distribution with temperature of about 100 eV and drift velocity of about 2 x 10 6 m/s. Cross-calibration of the EEA with the calorimeter provides a measurement of the fast electron perpendicular temperature of 30 eV, much lower than the parallel temperature, and is evidence that the kinetic dynamo mechanism (KDT) is not operative in MST. The fast electron current is found to match to the parallel current at the edge, and the fast electron density is about 4 x 10 11 cm -3 independent of the ratio of the applied toroidal electric field to the critical electric field for runaways. First time measurements of magnetic fluctuation induced particle transport are reported. By correlating electron current fluctuations with radial magnetic fluctuations the transported flux of electrons is found to be negligible outside r/a∼0.9, but rises the level of the expected total particle losses inside r/a∼0.85. A comparison of the measured diffusion coefficient is made with the ausilinear stochastic diffusion coefficient. Evidence exists that the reduction of the transport is due to the presence of a radial ambipolar electric field of magnitude 500 V/m, that acts to equilibrate the ion and electron transport rates. The convective energy transport associated with the measured particle transport is large enough to account for the observed magnetic fluctuation induced energy transport in MST

  10. Impurity transport in a collision-dominated rotating tokamak plasma

    International Nuclear Information System (INIS)

    Eriksson, G.; Liljegren, A.

    1981-04-01

    The flux of heavy impurities is an axisymmetric, toroidal plasma with all particles in the collision-dominated regime is considered. Plasma rotation and charge-exchange with neutrals are taken into account. A hydrodynamic model employing Braginskii's transport equations is used. The theorry is extended to higher collision freqencies as compared to previous treatments. It is found that the Pfirsch-Schlueter flux is significantly reduced as compared to the value given by Rutherford and that it is of the same order of magnitude, or less, than the classical flux in all regimes considered. It is also shown that the impurity flux can be influenced by charge-exchange with neutrals. (author)

  11. Revisited neoclassical transport theory for steep, collisional plasma edge profiles

    International Nuclear Information System (INIS)

    Rogister, A.L.

    1994-01-01

    Published neoclassical results are misleading as concerns the plasma edge for they do not adequately take the peculiar local conditions into account, in particular the fact that the density and temperature variation length-scales are quite small. Coupled novel neoclassical equations obtain, not only for the evolution of the density and temperatures, but also for the radial electric field and the evolution of the parallel ion momentum: gyro-stresses and inertia indeed upset the otherwise de facto ambipolarity of particle transport and a radial electric field necessarily builds up. The increased nonlinear character of these revisited neoclassical equations widens the realm of possible plasma behaviors. (author)

  12. Transport in zonal flows in analogous geophysical and plasma systems

    Science.gov (United States)

    del-Castillo-Negrete, Diego

    1999-11-01

    Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.

  13. Transition phenomena and thermal transport property in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.

    2005-01-01

    Two kinds of improved core confinement were observed during centrally focused Electron Cyclotron Heating (ECH) into plasmas sustained by Counter (CNTR) and Co Neutral Beam Injections (NBI) in the Large Helical Device (LHD). One shows transition phenomena to the high-electron-temperature state and has a clear electron Internal Transport Barrier (eITB) in CNTR NBI plasma. Another has no clear transition and no ECH power threshold, but shows a broad high temperature profiles with moderate temperature gradient, which indicates the improved core confinement with additional ECH in Co NBI plasma. The electron heat transport characteristics of these plasmas were directly investigated by using the heat pulse propagation excited by Modulated ECH (MECH). The difference of the features could be caused by the existence of the m/n=2/1 rational surface or island determined by the direction of NBI beam-driven current. (author)

  14. Variations of helicon wave induced radial plasma transport in different experimental conditions

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-08-01

    Variations of the helicon wave induced radial plasma transport are presented in dependence on values of the plasma radius, magnetostatic field, plasma density, frequency of the helicon wave and on the ion charge. 22 refs., 14 figs

  15. Effect of density control and impurity transport on internal transport barrier formation in tokamak plasma

    International Nuclear Information System (INIS)

    Yamakami, Tomoyuki; Fujita, Takaaki; Arimoto, Hideki; Yamazaki, Kozo

    2014-01-01

    In future fusion reactors, density control, such as fueling by pellet injection, is an effective method to control the formation of the internal transport barrier (ITB) in reversed magnetic shear plasma, which can improve plasma performance. On the other hand, an operation with ITB can cause accumulation of impurities inside the core ITB region. We studied the relation between pellet injection and ITB formation and the effect of impurity transport on the core of ITB for tokamak plasmas by using the toroidal transport analysis linkage. For ITB formation, we showed that the pellet has to be injected beyond the position where the safety factor q takes the minimum value. We confirmed that the accumulation of impurities causes the attenuation of ITB owing to radiation loss inside the ITB region. Moreover, in terms of the divertor heat flux reduction by impurity gas, the line radiation loss is high for high-Z noble gas impurities, such as Kr, whereas factor Q decreases slightly. (author)

  16. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  17. Methods for studying plasma charge transport across a magnetic field

    International Nuclear Information System (INIS)

    Popovich, A.S.

    1978-01-01

    A comparative analysis of experimental methods for the diffusion transfer of plasma charged particles accross the magnetic field at the study of its confinement effectiveness, instability effect is carried out. Considered are the methods based on the analysis of particle balance in the charge and possibilities of diffusion coefficient determination according to measuring parameters of density gradient and particle flow on the wall, rate of plasma decay after switching off ionization source radial profile of plasma density outside the active region of stationary charge. Much attension is payed to the research methods of diffusion transfer, connected with the study of propagation of periodic and aperiodic density perturbation in a plasma. Analysed is the Golubev and Granovsky method of diffusion waves and its different modifications, phase analysis method of ''test charges'' movement, as well as different modifications of correlation methods. Considered are physical preconditions of the latter and criticized is unilateral interpretation of correlation measurings, carried out in a number of works. The analysis of study possibilities of independent (non-ambipolar) diffusion of electrons and ions in a plasma in the magnetic field is executed

  18. Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: magnetic shear

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa M [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Gary, S Peter [Los Alamos National Laboratory

    2009-01-01

    Two-dimensional hybrid (kinetic ions, massless fluid electrons) simulations of the Kelvin Helmholtz Instability (KHI) for a magnetopause configuration with a magnetic shear across the boundary are carried out to examine how the transport of magnetosheath plasma into the magnetosphere is affected by the shear field. Low magnetic shear conditions where the magnetosheath magnetic field is within 30{sup o} of northward is included in the simulations because KHI is thought to be important for plasma transport only for northward or near-northward interplanetary magnetic field orientations. The simulations show that coherent vortices can grow for these near-northward angles, and that they are sometimes more coherent than for pure northward conditions because the turbulence which breaks-down these vortices is reduced when there are magnetic tension forces. With increasing magnetic shear angle, the growth rate is reduced, and the vortices do not grow to as large of size which reduces the plasma transport. By tracking the individual particle motions diffusion coefficients can be obtained for the system, where the diffusion is not classical in nature but instead has a time dependence resulting from both the increasingly large-scale vortex motion and the small-scale turbulence generated in the break-down of the instabilities. Results indicate that diffusion on the order of 10{sup 9} m{sup 2}/s could possibly be generated by KHI on the flanks of the magnetosphere.

  19. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.

    2002-01-01

    Relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated for the first time in reversed shear (RS) and high-β p ELMy H-mode (weak positive shear) plasmas of JT-60U for understanding of compatibility of improved energy confinement and effective particle control such as exhaust of helium ash and reduction in impurity contamination. In the RS plasma, no helium and carbon accumulation inside the ITB is observed even with highly improved energy confinement. In the high-β p plasma, both helium and carbon density profiles are flat. As the ion temperature profile changes from parabolic- to box-type, the helium diffusivity decreases by a factor of about 2 as well as the ion thermal diffusivity in the RS plasma. The measured soft X-ray profile is more peaked than that calculated by assuming the same n AR profile as the n e profile in the Ar injected RS plasma with the box-type profile, suggesting accumulation of Ar inside the ITB. Particle transport is improved with no change of ion temperature in the RS plasma, when density fluctuation is drastically reduced by a pellet injection. (author)

  20. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2012-01-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons

  1. Plasma rotation and transport in MAST spherical tokamak

    Science.gov (United States)

    Field, A. R.; Michael, C.; Akers, R. J.; Candy, J.; Colyer, G.; Guttenfelder, W.; Ghim, Y.-c.; Roach, C. M.; Saarelma, S.; MAST Team

    2011-06-01

    The formation of internal transport barriers (ITBs) is investigated in MAST spherical tokamak plasmas. The relative importance of equilibrium flow shear and magnetic shear in their formation and evolution is investigated using data from high-resolution kinetic- and q-profile diagnostics. In L-mode plasmas, with co-current directed NBI heating, ITBs in the momentum and ion thermal channels form in the negative shear region just inside qmin. In the ITB region the anomalous ion thermal transport is suppressed, with ion thermal transport close to the neo-classical level, although the electron transport remains anomalous. Linear stability analysis with the gyro-kinetic code GS2 shows that all electrostatic micro-instabilities are stable in the negative magnetic shear region in the core, both with and without flow shear. Outside the ITB, in the region of positive magnetic shear and relatively weak flow shear, electrostatic micro-instabilities become unstable over a wide range of wave numbers. Flow shear reduces the linear growth rates of low-k modes but suppression of ITG modes is incomplete, which is consistent with the observed anomalous ion transport in this region; however, flow shear has little impact on growth rates of high-k, electron-scale modes. With counter-NBI ITBs of greater radial extent form outside qmin due to the broader profile of E × B flow shear produced by the greater prompt fast-ion loss torque.

  2. Turbulent transport of impurities in a magnetized plasma; Transport turbulent d'impuretes dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Dubuit, N

    2006-10-15

    This work deals with the transport of impurities in magnetically confined thermonuclear plasmas. The accumulation of impurities in the core of the plasma would imply dramatic losses of energy that may lead to the extinction of the plasma. On the opposite, the injection of impurities in the plasma edge is considered as an efficient means to extract heat without damaging the first wall. The balance between these 2 contradictory constraints requires an accurate knowledge of the impurity transport inside the plasma. The effect of turbulence, the main transport mechanism for impurities is therefore a major issue. In this work, the complete formula of a turbulent flow of impurities for a given fluctuation spectrum has been inferred. The origin and features of the main accumulation processes have been identified. The main effect comes from the compressibility of the electrical shift speed in a plane perpendicular to the magnetic field. This compressibility appears to be linked to the curvature of the magnetic field. A less important effect is a thermal-diffusion process that is inversely proportional to the number of charges and then disappears for most type of impurities except the lightest. This effect implies an impurity flux proportional to the temperature gradient and its direction can change according to the average speed of fluctuations. A new version of the turbulence code TRB has been developed. This new version allows the constraints of the turbulence not by the gradients but by the flux which is more realistic. The importance of the processes described above has been confirmed by a comparison between calculation and experimental data from Tore-supra and the Jet tokamak. The prevailing role of the curvature of the magnetic field in the transport impurity is highlighted. (A.C.)

  3. Electron cyclotron waves, transport and instabilities in hot plasmas

    International Nuclear Information System (INIS)

    Westerhof, E.

    1987-01-01

    A number of topics relevant to the magnetic confinement approach to the thermonuclear fusion is addressed. The absorption and emission of electron cyclotron waves in a thermal plasma with a small population of supra-thermal, streaming electrons is examined and the properties of electron cyclotron waves in a plasma with a pure loss-cone distribution are studied. A report is given on the 1-D transport code simulations that were performed to assist the interpretation of the electron cyclotron heating experiments on the TFR tokamak. Transport code simulations of sawteeth discharges in the T-10 tokamak are discussed in order to compare the predictions of different models for the sawtooth oscillations with the experimental findings. 149 refs.; 69 figs.; 7 tabs

  4. Fluctuations and transport in fusion plasmas. Final report

    International Nuclear Information System (INIS)

    Gould, R.W.; Liewer, P.C.

    1995-01-01

    The energy confinement in tokamaks in thought to be limited by transport caused by plasma turbulence. Three dimensional plasma particle-in-cell (PIC) codes are used to model the turbulent transport in tokamaks to attempt to understand this phenomena so that tokamaks can be made more efficient. Presently, hundreds of hours of Cray time are used to model these experiments and much bigger and longer runs are desired, to model a large tokamak with realistic parameters is beyond the capability of existing sequential supercomputers. Parallel supercomputers might be a cost effect tool for performing such large scale 3D tokamak simulations. The goal of the work was to develop algorithms for performing PIC codes on coarse-grained message passing parallel computers and to evaluate the performance of such parallel computers on PIC codes. This algorithm would be used in a large scale PIC production code such as the UCLA 3D gyrokinetic code

  5. A self-organized criticality model for plasma transport

    International Nuclear Information System (INIS)

    Carreras, B.A.; Newman, D.; Lynch, V.E.

    1996-01-01

    Many models of natural phenomena manifest the basic hypothesis of self-organized criticality (SOC). The SOC concept brings together the self-similarity on space and time scales that is common to many of these phenomena. The application of the SOC modelling concept to the plasma dynamics near marginal stability opens new possibilities of understanding issues such as Bohm scaling, profile consistency, broad band fluctuation spectra with universal characteristics and fast time scales. A model realization of self-organized criticality for plasma transport in a magnetic confinement device is presented. The model is based on subcritical resistive pressure-gradient-driven turbulence. Three-dimensional nonlinear calculations based on this model show the existence of transport under subcritical conditions. This model that includes fluctuation dynamics leads to results very similar to the running sandpile paradigm

  6. Internal transport barriers in optimized shear plasmas in JET

    International Nuclear Information System (INIS)

    Sips, A.C.C.; Baranov, Y.F.; Challis, C.D.; Cottrell, G.A.; Eriksson, L.-G.; Gormezano, C.; Gowers, C.; Haas, J.C.M. de; Hellermann, M. von; Huysmans, G.T.A.; Howman, A.; K ig, R.; Lazarus, A.; Nielsen, P.; O'Brien, D.; Sadler, G.; Soeldner, F.X.; Stamp, M.F.; Tubbing, B.J.D.; Ward, D.J.; Greenfield, C.M.; Luce, T.; Strait, E.J.; Lazarus, E.A.; Wade, M.; Rice, B.W.

    1998-01-01

    Experiments using high-power heating during the current ramp-up phase of the discharge have obtained the highest D-D neutron rates in JET; S n =5x6x10 16 neutrons s -1 , with n e0 approx.= 6x10 19 m - 3, T e0 approx.= 12 keV and T i0 approx.= 26 keV. The best discharges (I p = 3.3 MA and B t = 3.4 tesla) have peaked pressure profiles with a transport barrier located at r/a = 0.55. The pressure peaking is limited by MHD modes and requires active input power control to achieve the best performance. Deuterium neutral beam injection into a tritium-rich target plasma has established internal transport barriers at power levels close to the lowest threshold for pure deuterium plasmas. (author)

  7. Turbulence and intermittent transport at the boundary of magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2005-01-01

    Numerical fluid simulations of interchange turbulence for geometry and parameters relevant to the boundary region of magnetically confined plasmas are shown to result in intermittent transport qualitatively similar to recent experimental measurements. The two-dimensional simulation domain features...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region...... fluctuation wave forms and transport statistics are also in a good agreement with those derived from the experiments. Associated with the turbulence bursts are relaxation oscillations in the particle and heat confinements as well as in the kinetic energy of the sheared poloidal flows. The formation of blob...

  8. Isotopic scaling of transport in deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Scott, S.D.; Murakami, M.; Adler, H.; Chang, Z.; Duong, H.; Grisham, L.R.; Fredrickson, E.D.; Grek, B.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jassby, D.L.; Johnson, D.W.; Johnson, L.C.; Loughlin, M.J.; Mansfield, D.K.; McGuire, K.M.; Meade, D.M.; Mikkelsen, D.M.; Murphy, J.; Park, H.K.; Ramsey, A.T.; Schivell, J.; Skinner, C.H.; Strachan, J.D.; Synakowski, E.J.; Taylor, G.; Thompson, M.E.; Wieland, R.; Zarnstorff, M.C.

    1995-01-01

    Both global and thermal energy confinement improve in high-temperature supershot plasmas in the Tokamak Fusion Test Reactor (TFTR) when deuterium beam heating is partially or wholly replaced by tritium beam heating. For the same heating power, the tritium-rich plasmas obtain up to 22% higher total energy, 30% higher thermal ion energy, and 20-25% higher central ion temperature. Kinetic analysis of the temperature and density profiles indicates a favorable isotopic scaling of ion heat transport and electron particle transport, with τ Ei (a/2) ∝ left angle A right angle 0.7-0.8 and τ pe (a) ∝ left angle A right angle 0.8 . (orig.)

  9. Glycine transporter dimers: evidence for occurrence in the plasma membrane

    DEFF Research Database (Denmark)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette

    2008-01-01

    membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2......Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma...

  10. Molecular dynamics simulations for transport coefficients of liquid argon: new approaches

    International Nuclear Information System (INIS)

    Lee, Song Hi; Park, Dong Kue; Kang, Dae Bok

    2003-01-01

    The stress and the heat-flux auto-correlation functions in the Green-Kubo formulas for shear viscosity and thermal conductivity have non-decaying long-time tails. This problem can be overcome by improving the statistical accuracy by N (number of particles)times, considering the stress and the heat-flux of the system as properties of each particle. The mean square stress and the heat-flux displacements in the Einstein formulas for shear viscosity and thermal conductivity are non linear functions of time since the quantities in the mean square stress and the heat-flux displacements are not continuous under periodic boundary conditions. An alternative to these quantities is to integrate the stress and the heat-flux with respect to time, but the resulting mean square stress and heat-flux displacements are still not linear versus time. This problem can be also overcome by improving the statistical accuracy. The results for transport coefficients of liquid argon obtained are discussed

  11. Selection of distribution coefficients for contaminant fate and transport calculations: Strontium as a case study

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Krupka, K.M.; Serne, R.J.

    1997-01-01

    As part of an ongoing project funded by a cooperative effort involving the Office of Radiation and Indoor Air (ORIA) of the U.S. Environmental Protection Agency (EPA), the Office of Environmental Restoration (EM-40) of the Department of Energy (DOE), and the Nuclear Regulatory Agency (NRC), distribution coefficient (K d ) values are being compiled from the literature to develop provisional tables for cadmium, cesium, chromium, lead, plutonium, strontium, thorium, and uranium. The tables are organized according to important aqueous- and solid-phase parameters affecting the sorption of these contaminants. These parameters, which vary with contaminant, include pH and redox conditions; cation exchange capacity (CEC); presence of iron-oxide, aluminum-oxide, clay, and mica minerals; organic matter content; and solution concentrations of contaminants, competing ions, and complexing ligands. Sorption information compiled for strontium is used to illustrate our approach. The strontium data show how selected geochemical parameters (i.e., CEC, pH, and clay content) affect Strontium K d values and the selection of open-quote default close-quote K d values needed for modeling contaminant transport and risks at sites for which site specific data are lacking. Results of our evaluation may be used by site management and technical staff to assess contaminant fate, migration, and risk calculations in support of site remediation and waste management decisions

  12. Fission observables from 4D Langevin calculations with macroscopic transport coefficients

    Directory of Open Access Journals (Sweden)

    Usang Mark D.

    2018-01-01

    Full Text Available We have extended the Langevin equations to 4 dimensions (4D by allowing the independent deformation for the left (δ1 and right fragments (δ2 of the fissioning nucleus. At the moment we are only able to use them in conjunction with the macroscopic transport coefficients. Nevertheless, we can see a considerable improvement in the preliminary results for the fission observables, especially those related to the total kinetic energy (TKE of fission fragments. By plotting the TKE distributions we have revealed the super-long fission modes in 236U and super-short fission modes in 257Fm. By plotting the distribution of δ against the fragment’s TKE we have noted a correlation between the values of δ and Brosa’s fission modes. We have found that the standard fission modes correspond to prolate tips of the light fragments while the complementary heavy fragments have oblate fission tips. On the other hand, if both fragments were prolate at the tips, we get super-long fission modes. If both fragments were oblate at the tips, we get super-short fission modes.

  13. Bounds and Estimates for Transport Coefficients of Random and Porous Media with High Contrasts

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    Bounds on transport coefficients of random polycrystals of laminates are presented, including the well-known Hashin-Shtrikman bounds and some newly formulated bounds involving two formation factors for a two-component porous medium. Some new types of self-consistent estimates are then formulated based on the observed analytical structure both of these bounds and also of earlier self-consistent estimates (of the CPA or coherent potential approximation type). A numerical study is made, assuming first that the internal structure (i.e., the laminated grain structure) is not known, and then that it is known. The purpose of this aspect of the study is to attempt to quantify the differences in the predictions of properties of a system being modeled when such organized internal structure is present in the medium but detailed spatial correlation information may or (more commonly) may not be available. Some methods of estimating formation factors from data are also presented and then applied to a high-contrast fluid-permeability data set. Hashin-Shtrikman bounds are found to be very accurate estimates for low contrast heterogeneous media. But formation factor lower bounds are superior estimates for high contrast situations. The new self-consistent estimators also tend to agree better with data than either the bounds or the CPA estimates, which themselves tend to overestimate values for high contrast conducting composites

  14. Mass-transport limitation to in-cloud reaction rates: Implications of new accommodation coefficient measurements

    International Nuclear Information System (INIS)

    Schwartz, S.E.

    1988-10-01

    Although it has been recognized for some time that the rate of reactive uptake of gases in cloudwater can depend on the value of the mass-accommodation coefficient (α) describing interfacial mass transport (MT), definitive evaluation of such rates is only now becoming possible with the availability of measurements of α for gases of atmospheric interest at air-water interfaces. Examination of MT limitation to the rate of in-cloud aqueous-phase oxidation of SO 2 by O 3 and H 2 O 2 shows that despite the low value of α/sub O3/ (5 /times/ 10/sup /minus/4/), interfacial MT of this species is not limiting under essentially all conditions of interest; the high values of α for SO 2 (≥ 0.2) and H 2 O 2 (≥ 0.08) indicate no interfacial MT limitation for these species also. Although gas- and aqueous-phase MT can be limiting under certain extremes of conditions, treating the system as under chemical kinetic control is generally an excellent approximation. Interfacial MT limitation also is found not to hinder the rate of H 2 O 2 formation by aqueous-phase disproportionation of HO 2 . Finally, the rapid uptake of N 2 O 5 by cloud droplets implies that the yield of aqueous HNO 3 from in-cloud gas-phase oxidation of NO 2 by O 3 can be substantial even under daytime conditions. This report consists of copies of viewgraphs prepared for this presentation

  15. Transport coefficients in second-order non-conformal viscous hydrodynamics

    International Nuclear Information System (INIS)

    Ryblewski, Radoslaw

    2015-01-01

    Based on the exact solution of Boltzmann kinetic equation in the relaxation-time approximation, the precision of the two most recent formulations of relativistic second-order non-conformal viscous hydrodynamics (14-moment approximation and causal Chapman-Enskog method), standard Israel-Stewart theory, and anisotropic hydrodynamics framework, in the simple case of one-dimensional Bjorken expansion, is tested. It is demonstrated that the failure of Israel-Stewart theory in reproducing exact solutions of the Boltzmann kinetic equation occurs due to neglecting and/or choosing wrong forms of some of the second-order transport coefficients. In particular, the importance of shear-bulk couplings in the evolution equations for dissipative quantities is shown. One finds that, in the case of the bulk viscous pressure correction, such coupling terms are as important as the corresponding first-order Navier-Stokes term and must be included in order to obtain, at least qualitative, overall agreement with the kinetic theory. (paper)

  16. Ion turbulence and thermal transport in laser-produced plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.

    1982-01-01

    In the interaction of high-intensity lasers with target plasmas the transport of thermal energy from the region in which the radiation is absorbed, to the cold dense plasma in the interior of the target, is an issue of central importance. The role of ion turbulence as a flux limiter is addressed with particular regard to recent experiments in which target plasmas were irradiated by 1.06 μm neodymium laser light at irradiances of 10 15 W cm - 2 and greater. Saturation levels of the ion-acoustic turbulence driven by a combination of a suprathermal electron current and a heat flux are calculated on the basis of perturbed orbit theory. The levels of turbulence are found to be markedly lower than those commonly estimated from simple trapping arguments and too low to explain the thermal flux inhibition observed in the experiments used as a basis for the model. (author)

  17. Computations of intermittent transport in scrape-off layer plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2004-01-01

    in the form of blobs. These structures propagate far into the scrape-off layer where they are dissipated due to transport along open magnetic field lines. From single-point recordings it is shown that the blobs have asymmetric conditional wave forms and lead to positively skewed and flattened probability......Two-dimensional fluid simulations of interchange turbulence for geometry and parameters relevant for the scrape-off layer of magnetized plasmas are presented. The computations, which have distinct plasma production and loss regions, reveal bursty ejection of particles and heat from the bulk plasma...... distribution functions. The radial propagation velocity may reach one-tenth of the sound speed. These results are in excellent agreement with recent experimental measurements....

  18. Fluid description of particle transport in hf heated magnetized plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1980-01-01

    Particle fluxes averaged over high-frequency oscillations are analyzed. The collisional effects and the kinetic mechanisms of energy absorption are included. Spatial dependences of both the high-frequency and the (quasi-)steady electromagnetic fields are arbitrary. The equations governing the fluxes are deduced from the moments of the averaged kinetic equation. Explicit expressions for steady state fluxes are given in terms of electromagnetic field quantities. The results can also be applied to anomalous transport phenomena in weakly turbulent plasmas. (author)

  19. Classical parallel transport in a multi-species plasma from a 21 moment approximation

    International Nuclear Information System (INIS)

    Radford, G.J.

    1993-11-01

    Momentum equations from a 21 moment Grad approximation are presented, including full expressions for the collision terms for the case of elastic collisions. Collision terms for the particular case of an electron-ion-impurity plasma are then given. In addition, for the positive ions, approximations to the collision terms are given for a common ion temperature, T z = T i , and a massive impurity species, m z >> m i and general temperatures. The moment equations are solved for the classical parallel transport coefficients for the specific case of a low impurity density plasma and the results compared with those give by other authors. The range of forms for the collision terms is given to allow more general or other types of solutions to be obtained. (Author)

  20. Hybrid formulation of radiation transport in optically thick divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)

    2016-08-15

    Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  1. Global plasma oscillations in electron internal transport barriers in TCV

    Energy Technology Data Exchange (ETDEWEB)

    Udintsev, V S; Sauter, O; Asp, E; Fable, E; Goodman, T P; Turri, G; Graves, J P; Zucca, C [Association Euratom-Confederation Suisse, EPFL/SB/CRPP, Station 13, CH-1015, Lausanne (Switzerland); Scarabosio, A [Max-Planck Institut fuer Plasmaphysik, IPP-EURATOM Association, Garching (Germany); Zhuang, G [Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2008-12-15

    In the Tokamak a Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q {>=} 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  2. Global plasma oscillations in electron internal transport barriers in TCV

    Science.gov (United States)

    Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team

    2008-12-01

    In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  3. Initial Studies of Core and Edge Transport of NSTX Plasmas

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Bourdelle, C.; Darrow, D.; Dorland, W.; Ejiri, A.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.J.; Menard, J.E.; Mueller, D.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Ono, M.; Paoletti, F.; Peebles, W.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.

    2001-01-01

    Rapidly developing diagnostic, operational, and analysis capability is enabling the first detailed local physics studies to begin in high-beta plasmas of the National Spherical Torus Experiment (NSTX). These studies are motivated in part by energy confinement times in neutral-beam-heated discharges that are favorable with respect to predictions from the ITER-89P scaling expression. Analysis of heat fluxes based on profile measurements with neutral-beam injection (NBI) suggest that the ion thermal transport may be exceptionally low, and that electron thermal transport is the dominant loss channel. This analysis motivates studies of possible sources of ion heating not presently accounted for by classical collisional processes. Gyrokinetic microstability studies indicate that long wavelength turbulence with k(subscript ''theta'') rho(subscript ''i'') ∼ 0.1-1 may be suppressed in these plasmas, while modes with k(subscript ''theta'') rho(subscript ''i'') ∼ 50 may be robust. High-harmonic fast-wave (HHFW) heating efficiently heats electrons on NSTX, and studies have begun using it to assess transport in the electron channel. Regarding edge transport, H-mode [high-confinement mode] transitions occur with either NBI or HHFW heating. The power required for low-confinement mode (L-mode) to H-mode transitions far exceeds that expected from empirical edge-localized-mode-free H-mode scaling laws derived from moderate aspect ratio devices. Finally, initial fluctuation measurements made with two techniques are permitting the first characterizations of edge turbulence

  4. Relaxation oscillations and transport barrier dynamics in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Benkadda, Sadruddin; Beyer, Peter; Fuhr-Chaudier, Guillaume; Garbet, Xavier; Ghendrih, Philippe; Sarazin, Yanick

    2004-01-01

    Oscillations of turbulent transport of particles and energy in magnetically confined plasmas can be easily observed in simulations of a variety of turbulence models. These oscillations typically involve a mechanism of energy exchange between fluctuations and a poloidal shear flow. This kind of ''predator-prey'' mechanism is found to be not relevant for transport barrier relaxations. In RBM simulations of resistive ballooning turbulence with transport barrier, relaxation oscillations of the latter are observed even in the case of frozen poloidal shear flow. These relaxations are due to a transitory growth of a mode localized at the barrier center. A one-dimensional model for the evolution of such a mode in the presence of a shear flow describes a transitory growth of an initial perturbation. Oscillations in the case of a finite steady-state shear flow are possible due to the coupling of the mode to the dynamics of the pressure profile. (author)

  5. Development of plasma diagnostics technologies - Measurement of transport= parameters in tokamak edge plasma by using electric transport probes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyu Sun; Chang, Do Hee; Sim, Yeon Gun; Kim, Jin Hee [Hanyang University, Seoul (Korea, Republic of)

    1995-08-01

    Electric transport probe system is developed for the measurement of electron temperature, floating potential, plasma density and flow velocity of= edge plasmas in the KT-2 medium size tokamak. Experiments have been performed in KT-1 small size tokamak. Electric transport probe is composed of a single probe(SP) and a Mach probe (MP). SP is used for the measurements of electron density, floating potential, and plasma density and measured values are {approx} 3*10{sup 11}/cm{sup -3}, -20 volts, 15 {approx} 25 eV. For the most discharges, respectively. MP is for the measurements of toroidal(M{sub T}) and poloidal(M{sub P}) flow velocities, and density, which are M{sub T} {approx_equal} .0.85, M{sub P} {approx_equal}. 0.17, n. {approx_equal} 2.1*10{sup 11} cm{sup -3}, respectively. A triple probe is also developed for the direct reading of T{sub e} and n{sub e}, and is used for DC, RF, and RF+DC plasma in APL of Hanyang university. 38 refs., 36 figs. (author)

  6. The plasma membrane transport systems and adaptation to salinity.

    Science.gov (United States)

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Diffusion Coefficient Calculations With Low Order Legendre Polynomial and Chebyshev Polynomial Approximation for the Transport Equation in Spherical Geometry

    International Nuclear Information System (INIS)

    Yasa, F.; Anli, F.; Guengoer, S.

    2007-01-01

    We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general

  8. Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients

    Science.gov (United States)

    Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.

    2018-03-01

    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.

  9. Plasma-wall interactions data compendium-1. ''Hydrogen retention property, diffusion and recombination coefficients database for selected plasma-facing materials''

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Hirotomo [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Matsuhiro, Kenjirou [Osaka Univ., Osaka (Japan); Hirooka, Yoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamura, Yasunori [Okayama Univ. of Scinece, Okayama (Japan)

    2002-05-01

    A summary on the recent activities of the plasma-wall interactions database task group at the National Institute for Fusion Science is presented in this report. These activities are focused on the compilation of literature data on the key parameters related to wall recycling characteristics that affect dynamic particle balance during plasma discharges and also on-site tritium inventory. More specifically, in this task group a universal fitting formula has been proposed and successfully applied to help compile hydrogen implantation-induced retention data. Also, presented here are the data on hydrogen diffusion and surface recombination coefficients, both critical in modeling dynamic wall recycling behavior. Data compilation has been conducted on beryllium, carbon, tungsten and molybdenum, all currently used for plasma-facing components in magnetic fusion experiments. (author)

  10. Procedure for obtaining neutron diffusion coefficients from neutron transport Monte Carlo calculations (AWBA Development Program)

    International Nuclear Information System (INIS)

    Gast, R.C.

    1981-08-01

    A procedure for defining diffusion coefficients from Monte Carlo calculations that results in suitable ones for use in neutron diffusion theory calculations is not readily obtained. This study provides a survey of the methods used to define diffusion coefficients from deterministic calculations and provides a discussion as to why such traditional methods cannot be used in Monte Carlo. This study further provides the empirical procedure used for defining diffusion coefficients from the RCP01 Monte Carlo program

  11. Transport coefficients for laminar and turbulent flow through a four-cusp channel

    International Nuclear Information System (INIS)

    Souza Dutra, A. de; Parise, J.A.R.; Souza Mendes, P.R. de.

    1986-01-01

    The heat transfer coefficients for laminar and turbulent flow in a four-cusp channel were determined. A numerical solution was developed for laminar flow an and experimental study for turbulent flow was carried out. Systematic variations of the Reynolds number were done in the range 900-30000. The results show that the heat transfer coefficients for the four-cusp channel are much lower than the coefficients for the circular tube. (author) [pt

  12. Transport coefficients of InSb in a strong magnetic field

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou

    1998-02-01

    Improvement of a superconducting magnet system makes induction of a strong magnetic field easier. This fact gives us a possibility of energy conversion by the Nernst effect. As the first step to study the Nernst element, we measured the conductivity, the Hall coefficient, the thermoelectric power and the Nernst coefficient of the InSb, which is one of candidates of the Nernst elements. From this experiment, it is concluded that the Nernst coefficient is smaller than the theoretical values. On the other hand, the conductivity, the Hall coefficient and the thermoelectric power has the values expected by the theory. (author)

  13. Electron heat transport analysis of low-collisionality plasmas in the neoclassical-transport-optimized configuration of LHD

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Wakasa, Arimitsu

    2002-01-01

    Electron heat transport in low-collisionality LHD plasma is investigated in order to study the neoclassical transport optimization effect on thermal plasma transport with an optimization level typical of so-called ''advanced stellarators''. In the central region, a higher electron temperature is obtained in the optimized configuration, and transport analysis suggests the considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. The obtained experimental results support future reactor design in which the neoclassical and/or anomalous transports are reduced by magnetic field optimization in a non-axisymmetric configuration. (author)

  14. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    The Plasma Facing Components (PFC) will play a crucial role in future deuterium-tritium magnetically confined fusion power plants, since they will be subject to high energy and particle loads, but at the same time have to ensure long lifetimes and a low tritium retention. These requirements will most probably necessitate the use of high-Z materials such as tungsten for the wall materials, since their erosion properties are very benign and, unlike carbon, capture only little tritium. The drawback with high-Z materials is, that they emit strong line radiation in the core plasma, which acts as a powerful energy loss mechanism. Thus, the concentration of these high-Z materials has to be controlled and kept at low levels in order to achieve a burning plasma. Understanding the transport processes in the plasma edge is essential for applying the proper impurity control mechanisms. This control can be exerted either by enhancing the outflux, e.g. by Edge Localized Modes (ELM), since they are known to expel impurities from the main plasma, or by reducing the influx, e.g. minimizing the tungsten erosion or increasing the shielding effect of the Scrape Off Layer (SOL). ASDEX Upgrade (AUG) has been successfully operating with a full tungsten wall for several years now and offers the possibility to investigate these edge transport processes for tungsten. This study focused on the disentanglement of the frequency of type-I ELMs and the main chamber gas injection rate, two parameters which are usually linked in H-mode discharges. Such a separation allowed for the first time the direct assessment of the impact of each parameter on the tungsten concentration. The control of the ELM frequency was performed by adjusting the shape of the plasma, i.e. the upper triangularity. The radial tungsten transport was investigated by implementing a modulated tungsten source. To create this modulated source, the linear dependence of the tungsten erosion rate at the Ion Cyclotron Resonance

  15. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  16. Transport Studies in Alcator C-Mod ITB Plasmas

    Science.gov (United States)

    Fiore, C. L.; Bonoli, P. T.; Ernst, D.; Greenwald, M. J.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Rice, J. E.; Wukitch, S.; Rowan, W.; Bespamyatnov, I.; Phillips, P.

    2008-11-01

    Internal transport barriers occur in C-Mod plasmas that have off-axis ICRF heating and also in Ohmic H-mode plasmas. These ITBs are marked by highly peaked density and pressure profiles, as they rely on a reduction of particle and thermal flux in the barrier region which allows the neoclassical pinch to peak the central density without reducing the central temperature. Enhancement of several core diagnostics has resulted in increased understanding of C-Mod ITBs. Ion temperature profile measurements have been obtained using an innovative design for x-ray crystal spectrometry and clearly show a barrier forming in the ion temperature profile. The phase contrast imaging (PCI) provides limited localization of the ITB related fluctuations that increase in strength as the central density increases. Simulation of triggering conditions, integrated simulations with fluctuation measurements, parametric studies, and transport implications of fully ionized boron impurity profiles in the plasma are under study. A summary of these results will be presented.

  17. Coherent structures and transport in drift wave plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bang Korsholm, S.

    2011-12-15

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  18. Coherent structures and transport in drift wave plasma turbulence

    International Nuclear Information System (INIS)

    Bang Korsholm, S.

    2011-12-01

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  19. Electron heat transport in shaped TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y; Pochelon, A; Bottino, A; Coda, S; Ryter, F; Sauter, O; Behn, R; Goodman, T P; Henderson, M A; Karpushov, A; Porte, L; Zhuang, G

    2005-01-01

    Electron heat transport experiments are performed in L-mode discharges at various plasma triangularities, using radially localized electron cyclotron heating to vary independently both the electron temperature T e and the normalized electron temperature gradient R/L T e over a large range. Local gyro-fluid (GLF23) and global collisionless gyro-kinetic (LORB5) linear simulations show that, in the present experiments, trapped electron mode (TEM) is the most unstable mode. Experimentally, the electron heat diffusivity χ e is shown to decrease with increasing collisionality, and no dependence of χ e on R/L T e is observed at high R/L T e values. These two observations are consistent with the predictions of TEM simulations, which supports the fact that TEM plays a crucial role in electron heat transport. In addition, over the broad range of positive and negative triangularities investigated, the electron heat diffusivity is observed to decrease with decreasing plasma triangularity, leading to a strong increase of plasma confinement at negative triangularity

  20. Particle transport in JET and TCV-H mode plasmas

    International Nuclear Information System (INIS)

    Maslov, M.

    2009-10-01

    Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the problem of heat transport in tokamaks attracted the attention of researchers, but the particle transport phenomena were largely neglected until fairly recently. As tokamak physics advanced to its present level, the physics community realized that there are many hurdles to the development of fusion power beyond the energy confinement. Particle transport is one of the outstanding issues. The aim of this thesis work is to study the anomalous (turbulence driven) particle transport in tokamaks on the basis of experiments on two different devices: JET (Joint European Torus) and TCV (Tokamak à Configuration Variable). In particular the physics of particle inward convection (pinch), which causes formation of peaked density profiles, is addressed in this work. Density profile peaking has a direct, favorable effect on fusion power in a reactor, we therefore also propose an extrapolation to the international experimental reactor ITER, which is currently under construction. To complete the thesis research, a comprehensive experimental database was created on the basis of data collected on JET and TCV during the duration of the thesis. Improvements of the density profile measurements techniques and careful analysis of the experimental data allowed us to derive the dependencies of density profile shape on the relevant plasma parameters. These improved techniques also allowed us to dispel any doubts that had been voiced about previous results. The major conclusions from previous work on JET and other tokamaks were generally confirmed, with some minor supplements. The main novelty of the thesis resides in systematic tests of the predictions of linear gyrokinetic simulations of the ITG (Ion Temperature Gradient) mode against the

  1. A CUMULATIVE MIGRATION METHOD FOR COMPUTING RIGOROUS TRANSPORT CROSS SECTIONS AND DIFFUSION COEFFICIENTS FOR LWR LATTICES WITH MONTE CARLO

    Energy Technology Data Exchange (ETDEWEB)

    Zhaoyuan Liu; Kord Smith; Benoit Forget; Javier Ortensi

    2016-05-01

    A new method for computing homogenized assembly neutron transport cross sections and dif- fusion coefficients that is both rigorous and computationally efficient is proposed in this paper. In the limit of a homogeneous hydrogen slab, the new method is equivalent to the long-used, and only-recently-published CASMO transport method. The rigorous method is used to demonstrate the sources of inaccuracy in the commonly applied “out-scatter” transport correction. It is also demonstrated that the newly developed method is directly applicable to lattice calculations per- formed by Monte Carlo and is capable of computing rigorous homogenized transport cross sections for arbitrarily heterogeneous lattices. Comparisons of several common transport cross section ap- proximations are presented for a simple problem of infinite medium hydrogen. The new method has also been applied in computing 2-group diffusion data for an actual PWR lattice from BEAVRS benchmark.

  2. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    Science.gov (United States)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  3. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    International Nuclear Information System (INIS)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N.; Yu, He

    2014-01-01

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n e ) and temperature (T e ) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n e peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n e increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n e and T e data, and ion extraction efficiency based on the measured plasma potential (V p ) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T e and inefficient ion extraction in a larger pre-sheath potential.

  4. Plasma/neutral gas transport in divertors and limiters

    International Nuclear Information System (INIS)

    Gierszewski, P.J.

    1983-09-01

    The engineering design of the divertor and first wall region of fusion reactors requires accurate knowledge of the energies and particle fluxes striking these surfaces. Simple calculations indicate that approx. 10 MW/m 2 heat fluxes and approx. 1 cm/yr erosion rates are possible, but there remain fundamental physics questions that bear directly on the engineering design. The purpose of this study was to treat hydrogen plasma and neutral gas transport in divertors and pumped limiters in sufficient detail to answer some of the questions as to the actual conditions that will be expected in fusion reactors. This was accomplished in four parts: (1) a review of relevant atomic processes to establish the dominant interactions and their data base; (2) a steady-state coupled O-D model of the plasma core, scrape-off layer and divertor exhaust to determine gross modes of operation and edge conditions; (3) a 1-D kinetic transport model to investigate the case of collisionless divertor exhaust, including non-Maxwellian ions and neutral atoms, highly collisional electrons, and a self-consistent electric field; and (4) a 3-D Monte Carlo treatment of neutral transport to correctly account for geometric effects

  5. Transport processes in magnetically confined plasmas in the nonlinear regime.

    Science.gov (United States)

    Sonnino, Giorgio

    2006-06-01

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  6. A quasi-linear gyrokinetic transport model for tokamak plasmas

    International Nuclear Information System (INIS)

    Casati, A.

    2009-10-01

    After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed

  7. Double internal transport barrier triggering mechanism in tokamak plasmas

    International Nuclear Information System (INIS)

    Dong, Jiaqi; Mou, Zongze; Long, Yongxing; Mahajan, Swadesh M.

    2004-01-01

    Sheared flow layers created by energy released in magnetic reconnection processes are studied with the magneto hydrodynamics (MHD), aimed at internal transport barrier (ITB) dynamics. The double tearing mode induced by electron viscosity is investigated and proposed as a triggering mechanism for double internal transport barrier (DITB) observed in tokamak plasmas with non-monotonic safety factor profiles. The quasi-linear development of the mode is simulated and the emphasis is placed on the structure of sheared poloidal flow layers formed in the vicinity of the magnetic islands. For viscosity double tearing modes, it is shown that the sheared flows induced by the mode may reach the level required by the condition for ITB formation. Especially, the flow layers are found to form just outside the magnetic islands. The scaling of the generated velocity with plasma parameters is given. Possible explanation for the experimental observations that the preferential formation of transport barriers in the proximity of low order rational surface is discussed. (author)

  8. Glycine transporter dimers: evidence for occurrence in the plasma membrane.

    Science.gov (United States)

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette; Dutertre, Sébastien; Hastrup, Hanne; Jha, Alok; Gether, Ulrik; Sitte, Harald H; Betz, Heinrich; Eulenburg, Volker

    2008-04-18

    Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2 by fluorescence resonance energy transfer microscopy. Endoglycosidase treatment and surface biotinylation further revealed that complex-glycosylated GlyTs form dimers located at the cell surface. Furthermore, substitution of tryptophan 469 of GlyT2 by an arginine generated a transporter deficient in dimerization that was retained intracellulary. Based on these results and GlyT structures modeled by using the crystal structure of the bacterial homolog LeuT(Aa), as a template, residues located within the extracellular loop 3 and at the beginning of transmembrane domain 6 are proposed to contribute to the dimerization interface of GlyTs.

  9. Self-consistent electron transport in collisional plasmas

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    A self-consistent scheme has been developed to model electron transport in evolving plasmas of arbitrary classical collisionality. The electrons and ions are treated as either multiple donor-cell fluids, or collisional particles-in-cell. Particle suprathermal electrons scatter off ions, and drag against fluid background thermal electrons. The background electrons undergo ion friction, thermal coupling, and bremsstrahlung. The components move in self-consistent advanced E-fields, obtained by the Implicit Moment Method, which permits Δt >> ω/sub p/ -1 and Δx >> lambda/sub D/ - offering a 10 2 - 10 3 -fold speed-up over older explicit techniques. The fluid description for the background plasma components permits the modeling of transport in systems spanning more than a 10 7 -fold change in density, and encompassing contiguous collisional and collisionless regions. Results are presented from application of the scheme to the modeling of CO 2 laser-generated suprathermal electron transport in expanding thin foils, and in multi-foil target configurations

  10. A PROBE-BASED METHOD FOR MEASURING THE TRANSPORT COEFFICIENT IN THE TOKAMAK EDGE REGION

    Czech Academy of Sciences Publication Activity Database

    Brotánková, Jana; Martines, E.; Adámek, Jiří; Popa, G.; Costin, C.; Schrittwieser, R.; Ionita, C.; Stöckel, Jan; Van Oost, G.; van de Peppel, L.

    2006-01-01

    Roč. 56, č. 12 (2006), s. 1321-1327 ISSN 0011-4626. [Workshop on the Electric Field, Structures, and Relaxation in Edge Plasma/9th./. Řím, 26.6.2006-27.6.2006] R&D Projects: GA AV ČR(CZ) KJB100430601 Institutional research plan: CEZ:AV0Z20430508 Keywords : probe measurements * plasma edge * diffusion Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  11. Non-local transport in a tokamak plasma divertor with recycling

    International Nuclear Information System (INIS)

    Abou-Assaleh, Z.; Petravic, M.; Vesey, R.

    1993-01-01

    The plasma transport, particle and energy fluxes, near the diverter plate with high recycling has been modeled by using an electron kinetic code (Fokker-Planck International) in conjunction with a two-fluid ambipolar code. We include the effects of ionization and excitation of the hydrogen atoms. The electron energy distribution calculated from the kinetic code shows a large deviation from Maxwellian especially near the plate. This deviation from Maxwellian is due to the non-local transport of the suprathermal electrons from the SOL, and due also to the absorption of the fast electrons by the target plate. The heat flux near the plate is shown to be nonlocal, in that it is not determined uniquely by the local plasma parameters. Therefore the classical transport coefficients in the fluid model must be modified by including a nonlocal effect to produce the kinetic results. The kinetic calculation is compared with those of the fluid code with different values of the electron heat flux limiter factor (f). To reduce the computer load, the initial condition we used corresponds to the equilibrium solution already found with the fluid code with f=0.2. The fluid and Fokker-Planck codes are relaxed until all transients associated with electron dynamics have disappeared. In section 2, we present the kinetic code. The fluid code is presented in section 3. The boundary conditions used in these simulations are given in section 4. Finally the results and conclusion of these simulations are presented in section 5

  12. Experimental study of tungsten transport properties in T-10 plasma

    Science.gov (United States)

    Krupin, V. A.; Nurgaliev, M. R.; Klyuchnikov, L. A.; Nemets, A. R.; Zemtsov, I. A.; Dnestrovskij, A. Yu.; Sarychev, D. V.; Lisitsa, V. S.; Shurygin, V. A.; Leontiev, D. S.; Borschegovskij, A. A.; Grashin, S. A.; Ryjakov, D. V.; Sergeev, D. S.; Mustafin, N. A.; Trukhin, V. M.; Solomatin, R. Yu.; Tugarinov, S. N.; Naumenko, N. N.

    2017-06-01

    First experimental results of tungsten transport investigation in OH and ECRH plasmas in the T-10 tokamak with W-limiter and movable Li-limiter are presented. It is shown that tungsten tends to accumulate (a joint process of cumulation and peaking) near the plasma axis in ohmic regimes. The cumulation of W is enhanced in discharges with high values of the parameter γ ={{\\bar{n}}\\text{e}}\\centerdot {{\\bar{Z}}\\text{eff}}\\centerdot I\\text{pl}-1.5 that coincides with accumulation conditions of light and medium impurities in T-10 plasmas. Experiments with Li-limiter show the immeasurable level of Li3+ (0.3-0.5% of n e) of T-10 CXRS diagnostics because of the low inflow of Li with respect to other light impurities. Nevertheless, the strong influence of lithium on inflow of light and tungsten impurities is observed. In discharges with lithized walls, vanishing of light impurities occurs and values of {{Z}\\text{eff}}≈ 1 are obtained. It is also shown that the tungsten density in the plasma center decreases by 15 to 20 times while the W inflow reduces only by 2 to 4 times. In lithized discharges with high γ, the flattening of the tungsten density profile occurs and its central concentration decreases up to 10 times during the on-axis ECRH. This effect is observed together with the increase of the W inflow by 3 to 4 times at the ECRH stage.

  13. Study of electronic heat transport in plasma through diagnosis based on modulated electron cyclotron heating; Etudes de transport de la chaleur electronique par injection modulee d'ondes a la frequence cyclotronique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Clemencon, A.; Guivarch, C

    2003-07-01

    In order to make nuclear fusion energetically profitable, it is crucial to heat and confine the plasma efficiently. Studying the behavior of the heat diffusion coefficient is a key issue in this matter. The use of modulated electron cyclotron heating as a diagnostic has suggested the existence of a transport barrier under certain plasma conditions. We have determined the solution to the heat transport equation, for several heat diffusion coefficient profiles. By comparing the analytical solutions with experimental data; we are able to study the heat diffusion coefficient profile. Thus, in certain experiments, we can confirm that the heat diffusion coefficient switches from low to high values at the radius where the electron cyclotron heat deposition is made. (authors)

  14. Two dimensional neutral transport analysis in tokamak plasma

    International Nuclear Information System (INIS)

    Shimizu, Katsuhiro; Azumi, Masafumi

    1987-02-01

    Neutral particle influences the particle and energy balance, and play an important role on sputtering impurity and the charge exchange loss of neutral beam injection. In order to study neutral particle behaviour including the effects of asymmetric source and divertor configuration, the two dimensional neutral transport code has been developed using the Monte-Carlo techniques. This code includes the calculation of the H α radiation intensity based on the collisional-radiation model. The particle confinement time of the joule heated plasma in JT-60 tokamak is evaluated by comparing the calculated H α radiation intensity with the experimental data. The effect of the equilibrium on the neutral density profile in high-β plasma is also investigated. (author)

  15. Light impurity transport in JET ILW L-mode plasmas

    Science.gov (United States)

    Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET

    2018-03-01

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  16. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  17. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    International Nuclear Information System (INIS)

    Tauschwitz, T.; Yu, S.S.; Eylon, S.; Reginato, L.; Leemans, W.; Rasmussen, J.O.; Bangerter, R.O.

    1995-04-01

    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used

  18. Transport coefficients of hard-sphere mixtures: Theory and Monte Carlo molecular-dynamics calculations for an isotopic mixture

    International Nuclear Information System (INIS)

    Erpenbeck, J.J.

    1989-01-01

    The thermal transport properties of mixtures can be formulated in a number of ways, depending on the choice of driving forces for the transport of heat and matter, without violating the Onsager conditions. Here we treat transport in mixtures based on the driving forces -del ln T and -T del(μ/sub a//T), with T the temperature and μ/sub a/ the specific chemical potential, to obtain the Green-Kubo expressions and the Enskog theory for the corresponding transport coefficients which seem most amenable to molecular-dynamics evaluation. The transport properties of a hard-sphere mixture (mass ratio of 0.1, diameter ratio of 1.0, at a volume of three times close-packed volume), calculated by a Monte Carlo, molecular-dynamics method based on the Green-Kubo formulas, are compared with the predictions of the Enskog theory. The long-time behavior of the Green-Kubo time-correlation functions for shear viscosity, thermal conductivity, thermal diffusion, and mutual diffusion are found to be in good agreement with the predictions of mode-coupling theory. Except for viscosity, the contribution of the long-time tails to the transport coefficients is found to be significant. We obtain values, relative to Enskog, of 1.016 +- 0.007 for shear viscosity, 1.218 +- 0.009 for thermal conductivity, 1.267 +- 0.026 for thermal diffusion, and 1.117 +- 0.008 for mutual diffusion

  19. MHD waves, reconnection, and plasma transport at the dayside magnetopause

    International Nuclear Information System (INIS)

    Johnson, J.R.; Cheng, C.Z.

    1996-01-01

    The magnetic field of the Earth creates a huge cavity in the solar wind known as the magnetosphere. The transition region between the solar wind plasma and magnetosphere plasma is of substantial interest because many magnetospheric processes are governed by the transport of particles, momentum and energy across that boundary. At this boundary, the magnetopause, there is an abrupt decrease in plasma bulk flow, density and pressure, and large increase in temperature and magnetic field. Throughout this region the plasmas is large. Large amplitude compressional waves are nearly always found in the region just outside of the magnetopause. These waves are either intrinsic solar wind fluctuations or they may be global mirror modes which are generated in a localized region of large pressure anisotropy just outside the magnetopause. The substantial background gradients observed at the magnetopause strongly couple the compressional waves with kinetic Alfven waves near the Alfven resonance location, leading to substantial particle transport. Moreover, for a sheared background magnetic field, as is found at times of southward interplanetary magnetic field, the mode converted kinetic Alfven waves can propagate to the location where k parallel = 0 and generate islands in phase space. We present a solution of the kinetic-MHD wave equations for the magnetic field structure based on a realistic steady state profile which includes: a sheared magnetic field; magnetic curvature; and gradients in the background density, pressure and magnetic field. We incorporate wave-particle resonance interactions for electrons and ions to obtain the dissipation. The background magnetic Keld curvature and gradient give rise to drifts which alter the resonance condition for the various particle species (ω - k circ V d - k parallel v parallel ) and reduces the Landau damping of the kinetic Alfven wave, allowing it to propagate to the k parallel = 0 location

  20. Extensions of the 3-dimensional plasma transport code E3D

    International Nuclear Information System (INIS)

    Runov, A.; Schneider, R.; Kasilov, S.; Reiter, D.

    2004-01-01

    One important aspect of modern fusion research is plasma edge physics. Fluid transport codes extending beyond the standard 2-D code packages like B2-Eirene or UEDGE are under development. A 3-dimensional plasma fluid code, E3D, based upon the Multiple Coordinate System Approach and a Monte Carlo integration procedure has been developed for general magnetic configurations including ergodic regions. These local magnetic coordinates lead to a full metric tensor which accurately accounts for all transport terms in the equations. Here, we discuss new computational aspects of the realization of the algorithm. The main limitation to the Monte Carlo code efficiency comes from the restriction on the parallel jump of advancing test particles which must be small compared to the gradient length of the diffusion coefficient. In our problems, the parallel diffusion coefficient depends on both plasma and magnetic field parameters. Usually, the second dependence is much more critical. In order to allow long parallel jumps, this dependence can be eliminated in two steps: first, the longitudinal coordinate x 3 of local magnetic coordinates is modified in such a way that in the new coordinate system the metric determinant and contra-variant components of the magnetic field scale along the magnetic field with powers of the magnetic field module (like in Boozer flux coordinates). Second, specific weights of the test particles are introduced. As a result of increased parallel jump length, the efficiency of the code is about two orders of magnitude better. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Zeff measurements and low-Z impurity transport for NBI and ICRF heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Amano, T.; Kawahata, K.; Kaneko, O.

    1988-12-01

    A visible bremsstrahlung detector array system for Z eff measurements and a charge exchange recombination spectroscopy (CXRS) system for fully ionized impurity profile measurements were installed on JIPP TII-U to study impurity transport for NBI and ICRF heated plasma. More impurities are sputtered by ICRF heating than by NBI and/or ohmic heatings. The carbon contribution to Z eff is 80-90 % for NBI heated plasmas, and 60 % for NBI + ICRF heated plasmas. With a carbon coating of vacuum vessel, the Z eff value decreases 2.4 to 1.7 and the carbon contribution to Z eff increases up to 80-90 %. We obtain the diffusion coefficient D a = 1.0 m 2 /s and the convective velocity V a (a) = 13 m/s at the plasma edge for carbon impurity from the radial profile and time evolution of fully ionized carbon after the ICRF pulse is turned on. (author)

  2. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-β micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient

  3. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-..beta.. micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient.

  4. Three-dimensional transport coefficient model and prediction-correction numerical method for thermal margin analysis of PWR cores

    International Nuclear Information System (INIS)

    Chiu, C.

    1981-01-01

    Combustion Engineering Inc. designs its modern PWR reactor cores using open-core thermal-hydraulic methods where the mass, momentum and energy equations are solved in three dimensions (one axial and two lateral directions). The resultant fluid properties are used to compute the minimum Departure from Nuclear Boiling Ratio (DNBR) which ultimately sets the power capability of the core. The on-line digital monitoring and protection systems require a small fast-running algorithm of the design code. This paper presents two techniques used in the development of the on-line DNB algorithm. First, a three-dimensional transport coefficient model is introduced to radially group the flow subchannel into channels for the thermal-hydraulic fluid properties calculation. Conservation equations of mass, momentum and energy for this channels are derived using transport coefficients to modify the calculation of the radial transport of enthalpy and momentum. Second, a simplified, non-iterative numerical method, called the prediction-correction method, is applied together with the transport coefficient model to reduce the computer execution time in the determination of fluid properties. Comparison of the algorithm and the design thermal-hydraulic code shows agreement to within 0.65% equivalent power at a 95/95 confidence/probability level for all normal operating conditions of the PWR core. This algorithm accuracy is achieved with 1/800th of the computer processing time of its parent design code. (orig.)

  5. Nuclear geometry effect and transport coefficient in semi-inclusive lepton-production of hadrons off nuclei

    Directory of Open Access Journals (Sweden)

    Na Liu

    2015-10-01

    Full Text Available Hadron production in semi-inclusive deep-inelastic scattering of leptons from nuclei is an ideal tool to determine and constrain the transport coefficient in cold nuclear matter. The leading-order computations for hadron multiplicity ratios are performed by means of the SW quenching weights and the analytic parameterizations of quenching weights based on BDMPS formalism. The theoretical results are compared to the HERMES positively charged pions production data with the quarks hadronization occurring outside the nucleus. With considering the nuclear geometry effect on hadron production, our predictions are in good agreement with the experimental measurements. The extracted transport parameter from the global fit is shown to be qˆ=0.74±0.03 GeV2/fm for the SW quenching weight without the finite energy corrections. As for the analytic parameterization of BDMPS quenching weight without the quark energy E dependence, the computed transport coefficient is qˆ=0.20±0.02 GeV2/fm. It is found that the nuclear geometry effect has a significant impact on the transport coefficient in cold nuclear matter. It is necessary to consider the detailed nuclear geometry in studying the semi-inclusive hadron production in deep inelastic scattering on nuclear targets.

  6. A new methodology for determining dispersion coefficient using ordinary and partial differential transport equations.

    Science.gov (United States)

    Cho, Kyung Hwa; Lee, Seungwon; Ham, Young Sik; Hwang, Jin Hwan; Cha, Sung Min; Park, Yongeun; Kim, Joon Ha

    2009-01-01

    The present study proposes a methodology for determining the effective dispersion coefficient based on the field measurements performed in Gwangju (GJ) Creek in South Korea which is environmentally degraded by the artificial interferences such as weirs and culverts. Many previous works determining the dispersion coefficient were limited in application due to the complexity and artificial interferences in natural stream. Therefore, the sequential combination of N-Tank-In-Series (NTIS) model and Advection-Dispersion-Reaction (ADR) model was proposed for evaluating dispersion process in complex stream channel in this study. The series of water quality data were intensively monitored in the field to determine the effective dispersion coefficient of E. coli in rainy day. As a result, the suggested methodology reasonably estimates the dispersion coefficient for GJ Creek with 1.25 m(2)/s. Also, the sequential combined method provided Number of tank-Velocity-Dispersion coefficient (NVD) curves for convenient evaluation of dispersion coefficient of other rivers or streams. Comparing the previous studies, the present methodology is quite general and simple for determining the effective dispersion coefficients which are applicable for other rivers and streams.

  7. Study of the transport parameters of cloud lightning plasmas

    International Nuclear Information System (INIS)

    Chang, Z. S.; Yuan, P.; Zhao, N.

    2010-01-01

    Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar sudden change behavior in tortuous positions and the branch of the cloud lightning channel.

  8. Transport and containment of plasma, particles and energy within flares

    Science.gov (United States)

    Acton, L. W.; Brown, W. A.; Bruner, M. E. C.; Haisch, B. M.; Strong, K. T.

    1983-01-01

    Results from the analysis of flares observed by the Solar Maximum Mission (SMM) and a recent rocket experiment are discussed. Evidence for primary energy release in the corona through the interaction of magnetic structures, particle and plasma transport into more than a single magnetic structure at the time of a flare and a complex and changing magnetic topology during the course of a flare is found. The rocket data are examined for constraints on flare cooling, within the context of simple loop models. These results form a basis for comments on the limitations of simple loop models for flares.

  9. Reaction-rate coefficients, high-energy ions slowing-down, and power balance in a tokamak fusion reactor plasma

    International Nuclear Information System (INIS)

    Tone, Tatsuzo

    1978-07-01

    Described are the reactivity coefficient of D-T fusion reaction, slowing-down processes of deuterons injected with high energy and 3.52 MeV alpha particles generated in D-T reaction, and the power balance in a Tokamak reactor plasma. Most of the results were obtained in the first preliminary design of JAERI Experimental Fusion Reactor (JXFR) driven with stationary neutral beam injection. A manual of numerical computation program ''BALTOK'' developed for the calculations is given in the appendix. (auth.)

  10. Determination of the radioactive aerosols transport coefficients generated in open pit uranium mining areas

    International Nuclear Information System (INIS)

    Azevedo Py Junior, D. de.

    1978-01-01

    The classical atmospheric transport model is applied to uranium mining operations. Among the transport parameters there is one concerned with radioactive decay, but it does not include the radioactive decay series which is the specific case for uranium. Therefore, an extension of the transport theory is developed and tested, giving results greater than the ones obtained with the classical model, as expected. (author)

  11. Progress in transport modelling of internal transport barrier plasmas in JET

    International Nuclear Information System (INIS)

    Tala, T.; Bourdelle, C.; Imbeaux, F.; Moreau, D.; Garbet, X.; Joffrin, E.; Laborde, L.; Litaudon, X.; Mazon, D.; Parail, V.; Corrigan, G.; Heading, D.; Crisanti, F.; Mantica, P.; Salmi, A.; Strand, P.; Weiland, J.

    2005-01-01

    This paper will report on the recent progress in transport modelling of Internal Transport Barrier (ITB) plasmas. Two separate issues will be covered, fully predictive transport modelling of ITBs in the multi-tokamak database, including micro-stability analyses of ITBs, and predictive closed-loop (i.e. real-time control) transport simulations of the q-profile and ITBs. For the first time, the predictive capabilities of the mixed Bohm/GyroBohm and Weiland transport models are investigated with discharges from the ITPA ITB database by fully predictive transport simulations. The predictive transport simulations with the Bohm/GyroBohm model agree very well with experimental results from JET and JT-60U. In order to achieve a good agreement in DIII-D, the stabilisation had to be included into the model, showing the significant role played by the stabilisation in governing the physics of the ITBs. The significant role of the stabilisation is also emphasised by the gyrokinetic analysis. The Weiland transport model shows only limited agreement between the model predictions and experimental results with respect to the formation and location of the ITB. The fully predictive closed-loop simulations with real-time control of the q-profile and ITB show that it is possible to reach various set-point profiles for q and ITB and control them for longer than a current diffusion time in JET using the same real-time control technique as in the experiments. (author)

  12. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigma)

    Science.gov (United States)

    Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.

    2005-05-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.

  13. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigm

    International Nuclear Information System (INIS)

    Sanchez, R.; Milligen, B.Ph. van; Carreras, B.A.

    2005-01-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Levy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems

  14. Investigation of steady plasma actuation effect on aerodynamic coefficients of oscillating airfoil at low Reynolds number

    OpenAIRE

    Arash Mahboubidoust; Abas Ramiar; Morteza Dardel

    2017-01-01

    In this work, numerical study of two dimensional laminar incompressible flow around an oscillating NACA0012 airfoil is proceeded using the open source code OpenFOAM. Oscillatory motion types including pitching and flapping are considered. Reynolds number for these motions is assumed to be 12000 and effects of these motions and also different unsteady parameters such as amplitude and reduced frequency on aerodynamic coefficients are studied. For flow control on airfoil, dielectric barrier disc...

  15. Multi-energy soft-x-ray technique for impurity transport measurements in the fusion plasma edge

    International Nuclear Information System (INIS)

    Clayton, D J; Tritz, K; Stutman, D; Finkenthal, M; Kumar, D; Kaye, S M; LeBlanc, B P; Paul, S; Sabbagh, S A

    2012-01-01

    A new diagnostic technique was developed to produce high-resolution impurity transport measurements of the steep-gradient edge of fusion plasmas. Perturbative impurity transport measurements were performed for the first time in the NSTX plasma edge (r/a ∼ 0.6 to the SOL) with short neon gas puffs, and the resulting line and continuum emission was measured with the new edge multi-energy soft-x-ray (ME-SXR) diagnostic. Neon transport is modeled with the radial impurity transport code STRAHL and the resulting x-ray emission is computed using the ADAS atomic database. The radial transport coefficient profiles D(r) and v(r), and the particle flux from the gas puff Φ(t), are the free parameters in this model and are varied to find the best fit to experimental x-ray emissivity measurements, with bolometry used to constrain the impurity source. Initial experiments were successful and results were consistent with previous measurements of core impurity transport and neoclassical transport calculations. New diagnostic tools will be implemented on NSTX-U to further improve these transport measurements. (paper)

  16. Basic Studies of Non-Diffusive Transport in Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morales, George J. [University of California, Los Angeles, CA (United States); Maggs, James E. [University of California, Los Angeles, CA (United States)

    2014-10-25

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events, i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.

  17. Transport of sterols to the plasma membrane of leek seedlings

    International Nuclear Information System (INIS)

    Moreau, P.; Hartmann, M.A.; Perret, A.M.; Sturbois-Balcerazak, B.; Cassagne, C.

    1998-01-01

    To investigate the intracellular transport of sterols in etiolated leek (Allium porrum L.) seedlings, in vivo pulse-chase experiments with [1-14C]acetate were performed. Then, endoplasmic reticulum-, Golgi-, and plasma membrane (PM)-enriched fractions were prepared and analyzed for the radioactivity incorporated into free sterols. In leek seedlings sterols are present as a mixture in which (24R)-24-ethylcholest-5-en-3beta-ol is by far the major compound (around 60%). The other sterols are represented by cholest-5-en-3beta-ol, 24-methyl-cholest-5-en-3beta-ol, (24S)-24-ethylcholesta-5,22E-dien-3beta-ol, and stigmasta-5,24(24(1))Z-dien-3Beta-ol. These compounds are shown to reside mainly in the PM. Our results clearly indicate that free sterols are actively transported from the endoplasmic reticulum to the PM during the first 60 min of chase, with kinetics very similar to that of phosphatidylserine. Such a transport was found to be decreased at low temperature (12 degrees C) and following treatment with monensin and brefeldin A. These data are consistent with a membrane-mediated process for the intracellular transport of sterols to the PM, which likely involves the Golgi apparatus

  18. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    Science.gov (United States)

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  19. Intrinsic Rotation and Momentum Transport in Reversed Shear Plasmas with Internal Transport Barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2010-11-01

    The intrinsic rotation in fusion plasmas is believed to be generated via the residual stress without external momentum input. The physical mechanism responsible for the generation and transport of intrinsic rotation in L- and H-mode tokamak plasmas has been studied extensively. However, it is noted that the physics of intrinsic rotation generation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) tokamak plasmas have not been explored in detail, which is the main subject in the present work. A global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. The role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking mechanism in RS plasmas.

  20. Quasilinear Carbon Transport In An Impurity Hole Plasma In LHD

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, David R. [PPPL; Tanaka, K. [NIFS; Nunami, M. [NIFS; Watanabe, T-H. [Nagoya University; Sugama, H. [NIFS; Yoshinuma, M. [NIFS; Suzuki, Y. [NIFS; Goto, M. [NIFS; Morita, S. [NIFS; Wieland, B. [NIFS; Yamada, I. [NIFS; Yashura, R. [NIFS; Akiyama, T. [NIFS; Pablant, Novimir A. [PPPL

    2014-04-01

    Comprehensive electrostatic gyrokinetic linear stability calculations for ion-scale microinstabilities in an LHD plasma with an ion-ITB and carbon "impurity hole" are used to make quasilinear estimates of particle flux to explore whether microturbulence can explain the observed outward carbon fluxes that flow "up" the impurity density gradient. The ion temperature is not stationary in the ion-ITB phase of the simulated discharge, during which the core carbon density decreases continuously. To fully sample these varying conditions the calculations are carried out at three radial locations and four times. The plasma parameter inputs are based on experimentally measured profiles of electron and ion temperature, as well as electron and carbon density. The spectroscopic line-average ratio of hydrogen and helium densities is used to set the density of these species. Three ion species (H,He,C) and the electrons are treated kinetically, including collisions. Electron instability drive does enhance the growth rate significantly, but the most unstable modes have characteristics of ion temperature gradient (ITG) modes in all cases. As the carbon density gradient is scanned between the measured value and zero, the quasilinear carbon flux is invariably inward when the carbon density profile is hollow, so turbulent transport due to the instabilities considered here does not explain the observed outward flux of impurities in impurity hole plasmas. The stiffness of the quasilinear ion heat flux is found to be 1.7-2.3, which is lower than several estimates in tokamaks.

  1. Evolution of the transport coefficients for the transient processes after ECRH switch-on/off in the T-10 tokamak

    International Nuclear Information System (INIS)

    Andreev, V.F.; Danilov, A.V.; Dnestrovskij, Yu.N.; Ossipenko, M.V.; Razumova, K.A.; Sushkov, A.V.

    2005-01-01

    A study of the transient processes after ECRH switch-on/off in the T-10 tokamak shows that an electron ITB appears near the q∼3/2 resonance surface in regimes with suppressed sawtooth oscillations. When the gradient of the electron temperature in the plasma centre after additional on-axis ECRH exceeds some critical value, the electron ITB is weakened and the heat flux spreads from the heating region to the plasma periphery practically instantly. This looks like a jump of the heat flux through the entire plasma region. Therefore, to describe the electron heat transport in a tokamak plasma after the ECRH switch-on/off, three different physical processes should be taken into account: a) the transient process of plasma heating inside the region bounded by the temporal electron ITB; b) the weakening of the electron ITB accompanied by the heat efflux to the plasma periphery during hundreds of microseconds; c) the consequent diffusive evolution of the electron temperature profile with the conservation of the relative electron temperature gradient ∇T/T. (author)

  2. Transport coefficient computation based on input/output reduced order models

    Science.gov (United States)

    Hurst, Joshua L.

    The guiding purpose of this thesis is to address the optimal material design problem when the material description is a molecular dynamics model. The end goal is to obtain a simplified and fast model that captures the property of interest such that it can be used in controller design and optimization. The approach is to examine model reduction analysis and methods to capture a specific property of interest, in this case viscosity, or more generally complex modulus or complex viscosity. This property and other transport coefficients are defined by a input/output relationship and this motivates model reduction techniques that are tailored to preserve input/output behavior. In particular Singular Value Decomposition (SVD) based methods are investigated. First simulation methods are identified that are amenable to systems theory analysis. For viscosity, these models are of the Gosling and Lees-Edwards type. They are high order nonlinear Ordinary Differential Equations (ODEs) that employ Periodic Boundary Conditions. Properties can be calculated from the state trajectories of these ODEs. In this research local linear approximations are rigorously derived and special attention is given to potentials that are evaluated with Periodic Boundary Conditions (PBC). For the Gosling description LTI models are developed from state trajectories but are found to have limited success in capturing the system property, even though it is shown that full order LTI models can be well approximated by reduced order LTI models. For the Lees-Edwards SLLOD type model nonlinear ODEs will be approximated by a Linear Time Varying (LTV) model about some nominal trajectory and both balanced truncation and Proper Orthogonal Decomposition (POD) will be used to assess the plausibility of reduced order models to this system description. An immediate application of the derived LTV models is Quasilinearization or Waveform Relaxation. Quasilinearization is a Newton's method applied to the ODE operator

  3. A phenomenological model for cross-field plasma transport in non-ambipolar scrape-off layers

    International Nuclear Information System (INIS)

    LaBombard, B.; Grossman, A.A.; Conn, R.W.

    1990-01-01

    A simplified two-fluid transport model which includes phenomenological coefficients of particle diffusion, mobility, and thermal diffusivity is used to investigate the effects of nonambipolar particle transport on scrape-off layer (SOL) plasma profiles. A computer code (BSOLRAD3) has been written to iteratively solve for 2-D cross-field density, potential, and electron temperature profiles for arbitrary boundary conditions, including segments of 'limiters' that are electrically conducting or non-conducting. Numerical results are presented for two test cases: (1) a 1-D slab geometry showing the interdependency of the density, potential, and temperature gradient scale lengths on particle diffusion, mobility, and thermal diffusivity coefficients and limiter bias conditions, and (2) a 2-D geometry illustrating ExB plasma flow effects. It is shown that the SOL profiles can be quite sensitive to non-ambipolarity conditions imposed by the limiter and, in particular, whether the limiter surfaces are biased. Such effects, if overlooked in SOL transport analysis, can lead to erroreous conclusions about the magnitude of the local ambipolar diffusion coefficient. (orig.)

  4. BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL

    International Nuclear Information System (INIS)

    KINSEY, J.E.; ONJUN, T.; BATEMAN, G.; KRITZ, A.; PANKIN, A.; STAEBLER, G.M.; WALTZ, R.E.

    2002-01-01

    OAK-B135 The GLF23 and Multi-Mode (MM95) transport models are used along with a model for the H-mode pedestal to predict the fusion performance for the ITER, FIRE, and IGNITOR tokamak designs. The drift-wave predictive transport models reproduce the core profiles in a wide variety of tokamak discharges, yet they differ significantly in their response to temperature gradient (stiffness). Recent gyro-kinetic simulations of ITG/TEM and ETG modes motivate the renormalization of the GLF23 model. The normalizing coefficients for the ITG/TEM modes are reduced by a factor of 3.7 while the ETG mode coefficient is increased by a factor of 4.8 in comparison with the original model. A pedestal temperature model is developed for type I ELMy H-mode plasmas based on ballooning mode stability and a theory-motivated scaling for the pedestal width. In this pedestal model, the pedestal density is proportional to the line-averaged density and the pedestal temperature is inversely related to the pedestal density

  5. Anomalous transport in turbulent plasmas and continuous time random walks

    International Nuclear Information System (INIS)

    Balescu, R.

    1995-01-01

    The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW's) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW's is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem: transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to t 1/2 is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW

  6. Particle Transport in ECRH Plasmas of the TJ-II; Transporte de Particulas en Plasmas ECRH del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Estrada, T.; Guasp, J.; Reynolds, J. M.; Velasco, J. L.; Herranz, J.

    2007-07-01

    We present a systematic study of particle transport in ECRH plasmas of TJ-II with different densities. The goal is to fi nd particle confinement time and electron diffusivity dependence with line-averaged density. The experimental information consists of electron temperature profiles, T{sub e} (Thomson Scattering TS) and electron density, n{sub e}, (TS and reflectometry) and measured puffing data in stationary discharges. The profile of the electron source, Se, was obtained by the 3D Monte-Carlo code EIRENE. The analysis of particle balance has been done by linking the results of the code EIRENE with the results of a model that reproduces ECRH plasmas in stationary conditions. In the range of densities studied (0.58 {<=}n{sub e}> (10{sup 1}9m{sup -}3) {<=}0.80) there are two regions of confinement separated by a threshold density, {approx}0.65 10{sup 1}9m{sup -}3. Below this threshold density the particle confinement time is low, and vice versa. This is reflected in the effective diffusivity, D{sub e}, which in the range of validity of this study, 0.5 <{rho}<0.9 being {rho} normalized plasma radius, decreased significantly above the threshold density. The profiles of D{sub e} are flat for {>=}0,63(10{sup 1}9m{sup -}3). (Author) 35 refs.

  7. Pfirsch–Schlüter neoclassical heavy impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Belli, E A; Candy, J; Angioni, C

    2014-01-01

    In this work, we extend previous analytic theories for the neoclassical transport of a trace heavy impurity in a rotating plasma in the Pfirsch–Schlüter regime. The complete diffusive and convective components of the ambipolar particle flux are derived. The solution is valid for arbitrary impurity charge and impurity Mach number and for general geometry. Inclusion of finite main-ion temperature gradient effects is shown in the small ion Mach number limit. A simple interpolation formula is derived for the case of high impurity charge and circular geometry. While an enhancement of the diffusion coefficient is found for order one impurity Mach number, a reduction due to the rotation-driven poloidal asymmetry in the density occurs for very large Mach number. (paper)

  8. Possibility of internal transport barrier formation and electric field bifurcation in LHD plasma

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Yokoyama, M.; Fujisawa, A.; Ida, K.; Toda, S.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    1999-05-01

    Theoretical analysis of the electric field bifurcation is made for the LHD plasma. For given shapes of plasma profiles, a region of bifurcation is obtained in a space of the plasma parameters. In this region of plasma parameters, the electric field domain interface is predicted to appear in the plasma column. The reduction of turbulent transport is expected to occur in the vicinity of the interface, inducing a internal transport barrier. Within this simple model, the plasma with internal barriers is predicted to be realized for the parameters of T e (0) ∼ 2 keV and n(0) ≅ 10 18 m -3 . (author)

  9. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    Science.gov (United States)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  10. Determinación experimental de los coeficientes locales de transporte de humedad en almacenes soterrados. // Experimental determination of local humidity transport coefficients in underground warehouses.

    Directory of Open Access Journals (Sweden)

    Ma. D. Andrade Gregori

    2006-05-01

    Full Text Available En el trabajo se fundamentan los mecanismos de transporte de humedad que tienen lugar en almacenes soterrados dadas lascaracterísticas climáticas y geohidrològicas de Cuba. Se establece una analogía con la ley de Fick y se propone un modeloteórico que describe este mecanismo de transporte hacia las cavidades. Se determinó experimentalmente los coeficienteslocales de transporte de humedad para diferentes tipos de recubrimiento en paredes y diferentes formas geométricas de losalmacenes.Palabras claves: Almacenes, soterrado, humedad, conservación, coeficientes._______________________________________________________________________________Abstract.In this paper the mechanisms of humidity transport are explained. These mechanisms have place in underground warehousesaccording to the climatic and geohydrological characteristics of Cuba. An analogy with the Fick´s law is stated and it intends atheoretical model that describes this mechanism of transport toward the cavities. It was determined the local coefficients oftransport of humidity experimentally for different recover types in walls and different geometric forms of the warehouses.Key words: Store, buried, humidity, conservation, and coefficients.

  11. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  12. Separation Method for Oxygen Mass Transport Coefficient in Two Phase Porous Air Electrodes - Transport in Gas and Solid Polymer or Liquid Electrolyte Phases

    Science.gov (United States)

    2013-08-06

    of the problem studied Proton exchange membrane fuel cells ( PEMFCs ) are the most promising candidate systems for alternative electricity...characteristic. The limiting current can be used as a tool to study mass transport phenomena in PEMFC because it can provide experimental data for the...coefficient for PEMFCs under in situ conditions based on the galvanostatic discharge of a cell with an interrupted reactant supply. The results indicated

  13. BOOK REVIEW: Transport and Structural Formation in Plasmas

    Science.gov (United States)

    Thyagaraja, A.

    1999-06-01

    The book under review is one of a series of monographs on plasma physics published by the Institute of Physics under the editorship of Peter Stott and Hans Wilhelmsson. It is nicely produced and is aimed at research workers and advanced students of both laboratory (i.e. tokamak plasmas) and astrophysical plasma physics. The authors are prolific contributors to the subject of plasma turbulence and transport with a well-defined message: ``The authors' view is that the plasma structure, fluctuations and turbulent transport are continually regulating each other and, in addition, that the structural formation and structural transition of plasmas are typical of the physics of far from equilibrium systems. The book presents and explains why the plasma inhomogeneity is the ordering parameter governing transport and how self-sustained fluctuations can be driven through subcritical excitation even beyond linear instability''. This point of view is expounded in 24 chapters, including topics such as transport phenomena in toroidal plasmas (Chapters 2-4), low frequency modes and instabilities of confined systems (Chapters 5-7), renormalization (Chapter 8), self-sustained turbulence due to the current diffusive mode and resistive effects (Chapters 9-11), subcritical turbulence and numerical simulations (Chapters 12-14), scale invariance arguments (Chapter 15), electric field effects (Chapters 17-21) and self-organized dynamics (Chapter 22). The material is essentially drawn from the authors' many and varied original contributions to the plasma turbulence and transport literature. Whatever view one might have about the merits of this work, there is little doubt in this reviewer's mind that it is indeed thought-provoking and presents a worthy intellectual challenge to plasma theorists and experimentalists alike. The authors take a consistent stance and discuss the issues from their own standpoint. They observe that the plasmas one encounters in practice (for definiteness, the

  14. Transport analysis of pellet-enhanced ICRH plasma in JET

    International Nuclear Information System (INIS)

    Hammett, G.W.; Colestock, P.L.; Granetz, R.S.; McCune, D.C.; Phillips, C.K.; Schmidt, G.L.; Smithe, D.N.; Kupschus, P.

    1989-01-01

    Performance of JET ICRH heated discharges has been significantly enhanced by using pellet fueling to produce a peaked density target for ICRH. The central T i is observed to increase by up to 80%, central T e by up to 40%, and the neutron rate by up to 400%, over their no-pellet values (which are already in the enhanced 'monster-sawtooth' regime). In this paper we describe the transport analysis of these discharges using the TRANSP code. These results indicate that the thermal diffusivities χ i and χ e are reduced by a factor of ∼2 near the plasma center where the pellets have increased the density gradient. The paper focuses on JET discharge 16211 which is documented more fully in a companion paper. (author) 6 refs., 8 figs

  15. Anomalous plasma transport due to electron temperature gradient instability

    International Nuclear Information System (INIS)

    Tokuda, Sinji; Ito, Hiroshi; Kamimura, Tetsuo.

    1979-01-01

    The collisionless drift wave instability driven by an electron temperature inhomogeneity (electron temperature gradient instability) and the enhanced transport processes associated with it are studied using a two-and-a-half dimensional particle simulation code. The simulation results show that quasilinear diffusion in phase space is an important mechanism for the saturation of the electron temperature gradient instability. Also, the instability yields particle fluxes toward the hot plasma regions. The heat conductivity of the electron temperature perpendicular to the magnetic field, T sub(e'), is not reduced by magnetic shear but remains high, whereas the heat conductivity of the parallel temperature, T sub(e''), is effectively reduced, and the instability stabilized. (author)

  16. Thermal plasma properties for Ar–Al, Ar–Fe and Ar–Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure

    International Nuclear Information System (INIS)

    Cressault, Y; Gleizes, A

    2013-01-01

    This article is devoted to the calculation of the net emission coefficient (NEC) of Ar–Al, Ar–Fe and Ar–Cu mixtures at atmospheric pressure for arc welding processes. The results are given in data tables for temperatures between 3 kK and 30 kK, for five plasma thicknesses (0, 0.5, 1, 2, 5 mm) and ten concentrations of metallic vapours (pure gas, 0.01%, 0.1%, 1%, 5%, 10%, 25%, 50%, 75% and pure metal vapours in mass proportions). The results are in good agreement with most of the works published on the subject for such mixtures. They highlight the influence of three parameters on the radiation of the plasma: the NEC is directly related to temperature and inversely related to plasma radius and is highly sensitive to the presence of metal vapours. Finally, numerical data are supplied in tables in order to develop accurate computational modelling of welding arc and to estimate both qualitatively and quantitatively the influence of each metallic vapour on the size and on the shape of the weld pool. (paper)

  17. Particle Transport in ECRH Plasmas of the TJ-II

    International Nuclear Information System (INIS)

    Vargas, V. I.; Lopez-Bruna, D.; Estrada, T.; Guasp, J.; Reynolds, J. M.; Velasco, J. L.; Herranz, J.

    2007-01-01

    We present a systematic study of particle transport in ECRH plasmas of TJ-II with different densities. The goal is to fi nd particle confinement time and electron diffusivity dependence with line-averaged density. The experimental information consists of electron temperature profiles, T e (Thomson Scattering TS) and electron density, n e , (TS and reflectometry) and measured puffing data in stationary discharges. The profile of the electron source, Se, was obtained by the 3D Monte-Carlo code EIRENE. The analysis of particle balance has been done by linking the results of the code EIRENE with the results of a model that reproduces ECRH plasmas in stationary conditions. In the range of densities studied (0.58 ≤n e > (10 1 9m - 3) ≤0.80) there are two regions of confinement separated by a threshold density, e > ∼0.65 10 1 9m - 3. Below this threshold density the particle confinement time is low, and vice versa. This is reflected in the effective diffusivity, D e , which in the range of validity of this study, 0.5 e are flat for ≥0,63(10 1 9m - 3). (Author) 35 refs

  18. Neoclassical and anomalous transport in toroidal plasmas with drift-ordered turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1996-01-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electromagnetic drift wave fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear wave-particle interactions. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. For the microscale fluctuations k perpendicular ρ i ∼ 1 the parallel neoclassical fluxes remain invariant. For mesoscale fluctuations the mixing length fluctuation level with broken symmetry from (weak) shear flows the neoclassical banana-plateau fluxes are affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. The proof of the Onsager symmetry is carried out by splitting the response function up into the even and odd parts under the (t, B) → (-t,-B) transformation and using the self-adjointness of the linearized Landau collision operator and the quasilinear formalism. An explicit calculation of the symmetric transport coefficients is possible when the Krook collision model replaces the Landau collision operator. The importance of low aspect ratio tokamaks and helical systems for experimental investigations of the Onsager symmetries is emphasized

  19. Investigation of the impurity transport in the ASDEX tokamak by spectroscopical methods

    International Nuclear Information System (INIS)

    Krieger, K.W.

    1990-12-01

    Plasma impurities: a central problem of controlled thermonuclear fusion; magnetic plasma confinement in a Tokamak; methods to the determination of plasma impurity transport coefficients - by temporally modulated gas admission; the transport equation for impurities; neoclassical and anomalous transport; harmonic analysis of time-dependent signals; solutions of the transport equation; experimental equipment and measurements; measuring results - consistency of simple transport models with radial phase measurements; linearity of the transport processes; plasma disturbance by impurity injection; determination of the diffusion coefficient by simplified transport models; comparison of transport models for impurities and background plasma; measurements of the impurity transport at the plasma edge by high modulation frequencies. (AH)

  20. Dynamical properties and transport coefficients of one-dimensional Lennard-Jones fluids: A molecular dynamics study

    Science.gov (United States)

    Bazhenov, Alexiev M.; Heyes, David M.

    1990-01-01

    The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.

  1. Transport coefficients of liquid CF4 and SF6 computed by molecular dynamics using polycenter Lennard-Jones potentials

    Science.gov (United States)

    Hoheisel, C.

    1989-01-01

    For several liquid states of CF4 and SF4, the shear and the bulk viscosity as well as the thermal conductivity were determined by equilibrium molecular dynamics (MD) calculations. Lennard-Jones four- and six-center pair potentials were applied, and the method of constraints was chosen for the MD. The computed Green-Kubo integrands show a steep time decay, and no particular longtime behavior occurs. The molecule number dependence of the results is found to be small, and 3×105 integration steps allow an accuracy of about 10% for the shear viscosity and the thermal conductivity coefficient. Comparison with experimental data shows a fair agreement for CF4, while for SF6 the transport coefficients fall below the experimental ones by about 30%.

  2. Transport coefficients of liquid CF4 and SF6 computed by molecular dynamics using polycenter Lennard-Jones potentials

    International Nuclear Information System (INIS)

    Hoheisel, C.

    1989-01-01

    For several liquid states of CF 4 and SF 6 , the shear and the bulk viscosity as well as the thermal conductivity were determined by equilibrium molecular dynamics (MD) calculations. Lennard-Jones four- and six-center pair potentials were applied, and the method of constraints were chosen for the MD. The computed Green-Kubo integrands show a steep time decay, and no particular longtime behavior occurs. The molecule number dependence of the results is found to be small, and 3 x 10 5 integration steps allow an accuracy of about 10% for the shear viscosity and the thermal conductivity coefficient. Comparison with experimental data shows a fair agreement for CF 4 , while for SF 6 the transport coefficients fall below the experimental ones by about 30%

  3. High density internal transport barriers for burning plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Ridolfini, V Pericoli [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Barbato, E [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Buratti, P [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy)] (and others)

    2005-12-15

    A tokamak plasma with internal transport barriers (ITBs) is the best candidate for a steady ITER operation, since the high energy confinement allows working at plasma currents (I{sub p}) lower than the reference scenario. To build and sustain an ITB at the ITER high density ({>=}10{sup 20} m{sup -3}) and largely dominant electron (e{sup -}) heating is not trivial in most existing tokamaks. FTU can instead meet both requests, thanks to its radiofrequency heating systems, lower hybrid (LH, up to 1.9 MW) and electron cyclotron (EC up to 1.2 MW). By the combined use of them, ITBs are obtained up to peak densities n{sub e0} > 1.3 x 10{sup 20} m{sup -3}, with central e{sup -} temperatures T{sub e0} {approx} 5.5 keV, and are sustained for as long as the heating pulse is applied (>35 confinement times, {tau}{sub E}). At n{sub e0} {approx} 0.8 x 10{sup 20} m{sup -3} T{sub e0} can be larger than 11 keV. Almost full current drive (CD) and an overall good steadiness is attained within about one {tau}{sub E}, 20 times faster than the ohmic current relaxation time. The ITB extends over a central region with an almost flat or slightly reversed q profile and q{sub min} {approx} 1.3 that is fully sustained by off-axis lower hybrid current drive. Consequent to this is the beneficial good alignment of the bootstrap current, generated by the ITB large pressure gradients, with the LH driven current. Reflectometry shows a clear change in the turbulence close to the ITB radius, consistent with the reduced e{sup -} transport. Ions (i{sup +}) are significantly heated via collisions, but thermal equilibrium with electrons cannot be attained since the e{sup -}-i{sup +} equipartition time is always 4-5 times longer than {tau}{sub E}. No degradation of the overall ion transport, rather a reduction of the i{sup +} heat diffusivity, is observed inside the ITB. The global confinement has been improved up to 1.6 times over the scaling predictions. The ITB radius can be controlled by adjusting the

  4. An assessment of transport timescales and return coefficient in adjacent tropical estuaries

    NARCIS (Netherlands)

    Andutta, Fernando P.; Helfer, Fernanda; de Miranda, Luiz Bruner; Deleersnijder, E.L.C.; Thomas, C.J.; Lemckert, Charles

    2016-01-01

    Transport timescales (TTS), namely residence time and exposure time, were computed for adjacent shallow meso-tidal tropical estuarines system using the Lagrangian model D-Waq Part coupled with the hydrodynamic model Delft3D-Flow, and the Constituent-oriented Age and Residence time Theory, CART.

  5. Iron transport in a confined high-temperature plasma

    International Nuclear Information System (INIS)

    Demokan, O.; Waelbroeck, F.

    1981-06-01

    The neo-classical flux, GAMMAsub(n.c), of Fe XXIII is calculated for the experimental conditions produced in PLT by using the data on the iron density profiles and the plasma parameters. The actual flux of Fe XXIII, GAMMAsub(c.e), is then evaluated from the continuity equation, by using the same data. GAMMAsub(c.e) is on the average two orders of magnitude larger than GAMMAsub(n.c), the neo-classical prediction. These results are further tested by introducing the neo-classical coefficients which are multiplied by various anomaly factors into the continuity equation and solving for the density profile of Fe XXIII, using the experimental profiles of Fe XXII and Fe XXIV as given. The results of this section indicate that the first and the second terms in the neo-classical flux expression, GAMMAsub(n.c) = -D 1 (dn/dr) + D 2 n, should be multiplied approximately by the factors (100) and (25), respectively in order to yield the experimentally observed profile of Fe XXIII. (orig./HT)

  6. Self-similar solutions for multi-species plasma mixing by gradient driven transport

    Science.gov (United States)

    Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.

    2018-05-01

    Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.

  7. Characteristics of Energy Transport of Li-conditioned and non-Li-conditioned Plasmas in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Ding, S.; Kaye, S.M.; Bell, R.E.; Kaita, R.; Kugel, H.; LeBlanc, B.P.; Paul, S.; Wan, B.

    2009-01-01

    The transport properties of NSTX plasmas obtained during the 2008 experimental campaign have been studied and are reported here. Transport trends and dependences have been isolated, and it is found that both electron and ion energy transport coefficients have strong dependences on local values of n(del)T, which in turn is strongly dependent on local current density profile. Without identifying this dependence, it is difficult to identify others, such as the dependence of transport coefficients on B p (or q), I p and P heat . In addition, a comparison between discharges with and without Lithium wall conditioning has been made. While the trends in the two sets of data are similar, the thermal transport loss, especially in the electron channel, is found to strongly depend on the amount of Lithium deposited, decreasing by up to 50% of its no-Lithium value.

  8. Dynamics of the edge transport barrier at plasma biasing on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Spolaore, M.; Peleman, P.; Brotánková, Jana; Horáček, Jan; Dejarnac, Renaud; Devynck, P.; Ďuran, Ivan; Gunn, J. P.; Hron, Martin; Kocan, M.; Martines, E.; Pánek, Radomír; Sharma, A.; Van Oost, G.

    2006-01-01

    Roč. 12, č. 6 (2006), s. 19-23 ISSN 1562-6016. [International Conference on Plasma Physics and Technology/11th./. Alushta, 11.9.2006-16.9.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * plasma * transport barrier * relaxations Subject RIV: BL - Plasma and Gas Discharge Physics http:// vant .kipt.kharkov.ua/TABFRAME.html

  9. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  10. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  11. A one-dimensional plasma and impurity transport model for reversed field pinches

    International Nuclear Information System (INIS)

    Veerasingam, R.

    1991-11-01

    In this thesis a one-dimensional (1-D) plasma and impurity transport model is developed to address issues related to impurity behavior in Reversed Field Pinch (RFP) fusion plasmas. A coronal non-equilibrium model is used for impurities. The impurity model is incorporated into an existing one dimensional plasma transport model creating a multi-species plasma transport model which treats the plasma and impurity evolution self-consistently. Neutral deuterium particles are treated using a one-dimensional (slab) model of neutral transport. The resulting mode, RFPBI, is then applied to existing RFP devices such as ZT-40M and MST, and also to examine steady state behavior of ZTH based on the design parameters. A parallel algorithm for the impurity transport equations is implemented and tested to determine speedup and efficiency

  12. ProbeZT: Simulation of transport coefficients of molecular electronic junctions under environmental effects using Büttiker's probes

    Science.gov (United States)

    Korol, Roman; Kilgour, Michael; Segal, Dvira

    2018-03-01

    We present our in-house quantum transport package, ProbeZT. This program provides linear response coefficients: electrical and electronic thermal conductances, as well as the thermopower of molecular junctions in which electrons interact with the surrounding thermal environment. Calculations are performed based on the Büttiker probe method, which introduces decoherence, energy exchange and dissipation effects phenomenologically using virtual electrode terminals called probes. The program can realize different types of probes, each introducing various environmental effects, including elastic and inelastic scattering of electrons. The molecular system is described by an arbitrary tight-binding Hamiltonian, allowing the study of different geometries beyond simple one-dimensional wires. Applications of the program to study the thermoelectric performance of molecular junctions are illustrated. The program also has a built-in functionality to simulate electron transport in double-stranded DNA molecules based on a tight-binding (ladder) description of the junction.

  13. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Goeler, S. von; Houlberg, W.A.

    2001-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  14. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Von Goeler, S.; Houlberg, W.A.

    1999-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  15. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  16. Stochastic modeling of phosphorus transport in the Three Gorges Reservoir by incorporating variability associated with the phosphorus partition coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei; Fang, Hongwei; Xu, Xingya; He, Guojian; Zhang, Xuesong; Reible, Danny

    2017-08-01

    Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). We formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions, to obtain statistical descriptions of the P concentration and retention in the TGR. The correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. This study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.

  17. Transport of carbon ion test particles and hydrogen recycling in the plasma of the Columbia tokamak ''HBT'' [High Beta Tokamak

    International Nuclear Information System (INIS)

    Wang, Jian-Hua.

    1990-01-01

    Carbon impurity ion transport is studied in the Columbia High Beta Tokamak (HBT), using a carbon tipped probe which is inserted into the plasma (n e ∼ 1 - 5 x 10 14 (cm -3 ), T e ∼ 4 - 10 (eV), B t ∼ 0.2 - 0.4(T)). Carbon impurity light, mainly the strong lines of C II (4267A, emitted by the C + ions) and C III (4647A, emitted by the C ++ ions), is formed by the ablation or sputtering of plasma ions and by the discharge of the carbon probe itself. The diffusion transport of the carbon ions is modeled by measuring the space-and-time dependent spectral light emission of the carbon ions with a collimated optical beam and photomultiplier. The point of emission can be observed in such a way as to sample regions along and transverse to the toroidal magnetic field. The carbon ion diffusion coefficients are obtained by fitting the data to a diffusion transport model. It is found that the diffusion of the carbon ions is ''classical'' and is controlled by the high collisionality of the HBT plasma; the diffusion is a two-dimensional problem and the expected dependence on the charge of the impurity ion is observed. The measurement of the spatial distribution of the H α emissivity was obtained by inverting the light signals from a 4-channel polychromator, the data were used to calculate the minor-radial influx, the density, and the recycling time of neutral hydrogen atoms or molecules. The calculation shows that the particle recycling time τ p is comparable with the plasma energy confinement time τ E ; therefore, the recycling of the hot plasma ions with the cold neutrals from the walls is one of the main mechanisms for loss of plasma energy

  18. Hydrogen transport behavior of metal coatings for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D{sub 3}{sup +} ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates of tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5x10{sup 19} D/m{sup 2} s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs. (orig.).

  19. Hydrogen transport behavior of metal coatings for plasma-facing components

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1990-12-01

    Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.

  20. Plutonium-239 sorption and transport on/in unsaturated sediments. Comparison of batch and column experiments for determining sorption coefficients

    International Nuclear Information System (INIS)

    Jinchuan Xie; Jiachun Lu; Xiaohua Zhou; Xuhui Wang; Mei Li; Lili Du; Yueheng Liu; Guoqing Zhou

    2013-01-01

    Sorption (distribution) coefficients of plutonium were most often derived by static batch experiments. However, it is not clear how unsaturated flow conditions including moisture content and pore water velocity change the sorption coefficients. Transport experiments of plutonium through the unsaturated sediments packed into the columns were then performed in order to determine the sorption coefficients (column-K ds ). Static batch experiments were also conducted to obtain batch-K ds and then compare the differences between batch-K ds and column-K ds . The results show that unsaturated flow conditions had no significant effect on column-K ds , and the average column-K d value was 1.74 ± 0.02 m 3 /kg. By comparison, batch-K d values spanned several orders of magnitude, regardless of the specified liquid-solid conditions. Moreover, the batch-K d (22.7 m 3 /kg) at the standard L/S (4 mL/g) recommended by ASTM D 4319 was over an order of magnitude larger than the average column-K d . (author)

  1. The momentum transfer cross section and transport coefficients for low energy electrons in mercury

    International Nuclear Information System (INIS)

    McEachran, R P; Elford, M T

    2003-01-01

    The momentum transfer cross section for electrons incident on mercury atoms has been determined from the solution of Dirac-Fock scattering equations which included both static and dynamic multipole polarization potentials as well as full anti-symmetrization to incorporate exchange effects. This cross section is in excellent agreement between 0.2 and 3.0 eV with the cross section derived from the most recent experimental measurements. The discrepancy below 0.2 eV has been investigated using two-term transport theory

  2. Evaluation of long-range transport potential of selected brominated flame retardants with measured 1-octanol-air partition coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jeong; Kwon, Jung Hwan [Div. of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of)

    2016-10-15

    Various alternative flame retardants are used in many countries since polybrominated diphenyl ethers (PBDEs) were classified as persistent organic pollutants (POPs). However, difficulties in the evaluation of the long-range transport potential (LRTP) of the alternatives are related to the lack of information on their physicochemical properties, which govern their environmental fates and transport. Based on the simulation of LRTP using OECD P{sub OV} and LRTP Screening Tool, five alternative brominated flame retardants (BFRs) (hexabromobenzene [HBB], 2,3,4,5,6-pentabromotoluene [PBT], 2,3,4,5,6-pentabromoethylbenzene [PBEB], 2-ethylhexyl 2,3,4,5-tetrabromobenzoate [TBB], and 1,2,4,5-tetrabromo-3,6-dimethylbenzene [TBX]), and 3 PBDEs (BDE-28, BDE-47, and BDE-99) were chosen to perform a refined assessment. This was done using an experimentally measured 1-octanol–air partition coefficient (K{sub OA}) for the calculation of the air–water partition coefficient (K{sub AW}) required for the model. The four selected alternative BFRs (HBB, PBT, PBEB, TBX) have K{sub OA} values close to the in silico estimation used in the screening evaluation. On the other hand, the measured K{sub OA} value for TBB was two orders of magnitude lower than the estimated value used in the screening simulation. The refined simulation showed that characteristic travel distance (CTD) and transfer efficiency (TE) for HBB, PBT, PBEB, and TBX were greater than those for BDE-28, whereas CTD and TE for TBB were lower than those for BDE-28. This suggested that TBB has a lower LRTP than BDE-28, considering the refined partition coefficients.

  3. Self-organization of hot plasmas the canonical profile transport model

    CERN Document Server

    Dnestrovskij, Yu N

    2015-01-01

    In this monograph the author presents the Canonical Profile Transport Model or CPTM as a rather general mathematical framework to simulate plasma discharges.The description of hot plasmas in a magnetic fusion device is a very challenging task and many plasma properties still lack a physical explanation. One important property is plasma self-organization.It is very well known from experiments that the radial profile of the plasma pressure and temperature remains rather unaffected by changes of the deposited power or plasma density. The attractiveness of the CPTM is that it includes the effect o

  4. Intermittent strong transport of the quasi-adiabatic plasma state.

    Science.gov (United States)

    Kim, Chang-Bae; An, Chan-Yong; Min, Byunghoon

    2018-06-05

    The dynamics of the fluctuating electrostatic potential and the plasma density couched in the resistive-drift model at nearly adiabatic state are simulated. The linear modes are unstable if the phase difference between the potential and the density are positive. Exponential growth of the random small perturbations slows down due to the nonlinear E × B flows that work in two ways. They regulate the strength of the fluctuations by transferring the energy from the energy-producing scale to neighboring scales and reduce the cross phase at the same time. During quasi-steady relaxation sporadic appearance of very strong turbulent particle flux is observed that is characterized by the flat energy spectrum and the broad secondary peak in the mesoscale of the order of the gyro-radius. Such boost of the transport is found to be caused by presence of relatively large cross phase as the E × B flows are not effective in cancelling out the cross phase.

  5. Benefits of microgravity for measurement of thermo-transport coefficients in liquid metal alloys

    International Nuclear Information System (INIS)

    Praizey, J.P.

    1988-05-01

    After giving a brief review of thermo-transport principles, this paper describes the experimental technique used and presents the results obtained on the ground. The author determines the solutal stability conditions to be satisfied by the metal alloy so that ground thermotransport measurements are not disturbed by convection effects. The benefits of microgravity when such conditions cannot be achieved are demonstrated and the results obtained on pure Sn (isotope separation), Sn-Co, Sn-Ag and Sn-Bi during Spacelab missions in 1983 and 1985 are presented. The results of experiments carried out without the disturbing effect of convection are compared with those found in literature (experiments or calculations carried out from liquid structure models) [fr

  6. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    International Nuclear Information System (INIS)

    Zhang Bo-Kai; Ma Yu-Qiang; Li Jian; Chen Kang; Tian Wen-De

    2016-01-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. (rapid communication)

  7. Thermodynamic and transport properties of two-temperature SF6 plasmas

    International Nuclear Information System (INIS)

    Wang Weizong; Rong Mingzhe; Wu Yi; Spencer, Joseph W.; Yan, Joseph D.; Mei, DanHua

    2012-01-01

    This paper deals with thermodynamic and transport properties of SF 6 plasmas in a two-temperature model for both thermal equilibrium and non-equilibrium conditions. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and Guldberg-Waage equation according to deviation of van de Sanden et al. Transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated with most recent collision interaction potentials by adopting Devoto’s electron and heavy particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of Chapman–Enskog method. The results are computed for various values of pressures from 0.1 atm to 10 atm and ratios of the electron temperature to the heavy particle temperature from 1 to 20 with electron temperature range from 300 to 40 000 K. In the local thermodynamic equilibrium regime, results are compared with available results of previously published studies.

  8. Ionic structures and transport properties of hot dense W and U plasmas

    Science.gov (United States)

    Hou, Yong; Yuan, Jianmin

    2016-10-01

    We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.

  9. High density internal transport barriers for burning plasma operation

    International Nuclear Information System (INIS)

    Pericoli Ridolfini, V.

    2005-01-01

    One of the proposed ITER scenarios foresees the creation and sustainment of an internal transport barrier (ITB) in order to improve the confinement properties of the hot core plasma. The more stringent requests are: the ITB must be sustained with electron heating only with no or very small external momentum source, the strong collisional coupling at the envisaged density (line average >1.0 1020 m-3) must not prevent the barrier existence, the bootstrap current created by the large induced gradients must have a radial profile consistent with that requested by the barrier creation and sustainment. To all these items the studies carried out in FTU in the same density range (ne0 ?1.5 1020 m-3) provide encouraging prospects. With pure electron heating and current drive (LH+ECH) steady electron barrier are generated and maintained with central e- temperature >5.0 keV. Almost full CD conditions are established with a bootstrap current close to 25% of the total and well aligned with that driven by the LH waves and responsible for the barrier building. The clear change in the density fluctuations close to the ITB radius, observed by reflectometry, indicates stabilization of turbulence that is consistent with the drop of the thermal electron diffusivity inside the ITB to very low values, ?e<0.5 m2/s estimated by the transport analysis. The 10 fold neutron rate increase testifies a significant collisional ion heating, even though usually ?Ti0/Ti0 does not exceed 40%, because the e--i + equipartition time, always 4-5 times longer than the energy confinement time, does not allow thermal equilibrium with electrons to be attained. The ion thermal diffusivity inside the barrier must be lowered to the neoclassical level to account for the observed Ti(r) profiles, clearly indicating at least a non-degraded ion transport. The global confinement in turn improves by 1.6 times above the FTU L-scaling. The ITB radius can be controlled by varying the LH power deposition profile that is

  10. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    Science.gov (United States)

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  11. Influence of excited molecules on electron swarm transport coefficients and gas discharge kinetics

    International Nuclear Information System (INIS)

    Petrovic, Z.L.; Jovanovic, J.V.; Raspopovic, Z.M.; Bzenic, S.A.; Vrhovac, S.B.

    1997-01-01

    In this paper we study different effects of excited molecules on swarm parameters, electron energy distribution functions and gas discharge modeling. First we discuss a possible experiment in parahydrogen to resolve the discrepancy in hydrogen vibrational excitation cross section data. Negative differential conductivity (NDC) is a kinetic phenomenon which manifests itself in a particular dependence of the drift velocity on E=N and it is affected by superelastic collisions with excited states. A complete kinetic scheme for argon required to model excited state densities in gas discharges is also described. These results are used to explain experiments in capacitively and inductively coupled RF plasmas used for processing. The paper illustrates the application of atomic and molecular collision data, swarm data and the theoretical techniques in modeling of gas discharges with large abundances of excited molecules. It is pointed out that swarm experiments with excited molecules are lacking and that there is a shortage of reliable data, while the numerical procedures are sufficiently developed to include all the important effects. (authors). 59 refs., 12 figs

  12. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  13. Periodic long-range transport in a large volume dc glow discharge dusty plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Amatucci, William E.; Compton, Christopher; Christy, Brian; Jackson, Jon David

    2003-01-01

    In an earlier paper, the authors reported on observations of a variety of particle transport phenomena observed in DUPLEX--the DUsty PLasma EXperiment at the Naval Research Laboratory [E. Thomas, Jr., W. E. Amatucci, C. Compton, and B. Christy, Phys. Plasmas 9, 3154 (2002)]. DUPLEX is a large, transparent polycarbonate cylinder that is 40 cm in radius and 80 cm in height. dc glow discharge argon plasmas are generated in DUPLEX. In this paper, the authors expand upon one particular feature of particle transport in DUPLEX, the long-range (i.e., greater than 15 cm), periodic (T∼2.5 min) transport of suspended alumina particles through the plasma. A detailed description of this particle motion through the plasma is presented. Finally, a qualitative model describing the phenomena that lead to this transport is also given

  14. Transport of temperature-velocity covariance in gas-solid flow and its relation to the axial dispersion coefficient

    Science.gov (United States)

    Subramaniam, Shankar; Sun, Bo

    2015-11-01

    The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.

  15. Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    Science.gov (United States)

    Wang, Hsin; Porter, Wallace D.; Böttner, Harald; König, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolet, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Patricia; Sharp, Jeff W.; Lo, Jason; Kleinke, Holger; Kiss, Laszlo

    2013-04-01

    Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.

  16. Apparent directional mass-transfer capacity coefficients in three-dimensional anisotropic heterogeneous aquifers under radial convergent transport

    Science.gov (United States)

    Pedretti, D.; Fernàndez-Garcia, D.; Sanchez-Vila, X.; Bolster, D.; Benson, D. A.

    2014-02-01

    Aquifer hydraulic properties such as hydraulic conductivity (K) are ubiquitously heterogeneous and typically only a statistical characterization can be sought. Additionally, statistical anisotropy at typical characterization scales is the rule. Thus, regardless of the processes governing solute transport at the local (pore) scale, transport becomes non-Fickian. Mass-transfer models provide an efficient tool that reproduces observed anomalous transport; in some cases though, these models lack predictability as model parameters cannot readily be connected to the physical properties of aquifers. In this study, we focus on a multirate mass-transfer model (MRMT), and in particular the apparent capacity coefficient (β), which is a strong indicator of the potential of immobile zones to capture moving solute. We aim to find if the choice of an apparent β can be phenomenologically related to measures of statistical anisotropy. We analyzed an ensemble of random simulations of three-dimensional log-transformed multi-Gaussian permeability fields with stationary anisotropic correlation under convergent flow conditions. It was found that apparent β also displays an anisotropic behavior, physically controlled by the aquifer directional connectivity, which in turn is controlled by the anisotropic correlation model. A high hydraulic connectivity results in large β values. These results provide new insights into the practical use of mass-transfer models for predictive purposes.

  17. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    Science.gov (United States)

    Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang

    2016-11-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).

  18. Transport of recycled deuterium to the plasma core in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Bell, M.G.; Budny, R.V.; Jassby, D.L.; Park, H.; Ramsey, A.T.; Stotler, D.P.; Strachan, J.D.

    1997-10-01

    The authors report a study of the fueling of the plasma core by recycling in the Tokamak Fusion Test Reactor (TFTR). They have analyzed discharges fueled by deuterium recycled from the limiter and tritium-only neutral beam injection. In these plasmas, the DT neutron rate provides a measure of the deuterium influx into the core plasma. They find a reduced influx with plasmas using lithium pellet conditioning and with plasmas of reduced major (and minor) radius. Modeling with the DEGAS neutrals code shows that the dependence on radius can be related to the penetration of neutrals through the scrape-off layer

  19. Integrated transport code system for a multicomponent plasma in a gas dynamic trap

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Karpushov, A.N.; Noak, K.; Strogalova, S.L.

    2000-01-01

    This report is focused on the development of the theoretical and numerical models of multicomponent high-β plasma confinement and transport in the gas-dynamic trap (GDT). In order to simulate the plasma behavior in the GDT as well as that in the GDT-based neutron source the Integrated Transport Code System is developed from existing stand-alone codes calculating the target plasma, the fast ions and the neutral gas in the GDT. The code system considers the full dependence of the transport phenomena on space, time, energy and angle variables as well as the interactions between the particle fields [ru

  20. Mathematical modelling of powder material motion and transportation in high-temperature flow core during plasma coatings application

    Science.gov (United States)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2018-03-01

    A problem of mathematical modelling of powder material motion and transportation in gas thermal flow core has been addressed. Undertaken studies indicate significant impact on dynamics of motion of sprayed particles of phenomenological law for drag coefficient and accounting momentum loss of a plasma jet upon acceleration of these particles and their diameter. It is determined that at great dispersion of spraying particles, they reach detail surface at different velocity and significant particles separation takes place at spraying spot. According to the results of mathematical modelling, requirements for admissible dispersion of diameters of particles used for spraying have been formulated. Research has also allowed reducing separation of particles at the spraying spot due to the selection of the method of powder feed to the anode channel of the plasma torch.

  1. Determination of transport and reaction swarm coefficients from the analysis of complex transient pulses from the pulsed Townsend experiment

    International Nuclear Information System (INIS)

    Bekstein, A; De Urquijo, J; Rodríguez-Luna, J C; Juárez, A M; Ducasse, O

    2012-01-01

    We present in this paper the interpretation and analysis of transient pulses from a pulsed Townsend experiment by solving the continuity equations of the charged carriers (electrons and ions) involved in the avalanche. The set of second order partial differential equations is solved by SIMAV, a simulator designed specifically for the pulsed Townsend avalanche. Complex situations involving processes such as electron detachment, ion-molecule reactions, Penning ionization and secondary electron emission from ion impact at the cathode, virtually impossible to solve analytically, are discussed here to illustrate the capability of the simulator to help explain the various reaction processes involved in the avalanche, and also to derive some of the transport and reaction coefficients.

  2. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    Science.gov (United States)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  3. Integrated heat transport simulation of high ion temperature plasma of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamaguchi, H.; Sakai, A.

    2014-10-01

    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  4. Fluctuations and transport in fusion plasmas. Annual progress report, October 1, 1983-September 30, 1984

    International Nuclear Information System (INIS)

    Gould, R.W.

    1984-01-01

    This grant supports an integrated program of experiment and theory in tokamak plasma physics. Emphasis is placed on microscopic fluctuations and anomalous transport. The primary objective is to characterize the properties of the microscopic fluctuations observed in tokamaks and to try to develop an understanding of the fluctuation-induced transport of particles and heat. Anomalous transport, which causes energy losses one to two orders of magnitude larger than predicted by neoclassical transport theory, occurs in all tokamaks and underlies empirical scaling laws

  5. Transport and deposition of injected hydrocarbons in plasma generator PSI-2

    International Nuclear Information System (INIS)

    Bohmeyer, W.; Naujoks, D.; Markin, A.; Arkhipov, I.; Koch, B.; Schroeder, D.; Fussmann, G.

    2005-01-01

    The transport and deposition of hydrocarbons were studied in the stationary plasma of plasma generator PSI-2. CH 4 or C 2 H 4 were injected into the plasma at different positions in the target chamber. After an interaction between the plasma and the hydrocarbons, different species are produced, some of them having high sticking probabilities and forming a:CH films on a temperature controlled collector. The film growth is studied in situ for different plasma parameters. The 3D Monte Carlo code ERO including three different sets of atomic data is used to describe the formation of hydrocarbon films

  6. Orbit effects on impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-01-01

    In 1985, very high ion temperature plasmas were first produced in TFTR with co-injecting neutral beams in low current, low density plasmas. This mode of operation is called the energetic ion mode in which the plasma rotates at very high speed. It was found that heavy impurities injected into these plasmas diffused out very quickly. In this paper, the authors calculate the impurity ion orbits in a rotating tokamak plasma based on the equation of motion in the frame that rotates with the plasma. It is shown that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster. Particle orbits near the surface of a rotating tokamak are also analyzed. During impurity injection experiments, freshly ionized impurities near the plasma surface are essentially stationary in the laboratory frame and they are counter-rotating in the plasma frame with co-beam injection. The results are substantiated by numeral particle simulation. The computer code follows the impurity guiding center positions by integrating the equation of motion with the second order predictor-corrector method

  7. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    International Nuclear Information System (INIS)

    Zhao, N.; Yan, N.; Xu, G. S.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.; Wang, Z. X.

    2016-01-01

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  8. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  9. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  10. Integral and Lagrangian simulations of particle and radiation transport in plasma

    International Nuclear Information System (INIS)

    Christlieb, A J; Hitchon, W N G; Lawler, J E; Lister, G G

    2009-01-01

    Accurate integral and Lagrangian models of transport in plasmas, in which the models reflect the actual physical behaviour as closely as possible, are presented. These methods are applied to the behaviour of particles and photons in plasmas. First, to show how these types of models arise in a wide range of plasma physics applications, an application to radiation transport in a lighting discharge is given. The radiation transport is solved self-consistently with a model of the discharge to provide what are believed to be very accurate 1D simulations of fluorescent lamps. To extend these integral methods to higher dimensions is computationally very costly. The wide utility of 'treecodes' in solving massive integral problems in plasma physics is discussed, and illustrated in modelling vortex formation in a Penning trap, where a remarkably detailed simulation of vortex formation in the trap is obtained. Extension of treecode methods to other integral problems such as radiation transport is under consideration.

  11. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  12. Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression

    International Nuclear Information System (INIS)

    Chilenski, M.A.; Greenwald, M.; Howard, N.T.; White, A.E.; Rice, J.E.; Walk, J.R.; Marzouk, Y.

    2015-01-01

    The need to fit smooth temperature and density profiles to discrete observations is ubiquitous in plasma physics, but the prevailing techniques for this have many shortcomings that cast doubt on the statistical validity of the results. This issue is amplified in the context of validation of gyrokinetic transport models (Holland et al 2009 Phys. Plasmas 16 052301), where the strong sensitivity of the code outputs to input gradients means that inadequacies in the profile fitting technique can easily lead to an incorrect assessment of the degree of agreement with experimental measurements. In order to rectify the shortcomings of standard approaches to profile fitting, we have applied Gaussian process regression (GPR), a powerful non-parametric regression technique, to analyse an Alcator C-Mod L-mode discharge used for past gyrokinetic validation work (Howard et al 2012 Nucl. Fusion 52 063002). We show that the GPR techniques can reproduce the previous results while delivering more statistically rigorous fits and uncertainty estimates for both the value and the gradient of plasma profiles with an improved level of automation. We also discuss how the use of GPR can allow for dramatic increases in the rate of convergence of uncertainty propagation for any code that takes experimental profiles as inputs. The new GPR techniques for profile fitting and uncertainty propagation are quite useful and general, and we describe the steps to implementation in detail in this paper. These techniques have the potential to substantially improve the quality of uncertainty estimates on profile fits and the rate of convergence of uncertainty propagation, making them of great interest for wider use in fusion experiments and modelling efforts. (paper)

  13. Effects of applied dc radial electric fields on particle transport in a bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1978-01-01

    The influence of applied dc radial electric fields on particle transport in a bumpy torus plasma is studied. The plasma, magnetic field, and ion heating mechanism are operated in steady state. Ion kinetic temperature is more than a factor of ten higher than electron temperature. The electric fields raise the ions to energies on the order of kilovolts and then point radially inward or outward. Plasma number density profiles are flat or triangular across the plasma diameter. It is suggested that the radial transport processes are nondiffusional and dominated by strong radial electric fields. These characteristics are caused by the absence of a second derivative in the density profile and the flat electron temperature profiles. If the electric field acting on the minor radius of the toroidal plasma points inward, plasma number density and confinement time are increased.

  14. Large plasma pressure perturbations and radial convective transport in a tokamak

    International Nuclear Information System (INIS)

    Krasheninnikov, Sergei; Yu, Guanghui; Ryutov, Dmitri

    2004-01-01

    Strongly localized plasma structures with large pressure inhomogeneities (such as plasma blobs in the scrape-off-layer (SOL)/shadow regions, pellet clouds, Edge localized Modes (ELMs)) observed in the tokamaks, stellarators and linear plasma devices. Experimental studies of these phenomena reveal striking similarities including more convective rather than diffusive radial plasma transport. We suggest that rather simple models can describe many essentials of blobs, ELMs, and pellet clouds dynamics. The main ingredient of these models is the effective plasma gravity caused by magnetic curvature, centrifugal or friction forces effects. As a result, the equations governing plasma transport in such localized structures appear to be rather similar to that used to describe nonlinear evolution of thermal convection in the Boussinesq approximation (directly related to the Rayleigh-Taylor (RT) instability). (author)

  15. Analysis of influence of the radial electric field on turbulent transport in tandem mirror plasma

    International Nuclear Information System (INIS)

    Khvesyuk, Vladimir I.; Chirkov, Alexei Yu.; Pshenichnikov, Anton A.

    2000-01-01

    The model of anomalous transport in cylindrical non-uniform steady state plasma in uniform magnetic field under the influence of many mode drift wave oscillations is suggested. The effect of anomalous transport suppression due to radial electric field is studied, and physical picture of H mode in plasma of GAMMA-10 tandem mirror device is considered. Presented theoretical and numerical results agree with the experimental data obtained on GAMMA-10. (author)

  16. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    International Nuclear Information System (INIS)

    Block, E.R.; Edwards, D.

    1987-01-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of [ 14 C]-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells

  17. Prospects of the Minimum Fisher Regularisation in the Experimental Analyses of Plasma Particle Transport at JET

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Bonheure, G.; Murari, A.; JET EFDA, Contributors.

    2006-01-01

    Roč. 51, č. 10 (2006), s. 196 ISSN 0003-0503. [Division of Plasma Physics Meeting 2006. Philadelphia, Pennsylvania , 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tomography * transport * neutrons * fusion * tokamak * JET Subject RIV: BL - Plasma and Gas Discharge Physics

  18. Theoretical and Numerical Properties of a Gyrokinetic Plasma: Issues Related to Transport Time Scale Simulation

    International Nuclear Information System (INIS)

    Lee, W.W.

    2003-01-01

    Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers

  19. Introduction to quantum chromo transport theory for quark-gluon plasmas

    International Nuclear Information System (INIS)

    Gyulassy, M.; Elze, H.Th.; Iwazaki, A.; Vasak, D.

    1986-08-01

    Upcoming heavy ion experiments at the AGS and SPS are aimed at producing and diagnosing a primordial form of matter, the quark-gluon plasma. In these lectures some recent developments on formulating a quantum transport theory for quark-gluon plasmas are introduced. 46 refs

  20. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  1. One possible method of mathematical modeling of turbulent transport processes in plasma

    International Nuclear Information System (INIS)

    Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.

    2003-01-01

    It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)

  2. Observations on the W-transport in the core plasma of JET and ASDEX Upgrade

    Czech Academy of Sciences Publication Activity Database

    Pütterich, T.; Dux, R.; Neu, R.; Bernert, M.; Beurskens, M.N.A.; Bobkov, V.; Brezinsek, S.; Challis, C.; Coenen, J.W.; Coffey, I.; Czarnecka, A.; Giroud, C.; Jacquet, P.; Joffrin, E.; Kallenbach, A.; Lehnen, M.; Lerche, E.; De La Luna, E.; Marsen, S.; Matthews, G.; Mayoral, M.-L.; McDermott, R.M.; Meigs, A.; Mlynář, Jan; Sertoli, M.; van Rooij, G.

    2013-01-01

    Roč. 55, č. 12 (2013), s. 124036-124036 ISSN 0741-3335. [European Physical Society Conference on Plasma Physics/40./. Espoo, 01.07.2013-05.07.2013] Institutional support: RVO:61389021 Keywords : tokamak * impurity transport * core plasma * fusion * tungsten * ASDEX Upgrade Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.386, year: 2013 http://iopscience.iop.org/0741-3335/55/12/124036/pdf/0741-3335_55_12_124036.pdf

  3. Plasma Instabilities and Transport in the MPD Thruster

    Science.gov (United States)

    1993-06-01

    driven plasma accelera- tion vesrus current-deiven energy dissipation Part III: anomalous trasnport . In 2 8’A Joint Propulsion Conference, Nashville... trasnport In the March/April Bi- monthly Progress Report of the Electric Propulsion and Plasma Dynamics Laboratory. Technical Report MAE 1776.36, EPPDyL, Princeton Univer- sity, 1992. 0 0

  4. Interparticle interaction and transport processes in dense semiclassical plasmas

    International Nuclear Information System (INIS)

    Baimbetov, F.B.; Giniyatova, Sh.G.

    2005-01-01

    On the basis of the density response formalism an expression for the pseudopotential of dense semiclassical plasma, which takes account of quantum-mechanical effects, local field corrections, and electronic screening effects is obtained. The static structure factors taking into account both local fields and quantum-mechanical effects are calculated. An electrical conductivity, thermal conductivity, and viscosity of dense semiclassical plasma are studied

  5. Electric properties of weakly nonideal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Radtke, R

    1984-01-01

    The progress in theory as well as in diagnostics and measurement during the last fifteen years is reviewed. Starting from the transport theory of ideal plasmas physically justified corrections are introduced which allow the quantitative calculation of the transport properties of weakly nonideal plasmas. Essential coefficients and numerical data of the electrical conductivity for plasmas of technical importance are given in tables and diagrams.

  6. Nonlocal collisionless and collisional electron transport in low temperature plasmas

    Science.gov (United States)

    Kaganovich, Igor

    2009-10-01

    The purpose of the talk is to describe recent advances in nonlocal electron kinetics in low-pressure plasmas. A distinctive property of partially ionized plasmas is that such plasmas are always in a non-equilibrium state: the electrons are not in thermal equilibrium with the neutral species and ions, and the electrons are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Typical phenomena in such discharges include nonlocal electron kinetics, nonlocal electrodynamics with collisionless electron heating, and nonlinear processes in the sheaths and in the bounded plasmas. Significant progress in understanding the interaction of electromagnetic fields with real bounded plasma created by this field and the resulting changes in the structure of the applied electromagnetic field has been one of the major achievements of the last decade in this area of research [1-3]. We show on specific examples that this progress was made possible by synergy between full scale particle-in-cell simulations, analytical models, and experiments. In collaboration with Y. Raitses, A.V. Khrabrov, Princeton Plasma Physics Laboratory, Princeton, NJ, USA; V.I. Demidov, UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, OH 45322, USA and AFRL, Wright-Patterson AFB, OH 45433, USA; and D. Sydorenko, University of Alberta, Edmonton, Canada. [4pt] [1] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, IEEE Trans. Plasma Science 34, 895 (2006); Phys. Plasmas 13, 014501 (2006); 14 013508 (2007); 15, 053506 (2008). [0pt] [2] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and

  7. Transient heat transport studies in JET conventional and advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Mantica, P.; Coffey, I.; Dux, R.

    2003-01-01

    Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)

  8. Fast transient transport phenomena measured by soft X-ray emission in TCV tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Furno, I. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-08-01

    Energy and particle transport during sawtooth activity in TCV plasmas has been studied in this thesis with high temporal resolution many chord diagnostics. We indicated the influence of sawteeth on plasma profiles in ohmic conditions and in the presence of auxiliary electron cyclotron resonance heating and current drive. A 2-dimensional model for heat transport, including localised heat source and a magnetic island, has been used to interpret the experimental observations. These results provided a new interpretation of a coupled heat and transport phenomenon which is potentially important for plasma confinement. The observations validate the applicability and show the possibility of improvement of a 2-dimensional theoretic a1 model for the study of heat transport in the presence of localised heat source and a magnetic island. Furthermore, the TCV results showed a new possibility for the interpretation of a coupled heat and particle transport phenomenon previously understood only in stellarators. (author)

  9. Phenomenological studies of electron-beam transport in wire-plasma channels

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Beezhold, W.

    1980-01-01

    Multiple electron-beam transport in air through plasma channels is an important method for delivering many intense beams to a bremsstrahlung converter system. This paper reports work intended to optimize this transport technique with emphasis on transport through curved channels and on transport efficiencies. Curved-channel transport allows accelerators such as Sandia's PROTO II and PBFA I facilities to be used as flash x-ray sources for weapon effects simulation without reconfiguring the diodes or developing advanced converters. The formation mechanisms of wire-initiated plasma channels in air were examined and the subsequent transport efficiencies of relativistic electron beams through various-length straight and curved plasma channels were determined. Electron transport efficiency through a channel was measured to be 80 to 100% of a zero length channel for 40 cm long straight channels and for curved channels which re-directed the electron beam through an angle of 90 0 . Studies of simultaneous e-beam transport along two curved channels closely spaced at the converter showed that transport efficiency remained at 80 to 100%. However, it was observed that the two e-beams were displaced towards each other. Transport efficiency was observed to depend only weakly on parameters such as wire material, wire length and shape, diode anode aperture, e-beam injection time, and wire-channel applied voltage. For off-center injection conditions the electron beam strongly perturbed the plasma channel in periodic or regularly spaced patterns even though the total energy lost by the electron beam remained small. Plasma-channel transport, when all experimental parameters have been optimized for maximum transport efficiency, is a workable method for directing electron beams to a converter target

  10. Plasma lens focusing and plasma channel transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Tauschwitz, A.; Yu, S.S.; Bangerter, R.O.

    1996-01-01

    The final focus lens in an ion beam driven inertial confinement fusion reactor is important since it sets limiting requirements for the quality of the driver beam. Improvements of the focusing capabilities can facilitate the construction of the driver significantly. A focusing system that is of interest both for heavy ion and for light ion drivers is an adiabatic, current carrying plasma lens. This lens is characterized by the fact that it can slowly (adiabatically) reduce the envelope radius of a beam over several betatron oscillations by increasing the focusing magnetic field along a tapered high current discharge. A reduction of the beam diameter by a factor of 3 to 5 seems feasible with this focusing scheme. Such a lens can be used for an ignition test facility where it can be directly coupled to the fusion target. For use in a repetitively working reactor chamber the lens has to be located outside of the reactor and the tightly focused but strongly divergent beam must be confined in a high current transport channel from the end of the lens into the immediate vicinity of the target. Laser preionization of a background gas is an efficient means to direct and stabilize such a channel. Experiments have been started to test both, the principle of adiabatic focusing, and the stability of laser preionized high current discharge channels. (author). 4 figs., 7 refs

  11. Plasma lens focusing and plasma channel transport for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tauschwitz, A; Yu, S S; Bangerter, R O [Lawrence Berkeley Lab., CA (United States); and others

    1997-12-31

    The final focus lens in an ion beam driven inertial confinement fusion reactor is important since it sets limiting requirements for the quality of the driver beam. Improvements of the focusing capabilities can facilitate the construction of the driver significantly. A focusing system that is of interest both for heavy ion and for light ion drivers is an adiabatic, current carrying plasma lens. This lens is characterized by the fact that it can slowly (adiabatically) reduce the envelope radius of a beam over several betatron oscillations by increasing the focusing magnetic field along a tapered high current discharge. A reduction of the beam diameter by a factor of 3 to 5 seems feasible with this focusing scheme. Such a lens can be used for an ignition test facility where it can be directly coupled to the fusion target. For use in a repetitively working reactor chamber the lens has to be located outside of the reactor and the tightly focused but strongly divergent beam must be confined in a high current transport channel from the end of the lens into the immediate vicinity of the target. Laser preionization of a background gas is an efficient means to direct and stabilize such a channel. Experiments have been started to test both, the principle of adiabatic focusing, and the stability of laser preionized high current discharge channels. (author). 4 figs., 7 refs.

  12. First in situ determination of gas transport coefficients (DO2, DAr and DN2) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice

    DEFF Research Database (Denmark)

    Crabeck, O.; Delille, B.; Rysgaard, Søren

    2014-01-01

    We report bulk gas concentrations of O2, N2, and Ar, as well as their transport coefficients, in natural landfast subarctic sea ice in southwest Greenland. The observed bulk ice gas composition was 27.5% O2, 71.4% N2, and 1.09% Ar. Most previous studies suggest that convective transport is the main...... driver of gas displacement in sea ice and have neglected diffusion processes. According to our data, brines were stratified within the ice, so that no convective transport could occur within the brine system. There- fore, diffusive transport was the main driver of gas migration. By analyzing the temporal...... evolution of an internal gas peak within the ice, we deduced the bulk gas transport coefficients for oxygen (DO2), argon (DAr), and nitrogen (DN2). The values fit to the few existing estimates from experimental work, and are close to the diffusivity values in water (1025 cm2 s21). We suggest that gas...

  13. Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas

    International Nuclear Information System (INIS)

    Zawaideh, E.S.

    1985-01-01

    A new set of two-fluid equations which are valid from collisional to weakly collisional limits are derived. Starting from gyrokinetic equations in flux coordinates with no zeroth order drifts, a set of moment equations describing plasma transport along the field lines of a space and time dependent magnetic field are derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii while in the weakly collisional limit, they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations. The new transport equations are used to study the effects of collisionality, magnetic field structure, and plasma anisotropy on plasma parallel transport. Numerical examples comparing these equations with conventional transport equations show that the conventional equations may contain large errors near the sound speed (M approx. = 1). It is also found that plasma anisotropy, which is not included in the conventional equations, is a critical parameter in determining plasma transport in varying magnetic field. The new transport equations are also used to study axial confinement in multiple mirror devices from the strongly to weakly collisional regime. A new ion conduction model was worked out to extend the regime of validity of the transport equations to the low density multiple mirror regime

  14. Impurity transport studies by means of tracer-encapsulated solid pellet injection in neutral beam heated plasmas on LHD

    International Nuclear Information System (INIS)

    Tamura, N; Sudo, S; Khlopenkov, K V; Kato, S; Sergeev, V Yu; Muto, S; Sato, K; Funaba, H; Tanaka, K; Tokuzawa, T; Yamada, I; Narihara, K; Nakamura, Y; Kawahata, K; Ohyabu, N; Motojima, O

    2003-01-01

    The quantitative properties of impurity transport in large helical device (LHD) plasmas heated by neutral beam injection have been investigated by means of tracer-encapsulated solid pellet (TESPEL) injection. In the case of a titanium (Ti) tracer, the behaviour of the emission lines from the highly ionized Ti impurity, Ti Kα(E He-like ∼ 4.7 keV) and Ti XIX (λ = 16.959 nm), has been observed clearly by a soft x-ray pulse height analyzer and a vacuum ultraviolet spectrometer, respectively. A fairly longer decay time of the Ti Kα emission lines is obtained above the value of a line-averaged electron density, 3.0x10 19 m -3 . The dependence of the behaviour of the Ti tracer impurity on the line-averaged electron density below the value of that, 3.5x10 19 m -3 is in qualitative agreement with the characteristics obtained from the observation of the behaviour of an intrinsic metallic impurity in neutral beam heated plasmas on LHD. In order to estimate the properties of the Ti impurity transport quantitatively, the one-dimensional impurity transport code, MIST has been used. As a result of the transport analysis with the MIST code, even an small inward convection should be necessary to account for the experimental results with the value of the line-averaged electron density, 3.5x10 19 m -3 . In order to examine the experimentally obtained transport coefficients, neoclassical analysis with respect to the radial impurity flux has been performed. The inferred rise of the inward convection cannot be explained solely by neoclassical impurity transport. Therefore, in order to account for the inward convection, the effect of a radial electric field and/or some other effect must be taken into account additionally

  15. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  16. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  17. Ground-state populations of atomic hydrogen and hydrogen-like ions in nonthermal plasmas, and collisional-radiative recombination and ionization coefficients

    International Nuclear Information System (INIS)

    Drawin, H.W.; Emard, F.

    1978-01-01

    The populations of atomic hydrogen and hydrogen-like ions have been calculated using a collisional-radiative model. The global collisional-radiative excitation coefficients rsub(j)sup((0)) and rsub(j)sup((1)) valid for homogeneous-stationary and/or quasi-homogeneous quasi-stationary plasmas were published recently. The present paper contains in tabulated form the ground state populations and Saha decrements for the homogeneous stationary state, and the collisional-radiative recombination and ionization coefficients. (Auth.)

  18. Core transport properties in JT-60U and JET identity plasmas

    NARCIS (Netherlands)

    Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombe, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.

    2011-01-01

    The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma

  19. The effect of plasma fluctuations on parallel transport parameters in the SOL

    DEFF Research Database (Denmark)

    Havlíčková, E.; Fundamenski, W.; Naulin, Volker

    2011-01-01

    The effect of plasma fluctuations due to turbulence at the outboard midplane on parallel transport properties is investigated. Time-dependent fluctuating signals at different radial locations are used to study the effect of signal statistics. Further, a computational analysis of parallel transport...... to a comparison of steady-state and time-dependent modelling....

  20. Electromagnetic effects on plasma blob-filament transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu [University of California, San Diego, La Jolla, CA (United States); Angus, J.R. [Naval Research Laboratory, Washington, DC (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Krasheninnikov, Sergei I. [University of California, San Diego, La Jolla, CA (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation)

    2015-08-15

    Both microscopic and macroscopic impacts of the electromagnetic effects on blob dynamics are considered. Linear stability analysis and nonlinear BOUT++ simulations demonstrate that electromagnetic effects in high temperature or high beta plasmas suppress the resistive drift wave turbulence in the blob when resistivity drops below a certain value. In the course of blob’s motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important. It is found that inhomogeneity of magnetic curvature or plasma pressure along the filament length leads to bending of the high-beta blob filaments. This is caused by the increase of the propagation time of plasma current (Alfvén time) in higher-density plasma. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time.