WorldWideScience

Sample records for plasma thermodynamic functions

  1. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  2. Thermodynamics of High Temperature Plasmas

    Directory of Open Access Journals (Sweden)

    Ettore Minardi

    2009-03-01

    Full Text Available In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as

  3. Thermodynamic Function of Life

    CERN Document Server

    Michaelian, K

    2009-01-01

    Darwinian Theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic, out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere of greatest mass, the plants and cyanobacteria, are involved in the transpiration of vast amounts of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its life barren neighboring planets, Venus and Mars. The water cycle, including the absorption of sunlight in the biosphere, is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can therefore be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants ...

  4. Potential Functions in Chemical Thermodynamics

    Science.gov (United States)

    Araujo, Roger J.

    1998-11-01

    The first and second laws of thermodynamics are stated in equation form. The equation containing the combined laws is used to identify potential functions appropriate to various sets of constraints. An ion-exchange reaction and a redox reaction in a melt are considered as illustrations of the importance of using the potential function appropriate to the constraints.

  5. Derivation of the Fano profile from time-dependent density-functional theory for local thermodynamic equilibrium plasmas

    Science.gov (United States)

    Kiyokawa, Shuji

    2007-04-01

    We give the derivation of the Fano profile (the resonance energy position, the resonance width Γ , and q value) from the time-dependent nonrelativistic density-functional theory (DFT) and propose a scheme for calculating the photoabsorption cross section of hot dense plasmas. As a consequence of this derivation, we show the line profile is obtained as a superposition of Fano and Lorentz profiles when the competition of two optically allowed bound-bound and bound-free transitions occurs. We also show the results of the photoabsorption cross section by applying our scheme to an Fe plasma (density is 7.85g/cm3 , temperature is 100eV ), where the calculation is carried out without numerical divergence for any photon energy. The calculated results are in good agreement with those of Grimaldi.

  6. Thermodynamic functions of arsenic selenides

    Science.gov (United States)

    Babanly, D. M.; Velieva, G. M.; Imamaliyeva, S. Z.; Babanly, M. B.

    2017-07-01

    The solid-phase equilibria and thermodynamic properties of an As-Se system are studied using the electromotive force (EMF). The existence of compounds As2Se3, AsSe, and As4Se3 in a system with near constant composition is confirmed. The relative partial molar functions, standard Gibbs free energies, enthalpies of formation, and standard entropies of As in the alloys are calculated using EMF measurements.

  7. Thermodynamic and dynamical properties of dense ICF plasma

    Directory of Open Access Journals (Sweden)

    Gabdullin Maratbek T.

    2016-06-01

    Full Text Available In present work, thermodynamic expressions were obtained through potentials that took into consideration long-range many-particle screening effects as well as short-range quantum-mechanical effects and radial distribution functions (RDFs. Stopping power of the projectile ions in dense, non-isothermal plasma was considered. One of the important values that describe the stopping power of the ions in plasma is the Coulomb logarithm. We investigated the stopping power of ions in inertial confinement fusion (ICF plasma and other energetic characteristics of fuel. Calculations of ions energy losses in the plasma for different values of the temperature and plasma density were carried out. A comparison of the calculated data of ion stopping power and energy deposition with experimental and theoretical results of other authors was also performed.

  8. Interaction potentials and thermodynamic properties of two component semiclassical plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Ismagambetova, T. N. [Al-Farabi Kazakh National University, IETP, 71 al-Farabi Av., Almaty 050040 (Kazakhstan); Gabdullin, M. T. [Al-Farabi Kazakh National University, NNLOT, 71 al-Farabi Av., Almaty 050040 (Kazakhstan)

    2014-01-15

    In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation.

  9. Thermodynamic Functions of Magnetized Coulomb Crystals

    CERN Document Server

    Baiko, D A

    2013-01-01

    Free energy, internal energy, and specific heat for each of the three phonon spectrum branches of a magnetized Coulomb crystal with body-centered cubic lattice are calculated by numerical integration over the Brillouin zone in the range of magnetic fields $B$ and temperatures $T$, such that $0 \\le \\omega_{\\rm B}/\\omega_{\\rm p}\\le 10^3$ and $10^{-4} \\le T/T_{\\rm p} \\le 10^4$. In this case, $\\omega_{\\rm B}$ is the ion cyclotron frequency, $\\omega_{\\rm p}$ and $T_{\\rm p}$ are the ion plasma frequency and plasma temperature, respectively. The results of numerical calculations are approximated by simple analytical formulas. For illustration, these formulas are used to analyze the behavior of the heat capacity in the crust of a neutron star with strong magnetic field. Thermodynamic functions of magnetized neutron star crust are needed for modeling various observational phenomena in magnetars and high magnetic field pulsars.

  10. Coal pyrolysis in plasma and thermodynamic analysis for model compound

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Pang, X.; Bao, W.; Xie, K. [Shanxi Key Laboratory of Coal Science and Technology, Taiyuan (China)

    2001-02-01

    On the basis of study on coal and graphite pyrolysis in hydrogen-enriched argon plasma jet reactor, thermodynamic analysis for reactions producing acetylene was carried out by the means of selecting model compounds including various gaseous aliphatic and liquid aromatic hydrocarbons, which were regarded as similar to the primary volatile of coal, and by calculating the changes of Gibbs functions under deferent temperatures. The fact that the reactions of the volatiles releasing from coal play an essential part in acetylene formation from coal in H{sub 2}-Ar plasma was verified. The result that acetylene can be produced easily in high temperature can be deduced from entropy effects by theoretical analysis and experiment. These results are of significance for mechanism investigation of acetylene formation in plasma reactor. 7 refs., 1 fig., 3 tabs.

  11. Fundamental functions in equilibrium thermodynamics

    NARCIS (Netherlands)

    Horst, H.J. ter

    1987-01-01

    In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using

  12. Entropy Function for Multifractal Thermodynamics

    Institute of Scientific and Technical Information of China (English)

    QiuhuaZENG

    1999-01-01

    The theory on multifractal thermodynamics has been studied by the method of series expansion.The method is able to overcome the shortages of Kohmoto's steepest desent method and the results have general meanings.

  13. Thermodynamic laws apply to brain function.

    Science.gov (United States)

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  14. Dual QCD thermodynamics and quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, H.C., E-mail: chandolaharish@gmail.com [Centre of Advanced Study, Department of Physics, Kumaun University, Nainital-263001 (India); Punetha, Garima [Centre of Advanced Study, Department of Physics, Kumaun University, Nainital-263001 (India); Dehnen, H. [Fachbereich Physik, Universität Konstanz, M 677, 78457 Konstanz (Germany)

    2016-01-15

    Using grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of dual QCD based on magnetic symmetry has been presented and analyzed for the quark–gluon plasma phase of hadronic matter. The dual QCD based bag construction has been shown to lead to the radial pressure on bag surface in terms of the vector glueball masses of magnetically condensed QCD vacuum. Constructing the grand canonical partition function, the energy density and plasma pressure have been derived and used to compute the critical temperatures for QGP–hadron phase transition along with its dynamics. A comparison of the values of critical temperatures for QGP–hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to either the relaxation of the system via a mixed phase of QGP and hot hadron gas or go through a crossover. The associated profiles of the normalized energy density and specific heat have been shown to lead to a large latent heat generation and indicate the onset of a first-order QGP phase transition which turns into a rapid crossover for the case of temperature dependent bag parameter. The squared speed of sound has been shown to act as a physical measure of large thermodynamical fluctuations near transition point. The possible implications of trace anomaly and conformal measure on QGP formation have also been discussed.

  15. Thermodynamics of the N=2^* strongly coupled plasma

    CERN Document Server

    Buchel, A; Kerner, P; Liu, J T; Buchel, Alex; Deakin, Stan; Kerner, Patrick; Liu, James T.

    2007-01-01

    Gauge/string duality is a potentially important framework for addressing the properties of the strongly coupled quark gluon plasma produced at RHIC. However, constructing an actual string theory dual to QCD has so far proven elusive. In this paper, we take a partial step towards exploring the QCD plasma by investigating the thermodynamics of a non-conformal system, namely the N=2^* theory, which is obtained as a mass deformation of the conformal N=4 gauge theory. We find that at temperatures of order the mass scale, the thermodynamics of the mass deformed plasma is surprisingly close to that of the conformal gauge theory plasma. This suggests that many properties of the quark gluon plasma at RHIC may in fact be well described by even relatively simple models such as that of the conformal N=4 plasma.

  16. Stochastic transition between turbulent branch and thermodynamic branch of an inhomogeneous plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Mitsuhiro; Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-05-01

    Transition phenomena between thermodynamic branch and turbulent branch in submarginal turbulent plasma are analyzed with statistical theory. Time-development of turbulent fluctuation is obtained by numerical simulations of Langevin equation which contains submarginal characteristics. Probability density functions and transition rates between two states are analyzed. Transition from turbulent branch to thermodynamic branch occurs in almost entire region between subcritical bifurcation point and linear stability boundary. (author)

  17. Taming microwave plasma to beat thermodynamics in CO2 dissociation.

    Science.gov (United States)

    van Rooij, G J; van den Bekerom, D C M; den Harder, N; Minea, T; Berden, G; Bongers, W A; Engeln, R; Graswinckel, M F; Zoethout, E; van de Sanden, M C M

    2015-01-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrations. Simple molecular physics considerations are presented to explain potential dissociation pathways in plasma and their effect on energy efficiency. A common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures (exceeding 10(4) K) and conversion degrees (up to 30%), respectively. The results are interpreted on a basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favorable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry to dominate. The highest observed energy efficiencies of 45% indicate that non-equilibrium dynamics had been at play. A novel approach involving additives of low ionization potential to tailor the electron energies to the vibrational excitation regime is proposed.

  18. Thermodynamics estimation of copper plasma efficiency from secondary raw material

    Directory of Open Access Journals (Sweden)

    Віктор Сергійович Козьмін

    2014-09-01

    Full Text Available The results of the thermodynamic evaluation of oxidative plasma copper refining efficiency recycled from impurities present in the feedstock are shown. It was established that the type of impurity factor increasing the efficiency of the plasma refining the potential change of Gibbs varies from 1,4 to 4, 8, and for silver, and of gold there is a transition from an unlikely to real positive state. 

  19. Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S; Dzhumagulova, K N; Gabdullin, M T [IETP, Al-Farabi Kazakh National University, 96a, Tole Bi St, Almaty, 050012 (Kazakhstan)

    2006-04-28

    Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma were investigated on the basis of pseudopotential models. Radial distribution functions (RDF) of particles were obtained using a system of the Ornstein-Zernike integral equations. The corrections to internal energy and the equation of state were calculated using RDF.

  20. Thermodynamic Green functions in theory of superconductivity

    Directory of Open Access Journals (Sweden)

    N.M.Plakida

    2006-01-01

    Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.

  1. Composition and thermodynamic properties of dense alkali metal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gabdullin, M.T. [NNLOT, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan); Ramazanov, T.S.; Dzhumagulova, K.N. [IETP, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan)

    2012-04-15

    In this work composition and thermodynamic properties of dense alkali metal plasmas (Li, Na) were investigated. Composition was derived by solving the Saha equations with corrections due to nonideality. The lowering of the ionization potentials was calculated on the basis of pseudopotentials by taking screening and quantum effects into account (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Opacity calculations for Non-Local-Thermodynamic-Equilibrium plasmas

    Institute of Scientific and Technical Information of China (English)

    PANG Jin-qiao; WU Ze-qing; YAN Jun; HAN Guo-xing

    2004-01-01

    In this paper, we presented a method to calculate the spectral-resolved opacity for Non-Local-Thermodynamic-Equilibrium (non-LTE) plasmas. By solving the rate equations, we get the population. In the rate equations, configuration-averaged rate coefficients are used and the cross sections are calculated based on the first-perturbation theory. Using the detailed configuration accounting with the term structures treated by the unresolved transition array model, we calculated the spectral-resolved opacity of Al plasmas. The results are compared with those of other theoretical models. From the comparison, we can see that the present results fit well with other models for low-Z plasmas. For high-Z plasmas, we will give detailed discussion in the future.

  3. Identifying functional thermodynamics in autonomous Maxwellian ratchets

    Science.gov (United States)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2016-02-01

    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly—for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds. As such, it broadly describes the minimal energetic cost of any computation by a thermodynamic system.

  4. Thermodynamic State Variables in Quasi-Equilibrium Ultracold Neutral Plasma

    CERN Document Server

    Tiwari, Sanat Kumar; Baalrud, Scott D

    2016-01-01

    The pressure and internal energy of an ultracold plasma in a state of quasi-equilibrium are evaluated using classical molecular dynamics simulations. Coulomb collapse is avoided by modeling electron-ion interactions using an attractive Coulomb potential with a repulsive core. We present a method to separate the contribution of classical bound states, which form due to recombination, from the contribution of free charges when evaluating these thermodynamic state variables. It is found that the contribution from free charges is independent of the choice of repulsive core length-scale when it is sufficiently short-ranged. The partial pressure associated with the free charges is found to closely follow that of the one-component plasma model, reaching negative values at strong coupling, while the total system pressure remains positive. This pseudo-potential model is also applied to Debye-H\\"{u}ckel theory to describe the weakly coupled regime.

  5. A Thermodynamic Model for Argon Plasma Kernel Formation

    Directory of Open Access Journals (Sweden)

    James Keck

    2010-11-01

    Full Text Available Plasma kernel formation of argon is studied experimentally and theoretically. The experiments have been performed in a constant volume cylindrical vessel located in a shadowgraph system. The experiments have been done in constant pressure. The energy of plasma is supplied by an ignition system through two electrodes located in the vessel. The experiments have been done with two different spark energies to study the effect of input energy on kernel growth and its properties. A thermodynamic model employing mass and energy balance was developed to predict the experimental data. The agreement between experiments and model prediction is very good. The effect of various parameters such as initial temperature, initial radius of the kernel, and the radiation energy loss have been investigated and it has been concluded that initial condition is very important on formation and expansion of the kernel.

  6. Thermodynamic state variables in quasiequilibrium ultracold neutral plasma

    Science.gov (United States)

    Tiwari, Sanat Kumar; Shaffer, Nathaniel R.; Baalrud, Scott D.

    2017-04-01

    The pressure and internal energy of an ultracold plasma in a state of quasiequilibrium are evaluated using classical molecular dynamics simulations. Coulomb collapse is avoided by modeling electron-ion interactions using an attractive Coulomb potential with a repulsive core. We present a method to separate the contribution of classical bound states, which form due to recombination, from the contribution of free charges when evaluating these thermodynamic state variables. It is found that the contribution from free charges is independent of the choice of repulsive core length scale when it is sufficiently short-ranged. The partial pressure associated with the free charges is found to closely follow that of the one-component plasma model, reaching negative values at strong coupling, while the total system pressure remains positive. This pseudopotential model is also applied to Debye-Hückel theory to describe the weakly coupled regime.

  7. Calculation of thermodynamic and transport properties of thermal plasmas based on the Cantera software toolkit

    Science.gov (United States)

    Doiron, Charles; Hencken, Kai

    2013-09-01

    Computational fluid-dynamic simulations nowadays play a central role in the development of new gas circuit breakers. For these simulations to be reliable, a good knowledge of the pressure and temperature-dependence of the thermodynamic and transport properties of ionized gases is required. A key ingredient in the calculation of thermodynamic properties of thermal plasmas is the calculation of the chemical equilibrium composition of the gas. The general-purpose, open-source software toolkit Cantera provides most functionality required to carry out such thermodynamic calculations. In this contribution, we explain how we tailored Cantera specifically to calculate material properties of plasmas. The highly modular architecture of this framework made it possible to add support for Debye-Hückel non-ideality corrections in the calculation of the chemical equilibrium mixture, as well as to enable the calculation of the key transport parameters needed in CFD-based electric arc simulations: electrical and thermal conductivity, viscosity, and diffusion coefficients. As an example, we discuss the thermodynamic and transport properties of mixtures of carbon dioxide and copper vapor.

  8. Potential Function and Thermodynamic Property of UO

    Institute of Scientific and Technical Information of China (English)

    Xiu-lin Zeng; Si-yu Xu; Xue-hai Ju

    2013-01-01

    Potential energy scan for uranium oxide (UO) was performed by ab initio configuration interaction (CI) method and density functional theory methods at the PBE1 and the B3LYP levels in combination with the (ECP80MWB_AVQZ+2f) basis set for uranium and 6-311+G* for oxygen.The dissociation energies of UO,after being corrected for the zero-point vibrational energy,are 2.38,3.76,and 3.31 eV at the CI,PBE1,and B3LYP levels,respectively.The calculated energy was fitted to potential functions of Morse,Lennard-Jones,and Rydberg.Only the Morse function is eligible for the potential.The anharmonicity constant is 0.00425.The anharmonic frequency is 540.95 cm-1 deduced from the PBE1 results.Thermodynamic properties of entropy and heat capacity at 298.2-1500 K were calculated using DFT-UPBE1 results and Morse parameters.The relationship between entropy and temperature was established.

  9. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    Science.gov (United States)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  10. Thermodynamic Properties of Gaseous Plasmas in the Limit of Extremely Low Temperature

    CERN Document Server

    Iosilevskiy, Igor

    2010-01-01

    Limiting structure of thermodynamic functions of gaseous plasmas is under consideration in the limit of zero temperature and density. Remarkable tendency, which was claimed previously (Iosilevskiy and Gryaznov, 1985) is carried to extreme. Both equations of state, thermal and caloric ones obtain in this limit identical stepped structure ("ionization stairs") for plasma of any single element when this limit (T -> 0, n -> 0) is carried out at fixed value of chemical potential for electrons (or atoms). The same stepped structure is valid for plasma of mixtures or compounds. This structure appears within a fixed (negative) range of chemical potential of electrons bounded below by value of major ionization potential of element and above by the value depending on sublimation energy of substance. Binding energies of all possible bound complexes (atomic, molecular, ionic and clusters) in its ground state are the only quantities that manifest itself in meaningful details of this limiting picture as location and value ...

  11. Bag model of hadrons, dual QCD thermodynamics and Quark-Gluon Plasma

    CERN Document Server

    Chandola, H C; Dehnen, H

    2015-01-01

    Using the grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of the dual QCD has been presented in terms of the bag model of hadrons and analyzed for the quark-gluon plasma phase of hadronic matter. The dual QCD bag construction has been shown to lead to the radial pressure on the bag surface in terms of the vector glueball masses of the magnetically condensed QCD vacuum. Constructing the grand canonical partition function to deal with the quark-gluon plasma phase of the non-strange hadrons, the energy density and the plasma pressure have been derived and used to understand the dynamics of the associated phase transition. The critical temperature for QGP-hadron phase transition has been derived and numerically estimated by using various thermodynamic considerations. A comparison of the values of the critical temperatures for QGP-hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to the relaxation ...

  12. Ornstein-Zernike derivative relations and thermodynamic functions

    Science.gov (United States)

    Gan, Hin Hark; Eu, Byung Chan

    1992-01-01

    The consequences of the derivatives of the Ornstein-Zernike relation with respect to the density (ρ) and temperature (T) are examined. An approximate closure for the Ornstein-Zernike relation is used to evaluate the derivatives of the pair-correlation function to all orders without knowing explicitly the correlation functions higher in order than the pair-correlation function. The first- and second-order thermodynamic (ρ or T) derivatives of the pair-correlation function are calculated and compared with the experiments of Egelstaff et al. In addition, the thermodynamic functions involving these derivatives are evaluated to demonstrate the utility and accuracy of the method.

  13. Thermodynamic functions of the ZnO nanoweeds

    Energy Technology Data Exchange (ETDEWEB)

    Fan Gaochao; Jiang Junying; Li Yanfen [College of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006 (China); Huang Zaiyin, E-mail: hzy210@163.com [College of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006 (China) and Key Laboratory of Forest Chemicals Development and Application of Guangxi Zhuang Autonomous Region, Nanning 530006 (China)

    2011-11-01

    Highlights: {yields} ZnO nanoweeds were prepared by microemulsion-mediated hydrothermal route. {yields} Thermodynamic functions of nano ZnO with bulk ZnO were associated by designing a novel thermochemical cycle. {yields} Coupled with in situ microcalorimetry, thermodynamic functions of the products were acquired. {yields} Striking differences, compared to thermodynamic functions of bulk ZnO, can be rooted to surface effect of nano ZnO. - Abstract: ZnO nanoweeds were prepared by a simple microemulsion-mediated hydrothermal route. SEM observation revealed that each weed consisted of several nanowires which were about 1 {mu}m in length and 40 nm in diameter. In order to associate thermodynamic functions of nano ZnO with bulk ZnO, a novel thermochemical cycle was designed. Combined with in situ microcalorimetry, the standard molar enthalpy of formation, standard molar Gibbs free energy of formation and standard molar entropy of the obtained products at 298.15 K were successfully acquired as (-319.10 {+-} 0.42) kJ mol{sup -1}, (-318.53 {+-} 0.03) kJ mol{sup -1} and (54.85 {+-} 1.02) J mol{sup -1} K{sup -1}, respectively. It can be concluded that the striking differences between thermodynamic functions of nano ZnO and bulk ZnO can be rooted to surface effect of nano material.

  14. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  15. Thermodynamical study on production of acetylene from coal pyrolysis in hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Guo, W.K.; Yuan, X.Q.; Zhao, T.Z. [Fudan University, Shanghai (China). Inst. for Modern Physics

    2006-05-15

    The chemical thermodynamic equilibrium of acetylene production by coal pyrolysis in hydrogen plasma was studied. The thermodynamic equilibrium is obtained by using the method of free energy. Calculated results show that the hydrogen concentration in the equilibrium system is very important for the acetylene production by coal conversion and the energy consumption for the production of acetylene per-kilogram strongly depends on the hydrogen concentration and the temperature.

  16. Thermodynamical Study on Production of Acetylene from Coal Pyrolysis in Hydrogen Plasma

    Science.gov (United States)

    Wang, Fei; Guo, Wenkang; Yuan, Xingqiu; Zhao, Taize

    2006-05-01

    The chemical thermodynamic equilibrium of acetylene production by coal pyrolysis in hydrogen plasma was studied. The thermodynamic equilibrium is obtained by using the method of free energy. Calculated results show that the hydrogen concentration in the equilibrium system is very important for the acetylene production by coal conversion and the energy consumption for the production of acetylene per-kilogram strongly depends on the hydrogen concentration and the temperature.

  17. Thermodynamic Derivation of the Equilibrium Distribution Functions of Statistical Mechanics.

    Science.gov (United States)

    Stoeckly, Beth

    1979-01-01

    Presents a simplified derivation of the equilibrium distribution functions. The derivation proceeds from the change in the Helmholtz free energy when a particle is added to a system of fixed temperature, volume, and chemical potential. The derivations show the relationship between statistical mechanics and macroscopic thermodynamics. (Author/GA)

  18. The Thermodynamic Functions in Curved Space of Neutron Star

    Science.gov (United States)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-04-01

    The aim of this article is to calculate the thermodynamic functions of a neutron star in curved space. We obtained equation of state (EOS) and the excess free energy for a neutron star in curved space up to order n4, where n is the density of particles.

  19. Limitations and Functions: Four Examples of Integrating Thermodynamics

    Science.gov (United States)

    Chang, Wheijen

    2011-01-01

    Physics students are usually unaware of the limitations and functions of related principles, and they tend to adopt "hot formulas" inappropriately. This paper introduces four real-life examples for bridging five principles, from fluids to thermodynamics, including (1) buoyant force, (2) thermal expansion, (3) the ideal-gas law, (4) the 1st law,…

  20. Memory effects and thermodynamics in strong field plasmas

    CERN Document Server

    Bloch, J C R; Schmidt, S M

    2000-01-01

    We study the evolution of a strong field plasma using a quantum Vlasov equation with a non-Markovian source term and a simple collision term, and calculate the time dependence of the energy- and number-density, and the temperature. The evolution of a plasma produced with RHIC-like initial conditions is well described by a low density approximation to the source term. However, non-Markovian aspects should be retained to obtain an accurate description of the early stages of an LHC-like plasma.

  1. Taming microwave plasma to beat thermodynamics in CO2 dissociation

    NARCIS (Netherlands)

    van Rooij, G.; van den Bekerom, D.; N. den Harder,; Minea, T.; G. Berden,; Bongers, W.; Engeln, R.; Graswinckel, M.; Zoethout, E.; M. C. M. van de Sanden,

    2015-01-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrations. Simple molecular physics considerations are presented to explain potential dissociation pathways in a

  2. Thermodynamic Functions and Phase Transformation of Metal Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    Jinping GAO; Xiaoyan SONG; Jiuxing ZHANG; Keyong YANG; Xuemei LIU

    2005-01-01

    A model to calculate the thermodynamic functions of the pure metal nanocrystals has been developed, with the consideration of the effects of both the interfaces and the crystal in the nano-grain interior. As an example, the enthalpy, entropy and Gibbs free energy, as functions of the excess free volume at interfaces, temperature and grain size, are calculated for the Co nanocrystals. Furthermore, the characteristics ofβ-Co→α-Co phase transformation are studied, and the transformation temperatures at different levels of grain size, as well as the critical grain sizes at different temperatures, are predicted. The calculation results show that, the nano-grainedβ-Co (fcc) is thermodynamically stable at temperatures much lower than that for the conventional coarse-grained materials, and may also stably exist at room temperature when the grain size is reduced to be small enough. The present model is verified by comparisons between the experimental findings and the theoretical predictions.

  3. Thermodynamic Structure of Collision-Dominated Expanding Plasma: Heating of Interplanetary Coronal Mass Injections

    Science.gov (United States)

    Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.

    2006-01-01

    We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.

  4. Constraints on rainbow gravity functions from black hole thermodynamics

    CERN Document Server

    Gangopadhyay, Sunandan

    2016-01-01

    In this paper, we investigate the thermodynamic properties of black holes in the framework of rainbow gravity. By considering rainbow functions in the metric of Schwarzschild and Reissner-Nordstr\\"{o}m black holes, remnant and critical masses are found to exist. Demanding the universality of logarithmic corrections to the semi-classical area law for the entropy leads to constraining the form of the rainbow functions. The mass output and the radiation rate for these constrained form of rainbow functions have been computed for different values of the rainbow parameter $\\eta$ and have striking similarity to those derived from the generalized uncertainty principle.

  5. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    Science.gov (United States)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron–heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  6. Investigation of the local thermodynamic equilibrium of laser-induced aluminum plasma by Thomson scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); Kański, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); Farah-Sougueh, A. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); GREMI — site de Bourges, Université d' Orléans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pellerin, S. [GREMI — site de Bourges, Université d' Orléans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ul. Podchorażych 2, 30-084 Kraków (Poland); Dzierżęga, K. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland)

    2014-06-01

    A laser Thomson scattering method was applied to investigate the local Saha–Boltzmann equilibrium in aluminum laser-induced plasma. Plasma was created in ambient air using 4.5 ns pulses from a Nd:YAG laser at 532 nm, focused on an Al target. Spatially resolved measurements, performed for the time interval between 600 ns and 3 μs, show electron density and temperature to decrease from 3.4 × 10{sup 23} m{sup −3} to 0.5 × 10{sup 23} m{sup −3} and from 61,000 K to 13,000 K in the plasma core. The existence of local thermodynamic equilibria in the plasma was verified by comparing the rates of the collisional to radiative processes (the McWhirter criterion), as well as relaxation times and diffusion lengths of different plasma species, with the appropriate rate of electron density evolution and its gradients at given, experimentally determined, electron temperatures. We found these criteria to be much easier to satisfy for metallic plasma species than for nitrogen. The criteria are also easier to satisfy in the plasma core of higher electron density. - Highlights: • Laser Thomson scattering method was applied to investigate aluminum laser-induced plasma. • Spatio-temporal evolution of electron temperature and density was determined. • Three criteria for existence of local thermodynamic equilibrium were verified. • Criteria are much easier to satisfy for metallic plasma species than for nitrogen. • Criteria are easier to satisfy at earlier times and in the plasma core.

  7. Advances on statistical/thermodynamical models for unpolarized structure functions

    Science.gov (United States)

    Trevisan, Luis A.; Mirez, Carlos; Tomio, Lauro

    2013-03-01

    During the eights and nineties many statistical/thermodynamical models were proposed to describe the nucleons' structure functions and distribution of the quarks in the hadrons. Most of these models describe the compound quarks and gluons inside the nucleon as a Fermi / Bose gas respectively, confined in a MIT bag[1] with continuous energy levels. Another models considers discrete spectrum. Some interesting features of the nucleons are obtained by these models, like the sea asymmetries ¯d/¯u and ¯d-¯u.

  8. Thermodynamic analysis of coal pyrolysis to acetylene in hydrogen plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Changning; Chen, Jiaqi; Cheng, Yi [Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A systematic re-examination of the thermodynamic study on the process of coal pyrolysis to acetylene in a hydrogen plasma reactor was performed with referenced pilot-plant data at the scale of 2-MW plasma. At the ultra-high temperature conditions, the gas phase composition may reach thermodynamic equilibrium immediately no matter whether the solid carbon exists or not. The mass ratio of C/H in the gaseous phase plays a significant role in the acetylene concentration at the thermodynamic equilibrium states. It is demonstrated either in thermodynamics calculation or in hot tests that a mass ratio of C/H near or above 2 is essential to gain an acceptable concentration of acetylene in the mixed gases, which indicates that the mixing efficiency between gas and coal particles near the coal injection point becomes pivotal to the yield of acetylene for its direct influence on the devolatilization of coal, i.e., the gaseous C/H ratio. Being consistent with the hot test experience, the extra amount of water added into the system may inhibit the production of acetylene. However, the addition of methane might impose a positive effect on the yield of acetylene and therefore on the overall reactor performance. (author)

  9. Thermodynamic Functions for Body Centered Cubic Lattice- Application on Lattice Green's Function

    OpenAIRE

    Asad, J. H.

    2011-01-01

    Thermodynamic functions of ionic systems were evaluated analytically using the Green's Function for Body Centered Cubic Lattices. The free energy density, chemical potential, pressure, spinodals, and coulomb ionic potentials are expressed in terms of hyper geometric functions 3F2 and complete elliptic integrals

  10. Ab initio study of thermodynamically consistent equation of state of warm dense aluminum plasma

    Science.gov (United States)

    Gao, Xiang; Chen, Liang; Valencia, Ramón; Xia, Weiyi; Gao, Weiwei; Han, Xiao-Ying; Li, Jia-Ming; Zhang, Peihong

    2016-09-01

    Thermodynamically consistent equation of state (EOS) of two-temperature aluminum across a wide range of parameter space (compression ratio ratios V0/V up to 4, electronic temperatures Te up to 1 500 000 K, and ionic temperature Tion up to 10 000 000 K for Te up to 40 000 K) is investigated from the free energy calculations using density functional theory (DFT) based first-principles electronic structure methods. Our results can serve as a stringent benchmark for the present EOS model and database, where various approximations are adopted, used in hydrodynamic simulations as well as developing new EOS models. We find that the Thomas-Fermi model for the electronic pressure overestimates the EOS within the present parameter space, whereas the Thomas-Fermi model with exchange corrections are in good agreement with our results for Te greater than 600 000 K. The ionic pressure for a given ionic temperature Tion is found to be nearly independent of the electronic temperature at high temperatures, which can be modeled with kinetic theory for Tion larger than 1 000 000 K for various Te. The asymptotic behavior of the electronic contributions to the plasma pressure is further analyzed and casted into a compact analytical form with a few fitting parameters. This analytical form is physically well motivated and reproduces the desired asymptotic behaviors of the EOS within the interested parameter space. Therefore, our results can be conveniently used for modeling important properties and processes of high energy density systems.

  11. Local thermodynamic equilibrium modeling of ionization of impurities in argon inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Serapinas, Petras, E-mail: serapinas@pfi.l [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania); Salkauskas, Julius; Ezerinskis, Zilvinas; Acus, Arturas [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, 01108 Vilnius (Lithuania)

    2010-01-15

    Essentially higher ionization degree of small concentrations of elements in inductively coupled plasma in comparison to the ionization of pure elements is emphasized. This conclusion is used to determine the relative dependence of the sensitivity of the inductively coupled plasma mass spectrometer on the atomic mass. The possibility of evaluation of the ionization temperature and electron density from mass spectrometric signals is proposed. Temperatures about 7000 K and 8000 K were obtained from the ionization ratio dependences on ionization potentials. Electron densities of the order of magnitude 10{sup 15} cm{sup -3}, in excess to the local thermodynamic equilibrium values, follow from the application of the Saha equation to the measurement results and indicate the recombining character of the plasma in the mass spectrometer measurement region. Effects due to additional ionization from matrix were discussed. The effect is largest on minor abundant ionization state components. Matrix effect is restricted to some temperature interval, which depends on the whole matrix composition and the plasma state. The results show that the local thermodynamic equilibrium modeling, if adequately matching the sample composition, can be useful as a quantitative basis for both description of the plasma state and indication of the character of the nonequilibrium effects.

  12. Modeling non local thermodynamic equilibrium plasma using the Flexible Atomic Code data

    CERN Document Server

    Han, Bo; Salzmann, David; Zhao, Gang

    2015-01-01

    We present a new code, RCF("Radiative-Collisional code based on FAC"), which is used to simulate steady-state plasmas under non local thermodynamic equilibrium condition, especially photoinization dominated plasmas. RCF takes almost all of the radiative and collisional atomic processes into rate equation to interpret the plasmas systematically. The Flexible Atomic Code (FAC) supplies all the atomic data RCF needed, which insures calculating completeness and consistency of atomic data. With four input parameters relating to the radiation source and target plasma, RCF calculates the population of levels and charge states, as well as potentially emission spectrum. In preliminary application, RCF successfully reproduces the results of a photoionization experiment with reliable atomic data. The effects of the most important atomic processes on the charge state distribution are also discussed.

  13. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Directory of Open Access Journals (Sweden)

    K. Michaelian

    2011-01-01

    Full Text Available Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes, is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  14. Plasma Dispersion Function for the Kappa Distribution

    Science.gov (United States)

    Podesta, John J.

    2004-01-01

    The plasma dispersion function is computed for a homogeneous isotropic plasma in which the particle velocities are distributed according to a Kappa distribution. An ordinary differential equation is derived for the plasma dispersion function and it is shown that the solution can be written in terms of Gauss' hypergeometric function. Using the extensive theory of the hypergeometric function, various mathematical properties of the plasma dispersion function are derived including symmetry relations, series expansions, integral representations, and closed form expressions for integer and half-integer values of K.

  15. Thermodynamic response functions and Maxwell relations for a Kerr black hole

    CERN Document Server

    Escamilla, L

    2015-01-01

    Assuming the existence of a fundamental thermodynamic relation, the classical thermodynamics of a black hole with mass and angular momentum is given. New definitions of response functions and $TdS$ equations are introduced and mathematical analogous of the Euler equation and Gibbs-Duhem relation are founded. Thermodynamic stability is studied from concavity conditions, resulting in an unstable equilibrium at all the domain except for a region of local stable equilibrium. Maxwell relations are written, allowing to build the thermodynamic squares. Our results shown an interesting analogy between thermodynamics of gravitational and magnetic systems.

  16. Partition functions. I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    Science.gov (United States)

    Popovas, A.; Jørgensen, U. G.

    2016-11-01

    Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when

  17. Thermodynamics of the quark-gluon plasma at finite chemical potential: color path integral Monte Carlo results

    Energy Technology Data Exchange (ETDEWEB)

    Filinov, V.S.; Fortov, V.E. [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, bd. 2, 125412 Moscow (Russian Federation); Bonitz, M. [Institute for Theoretical Physics and Astrophysics, Christian Albrechts University Kiel, Leibnizstrasse 15, D-24098 Kiel (Germany); Ivanov, Y.B. [National Research Center ' ' Kurchatov Institute' ' , Kurchatov Sq. 1, 123182 Moscow, Russia, National Research Nuclear University ' ' MEPhI' ' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Reseach, Joliot-Curie str. 6, Dubna, 141980, Moscow Region (Russian Federation)

    2015-02-01

    Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), color quantum path-integral Monte-Carlo (PIMC) calculations of the thermodynamic properties of the QGP are performed. We extend our previous zero chemical potential simulations to the QGP at finite baryon chemical potential. The results indicate that color PIMC can be applied not only above the QCD critical temperature T{sub c} but also below T{sub c}. Besides reproducing the lattice equation of state our approach yields also valuable additional insight into the internal structure of the QGP, via the pair distribution functions of the various quasiparticles. In particular, the pair distribution function of gluons reflects the existence of gluon-gluon bound states at low temperatures and μ = 175 MeV, i.e. glueballs, while meson-like bound states are not found. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rock, P.A.

    1983-01-01

    This book, suitable as an introductory text for undergraduates, presents temperature, internal energy, and entropy with a minimum of mathematics. The basic mathematical models of classical chemical thermodynamics are developed later in the text. Includes numerous problems at the end of each chapter, an appendix giving thermodynamic data for common substances, a short list of references, answers to selected problems, and a subject index. Contents, abridged: Energy and the first law of thermodynamics. Thermodynamic functions. The third law of thermodynamics and absolute entropies. Thermodynamics of chemical reactions. Phase equilibria: the activity function. Thermodynamics of ions in solution. Statistical thermodynamics. Appendices. Index.

  19. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    Science.gov (United States)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  20. Numerical tests of the electroweak phase transition and thermodynamics of the electroweak plasma

    CERN Document Server

    Csikor, Ferenc; Hein, J; Jaster, A; Montvay, István

    1996-01-01

    The finite temperature phase transition in the SU(2) Higgs model at a Higgs boson mass M_H \\simeq 34 GeV is studied in numerical simulations on four-dimensional lattices with time-like extensions up to L_t=5. The effects of the finite volume and finite lattice spacing on masses and couplings are studied in detail. The errors due to uncertainties in the critical hopping parameter are estimated. The thermodynamics of the electroweak plasma near the phase transition is investigated by determining the relation between energy density and pressure.

  1. Variational Average-Atom in Quantum Plasmas (VAAQP) - A check of thermodynamic consistency

    Science.gov (United States)

    Piron, R.; Blenski, T.; Cichocki, B.

    2009-12-01

    A new code called VAAQP (Variational Average-Atom in Quantum Plasmas) is presented. The conceptual model on which the code is based, as well as the important results of previous studies are briefly discussed. The code is based on a new fully variational model of equilibrium dense plasmas employing a quantal treatment of all electrons. VAAQP can calculate the Average-Atom structure and the mean ionization from the variational equations satisfying the virial theorem and without imposing the neutrality of the Wigner-Seitz sphere. The formula obtained for the electron pressure is simple and does not require any numerical differentiation. A description of the principal features of the code is given. The thermodynamic consistency of the results obtained with VAAQP is shown by a comparison with another approach for the aluminium 2 eV isotherm. An initial comparison to an INFERNO-type model is also presented.

  2. Thermodynamic coherence of the Variational Average-Atom in Quantum Plasmas (VAAQP) approach

    CERN Document Server

    Piron, R; Cichocki, B

    2009-01-01

    A new code called VAAQP (Variational Average-Atom in Quantum Plasmas) is reported. The model as well as main results of previous studies are briefly recalled. The code is based on a new fully variational model of dense plasmas at equilibrium with quantum treatment of all electrons. The code can calculate the Average Atom structure and the mean ionization from the variational equations respecting the virial theorem and without imposing the neutrality of the Wigner-Seitz sphere. The formula obtained for the electronic pressure is simple and does not require any numerical differentiation. A description of the principal features of the code is given. The thermodynamic consistency of the results obtained with VAAQP is shown by a comparison with another approach on the example of the aluminium 10 eV isotherm EOS curve. A first comparison to an INFERNO-type model is also presented.

  3. Functional thermo-dynamics: a generalization of dynamic density functional theory to non-isothermal situations.

    Science.gov (United States)

    Anero, Jesús G; Español, Pep; Tarazona, Pedro

    2013-07-21

    We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.

  4. Characterization of local thermodynamic equilibrium in a laser-induced aluminum alloy plasma.

    Science.gov (United States)

    Zhang, Yong; Zhao, Zhenyang; Xu, Tao; Niu, GuangHui; Liu, Ying; Duan, Yixiang

    2016-04-01

    The electron temperature was evaluated using the line-to-continuum ratio method, and whether the plasma was close to the local thermodynamic equilibrium (LTE) state was investigated in detail. The results showed that approximately 5 μs after the plasma formed, the changes in the electron and excitation temperatures, which were determined using a Boltzmann plot, overlapped in the 15% error range, which indicated that the LTE state was reached. The recombination of electrons and ions and the free electron expansion process led to the deviation from the LTE state. The plasma's expansion rate slowed over time, and when the expansion time was close to the ionization equilibrium time, the LTE state was almost reached. The McWhirter criterion was adopted to calculate the threshold electron density for different species, and the results showed that experimental electron density was greater than the threshold electron density, which meant that the LTE state may have existed. However, for the nonmetal element N, the threshold electron density was greater than the value experimental value approximately 0.8 μs after the plasma formed, which meant that LTE state did not exist for N.

  5. Plasma Dispersion Functions for Complex Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, S. S.; Castejon, F.

    2005-07-01

    Plasma dispersion functions for complex wave propagation frequency in the weak relativistic regime for arbitrary longitudinal refractive index are estimated and presented in this work. These functions, that are know as Shkarofsky functions in the case of real frequency, are estimated using a new method that avoids the singularities that appear in previous calculations shown in the preceding literature. These results can be used to obtain the properties of plasma instabilities in the weakly relativistic regime. (Author) 14 refs.

  6. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  7. On the generalization of statistical thermodynamic functions by a Riccati differential equation.

    Science.gov (United States)

    Peña, J. J.; Rubio-Ponce, A.; Morales, J.

    2016-08-01

    In this work, we propose a non-linear differential equation of Riccati-type, where the standard partition function Z(T) is taken as its particular solution leading to their generalization Zg(T); from there, other related statistical thermodynamic functions are generalized. As an useful application of our proposal, other thermodynamic functions, namely, the internal energy, heat capacity, Helmholtz free energy and entropy, associated to the model of the ideal monatomic gas in D-dimensions are generalized. According to our results, thermodynamic properties derived from the standard partition functions by means of ordinary statistical mechanics are incomplete. In fact, although asymptotically with the increasing of temperature the generalized statistical thermodynamic functions reduce to the standard ones, these contain an extra term which is dominant at very low temperature indicating that standard findings should be corrected.

  8. Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 and Ni

    Science.gov (United States)

    Zhang, Fan; Zhang, Jinyong; Leng, Xiaoxuan; Lei, Liwen; Fu, Zhengyi

    2017-03-01

    Spark plasma sintering (SPS) welding of chromium carbide (Cr3C2) and nickel (Ni) was used to investigate the atomic diffusion caused by bypassing current. It was found that the diffusion coefficient with bypassing current was enhanced by almost 3.57 times over that without bypassing current. Different from the previous researches, the thermodynamics analysis conducted herein showed that the enhancement included a current direction-independent part besides the known current direction-dependent part. A local temperature gradient (LTG) model was proposed to explain the current direction-independent effect. Assuming that the LTG was mainly due to the interfacial electric resistance causing heterogeneous Joule heating, the theoretical results were in good agreement with the experimental results both in the present and previous studies. This new LTG model provides a reasonable physical meaning for the low-temperature advantage of SPS welding and should be useful in a wide range of applications.

  9. THERMODYNAMIC ANALYSIS AND EXPERIMENTAL VERIFICATION FOR SYNTHESIZING SILICON NITRIDE NANOPARTICLES USING RF PLASMA CVD

    Institute of Scientific and Technical Information of China (English)

    Ruoyu Hong; Jianmin Ding; Hongzhong Li

    2003-01-01

    Silicon nitride nanoparticles were synthesized by radio-frequency (RF) plasma chemical vapor deposition (PCVD) using silicon tetrachloride and ammonia as precursors, and argon as carrier gas. By assuming chemical thermodynamic equilibrium in the system, a computer program based on chemical thermodynamics was used to calculate the compositions of the system at different initial concentrations and final temperatures. At first, five elements and thirty-four species were considered. The effects of temperatures, and concentrations of ammonia, hydrogen and nitrogen on the equilibrium compositions were analyzed. It was found that the optimal reaction temperature range should be 1200 to 1500 K to obtain the highest conversion and yield of Si3N4. The inlet position of ammonia should be lower than that of silicon tetrachloride, and both should be located at the tail of the plasma torch. The best mole ratio of ammonia to silicon tetrachloride was found to be about 6. Later, the influences of water (and oxygen) were considered, and 17 additional species were included in the computations. It was found that oxygen or water content in the raw materials should be as low as possible in order to have high nitride content in the produced Si3N4. Nitrogen or hydrogen might be used to replace some or even all the argon to improve the yield of silicon nitride and reduce the cost. The ratio of ammonia to silicon tetrachloride should be high enough to obtain high conversion, but not excessively high to reduce the oxygen content due to the existence of water in ammonia. The simulated results were verified by experiments.

  10. A method for the accurate and smooth approximation of standard thermodynamic functions

    Science.gov (United States)

    Coufal, O.

    2013-01-01

    A method is proposed for the calculation of approximations of standard thermodynamic functions. The method is consistent with the physical properties of standard thermodynamic functions. This means that the approximation functions are, in contrast to the hitherto used approximations, continuous and smooth in every temperature interval in which no phase transformations take place. The calculation algorithm was implemented by the SmoothSTF program in the C++ language which is part of this paper. Program summaryProgram title:SmoothSTF Catalogue identifier: AENH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3807 No. of bytes in distributed program, including test data, etc.: 131965 Distribution format: tar.gz Programming language: C++. Computer: Any computer with gcc version 4.3.2 compiler. Operating system: Debian GNU Linux 6.0. The program can be run in operating systems in which the gcc compiler can be installed, see http://gcc.gnu.org/install/specific.html. RAM: 256 MB are sufficient for the table of standard thermodynamic functions with 500 lines Classification: 4.9. Nature of problem: Standard thermodynamic functions (STF) of individual substances are given by thermal capacity at constant pressure, entropy and enthalpy. STF are continuous and smooth in every temperature interval in which no phase transformations take place. The temperature dependence of STF as expressed by the table of its values is for further application approximated by temperature functions. In the paper, a method is proposed for calculating approximation functions which, in contrast to the hitherto used approximations, are continuous and smooth in every temperature interval. Solution method: The approximation functions are

  11. Component Thermodynamical Selection Based Gene Expression Programming for Function Finding

    Directory of Open Access Journals (Sweden)

    Zhaolu Guo

    2014-01-01

    Full Text Available Gene expression programming (GEP, improved genetic programming (GP, has become a popular tool for data mining. However, like other evolutionary algorithms, it tends to suffer from premature convergence and slow convergence rate when solving complex problems. In this paper, we propose an enhanced GEP algorithm, called CTSGEP, which is inspired by the principle of minimal free energy in thermodynamics. In CTSGEP, it employs a component thermodynamical selection (CTS operator to quantitatively keep a balance between the selective pressure and the population diversity during the evolution process. Experiments are conducted on several benchmark datasets from the UCI machine learning repository. The results show that the performance of CTSGEP is better than the conventional GEP and some GEP variations.

  12. Local thermodynamic mapping for effective liquid density-functional theory

    Science.gov (United States)

    Kyrlidis, Agathagelos; Brown, Robert A.

    1992-01-01

    The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.

  13. Thermodynamic analysis of solar assisted multi-functional trigeneration system

    Directory of Open Access Journals (Sweden)

    Önder KIZILKAN

    2016-02-01

    Full Text Available In this study, modelling and thermodynamic analysis of solar assisted trigeneration system was carried out. The required thermal energy for gas and vapor cycles were supplied from solar tower which is a new concept for gas cycle applications. Additionally, an absorption refrigeration cycle, vapor production process, drying process and water heating process were integrated to the system. Energy and exergy efficiencies of the trigeneration system were determined by the application of first and second law analyses. The results showed that the gas cycle efficiency was found to be 31%, vapor cycle efficiency was found to be 28% and coefficient of performance (COP values of the refrigeration system was found to be 0.77. Also the highest exergy destruction rate was found to be 4154 kW in solar tower.Keywords: Solar tower, Trigeneration, Gas cycle, Vapor cycle, Energy, Exergy

  14. Research of partition function on optical properties and temperature diagnosis of air plasma

    Science.gov (United States)

    Qiu, Dechuan; Gao, Guoqiang; Wei, Wenfu; Hu, Haixing; Li, Chunmao; Wu, Guangning

    2017-08-01

    The relationship between partition function, particle density, refractive index, and temperature for atmospheric plasma is calculated based on thermodynamics and chemical equilibrium. Taking into account the contribution of hydrogen-like levels to the atomic partition function, a compact method to calculate the atomic partition function is first used with the Eindhoven model to deduce the plasma's refractive index. Results calculated by the new approach and two other traditional simplified methods are compared and analyzed. For a better understanding on the temperature measurement accuracy deduced by different partition function disposal approaches, moiré deflectometry is employed as the experimental scheme to acquire the refractive index-position curve. Finally, applicability of different partition function disposal approaches are discussed, and results indicate that the optical properties deduced in this paper are well suited for the refractive index-based plasma diagnosis.

  15. On the thermodynamics of the McMillan-Mayer state function

    DEFF Research Database (Denmark)

    Mollerup, Jørgen; Breil, Martin Peter

    2009-01-01

    to develop the McMillan-Mayer framework in a classical thermodynamic context for which we develop the relationship between the state function of the McMillan-Mayer framework and the Helmholtz state function. A Taylor expansion method can be applied to the osmotic pressure of a solution which is dilute...

  16. Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, L., E-mail: laurent.jacquet@cea.fr; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-12-15

    The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and

  17. Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects.

    Science.gov (United States)

    Ohmae, Eiji; Miyashita, Yurina; Kato, Chiaki

    2013-09-01

    Hydrostatic pressure analysis is an ideal approach for studying protein dynamics and hydration. The development of full ocean depth submersibles and high pressure biological techniques allows us to investigate enzymes from deep-sea organisms at the molecular level. The aim of this review was to overview the thermodynamic and functional characteristics of deep-sea enzymes as revealed by pressure axis analysis after giving a brief introduction to the thermodynamic principles underlying the effects of pressure on the structural stability and function of enzymes.

  18. Thermodynamic properties and transport coefficients of air thermal plasmas mixed with ablated vapors of Cu and polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, JunMin, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong [School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191 (China); Guan, YongGang, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Liu, WeiDong [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around the number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.

  19. Thermodynamic functions from lattice dynamic of KMgH{sub 3} for hydrogen storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Bouhadda, Youcef, E-mail: bouhadda@yahoo.com [Unite de Recherche Appliquee en Energies Renouvelables, BP 88, Ghardaia (Algeria); Kheloufi, Nawal; Bentabet, Abdelouahab [Centre universistaire Bordj Bouariej (Algeria); Boudouma, Youcef [Faculte de Physique USTHB, Alger (Algeria); Fenineche, Noureddine [LERMPS, UTBM, Belfort (France); Benyalloul, Kamel [Unite de Recherche Appliquee en Energies Renouvelables, BP 88, Ghardaia (Algeria)

    2011-09-15

    Highlights: > The dynamical and thermodynamic properties of KMgH{sub 3} are presented. > The density of state is calculated and shows that the KMgH{sub 3} is an insulator. > Formation energy of the KMgH{sub 3} is calculated for different possible reaction pathways. > The phonon frequencies at gamma point for the infrared and Raman modes are assigned. > The thermodynamic functions of KMgH{sub 3} are determined for the first time in this study. - Abstract: The dynamic and the thermodynamic properties of KMgH{sub 3} have been investigated by density functional theory (DFT). We have found that the calculated lattice parameters differ from the experimental data by less than 0.6% and the electronic density of states (DOS) reveals that the KMgH{sub 3} is an insulator. The formation energy of KMgH{sub 3} from binary hydrides (MgH{sub 2} and KH) has been calculated. Using density-functional perturbation theory, we have calculated the phonon dispersion curves, the phonon density of states, the Born effective charge tensors, the dielectric permittivity tensors and the phonon frequencies at the center of the Brillouin zone of KMgH{sub 3}. Also we have assigned the calculated phonon frequencies at the gamma point for Infrared-active and Raman-active modes. For the first time, the thermodynamic functions are computed using the phonon density of states.

  20. Unified Approach to Thermodynamic Optimization of Generic Objective Functions in the Linear Response Regime

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-04-01

    Full Text Available While many efforts have been devoted to optimizing the power output for a finite-time thermodynamic process, thermodynamic optimization under realistic situations is not necessarily concerned with power alone; rather, it may be of great relevance to optimize generic objective functions that are combinations of power, entropy production, and/or efficiency. One can optimize the objective function for a given model; generally the obtained results are strongly model dependent. However, if the thermodynamic process in question is operated in the linear response regime, then we show in this work that it is possible to adopt a unified approach to optimizing the objective function, thanks to Onsager’s theory of linear irreversible thermodynamics. A dissipation bound is derived, and based on it, the efficiency associated with the optimization problem, which is universal in the linear response regime and irrespective of model details, can be obtained in a unified way. Our results are in good agreement with previous findings. Moreover, we unveil that the ratio between the stopping time of a finite-time process and the optimized duration time plays a pivotal role in determining the corresponding efficiency in the case of linear response.

  1. Structural, thermodynamic, and transport properties of CH2 plasma in the two-temperature regime

    Science.gov (United States)

    Knyazev, D. V.; Levashov, P. R.

    2016-10-01

    This paper covers calculation of radial distribution functions, specific energy, and static electrical conductivity of CH2 plasma in the two-temperature regime. The calculation is based on the quantum molecular dynamics, density functional theory, and the Kubo-Greenwood formula. The properties are computed at 5 kK ≤ T i ≤ T e ≤ 40 kK and ρ = 0.954 g/cm3 and depend severely on the presence of chemical bonds in the system. Chemical compounds exist at the lowest temperature T i = T e = 5 kK considered; they are destroyed rapidly at the growth of Ti and slower at the increase of Te. A significant number of bonds are present in the system at 5 kK ≤ T i ≤ T e ≤ 10 kK. The destruction of bonds correlates with the growth of specific energy and static electrical conductivity under these conditions.

  2. Thermodynamic analysis of carbon migration in W1-1.0C steel in plasma surface chromizing

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    W1-1.0C steel was chromized at 1173 K with double glow plasma surface alloying process, and the distribution of Fe, Cr,and C contents in the chromized layer was measured using glow discharge spectrum analysis (GDA).The behavior and mechanism of carbon migration during the formation of chromized layer were studied through thermodynamic analysis and calculation.The gradient of carbon chemical potential was regarded as the driving force of carbon migration.An equation was derived to describe the carbon content varying with the chromium content within the carbon-rich region.The calculated results from the equation approximated closely to the experimental ones.

  3. A REVIEW ON THERMODYNAMICS AND FUNCTIONAL PROPERTIES OF COMPLEX COACERVATES

    Directory of Open Access Journals (Sweden)

    R. Gupta

    2012-12-01

    Full Text Available Complex coacervation is defined as associative interactions between oppositely charged functional groups of proteins and polysaccharides, which on separation, form a phase rich in polymeric compounds in equilibrium with another aqueous phase. So coacervates are macro-ionic hydrated complexes of two charged neutralized bioploymers. Voorn and Overbeek developed the first model on complex coacervation by applying Flory-Huggins theory for random mixing of polyions. Alternatively, Veis and Aryani proposed that initially charged pair of symmetrical aggregates forms, followed by phase separation, for modeling diverse range of aggregates. Physicochemical properties such as pH, ionic strength, ratio of protein to polysaccharide, polysaccharide and protein charge, and molecular weight, mechanical properties (shear force and temperature affect the formation and stability of coacervates. Improved structural, rheological, interfacial and delivery properties of these complexes than individual biopolymer can be exploited in numerous domains. This article intends to elucidate the salient features of coacervates which may contribute to better understanding of protein-polysaccharide systems, for their application in foods, cosmetics, pharmaceutical, and medicine.

  4. Thermodynamical and microscopic properties of turbulent transport in the edge plasma

    Science.gov (United States)

    Ghendrih, Ph; Norscini, C.; Hasenbeck, F.; Dif-Pradalier, G.; Abiteboul, J.; Cartier-Michaud, T.; Garbet, X.; Grandgirard, V.; Marandet, Y.; Sarazin, Y.; Tamain, P.; Zarzoso, D.

    2012-12-01

    Edge plasma turbulence modelled with 2D interchange is shown to exhibit convective transport at the microscale level. This transport property is related to avalanche like transport in such a flux-driven system. Correlation functions and source modulation are used to analyse the transport properties but do not allow one to recover the Fick law that must characterise the system at large scales. Coarse graining is then introduced to average out the small scales in order to recover the Fick law. One finds that the required space averaging is comparable to the system size while the time averaging is comparable to the confinement time. The system is then reduced to a single reservoir such that transport is characterised by a single scalar, either the diffusion coefficient of the Fick law or a characteristic evolution time constant.

  5. Biomechanics and thermodynamics of nanoparticle interactions with plasma and endosomal membrane lipids in cellular uptake and endosomal escape.

    Science.gov (United States)

    Peetla, Chiranjeevi; Jin, Shihua; Weimer, Jonathan; Elegbede, Adekunle; Labhasetwar, Vinod

    2014-07-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(D,L-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  6. Calculation of 2-temperature plasma thermo-physical properties considering condensed phases: application to CO2-CH4 plasma: part 1. Composition and thermodynamic properties

    Science.gov (United States)

    Wu, Yi; Chen, Zhexin; Rong, Mingzhe; Cressault, Yann; Yang, Fei; Niu, Chunping; Sun, Hao

    2016-10-01

    As the first part of this series of papers, a new calculation method for composition and thermodynamic properties of 2-temperature plasma considering condensed species under local chemical equilibrium (LCE) and local phase equilibrium assumption is presented. The 2-T mass action law and chemical potential are used to determine the composition of multiphase system. The thermo-physical properties of CO2-CH4 mixture, which may be a possible substitution for SF6, are calculated by this method as an example. The influence of condensed graphite, non-LTE effect, mixture ratio and pressure on the thermo-physical properties has been discussed. The results will serve as reliable reference data for computational simulation of CO2-CH4 plasmas.

  7. Thermodynamic Functions of Solvation of Hydrocarbons, Noble Gases, and Hard Spheres in Tetrahydrofuran-Water Mixtures.

    Science.gov (United States)

    Sedov, I A; Magsumov, T I

    2015-07-16

    Thermodynamic solvation properties of mixtures of water with tetrahydrofuran at 298 K are studied. The Gibbs free energies and enthalpies of solvation of n-octane and toluene are determined experimentally. For molecular dynamics simulations of the binary solvent, we have modified a TraPPE-UA model for tetrahydrofuran and combined it with the SPC/E potential for water. The excess thermodynamic functions of neon, xenon, and hard spheres with two different radii are calculated using the particle insertion method. Simulated and real systems share the same characteristic trends for the thermodynamic functions. A maximum is present on dependencies of the enthalpy of solvation from the composition of solvent at 70-90 mol % water, making it higher than in both of the cosolvents. It is caused by a high enthalpy of cavity formation in the mixtures rich with water due to solvent reorganization around the cavity, which is shown by calculation of the enthalpy of solvation of hard spheres. Addition of relatively small amounts of tetrahydrofuran to water effectively suppresses the hydrophobic effect, leading to a quick increase of both the entropy and enthalpy of cavity formation and solvation of low polar molecules.

  8. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes; Validation experimentale des codes de physique atomique des plasmas hors equilibre thermodynamique local

    Energy Technology Data Exchange (ETDEWEB)

    Nagels-Silvert, V

    2004-09-15

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  9. Thermodynamics and equations of state of matter from ideal gas to quark-gluon plasma

    CERN Document Server

    Fortov, Vladimir

    2016-01-01

    The monograph presents a comparative analysis of different thermodynamic models of the equations of state. The basic ideological premises of the theoretical methods and the experiment are considered. The principal attention is on the description of states that are of greatest interest for the physics of high energy concentrations which are either already attained or can be reached in the near future in controlled terrestrial conditions, or are realized in astrophysical objects at different stages of their evolution. Ultra-extreme astrophysical and nuclear-physical applications are also analyzed where the thermodynamics of matter is affected substantially by relativism, high-power gravitational and magnetic fields, thermal radiation, transformation of nuclear particles, nucleon neutronization, and quark deconfinement. The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates.

  10. A microscopic insight from conformational thermodynamics to functional ligand binding in proteins.

    Science.gov (United States)

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2014-12-01

    We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.

  11. The plasma dispersion function the Hilbert transform of the Gaussian

    CERN Document Server

    Fried, Burton D

    1961-01-01

    The Plasma Dispersion Function: The Hilbert Transform of the Gaussian focuses on the reactions, transformations, and calculations involved in plasma dispersion function. The book first offers information on the properties of Z, including symmetry properties, values for special arguments, power series, asymptotic expansion, and differential equation characterization. The text then ponders on the applications to plasma physics. Numerical calculations on the function of Z are presented. The manuscript takes a look at table generation and accuracy wherein various methods are proposed in computin

  12. Topography and functional information of plasma membrane

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By using atomic force microscope (AFM), the topography and function of the plasmalemma surface of the isolated protoplasts from winter wheat mesophyll cells were observed, and compared with dead protoplasts induced by dehydrating stress. The observational results revealed that the plasma membrane of living protoplasts was in a state of polarization. Lipid layers of different cells and membrane areas exhibited distinct active states. The surfaces of plasma membranes were unequal, and were characterized of regionalisation. In addition, lattice structures were visualized in some regions of the membrane surface. These typical structures were assumed to be lipid molecular complexes, which were measured to be 15.8±0.09 nm in diameter and 1.9±0.3 nm in height. Both two-dimensional and three-dimensional imaging showed that the plasmalemma surfaces of winter wheat protoplasts were covered with numerous protruding particles. In order to determine the chemical nature of the protruding particles, living protoplasts were treated by proteolytic enzyme. Under the effect of enzyme, large particles became relatively looser, resulting that their width was increased and their height decreased. The results demonstrated that these particles were likely to be of protein nature. These protein particles at plasmalemma surface were different in size and unequal in distribution. The diameter of large protein particles ranged from 200 to 440 nm, with a central micropore, and the apparent height of them was found to vary from 12 to 40 nm. The diameter of mid-sized protein particles was between 40―60 nm, and a range of 1.8―5 nm was given for the apparent height of them. As for small protein particles, obtained values were 12―40 nm for their diameter and 0.7―2.2 nm for height. Some invaginated pits were also observed at the plasma membrane. They were formed by the endocytosis of protoplast. Distribution density of them at plasmalemma was about 16 pits per 15 μm2. According to their

  13. Topography and functional information of plasma membrane

    Institute of Scientific and Technical Information of China (English)

    SUN DeLan; CHEN JianMin; SONG YanMei; ZHU ChuanFeng; PAN GeBo; WAN LiJun

    2008-01-01

    By using atomic force microscope (AFM), the topography and function of the plasmalemma surface of the isolated protoplasta from winter wheat mesophyll cells were observed, and compared with dead protoplssts induced by dehydrating stress. The observational results revealed that the plasma membrane of living protoplasta was in a state of polarization. Lipid layers of different cells and membrane areas exhibited distinct active states. The surfaces of plasma membranes were unequal, and were characterized of regionalisation. In addition, lattice structures were visualized in some regions of the membrane surface. These typical structures were assumed to be lipid molecular complexes, which were measured to be 15.8±0.09 nm in diameter and 1.9±0.3 nm in height. Both two-dimensional and three-dimensional imaging showed that the plasmalemma surfaces of winter wheat protoplasta were covered with numerous protruding particles. In order to determine the chemical nature of the protruding particles, living protoplasts were treated by proteolytic enzyme. Under the effect of enzyme, large particles became relatively looser, resulting that their width was increased and their height decreased.The results demonstrated that these particles were likely to be of protein nature. These protein particles at plasmalemma surface were different in size and unequal in distribution. The diameter of large protein particles ranged from 200 to 440 nm, with a central micropore, and the apparent height of them was found to vary from 12 to 40 nm. The diameter of mid-sized protein particles was between 40-60 nm,and a range of 1.8-5 nm was given for the apparent height of them. As for small protein particles, obtained values were 12-40 nm for their diameter and 0.7-2.2 nm for height. Some invaginated pits were also observed at the plasma membrane. They were formed by the endocytosis of protoplsst. Distributlon density of them at plasmalemma was about 16 pits per 15 μm2. According to their size, we

  14. Thermodynamic Properties of Hard-Sphere Fluid under Confined Condition Based on Bridge Density Function

    Institute of Scientific and Technical Information of China (English)

    周世琦

    2003-01-01

    Based on the functional integral procedure, a recently proposed bridge density function [J. Chem. Phys. 112 (2000) 8079] is developed to calculate global thermodynamic properties of non-uniform fluids. The resulting surface tension of a hard wall-hard sphere interface as a function of the bulk hard sphere fluid density is in good agreement with the available simulation data. The proposed numerical procedure from the approximation of non-uniform first=order direct correlation function to a non=uniform system with excess Helmholtz free energy is of fundamental importance for phase behaviour under the confined condition due to the fact that many available simple approximations in classical density functional theory are for non=uniform first=order direct correlation function.

  15. Thermodynamic functions of formation of n-alkane complexes with crystalline urea

    Energy Technology Data Exchange (ETDEWEB)

    Tolmachev, V.V.; Semenov, L.V.; Gaile, A.A.; Proskuryakov, V.A.

    1987-07-10

    For optimization of the conditions of deparaffination of petroleum fractions with the aid of urea, with the composition of the feedstock taken into account, it is important to know the equilibrium constants of formation of complexes of urea with n-alkanes differing in the number of carbon atoms in their molecules, as functions of temperature. In this investigation they obtained experimental data necessary for calculating the thermodynamic functions of formation of n-alkane complexes with crystalline urea up to the decomposition temperature, using Kirchhoff's equations.

  16. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    OpenAIRE

    Baalrud, Scott D.

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near...

  17. Effect of hydrolysis on heat capacity, thermodynamic functions, and the relaxation transition of crab chitin and chitosan

    Science.gov (United States)

    Kashtanov, E. A.; Uryash, V. F.; Kokurina, N. Yu.; Larina, V. N.

    2014-02-01

    The heat capacity of crab chitin and chitosan is measured in a vacuum adiabatic calorimeter at 10-330 K. The thermodynamic characteristics (enthalpy, entropy, and Gibbs function) are calculated at T → 0 K to 330 K. Differential thermal analysis is used to calculate the relaxation transitions and thermal degradation of chitin and chitosan at 80-600 K. Acid hydrolysis is performed and its effect on the physicochemical properties and thermodynamic functions of chitin and chitosan is studied.

  18. Thermodynamic extension of density-functional theory. II. Finite-temperature ensemble spin-density functional theory

    CERN Document Server

    Balawender, Robert

    2009-01-01

    The formalism developed in the first paper of the series [arXiv:0901.1060v3] is applied to two thermodynamic systems: (i) of three global observables (the energy, the total electron number and the spin number), (ii) of one global observable (the internal electron energy) and two local (position-dependent) observables (the total electron density and the spin density). The two-component potential of the many-electron system of interest is constructed of a scalar external potential and a collinear magnetic field (coupled only with the spin operator). Various equilibrium characteristics of two systems are defined and investigated. Conditions for the equivalence between two systems (the same equilibrium density matrix demanded) are derived and thoroughly discussed. The applicability of the Hohenberg-Kohn theorem is extended to the thermodynamic spin-density functional theory. Obtained results provide a rigorous mathematical foundation for future derivation of the zero-temperature limit of this theory and determina...

  19. Effects of non-local thermodynamic equilibrium conditions on numerical simulations of inertial confinement fusion plasmas

    Indian Academy of Sciences (India)

    N K Gupta; B K Godwal

    2002-07-01

    Effects of non-local thermodynamic equilibrium (non-LTE) condition on emission and hydrodynamics of typical inertial confinement fusion (ICF) plasmas are studied. The average degree of ionization at high temperatures is seen to be much lower compared to the values obtained from Thomas–Fermi scaling or Saha equation for high- element like gold. LTE and non-LTE predictions for emitted radiation from laser-driven gold foil are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. The effects of one group and multigroup, LTE and non-LTE approximations of radiation transport on hydrodynamic parameters are studied for laser-driven aluminium and gold foils. It is further seen that non-LTE and multigroup effects play an important role in predicting conversion efficiency of laser light to X-rays

  20. Low-temperature heat capacity and thermodynamic functions of vitamin B{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, A.V., E-mail: knyazevav@gmail.com; Smirnova, N.N.; Plesovskikh, A.S.; Shushunov, A.N.; Knyazeva, S.S.

    2014-04-01

    Graphical abstract: - Highlights: • Temperature dependence of heat capacity of vitamin B{sub 12} has been measured by precision adiabatic vacuum calorimetry. • The thermodynamic functions of the vitamin B{sub 12} have been determined for the range from T → 0 to 343 K. • The character of heterodynamics of structure was detected. • The thermal stability of cyanocobalamin was studied by differential scanning calorimetry. - Abstract: In the present work temperature dependence of heat capacity of vitamin B{sub 12} (cyanocobalamin) has been measured for the first time in the range from 6 to 343 K by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the vitamin B{sub 12}, namely, the heat capacity, enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0) have been determined for the range from T → 0 to 343 K. The value of the fractal dimension D in the function of multifractal generalization of Debye's theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. The thermal stability of cyanocobalamin was also studied by differential scanning calorimetry.

  1. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Ling; Wang, Jian [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai [Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Shih, Kaimin; Zhou, Zhengyuan [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR (China); Lee, Po-Heng, E-mail: poheng76@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China)

    2016-11-15

    Highlights: • A thermodynamic approach to select a functional agent for adsorbent is proposed. • ITC and QCS were used to interpret the interaction between adsorbate and agent. • The interaction identifies the adsorption mechanism and performance. • This approach enables the manipulation of adsorption capacity optimization. - Abstract: This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C{sub 14}TAB and C{sub 14}HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization.

  2. Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity

    Science.gov (United States)

    Morgado, Leonor; Bruix, Marta; Pessanha, Miguel; Londer, Yuri Y.; Salgueiro, Carlos A.

    2010-01-01

    Abstract A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c7 from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e−/H+ transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e−/H+ coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G

  3. A New Thermodynamic Calculation Method for Binary Alloys: Part I: Statistical Calculation of Excess Functions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.

  4. A principle to correlate extreme values of excess thermody-namic functions with partial molar quantities

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Excess thermodynamic properties are widely used quantitatively for fluids. It was found that at constant temperature and pressure a molar excess quantity of a mutually miscible binary mixture at the extreme points equals the excess partial molar quantities of the two components, i.e. , forming a triple cross point. The relationship is hold for properties such as enthalpy, entropy, Gibbs free energy, and volume, and is applicable for excess functions with multi extreme points. Solutions at extreme points can be referred to as special mixtures. Particularly for a special mixture of Gibbs free energy, activity coefficients of the two components are identical.

  5. A principle to correlate extreme values of excess thermodynamic functions with partial molar quantities

    Institute of Scientific and Technical Information of China (English)

    尉志武; 刘芸; 周蕊; 薛芳渝

    2001-01-01

    Excess thermodynamic properties are widely used quantitatively for fluids. It was found that at constant temperature and pressure a molar excess quantity of a mutually miscible binary mixture at the extreme points equals the excess partial molar quantities of the two components, i.e.F1E = F2E = FmE , forming a triple cross point. The relationship is hold for properties such as en-thalpy, entropy, Gibbs free energy, and volume, and is applicable for excess functions with multi extreme points. Solutions at extreme points can be referred to as special mixtures. Particularly fora special mixture of Gibbs free energy, activity coefficients of the two components are identical.

  6. Thermodynamical consideration of the synthesis of solid AlN from thermal plasma

    Directory of Open Access Journals (Sweden)

    NIKOLA PEKAS

    2001-08-01

    Full Text Available The synthesis process of solid AlN in thermal plasmas was investigated theoretically by computing the equilibrium composition of the gas mixture involving nitrogen and various amounts of aluminum, oxygen and hydrogen for the temperature range between 1000 and 5500 K. The results obtained by treating the plasma as a single-gas system were combined with those which take into account the presence of solid AlN and liquid Al, to find the optimal conditions for the deposition of solid AlN. The factors determining the efficiency of this process are discussed.

  7. Plasma levels of acylated ghrelin in patients with functional dyspepsia

    Institute of Scientific and Technical Information of China (English)

    Yeon Soo Kim; Joon Seong Lee; Tae Hee Lee; Joo Young Cho; Jin Oh Kim; Wan Jung Kim; Hyun Gun Kim; Seong Ran Jeon; Hoe Su Jeong

    2012-01-01

    AIM:To investigate the relationship between plasma acylated ghrelin levels and the pathophysiology of functional dyspepsia.METHODS:Twenty-two female patients with functional dyspepsia and twelve healthy volunteers were recruited for the study.The functional dyspepsia patients were each diagnosed based on the Rome Ⅲ criteria.Eligible patients completed a questionnaire concerning the severity of 10 symptoms.Plasma acylated ghrelin levels before and after a meal were determined in the study participants using a commercial human acylated enzyme immunoassay kit; electrogastrograms were performed for 50 min before and after a standardized 10-min meal containing 265 kcal.RESULTS:There were no significant differences in plasma acylated ghrelin levels between healthy volunteers and patients with functional dyspepsia.However,in patients with functional dyspepsia,there was a negative correlation between fasting plasma acylated ghrelin levels and the sum score of epigastric pain (r =-0.427,P =0.047) and a positive correlation between the postprandial/fasting plasma acylated ghrelin ratio and the sum score of early satiety (r =0.428,P =0.047).Additionally,there was a negative correlation between fasting acylated ghrelin plasma levels and fasting normogastria (%) (r =-0.522,P =0.013).Interestingly,two functional dyspepsia patients showed paradoxically elevated plasma acylated ghrelin levels after the meal.CONCLUSION:Abnormal plasma acylated ghrelin levels before or after a meal may be related to several of the dyspeptic symptoms seen in patients with functional dyspepsia.

  8. Role of zinc in plasma membrane function

    National Research Council Canada - National Science Library

    O'Dell, B L

    2000-01-01

    ... with a posttranslational change in plasma membrane proteins. Among the signs of zinc deficiency in rats is a bleeding tendency associated with failure of platelet aggregation, a phenomenon that correlates with impaired uptake of Ca(2+) when stimulated...

  9. EFFECT OF EXCITATION-AUTOIONIZATION IN NON-LOCAL THERMODYNAMIC EQUILIBRIUM PLASMAS

    Institute of Scientific and Technical Information of China (English)

    Wu Ze-qing; Zhang Ben-ai; Qiu Yu-bo

    2000-01-01

    Based on the detailed configuration accounting model, the authros havedeveloped a method to calculate the rate of excitation-autoionization(EA) in the average atom model and used it in the rate equations. Thenumerical results show that EA effect is signifficant in hightemperature low density plasma and can cause an additional ionization upto 15% of an ionization stage.

  10. [Updated detection of the function of sperm plasma membrane].

    Science.gov (United States)

    Zhou, Xin; Xia, Xin-Yi; Huang, Yu-Feng

    2010-08-01

    The sperm plasma membrane is rich in polyunsaturated fatty acids and a variety of proteins, and its function is associated with sperm capacitation, acrosome reaction and sperm-egg fusion. Sperm fertilizability can be predicted by detecting the function of the sperm plasma membrane, which is performed mainly with the following five techniques: sperm hypoosmotic swelling test, Eosin gamma water test, sperm membrane lipid peroxidation determination, seminal plasma superoxide dismutase determination, and flow cytometry. The evaluation of the function of sperm plasma membrane can be applied in detecting semen quality, selecting semen centrifugation, assessing the quality and fertilizability of sex-sorted sperm, improving cryopreservation, and guiding the optimization of intracytoplasmic sperm injection. This review presents an update on the principles, methods and steps of the detection of sperm plasma membrane function, as well as an overview of its status quo and application.

  11. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration.

    Science.gov (United States)

    Leng, Ling; Wang, Jian; Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai; Shih, Kaimin; Zhou, Zhengyuan; Lee, Po-Heng

    2016-11-15

    This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C14TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C14HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C14TAB and C14HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization.

  12. Hybrid density functional study on lattice vibration, thermodynamic properties, and chemical bonding of plutonium monocarbide

    Science.gov (United States)

    Rong, Yang; Bin, Tang; Tao, Gao; BingYun, Ao

    2016-06-01

    Hybrid density functional theory is employed to systematically investigate the structural, magnetic, vibrational, thermodynamic properties of plutonium monocarbide (PuC and PuC0.75). For comparison, the results obtained by DFT, DFT + U are also given. For PuC and PuC0.75, Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic (AFM) structure. The calculated phonon spectra suggest that PuC and PuC0.75 are dynamically stable. Values of the Helmholtz free energy ΔF, internal energy ΔE, entropy S, and constant-volume specific heat C v of PuC and PuC0.75 are given. The results are in good agreement with available experimental or theoretical data. As for the chemical bonding nature, the difference charge densities, the partial densities of states and the Bader charge analysis suggest that the Pu-C bonds of PuC and PuC0.75 have a mixture of covalent character and ionic character. The effect of carbon vacancy on the chemical bonding is also discussed in detail. We expect that our study can provide some useful reference for further experimental research on the phonon density of states, thermodynamic properties of the plutonium monocarbide. Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).

  13. Thermodynamic study on the formation of acetylene during coal pyrolysis in the arc plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bao, W.; Li, F.; Cai, G.; Lu, Y.; Chang, L. [Taiyuan University of Technology, Taiyuan (China)

    2009-07-01

    Based on the principle of minimizing the Gibbs free energy, the composition of C-H-O-N-S equilibrium system about acetylene formation during the pyrolysis in arc plasma jet for four kinds of different rank-ordered coals such as Datong, Xianfeng, Yangcheng, and Luan was analyzed and calculated. The results indicated that hydrogen, as the reactive atmosphere, was beneficial to the acetylene formation. The coal ranks and the hydrogen, oxygen, nitrogen, and sulfur in coal all could obviously affect the acetylene yield. The mole fraction of acetylene is the maximum when the ratio value of atom H/C was 2. The content of oxygen was related to the acetylene yield, but it does not compete with CO formation. These agreed with the experimental results, and they could help to select the coal type for the production of acetylene through plasma pyrolysis process.

  14. Study of Multi-Function Micro-Plasma Spraying Technology

    Institute of Scientific and Technical Information of China (English)

    WANG Liuying; WANG Hangong; HUA Shaochun; CAO Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.

  15. Partition functions 1: Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    CERN Document Server

    Popovas, Andrius

    2016-01-01

    Aims. In this work we rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods. Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H$_2$ . Both equilibrium and normal hydrogen was taken into consideration. Results. Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hyd...

  16. Vasyliunas-Cairns distribution function for space plasma species

    Science.gov (United States)

    Abid, A. A.; Ali, S.; Du, J.; Mamun, A. A.

    2015-08-01

    A more generalized form of non-Maxwellian distribution function (that can be named as Vasyliunas-Cairns distribution function) is introduced. Its basic properties are numerically analyzed by the variation of two important parameters, namely, α (which shows the amount of energetic particles present in the plasma system) and κ (which shows the superthermality of the plasma species). It has been observed that (i) for α → 0 ( κ → ∞ ), the Vasyliunas-Cairns distribution function reduces to the Vasyliunas or κ (Cairns or nonthermal) distribution function; (ii) for α → 0 and κ → ∞ , it reduces to the Maxwellian distribution function; and (iii) the effect of the parameter α (κ) significantly modifies the basic properties of the Vasyliunas (Cairns) distribution function. The applications of this generalized non-Maxwellian distribution function (Vasyliunas-Cairns distribution function) in different space plasma situations are briefly discussed.

  17. Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens.

    Science.gov (United States)

    Ellington, W R

    1989-05-01

    In vertebrate tissues, the only phosphagen is phosphocreatine (PC), and the corresponding phosphotransferase is creatine phosphokinase (CPK). Among invertebrates, a variety of phosphotransferase reactions are found in addition to CPK, including arginine phosphokinase (APK), glycocyamine phosphokinase (GPK), taurocyamine phosphokinase (TPK) and lombricine phosphokinase (LPK). Although there is some uncertainty about the exact value, the apparent equilibrium constant for the CPK reaction (K'cpk = [creatine][ATP]/[PC][ADP]), under physiological conditions similar to those of vertebrate muscle, ranges from 100 to 160. The corresponding K' value for the APK reaction is somewhat controversial, and K' values for the GPK. TPK and LPK reactions are not known. In this study, conventional and 31P-NMR methods were used to evaluate the equilibrium constants for the APK, GPK, TPK and LPK reactions relative to that of CPK. The corresponding K' values for the APK, GPK, TPK and LPK reactions, expressed as a percentage of K'cpk, are 13, 29, 29 and 32%, respectively. The exclusively invertebrate phosphagens exist as a cohort of thermodynamically more stable compounds. Thus, PC constitutes a thermodynamic (and functional) improvement, in that the CPK reaction is able to buffer ATP at much higher ATP/ADP ratios than are other phosphagens. However, possession of a phosphagen system with a lower K' value may be advantageous under certain specific physiological conditions such as intracellular acidosis.

  18. HESS Opinions "Biological catalysis of the hydrological cycle: life's thermodynamic function"

    Directory of Open Access Journals (Sweden)

    K. Michaelian

    2012-08-01

    Full Text Available Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic, out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living components of the biosphere on the Earth's surface of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life-barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere, and its coupling to the water cycle (as well as other abiotic processes, is by far the greatest entropy-producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function, acting as a dynamic catalyst by aiding irreversible abiotic processes such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow, and to spread into initially inhospitable areas.

  19. Thermodynamic constraints on effective energy and mass transfer and catchment function

    Science.gov (United States)

    Rasmussen, C.

    2012-03-01

    Understanding how water, energy and carbon are partitioned to primary production and effective precipitation is central to quantifying the limits on critical zone evolution. Recent work suggests quantifying energetic transfers to the critical zone in the form of effective precipitation and primary production provides a first order approximation of critical zone process and structural organization. However, explicit linkage of this effective energy and mass transfer (EEMT; W m-2) to critical zone state variables and well defined physical limits remains to be developed. The objective of this work was to place EEMT in the context of thermodynamic state variables of temperature and vapor pressure deficit, with explicit definition of EEMT physical limits using a global climate dataset. The relation of EEMT to empirical measures of catchment function was also examined using a subset of the Model Parameter Estimation Experiment (MOPEX) catchments. The data demonstrated three physical limits for EEMT: (i) an absolute vapor pressure deficit threshold of 1200 Pa above which EEMT is zero; (ii) a temperature dependent vapor pressure deficit limit following the saturated vapor pressure function up to a temperature of 292 K; and (iii) a minimum precipitation threshold required from EEMT production at temperatures greater than 292 K. Within these limits, EEMT scales directly with precipitation, with increasing conversion of the precipitation to EEMT with increasing temperature. The state-space framework derived here presents a simplified framework with well-defined physical limits that has the potential for directly integrating regional to pedon scale heterogeneity in effective energy and mass transfer relative to critical zone structure and function within a common thermodynamic framework.

  20. Thermodynamic constraints on effective energy and mass transfer and catchment function

    Directory of Open Access Journals (Sweden)

    C. Rasmussen

    2011-07-01

    Full Text Available Understanding how water, energy and carbon are partitioned to primary production and effective precipitation is central to quantifying the limits on critical zone evolution. Recent work suggests quantifying energetic transfers to the critical zone in the form of effective precipitation and primary production provides a first order approximation of critical zone process and structural organization. However, explicit linkage of this effective energy and mass transfer (EEMT; W m−2 to critical zone state variables and well defined physical limits remains to be developed. The objective of this work was to place EEMT in the context of thermodynamic state variables of temperature and vapor pressure deficit, with explicit definition of EEMT physical limits using a global climate dataset. The relation of EEMT to empirical measures of catchment function was also examined using a subset of the Model Parameter Estimation Experiment (MOPEX catchments. The data demonstrated three physical limits for EEMT: (i an absolute vapor pressure deficit threshold of 1200 Pa above which EEMT is zero; (ii a temperature dependent vapor pressure deficit limit following the saturated vapor pressure function up to a temperature of 292 K; and (iii a minimum precipitation threshold required from EEMT production at temperatures greater than 292 K. Within these limits, EEMT scales directly with precipitation, with increasing conversion of the precipitation to EEMT with increasing temperature. The state-space framework derived here presents a simplified framework with well-defined physical limits that has the potential for directly integrating regional to pedon scale heterogeneity in effective energy and mass transfer relative to critical zone structure and function within a common thermodynamic framework.

  1. Thermodynamic constraints on effective energy and mass transfer and catchment function

    Directory of Open Access Journals (Sweden)

    C. Rasmussen

    2012-03-01

    Full Text Available Understanding how water, energy and carbon are partitioned to primary production and effective precipitation is central to quantifying the limits on critical zone evolution. Recent work suggests quantifying energetic transfers to the critical zone in the form of effective precipitation and primary production provides a first order approximation of critical zone process and structural organization. However, explicit linkage of this effective energy and mass transfer (EEMT; W m−2 to critical zone state variables and well defined physical limits remains to be developed. The objective of this work was to place EEMT in the context of thermodynamic state variables of temperature and vapor pressure deficit, with explicit definition of EEMT physical limits using a global climate dataset. The relation of EEMT to empirical measures of catchment function was also examined using a subset of the Model Parameter Estimation Experiment (MOPEX catchments. The data demonstrated three physical limits for EEMT: (i an absolute vapor pressure deficit threshold of 1200 Pa above which EEMT is zero; (ii a temperature dependent vapor pressure deficit limit following the saturated vapor pressure function up to a temperature of 292 K; and (iii a minimum precipitation threshold required from EEMT production at temperatures greater than 292 K. Within these limits, EEMT scales directly with precipitation, with increasing conversion of the precipitation to EEMT with increasing temperature. The state-space framework derived here presents a simplified framework with well-defined physical limits that has the potential for directly integrating regional to pedon scale heterogeneity in effective energy and mass transfer relative to critical zone structure and function within a common thermodynamic framework.

  2. Energy loss, equilibration, and thermodynamics of a baryon rich strongly coupled quark-gluon plasma

    CERN Document Server

    Rougemont, Romulo; Finazzo, Stefano; Noronha, Jorge

    2015-01-01

    Lattice data for the QCD equation of state and the baryon susceptibility near the crossover phase transition (at zero baryon density) are used to determine the input parameters of a 5-dimensional Einstein-Maxwell-Dilaton holographic model that provides a consistent holographic framework to study both equilibrium and out-of-equilibrium properties of a hot and {\\it baryon rich} strongly coupled quark-gluon plasma (QGP). We compare our holographic equation of state computed at nonzero baryon chemical potential, $\\mu_B$, with recent lattice calculations and find quantitative agreement for the pressure and the speed of sound for $\\mu_B \\leq 400$ MeV. This holographic model is used to obtain holographic predictions for the temperature and $\\mu_B$ dependence of the drag force and the Langevin diffusion coefficients associated with heavy quark jet propagation as well as the jet quenching parameter $\\hat{q}$ and the shooting string energy loss of light quarks in the dense plasma. We find that the energy loss of heavy ...

  3. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Leena G.; Mahapatra, Anirban S. [Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India); Gomathi, N., E-mail: gomathi@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India); Joseph, K. [Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India); Neogi, S. [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721301 (India); Nair, C.P. Reghunadan [Polymers and Special Chemicals Group, Vikram Sarabhai Space Centre, Trivandrum, Kerala 695022 (India)

    2015-06-15

    Highlights: • Plasma functionalization of MWCNT to obtain oxygen and nitrogen containing groups. • Functionalization and removal of amorphous carbon from MWCNT without affecting structural integrity. • Enhanced dispersion in water. • Plasma-CNT interaction mechanism. - Abstract: Surface modification of multiwall carbon nanotubes (MWCNT) was carried out by radio frequency (RF) plasma discharges of oxygen and nitrogen gases to improve their dispersibility. Various oxygen and nitrogen containing functional groups were incorporated as a result of plasma treatment and were confirmed through Fourier transform infrared spectroscopy (FTIR). The effect of plasma treatment on structural properties and morphology changes of MWCNTs was analyzed by Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The morphological studies indicate that untreated MWCNT exists as closely packed with highly entangled bundle. During the plasma treatment, MWCNT tubes get disentangled. XRD, Raman and TEM confirmed the absence of any surface damage during plasma treatment. Functionalized carbon nanotubes exhibit high zeta potential values indicating their good dispersibility in water. The method offers a direct and dry means for functionalization of MWCNT without affecting the structure of MWCNT.

  4. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  5. Plasma functionalization of titanium surface for repulsion of blood platelets

    OpenAIRE

    Cvelbar, Uros; Modic, Martina; Kovac, J.; Lazovic, S; Filipic, G; Vujosevic, D; Junkar, Ita; Elersic, Kristina; Brühl, S.P.; Canal Barnils, Cristina; Belmonte, Thierry; Mozetic, Miran

    2012-01-01

    Thrombosis and restenosis are the most common problems during insertion of biocompatible implants like titanium stents into human blood, due to aggregation of platelets on their surfaces. Because of this reason, we studied the response of blood platelets to a plasma treated titanium surface. The aim was to design a functionalized surface which would repel blood platelets or prevent their adhesion. Therefore, we functionalized surfaces with low-temperature inductively coupled oxygen plasma tre...

  6. Thermodynamics of the Quark-Gluon Plasma within a T-matrix approach

    CERN Document Server

    Lacroix, Gwendolyn; Buisseret, Fabien

    2015-01-01

    The strongly-coupled phase of the quark-gluon plasma (QGP) is studied here by resorting to a $T$-matrix formulation in which the medium is seen as a non-ideal gas of quasiparticles (quarks, antiquarks and gluons) interacting nonpertubatively. In the temperature range under study, (1-5) $T_c$, where $T_c$ is the temperature of deconfinement, the interactions are expected to be strong enough to generate bound states. The dissociation temperature of such binary bound states is thus computed here. The more the quasiparticles involved in the binary system are heavy, the more the bound state is likely to survive significantly above $T_c$. Then, the QGP equations of state at zero and small baryonic potential are computed for $N_f = 2$ and $N_f = 2 + 1$ by resorting to the Dashen, Ma and Bernstein formulation of statistical mechanics. Comparisons with current lattice QCD data are presented.

  7. Towards a functional model of mental disorders incorporating the laws of thermodynamics.

    Science.gov (United States)

    Murray, George C; McKenzie, Karen

    2013-05-01

    The current paper presents the hypothesis that the understanding of mental disorders can be advanced by incorporating the laws of thermodynamics, specifically relating to energy conservation and energy transfer. These ideas, along with the introduction of the notion that entropic activities are symptomatic of inefficient energy transfer or disorder, were used to propose a model of understanding mental ill health as resulting from the interaction of entropy, capacity and work (environmental demands). The model was applied to Attention Deficit Hyperactivity Disorder, and was shown to be compatible with current thinking about this condition, as well as emerging models of mental disorders as complex networks. A key implication of the proposed model is that it argues that all mental disorders require a systemic functional approach, with the advantage that it offers a number of routes into the assessment, formulation and treatment for mental health problems.

  8. Thermodynamics of the two-dimensional XY model from functional renormalization

    CERN Document Server

    Jakubczyk, Pawel

    2016-01-01

    We solve the nonperturbative renormalization-group flow equations for the two-dimensional XY model at the truncation level of the (complete) second-order derivative expansion. We compute the thermodynamic properties in the high-temperature phase and compare the non-universal features specific to the XY model with results from Monte Carlo simulations. In particular, we study the position and magnitude of the specific heat peak as a function of temperature. The obtained results compare well with Monte Carlo simulations. We additionally gauge the accuracy of simplified nonperturbative renormalization-group treatments relying on $\\phi^4$-type truncations. Our computation indicates that such an approximation is insufficient in the high-$T$ phase and a correct analysis of the specific heat profile requires account of an infinite number of interaction vertices.

  9. Pure density functional for strong correlations and the thermodynamic limit from machine learning

    CERN Document Server

    Li, Li; White, Steven R; Burke, Kieron

    2016-01-01

    We use density-matrix renormalization group, applied to a one-dimensional model of continuum Hamiltonians, to accurately solve chains of hydrogen atoms of various separations and numbers of atoms. We train and test a machine-learned approximation to $F[n]$, the universal part of the electronic density functional, to within quantum chemical accuracy. Our calculation (a) bypasses the standard Kohn-Sham approach, avoiding the need to find orbitals, (b) includes the strong correlation of highly-stretched bonds without any specific difficulty (unlike all standard DFT approximations) and (c) is so accurate that it can be used to find the energy in the thermodynamic limit to quantum chemical accuracy.

  10. Solubility and thermodynamic function of vanillin in ten different environmentally benign solvents.

    Science.gov (United States)

    Shakeel, Faiyaz; Haq, Nazrul; Siddiqui, Nasir A

    2015-08-01

    The solubility of vanillin in ten different environmentally benign solvents namely water, ethanol, ethylene glycol (EG), ethyl acetate (EA), isopropanol (IPA), propylene glycol (PG), polyethylene glycol-400 (PEG-400), Transcutol, butanol-1 and butanol-2 was measured and correlated at T=(298-318)K. The resulting experimental data were correlated with the modified Apelblat and Van't Hoff models. Both the models showed good correlation of experimental solubility data with calculated ones with root mean square deviations in the range of (0.08-1.55)%. The mole fraction solubility of vanillin was observed highest in PEG-400 (4.29 × 10(-1) at 298 K) followed by Transcutol, EA, butanol-2, ethanol, EG, PG, IPA, butanol-1 and water from T=(298-318)K. The results of thermodynamic function in terms of dissolution enthalpy, Gibbs energy and dissolution entropy showed endothermic, spontaneous and entropy-driven dissolution of vanillin in all environmentally benign solvents.

  11. Level Densities, Thermodynamics and gamma -Ray Strength Functions in 163,164Dy

    Science.gov (United States)

    Nyhus, H. T.; Siem, S.; Guttormsen, M.; Larsen, A. C.; Bürger, A.; Syed, N. U. H.; Toft, H. K.; Tveten, G. M.; Voinov, A.

    2009-03-01

    The nuclei 163,164Dy have been investigated by use of the Oslo method on data from the pick-up reaction {(3He,alpha )} and the inelastic scattering {(3He,3He')}, respectively. The experiment was conducted at the Oslo cyclotron laboratory (OCL). The gamma -decay and ejectiles were measured with the CACTUS multidetector array, which consists of 28 NaI gamma -detectores and 8 Delta E - E Si particle telescopes. Thermodynamic quantities have been extracted within the micro-canonical ensemble theory. The pygmy resonance found around 3 MeV in the gamma -ray strength function, also referred to as the scissors mode, was studied. The question whether the width of the pygmy resonance is reaction dependent is addressed.

  12. Thermodynamics of the two-dimensional XY model from functional renormalization.

    Science.gov (United States)

    Jakubczyk, P; Eberlein, A

    2016-06-01

    We solve the nonperturbative renormalization-group flow equations for the two-dimensional XY model at the truncation level of the (complete) second-order derivative expansion. We compute the thermodynamic properties in the high-temperature phase and compare the nonuniversal features specific to the XY model with results from Monte Carlo simulations. In particular, we study the position and magnitude of the specific-heat peak as a function of temperature. The obtained results compare well with Monte Carlo simulations. We additionally gauge the accuracy of simplified nonperturbative renormalization-group treatments relying on ϕ^{4}-type truncations. Our computation indicates that such an approximation is insufficient in the high-T phase and a correct analysis of the specific-heat profile requires account of an infinite number of interaction vertices.

  13. Pure density functional for strong correlation and the thermodynamic limit from machine learning

    Science.gov (United States)

    Li, Li; Baker, Thomas E.; White, Steven R.; Burke, Kieron

    2016-12-01

    We use the density-matrix renormalization group, applied to a one-dimensional model of continuum Hamiltonians, to accurately solve chains of hydrogen atoms of various separations and numbers of atoms. We train and test a machine-learned approximation to F [n ] , the universal part of the electronic density functional, to within quantum chemical accuracy. We also develop a data-driven, atom-centered basis set for densities which greatly reduces the computational cost and accurately represents the physical information in the machine-learning calculation. Our calculation (a) bypasses the standard Kohn-Sham approach, avoiding the need to find orbitals, (b) includes the strong correlation of highly stretched bonds without any specific difficulty (unlike all standard DFT approximations), and (c) is so accurate that it can be used to find the energy in the thermodynamic limit to quantum chemical accuracy.

  14. Thyrotropin binding to porcine thyroid plasma membranes: kinetic and thermodynamic analyses.

    Science.gov (United States)

    Saltiel, A R; Thomas, C G; Nayfeh, S N

    1982-01-01

    Evaluation of TSH binding to plasma membranes of porcine thyroid revealed unique sensitivity to pH and temperature. Analysis of apparent equilibrium binding yielded a linear Scatchard plot at the optimal pH of 6.0, indicating one class of binding sites. At physiological pH 7.4 a curvilinear Scatchard plot was obtained, resolved by computer analysis into two classes of binding sites of different affinities and capacities. Treatment of membranes with phospholipase C resulted in a 20% decrease in the number of high affinity sites, but no change occurred in binding affinity. In contrast, low affinity sites were not altered. To evaluate the significance of the curvilinear Scatchard plot, the kinetics of association were examined. The intrinsic Kd (kd/ka) was 0.20 nM, a value essentially equivalent to that of the high affinity binding component. The 'negative cooperativity' model of hormone binding was evaluated by examining the effect of excess unlabeled TSH on dissociation rate. Dissociation of bound 125I-labeled TSH was biphasic, and was enhanced by unlabeled hormone, regardless of whether the membranes were prelabeled at pH 6.0 or 7.4. This effect was not correlated with curvilinear Scatchard plots, and therefore not proof of negative cooperativity. Binding sites for TSH were further distinguished by their sensitivity to temperature. A van't Hoff plot of temperature dependence of the apparent Kd of the high affinity site was linear from 4 to 37 degrees C. In contrast, the apparent Kd of low affinity binding did not vary with respect to temperature. These results demonstrate that there are at least two independent binding sites for TSH on porcine thyroid plasma membranes, distinguishable by their equilibrium binding properties.

  15. The incomplete plasma dispersion function: properties and application to waves in bounded plasmas

    CERN Document Server

    Baalrud, Scott D

    2013-01-01

    The incomplete plasma dispersion function is a generalization of the plasma dispersion function in which the defining integral spans a semi-infinite, rather than infinite, domain. It is useful for describing the linear dielectric response and wave dispersion in non-Maxwellian plasmas when the distribution functions can be approximated as Maxwellian over finite, or semi-infinite, intervals in velocity phase-space. A ubiquitous example is the depleted Maxwellian electron distribution found near boundary sheaths or double layers, where the passing interval can be modeled as Maxwellian with a lower temperature than the trapped interval. The depleted Maxwellian is used as an example to demonstrate the utility of using the incomplete plasma dispersion function for calculating modifications to wave dispersion relations.

  16. The thermodynamical response functions and the origin of the anomalous behavior of liquid water.

    Science.gov (United States)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasic, Cirino; Stanley, H Eugene

    2013-01-01

    The density maximum of water dominates the thermodynamics of the system under ambient conditions, is strongly P-dependent, and disappears at a crossover pressure P(cross) approximately 1.8 kbar. We study this variable across a wide area of the T-P phase diagram. We consider old and new data of both the isothermal compressibility K(T)(T, P), the pressure constant specific heat C(P)(T) and the coefficient of thermal expansion alpha(P) (T, P). We observe that K(T)(T) shows a minimum at T* approximately 315 +/- 5 K for all of the studied pressures, whereas, at the same temperature, C(P)(T) has the minimal variation as a function of P in the interval 1 bar-4 kbar. We find the behavior of alpha(P) also to be surprising: all the alpha(P)(T) curves measured at different P cross at T*. The experimental data show a "singular and universal expansivity point" at T* approximately 315 K and alpha(P)(T*) = 0.44 10(-3) K(-1). Unlike other water singularities, we find this temperature to be thermodynamically consistent in the relationship connecting the three response functions. By considering also the P-T behavior of the self-diffusion coefficient D(S) and of the NMR proton chemical shift delta we have the information that at T* the water local order points out, with decreasing T, the crossover from a normal fluid to the anomalous and complex liquid characterized by the many anomalies.

  17. Investigation of thermodynamic equilibrium in laser-induced aluminum plasma using the H{sub α} line profiles and Thomson scattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cvejić, M., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl [Institute of Physics, University of Belgrade, P.O. Box 68, 11080 Belgrade (Serbia); Faculty of Physics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Dzierżęga, K., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl; Pięta, T. [M. Smoluchowski Institute of Physics, Jagellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland)

    2015-07-13

    We have studied isothermal equilibrium in the laser-induced plasma from aluminum pellets in argon at pressure of 200 mbar by using a method which combines the standard laser Thomson scattering and analysis of the H{sub α}, Stark-broadened, line profiles. Plasma was created using 4.5 ns, 4 mJ pulses from a Nd:YAG laser at 1064 nm. While electron density and temperature were determined from the electron feature of Thomson scattering spectra, the heavy particle temperature was obtained from the H{sub α} full profile applying computer simulation including ion-dynamical effects. We have found strong imbalance between these two temperatures during entire plasma evolution which indicates its non-isothermal character. At the same time, according to the McWhirter criterion, the electron density was high enough to establish plasma in local thermodynamic equilibrium.

  18. Hindered rotor models with variable kinetic functions for accurate thermodynamic and kinetic predictions

    Science.gov (United States)

    Reinisch, Guillaume; Leyssale, Jean-Marc; Vignoles, Gérard L.

    2010-10-01

    We present an extension of some popular hindered rotor (HR) models, namely, the one-dimensional HR (1DHR) and the degenerated two-dimensional HR (d2DHR) models, allowing for a simple and accurate treatment of internal rotations. This extension, based on the use of a variable kinetic function in the Hamiltonian instead of a constant reduced moment of inertia, is extremely suitable in the case of rocking/wagging motions involved in dissociation or atom transfer reactions. The variable kinetic function is first introduced in the framework of a classical 1DHR model. Then, an effective temperature and potential dependent constant is proposed in the cases of quantum 1DHR and classical d2DHR models. These methods are finally applied to the atom transfer reaction SiCl3+BCl3→SiCl4+BCl2. We show, for this particular case, that a proper accounting of internal rotations greatly improves the accuracy of thermodynamic and kinetic predictions. Moreover, our results confirm (i) that using a suitably defined kinetic function appears to be very adapted to such problems; (ii) that the separability assumption of independent rotations seems justified; and (iii) that a quantum mechanical treatment is not a substantial improvement with respect to a classical one.

  19. Synthesis of functional nanocrystallites through reactive thermal plasma processing

    Directory of Open Access Journals (Sweden)

    Takamasa Ishigaki and Ji-Guang Li

    2007-01-01

    Full Text Available A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. The synthesis of nanosized titanium oxide powders was performed by the oxidation of solid and liquid precursors. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate, and therefore the particle size, of the resultant powders. The experimental results are well supported by numerical analysis on the effects of the quench gas on the flow pattern and temperature field of the thermal plasma as well as on the trajectory and temperature history of the particles. The plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nanosized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing.

  20. Active plasma resonance spectroscopy: A functional analytic description

    CERN Document Server

    Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-01-01

    The term "Active Plasma Resonance Spectroscopy" refers to a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: An signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostics technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism for a symmetric probe desing is given, as well as an interpreation...

  1. Active plasma resonance spectroscopy: a functional analytic description

    Science.gov (United States)

    Lapke, M.; Oberrath, J.; Mussenbrock, T.; Brinkmann, R. P.

    2013-04-01

    The term ‘active plasma resonance spectroscopy’ denotes a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: a signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostic technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism to a symmetric probe design is given, as well as an interpretation in terms of a lumped circuit model consisting of series resonance circuits. We present ideas for an optimized probe design based on geometric and electrical symmetry.

  2. The Gaussian radial basis function method for plasma kinetic theory

    Science.gov (United States)

    Hirvijoki, E.; Candy, J.; Belli, E.; Embréus, O.

    2015-10-01

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker-Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker-Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas.

  3. PIC simulations of a three component plasma described by Kappa distribution functions as observed in Saturn's magnetosphere

    Science.gov (United States)

    Barbosa, Marcos; Alves, Maria Virginia; Simões Junior, Fernando

    2016-04-01

    In plasmas out of thermodynamic equilibrium the particle velocity distribution can be described by the so called Kappa distribution. These velocity distribution functions are a generalization of the Maxwellian distribution. Since 1960, Kappa velocity distributions were observed in several regions of interplanetary space and astrophysical plasmas. Using KEMPO1 particle simulation code, modified to introduce Kappa distribution functions as initial conditions for particle velocities, the normal modes of propagation were analyzed in a plasma containing two species of electrons with different temperatures and densities and ions as a third specie.This type of plasma is usually found in magnetospheres such as in Saturn. Numerical solutions for the dispersion relation for such a plasma predict the presence of an electron-acoustic mode, besides the Langmuir and ion-acoustic modes. In the presence of an ambient magnetic field, the perpendicular propagation (Bernstein mode) also changes, as compared to a Maxwellian plasma, due to the Kappa distribution function. Here results for simulations with and without external magnetic field are presented. The parameters for the initial conditions in the simulations were obtained from the Cassini spacecraft data. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  4. Thermodynamics of lithium intercalation into graphite studied using density functional theory calculations incorporating van der Waals correlation and uncertainty estimation

    CERN Document Server

    Pande, Vikram

    2016-01-01

    Graphite is the most widely used and among the most widely-studied anode materials for lithium-ion batteries. Lithium intercalation into graphite has been extensively studied theoretically using density functional theory (DFT) calculations, complemented by experimental studies through X-ray diffraction, spectroscopy, optical imaging and other techniques. However, previous theoretical studies have not directly included van der Waals (vdW) interactions in their density functional theory calculations and vdW interactions play a crucial role in determining the stable phases. In this work, we present a first principles based model using DFT calculations, employing Bayesian Error Estimation Functional with van der Waals (BEEF-vdW) as the exchange correlation functional, and statistical thermodynamics to determine the phase transformations and subsequently, the thermodynamic intercalation potential diagram. We explore the entire configurational phase space by determining the important interactions and applying clust...

  5. Durable Nanolayer Graft Polymerization of Functional Finishes Using Atmospheric Plasma

    Science.gov (United States)

    Mazloumpour, Maryam

    Various applications of atmospheric pressure plasma were investigated in conjunction with different chemistries on nonwoven materials including spunbond polyester (PET) and spunbod polypropylene for fuel separation and antimicrobial functionalities. Hydrophobic/Oleophobic properties were conferred on nonwoven polyester (PET) via plasma-induced graft polymerization of different hydrophobic non-C8 perfluorocarbon chemistry including perfluorohexylethylmethacrylate, perfluorohexylethylacrylate, allylpentafluorobenzene, pentafluorostyrene, or 1,3-divinyltetramethyldisiloxane in the vapor form using both in-situ and down-stream plasma configurations. Different nanolayers of the grafted polymer were furnished on nonwovens to generate surfaces with different level of wettabilities for medical applications and water/fuel separation. The effect of various hydrophobic chemistry, different plasma conditions, and plasma device parameters including plasma power and plasma exposure time were studied and the performance was characterized by measuring the contact angle and the wettability rating against liquids with broad range of surface tensions. Vapor deposition of 2-(perfluorohexyl)ethyl methacrylate and pentafluorostyrene on nonwoven PET followed by plasma-induced graft polymerization was investigated for possible use in water/fuel separation. Different nanolayer thicknesses (80-180nm) of the grafted polymer were achieved to generate surfaces with different wettabilities for water/fuel separation of different fuel compositions. The effect of different plasma conditions and device parameters including the flow rate of monomers, power of the device, and time of plasma exposure on the separation of different fuels was studied and characterized by measuring the surface energy of the treated substrates. The surface chemistry and morphology of the treated samples were characterized using XPS, SEM and TOF-SIMS techniques which confirmed the grafting of monomer onto the substrate

  6. Thermodynamic quantities for the Klein–Gordon equation with a linear plus inverse-linear potential: Biconfluent Heun functions

    Indian Academy of Sciences (India)

    ALTUG˘ ARDA; CEVDET TEZCAN; RAMAZAN SEVER

    2017-02-01

    We study some thermodynamic quantities for the Klein–Gordon equation with a linear plus inverselinear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun’s equation.We use a method based on the Euler–MacLaurin formula to analytically compute thethermal functions by considering only the contribution of positive part of the spectrum to the partition function.

  7. The Gaussian radial basis function method for plasma kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-30

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.

  8. Thermodynamic properties of water sorption of jackfruit (Artocarpus heterophyllus Lam. as a function of moisture content

    Directory of Open Access Journals (Sweden)

    Ana Paula Prette

    2013-03-01

    Full Text Available The Jackfruit tree is one of the most significant trees in tropical home gardens and perhaps the most widespread and useful tree in the important genus Artocarpus. The fruit is susceptible to mechanical and biological damage in the mature state, and some people find the aroma of the fruit objectionable, particularly in confined spaces. The dehydration process could be an alternative for the exploitation of this product, and the relationship between moisture content and water activity provides useful information for its processing and storage. The aim of this study was to determine the thermodynamic properties of the water sorption of jackfruit (Artocarpus heterophyllus Lam. as a function of moisture content. Desorption isotherms of the different parts of the jackfruit (pulp, peduncle, mesocarp, peel, and seed were determined at four different temperatures (313.15, 323.15, 333.15, and 343.15 K in a water activity range of 0.02-0.753 using the static gravimetric method. Theoretical and empirical models were used to model the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to calculate the isosteric heat of sorption, the differential entropy, and Gibbs' free energy using the Guggenhein-Anderson-de Boer and Oswin models considering the effect of temperature on the hygroscopic equilibrium.

  9. Electronic and vibrational spectra and thermodynamic functions of 3- and 4-methoxy benzonitriles

    Science.gov (United States)

    Goel, R. K.; Agarwal, M. L.

    The i.r. absorption spectra of 3- and 4- methoxy benzonitriles have been recorded on a Perkin—Elmer 521 spectrophotometer, while the Raman spectrum of 4-methoxybenzonitrile was recorded on CODERG Raman spectrometer T800 triple monochromator. The near ultraviolet absorption spectra of both the molecules in vapour phase have been recorded on Medium Quartz Hilger spectrograph and that of 4-methoxybenzonitrile on DK-2A ratio recording spectrophotometer also. The assignment of fundamental frequencies to various modes of vibration have been proposed and on the basis of free internal rotation and assigned vibrational frequencies, the thermodynamic functions of the molecules have been computed on a VAX-11/780 computer. The analysis of the electronic spectra has been given in terms of fundamentals, their combinations and overtones. 4-Methoxy benzonitrile has exhibited two band systems corresponding to 1A1 g- 1B2 u(2600 Å) and 1A1 g- 1B1 u(2100 Å) system of benzene, while 3-methoxybenzonitrile exhibited only the former system. The red shift of 0,0 bands has been discussed.

  10. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  11. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Energy Technology Data Exchange (ETDEWEB)

    Golian, Y.; Dorranian, D., E-mail: d.dorranian@gmail.com [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Aslaninejad, M., E-mail: m.aslaninejad@ipm.ir [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-15

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  12. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Science.gov (United States)

    Golian, Y.; Aslaninejad, M.; Dorranian, D.

    2016-01-01

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  13. Plasma membrane organization and function: moving past lipid rafts.

    Science.gov (United States)

    Kraft, Mary L

    2013-09-01

    "Lipid raft" is the name given to the tiny, dynamic, and ordered domains of cholesterol and sphingolipids that are hypothesized to exist in the plasma membranes of eukaryotic cells. According to the lipid raft hypothesis, these cholesterol- and sphingolipid-enriched domains modulate the protein-protein interactions that are essential for cellular function. Indeed, many studies have shown that cellular levels of cholesterol and sphingolipids influence plasma membrane organization, cell signaling, and other important biological processes. Despite 15 years of research and the application of highly advanced imaging techniques, data that unambiguously demonstrate the existence of lipid rafts in mammalian cells are still lacking. This Perspective summarizes the results that challenge the lipid raft hypothesis and discusses alternative hypothetical models of plasma membrane organization and lipid-mediated cellular function.

  14. A simplified approach to calculate atomic partition functions in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    D' Ammando, Giuliano [Dipartimento di Chimica, Universita di Bari, Via Orabona 4, 70125 Bari (Italy); Colonna, Gianpiero [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); Capitelli, Mario [Dipartimento di Chimica, Universita di Bari, Via Orabona 4, 70125 Bari (Italy); CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy)

    2013-03-15

    A simplified method to calculate the electronic partition functions and the corresponding thermodynamic properties of atomic species is presented and applied to C(I) up to C(VI) ions. The method consists in reducing the complex structure of an atom to three lumped levels. The ground level of the lumped model describes the ground term of the real atom, while the second lumped level represents the low lying states and the last one groups all the other atomic levels. It is also shown that for the purpose of thermodynamic function calculation, the energy and the statistical weight of the upper lumped level, describing high-lying excited atomic states, can be satisfactorily approximated by an analytic hydrogenlike formula. The results of the simplified method are in good agreement with those obtained by direct summation over a complete set (i.e., including all possible terms and configurations below a given cutoff energy) of atomic energy levels. The method can be generalized to include more lumped levels in order to improve the accuracy.

  15. Oxygen plasma functionalization of poly(p-phenilene sulphide)

    Energy Technology Data Exchange (ETDEWEB)

    Cvelbar, Uros [Department F4, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)]. E-mail: uros.cvelbar@guest.arnes.si; Mozetic, Miran [Department F4, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Junkar, Ita [Department F4, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Vesel, Alenka [Department F4, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Kovac, Janez [Department F4, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Drenik, Aleksander [Department F4, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Vrlinic, Tjasa [Department F4, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Hauptman, Nina [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Klanjsek-Gunde, Marta [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Markoli, Bostjan [Faculty of Natural Sciences and Engineering, University of Ljubljana, Askrceva 12, 1000 Ljubljana (Slovenia); Krstulovic, Niksa [Institute of Physics, Bijenicka 56, 10000 Zagreb (Croatia); Milosevic, Slobodan [Institute of Physics, Bijenicka 56, 10000 Zagreb (Croatia); Gaboriau, Freddy [Laplace, University Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse (France); Belmonte, Thierry [Laboratoire de Science et Genie des Surfaces, Ecole de Mines, Parc de Saurupt, 54042 Nancy (France)

    2007-08-31

    Surface effects during plasma activation of poly(p-phenilene sulphide)-PPS have been studied. Samples that were exposed to weakly ionized highly dissociated oxygen plasma created an inductively coupled radiofrequency discharge with the power of 100 W. The electron density and temperature were measured with a double Langmuir probe and were 4 x 10{sup 15} m{sup -3} and 3 eV, respectively, while the neutral atom density was measured with a fiber optics catalytic probe and was 4 x 10{sup 21} m{sup -3}. The surface tension was determined by measuring the contact angle of deionized water, while the appearance of surface functional groups was detected by XPS. The surface tension of untreated PPS was 7 x 10{sup -3} N/m or/and increased to 7 x 10{sup -2} N/m in few seconds of plasma treatment. It remained fairly constant for longer plasma treatments. The XPS survey spectrum showed little oxygen on untreated samples, but its concentration increased to about 20 at.% in few seconds. Detailed high resolution XPS C 1s peak showed that the carbon was left fairly stable during plasma treatment. The main functional groups formed were rather sulphate in sulphite groups, as determined from high resolution S 2p peak. Namely, a strong transition from sulphide to sulphate state of sulfur was observed. The spontaneous deactivation of the polymer surface was measured as well. The deactivation was fairly logarithmic with the characteristic decay time of several hours.

  16. Density functional study of the structure, thermodynamics and electronic properties of CdGeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zapol, Peter; Pandey, Ravindra; Seel, Max [Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States); Recio, J. Manuel [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006-Oviedo (Spain); Ohmer, Melvin C. [Air Force Research Laboratory, Dayton, OH 45433 (United States)

    1999-06-14

    Structural, thermodynamic and electronic properties of CdGeAs{sub 2} with chalcopyrite structure are investigated in the framework of density functional theory. We employ the linear combination of atomic orbitals method with the Gaussian basis sets and present the results for the equation of state, the Grueneisen constant, the electronic band structure and the pressure coefficients of the valence and conduction levels in CdGeAs{sub 2}. (author)

  17. Structural, elastic, electronic, and thermodynamic properties of MgAgSb investigated by density functional theory

    Science.gov (United States)

    Wang, Jun-Fei; Fu, Xiao-Nan; Zhang, Xiao-Dong; Wang, Jun-Tao; Li, Xiao-Dong; Jiang, Zhen-Yi

    2016-08-01

    The structural, elastic, electronic, and thermodynamic properties of thermoelectric material MgAgSb in γ,β,α phases are studied with first-principles calculations based on density functional theory. The optimized lattice constants accord well with the experimental data. According to the calculated total energy of the three phases, the phase transition order is determined from α to γ phase with cooling, which is in agreement with the experimental result. The physical properties such as elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and anisotropy factor are also discussed and analyzed, which indicates that the three structures are mechanically stable and each has a ductile feature. The Debye temperature is deduced from the elastic properties. The total density of states (TDOS) and partial density of states (PDOS) of the three phases are investigated. The TDOS results show that the γ phase is most stable with a pseudogap near the Fermi level, and the PDOS analysis indicates that the conduction band of the three phases is composed mostly of Mg-3s, Ag-4d, and Sb-5p. In addition, the changes of the free energy, entropy, specific heat, thermal expansion of γ-MgAgSb with temperature are obtained successfully. The obtained results above are important parameters for further experimental and theoretical tuning of doped MgAgSb as a thermoelectric material at high temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11504088), the Fund from Henan University of Technology, China (Grant Nos. 2014YWQN08 and 2013JCYJ12), the Natural Science Fund from the Henan Provincial Education Department, China (Grant No. 16A140027), the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2013JQ1018 and 15JK1759), and the Science Foundation of Northwest University of China (Grant No. 14NW23).

  18. Thermodynamic prediction of glycine polymerization as a function of temperature and pH consistent with experimentally obtained results.

    Science.gov (United States)

    Kitadai, Norio

    2014-04-01

    Prediction of the thermodynamic behaviors of biomolecules at high temperature and pressure is fundamental to understanding the role of hydrothermal systems in the origin and evolution of life on the primitive Earth. However, available thermodynamic dataset for amino acids, essential components for life, cannot represent experimentally observed polymerization behaviors of amino acids accurately under hydrothermal conditions. This report presents the thermodynamic data and the revised HKF parameters for the simplest amino acid "Gly" and its polymers (GlyGly, GlyGlyGly and DKP) based on experimental thermodynamic data from the literature. Values for the ionization states of Gly (Gly(+) and Gly(-)) and Gly peptides (GlyGly(+), GlyGly(-), GlyGlyGly(+), and GlyGlyGly(-)) were also retrieved from reported experimental data by combining group additivity algorithms. The obtained dataset enables prediction of the polymerization behavior of Gly as a function of temperature and pH, consistent with experimentally obtained results in the literature. The revised thermodynamic data for zwitterionic Gly, GlyGly, and DKP were also used to estimate the energetics of amino acid polymerization into proteins. Results show that the Gibbs energy necessary to synthesize a mole of peptide bond is more than 10 kJ mol(-1) less than previously estimated over widely various temperatures (e.g., 28.3 kJ mol(-1) → 17.1 kJ mol(-1) at 25 °C and 1 bar). Protein synthesis under abiotic conditions might therefore be more feasible than earlier studies have shown.

  19. Formation of functional groups on graphite during oxygen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cvelbar, Uros [Plasma Laboratory, Jozef Stefan Institute, Jamova 39, Ljubljana SI-1000 (Slovenia)]. E-mail: uros.cvelbar@guest.arnes.si; Markoli, Bostjan [Faculty of Natural Sciences and Engineering, University of Ljubljana, Askerceva 12, Ljubljana SI-1000 (Slovenia); Poberaj, Igor [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana SI-1000 (Slovenia); Zalar, Anton [Plasma Laboratory, Jozef Stefan Institute, Jamova 39, Ljubljana SI-1000 (Slovenia); Kosec, Ladislav [Faculty of Natural Sciences and Engineering, University of Ljubljana, Askerceva 12, Ljubljana SI-1000 (Slovenia); Spaic, Savo [Faculty of Natural Sciences and Engineering, University of Ljubljana, Askerceva 12, Ljubljana SI-1000 (Slovenia)

    2006-12-15

    Improved sample wettability was obtained by oxygen plasma functionalization of pyrolytic graphite. The samples were exposed to highly dissociated oxygen plasma with the density of 1 x 10{sup 16} m{sup -3}, the electron temperature of about 5.5 eV and the density of neutral oxygen atoms of 8 x 10{sup 21} m{sup -3} for 20 s. The surface wettability was measured by a contact angle of water drop. The contact angle dropped from original 112{sup o} down to about 1{sup o}. The functional groups were detected by XPS analyses. The survey spectrum showed a substantial increase of oxygen concentration on the surface, while high-resolution analyses showed additional oxygen was bonded onto the graphite surface in the form of C-O polar functional group responsible for the increase of the surface energy.

  20. Plasma functionalized surface of commodity polymers for dopamine detection

    Science.gov (United States)

    Fabregat, Georgina; Osorio, Joaquin; Castedo, Alejandra; Armelin, Elaine; Buendía, Jorge J.; Llorca, Jordi; Alemán, Carlos

    2017-03-01

    We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1-2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  1. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  2. Reference distribution functions for magnetically confined plasmas from the minimum entropy production theorem and the MaxEnt principle, subject to the scale-invariant restrictions

    Energy Technology Data Exchange (ETDEWEB)

    Sonnino, Giorgio, E-mail: gsonnino@ulb.ac.be [Université Libre de Bruxelles (U.L.B.), Department of Physics, Campus de la Plaine Code Postal 231 - Boulevard du Triomphe, 1050 Brussels (Belgium); Cardinali, Alessandro [EURATOM-ENEA Fusion Association, Via E. Fermi 45, C.P. 65-00044 Frascati, Rome (Italy); Steinbrecher, Gyorgy [EURATOM-MEdC Fusion Association, Physics Faculty, University of Craiova, Str. A.I. Cuza 13, 200585 Craiova (Romania); Peeters, Philippe [Université Libre de Bruxelles (U.L.B.), Department of Physics, Campus de la Plaine Code Postal 231 - Boulevard du Triomphe, 1050 Brussels (Belgium); Sonnino, Alberto [Université Catholique de Louvain (UCL), Ecole Polytechnique de Louvain (EPL), Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve (Belgium); Nardone, Pasquale [Université Libre de Bruxelles (U.L.B.), Department of Physics, Campus de la Plaine Code Postal 231 - Boulevard du Triomphe, 1050 Brussels (Belgium)

    2013-12-09

    We derive the expression of the reference distribution function for magnetically confined plasmas far from the thermodynamic equilibrium. The local equilibrium state is fixed by imposing the minimum entropy production theorem and the maximum entropy (MaxEnt) principle, subject to scale invariance restrictions. After a short time, the plasma reaches a state close to the local equilibrium. This state is referred to as the reference state. The aim of this Letter is to determine the reference distribution function (RDF) when the local equilibrium state is defined by the above mentioned principles. We prove that the RDF is the stationary solution of a generic family of stochastic processes corresponding to an universal Landau-type equation with white parametric noise. As an example of application, we consider a simple, fully ionized, magnetically confined plasmas, with auxiliary Ohmic heating. The free parameters are linked to the transport coefficients of the magnetically confined plasmas, by the kinetic theory.

  3. Plasma polychlorinated biphenyl concentrations and immune function in postmenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Spector, June T., E-mail: spectj@uw.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105 (United States); Department of Medicine, School of Medicine, University of Washington, Seattle, WA (United States); De Roos, Anneclaire J., E-mail: ajd335@drexel.edu [Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, P.O. Box 19024, Seattle, WA 98109 (United States); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (United States); Ulrich, Cornelia M., E-mail: neli.ulrich@nct-heidelberg.de [Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (United States); Cancer Prevention Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, P.O. Box 19024, Seattle, WA 98109 (United States); National Center for Tumor Diseases and German Cancer Research Center, Heidelberg (Germany); Sheppard, Lianne, E-mail: sheppard@uw.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105 (United States); Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA (United States); Sjoedin, Andreas, E-mail: asjodin@cdc.gov [National Center for Environmental Health, CDC, 4770 Buford Highway NE, Atlanta, GA 30341 (United States); Wener, Mark H., E-mail: wener@u.washington.edu [Department of Medicine, School of Medicine, University of Washington, Seattle, WA (United States); Wood, Brent, E-mail: woodbl@u.washington.edu [Department of Medicine, School of Medicine, University of Washington, Seattle, WA (United States); and others

    2014-05-01

    Background: Polychlorinated biphenyl (PCB) exposure has been associated with non-Hodgkin lymphoma in several studies, and the immune system is a potential mediator. Objectives: We analyzed associations of plasma PCBs with immune function measures. We hypothesized that higher plasma PCB concentrations are associated with lower immune function cross-sectionally, and that increases in PCB concentrations over a one year period are associated with decreases in immune function. Methods: Plasma PCB concentrations and immune function [natural killer (NK) cell cytotoxicity and PHA-induced T-lymphocyte proliferation (PHA-TLP)] were measured at baseline and one year in 109 postmenopausal overweight women participating in an exercise intervention study in the Seattle, Washington (USA) area. Mixed models, with adjustment for body mass index and other potential confounders, were used to estimate associations of PCBs with immune function cross-sectionally and longitudinally. Results: Associations of PCBs with immune function measures differed across groups of PCBs (e.g., medium- and high-chlorinated and dioxin-like [mono-ortho-substituted]) and by the time frame for the comparison (cross-sectional vs. longitudinal). Higher concentrations of medium- and high-chlorinated PCBs were associated with higher PHA-TLP cross-sectionally but not longitudinally. The mean decrease in 0.5 µg/mL PHA-TLP/50.0 pmol/g-lipid increase in dioxin-like PCBs over one year was 51.6 (95% confidence interval 2.7, 100.5; P=0.039). There was no association between plasma PCBs and NK cytotoxicity. Conclusions: These results do not provide strong evidence of impaired cellular immunity from PCB exposure. Larger longitudinal studies with greater variability in PCB exposures are needed to further examine temporal associations of PCBs with immune function. - Highlights: • Plasma PCBs and immune function were measured in 109 women at baseline and one year. • Immune measures included T lymphocyte proliferation

  4. Calculation of the thermodynamic properties of a mixture of gases as a function of temperature and pressure

    Science.gov (United States)

    Colon, G.

    1981-01-01

    The evaluation of the thermodynamic properties of a gas mixture can be performed using a generalized correlation which makes use of the second virial coefficient. This coefficient is based on statistical mechanics and is a function of temperature and composition, but not of pressure. The method provides results accurate to within 3 percent for gases which are nonpolar or only slightly polar. When applied to highly polar gases, errors of 5 to 10 percent may result. For gases which associate, even larger errors are possible. The sequences of calculations can be routinely programmed for a digital computer. The thermodynamic properties of a mixture of neon, argon and ethane were calculated by such a program. The result will be used for the design of the gas replenishment system for the Energetic Gamma Ray Experiment Telescope.

  5. Dielectric function of a collisional plasma for arbitrary ionic charge

    CERN Document Server

    Nersisyan, H B; Andreev, N E; Matevosyan, H H

    2013-01-01

    Simple model for the dielectric function of a completely ionized plasma with an arbitrary ionic charge, that is valid for the long-wavelength, high-frequency perturbations is derived using approximate solution of a linearized Fokker-Planck kinetic equation for electrons with a Landau collision integral. The model accounts for both the electron-ion collisions and the collisions of the subthermal (cold) electrons with thermal ones. The relative contribution of the latter collisions into dielectric function is treated phenomenologically introducing some parameter $\\varkappa $ which is chosen in such a way to get well-known expression for stationary electric conductivity in low-frequency region and fulfill requirement of vanishing contribution of electron-electron collisions at high frequency region. This procedure ensures the applicability of our model in the wide ranges of plasma parameters as well as the frequency of the electromagnetic radiation. Unlike interpolation formula proposed earlier by Brantov \\emph{...

  6. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  7. Facilitative plasma membrane transporters function during ER transit.

    Science.gov (United States)

    Takanaga, Hitomi; Frommer, Wolf B

    2010-08-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na(+)-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.

  8. Pair correlation functions of strongly coupled two-temperature plasma

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-09-01

    Using molecular dynamics simulations, we perform the first direct tests of three proposed models for the pair correlation functions of strongly coupled plasmas with species of unequal temperature. The models are all extensions of the Ornstein-Zernike/hypernetted-chain theory used to good success for equilibrium plasmas. Each theory is evaluated at several coupling strengths, temperature ratios, and mass ratios for a model plasma in which the electrons are positively charged. We show that the model proposed by Seuferling et al. [Phys. Rev. A 40, 323 (1989)] agrees well with molecular dynamics over a wide range of mass and temperature ratios, as well as over a range of coupling strength similar to that of the equilibrium hypernetted-chain (HNC) theory. The SVT model also correctly predicts the strength of interspecies correlations and exhibits physically reasonable long-wavelength limits of the static structure factors. Comparisons of the SVT model with the Yukawa one-component plasma (YOCP) model are used to show that ion-ion pair correlations are well described by the YOCP model up to Γe≈1 , beyond which it rapidly breaks down.

  9. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  10. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  11. Thermodynamic scaling functions of three-dimensional anisotropic superconductors in the presence of a magnetic field with arbitrary direction

    Energy Technology Data Exchange (ETDEWEB)

    Calero, J.M. [Univ. Industrial de Santander, Bucaramanga (Colombia). Escuela de Fisica; Granada, J.C. [Dept. de Fisica, Univ. del Valle, Cali (Colombia); Silva, E.Z. da [Inst. de Fisica, Univ. Estadual de Campinas (Brazil)

    2000-07-01

    A nonperturbative method for the evaluation of thermodynamic scaling functions in the critical region of three-dimensional anisotropic type-II superconductors is extended for the case of external magnetic fields with arbitrary angles with respect to the anisotropy axis. The calculations are carried out in the framework of the Ginzburg-Landau theory. Explicit relations are obtained for the angular dependence of the magnetization and specific heat. Our theoretical results are in good agreement with experiments performed in untwinned single crystals of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}. (orig.)

  12. Thermodynamic and kinetic properties of hydrogen defect pairs in SrTiO3 from density functional theory

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Bonanos, Nikolaos; Rossmeisl, Jan

    2011-01-01

    A density functional theory investigation of the thermodynamic and kinetic properties of hydrogen–hydrogen defect interactions in the cubic SrTiO3 perovskite is presented. We find a net attraction between two hydrogen atoms with an optimal separation of ∼2.3 Å. The energy gain is ca. 0.33 e......V compared to two non-interacting H defects. The main cause of the net attractive potential is elastic defect interactions through lattice deformation. Two possible diffusion paths for the hydrogen defect pair are investigated and are both determined to be faster than the corresponding diffusion path...

  13. Cold plasma: A new technology to modify wheat flour functionality

    Science.gov (United States)

    Bahrami, Niloufar; Bayliss, Danny; Chope, Gemma; Penson, Simon; Perehinec, Tania; Fisk, Ian D.

    2016-01-01

    Atmospheric pressure cold plasma has the potential to modify biological chemistry and modulate physical surface properties. Wheat flour was treated by low levels of cold plasma (air, 15 V and 20 V) for 60 or 120 s. There was no change in the total aerobic bacterial count or total mould count as a result of treatment. Treatment did not impact the concentration of total non-starch lipids, or non-polar and glycolipids. However, treatment did reduce total free fatty acids and phospholipids and was dose dependent. Oxidation markers (hydroperoxide value and head space n-hexanal) increased with treatment time and voltage, which confirmed the acceleration of lipid oxidation. Total proteins were not significantly influenced by treatment although there was a trend towards higher molecular weight fractions which indicated protein oxidation and treated flour did produce a stronger dough. This study confirms the potential of cold plasma as a tool to modify flour functionality. PMID:26920291

  14. Plasma spray forming of functionally graded materials mould

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zi-yu; FANG Jian-cheng; LI Hong-you

    2005-01-01

    A new technology of functionally graded materials(FGM) mould fabricated by plasma spraying and arc spraying was developed. According to applied characteristic of plastic mould, the reasonable coatings of FGM were designed and their microstructures were analyzed. At the same time, some key problems were solved including spray mould fabricating, FGM forming and demoulding, etc. The results show that the service performance of the FGM mould is much more excellent than the one composed of the traditional materials, and the life span can also be greatly increased. The technology will have a significant influence on materials development in mould industry.

  15. Plasma polymerized epoxide functional surfaces for DNA probe immobilization.

    Science.gov (United States)

    Chu, Li-Qiang; Knoll, Wolfgang; Förch, Renate

    2008-09-15

    The development of functional surfaces for the immobilization of DNA probe is crucial for a successful design of a DNA sensor. In this report, epoxide functional thin films were achieved simply by pulsed plasma polymerization (PP) of glycidyl methacrylate (GMA) at low duty cycle. The presence of epoxide groups in the resulting ppGMA films was confirmed by Fourier transform infrared spectroscopy. The ppGMA coatings were found to be resistant to the non-specific adsorption of DNA strands, while the epoxide groups obtained could react with amine-modified DNA probes in a mild basic environment without any activation steps. A DNA sensor was made, and was successfully employed to distinguish different DNA sequences with one base pair mismatch as seen by surface plasmon enhanced fluorescence spectroscopy (SPFS). The regeneration of the present DNA sensor was also discussed. This result suggests that surface modification with ppGMA films is very promising for the fabrication of various DNA sensors.

  16. The Gaussian Radial Basis Function Method for Plasma Kinetic Theory

    CERN Document Server

    Hirvijoki, Eero; Belli, Emily; Embréus, Ola

    2015-01-01

    A fundamental macroscopic description of a magnetized plasma is the Vlasov equation supplemented by the nonlinear inverse-square force Fokker-Planck collision operator [Rosenbluth et al., Phys. Rev., 107, 1957]. The Vlasov part describes advection in a six-dimensional phase space whereas the collision operator involves friction and diffusion coefficients that are weighted velocity-space integrals of the particle distribution function. The Fokker-Planck collision operator is an integro-differential, bilinear operator, and numerical discretization of the operator is far from trivial. In this letter, we describe a new approach to discretize the entire kinetic system based on an expansion in Gaussian Radial Basis functions (RBFs). This approach is particularly well-suited to treat the collision operator because the friction and diffusion coefficients can be analytically calculated. Although the RBF method is known to be a powerful scheme for the interpolation of scattered multidimensional data, Gaussian RBFs also...

  17. Elastic and Thermodynamic Properties of Complex Mg-Al Intermetallic Compounds via Orbital-Free Density Functional Theory

    Science.gov (United States)

    Zhuang, Houlong; Chen, Mohan; Carter, Emily A.

    2016-06-01

    Magnesium-aluminum (Mg-Al) alloys are important metal alloys with a wide range of engineering applications. We investigate the elastic and thermodynamic properties of Mg, Al, and four stoichiometric Mg-Al compounds including Mg17Al12 , Mg13Al14 , and Mg23Al30 , and MgAl2 with orbital-free density-functional theory (OFDFT). We first calculate the lattice constants, zero-temperature formation energy, and independent elastic constants of these six materials and compare the results to those computed via Kohn-Sham DFT (KSDFT) benchmarks. We obtain excellent agreement between these two methods. Our calculated elastic constants of hexagonal close-packed Mg and face-centered-cubic Al are also consistent with available experimental data. We next compute their phonon spectra using the force constants extracted from the very fast OFDFT calculations, because such calculations are computationally challenging using KSDFT. This is especially the case for the Mg23Al30 compound, whose 3 ×3 ×3 supercell consists of 1431 atoms. We finally employ the quasiharmonic approximation to investigate temperature-dependent thermodynamic properties, including formation energies, heat capacities, and thermal expansion of the four Mg-Al intermetallic compounds. The calculated heat capacity and thermal expansion of both Mg and Al agree well with experimental data. We additionally find that Mg13Al14 and MgAl2 are both unstable, consistent with their absence from the equilibrium Mg-Al phase diagram. Our work demonstrates that OFDFT is an efficient and accurate quantum-mechanical computational tool for predicting elastic and thermodynamic properties of complicated Mg-Al alloys and also should be applicable to many other engineering alloys.

  18. Thermodynamic extension of density-functional theory. I. Canonical Massieu-Planck function, its Legendre and Massieu-Planck transforms for equilibrium state in terms of density matrix

    CERN Document Server

    Balawender, Robert

    2009-01-01

    A unified formulation of the equilibrium state of a many-electron system in terms of an ensemble (mixed-state) density matrix, which applies the maximum entropy principle combined with the use of Massieu-Planck function, is presented. The properties of the characteristic functionals for macrocanonical ensemble are established. Their extension to other ensembles is accomplished via a Legendre transform. The relations between equilibrium states defined by a formal mathematical procedure and by criteria adopted for traditional (Gibbs, Helmholtz) potentials are investigated using Massieu-Planck transform. The preeminence of the Massieu-Planck function over the traditional thermodynamic potentials is discussed in detail on an example of their second derivatives. Introduced functions are suitable for application to the extensions of the density functional theory, both at finite and zero temperatures.

  19. ``Statistical treatment of the spectral properties of plasmas in local thermodynamical equilibrium using a screened hydrogenic model``; ``Traitement statistique des proprietes spectrales des plasmas a l`equilibre thermodynamique local dans le cadre du modele hydrogenique ecrante``

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G.

    1996-12-31

    A new screened hydrogenic model is presented. The screening constants depend both on the principal n and orbital l quantum numbers. They have been obtained from numerical fits over a large data base containing ionization potentials and one-electron excitation energies of ions. A rapid and original method to compute the bound-bound and bound-free oscillator strengths is proposed. The discrete spectrum and the series continuum are connected by continuity, and the sum rules are respected. The screened hydrogenic average atom is well-adapted to describe multicharged ion plasmas in local thermodynamic equilibrium (LTE). Using the key principle of statistical mechanics, it is shown first that this model is properly defined and thermodynamically coherent. Secondly, a new method of detailed ionization stage accounting of a LTE plasma is explained. It can be used to reconstruct the distribution of integer charge states in such a plasma from any average atom model. The l -splitting allows one-electron transitions between two subshells with the same principal quantum number n. They may be of great importance when the Rosseland opacity is computed. Though, methods of classical statistical mechanics are required to calculate the distribution of the configurations around the average atom one and so to improve the spectral opacities. The splitting in integer ionic stages can be easily included. The formalism is tested by comparisons with theoretical and experimental results published in the literature. From the photoabsorption spectra encountered, the main results are the correct estimations of both the Rosseland opacity and the detailed charge degrees accounting. (author).

  20. Standard thermodynamic functions of Co2+ complexation with glycine and L-histidine in aqueous solution

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.

    2016-02-01

    The enthalpies of the reactions between solutions of Co(NO3)2 and solutions of glycine (Gly) and L-histidine (His) are determined via direct calorimetry at different pH values and metal: ligand ratios using KNO3 as a background electrolyte ( T = 298.15 K, I = 0.2-1.0). The enthalpy changes upon the formation of cobalt glycinate complexes and Co2+ mixed-ligand complex, viz., glycine-L-histidine, were calculated. The standard thermodynamic parameters (Δr H°, Δr G°, Δr S°) of complexation are determined. The CoGlyHis complex is shown to be stable toward decomposition into homogeneous complexes.

  1. Density functional theory study of phase stability and defect thermodynamics in iron-oxyhydroxide mineral materials

    Science.gov (United States)

    Pinney, Nathan Douglas

    Due to their high surface area and reactivity toward a variety of heavy metal and oxyanion species of environmental concern, Fe-(oxyhydr)oxide materials play an important role in the geochemical fate of natural and anthropogenic contaminants in soils, aquifers and surface water environments worldwide. In this research, ab initio simulations describe the bulk structure, magnetic properties, and relative phase stability of major Fe-(oxyhydr)oxide materials, including hematite, goethite, lepidocrocite, and ferrihydrite.These bulk models are employed in further studies of point defect and alloy/dopant thermodynamics in these materials, allowing construction of a phase stability model that better replicates the structure and composition of real materials. Li + adsorption at the predominant goethite (101) surface is simulated using ab initio methods, offering energetic and structural insight into the binding mechanisms of metal cations over a range of surface protonation conditions.

  2. The plasma membrane: Penultimate regulator of ADAM sheddase function.

    Science.gov (United States)

    Reiss, Karina; Bhakdi, Sucharit

    2017-11-01

    ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. Membrane events that could contribute to regulation of ADAM-function are summarized. Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017. Published by Elsevier B.V.

  3. Nonlinear associations between plasma cholesterol levels and neuropsychological function.

    Science.gov (United States)

    Wendell, Carrington R; Zonderman, Alan B; Katzel, Leslie I; Rosenberger, William F; Plamadeala, Victoria V; Hosey, Megan M; Waldstein, Shari R

    2016-11-01

    Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Participants were 190 older adults (53% men, ages 54-83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed and dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as quadratic effect of Total Cholesterol² × Age was identified for Logical Memory II (b = -.0013, p = .039), such that the 70+ group performed best at high and low levels of total cholesterol than at midrange total cholesterol (U-shaped) and the Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Active plasma resonance spectroscopy: A functional analytic description

    OpenAIRE

    Lapke, Martin; Oberrath, Jens; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-01-01

    The term "Active Plasma Resonance Spectroscopy" refers to a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: An signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept h...

  5. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    Science.gov (United States)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  6. Structures, spectroscopic and thermodynamic properties of U₂On (n = 0 ∼ 2, 4) molecules: a density functional theory study.

    Science.gov (United States)

    Li, Peng; Niu, Wen-Xia; Gao, Tao; Wang, Fan; Jia, Ting-Ting; Meng, Da-Qiao; Li, Gan

    2013-12-01

    The equilibrium structures, spectroscopic and thermodynamic parameters [entropy (S), internal energy (E), heat capacity (C p)] of U₂, U₂O, U₂O₂ and U₂O₄ uranium oxide molecules were investigated systematically using density functional theory (DFT). Our computations indicated that the ground electronic state of U₂ is the septet state and the equilibrium bond length is 2.194 Å; the ground electronic state of U₂O and U₂O₂ were found to be X³Φ and X³Σ(g) with stable C(∞v) and D(∞h) linear structures, respectively. The bridge-bonded structure with D(2h) symmetry and X³B₁(g) state is the most stable configuration for the U₂O₄ molecule. Mulliken population analyses show that U atoms always lose electrons to become the donor and O atoms always obtain electrons as the acceptor. Molecular orbital analyses demonstrated that the frontier orbitals of the title molecules were contributed mostly by 5f atomic orbitals of U atoms. Vibrational frequencies analyses indicate that the maximum absorption peaks stem from the stretching mode of U-O bonds in U₂O, U₂O₂ and U₂O₄. In addition, thermodynamic data of U₂O(n) (n = 0 ∼ 4) molecules at elevated temperatures of 293.0 K to 393.0 K was predicted.

  7. Nanoscopic Thermodynamics.

    Science.gov (United States)

    Qi, Weihong

    2016-09-20

    Conventional thermodynamics for bulk substances encounters challenges when one considers materials on the nanometer scale. Quantities such as entropy, enthalpy, free energy, melting temperature, ordering temperature, Debye temperature, and specific heat no longer remain constant but change with the crystal dimension, size, and morphology. Often, one phenomenon is associated with a variety of theories from different perspectives. Still, a model that can reconcile the size and shape dependence of the thermal properties of the nanoscaled substances remains one of the goals of nanoscience and nanotechnology. This Account highlights the nanoscopic thermodynamics for nanoparticles, nanowires, and nanofilms, with particular emphasis on the bond energy model. The central idea is that the atomic cohesive energy determines the thermodynamic performance of a substance and the cohesive energy varies with the atomic coordination environment. It is the cohesive energy difference between the core and the shell that dictates the nanoscopic thermodynamics. This bond energy model rationalizes the following: (i) how the surface dangling bonds depress the melting temperature, entropy, and enthalpy; (ii) how the order-disorder transition of the nanoparticles depends on particle size and how their stability may vary when they are embedded in an appropriate matrix; (iii) predictions of the existence of face-centered cubic structures of Ti, Zr, and Hf at small size; (iv) how two elements that are immiscible in the bulk can form an alloy on the nanoscale, where the critical size can be predicted. The model has enabled us to reproduce the size and shape dependence of a number of physical properties, such as melting temperature, melting entropy, melting enthalpy, ordering temperature, Gibbs free energy, and formation heat, among others, for materials such as Pd, Au, Ag, Cu, Ni, Sn, Pb, In, Bi, Al, Ti, Zr, Hf, In-Al, Ag-Ni, Co-Pt, Cu-Ag, Cu-Ni, Au-Ni, Ag-Pt, and Au-Pt on the nanometer scale

  8. Structure and function of thyroid hormone plasma membrane transporters.

    Science.gov (United States)

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-09-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.

  9. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Izacard, Olivier, E-mail: izacard@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, L-637, Livermore, California 94550 (United States)

    2016-08-15

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it

  10. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    Science.gov (United States)

    Izacard, Olivier

    2016-08-01

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it

  11. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations; Apport d'un code de simulation Monte Carlo pour l'etude des proprietes thermodynamiques d'un plasma a l'equilibre et application au calcul de l'elargissement des profils de raies ioniques emises dans les plasmas denses, aux opacites spectrales et aux equations d'etat de systemes fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, D

    2005-07-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  12. Platelet function alterations in dengue are associated with plasma leakage

    NARCIS (Netherlands)

    Michels, M.; Alisjahbana, B.; Groot, P.G. de; Indrati, A.R.; Fijnheer, R.; Puspita, M.; Dewi, I.M.; Wijer, L. van de; Boer, E.M. de; Roest, M.; Ven, A.J. van der; Mast, Q. de

    2014-01-01

    Severe dengue is characterised by thrombocytopenia, plasma leakage and bleeding. Platelets are important for preservation of endothelial integrity. We hypothesised that platelet activation with secondary platelet dysfunction contribute to plasma leakage. In adult Indonesian patients with acute dengu

  13. Density Functional Study of the Carbon Dependence of the Structural, Mechanic, Thermodynamic, and Dynamic Properties of SiC Alloys

    Science.gov (United States)

    Langueur, H.; Kassali, K.

    2017-03-01

    Using a density functional scheme, for the first time the carbon dependence on the structural, dynamic, thermodynamic, and dynamic properties of Si_{1-x}Cx alloys (x=0.0 to 1.0 in steps of 0.125) has been investigated. The structural properties of these materials, in particular, the composition dependence of the lattice parameter and bulk modulus, are in excellent agreement with experimental data and follow a quadratic law in ( x). A nonlinear relationship is found between the elastic constants C_{11}, C_{12}, and C_{44} and the carbon concentration ( x). The behavior of the acoustical and optical phonon frequencies at high-symmetry points Γ, X, and L is predicted. Through the quasi-harmonic Debye model, in which the photonic effects are taken into account, the Debye temperature, the heat capacity, the Helmholtz free energy, the internal energy, and the entropy are determined for the Si_{1-x}C_{x } compounds.

  14. Thermodynamic Study of Water-Steam Plasma Pyrolysis of Medical Waste for Recovery of CO and H2

    Institute of Scientific and Technical Information of China (English)

    Huang Jianjun; Guo Wenkang; Xu Ping

    2005-01-01

    This paper describes the equilibrium compositions of the typical medical waste under high temperature pyrolysis by a steam plasma torch using the NASA CEA2 program. Various components from selected typical medical waste were input to the program along with the treatment temperature from 1000 K ~ 4100 K. The program then performed the Gibbs free energy calculations and searched for the equilibrium composition with minimizing the total system Gibbs free energy. The calculation results indicate that, the equilibrium composition of a system C-H-O at C/O = 1 in the temperature range of 1400 K ~ 2000 K has demonstrated that gas composition are CO and H2 mainly, the other components (CO2, C2H4, C2H2, CH4 etc.) is less than 1%by volume and the degree of raw material transformation is about 100%. Comparison with air plasma, the steam plasma treatment will not produce nitrogen oxides, if the materials are free of nitrogen element.

  15. Molecular determinants for the thermodynamic and functional divergence of uniporter GLUT1 and proton symporter XylE.

    Science.gov (United States)

    Ke, Meng; Yuan, Yafei; Jiang, Xin; Yan, Nieng; Gong, Haipeng

    2017-06-01

    GLUT1 facilitates the down-gradient translocation of D-glucose across cell membrane in mammals. XylE, an Escherichia coli homolog of GLUT1, utilizes proton gradient as an energy source to drive uphill D-xylose transport. Previous studies of XylE and GLUT1 suggest that the variation between an acidic residue (Asp27 in XylE) and a neutral one (Asn29 in GLUT1) is a key element for their mechanistic divergence. In this work, we combined computational and biochemical approaches to investigate the mechanism of proton coupling by XylE and the functional divergence between GLUT1 and XylE. Using molecular dynamics simulations, we evaluated the free energy profiles of the transition between inward- and outward-facing conformations for the apo proteins. Our results revealed the correlation between the protonation state and conformational preference in XylE, which is supported by the crystal structures. In addition, our simulations suggested a thermodynamic difference between XylE and GLUT1 that cannot be explained by the single residue variation at the protonation site. To understand the molecular basis, we applied Bayesian network models to analyze the alteration in the architecture of the hydrogen bond networks during conformational transition. The models and subsequent experimental validation suggest that multiple residue substitutions are required to produce the thermodynamic and functional distinction between XylE and GLUT1. Despite the lack of simulation studies with substrates, these computational and biochemical characterizations provide unprecedented insight into the mechanistic difference between proton symporters and uniporters.

  16. Molecular determinants for the thermodynamic and functional divergence of uniporter GLUT1 and proton symporter XylE.

    Directory of Open Access Journals (Sweden)

    Meng Ke

    2017-06-01

    Full Text Available GLUT1 facilitates the down-gradient translocation of D-glucose across cell membrane in mammals. XylE, an Escherichia coli homolog of GLUT1, utilizes proton gradient as an energy source to drive uphill D-xylose transport. Previous studies of XylE and GLUT1 suggest that the variation between an acidic residue (Asp27 in XylE and a neutral one (Asn29 in GLUT1 is a key element for their mechanistic divergence. In this work, we combined computational and biochemical approaches to investigate the mechanism of proton coupling by XylE and the functional divergence between GLUT1 and XylE. Using molecular dynamics simulations, we evaluated the free energy profiles of the transition between inward- and outward-facing conformations for the apo proteins. Our results revealed the correlation between the protonation state and conformational preference in XylE, which is supported by the crystal structures. In addition, our simulations suggested a thermodynamic difference between XylE and GLUT1 that cannot be explained by the single residue variation at the protonation site. To understand the molecular basis, we applied Bayesian network models to analyze the alteration in the architecture of the hydrogen bond networks during conformational transition. The models and subsequent experimental validation suggest that multiple residue substitutions are required to produce the thermodynamic and functional distinction between XylE and GLUT1. Despite the lack of simulation studies with substrates, these computational and biochemical characterizations provide unprecedented insight into the mechanistic difference between proton symporters and uniporters.

  17. Effect of stacking interactions on the thermodynamics and kinetics of lumiflavin: a study with improved density functionals and density functional tight-binding protocol.

    Science.gov (United States)

    Bresnahan, Caitlin G; Reinhardt, Clorice R; Bartholow, Thomas G; Rumpel, John P; North, Michael; Bhattacharyya, Sudeep

    2015-01-08

    The π-π stacking interaction between lumiflavin and a number of π-electron-rich molecules has been studied by density functional theory using several new-generation density functionals. Six known lumiflavin-aromatic adducts were used and the models were evaluated by comparing the geometry and energetics with experimental results. The study found that dispersion-corrected and hybrid functionals with larger (>50%) Hartree-Fock exchanges produced superior results in modeling thermodynamic characteristics of these complexes. The functional producing the best energetics for these model systems was used to study the stacking interactions of lumiflavin with biologically relevant aromatic groups. Additionally, the reduction of flavin-in the presence of both a hydride donor and a nondonor π-electronic system was also studied. Weak interactions were observed in the stacked lumiflavin complexes of benzene, phenol, and indole, mimicking phenyl alanine, tryptophan, and tyrosine side chains, respectively, of an enzyme. The stacked complex of naphthalene and flavin showed little change in flavin's redox potential indicating insignificant effect on the thermodynamics of the hydride transfer reaction. In contrast, the hydride transfer reaction with the hydride donor N-methyl nicotinamide tells a different story, as the transition state was found to be strongly impacted by the stacking interactions. A comparison of performance between the density functional theory (DFT) and the computationally less expensive dispersion-corrected self-consistent density functional tight-binding (SCC-DFTB-D) theory revealed that the latter produces consistent energetics for this hydride transfer reaction and additional DFT-computed perturbative corrections could significantly improve these results.

  18. Assessment of thermodynamic functions of formation for rare earth silicides, germanides, stannides and plumbides

    Energy Technology Data Exchange (ETDEWEB)

    Witusiewicz, V.T. [Nat. Acad. of Sci. of the Ukraine, Kyyiv (Ukraine). Physico-Technological Inst. of Metals and Alloys; Sidorko, V.R. [Frantsevich Institute of Materials Science, National Academy of Sciences of the Ukraine, 3 Krzhizhanovsky St., 252180, Kyyiv (Ukraine); Bulanova, M.V. [Frantsevich Institute of Materials Science, National Academy of Sciences of the Ukraine, 3 Krzhizhanovsky St., 252180, Kyyiv (Ukraine)

    1997-02-15

    A critical assessment has been made of the available data on thermodynamic properties of binary compounds of lanthanide metals, scandium and yttrium (R) with IV group p elements (X{identical_to}Si, Ge, Sn and Pb), obtained mainly through the direct e.m.f and calorimetric methods. On the basis of the most reliable data the following empirical relation was derived which allows the estimation of entropies of formation for the intermetallics ({Delta}{sub f}S) by using the enthalpies of formation per mole of A{sub m/(m+n)}B{sub n/(m+n)} compound ({Delta}{sub f}H) together with the melting (T{sub m,I}) and boiling temperatures (T{sub b,I}) of the components I (I element of A,B):{Delta}fSm=aRmn(m+n)23TmTb(m+n)2mn+bTb{Delta}f?Hm,where {Delta}fSm={Delta}fS-(m{Delta}mSA+n{Delta}mSB)m+n; {Delta}fHm={Delta}fH-(m{Delta}mHA+n{Delta}mHB)m+n;T and macr;m=(Tm,A+Tm,B)/2 and T{sub b}=(T{sub b,A}+T{sub b,B})/2; {Delta}{sub m}S{sub A} and {Delta}{sub m}H{sub A} are the entropy and enthalpy of melting of the components, respectively; m and n are stoichiometric coefficients of a binary A{sub m}B{sub n} compound; a and b are empirical coefficients, and R is the gas constant.The calculated entropy values for the R-X intermetallics are in agreement with experimental data available. (orig.)

  19. Thermodynamics of two-dimensional Yukawa systems across coupling regimes

    Science.gov (United States)

    Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.

    2017-04-01

    Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.

  20. New developments in surface functionalization of polymers using controlled plasma treatments

    Science.gov (United States)

    Vesel, Alenka; Mozetic, Miran

    2017-07-01

    We are presenting recent advances in surface functionalization of materials such as functional polymers using gaseous plasma treatments. Functionalization is a result of chemical interaction between solid materials and reactive plasma species including charged particles, neutral radicals, excited species and UV radiation. The degree of surface functionalization depends on the type of polymers and fluxes of reactive plasma species. An appropriate choice of plasma parameters thus enables almost arbitrary tailoring of the surface wettability. This review paper gives a brief introduction to the formation of reactive gaseous species upon plasma conditions in different discharge configurations and describes plasma-surface interaction with an emphasis on the differences between different reactive plasma species. Analysis of the relevant literature is given and correlations between treatment parameters and surface finish are drawn. Numerous authors have used plasma treatment for modification of the surface functionalities, however, the obtained surface properties often differ even for the same materials. The reason for such diverse results is the application of various gaseous discharges for plasma generation. Apart from the type and amount of functional groups induced by plasma treatment, the surface functionality depends also on the surface morphology on the sub-micron scale; therefore, this effect is stressed as well. Finally, some future guidelines are given.

  1. Polarity functions' characterization and the mechanism of starch modification by DC glow discharge plasma.

    Science.gov (United States)

    Khorram, S; Zakerhamidi, M S; Karimzadeh, Z

    2015-01-01

    The wheat starch was investigated, before and after exposure to the argon and oxygen glow discharge plasma, without any added chemical reagents, using a novel media polarity functions method. The mechanisms of modification of starch in plasma discharge irradiation were explained using some methods such as; NMR, IR spectroscopy, Kamlet-Abboud-Taft polarity functions (specific and nonspecific interaction) of modified starch. The starch modification, by plasma treatment, shows valuable changes with plasma gas and relative ionized or active species. Characterizations indicate that argon glow discharge plasma increases crosslink in C-2 site of starch. Also, oxygen plasma discharge irradiation tends to oxidize the OH group in C-6 site of carbonyl group. Furthermore, the reported mechanisms show the highest efficiency, because of the stereo-chemical orientation of active sites of starch and plasma potential of wall in plasma media. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  3. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.

    Science.gov (United States)

    Uehara, Shota; Tanaka, Shigenori

    2016-11-23

    Water plays a significant role in the binding process between protein and ligand. However, the thermodynamics of water molecules are often underestimated, or even ignored, in protein-ligand docking. Usually, the free energies of active-site water molecules are substantially different from those of waters in the bulk region. The binding of a ligand to a protein causes a displacement of these waters from an active site to bulk, and this displacement process substantially contributes to the free energy change of protein-ligand binding. The free energy of active-site water molecules can be calculated by grid inhomogeneous solvation theory (GIST), using molecular dynamics (MD) and the trajectory of a target protein and water molecules. Here, we show a case study of the combination of GIST and a docking program and discuss the effectiveness of the displacing gain of unfavorable water in protein-ligand docking. We combined the GIST-based desolvation function with the scoring function of AutoDock4, which is called AutoDock-GIST. The proposed scoring function was assessed employing 51 ligands of coagulation factor Xa (FXa), and results showed that both scoring accuracy and docking success rate were improved. We also evaluated virtual screening performance of AutoDock-GIST using FXa ligands in the directory of useful decoys-enhanced (DUD-E), thus finding that the displacing gain of unfavorable water is effective for a successful docking campaign.

  4. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  5. Analytical evaluation of the plasma dispersion function for a Fermi-Dirac distribution

    Institute of Scientific and Technical Information of China (English)

    B.A. Mamedov

    2012-01-01

    An efficient method for the analytic evaluation of the plasma dispersion function for the Fermi-Dirac distribution is proposed.The new method has been developed using the binomial expansion theorem and the Gamma functions.The general formulas obtained for the plasma dispersion function are utilized for the evaluation of the response function.The resulting series present better convergence rates.Several acceleration techniques are combined to further improve the efficiency.The obtained results for the plasma dispersion function are in good agreement with the known numerical data.

  6. Onsager relaxation of toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author). 36 refs.

  7. Nuclear Level Density and Thermodynamic Functions for Nuclei with Static Deformation

    Institute of Scientific and Technical Information of China (English)

    A.N.Behkami; M.N.Nasrabadi

    2002-01-01

    The level densities of even-odd and even-even isotopes 161,162Dy,166 Er and 171,172yb were calculated using microscopic theory of interacting fermions and compared with experiments.It is found that the data can be well reproduced with level density formalism for nuclei with static deformation.Thc nuclear temperature as well as the entropy of nuclear system as a function of excitation energy has been extracted from the BCS theory.It is shown that the entropy exhibits an S-formed shape as a function of excitation energy.This is interpreted as a phase transition.Procedure of treating the even-odd and even-even nuclear systems has been presented and discussed.

  8. Conserved intergenic sequences revealed by CTAG-profiling in Salmonella: thermodynamic modeling for function prediction

    Science.gov (United States)

    Tang, Le; Zhu, Songling; Mastriani, Emilio; Fang, Xin; Zhou, Yu-Jie; Li, Yong-Guo; Johnston, Randal N.; Guo, Zheng; Liu, Gui-Rong; Liu, Shu-Lin

    2017-01-01

    Highly conserved short sequences help identify functional genomic regions and facilitate genomic annotation. We used Salmonella as the model to search the genome for evolutionarily conserved regions and focused on the tetranucleotide sequence CTAG for its potentially important functions. In Salmonella, CTAG is highly conserved across the lineages and large numbers of CTAG-containing short sequences fall in intergenic regions, strongly indicating their biological importance. Computer modeling demonstrated stable stem-loop structures in some of the CTAG-containing intergenic regions, and substitution of a nucleotide of the CTAG sequence would radically rearrange the free energy and disrupt the structure. The postulated degeneration of CTAG takes distinct patterns among Salmonella lineages and provides novel information about genomic divergence and evolution of these bacterial pathogens. Comparison of the vertically and horizontally transmitted genomic segments showed different CTAG distribution landscapes, with the genome amelioration process to remove CTAG taking place inward from both terminals of the horizontally acquired segment. PMID:28262684

  9. Conserved intergenic sequences revealed by CTAG-profiling in Salmonella: thermodynamic modeling for function prediction

    Science.gov (United States)

    Tang, Le; Zhu, Songling; Mastriani, Emilio; Fang, Xin; Zhou, Yu-Jie; Li, Yong-Guo; Johnston, Randal N.; Guo, Zheng; Liu, Gui-Rong; Liu, Shu-Lin

    2017-03-01

    Highly conserved short sequences help identify functional genomic regions and facilitate genomic annotation. We used Salmonella as the model to search the genome for evolutionarily conserved regions and focused on the tetranucleotide sequence CTAG for its potentially important functions. In Salmonella, CTAG is highly conserved across the lineages and large numbers of CTAG-containing short sequences fall in intergenic regions, strongly indicating their biological importance. Computer modeling demonstrated stable stem-loop structures in some of the CTAG-containing intergenic regions, and substitution of a nucleotide of the CTAG sequence would radically rearrange the free energy and disrupt the structure. The postulated degeneration of CTAG takes distinct patterns among Salmonella lineages and provides novel information about genomic divergence and evolution of these bacterial pathogens. Comparison of the vertically and horizontally transmitted genomic segments showed different CTAG distribution landscapes, with the genome amelioration process to remove CTAG taking place inward from both terminals of the horizontally acquired segment.

  10. Matrix Representations of the Thermo-dynamic Functions used for Studying the Burning of Gas Combustibles

    Directory of Open Access Journals (Sweden)

    Amado Geroge Stefan

    2008-01-01

    Full Text Available The paper contains data regarding the processes that occur art normal pressure and the variations of enthalpy, entropy, molar isobar heat, isobar potential. The variations of enthalpy and molar isobar heat are useful in the calculation of the thermic balance-sheet, and those in connection with the isobar potential are useful for the calculation of the balances. The enthalpy and entropy are linear combinations of the temperature functions and, being taken as a basis for the calculation of isobar potential. The indicated proprieties for each component can be calculated, if we know the approximation function for the isobar molar heat and the known value of the propriety at a temperature. In order to find the, coefficients we consider known the values of the molar isobar heat at five values of absolute temperature, after which we apply the linear algebra method.

  11. Thermodynamic formula for the cumulant generating function of time-averaged current.

    Science.gov (United States)

    Nemoto, Takahiro; Sasa, Shin-ichi

    2011-12-01

    The cumulant generating function of time-averaged current is studied from an operational viewpoint. Specifically, for interacting Brownian particles under nonequilibrium conditions, we show that the first derivative of the cumulant generating function is equal to the expectation value of the current in a modified system with an extra force added, where the modified system is characterized by a variational principle. The formula reminds us of Einstein's fluctuation theory in equilibrium statistical mechanics. Furthermore, since the formula leads to the fluctuation-dissipation relation when the linear response regime is focused on, it is regarded as an extension of the linear response theory to that valid beyond the linear response regime. The formula is also related to previously known theories such as the Donsker-Varadhan theory, the additivity principle, and the least dissipation principle, but it is not derived from them. Examples of its application are presented for a driven Brownian particle on a ring subject to a periodic potential.

  12. Calculation of the rate of nuclear excitation by electron transition in an Rbm84 plasma under the hypothesis of local thermodynamic equilibrium using a multiconfiguration Dirac-Fock approach

    Science.gov (United States)

    Denis-Petit, David; Gosselin, Gilbert; Hannachi, Fazia; Tarisien, Medhi; Bonnet, Thomas; Comet, Maxime; Gobet, Franck; Versteegen, Maud; Morel, Pascal; Méot, Vincent; Matea, Iolanda

    2017-08-01

    One promising candidate for the first detection of nuclear excitation in plasma is the 463-keV, 20.26-min-lifetime isomeric state in 84Rb, which can be excited via a 3.5-keV transition to a higher lying state. According to our preliminary calculations, under specific plasma conditions, nuclear excitation by electron transition (NEET) may be its strongest excitation process. Evaluating a reliable NEET rate requires, in particular, a thorough examination of all atomic transitions contributing to the rate under plasma conditions. We report the results of a detailed evaluation of the NEET rate based on multiconfiguration Dirac Fock (MCDF) atomic calculations, in a rubidium plasma at local thermodynamic equilibrium with a temperature of 400 eV and a density of 10-2g /cm3 and based on a more precise energy measurement of the nuclear transition involved in the excitation.

  13. Thermodynamic characterization of the biocompatible ionic liquid effects on protein model compounds and their functional groups.

    Science.gov (United States)

    Attri, Pankaj; Venkatesu, Pannuru

    2011-04-14

    The stability of proteins under co-solvent conditions is dependant on the nature of the co-solvent; the co-solvent can alter a protein's properties and structural effects through bimolecular interactions between its functional groups and co-solvent particles. Ionic liquids (ILs) represent a rather diverse class of co-solvents that are combinations of different ions, which are liquids at or close to room temperature. To quantify the bimolecular interactions of protein functional groups with biocompatible ILs, we report the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of a homologous series of cyclic dipeptides (CDs) from water to aqueous solutions of ILs through solubility measurements, as a function of IL concentration at 25 °C under atmospheric pressure. The materials investigated in the present work included the CDs of cyclo(Gly-Gly), cyclo(Ala-Gly), cyclo(Ala-Ala), cyclo(Leu-Ala), and cyclo(Val-Val). The ILs used such as diethylammonium acetate ([Et(2)NH][CH(3)COO], DEAA), triethylammonium acetate ([Et(3)NH][CH(3)COO], TEAA), diethylammonium dihydogen phosphate ([Et(3)NH][H(2)PO(4)], DEAP), triethylammonium dihydogen phosphate ([Et(3)NH][H(2)PO(4)], TEAP), diethylammonium sulfate ([Et(3)NH][HSO(4)], DEAS) and triethylammonium sulfate ([Et(3)NH][HSO(4)], TEAS). We observed positive values of ΔG'(tr) for CDs from water to ILs, indicating that interactions between ILs and CDs are unfavourable, which leads to stabilization of the native structure of CDs. The experimental results were further used for estimating the transfer free energies (Δg'(tr)) of the peptide bond (-CONH-), the peptide backbone unit (-CH(2)C=ONH-), and various functional groups from water to IL solutions. Our results explicitly elucidate that a series of all ammonium ILs act as stabilizers for tested model compounds through the exclusion of ILs from CDs surface.

  14. Polyoxomolybdate formation - A thermodynamic analysis from density functional/PCM calculations

    Science.gov (United States)

    Steffler, Fernando; de Lima, Guilherme Ferreira; Duarte, Hélio Anderson

    2017-02-01

    Polyoxomolybdates have been intensely investigated, but their mechanisms of formation are not completely understood. The complex equilibrium of different species is affected by concentration, pH, ionic strength and temperature. It is a challenging system to model using computational chemistry. In the present work, density functional calculations were carried out using the polarizable continuum method to include solvent effects in an effort to provide insight into the mechanism of polyoxomolybdate formation in aqueous solution. We establish a possible sequence of reactions for the formation of small polyoxomolybdates containing up to 8 Mo by addition of the monomeric unit [MoO4]2-.

  15. Conformal partition functions of critical percolation from D 3 thermodynamic Bethe Ansatz equations

    Science.gov (United States)

    Morin-Duchesne, Alexi; Klümper, Andreas; Pearce, Paul A.

    2017-08-01

    Using the planar Temperley-Lieb algebra, critical bond percolation on the square lattice can be reformulated as a loop model. In this form, it is incorporated as {{ L}}{{ M}}(2, 3) in the Yang-Baxter integrable family of logarithmic minimal models {{ L}}{{ M}}( p, p\\prime) . We consider this model of percolation in the presence of boundaries and with periodic boundary conditions. Inspired by Kuniba, Sakai and Suzuki, we rewrite the recently obtained infinite Y-system of functional equations. In this way, we obtain nonlinear integral equations in the form of a closed finite set of TBA equations described by a D 3 Dynkin diagram. Following the methods of Klümper and Pearce, we solve the TBA equations for the conformal finite-size corrections. For the ground states of the standard modules on the strip, these agree with the known central charge c  =  0 and conformal weights Δ1, s for \\renewcommand≥≥slant} s\\in {{ Z}≥slant 1} with Δr, s=\\big((3r-2s){\\hspace{0pt}}^2-1\\big)/24 . For the periodic case, the finite-size corrections agree with the conformal weights Δ0, s , Δ1, s with \\renewcommand{≥{≥slant} s\\in\\frac{1}{2}{{ Z}≥slant 0} . These are obtained analytically using Rogers dilogarithm identities. We incorporate all finite excitations by formulating empirical selection rules for the patterns of zeros of all the eigenvalues of the standard modules. We thus obtain the conformal partition functions on the cylinder and the modular invariant partition function (MIPF) on the torus. By applying q-binomial and q-Narayana identities, it is shown that our refined finitized characters on the strip agree with those of Pearce, Rasmussen and Zuber. For percolation on the torus, the MIPF is a non-diagonal sesquilinear form in affine u(1) characters given by the u(1) partition function Z2, 3(q)=Z2, 3{Circ}(q) . The u(1) operator content is {{ N}}Δ, \\barΔ=1 for Δ=\\barΔ=-\\frac{1}{24}, \\frac{35}{24} and {{ N}}Δ, \\barΔ=2 for

  16. Functionalization of Natural Cork Composite with Microcapsules after Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Fernando Ribeiro Oliveira

    2014-01-01

    Full Text Available This research aims to study the chemical and physical modifications of natural cork agglomerate after plasma treatment using dielectric barrier discharge (DBD. Different experimental techniques were used to evaluate the surface alterations of the pretreated samples with DBD plasma, as well as the adsorption and adhesion of microcapsules in the substrate, namely, static and dynamic contact angle, surface energy, energy dispersive spectroscopy (EDS, Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and scanning electron microscopy (SEM. Plasma discharge greatly increases the wettability and surface energy of the samples. Chemical and physical analyses of the cork agglomerate confirmed considerable surface modification. All these surface changes of the cork after plasma treatment led to a remarkable increase in microcapsule adsorption and adhesion when compared with the untreated cork sample.

  17. Functionalization of biomedical materials using plasma and related technologies

    Science.gov (United States)

    Zhao, Ying; Yeung, Kelvin W. K.; Chu, Paul K.

    2014-08-01

    Plasma techniques are important to biomedical engineering and surface modification. By modifying selective surface characteristics, conventional materials can be designed with superior biological properties while the favorable bulk materials properties can be retained. In this mini-review, recent progress pertaining to surface modification of Mg-based and polymer-based biomaterials by plasma-based techniques such as gas or metal ion implantation, dual metal and gas ion implantation, as well as plasma immersion ion implantation and deposition is described. Plasma-based surface modification is promising in elevating the cell biocompatibility, blood compatibility, and antibacterial properties of Mg-based and polymer-based biomaterials and expected to be extensively applied to biomaterials.

  18. Thermodynamics of noncommutative quantum Kerr black holes

    CERN Document Server

    Escamilla-Herrera, L F; Torres-Arenas, J

    2016-01-01

    Thermodynamic formalism for rotating black holes, characterized by noncommutative and quantum corrections, is constructed. From a fundamental thermodynamic relation, equations of state and thermodynamic response functions are explicitly given and the effect of noncommutativity and quantum correction is discussed. It is shown that the well known divergence exhibited in specific heat is not removed by any of these corrections. However, regions of thermodynamic stability are affected by noncommutativity, increasing the available states for which the system is thermodynamically stable.

  19. Nested Markov chain Monte Carlo sampling of a density functional theory potential: equilibrium thermodynamics of dense fluid nitrogen.

    Science.gov (United States)

    Coe, Joshua D; Sewell, Thomas D; Shaw, M Sam

    2009-08-21

    An optimized variant of the nested Markov chain Monte Carlo [n(MC)(2)] method [J. Chem. Phys. 130, 164104 (2009)] is applied to fluid N(2). In this implementation of n(MC)(2), isothermal-isobaric (NPT) ensemble sampling on the basis of a pair potential (the "reference" system) is used to enhance the efficiency of sampling based on Perdew-Burke-Ernzerhof density functional theory with a 6-31G(*) basis set (PBE6-31G(*), the "full" system). A long sequence of Monte Carlo steps taken in the reference system is converted into a trial step taken in the full system; for a good choice of reference potential, these trial steps have a high probability of acceptance. Using decorrelated samples drawn from the reference distribution, the pressure and temperature of the full system are varied such that its distribution overlaps maximally with that of the reference system. Optimized pressures and temperatures then serve as input parameters for n(MC)(2) sampling of dense fluid N(2) over a wide range of thermodynamic conditions. The simulation results are combined to construct the Hugoniot of nitrogen fluid, yielding predictions in excellent agreement with experiment.

  20. Electronic, structural, and thermodynamic properties of mixed actinide dioxides (U, Pu, Am) O2 from hybrid density functional theory

    Science.gov (United States)

    Ma, Li; Ray, Asok K.

    2010-03-01

    As a continuation of our studies of pure actinide metals using hybrid density functional theory,footnotetextR. Atta-Fynn and A. K. Ray, Europhysics Letters, 85, 27008-p1- p6 (2009); Chemical Physics Letters, 482, 223-227 (2009). we present here a systematic study of the electronic and geometric structure properties of mixed actinide dioxides, U0.5Pu0.5O2, U0.5Am0.5O2, Pu0.5Am0.5 O2 and U0.8Pu0.2O2. The fraction of exact Hartree-Fock exchange used was 40%. To investigate the effect of spin-orbit coupling on the ground state electronic and geometric structure properties, computations have been carried out at two theoretical levels, one at the scalar-relativistic level with no spin-orbit coupling and one at the fully relativistic level with spin-orbit coupling. Thermodynamic properties have been calculated by a coupling of first-principles calculation and lattice dynamics.

  1. Thermodynamic functions of Ni(II) complexes with 5-(2-hydroxyphenyl)-pyrazole derivatives. A potentiometric study

    Science.gov (United States)

    Deosarkar, S. D.; Narwade, M. L.; Thakre, V. J.

    2013-10-01

    Proton-ligand dissociation constants of five biologically important pyrazole derivatives, viz. [5-(2-hydroxyphenyl)-3-(pyridin-3-yl)-4-benzoyl]-pyrazol (HPPBP), [5-(2-hydroxyphenyl)-3-(3-nitrophenyl)-4-(3-pyridinoyl)]-pyrazol (HPNPPP), [5-(2-hydroxyphenyl)-3-(3-nitrophenyl)-4-benzoyl]-pyrazol (HPNPBP), [5-(2-hydroxyphenyl)-3-phenyl-4-(3-pyridinoyl)]-pyrazol (HPPPP), and [5-(2-hydroxyphenyl)-3-(3-nitrophenyl)-4-(2-furoyl) pyrazol (HPNPFP) and metal ligand stability constants of their Ni(II) complexes in 70% (v/v) dioxane-water and 0.1 M KNO3 were determined at 298.15, 303.15, and 308.15 K by potentiometric method. Thermodynamic functions, such as, free energy change (Δ G ○), enthalpy change (Δ H ○) and entropy (Δ S ○) change for dissociation and complex formation have been estimated form temperature dependence of proton-ligand and metal-ligand stability constants and interpreted in terms of feasibility of these processes.

  2. Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa

    Science.gov (United States)

    Plyasunov, Andrey V.; Shock, Everett L.

    2000-02-01

    An extensive compilation of experimental data yielding the infinite dilution partial molar Gibbs energy of hydration Δ hGO, enthalpy of hydration Δ hHO, heat capacity of hydration Δ hCpO, and volume V2O, at the reference temperature and pressure, 298.15 K and 0.1 MPa, is presented for hydrocarbons (excluding polyaromatic compounds) and monohydric alcohols. These results are used in a least-squares procedure to determine the numerical values of the corresponding properties of the selected functional groups. The simple first order group contribution method, which in general ignores nearest-neighbors and steric hindrance effects, was chosen to represent the compiled data. Following the precedent established by Cabani et al. (1981), the following groups are considered: CH 3, CH 2, CH, C for saturated hydrocarbons; c-CH 2, c-CH, c-C for cyclic saturated hydrocarbons; CH ar, C ar for aromatic hydrocarbons (containing the benzene ring); C=C, C≡C for double and triple bonds in linear hydrocarbons, respectively; c-C=C for the double bond in cyclic hydrocarbons; H for a hydrogen atom attached to the double bond (both in linear and cyclic hydrocarbons) or triple bond; and OH for the hydroxyl functional group. In addition it was found necessary to include the "pseudo"-group I(C-C) to account for the specific interactions of the neighboring hydrocarbon groups attached to the benzene or cyclic ring (in the latter case only for cis-isomers). Results of this study, the numerical values of the group contributions, will allow in most cases reasonably accurate estimations of Δ hGO, Δ hHO, Δ hCpO, and V2O at 298.15 K, 0.1 MPa for many hydrocarbons involved in geochemical and environmental processes.

  3. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  4. The influence of platelets, plasma and red blood cells on functional haemostatic assays

    DEFF Research Database (Denmark)

    Bochsen, Louise; Johansson, Pär I.; Kristensen, Annemarie Thuri

    2011-01-01

    and combined, influenced the two methodologically different assays, thrombelastography (TEG) and impedance aggregometry (Multiplate). Platelet-rich plasma (200 × 10/l) or pure plasma (0 platelets), with and without added red blood cells (RBCs), hematocrit 0, 0.15 or 0.29, were produced in vitro from platelet...... concentrates, fresh frozen plasma and stored RBC. Pure platelets were investigated by removing plasma components from platelet concentrates by diafiltration against the platelet storage solution Intersol. Plasma was readded by diafiltration against plasma in Intersol. Haemostatic function was evaluated by TEG...... and Multiplate. In the TEG, increasing amounts of RBC reduced clot strength and clot kinetics (α-angle), most markedly in plasma/RBC without platelets. In contrast, RBC in a platelet concentrate matrix enhanced Multiplate aggregation in response to weak agonists (ADP and arachidonic acid). Furthermore, removing...

  5. Thermodynamic interpolation

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, D E

    1998-10-01

    A method for constructing bicubic interpolation polynomials for the pressure P and internal energy E that are thermodynamically consistent at the mesh ponts and continuous across mesh boundaries is presented. The slope boundary conditions for the pressure and energy are derived from finite differences of the data and from Maxwell's consistency relation. Monotonicity of the sound speed and the specific heat is obtained by a bilinear interpolation of the slopes of the tabulated data. Monotonicity of the functions near steep gradients may be achieved by mesh refinement or by using a non-consistent bilinear to the data. Mesh refinement is very efficient for uniform-linear or uniform-logarithmic spaced data because a direct table lookup can be used. The direct method was compared to binary search and was 37 percent faster for logarithmic-spaced data and 106 percent faster for linear-spaced data. This improvement in speed is very important in the radiation-transport opacity-lookup part of the calculation. Interpolation in P-E space, with mesh refinement, can be made simple, robust, and conserve energy. In the final analysis the interpolation of the free energy and entropy (Maiden and Cook) remains a competitor.

  6. Green thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cengel, Y.A. [Nevada Univ., Reno, NV (United States). Dept. of Mechanical Engineering

    2006-07-01

    Green components of thermodynamics were identified and general aspects of green practices associated with thermodynamics were assessed. Energy uses associated with fossil fuels were reviewed. Green energy sources such as solar, wind, geothermal and hydropower were discussed, as well as biomass plantations. Ethanol production practices were reviewed. Conservation practices in the United States were outlined. Energy efficiency and exergy analyses were discussed. Energy intensity measurements and insulation products for houses were also reviewed. Five case studies were presented to illustrate aspects of green thermodynamics: (1) light in a classroom; (2) fuel saved by low-resistance tires; and (3) savings with high-efficiency motors; (4) renewable energy; and (5) replacing a valve with a turbine at a cryogenic manufacturing facility. It was concluded that the main principles of green thermodynamics are to ensure that all material and energy inputs minimize the depletion of energy resources; prevent waste; and improve or innovate technologies that achieve sustainability. 17 refs., 2 tabs., 9 figs.

  7. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  8. Dielectric function of dense plasmas, their stopping power, and sum rules.

    Science.gov (United States)

    Arkhipov, Yu V; Ashikbayeva, A B; Askaruly, A; Davletov, A E; Tkachenko, I M

    2014-11-01

    Mathematical, particularly, asymptotic properties of the random-phase approximation, Mermin approximation, and extended Mermin-type approximation of the coupled plasma dielectric function are analyzed within the method of moments. These models are generalized for two-component plasmas. Some drawbacks and advantages of the above models are pointed out. The two-component plasma stopping power is shown to be enhanced with respect to that of the electron fluid.

  9. Novel biomaterials: plasma-enabled nanostructures and functions

    Science.gov (United States)

    Levchenko, Igor; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua; (Ken Ostrikov, Kostya

    2016-07-01

    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials.

  10. The postulates of gravitational thermodynamics

    CERN Document Server

    Martínez, E A

    1996-01-01

    The general principles and logical structure of a thermodynamic formalism that incorporates strongly self-gravitating systems are presented. This framework generalizes and simplifies the formulation of thermodynamics developed by Callen. The definition of extensive variables, the homogeneity properties of intensive parameters, and the fundamental problem of gravitational thermodynamics are discussed in detail. In particular, extensive parameters include quasilocal quantities and are naturally incorporated into a set of basic general postulates for thermodynamics. These include additivity of entropies (Massieu functions) and the generalized second law. Fundamental equations are no longer homogeneous first-order functions of their extensive variables. It is shown that the postulates lead to a formal resolution of the fundamental problem despite non-additivity of extensive parameters and thermodynamic potentials. Therefore, all the results of (gravitational) thermodynamics are an outgrowth of these postulates. T...

  11. The influence of platelets, plasma and red blood cells on functional haemostatic assays.

    Science.gov (United States)

    Bochsen, Louise; Johansson, Pär I; Kristensen, Annemarie T; Daugaard, Gedske; Ostrowski, Sisse R

    2011-04-01

    Functional whole blood haemostatic assays are used increasingly to guide transfusion therapy and monitor medical treatment and are also applied for in-vitro evaluations of the haemostatic potential of stored platelets. We investigated how the cellular and plasmatic elements, both isolated and combined, influenced the two methodologically different assays, thrombelastography (TEG) and impedance aggregometry (Multiplate). Platelet-rich plasma (200 × 10/l) or pure plasma (0 platelets), with and without added red blood cells (RBCs), hematocrit 0, 0.15 or 0.29, were produced in vitro from platelet concentrates, fresh frozen plasma and stored RBC. Pure platelets were investigated by removing plasma components from platelet concentrates by diafiltration against the platelet storage solution Intersol. Plasma was readded by diafiltration against plasma in Intersol. Haemostatic function was evaluated by TEG and Multiplate. In the TEG, increasing amounts of RBC reduced clot strength and clot kinetics (α-angle), most markedly in plasma/RBC without platelets. In contrast, RBC in a platelet concentrate matrix enhanced Multiplate aggregation in response to weak agonists (ADP and arachidonic acid). Furthermore, removing plasma from platelet concentrates eliminated the TEG response and diminished the Multiplate aggregation response, but readding plasma to the pure platelet concentrates restored the response. Each of the elements in whole blood, plasma, platelets and RBC, affected the Multiplate and TEG results differently. The results emphasize that the concentrations of all cellular and plasmatic components in whole blood should be taken into account when interpreting results obtained by TEG and multiplate.

  12. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier [Laboratoire des Technologies de la Microelectronique CNRS, Grenoble Cedex 9, Isere 38054 (France); Gahan, David [Impedans Ltd., Dublin 17 (Ireland); Braithwaite, Nicholas St. J. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  13. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment

    KAUST Repository

    Shen, Chao

    2012-05-24

    Structural changes of few-layer graphene sheets induced by CF4 plasma treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene sheets subjected to prolonged CF4 plasma treatment while plasma treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the plasma treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 plasma-treated graphene sheets that may have potential in future graphene-based micro/nanodevices.

  14. Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization

    Science.gov (United States)

    2017-01-01

    A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD.

  15. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extens

  16. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an

  17. Expansion of a plasma into vacuum with a bi-Maxwellian electron distribution function

    Directory of Open Access Journals (Sweden)

    Diaw A.

    2013-11-01

    Full Text Available A comprehensive theory is developped to describe the expansion of a plasma into a vacuum with a two-temperature electron distribution function. The characteristics of the rarefaction shock which occurs in the plasma when the hot- to the cold-electron temperature ratio is larger than 9.9 are investigated with a semi-infinite plasma. Furthermore by using a finite plasma foil, a possible heating of the cold electrons population is evidenced, for a sufficiently large hot- to the cold-electron density ratio.

  18. Concise chemical thermodynamics

    CERN Document Server

    Peters, APH

    2010-01-01

    EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of

  19. PTGIBBS—an EXCEL TM Visual Basic program for computing and visualizing thermodynamic functions and equilibria of rock-forming minerals

    Science.gov (United States)

    Brandelik, A.; Massonne, H.-J.

    2004-11-01

    PTGIBBS, a Visual Basic for Application program, was implemented in EXCEL TM. It calculates mineral equilibria and thermodynamic functions for diverse solid solution phases, including presentation in 2D- and 3D-plots. The program is also suitable for the calibration and subsequent application of geothermobarometers, because of its ability to simultaneously calculate a large number of equilibria of the same type. Options are provided for the application of various equations of state (EOS). The volume behavior of mineral phases as a function of pressure can be expressed, e.g. by the Murnaghan EOS. It is also possible to model order-disorder transitions and lambda heat capacity anomalies using a tricritical Landau model including pressure dependence. Thus, PTGIBBS can be used with different thermodynamic data sets. It can handle molecular mixing models and mixing-on-site models with a maximum of nine components for each solid solution phase. An event-driven, interactive operating mode was selected for easy application of the program. Another advantage is the implementation in EXCEL TM, resulting in a wide range of possible applications and the user-friendliness of PTGIBBS. The easy display of different thermodynamic functions and the simplicity with which input data sets can be changed may also be useful for teaching purposes.

  20. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane.

    Science.gov (United States)

    Du, Jian; Shen, Jian; Wang, Yuanxian; Pan, Chuanying; Pang, Weijun; Diao, Hua; Dong, Wuzi

    2016-09-13

    Seminal plasma ingredients are important for maintenance of sperm viability. This study focuses on the effect of boar seminal plasma exosomes on sperm function during long-term liquid storage. Boar seminal plasma exosomes had typical nano-structure morphology as measured by scanning electron microscopy (SEM) and molecular markers such as AWN, CD9 and CD63 by western blot analysis. The effect on sperm parameters of adding different ratio of boar seminal plasma exosomes to boar sperm preparations was analyzed. Compared to the diluent without exosomes, the diluent with four times or sixteen times exosomes compared to original semen had higher sperm motility, prolonged effective survival time, improved sperm plasma membrane integrity (p membrane of sperm head which could improve sperm plasma membrane integrity.

  1. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dodt, Dirk Hilar

    2009-01-05

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  2. In vivo evaluation of the inhibitory capacity of human plasma on exogenous surfactant function

    NARCIS (Netherlands)

    B.F. Lachmann (Burkhard); E.P. Eijking (Eric); K.L. So; D.A.M.P.J. Gommers (Diederik)

    1994-01-01

    textabstractObjective: The adult respiratory distress syndrome (ARDS) and neonatal respiratory distress syndrome (RDS) are characterized by high permeability pulmonary edema which contains plasma-derived proteins inhibiting pulmonary surfactant function. Currently, discussion continues as to what do

  3. Screening and damping effects on the thermodynamic potential in QGP

    Institute of Scientific and Technical Information of China (English)

    王欣; 李家荣

    2003-01-01

    By using the spectral functions of gluons, which contain Debye screening and soft damping effects,the effective two-loop thermodynamic potential in quark-gluon plasma was evaluated via real-time temperatureQCD. The result that depends on screening and damping of gluons as physical parameters is obtained. It canbe seen that our analytical result and the recent lattice results are in agreement for T〉~2Tc.

  4. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Butlitsky, M. A.; Zelener, B. V. [Joint Institute for High Temperature of Russian Academy of Science, 125412, Russia, Moscow, Izhorskaya str. 13/2 (Russian Federation); Zelener, B. B. [Joint Institute for High Temperature of Russian Academy of Science, 125412, Russia, Moscow, Izhorskaya str. 13/2 (Russian Federation); Moscow Engineering Physics Institute, 115409, Russia, Moscow, Kashirskoe sh. 31 (Russian Federation)

    2014-07-14

    A two-component plasma model, which we called a “shelf Coulomb” model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The “shelf Coulomb” model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ε parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ε and γ = βe{sup 2}n{sup 1/3} (where β = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ε and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ε{sub crit}≈13(T{sub crit}{sup *}≈0.076),γ{sub crit}≈1.8(v{sub crit}{sup *}≈0.17),P{sub crit}{sup *}≈0.39, where specific volume v* = 1/γ{sup 3} and reduced temperature T{sup *} = ε{sup −1}.

  5. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    Science.gov (United States)

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  6. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    Science.gov (United States)

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  7. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  8. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  9. Effects of cigarette smoking on hemorheologic parameters, plasma osmolality and lung function.

    Science.gov (United States)

    Ergun, Dilek Duzgun; Karis, Denizhan; Alkan, Fatma Ates; Cakmak, Gulfidan; Yenigun, Mustafa; Ercan, Meltem

    2016-10-05

    Cigarette smoking deteriorates human health via vascular disorders, cancer and especially respiratory diseases. The aim of this study is to investigate effects of cigarette smoking on hemorheologic parameters, plasma osmolality and lung function in individuals without diagnosis of chronic obstructive pulmonary disease (COPD). Patients diagnosed without COPD utilizing respiratory function test were enrolled in the study with three groups, ex-smokers (n = 21), current-smokers (n = 35) and never-smokers (n = 43). Hemorheologic parameters and plasma osmolality were measured in hemorheology laboratory. SPSS 17.0 was used for statistical analysis. Blood and plasma viscosity, fibrinogen and hematocrit levels, mean corpuscular volume and mean corpuscular hemoglobin concentration were significantly elevated in ex-smokers and current-smokers compared to never-smokers. The standardized red blood cell deformability and oxygen delivery index and lung function were statistically lower in current-smokers than never-smokers. Pulmonary blood flow rate was statistically lower in current-smokers and ex-smokers than never-smokers. Plasma osmolality was statistically significantly higher in ex-smokers and current-smokers than never-smokers. Our findings clearly show that cigarette smoking has severe effects on hemorheologic parameters, plasma osmolality and lung function even in individuals without COPD. Blood and plasma viscosity with plasma osmolality might be useful markers to detect early hemorheologic-hemodynamic alterations in cigarette smokers.

  10. Plasma 25-hydroxyvitamin D, lung function and risk of chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Afzal, Shoaib; Lange, Peter; Bojesen, Stig Egil

    2014-01-01

    25-hydroxyvitamin D (25(OH)D) may be associated with lung function through modulation of pulmonary protease-antiprotease imbalance, airway inflammation, lung remodelling and oxidative stress. We examined the association of plasma 25(OH)D levels with lung function, lung function decline and risk o...

  11. A density functional reactivity theory (DFRT) based approach to understand the effect of symmetry of fullerenes on the kinetic, thermodynamic and structural aspects of carbon NanoBuds

    Science.gov (United States)

    Sarmah, Amrit; Roy, Ram Kinkar

    2016-06-01

    In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C32) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost-effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C32 fullerene and its site of covalent attachment to the SWCNT.

  12. Standard thermodynamic functions of complexation between copper(II) and glycine and L-histidine in aqueous solutions

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.

    2016-09-01

    The Cu2+-glycine-L-histidine system is studied calorimetrically at 298.15 K and an ionic strength of 0.2, 0.5, and 1.0 in aqueous solutions containing potassium nitrate. The standard thermodynamic parameters (Δr H°, Δr G°, Δr S°) of complexation processes are determined.

  13. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    of plasma membrane H+-ATPases. Studies on the plasma membrane H+-ATPases have involved both in vivo and in vitro approaches, with the latter employing either solubilisation by detergent micelles, or reconstitution into lipid vesicles. Despite resulting in a large body of information on structure, function...... into soluble nanoscale lipid bilayers, also termed nanodiscs. Extensive analysis confirms the correct assembly and reconstitution of active proton pump into nanodiscs. The pump inserts as a monomer, which through activity analysis confirms this as the minimal functional unit of the plasma membrane H......+-ATPase. Reconstitution of the H+-ATPase into nanodiscs has the potential to enable structural and functional characterization using various techniques, exemplified by the specific immobilization of reconstituted proton pump using surface plasma resonance. The ability to efficiently separate empty from membrane protein...

  14. Bayesian derivation of plasma equilibrium distribution function for tokamak scenarios and the associated Landau collision operator

    CERN Document Server

    Di Troia, Claudio

    2015-01-01

    A class of parametric distribution functions has been proposed in [C.DiTroia, Plasma Physics and Controlled Fusion,54,2012] as equilibrium distribution functions (EDFs) for charged particles in fusion plasmas, representing supra-thermal particles in anisotropic equilibria for Neutral Beam Injection, Ion Cyclotron Heating scenarios. Moreover, the EDFs can also represent nearly isotropic equilibria for Slowing-Down $alpha$ particles and core thermal plasma populations. These EDFs depend on constants of motion (COMs). Assuming an axisymmetric system with no equilibrium electric field, the EDF depends on the toroidal canonical momentum $P_\\phi$, the kinetic energy $w$ and the magnetic moment \\mu. In the present work, the EDFs are obtained from first principles and general hypothesis. The derivation is probabilistic and makes use of the Bayes' Theorem. The bayesian argument allows us to describe how far from the prior probability distribution function (pdf), e.g. Maxwellian, the plasma is, based on the information...

  15. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    Science.gov (United States)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  16. Comment on "Ion distribution function in a plasma with uniform electric field" [Phys. Plasmas 19, 113703 (2012)].

    Science.gov (United States)

    Mustafaev, Alex; Sukhomlinov, Vladimir; Timofeev, Nikolay

    2016-08-01

    The comparison between experimental data of ion distribution function at the parent gas plasma obtained by the authors and results of calculations presented by Lampe et al. are considered. It is shown that the experimental and calculated angular distributions of ions in the case at least of argon differ considerably. The analysis of Lampe et al. assumptions showed that the main reasons of these discrepancies were the assumptions of ion distribution function independence on field orientation and independence of charge exchange cross-section on the relative velocity of ion and atom.

  17. Changes in plasma volume and baroreflex function following resistance exercise

    Science.gov (United States)

    Ploutz, L. L.; Tatro, D. L.; Dudley, G. A.; Convertino, V. A.

    1993-01-01

    The dynamics of change in plasma volume (PV) and baroreflex responses have been reported over 24 h immediately following maximal cycle exercise. The purpose of this study was to determine if PV and baroreflex showed similar changes for 24 h after resistance exercise. Eight men were studied on 2 test days, 1 week apart. On 1 day, per cent change (% delta) in PV was estimated at 0,3, and 6 h after resistance exercise using haematocrit and haemoglobin. Baseline PV was measured 24 h after exercise using Evans blue dye. The carotid baroreceptor-cardiac reflex response was measured before, and 3, 6, 9, 12, and 24 h post-exercise. Each subject performed six sets of the bench press and leg press with 10 repetitions per set with a load that induced failure within each set. On a control day, the protocol was used without exercise. Plasma volume did not change during the control day. There was a 20% decrease in PV immediately post-exercise; the recovery of the PV was rapid and complete within 3 h. PV was 20% greater 24 h post-exercise than on the control day. There were no differences in any of the baroreflex measurements. Therefore, it is suggested that PV shifts may occur without altering baroreflex sensitivity.

  18. Regulation of Ras signaling and function by plasma membrane microdomains.

    Science.gov (United States)

    Goldfinger, Lawrence E; Michael, James V

    2017-02-07

    Together H-, N- and KRAS mutations are major contributors to ~30% of all human cancers. Thus, Ras inhibition remains an important anti-cancer strategy. The molecular mechanisms of isotypic Ras oncogenesis are still not completely understood. Monopharmacological therapeutics have not been successful in the clinic. These disappointing outcomes have led to attempts to target elements downstream of Ras, mainly targeting either the Phosphatidylinositol 3-Kinase (PI3K) or Mitogen-Activated Protein Kinase (MAPK) pathways. While several such approaches are moderately effective, recent efforts have focused on preclinical evaluation of combination therapies to improve efficacies. This review will detail current understanding of the contributions of plasma membrane microdomain targeting of Ras to mitogenic and tumorigenic signaling and tumor progression. Moreover, this review will outline novel approaches to target Ras in cancers, including targeting schemes for new drug development, as well as putative re-purposing of drugs in current use to take advantage of blunting Ras signaling by interfering with Ras plasma membrane microdomain targeting and retention.

  19. Spectral functions in the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, Masayuki [Kyoto Univ., Kyoto (Japan)

    2002-09-01

    Using the maximum entropy method, spectral functions of the vector mesons are extracted from lattice Monte Carlo data of the zero-temperature imaginary time Green's functions. The resonance and continuum structures as well as the ground state peaks are successfully obtained. In addition, we present a preliminary result for finite temperature spectral functions in the vector channel above the confinement-deconfinement phase transition temperature. (author)

  20. Electrostatic instabilities in unmagnetized and magnetized multi-component plasma with non-Maxwellian distribution function

    Science.gov (United States)

    Sehar, Sumbul; Nouman Sarwar, Qureshi Muhammad

    2016-04-01

    In many physical situations such as space or laboratory plasmas a hot low-density electron populations can be generated superimposed on the bulk cold population, resulting in a particle distribution function consisting of a dense cold part and hot superthermal tail. Space observations show that electron distributions are often observed with flat top at low energies and high energy tails. The appropriate distribution to model such non-Maxwellian features is the generalized (r,q) distribution function which in limiting forms can be reduced to kappa and Maxwellian distribution functions. In this study, Kinetic model is employed to study the electron-acoustic and ion-ion acoustic instabilities in four component plasma with generalized (r,q) distribution function for both magnetized and unmagnetized plasmas. Departure of plasma from Maxwellian distributions significantly alters the growth rates as compared to the Maxwellian plasma. Significant growth observed for highly non-Maxwellian distributions as well as plasmas with higher dense and hot electron population. Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian. These results may be applied in both experimental and space physics regimes.

  1. Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water.

    Science.gov (United States)

    Spolar, R S; Livingstone, J R; Record, M T

    1992-04-28

    This extension of the liquid hydrocarbon model seeks to quantify the thermodynamic contributions to protein stability from the removal of nonpolar and polar surface from water. Thermodynamic data for the transfer of hydrocarbons and organic amides from water to the pure liquid phase are analyzed to obtain contributions to the thermodynamics of folding from the reduction in water-accessible surface area. Although the removal of nonpolar surface makes the dominant contribution to the standard heat capacity change of folding (delta C0fold), here we show that inclusion of the contribution from removal of polar surface allows a quantitative prediction of delta C0fold within the uncertainty of the calorimetrically determined value. Moreover, analysis of the contribution of polar surface area to the enthalpy of transfer of liquid amides provides a means of estimating the contributions from changes in nonpolar and polar surface area as well as other factors to the enthalpy of folding (delta H0fold). In addition to estimates of delta H0fold, this extension of the liquid hydrocarbon model provides a thermodynamic explanation for the observation [Privalov, P. L., & Khechinashvili, N. N. (1974) J. Mol. Biol. 86, 665-684] that the specific enthalpy of folding (cal g-1) of a number of globular proteins converges to a common value at approximately 383 K. Because amounts of nonpolar and polar surface area buried by these proteins upon folding are found to be linear functions of molar mass, estimates of both delta C0fold and delta H0fold may be obtained given only the molar mass of the protein of interest.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. CD28–B7 Interaction Modulates Short- and Long-Lived Plasma Cell Function

    OpenAIRE

    2012-01-01

    The interaction of CD28, which is constitutively expressed on T cells, with B7.1/B7.2 expressed on APCs is critical for T cell activation. CD28 is also expressed on murine and human plasma cells but its function on these cells remains unclear. There are two types of plasma cells: short-lived ones that appear in the secondary lymphoid tissue shortly after Ag exposure, and long-lived plasma cells that mainly reside in the bone marrow. We demonstrate that CD28-deficient murine short- and long-li...

  3. Correlation of H/sup -/ production and the work function of a surface in a hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M.

    1983-03-01

    Surface-plasma negative hydrogen ion sources are being developed as possible parts for future neutral beam systems. In these ion sources, negative hydrogen ions (H/sup -/) are produced at low work function metal surfaces immersed in hydrogen plasmas. To investigate the correlation between the work function and the H/sup -/ production at the surface with a condition similar to the one in the actual plasma ion source, these two parameters were simultaneously measured in the hydrogen plasma environment.

  4. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    OpenAIRE

    Izacard, Olivier

    2016-01-01

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account specially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numericall...

  5. Effect of low temperature plasma on the functional properties of basmati rice flour.

    Science.gov (United States)

    Thirumdas, Rohit; Deshmukh, R R; Annapure, U S

    2016-06-01

    The present study deals with the application of low temperature plasma on basmati rice flour and its effect on functional properties such as gel hydrations properties, flour hydration properties, gelatinization temperatures and antioxidant properties. The water holding capacity and water binding capacity were observed to be increased with increase in plasma power and time of treatment as the air plasma is known to make the surface more hydrophilic. XRD analysis revealed there is no significance difference in the crystalline structure after the plasma treatment. DSC shows a decrease in peak temperatures (Tp) after the treatment. Hot paste viscosities were observed to be decease from 692 to 591 BU was corresponded to decrease in peak temperature. The total polyphenolic content and reducing power was observed to be increased. The effects of plasma treatment on functional groups of polyphenols were observed by changes in absorption intensities using FTIR. This study demonstrates that the low temperature plasma treatmentis capable of improving the functional properties of basmati rice.

  6. (Chemical thermodynamics)

    Energy Technology Data Exchange (ETDEWEB)

    Mesmer, R.E.

    1990-09-12

    The purpose of this travel was for the traveler to participate in the 11th IUPAC International Conference on Chemical Thermodynamics and to present a paper of which he is co-author entitled The Transition from Strong-to-Weak Electrolyte Behavior Near the Critical Point of Water'' in the session on Solutions. The conference brought together nearly 500 scientists from around the world to discuss broad aspects of experimental thermodynamics and theoretical modeling. The traveler also visited the University of Karlsruhe to discuss current research with E.U. Franck and his collaborators. This institution has been for many years one of the leading centers for experimental studies on phase equilibrium and physical chemical studies especially on pure substances under the direction of Franck.

  7. Group additivity calculation of the standard molal thermodynamic properties of aqueous amino acids, polypeptides and unfolded proteins as a function of temperature, pressure and ionization state

    Directory of Open Access Journals (Sweden)

    J. M. Dick

    2005-10-01

    Full Text Available Thermodynamic calculation of the chemical speciation of proteins and the limits of protein metastability affords a quantitative understanding of the biogeochemical constraints on the distribution of proteins within and among different organisms and chemical environments. These calculations depend on accurate determination of the ionization states and standard molal Gibbs free energies of proteins as a function of temperature and pressure, which are not generally available. Hence, to aid predictions of the standard molal thermodynamic properties of ionized proteins as a function of temperature and pressure, calculated values are given below of the standard molal thermodynamic properties at 25°C and 1 bar and the revised Helgeson-Kirkham-Flowers equations of state parameters of the structural groups comprising amino acids, polypeptides and unfolded proteins. Group additivity and correlation algorithms were used to calculate contributions by ionized and neutral sidechain and backbone groups to the standard molal Gibbs free energy (Δ G°, enthalpy (Δ H°, entropy (S°, isobaric heat capacity (C°P, volume (V° and isothermal compressibility (κ°T of multiple reference model compounds. Experimental values of C°P, V° and κ°T at high temperature were taken from the recent literature, which ensures an internally consistent revision of the thermodynamic properties and equations of state parameters of the sidechain and backbone groups of proteins, as well as organic groups. As a result, Δ G°, Δ H°, S° C°P, V° and κ°T of unfolded proteins in any ionization state can be calculated up to T~-300°C and P~-5000 bars. In addition, the ionization states of unfolded proteins as a function of not only pH, but also temperature and pressure can be calculated by taking account of the degree of ionization of the sidechain and backbone groups present in the sequence. Calculations of this

  8. Group additivity calculation of the standard molal thermodynamic properties of aqueous amino acids, polypeptides and unfolded proteins as a function of temperature, pressure and ionization state

    Science.gov (United States)

    Dick, J. M.; Larowe, D. E.; Helgeson, H. C.

    2005-10-01

    Thermodynamic calculation of the chemical speciation of proteins and the limits of protein metastability affords a quantitative understanding of the biogeochemical constraints on the distribution of proteins within and among different organisms and chemical environments. These calculations depend on accurate determination of the ionization states and standard molal Gibbs free energies of proteins as a function of temperature and pressure, which are not generally available. Hence, to aid predictions of the standard molal thermodynamic properties of ionized proteins as a function of temperature and pressure, calculated values are given below of the standard molal thermodynamic properties at 25°C and 1 bar and the revised Helgeson-Kirkham-Flowers equations of state parameters of the structural groups comprising amino acids, polypeptides and unfolded proteins. Group additivity and correlation algorithms were used to calculate contributions by ionized and neutral sidechain and backbone groups to the standard molal Gibbs free energy (Δ G°), enthalpy (Δ H°), entropy (S°), isobaric heat capacity (C°P), volume (V°) and isothermal compressibility (κ°T) of multiple reference model compounds. Experimental values of C°P, V° and κ°T at high temperature were taken from the recent literature, which ensures an internally consistent revision of the thermodynamic properties and equations of state parameters of the sidechain and backbone groups of proteins, as well as organic groups. As a result, Δ G°, Δ H°, S° C°P, V° and κ°T of unfolded proteins in any ionization state can be calculated up to T~-300°C and P~-5000 bars. In addition, the ionization states of unfolded proteins as a function of not only pH, but also temperature and pressure can be calculated by taking account of the degree of ionization of the sidechain and backbone groups present in the sequence. Calculations of this kind represent a first step in the prediction of chemical affinities of many

  9. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  10. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.

    Science.gov (United States)

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V

    2016-06-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. Flexible electrochemical biosensors based on O{sub 2} plasma functionalized MWCNT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yong; Park, Eun-Jin [Department of Biomicrosystem Technology, Korea University, Seoul (Korea, Republic of); Lee, Cheol-Jin; Kim, Soo-Won; Pak, James Jungho [School of Electrical Engineering, Korea University, Seoul (Korea, Republic of); Min, Nam Ki, E-mail: nkmin@korea.ac.k [Department of Control and Instrumentation Engineering, Korea University, Jochiwon (Korea, Republic of)

    2009-05-29

    A flexible glucose sensor is fabricated using O{sub 2} plasma-functionalized multiwalled carbon nanotube (MWCNT) films on polydimethylsiloxane (PDMS) substrates and its performance is electrochemically characterized. After enzyme immobilization, the GOD/ MWCNT/Au/PDMS electrode exhibits a sensitivity of 18.15 {mu}A mm{sup -2}mM{sup -1} and a detection limit of 0.01 mM (signal to noise ratio was about 3). This high sensitivity may be attributed to a large enzyme loading and a higher electrocatalytic activity and electron transfer exhibited by O{sub 2} plasma-functionalized CNTs than the pristine CNT, due to some oxygen-contained groups present on the O{sub 2} plasma-functionalized CNT surface, which has been verified by XPS spectrum.

  12. The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion.

    Science.gov (United States)

    Petkovic, Maja; Jemaiel, Aymen; Daste, Frédéric; Specht, Christian G; Izeddin, Ignacio; Vorkel, Daniela; Verbavatz, Jean-Marc; Darzacq, Xavier; Triller, Antoine; Pfenninger, Karl H; Tareste, David; Jackson, Catherine L; Galli, Thierry

    2014-05-01

    Development of the nervous system requires extensive axonal and dendritic growth during which neurons massively increase their surface area. Here we report that the endoplasmic reticulum (ER)-resident SNARE Sec22b has a conserved non-fusogenic function in plasma membrane expansion. Sec22b is closely apposed to the plasma membrane SNARE syntaxin1. Sec22b forms a trans-SNARE complex with syntaxin1 that does not include SNAP23/25/29, and does not mediate fusion. Insertion of a long rigid linker between the SNARE and transmembrane domains of Sec22b extends the distance between the ER and plasma membrane, and impairs neurite growth but not the secretion of VSV-G. In yeast, Sec22 interacts with lipid transfer proteins, and inhibition of Sec22 leads to defects in lipid metabolism at contact sites between the ER and plasma membrane. These results suggest that close apposition of the ER and plasma membrane mediated by Sec22 and plasma membrane syntaxins generates a non-fusogenic SNARE bridge contributing to plasma membrane expansion, probably through non-vesicular lipid transfer.

  13. Partial ionization in dense plasmas: Comparisons among average-atom density functional models

    Science.gov (United States)

    Murillo, Michael S.; Weisheit, Jon; Hansen, Stephanie B.; Dharma-wardana, M. W. C.

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  14. Partial ionization in dense plasmas: comparisons among average-atom density functional models.

    Science.gov (United States)

    Murillo, Michael S; Weisheit, Jon; Hansen, Stephanie B; Dharma-wardana, M W C

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  15. Aerobic fitness and cognitive function in midlife: an association mediated by plasma insulin.

    Science.gov (United States)

    Tarumi, Takashi; Gonzales, Mitzi M; Fallow, Bennett; Nualnim, Nantinee; Lee, Jeongseok; Tanaka, Hirofumi; Haley, Andreana P

    2013-12-01

    Insulin resistance in midlife increases the risk of dementia in late-life. In contrast, habitual aerobic exercise is an established strategy to ameliorate insulin resistance which may translate into better cognitive outcome. To determine the role of plasma insulin in mediating the relation between cardiorespiratory fitness and cognitive function, fifty-eight adults completed assessments of plasma insulin levels, maximal oxygen consumption (VO2max), and neuropsychological test performance. Endurance-trained subjects demonstrated better cognitive outcome (total composite z-score: 0.21 ± 0.08 versus -0.26 ± 0.10, P = 0.001) and lower concentrations of plasma insulin (12.6 ± 0.6 versus 21.3 ± 1.5 ulU/mL, P cognitive enhancement may be mediated, at least in part, by plasma insulin levels.

  16. Plasma YKL-40 and recovery of left ventricular function after acute myocardial infarction

    DEFF Research Database (Denmark)

    Hedegaard, A.; Ripa, Maria Sejersten; Johansen, J.S.

    2010-01-01

    Background: Plasma YKL-40 is increased early in patients with ST-elevation myocardial infarction (STEMI). It is not known whether plasma YKL-40 is related to infarct size and recovery of ventricular function after primary percutaneous coronary intervention (PCI) of STEMI and whether granulocyte......-CSF or placebo injections from day 1 to 7 after the STEMI. Plasma YKL-40, high-sensitivity C-reactive protein (hs-CRP) and CK-MB concentrations were measured at baseline and during the first month. Infarct size and left ventricular ejection fraction (LVEF) were measured by magnetic resonance imaging at baseline...... to LVEF recovery (p = 0.04) but not infarct size. G-CSF injections increased YKL-40 compared to placebo (p infarct size or LVEF recovery. Conclusion: Plasma YKL-40 was significantly increased in STEMI patients at admission and G-CSF treatment caused a further increase...

  17. Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane

    DEFF Research Database (Denmark)

    Wang, Bangjun; Bailly, Aurélien; Zwiewka, Marta

    2013-01-01

    Plant architecture is influenced by the polar, cell-to-cell transport of auxin that is primarily provided and regulated by plasma membrane efflux catalysts of the PIN-FORMED and B family of ABC transporter (ABCB) classes. The latter were shown to require the functionality of the FK506 binding...... assays, we demonstrate a predominant lateral, mainly outward-facing, plasma membrane location for TWD1 in the root epidermis characterized by the lateral marker ABC transporter G36/PLEIOTROPIC DRUG-RESISTANCE8/PENETRATION3. At these epidermal plasma membrane domains, TWD1 colocalizes with nonpolar ABCB1....... In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root...

  18. Water Plasma Functionalized CNTs/MnO2 Composites for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Shahzad Hussain

    2013-01-01

    Full Text Available A water plasma treatment applied to vertically-aligned multiwall carbon nanotubes (CNTs synthesized by plasma enhanced chemical vapour deposition gives rise to surface functionalization and purification of the CNTs, along with an improvement of their electrochemical properties. Additional increase of their charge storage capability is achieved by anodic deposition of manganese dioxide lining the surface of plasma-treated nanotubes. The morphology (nanoflower, layer, or needle-like structure and oxidation state of manganese oxide depend on the voltage window applied during charge-discharge measurements and are found to be key points for improved efficiency of capacitor devices. MnO2/CNTs nanocomposites exhibit an increase in their specific capacitance from 678 Fg−1, for untreated CNTs, up to 750 Fg−1, for water plasma-treated CNTs.

  19. Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis, thermodynamic functions of N-acetyl-L-phenylalanine

    Science.gov (United States)

    Raja, B.; Balachandran, V.; Revathi, B.

    2015-03-01

    The FT-IR and FT-Raman spectra of N-acetyl-L-phenylalanine were recorded and analyzed. Natural bond orbital analysis has been carried out for various intramolecular interactions that are responsible for the stabilization of the molecule. HOMO-LUMO energy gap has been computed with the help of density functional theory. The statistical thermodynamic functions (heat capacity, entropy, vibrational partition function and Gibbs energy) were obtained for the range of temperature 100-1000 K. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the experimental and theoretical spectra values provides important information about the ability of the computational method to describe the vibrational modes.

  20. Surface functionalization of macroporous polymeric materials by treatment with air low temperature plasma.

    Science.gov (United States)

    Molina, R; Sole, I; Vílchez, A; Bertran, E; Solans, C; Esquena, J

    2013-04-01

    Polystyrene/divinylbenzene (PS-DVB) macroporous monoliths obtained using highly concentrated emulsions as templates show a superhydrophobic behaviour, restricting their potential technological applications, especially those related to adhesion and wetting. Air plasma treatments were carried out in order to modulate wetting properties, modifying the surface chemical composition of macroporous polystyrene/divinylbenzene materials. The superhydrophobic behaviour was rapidly suppressed by air plasma treatment, greatly reducing the water contact angle, from approximately 150 degrees to approximately 90 degrees, in only 10 seconds of treatment. The new surface chemical groups, promoted by plasma active species, were characterized by surface analysis techniques with different depth penetration specificity (contact angle, XPS, FTIR and SEM). Results demonstrated that very short treatment times produced different chemical functionalities, mainly C-O, C=O, O-C=O and C-N, which provide the materials with predominantly acidic surface properties. However, plasma active species did not penetrate deeply through the interconnected pores of the material. FTIR analysis evidenced that the new hydrophilic surface groups promoted by plasma active species are in a negligibly concentration compared to bulk chemical groups, and are located in a very thin surface region on the PS-DVB monolith surface (significantly below 2 microm). XPS analysis of treated monoliths revealed a progressive increase of oxygen and nitrogen content as a function of plasma treatment time. However, oxidation of the PS-DVB monoliths surface prevails over the incorporation of nitrogen atoms. Finally, SEM studies indicated that the morphology of the plasma treated PS-DVB does not significantly change even for the longest air plasma treatment time studied (120 s).

  1. Pathogen inactivation treatment of plasma and platelet concentrates and their predicted functionality in massive transfusion protocols.

    Science.gov (United States)

    Arbaeen, Ahmad F; Schubert, Peter; Serrano, Katherine; Carter, Cedric J; Culibrk, Brankica; Devine, Dana V

    2017-05-01

    Trauma transfusion packages for hemorrhage control consist of red blood cells, plasma, and platelets at a set ratio. Although pathogen reduction improves the transfusion safety of platelet and plasma units, there is an associated reduction in quality. This study aimed to investigate the impact of riboflavin/ultraviolet light-treated plasma or platelets in transfusion trauma packages composed of red blood cell, plasma, and platelet units in a ratio of 1:1:1 in vitro by modeling transfusion scenarios for trauma patients and assessing function by rotational thromboelastometry. Pathogen-reduced or untreated plasma and buffy coat platelet concentrate units produced in plasma were used in different combinations with red blood cells in trauma transfusion packages. After reconstitution of these packages with hemodiluted blood, the hemostatic functionality was analyzed by rotational thromboelastometry. Hemostatic profiles of pathogen-inactivated buffy coat platelet concentrate and plasma indicated decreased activity compared with their respective controls. Reconstitution of hemodiluted blood (hematocrit = 20%) with packages that contained treated or nontreated components resulted in increased alpha and maximum clot firmness and enhanced clot-formation time. Simulating transfusion scenarios based on 30% blood replacement with a transfusion trauma package resulted in a nonsignificant difference in rotational thromboelastometry parameters between packages containing treated and nontreated blood components (p ≥ 0.05). Effects of pathogen inactivation treatment were evident when the trauma package percentage was 50% or greater and contained both pathogen inactivation-treated plasma and buffy coat platelet concentrate. Rotational thromboelastometry investigations suggest that there is relatively little impact of pathogen inactivation treatment on whole blood clot formation unless large amounts of treated components are used. © 2017 AABB.

  2. Higher Plasma ApoE Levels are Associated with Low-Normal Thyroid Function : Studies in Diabetic and Nondiabetic Subjects

    NARCIS (Netherlands)

    Tienhoven-Wind, van Lynnda; Dallinga-Thie, G. M.; Dullaart, R. P. F.

    Low-normal thyroid function within the euthyroid range may confer higher plasma triglycerides, but relationships with plasma apoli-poprotein (apo) E, which plays an important role in the metabolism of triglyceride-rich apoB-containing lipoproteins, are unknown. We determined relationships of plasma

  3. Sea Ice Brightness Temperature as a Function of Ice Thickness, Part II: Computed curves for thermodynamically modelled ice profiles

    CERN Document Server

    Mills, Peter

    2012-01-01

    Ice thickness is an important variable for climate scientists and is still an unsolved problem for satellite remote sensing specialists. There has been some success detecting the thickness of thin ice from microwave radiometers, and with this in mind this study attempts to model the thickness-radiance relation of sea ice at frequencies employed by the Soil Moisture and Ocean Salinity (SMOS) radiometer and the Advanced Microwave Scanning Radiometer (AMSR): between 1.4 and 89 GHz. In the first part of the study, the salinity of the ice was determined by a pair of empirical relationships, while the temperature was determined by a thermodynamic model. Because the thermodynamic model can be used as a simple ice growth model, in this, second part, the salinities are determined by the growth model. Because the model uses two, constant-weather scenarios representing two extremes ("fall freeze-up" and "winter cold snap"), brine expulsion is modelled with a single correction-step founded on mass conservation. The growt...

  4. Adiponectin in Fresh Frozen Plasma Contributes to Restoration of Vascular Barrier Function After Hemorrhagic Shock.

    Science.gov (United States)

    Deng, Xiyun; Cao, Yanna; Huby, Maria P; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A; Doursout, Marie-Francoise; Holcomb, John B; Wade, Charles E; Ko, Tien C

    2016-01-01

    Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared with normal individuals, plasma adiponectin levels decreased to 49% in HS patients before resuscitation (P < 0.05) and increased to 64% post-resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared with baseline (P < 0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS.

  5. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    Science.gov (United States)

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  6. Characterization of the high-pressure structural transition and thermodynamic properties in sodium chloride: a computational investigation on the basis of the density functional theory.

    Science.gov (United States)

    Lu, Cheng; Kuang, Xiao-Yu; Zhu, Qin-Sheng

    2008-11-06

    Using first-principles calculations, the elastic constants, the thermodynamic properties, and the structural phase transition between the B1 (rocksalt) and the B2 (cesium chloride) phases of NaCl are investigated by means of the pseudopotential plane-waves method. The calculations are performed within the generalized gradient approximation to density functional theory with the Perdew-Burke-Ernzerhof exchange-correlation functional. On the basis of the third-order Birch-Murnaghan equation of states, the transition pressure Pt between the B1 phase and the B2 phase of NaCl is determined. The calculated values are generally speaking in good agreement with experiments and with similar theoretical calculations. From the theoretical calculations, the shear modulus, Young's modulus, rigidity modulus, and Poisson's ratio of NaCl are derived. According to the quasi-harmonic Debye model, we estimated the Debye temperature of NaCl from the average sound velocity. Moreover, the pressure derivatives of elastic constants, partial differentialC11/partial differentialP, partial differentialC12/partial differentialP, partial differentialC44/partial differentialP, partial differentialS11/partial differential P, partial differentialS12/partial differentialP, and partial differentialS44/partial differentialP, for NaCl crystal are investigated for the first time. This is a quantitative theoretical prediction of the elastic and thermodynamic properties of NaCl, and it still awaits experimental confirmation.

  7. Plasma renin activities, angiotensin II concentrations, atrial natriuretic peptide concentrations and cardiopulmonary function values in dogs with severe heartworm disease.

    Science.gov (United States)

    Kitagawa, H; Kitoh, K; Inoue, H; Ohba, Y; Suzuki, F; Sasaki, Y

    2000-04-01

    Relationships among plasma renin activities (PRA), plasma angiotensin II (ATII) concentrations, atrial natriuretic peptide (ANP) concentrations and cardiopulmonary function values were examined in dogs with ascitic pulmonary heartworm disease and acute- and chronic-vena caval syndrome (CS). PRA, plasma ATII concentration and plasma ANP concentration tended to be higher or were significantly higher in dogs with ascites, acute- and chronic-CS. PRA correlated significantly with plasma ATII concentration, WBC count, ALP activity, plasma concentrations of urea nitrogen, creatinine, sodium, potassium, and chloride, right ventricular endodiastolic pressure and right atrial pressure. Plasma ATII concentration correlated significantly with WBC count, plasma concentrations of urea nitrogen, sodium, and potassium, right ventricular endodiastolic pressure and right atrial pressure. Plasma ANP concentration did not correlate with PRA or ATII concentration, but correlated significantly only with pulmonary arterial pressure.

  8. [Basic mechanisms: structure, function and metabolism of plasma lipoproteins].

    Science.gov (United States)

    Errico, Teresa L; Chen, Xiangyu; Martin Campos, Jesús M; Julve, Josep; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2013-01-01

    The aim of this work is to present basic information on the lipoprotein physiology. The protein fraction of lipoproteins consists of several apolipoproteins and enzymes whose functions are lipid transport and metabolism. Classification of lipoproteins is based on their density. Chylomicrons, VLDL, IDL, LDL and HDL can be isolated by ultracentrifugation. Both chylomicrons- and VLDL-triglycerides are transported from the intestine and liver, respectively, to the peripheral tissues. The metabolism of VLDL originates IDL and LDL. LDL is the main transporter of cholesterol to extrahepatic tissues. HDL mobilizes cholesterol from peripheral tissues to the liver where it is secreted to bile as free cholesterol or bile salts, a process termed reverse cholesterol transport. Lipoprotein metabolism can be regulated by nuclear receptors that regulate the expression of genes involved in triglyceride and apolipoprotein metabolism. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  9. Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet.

    Science.gov (United States)

    Kolacyak, Daniel; Ihde, Jörg; Merten, Christian; Hartwig, Andreas; Lommatzsch, Uwe

    2011-07-01

    The afterglow of an atmospheric pressure plasma has been used for the fast oxidative functionalization of multi-walled carbon nanotubes (MWCNTs). Scanning electron microscopy and Raman spectroscopy demonstrate that the MWCNT morphology is mostly preserved when the MWCNTs are dispersed in a solvent and injected as a spray into the plasma. Contact angle measurements show that this approach enhances the wettability of MWCNTs and reduces their sedimentation in an aqueous dispersion. X-ray photoelectron spectroscopy, IR spectroscopy, and electrokinetic measurements show that oxygen plasma incorporates about 6.6 at.% of oxygen and creates mainly hydroxyl and carboxyl functional groups on the MWCNT surface. The typical effective treatment time is estimated to be in the range of milliseconds. The approach is ideally suited for combination with the industrial gas phase CVD synthesis of MWCNTs.

  10. Oxygen functionalization of MWCNTs in RF-dielectric barrier discharge Ar/O2 plasma

    Science.gov (United States)

    Abdel-Fattah, E.; Ogawa, D.; Nakamura, K.

    2017-07-01

    The oxygenation of multi-wall carbon nanotubes (MWCNTs) was performed via a radio frequency dielectric barrier discharge (RF-DBD) in an Ar/{{\\text{H}}2}\\text{O} plasma mixture. The relative intensity of the Ar/{{\\text{O}}2} plasma species was characterized by optical emission spectroscopy (OES). The effects of treatment time, RF power and oxygen gas percentage on the chemical composition and surface morphology of MWCNTs were investigated by means of x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). The results of FTIR and XPS revealed the presence of oxygen-containing functional groups on the MWCNTs treated in an Ar/{{\\text{O}}2} plasma at an RF power of 50 W and pressure of 400 Pa. The amount of oxygen functional groups (C=O, C-O, and O-COO) also increased by increasing treatment time up to 6 min, but slightly decreased when treatment time was increased by 10 min. The increase of oxygen gas percentage in the plasma mixture does not affect the oxygen content in the treated MWCNTs. Meanwhile, MWCNTs treated at high power (80 W) showed a reduction in oxygen functional groups in comparison with low RF power conditions. The Raman analysis was consistent with the XPS and FTIR results. The integrity of the nanotube patterns also remained damaged as observed by FE-SEM images. The MWCNTs treated in RF-DBD using the Ar/{{\\text{O}}2} plasma mixture showed improved dispersibility in deionized water. A correlation between the OES data and the observed surface characterization for an improved understanding of the functionalization of MWCNTs in Ar/{{\\text{O}}2} plasma was presented.

  11. Thermodynamic Origin of Life

    OpenAIRE

    Michaelian, K.

    2009-01-01

    Understanding the thermodynamic function of life may shed light on its origin. Life, as are all irreversible processes, is contingent on entropy production. Entropy production is a measure of the rate of the tendency of Nature to explore available microstates. The most important irreversible process generating entropy in the biosphere, and thus facilitating this exploration, is the absorption and transformation of sunlight into heat. Here we hypothesize that life began, and persists today, as...

  12. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Dahl, Morten; Tybjaerg-Hansen, A; Vestbo, J

    2001-01-01

    We tested whether increased concentrations of the acute-phase reactant fibrinogen correlate with pulmonary function and rate of chronic obstructive pulmonary disease (COPD) hospitalization. We measured plasma fibrinogen and forced expiratory volume in 1 s (FEV(1)), and assessed prospectively COPD...

  13. Value of plasma ADMA in predicting cardiac structure and function of patients with chronic kidney diseases

    Institute of Scientific and Technical Information of China (English)

    叶建华

    2012-01-01

    Objective To explore the predicting value of plasma asymmetric dimethylarginine (ADMA) in cardiac structure and function of patients with chronic kidney diseases(CKD). Methods A total of 100 CKD patients were enrolled in this cross-sectional study. According to staging of the

  14. Independent prognostic value of left ventricular mass, diastolic function, and fasting plasma glucose

    DEFF Research Database (Denmark)

    Pareek, Manan; Nielsen, Mette Lundgren; Leósdóttir, Margrét

    2016-01-01

    OBJECTIVE: To explore the independent prognostic value of left ventricular (LV) mass, diastolic function, and fasting plasma glucose (FPG) for the prediction of incident cardiac events in a random population sample. DESIGN AND METHOD: 415 women and 999 men aged 56-79 years, included between 2002...

  15. Patterning functional materials using channel diffused plasma-etched self-assembled monolayer templates

    NARCIS (Netherlands)

    George, A.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    A simple and cost-effective methodology for large-area micrometer-scale patterning of a wide range of metallic and oxidic functional materials is presented. Self-assembled monolayers (SAM) of alkyl thiols on Au were micropatterned by channel-diffused oxygen plasma etching, a method in which selected

  16. Introduction of functional groups of polyethylene surfaces by a carbon dioxide plasma treatment

    NARCIS (Netherlands)

    Terlingen, J.G.A.; Terlingen, Johannes G.A.; Gerritsen, Hermina F.C.; Gerritsen, H.F.C.; Hoffman, Allan S.; Feijen, Jan

    1995-01-01

    Poly(ethylene) (PE) films were treated with a carbon dioxide (CO2) plasma to study the formation of oxygen-containing functional groups at the surface. Modified and nonmodified films were characterized by X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. During the CO2

  17. Plasma functionalization procedure for antibody immobilization for SU-8 based sensor.

    Science.gov (United States)

    Grimaldi, Immacolata Angelica; Testa, Genni; Persichetti, Gianluca; Loffredo, Fausta; Villani, Fulvia; Bernini, Romeo

    2016-12-15

    In this paper, we report the study on a new protocol for the immobilization process of antigen/antibody assay on SU-8 layers by oxygen plasma treatment. Plasma treatments, at different plasma powers and for different duration times, are performed and their effects on immobilization efficiency are studied. The chemical properties and the surface morphology of SU-8 before and after the functionalization and immobilization of (IgG) are then verified by Raman spectroscopy and atomic force microscopy (AFM). An increase of the surface roughness of SU-8 layers is observed after the oxygen plasma treatment and an intensity variation of functional groups is also evidenced. To demonstrate the validity of the process the distribution of IgG immobilized on SU-8 surfaces is detected by fluorescence microscopy measurement after incubation with fluorescein isothiocyanate (FITC)-tagged anti-human IgG. An increase of the amount of the adsorbed protein of about 20% and a good repeatability on antigen/antibody distribution on the surface are detected for IgG on plasma treated substrates. Finally, label free measurements are performed by SU-8 optical ring resonators reaching detection limits of 0.86ngcm(-2). The proposed approach offers a smart protocol for IgG immobilization on SU-8 substrate that can be easily extended to different antigen/antibody assay and polymeric materials for the realization of high performance immunosensors.

  18. Perspective on plasma membrane cholesterol efflux and spermatozoal function

    Directory of Open Access Journals (Sweden)

    Dhastagir Sultan Sheriff

    2010-01-01

    Full Text Available The process of sperm maturation, capacitation, and fertilization occur in different molecular milieu provided by epididymis and female reproductive tract including oviduct. The different tissue environment with different oxygen tension and temperature may still influence the process of sperm maturation and capacitation. Reactive oxygen species (ROS is reported to be an initial switch that may activate the molecular process of capacitation. Therefore, the generation of reactive oxygen species and its possible physiological role depends upon a balance between its formation and degradation in an open environment provided by female reproductive tract. The sensitivity of the spermatozoa to the action of ROS may be due to its exposure for the first time to an oxygen rich external milieu compared to its internal milieu in the male reproductive tract. Reduced temperature in testicular environment coupled with reduced oxygen tension may be the right molecular environment for the process of spermatogenesis and spermiogenesis. The morphologically mature spermatozoa then may attain its motility in an environment provided by the caput epididymis wherein, the dyenin motor can become active. This ability to move forward will make the spermatozoa physiologically fit to undertake its sojourn in the competitive race of fertilization in a new oxygen rich female reproductive tract. The first encounter may be oxygen trigger or preconditioning of the spermatozoa with reactive oxygen species that may alter the spermatozoal function. Infertility is still one of the major global health problems that need medical attention. Apart from the development of artificial methods of reproduction and development of newer techniques in the field of andrology focuses attention on spermatozoal structure and metabolism. Therefore, understanding the molecular mechanisms involved in fertilization in general and that of sperm capacitation in particular may help lead to new and better

  19. Pair distribution function of strongly coupled quark gluon plasma in a molecule-like aggregation model

    CERN Document Server

    Meiling, Yu; Lianshou, Liu

    2008-01-01

    Pair distribution function for delocalized quarks in the strongly coupled quark gluon plasma (sQGP) as well as in the states at intermediate stages of crossover from hadronic matter to sQGP are calculated using a molecule-like aggregation model. The shapes of the obtained pair distribution functions exhibit the character of liquid. The increasing correlation length in the process of crossover indicates a diminishing viscosity of the fluid system.

  20. Independent effects of both right and left ventricular function on plasma brain natriuretic peptide

    DEFF Research Database (Denmark)

    Vogelsang, Thomas Wiis; Jensen, Ruben J; Monrad, Astrid L;

    2007-01-01

    BACKGROUND: Brain natriuretic peptide (BNP) is increased in heart failure; however, the relative contribution of the right and left ventricles is largely unknown. AIM: To investigate if right ventricular function has an independent influence on plasma BNP concentration. METHODS: Right (RVEF), left......, which is a strong prognostic marker in heart failure, independently depends on both left and right ventricular systolic function. This might, at least in part, explain why BNP holds stronger prognostic value than LVEF alone....

  1. Influence of H2 and D2 plasmas on the work function of caesiated materials

    Science.gov (United States)

    Friedl, R.; Fantz, U.

    2017-08-01

    Caesium-covered surfaces are used in negative hydrogen ion sources as a low work function converter for H-/D- surface production. The work function χ of the converter surface is one of the key parameters determining the performance of the ion source. Under idealized conditions, pure bulk Cs has 2.14 eV. However, residual gases at ion source background pressures of 10-7-10-6 mbar and the plasma surface interaction with the hydrogen discharge in front of the caesiated surface dynamically affect the actual surface work function. Necessary fundamental investigations on the resulting χ are performed at a dedicated laboratory experiment. Under the vacuum conditions of ion sources, the incorporation of impurities into the Cs layer leads to very stable Cs compounds. The result is a minimal work function of χvac ≈ 2.75 eV for Cs evaporation rates of up to 10 mg/h independent of substrate material and surface temperature (up to 260 °C). Moreover, a distinct degradation behavior can be observed in the absence of a Cs flux onto the surface leading to a deterioration of the work function by about 0.1 eV/h. However, in a hydrogen discharge with plasma parameters close to those of ion sources, fluxes of reactive hydrogen species and VUV photons impact on the surface which reduces the work function of the caesiated substrate down to about 2.6 eV even without Cs supply. Establishing a Cs flux onto the surface with ΓCs ≈ 1017 m-2 s-1 further enhances the work function obtaining values around 2.1 eV, which can be maintained stable for several hours of plasma exposure. Hence, Cs layers with work functions close to that of pure bulk Cs can be achieved for both H2 and D2 plasmas. Isotopic differences can be neglected within the measurement accuracy of about 0.1 eV due to comparable plasma parameters. Furthermore, after shutting down the Cs evaporation, continuing plasma exposure helps against degradation of the Cs layer resulting in a constant low work function for at least 1 h.

  2. Phonon spectral functions of photo-generated hot carrier plasmas: effects of carrier screening and plasmon-phonon coupling

    Science.gov (United States)

    Yi, Kyung-Soo; Kim, Hye-Jung

    2017-02-01

    We investigate spectral behavior of phonon spectral functions in an interacting multi-component hot carrier plasma. Spectral analysis of various phonon spectral functions is performed considering carrier-phonon channels of polar and nonpolar optical phonons, acoustic deformation-potential, and piezoelectric Coulomb couplings. Effects of phonon self-energy corrections are examined at finite temperature within a random phase approximation extended to include the effects of dynamic screening, plasmon-phonon coupling, and local-field corrections of the plasma species. We provide numerical data for the case of a photo-generated electron-hole plasma formed in a wurtzite GaN. Our result shows the clear significance of the multiplicity of the plasma species in the phonon spectral functions of a multi-component plasma giving rise to a variety of spectral behaviors of carrier-phonon coupled collective modes. A useful sum rule on the plasma-species-resolved dielectric functions is also found.

  3. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.

    Science.gov (United States)

    Yang, Shu-Jing; Qin, Xiao-Ya; He, Rongxing; Shen, Wei; Li, Ming; Zhao, Liu-Bin

    2017-05-21

    Organic redox compounds have become the emerging electrode materials for rechargeable lithium ion batteries. The high electrochemical performance provides organic electrode materials with great opportunities to be applied in electric energy storage devices. Among the different types of organic materials, conjugated carbonyl compounds are the most promising type at present, because only they can simultaneously achieve, high energy density, high cycling stability, and high power density. In this research, a series of heteroatom substituted anthraquinone (AQ) derivatives were designed theoretically so that the high theoretical capacity of AQ remained. The discharge and charge mechanism as well as the thermodynamic and dynamic properties of AQ and its derivatives were investigated using first-principles density functional theory. Using heteroatom substitution, both the thermodynamic and dynamic properties of AQ as cathode materials could be largely improved. Among these conjugated carboxyl compounds, BDOZD and BDIOZD with a simultaneously high theoretical capacity and high working potential exhibit the largest energy density of about 780 W h kg(-1), which is 41% larger than that of AQ. The PQD with the smallest value of λ gives the largest charge transfer rate constant, which is about four times as large as the prototype molecule, AQ. The most interesting finding is that the lithium ion transfer plays a very important role in influencing both the discharge potential and electrochemical charge transfer rate. The present study illustrates that theoretical calculations provide a highly effective way to discover potential materials for use with rechargeable lithium ion batteries.

  4. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  5. Equilibrium thermodynamics

    CERN Document Server

    Oliveira, Mário J

    2013-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions.  These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This textbo...

  6. Modeling and simulation of ion energy distribution functions in technological plasmas

    CERN Document Server

    Mussenbrock, Thomas

    2011-01-01

    The highly advanced treatment of surfaces as etching and deposition is mainly enabled by the extraordinary properties of technological plasmas. The primary factors that influence these processes are the flux and the energy of various species, particularly ions, that impinge the substrate surface. These features can be theoretically described using the ion energy distribution function (IEDF). The article is intended to summarize the fundamental concepts of modeling and simulation of IEDFs from simplified models to self-consistent plasma simulations. Finally, concepts for controlling the IEDF are discussed.

  7. Electron energy probability function and L-p similarity in low pressure inductively coupled bounded plasma

    OpenAIRE

    Chatterjee, Sanghamitro; Bhattacharjee, Sudeep; Charles, Christine; Boswell, Rod

    2015-01-01

    Particle-In-Cell (PIC) simulations are carried out to investigate the effect of discharge length (L) and pressure (p) on Electron Energy Probability Function (EEPF) in a low pressure radio frequency (rf) inductively coupled plasma (ICP) at 13.56 MHz. It is found that for both cases of varying L (0.1–0.5 m) and p (1–10 mTorr), the EEPF is a bi-Maxwellian with a step in the bounded direction (x) and non-Maxwellian with a hot tail in the symmetric unbounded directions (y, z). The plasma space po...

  8. Extension of the coherence function to quadratic models. [applied to plasma density and potential fluctuations

    Science.gov (United States)

    Kim, Y. C.; Wong, W. F.; Powers, E. J.; Roth, J. R.

    1979-01-01

    It is shown how the use of higher coherence functions can recover some of the lost coherence due to nonlinear relationship between two fluctuating quantities whose degree of mutual coherence is being measured. The relationship between the two processes is modeled with the aid of a linear term and a quadratic term. As a specific example, the relationship between plasma density and potential fluctuations in a plasma is considered. The fraction of power in the auto-power spectrum of the potential fluctuations due to a linear relationship and to a quadratic relationship between the density and potential fluctuations is estimated.

  9. Online platform for simulations of ion energy distribution functions behind a plasma boundary sheath

    Science.gov (United States)

    Wollny, Alexander; Shihab, Mohammed; Brinkmann, Ralf Peter

    2012-10-01

    Plasma processes, particularly plasma etching and plasma deposition are crucial for a large variety of industrial manufacturing purposes. For these processes the knowledge of the ion energy distribution function plays a key role. Measurements of the ion energy and ion angular distribution functions (IEDF, IADF) are at least challenging and often impossible in industrial processes. An alternative to measurements of the IEDF are simulations. With this contribution we present a self-consistent model available online for everyone. The simulation of ion energy and ion angular distribution functions involves the well known plasma boundary sheath model by Brinkmann [1-4], which is controlled via a web interface (http://sheath.tet.rub.de). After a successful simulation run all results are evaluable within the browser and ready for download for further analysis.[4pt] [1] R.P. Brinkmann, J. Phys. D: Appl. Phys. 44, 042002 (2011)[0pt] [2] R.P. Brinkmann, J. Phys. D: Appl. Phys. 42, 194009 (2009)[0pt] [3] R.P. Brinkmann, J. App. Phys. 102, 093303 (2007)[0pt] [4] M. Kratzer et al., J. Appl. Phys. 90, 2169 (2001)

  10. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim;

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  11. Integration of ammonia-plasma-functionalized graphene nanodiscs as charge trapping centers for nonvolatile memory applications

    KAUST Repository

    Wang, Jer-Chyi

    2016-11-23

    Graphene nanodiscs (GNDs), functionalized using NH3 plasma, as charge trapping sites (CTSs) for non-volatile memory applications have been investigated in this study. The fabrication process relies on the patterning of Au nanoparticles (Au-NPs), whose thicknesses are tuned to adjust the GND density and size upon etching. A GND density as high as 8 × 1011 cm−2 and a diameter of approximately 20 nm are achieved. The functionalization of GNDs by NH3 plasma creates Nsingle bondH+ functional groups that act as CTSs, as observed by Raman and Fourier transform infrared spectroscopy. This inherently enhances the density of CTSs in the GNDs, as a result, the memory window becomes more than 2.4 V and remains stable after 104 operating cycles. The charge loss is less than 10% for a 10-year data retention testing, making this low-temperature process suitable for low-cost non-volatile memory applications on flexible substrates.

  12. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    Science.gov (United States)

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  13. Plasma YKL-40 and recovery of left ventricular function after acute myocardial infarction

    DEFF Research Database (Denmark)

    Hedegaard, A.; Ripa, Maria Sejersten; Johansen, J.S.

    2010-01-01

    to LVEF recovery (p = 0.04) but not infarct size. G-CSF injections increased YKL-40 compared to placebo (p STEMI patients at admission and G-CSF treatment caused a further increase......Background: Plasma YKL-40 is increased early in patients with ST-elevation myocardial infarction (STEMI). It is not known whether plasma YKL-40 is related to infarct size and recovery of ventricular function after primary percutaneous coronary intervention (PCI) of STEMI and whether granulocyte...... colony-stimulating factor (G-CSF) therapy influence plasma YKL-40 concentration. Materials and methods: A total of 72 patients (age: 56 +/- 9 years (mean +/- SD), 56 men and 16 women) with STEMI treated with PCI were included in a double-blind, randomized, placebo-controlled trial with subcutaneous G...

  14. Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Dong; Yu, Yao, E-mail: ensiyu@mail.hust.edu.cn; Liu, Lin [School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan (China); Wu, Shu-Qun; Lu, Xin-Pei [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Wu, Yue [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3255 (United States)

    2014-03-10

    In this work, a mask-free method is introduced for patterned nitrogen doping of graphene using a micro-plasma jet under ambient condition. Raman and X-ray photoelectron spectroscopy spectra indicate that nitrogen atoms are incorporated into the graphene lattice with the two-dimensional spatial distribution precisely controlled in the range of mm down to 10 μm. Since the chemistry of the micro-plasma jet can be controlled by the choice of the gas mixture, this direct writing process with micro-plasma jet can be a versatile approach for patterned functionalization of graphene with high spatial resolution. This could have promising applications in graphene-based electronics.

  15. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    The plasma membrane H+-ATPase is a proton pump essential for several physiological important processes in plants. Through the extrusion of protons from the cell, the PM H+-ATPase establishes and maintains a proton gradient used by proton coupled transporters and secondary active transport......, and regulation of H+-ATPases, key questions, in particular concerning the detailed interaction of regulator proteins with the H+-ATPases, remains answering that may require the use of new approaches. In this work the proton pump Arabidopsis thaliana plasma membrane H+-ATPase isoform 2 has been reconstituted...... into soluble nanoscale lipid bilayers, also termed nanodiscs. Extensive analysis confirms the correct assembly and reconstitution of active proton pump into nanodiscs. The pump inserts as a monomer, which through activity analysis confirms this as the minimal functional unit of the plasma membrane H...

  16. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  17. Thermal plasmas: fundamental aspects; Plasmas thermiques: aspects fondamentaux

    Energy Technology Data Exchange (ETDEWEB)

    Fauchais, P. [Limoges Univ. Faculte des Sciences, Lab. Science des Procedes Ceramiques et Traitements de Surface (SPCTS-UMR-6638-CNRS), 87 (France)

    2005-10-01

    This article treats of thermal plasmas, i.e. mainly produced by electric arcs and RF discharges. Their main characteristic is that they are generated at a pressure close to the atmospheric pressure (between 10{sup 4} and 10{sup 6} Pa) and refer to the classical kinetics of the Boltzmann equation. Because of the pressure, the collisions between particles are numerous and ionization is mainly due to a thermal effect. They correspond to electron densities between 10{sup 20} and 10{sup 24} m{sup -3} and temperatures between 6000 and 25000 K. In these plasmas, the electric fields and the average free trajectories are too weak to generate a ionization state by direct inelastic collision. Ionization is thus essentially a thermal phenomenon due to elastic collisions. This article presents: 1 - the particles present in a plasma: definition, energy states; 2 - characteristic data: collisions, average free path and collision cross-section, distribution function, ionization types, charged particles mobility inside an electric field, scattering, Debye length; 3 - plasmas at the thermodynamical equilibrium: conditions of equilibrium, calculation of composition, thermodynamic properties, transport properties, radiation; 4 - thermal plasmas away from equilibrium: conditions of non-equilibrium, calculation of plasma composition, calculation of transport properties, quenching phenomenon. (J.S.)

  18. Influence of plasma-treatments on the structure, superstructure, and function of membrane lipids

    Science.gov (United States)

    Hammer, Malte U.; Forbrig, Enrico; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    Every cell, eu- or prokaryotic, has a membrane as an interface to the environment. Every substance that is applied from outside the cell has to interact with it. This includes plasma-generated reactive species in the liquid cell environment created by plasma-treatment. By the Singer and Nicolson model, proteins are embedded in a lipid bilayer. Proteins are the functional elements, lipids are the structural elements. Due to the amphiphilic nature of the lipids, they form (super-) structures in an aqueous environment. The exact superstructure is determined by a structural parameter of the lipid, its shape. Here, we show experiments on lipids by fluorophore-based liposome assays and raman spectroscopy. The results show a membrane-activity of plasma-born reactive species against lipids and lipid structures. Based on this results and literature, we propose a model for a lesion-forming mechanism in membranes of some reactive species created by plasma-treatment. It is based on a hydrophobic-hydrophilic mismatch due to lipid peroxidization induced by reactive species generated in liquids by plasma-treatment.

  19. Thermodynamic properties of organic compounds estimation methods, principles and practice

    CERN Document Server

    Janz, George J

    1967-01-01

    Thermodynamic Properties of Organic Compounds: Estimation Methods, Principles and Practice, Revised Edition focuses on the progression of practical methods in computing the thermodynamic characteristics of organic compounds. Divided into two parts with eight chapters, the book concentrates first on the methods of estimation. Topics presented are statistical and combined thermodynamic functions; free energy change and equilibrium conversions; and estimation of thermodynamic properties. The next discussions focus on the thermodynamic properties of simple polyatomic systems by statistical the

  20. Communication: Convergence of many-body wave-function expansions using a plane-wave basis in the thermodynamic limit

    Science.gov (United States)

    Shepherd, James J.

    2016-07-01

    Basis set incompleteness error and finite size error can manifest concurrently in systems for which the two effects are phenomenologically well-separated in length scale. When this is true, we need not necessarily remove the two sources of error simultaneously. Instead, the errors can be found and remedied in different parts of the basis set. This would be of great benefit to a method such as coupled cluster theory since the combined cost of nocc 6 nvirt 4 could be separated into nocc 6 and nvirt 4 costs with smaller prefactors. In this Communication, we present analysis on a data set due to Baardsen and co-workers, containing 2D uniform electron gas coupled cluster doubles energies for rs = 0.5, 1.0, and 2.0 a.u. at a wide range of basis set sizes and particle numbers. In obtaining complete basis set limit thermodynamic limit results, we find that within a small and removable error the above assertion is correct for this simple system. We then use this method to obtain similar results for the 3D electron gas at rs = 1.0, 2.0, and 5.0 a.u. and make comparison to the Ceperley-Alder quantum Monte Carlo results. This approach allows for the combination of methods which separately address finite size effects and basis set incompleteness error.

  1. On the Mathematics of Thermodynamics

    CERN Document Server

    Cooper, J B

    2011-01-01

    We show that the mathematical structure of Gibbsian thermodynamics flows from the following simple elements: the state space of a thermodynamical substance is a measure space together with two orderings (corresponding to "warmer than" and "adiabatically accessible from") which satisfy certain plausible physical axioms and an area condition which was introduced by Paul Samuelson. We show how the basic identities of thermodynamics, in particular the Maxwell relations, follow and so the existence of energy, free energy, enthalpy and the Gibbs potential function. We also discuss some questions which we have not found dealt with in the literature, such as the amount of information required to reconstruct the equations of state of a substance and a systematic approach to thermodynamical identities.

  2. Prediction of the electronic structures, thermodynamic and mechanical properties in manganese doped magnesium-based alloys and their saturated hydrides based on density functional theory

    Science.gov (United States)

    Zhang, Ziying; Zhang, Huizhen; Zhao, Hui; Yu, Zhishui; He, Liang; Li, Jin

    2015-04-01

    The crystal structures, electronic structures, thermodynamic and mechanical properties of Mg2Ni alloy and its saturated hydride with different Mn-doping contents are investigated using first-principles density functional theory. The lattice parameters for the Mn-doped Mg2Ni alloys and their saturated hydrides decreased with an increasing Mn-doping content because of the smaller atomic size of Mn compared with that of Mg. Analysis of the formation enthalpies and electronic structures reveal that the partial substitution of Mg with Mn reduces the stability of Mg2Ni alloy and its saturated hydride. The calculated elastic constants indicate that, although the partial substitution of Mg with Mn lowers the toughness of the hexagonal Mg2Ni alloy, the charge/discharge cycles are elevated when the Mn-doping content is high enough to form the predicted intermetallic compound Mg3MnNi2.

  3. A classification of complex statistical systems in terms of their stability and a thermodynamical derivation of their entropy and distribution functions

    CERN Document Server

    Hanel, Rudolf

    2010-01-01

    Strongly interacting statistical systems - complex systems in particular - can change their macroscopic properties merely as a function of the number of their constituents. Examples include neurons, state-forming insects, financial markets, etc. where systemic properties of small systems can differ drastically from those of a large system built from the same components. The origin of this property is not understood on fundamental grounds. Here we explore this phenomenon from first principles within a thermodynamical framework, by asking about the consequences of bringing interacting sub-systems in thermal contact, where the first three Kinchin axioms hold but the 4th is violated. We show that all sufficiently interacting statistical systems fall into two categories: systems which are asymptotically stable, and those which are asymptotically unstable, meaning that small changes in system size can lead to a drastic increase in entropy. We argue that complex systems belong to this unstable class which make drast...

  4. Standard Thermodynamic Functions of Tripeptides N-Formyl-l-methionyl-l-leucyl-l-phenylalaninol and N-Formyl-l-methionyl-l-leucyl-l-phenylalanine Methyl Ester.

    Science.gov (United States)

    Markin, Alexey V; Markhasin, Evgeny; Sologubov, Semen S; Smirnova, Natalia N; Griffin, Robert G

    2014-04-10

    The heat capacities of tripeptides N-formyl-l-methionyl-l-leucyl-l-phenylalaninol (N-f-MLF-OH) and N-formyl-l-methionyl-l-leucyl-l-phenylalanine methyl ester (N-f-MLF-OMe) were measured by precision adiabatic vacuum calorimetry over the temperature range from T = (6 to 350) K. The tripeptides were stable over this temperature range, and no phase change, transformation, association, or thermal decomposition was observed. The standard thermodynamic functions: molar heat capacity Cp,m, enthalpy H(T) - H(0), entropy S(T), and Gibbs energy G(T) - H(0) of peptides were calculated over the range from T = (0 to 350) K. The low-temperature (T ≤ 50 K) heat capacities dependencies were analyzed using the Debye's and the multifractal theories. The standard entropies of formation of peptides at T = 298.15 K were calculated.

  5. Standard Thermodynamic Functions of Tripeptides N-Formyl-l-methionyl-l-leucyl-l-phenylalaninol and N-Formyl-l-methionyl-l-leucyl-l-phenylalanine Methyl Ester

    Science.gov (United States)

    2015-01-01

    The heat capacities of tripeptides N-formyl-l-methionyl-l-leucyl-l-phenylalaninol (N-f-MLF-OH) and N-formyl-l-methionyl-l-leucyl-l-phenylalanine methyl ester (N-f-MLF-OMe) were measured by precision adiabatic vacuum calorimetry over the temperature range from T = (6 to 350) K. The tripeptides were stable over this temperature range, and no phase change, transformation, association, or thermal decomposition was observed. The standard thermodynamic functions: molar heat capacity Cp,m, enthalpy H(T) – H(0), entropy S(T), and Gibbs energy G(T) – H(0) of peptides were calculated over the range from T = (0 to 350) K. The low-temperature (T ≤ 50 K) heat capacities dependencies were analyzed using the Debye’s and the multifractal theories. The standard entropies of formation of peptides at T = 298.15 K were calculated. PMID:24803685

  6. Investigation of local thermodynamic equilibrium of laser induced Al2O3-TiC plasma in argon by spatially resolved optical emission spectroscopy

    Science.gov (United States)

    Alnama, K.; Alkhawwam, A.; Jazmati, A. K.

    2016-06-01

    Plasma plume of Al2O3-TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES) at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  7. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  8. Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Autissier, E., E-mail: manu.autissier@orange.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Richou, M. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Minier, L. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UB, 9 Av. Alain Savary, BP 47870, 21078 Dijon Cedex (France); Gardarein, J.-L. [Aix Marseille Univ, IUSTI, UMR CNRS 7343, F-13453 Marseille (France); Bernard, F. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UB, 9 Av. Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2015-10-15

    Highlights: • Different W-Cu powders were sintered by Spark Plasma Sintering. • The relative density increase with the temperature and Cu concentration. • Thermal conductivity of W-Cu samples has been measured in function of density. • Assembly of a three-layer W-Cu between a W block and a CuCrZr block was realized. • 40 min is the minimum time to complete bonding between W and W{sub 80}Cu{sub 20}. - Abstract: The assembly of W block with a CuCrZr block has been produced by adding compliant W-Cu layers. Firstly, three W-Cu powders (W{sub 80}Cu{sub 20}, W{sub 60}Cu{sub 40} and W{sub 40}Cu{sub 60}) were sintered by spark plasma sintering (SPS) to investigate the influences of sintering temperature and pressure on relative density and microstructure. The experimental results indicated that the relative density increases with temperature and Cu concentration, achieving a value of 94.1% for the W{sub 40}Cu{sub 60} sample sintered at 1000 °C and a value of 83.1% for the W{sub 80}Cu{sub 20} sample sintered at the same temperature. Then, a three-layer W-Cu assembly between a W block and a CuCrZr block was fabricated using similar sintering conditions to the W-Cu powders. The sintering temperature was limited at 1000 °C due to the CuCrZr melting temperature (1083 °C). The experimental results indicated that loading time, when the right sintering temperature and pressure are applied, is the most important parameter.

  9. Holostar thermodynamics

    CERN Document Server

    Petri, M

    2003-01-01

    A simple thermodynamic model for the final state of a collapsed, spherically symmetric star is presented. It is assumed, that the star's interior at the endpoint of the collapse consists of an ideal gas of ultra-relativistic fermions and bosons in thermal equilibrium and that the metric approaches the static metric of the so called holostar-solution of general relativity. The final configuration has a radius slightly exceeding the gravitational radius of the star. The radial coordinate difference between gravitational and actual radius is of order of the Planck length. The total number of ultra-relativistic particles within the star is proportional its proper surface-area, measured in units of the Planck-area. This is first direct evidence for the microscopic-statistical nature of the Hawking entropy and indicates, that the holographic principle is valid for compact self gravitating objects of any size. A "Stephan-Boltzmann-type" relation between the surface temperature and the surface area of the star is der...

  10. Are plasma citrulline and glutamine biomarkers of intestinal absorptive function in patients with short bowel syndrome?

    Science.gov (United States)

    Luo, Menghua; Fernández-Estívariz, Concepción; Manatunga, Amita K; Bazargan, Niloofar; Gu, Li H; Jones, Dean P; Klapproth, Jan-Michael; Sitaraman, Shanthi V; Leader, Lorraine M; Galloway, John R; Ziegler, Thomas R

    2007-01-01

    Sensitive biomarkers for intestinal absorptive function would be clinically useful in short bowel syndrome (SBS). Citrulline (Cit) is a product of the metabolism of glutamine (Gln) and derived amino acids by enterocytes. Cit is produced almost exclusively by the gut, which is also a major site of Gln metabolism. The goals of this study were to examine whether plasma Cit and Gln concentrations are biomarkers of residual small intestinal length and nutrient absorptive functions in adult SBS patients followed prospectively. We studied 24 stable adults with severe SBS receiving chronic parenteral nutrition (PN) in a double-blind, randomized trial of individualized dietary modification +/- recombinant human growth hormone (GH). During a baseline week, intestinal absorption studies (% absorption of fluid, kcal, nitrogen, fat, carbohydrate, sodium, phosphorus, and magnesium) were performed and concomitant plasma Cit and Gln concentrations determined. Individualized dietary modification and treatment with subcutaneous injection of placebo (n = 9) or GH (0.1 mg/kg daily x 21 days, then 3 times/week; n = 15) were then begun. PN weaning was initiated after week 4 and continued as tolerated for 24 weeks. Repeat plasma amino acid determination and nutrient absorption studies were performed at weeks 4 and 12. Residual small bowel length at baseline was positively correlated with baseline plasma Cit (r = 0.467; p = .028). However, no significant correlations between absolute Cit or Gln concentrations and the percent absorption of nutrient substrates at any time point were observed. Similarly, no correlation between the change in Cit or GLN concentration and the change in % nutrient absorption was observed (baseline vs weeks 4 and 12, respectively). By weeks 12 and 24, 7 and 13 subjects were weaned completely from PN, respectively. However, baseline plasma Cit or Gln did not predict PN weaning at these time points. We concluded that plasma Cit (but not Gln) concentrations appeared

  11. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    CERN Document Server

    Izacard, Olivier

    2016-01-01

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account specially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very CPU-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic cor...

  12. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  13. A Polytropic Model for Space and Laboratory Plasmas Described by Bi-Maxwellian Electron Distributions

    Science.gov (United States)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-09-01

    Non-local electron energy probability functions (EEPFs) are shown to have an important effect on the thermodynamic behavior of plasmas in the context of solar wind and laboratory plasmas. A conservation relation is held for electron enthalpy and plasma potential during the electron transport. For an adiabatic system governed by non-local electron dynamics, the correlation between electron temperature and density can be approximated by a polytropic relation, with different indexes demonstrated using three cases of bi-Maxwellian EEPFs. This scenario differs from a local thermodynamic equilibrium having a single polytropic index of 5/3 for adiabaticity.

  14. Alteration of plasma glutamate and glutamine levels in children with high-functioning autism.

    Directory of Open Access Journals (Sweden)

    Chie Shimmura

    Full Text Available BACKGROUND: It has recently been hypothesized that hyperglutamatergia in the brain is involved in the pathophysiology of autism. However, there is no conclusive evidence of the validity of this hypothesis. As peripheral glutamate/glutamine levels have been reported to be correlated with those of the central nervous system, the authors examined whether the levels of 25 amino acids, including glutamate and glutamine, in the platelet-poor plasma of drug-naïve, male children with high-functioning autism (HFA would be altered compared with those of normal controls. METHODOLOGY/PRINCIPAL FINDINGS: Plasma levels of 25 amino acids in male children (N = 23 with HFA and normally developed healthy male controls (N = 22 were determined using high-performance liquid chromatography. Multiple testing was allowed for in the analyses. Compared with the normal control group, the HFA group had higher levels of plasma glutamate and lower levels of plasma glutamine. No significant group difference was found in the remaining 23 amino acids. The effect size (Cohen's d for glutamate and glutamine was large: 1.13 and 1.36, respectively. Using discriminant analysis with logistic regression, the two values of plasma glutamate and glutamine were shown to well-differentiate the HFA group from the control group; the rate of correct classification was 91%. CONCLUSIONS/SIGNIFICANCE: The present study suggests that plasma glutamate and glutamine levels can serve as a diagnostic tool for the early detection of autism, especially normal IQ autism. These findings indicate that glutamatergic abnormalities in the brain may be associated with the pathobiology of autism.

  15. Fundamental limitations of the local approximation for electron distribution function and fluid model in bounded plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikov, M. B., E-mail: mihail.krasilnikov@gmail.com; Kudryavtsev, A. A. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Kapustin, K. D. [St. Petersburg University ITMO, St. Petersburg 197101 (Russian Federation)

    2014-12-15

    It is shown that the local approximation for computing the electron distribution function depends both on the ratio between the energy relaxation length and a characteristic plasma length and on the ratio between heating and ambipolar electric fields. In particular, the local approximation is not valid at the discharge periphery even at high pressure due to the fact that the ambipolar electric field practically always is larger than the heating electric field.

  16. Non-local electron energy probability function in a plasma expanding along a magnetic nozzle.

    Directory of Open Access Journals (Sweden)

    Roderick William Boswell

    2015-03-01

    Full Text Available Electron energy probability functions (eepfs have been measured along the axis of low pressure plasma expanding in a magnetic nozzle. The eepf at the maximum magnetic field of the nozzle shows a depleted tail commencing at an energy corresponding to the measured potential drop in the magnetic nozzle. The eepfs measured along the axis demonstrate that the potential and kinetic energies of the electrons are conserved and confirm the non-local collisionless kinetics of the electron dynamics.

  17. Significance of the plasma membrane for the nerve cell function, development and plasticity.

    Science.gov (United States)

    Mourek, Jindrich; Langmeier, Milos; Pokorny, Jaroslav

    2009-01-01

    Lipoid character of plasma membrane namely the presence of polyenic fatty acids enables to interact with membrane proteins and in certain extent also to modulate their function. During the development, molecules of membrane fatty acids become more and more complex, and the ratio of polyenic fatty acids/saturated fatty acids in the brain rises, while the concentration of monoenic fatty acids remained relatively stable. This phenomenon is apparent also in the ratio of unsaturated fatty acids OMEGA-3 in plasma of newborns which correlates with the birth weight. Plasma membrane reflects local specializations of nerve cells. Its composition varies in functionally specialized regions called domains. Specialized domains of nerve cells determine the function of dendrites, soma, axon, axon hillock ect. Premature weaning of laboratory rats results in structural changes and in the increase of excitability of neuronal circuits in hypothalamus, septum and hippocampus which indicate the possibility of membrane composition changes. In synapses, transport proteins of synaptic vesicles, act together with the specific proteins of the presynaptic membrane. Membrane proteins determine the release of neurotransmitter at different conditions of synaptic activity, and they can contribute to the recovery of neurotransmitter content after the repeated hyperactivity. In the model of experimental kindling, repeated seizures bring about decreases and distribution changes of synaptic vesicles.

  18. A generalized AZ-non-Maxwellian velocity distribution function for space plasmas

    Science.gov (United States)

    Abid, A. A.; Khan, M. Z.; Lu, Quanming; Yap, S. L.

    2017-03-01

    A more generalized form of the non-Maxwellian distribution function, i.e., the AZ-distribution function is presented. Its fundamental properties are numerically observed by the variation of three parameters: α (rate of energetic particles on the shoulder), r (energetic particles on a broad shoulder), and q (superthermality on the tail of the velocity distribution curve of the plasma species). It has been observed that (i) the A Z - distribution function reduces to the ( r , q ) - distribution for α → 0 ; (ii) the A Z - distribution function reduces to the q - distribution for α → 0 , and r → 0 ; (iii) the A Z -distribution reduces to Cairns-distribution function for r → 0 , and q → ∞ ; (iv) the AZ-distribution reduces to Vasyliunas Cairns distribution for r → 0 , and q = κ + 1 ; (v) the AZ-distribution reduces to kappa distribution for α → 0 , r → 0 , and q = κ + 1 ; and (vi) finally, the AZ-distribution reduces to Maxwellian distribution for α → 0 , r → 0 , and q → ∞ . The uses of this more generalized A Z - distribution function in various space plasmas are briefly discussed.

  19. Four hour creatinine clearance is better than plasma creatinine for monitoring renal function in critically ill patients

    OpenAIRE

    Pickering, John W.; Frampton, Christopher M; Walker, Robert J; Shaw, Geoffrey M; Endre, Zoltán H

    2012-01-01

    Introduction Acute kidney injury (AKI) diagnosis is based on an increase in plasma creatinine, which is a slowly changing surrogate of decreased glomerular filtration rate. We investigated whether serial creatinine clearance, a direct measure of the glomerular filtration rate, provided more timely and accurate information on renal function than serial plasma creatinine in critically ill patients. Methods Serial plasma creatinine and 4-hour creatinine clearance were measured 12-hourly for 24 h...

  20. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  1. Structural, mechanical and thermodynamic properties of AuIn{sub 2} crystal under pressure: A first-principles density functional theory calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ching-Feng [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Cheng, Hsien-Chie, E-mail: hccheng@fcu.edu.tw [Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Wen-Hwa, E-mail: whchen@pme.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-01-15

    Highlights: • The mechanical and thermodynamic properties of AuIn{sub 2} are reported for the first time. • The calculated lattice constants and elastic properties of AuIn{sub 2} are consistent with the literature data. • The results reveal that AuIn{sub 2} demonstrates low elastic anisotropy, low hardness and high ductility. • It is worth to note that the anisotropic AuIn{sub 2} tends to become elastically isotropic as hydrostatic pressure increases. - Abstract: The structural, mechanical and thermodynamic properties of cubic AuIn{sub 2} crystal in the cubic fluorite structure, and also their temperature, hydrostatic pressure and direction dependences are investigated using first-principles calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA). The optimized lattice constants of AuIn{sub 2} single crystal are first evaluated, by which its hydrostatic pressure-dependent elastic constants are also derived. Then, the hydrostatic pressure-dependent mechanical characteristics of the single crystal, including ductile/brittle behavior and elastic anisotropy, are explored according to the characterized angular character of atomic bonding, Zener anisotropy factor and directional Young’s modulus. Moreover, the polycrystalline elastic properties of AuIn{sub 2}, such as bulk modulus, shear modulus and Young’s modulus, and its ductile/brittle and microhardness characteristics are assessed versus hydrostatic pressure. Finally, the temperature-dependent Debye temperature and heat capacity of AuIn{sub 2} single crystal are investigated by quasi-harmonic Debye modeling. The present results reveal that AuIn{sub 2} crystal demonstrates low elastic anisotropy, low hardness and high ductility. Furthermore, its heat capacity strictly follows the Debye T{sup 3}-law at temperatures below the Debye temperature, and reaches the Dulong–Petit limit at temperatures far above the Debye temperature.

  2. Physical Intelligence and Thermodynamic Computing

    Directory of Open Access Journals (Sweden)

    Robert L. Fry

    2017-03-01

    Full Text Available This paper proposes that intelligent processes can be completely explained by thermodynamic principles. They can equally be described by information-theoretic principles that, from the standpoint of the required optimizations, are functionally equivalent. The underlying theory arises from two axioms regarding distinguishability and causality. Their consequence is a theory of computation that applies to the only two kinds of physical processes possible—those that reconstruct the past and those that control the future. Dissipative physical processes fall into the first class, whereas intelligent ones comprise the second. The first kind of process is exothermic and the latter is endothermic. Similarly, the first process dumps entropy and energy to its environment, whereas the second reduces entropy while requiring energy to operate. It is shown that high intelligence efficiency and high energy efficiency are synonymous. The theory suggests the usefulness of developing a new computing paradigm called Thermodynamic Computing to engineer intelligent processes. The described engineering formalism for the design of thermodynamic computers is a hybrid combination of information theory and thermodynamics. Elements of the engineering formalism are introduced in the reverse-engineer of a cortical neuron. The cortical neuron provides perhaps the simplest and most insightful example of a thermodynamic computer possible. It can be seen as a basic building block for constructing more intelligent thermodynamic circuits.

  3. Function of plasma membrane microdomain-associated proteins during legume nodulation.

    Science.gov (United States)

    Qiao, Zhenzhen; Libault, Marc

    2017-08-17

    Plasma membrane microdomains are plasma membrane sub-compartments enriched in sphingolipids and sterols, and composed by a specific set of proteins. They are involved in recognizing signal molecules, transducing these signals, and controlling endocytosis and exocytosis processes. In a recent study, applying biochemical and microscopic methods, we characterized the soybean GmFWL1 protein, a major regulator of soybean nodulation, as a new membrane microdomain-associated protein. Interestingly, upon rhizobia inoculation of the soybean root system, GmFWL1 and one of its interacting partners, GmFLOT2/4, both translocate to the root hair cell tip, the primary site of interaction and infection between soybean and Rhizobium. The role of GmFWL1 as a plasma membrane microdomain-associated protein is also supported by immunoprecipitation assays performed on soybean nodules, which revealed 178 GmFWL1 protein partners including a large number of microdomain-associated proteins such as GmFLOT2/4. In this addendum, we provide additional information about the identity of the soybean proteins repetitively identified as GmFWL1 protein partners. Their function is discussed especially in regard to plant-microbe interactions and microbial symbiosis. This addendum will provide new insights in the role of plasma membrane microdomains in regulating legume nodulation.

  4. Incoherent scatter spectra from plasma of a 13-moment approximation distribution function

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The function and physical mechanism of heat flow and the viscous stress in the velocity distribution function expanded by Maxwellian distribution are presented. With the introduction of effective temperature Tf, incoherent scatter spectra from plasma for electromagnetic wave in arbitrary line of sight are given. The effect of asymmetry and anisotropy provided by heat flow and the viscous stress on power spectra is discussed. Radar spectra are calculated for different cases of electric field, direction, collision frequency and temperature. The effect of heat flow and the viscous stress on inversion results is analyzed. With a large electric field, the character of non-Maxwellian must be considered.

  5. Plasma Neutrophil Gelatinase-Associated Lipocalin Reflects Both Inflammation and Kidney Function in Patients with Myocardial Infarction

    DEFF Research Database (Denmark)

    Lindberg, Søren; Jensen, Jan S; Hoffmann, Søren;

    2016-01-01

    cohorts. RESULTS: Estimated glomerular filtration rate (eGFR) was associated significantly more strongly with plasma NGAL when eGFR was abnormal compared to normal eGFR: a decrease in eGFR of 10 ml/min was associated with an increase in NGAL of 27% (18-36%) versus 4% (1-7%), respectively (p ....001). Leukocyte count and C-reactive protein were the main determinants of plasma NGAL in patients with normal eGFR, whereas eGFR was the main determinant at reduced kidney function. CONCLUSIONS: eGFR determines the association of NGAL with either inflammation or kidney function; in patients with normal eGFR......, plasma NGAL reflects inflammation but when eGFR is reduced, plasma NGAL reflects kidney function, highlighting the dual perception of plasma NGAL. From a clinical perspective, eGFR may be used to guide the interpretation of elevated NGAL levels in patients with STEMI....

  6. Empirical Emission Functions for LPM Suppression of Photon Emission from Quark-Gluon Plasma

    CERN Document Server

    Sastry, S

    2003-01-01

    The LPM suppression of photon emission rates from the quark gluon plasma have been studied at different physical conditions of the plasma given by temperature and chemical potentials.The integral equation for the transverse vector function (f(p_t)) consisting of multiple scattering effects is solved for the parameter set {p,k,kappa,T}, for bremsstrahlung and AWS processes. The peak positions of these distributions depend only on the dynamical variable x=(T/kappa)|1/p-1/(p+k)|. Integration over these distributions multiplied by x^2 factor also depends on this variable x,leading to a unique global emission function g(x) for all parameters. Empirical fits to this dimensionless emission function, g(x), are obtained. The photon emission rate calculations with LPM suppression effects reduce to one dimensional integrals involving folding over the empirical g(x) function with appropriate distribution functions and the kinematic factors. Using this approach, the suppression factors for both bremsstrahlung and AWS have...

  7. Energy Flow in Dense Off-Equilibrium Plasma

    Science.gov (United States)

    2016-07-15

    visible and UV light. Opacity is determined using calibrated time-resolved spectroscopy (W/nm). Bataller et al. DISTRIBUTION A: Distribution...Spectrum as function of time Plasmas at 12,000-18,000 K emit visible and UV light. Opacity is determined using calibrated time-resolved...different systems that all produce plasmas with a similar thermodynamic state. Probing sonoluminescence with visible -wavelength lasers yielded

  8. The Classical Thermodynamics of Deformable Materials

    Science.gov (United States)

    McLellan, A. G.

    2011-02-01

    Part I. The Mathematical Foundations of Finite Strain Theory: 1. Introduction; 2. Mathematical description of homogeneous deformations; 3. Infinitesimal deformation; 4. Transformations describing deformations of a material medium; 5. Forces; 6. Boundary conditions and work; 7. Another unique factorisation of D; 8. Virtual work; 9. Transformation of cartesian tensors; Part II. Non-Hydrostatic Thermodynamics: 10. The thermodynamic basis; 11. Thermodynamic relations; 12. Thermodynamic functions, equations of state; 13. Thermodynamic quantities, definitions, and geometrical situation; 14. Thermal expansion coefficients; 15. Specific heats; 16. Elastic stiffness and compliances; 17. Tensorial forms for the elastic stiffness and compliance matrices; 18. The effects of symmetry on the thermodynamic properties of crystals; 19. Equilibrium and stability conditions for thermodynamic systems; 20. Equilibrium conditions for diffusion in phases under non-hydrostatic stresses; 21. The equilibrium of a stressed solid in contact with a solution of the solid; 22. The thermodynamic stability of a phase; 23. Discussion of the elastic stability conditions; 24. Phase transitions and instability; 25. An example of a phase transition involving a simple shear; 26. Limiting the values of thermodynamic quantities at an instability; 27. The a-β quartz transition; 28. The thermodynamic theory of the growth of Dauphiné twinning in quartz under stress; 29. The tetragonal/cubic ferroelectric transition of barium titanate; References; Index.

  9. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  10. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  11. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions

    Science.gov (United States)

    Greenfield, Norma J.

    2009-01-01

    Circular dichroism (CD) is an excellent spectroscopic technique for following the unfolding and folding of proteins as a function of temperature. One of its principal applications is to determine the effects of mutations and ligands on protein and polypeptide stability If the change in CD as a function of temperature is reversible, analysis of the data may be used to determined the van't Hoff enthalpy (ΔH) and entropy (ΔS) of unfolding, the midpoint of the unfolding transition (TM) and the free energy (ΔG) of unfolding. Binding constants of protein-protein and protein-ligand interactions may also be estimated from the unfolding curves. Analysis of CD spectra obtained as a function of temperature is also useful to determine whether a protein has unfolding intermediates. Measurement of the spectra of five folded proteins and their unfolding curves at a single wavelength takes approximately eight hours. PMID:17406506

  12. GDNF plasma levels in spina bifida: correlation with severity of spinal damage and motor function.

    Science.gov (United States)

    Chiaretti, Antonio; Rendeli, Claudia; Antonelli, Alessia; Barone, Giuseppe; Focarelli, Benedetta; Tabacco, Fabrizia; Massimi, Luca; Ausili, Emanuele

    2008-12-01

    Glial-derived neurotrophic factor (GDNF) is one of several powerful survival factors for spinal motoneurons that play a key role in sprouting, synaptic plasticity, and reorganization after spinal cord damage. The aim of this study was to investigate the expression of GDNF in plasma of children with spina bifida (SB) and to determine its correlation with both the severity of spinal cord damage and the motor function of these patients. To measure the GDNF expression, we collected plasma samples from 152 children with SB and in 149 matched controls. Endogenous GDNF levels were quantified using a two-site immuno-enzymatic assay. The statistical analysis was performed using the Mann-Whitney two-tailed two-sample test. In children with SB the mean levels of GDNF (131.2 +/- 69.6 pg/mL) were significantly higher (p spine injury.

  13. Electron energy distribution functions for modelling the plasma kinetics in dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R.J. [Department of Physics, Division of Information and Communications Sciences, Macquarie University, Sydney, NSW (Australia)). E-mail: rcarman@physics.mq.edu.au; Mildren, R.P. [Centre for Lasers and Applications, Division of Information and Communications Sciences, Macquarie University, Sydney, NSW (Australia)

    2000-10-07

    In modelling the plasma kinetics in dielectric barrier discharges (DBDs), the electron energy conservation equation is often included in the rate equation analysis (rather than utilizing the local-field approximation) with the assumption that the electron energy distribution function (EEDF) has a Maxwellian profile. We show that adopting a Maxwellian EEDF leads to a serious overestimate of the calculated ionization/excitation rate coefficients and the electron mobility for typical plasma conditions in a xenon DBD. Alternative EEDF profiles are trialed (Druyvesteyn, bi-Maxwellian and bi-Druyvesteyn) and benchmarked against EEDFs obtained from solving the steady-state Boltzmann equation. A bi-Druyvesteyn EEDF is shown to be more inherently accurate for modelling simulations of xenon DBDs. (author)

  14. Plasma Membrane Association by N-Acylation Governs PKG Function in Toxoplasma gondii.

    Science.gov (United States)

    Brown, Kevin M; Long, Shaojun; Sibley, L David

    2017-05-02

    Cyclic GMP (cGMP)-dependent protein kinase (protein kinase G [PKG]) is essential for microneme secretion, motility, invasion, and egress in apicomplexan parasites, However, the separate roles of two isoforms of the kinase that are expressed by some apicomplexans remain uncertain. Despite having identical regulatory and catalytic domains, PKG(I) is plasma membrane associated whereas PKG(II) is cytosolic in Toxoplasma gondii To determine whether these isoforms are functionally distinct or redundant, we developed an auxin-inducible degron (AID) tagging system for conditional protein depletion in T. gondii By combining AID regulation with genome editing strategies, we determined that PKG(I) is necessary and fully sufficient for PKG-dependent cellular processes. Conversely, PKG(II) is functionally insufficient and dispensable in the presence of PKG(I) The difference in functionality mapped to the first 15 residues of PKG(I), containing a myristoylated Gly residue at position 2 that is critical for membrane association and PKG function. Collectively, we have identified a novel requirement for cGMP signaling at the plasma membrane and developed a new system for examining essential proteins in T. gondiiIMPORTANCEToxoplasma gondii is an obligate intracellular apicomplexan parasite and important clinical and veterinary pathogen that causes toxoplasmosis. Since apicomplexans can only propagate within host cells, efficient invasion is critically important for their life cycles. Previous studies using chemical genetics demonstrated that cyclic GMP signaling through protein kinase G (PKG)-controlled invasion by apicomplexan parasites. However, these studies did not resolve functional differences between two compartmentalized isoforms of the kinase. Here we developed a conditional protein regulation tool to interrogate PKG isoforms in T. gondii We found that the cytosolic PKG isoform was largely insufficient and dispensable. In contrast, the plasma membrane-associated isoform

  15. Enhanced adsorption of hydroxyl contained/anionic dyes on non functionalized Ni@SiO{sub 2} core–shell nanoparticles: Kinetic and thermodynamic profile

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhifeng, E-mail: ntjiangzf@sina.com; Xie, Jimin, E-mail: xiejm391@sohu.com; Jiang, Deli, E-mail: jiangdeli100@yahoo.com; Yan, Zaoxue, E-mail: yanzaoxue@163.com; Jing, Junjie, E-mail: jingjj1975@163.com; Liu, Dong, E-mail: 919457966@qq.com

    2014-02-15

    A green and low-cost adsorbent with both magnetic property and high adsorption capacity was prepared on the basis of nickel magnetic core with silica shell. The surface of the prepared Ni@SiO{sub 2} composite was not modified. The influence of different functional groups and different charged of the dyes on the adsorption process on the non functionalized Ni@SiO{sub 2} have been studied. The results indicated that synthesized adsorbent exhibited higher adsorption capacity for dyes with negative charge/hydroxyl groups as compared to dyes with positive charge/without hydroxyl groups due to the hydrogen bonding interaction and electrostatic interaction between the adsorbent and dyes. Adsorption kinetics and isotherms experiments were carried out and the results indicated that the adsorption process was fitted by pseudo second order kinetics and Freundlich model. The binding of these dyes with magnetic adsorbent surface mainly involves physical adsorption according to D–R model. Furthermore, the adsorption process is spontaneous and endothermic as studied from adsorption thermodynamics. The value of ΔH° and mean free energy further confirmed that physical adsorption is the major adsorption process. After regeneration, the adsorbent still shows high adsorption capacity even for 4 cycles of desorption–adsorption.

  16. Thermodynamic evolution of the cosmological baryonic gas II. Galaxy formation

    CERN Document Server

    Alimi, J M

    2004-01-01

    The problem of galaxy formation and its dependence on thermodynamic properties is addressed by using Eulerian hydrodynamic numerical simulations of large scale structure formation. Global galaxy properties are explored in simulations including gravitation, shock heating and cooling processes, and following self-consistently the chemical evolution of a primordial composition hydrogen-helium plasma without assuming collisional ionization equilibrium. The galaxy formation model is mainly based on the identification of converging dense cold gas regions. We show that the evolution at low redshift of the observed cosmic star formation rate density is reproduced, and that the galaxy-like object mass function is dominated by low-mass objects. The galaxy mass functions are well described by a two power-law Schechter function whose parameters are in good agreement with observational fits of the galaxy luminosity function. The high-mass end of the galaxy mass function includes objects formed at early epochs and residing...

  17. L-mode filament characteristics on MAST as a function of plasma current measured using visible imaging

    CERN Document Server

    Kirk, A; Harrison, J R; Militello, F; Walkden, N R

    2016-01-01

    Clear filamentary structures are observed at the edge of tokamak plasmas. These filaments are ejected out radially and carry plasma in the far Scrape Off Layer (SOL) region, where they are responsible for producing most of the transport. A study has been performed of the characteristics of the filaments observed in L-mode plasma on MAST, using visible imaging. A comparison has then been made with the observed particle and power profiles obtained at the divertor as a function of the plasma current. The radial velocity and to a lesser extent the radial size of the filaments are found to decrease as the plasma current is increased at constant density and input power. The results obtained in this paper on the dependence of the average filament dynamics on plasma current are consistent with the idea that the filaments are responsible for determining the particle profiles at the divertor.

  18. Active Plasma Resonance Spectroscopy: Evaluation of a fluiddynamic-model of the planar multipole resonance probe using functional analytic methods

    Science.gov (United States)

    Friedrichs, Michael; Brinkmann, Ralf Peter; Oberrath, Jens

    2016-09-01

    Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP. By coupling the model of the cold plasma with the maxwell equations for electrostatics an analytical model for the admittance of the plasma is derivated, adjusted to cylindrical geometry and solved analytically for the planar MRP using functional analytic methods.

  19. Measuring Thermodynamic Length

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, Gavin E

    2007-09-07

    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interestin understanding matter out of equilibrium. In this Letter, we will consider how to denethermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.

  20. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  1. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    Science.gov (United States)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  2. Tuning the ITO work function by capacitively coupled plasma and its application in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ming [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); Zhang, Chunmei, E-mail: zhangchunmei@bigc.edu.cn [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); Chen, Qiang [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an (China)

    2016-11-01

    Highlights: • The work function of ITO was reduced by plasma treatment. • The reduction of the work function was attributed to the variation in chemical component of ITO surface. • The inverted solar cell without electron transport layer was fabricated using plasma-treated ITO. • Optimal power conversion efficiency of 3.22% was achieved. - Abstract: In this paper, we investigated the performance of inverted organic solar cells (OSCs) with plasma-treated indium tin oxide (ITO) as the cathode for omitting an electron transport layer. The Ar plasma was produced by capcitively coupled plasma setup under 20 Pa chamber pressure. For the device with the structure of plasma-treated ITO/P3HT:PCBM/MoO{sub 3}/Ag, a power conversion efficiency (PCE) of 3.22% was achieved, whereas PCE of 1.13% was recorded from the device fabricated with the pristine ITO. The photovoltaic performance was found to be dependent on the applied power of plasma. After analyzing by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), we concluded that the chemical component variation of ITOs surface resulted in the decrease of ITO work function, which meant that the ITO Fermi level became shallow relative to the vacuum level. The low work function of ITO should be responsible for the improvement of inverted OSCs because of the better energy level alignment between ITO and the photoactive layer.

  3. In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces

    Science.gov (United States)

    Mussano, F.; Genova, T.; Verga Falzacappa, E.; Scopece, P.; Munaron, L.; Rivolo, P.; Mandracci, P.; Benedetti, A.; Carossa, S.; Patelli, A.

    2017-07-01

    Plasma surface activation and plasma polymers deposition are promising technologies capable to modulate biologically relevant surface features of biomaterials. The purpose of this study was to evaluate the biological effects of two different surface modifications, i.e. amine (NH2-Ti) and carboxylic/esteric (COOH/R-Ti) functionalities obtained from 3-aminopropyltriethoxysilane (3-APTES) and methylmethacrylate (MMA) precursors, respectively, through an atmospheric plasma jet RF-APPJ portable equipment. The coatings were characterized by Scanning Electron Microscopy, FT-IR spectroscopy, XPS and surface energy calculations. Stability in water and after UV sterilization were also verified. The pre-osteoblastic murine cell line MC3T3-E1 was used to perform the in-vitro tests. The treated samples showed a higher quantity of adsorbed proteins and improved osteoblast cells adhesion on the surfaces compared to the pristine titanium, in particular the COOH/R-Ti led to a nearly two-fold improvement. Cell proliferation on coated samples was initially (at 24 h) lower than on titanium control, while, at 48 h, COOH/R-Ti reached the proliferation rate of pristine titanium. Cells grown on NH2-Ti were more tapered and elongated in shape with lower areas than on COOH/R-Ti enriched surfaces. Finally, NH2-Ti significantly enhanced osteocalcin production, starting from 14 days, while COOH/R-Ti had this effect only from 21 days. Notably, NH2-Ti was more efficient than COOH/R-Ti at 21 days. The amine functionality elicited the most relevant osteogenic effect in terms of osteocalcin expression, thus establishing an interesting correlation between early cell morphology and later differentiation stages. Taken together, these data encourage the use of the functionalization procedures here reported in further studies.

  4. Aqueous nonionic copolymer-functionalized laponite clay. A thermodynamic and spectrophotometric study to characterize its behavior toward an organic material.

    Science.gov (United States)

    De Lisi, R; Lazzara, G; Milioto, S; Muratore, N

    2006-09-12

    The affinity of functionalized Laponite clay toward an organic material in the aqueous phase was explored. Functionalization was performed by using triblock copolymers based on ethylene oxide (EO) and propylene oxide (PO) units that are EO(11)PO(16)EO(11) (L35) and PO(8)EO(23)PO(8) (10R5). Phenol (PhOH) was chosen as organic compound, which represents a contaminant prototype. To this purpose, densities and enthalpies of mixing as well as PhOH UV-absorption spectra were determined. The enthalpy and the spectrophotometry revealed PhOH-Laponite interactions whereas the volume did not. It emerged that the area occupied by PhOH on the Laponite surface is equal to that computed from the partial molar volume of PhOH in water, corroborating the insensitivity of the experimental volumes to the adsorption process. The situation where both PhOH and copolymer are simultaneously present in the aqueous Laponite suspension was also investigated. It turned out that the copolymer replaces PhOH from the water/Laponite clay interface, resulting in L35 being the more efficient. Moreover, the lateral copolymer-phenol interactions enhance the anchoring of PhOH to the solid surface. The reverse copolymer exercises the most important relevant effect. The UV-absorption spectra of PhOH in the water + copolymer + Laponite mixtures provided information that is consistent with those given by the calorimetric experiments. In conclusion, the aqueous copolymer-functionalized Laponite presents surface properties very different from the bare Laponite, favoring the removal of the organic compound from the solid surface.

  5. A new method of modelling early plasma creatinine changes predicts 1-year graft function after kidney transplantation

    DEFF Research Database (Denmark)

    Krogstrup, Nicoline V; Bibby, Bo Martin; Aulbjerg, Camilla;

    2016-01-01

    BACKGROUND: Delayed graft function after renal transplantation is associated with inferior long-term outcome. To evaluate the impact of slow onset graft function, we aimed to model and correlate early changes in plasma creatinine (p-cr) with long-term graft function. MATERIALS: In a single centre...

  6. Contribution of plasma membrane Ca2+ ATPase to cerebellar synapse function

    Institute of Scientific and Technical Information of China (English)

    Helena; Huang; Raghavendra; Y; Nagaraja; Molly; L; Garside; Walther; Akemann; Thomas; Knpfel; Ruth; M; Empson

    2010-01-01

    The cerebellum expresses one of the highest levels of the plasma membrane Ca2+ATPase,isoform 2 in the mammalian brain.This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex;i.e. the Purkinje neurons(PNs) .Here we review recent evidence,including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2(PMCA2) knockout mouse,to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour.These studies have also revealed that deletionof PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development,they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.

  7. Surface modification by cold-plasma technique for dental implants—Bio-functionalization with binding pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Masao Yoshinari

    2011-08-01

    At the bone tissue/implant interface, a thin calcium phosphate coating and rapid heating with infrared radiation were effective in controlling the dissolution without cracking the coating. These thin calcium phosphate coatings may directly promote osteogenisis, but also enable immobilization and subsequent drug delivery system (DDS of bisphosphonates. Simvastatin is also an effective candidate that is reported to increase the expression of BMP-2. The thin-film of hexamethyldisiloxane (HMDSO was plasma-polymerized onto titanium, and then HMDSO surface was activated by O2-plasma treatment. A quartz crystal microbalance (QCM-D technique demonstrated that simvastatin was immobilized on the plasma-treated surfaces due to introduction of O2-functional groups. At the soft tissue/implant interface, multi-grooved surface topographies and utilizing the adhesive proteins such as fibronectin or laminin-5 may help in providing a biological seal around the implant. At the oral fluid/implant interface, an alumina coating, F+-implantation and immobilization of anti-microbial peptides were responsible for inhibiting the biofilm accumulation.

  8. Biocidal Activity of Plasma Modified Electrospun Polysulfone Mats Functionalized with Polyethyleneimine-Capped Silver Nanoparticles

    KAUST Repository

    Schiffman, Jessica D.

    2011-11-01

    The incorporation of silver nanoparticles (AgNPs) into polymeric nanofibers has attracted a great deal of attention due to the strong antimicrobial activity that the resulting fibers exhibit. However, bactericidal efficacy of AgNP-coated electrospun fibrous mats has not yet been demonstrated. In this study, polysulfone (PSf) fibers were electrospun and surface-modified using an oxygen plasma treatment, which allowed for facile irreversible deposition of cationically charged polyethyleneimine (PEI)-AgNPs via electrostatic interactions. The PSf-AgNP mats were characterized for relative silver concentration as a function of plasma treatment time using ICP-MS and changes in contact angle. Plasma treatment of 60 s was the shortest time required for maximum loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both Gram negative bacteria, Escherichia coli, and Gram positive bacteria, Bacillus anthracis and Staphylococcus aureus. © 2011 American Chemical Society.

  9. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N. [Laboratoire des Technologies de la Microélectronique, CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-02-29

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a “minor” effect on the ion flux and the shape of the IVDF.

  10. Effect of plasma superficial treatments on antibacterial functionalization and coloration of cellulosic fabrics

    Science.gov (United States)

    Ibrahim, Nabil A.; Eid, Basma M.; Abdel-Aziz, Mohamed S.

    2017-01-01

    Remarkable improvement in antibacterial activity and durability of different cellulosic substrates namely cotton, linen, viscose and lyocell was achieved by pre-surface modification using N2-plasma to create new active and binding sites, -NH2 groups, onto the modified fabric surfaces followed by subsequent loading of biosynthesized silver nanoparticles (Ag NPs) alone and in combination with certain antibiotics using exhaustion method. The imparted antibacterial activity against both G+ve (S. aureus) and G-ve (E. coli) pathogens was governed by type of substrate, extent of modification and subsequent loading of antibacterial agent, synergistic effect, and antibacterial activity as well as type of harmful bacteria. A remarkable antibacterial activity still retained even after 15 washings. In addition, incorporation of Ag NPs into pigment printing paste and into acid dyeing bath for combined coloration and functionalization of O2-plasma and N2-plasma pre-modified substrates respectively were successfully achieved. Moreover, both SEM images and EDS spectra of selected substrates revealed the change in surface morphology as well as the presence of the loaded Ag element onto the post-treated substrates.

  11. Associations between plasma tenofovir concentration and renal function markers in HIV-infected women

    Directory of Open Access Journals (Sweden)

    Mwila Mulubwa

    2016-02-01

    Full Text Available Background: Tenofovir disoproxil fumarate (TDF has been associated with kidney tubulardys function and reduced renal function. Limited studies were performed in Europe and Asia that related plasma tenofovir (TFV concentration with renal function; no such studies to date have been performed on Africans.Objective: To investigate the correlation between plasma tenofovir (TFV concentration and certain renal function markers in HIV-infected women on TDF antiretroviral therapy (ART.These markers were also compared to a HIV-uninfected control group.Methods: HIV-infected women (n = 30 on TDF-based ART were matched with 30 controls forage and body mass index. Renal markers analysed were estimated glomerular filtration rate (eGFR, creatinine clearance (CrCl, serum creatinine, albuminuria, glucosuria, serum urea, serum uric acid, urine sodium and maximum tubular reabsorption of phosphate. Baseline eGFR and CrCl data were obtained retrospectively for the HIV-infected women. Plasma TFV was assayed using a validated HPLC-MS/MS method. Step wise regression, Mann–Whitney test, unpaired and paired t-tests were applied in the statistical analyses.Results: TFV concentration was independently associated with albuminuria (adjusted r2 = 0.339; p = 0.001 in HIV-infected women. In the adjusted (weight analysis, eGFR (p = 0.038,CrCl (p = 0.032 and albuminuria (p = 0.048 were significantly higher in HIV-infected compared to the uninfected women, but eGFR was abnormally high in HIV-infected women. Both eGFR (p < 0.001 and CrCl (p = 0.008 increased from baseline to follow-up in HIV-infected women.Conclusion: Plasma TFV concentration was associated with increased albuminuria in HIV infected women in this sub-study. Both eGFR and CrCl were increased in HIV-infected women from baseline. These findings should be confirmed in larger studies, and hyperfiltration in HIV-infected women warrants further investigation.

  12. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack

    DEFF Research Database (Denmark)

    Liu, Jun; Elmore, James M.; Fuglsang, Anja Thoe

    2009-01-01

    purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H+-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines...... stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H+-ATPase to regulate stomatal...

  13. Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: Thermodynamic of cation-basic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Denis L., E-mail: denis@cpd.ufmt.br [Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiaba, Mato Grosso, 78060 900 (Brazil); Leidens, Victor L.; Viana, Rubia R. [Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiaba, Mato Grosso, 78060 900 (Brazil); Airoldi, Claudio [Chemistry Institute, State University of Campinas, P.O. Box 6154, 13084-971 Campinas, Sao Paulo (Brazil)

    2010-08-15

    The compound N-[3-(trimethoxysilyl)propyl]diethylenetriamine (MPDET) was anchored onto Amazon kaolinite surface (KLT) by heterogeneous route. The modified and natural kaolinite clay samples were characterized by transmission electron microscopy (TEM), scanning electron microscopic (SEM), N{sub 2} adsorption, powder X-ray diffraction, thermal analysis, ion exchange capacities, and nuclear magnetic nuclei of {sup 29}Si and {sup 13}C. The well-defined peaks obtained in the {sup 13}C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The adsorption of uranyl on natural (KLT) and modified (KLT{sub MPDET}) kaolinite clays was investigated as a function of the solution pH, metal concentration, temperature, and ionic strength. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 8.37 x 10{sup -3} and 13.87 x 10{sup -3} mmol g{sup -1} for KLT and KLT{sub MPDET} at 298 K, respectively. The energetic effects ({Delta}{sub int}H, {Delta}{sub int}G, and {Delta}{sub int}S) caused by metal cations adsorption were determined through calorimetric titrations.

  14. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  15. Chemical thermodynamics: plenary review.

    Science.gov (United States)

    Fegley, B., Jr.

    1990-05-01

    The invited and contributed papers dealing with the applications of chemical thermodynamics to planetary atmospheres research are briefly reviewed. The key areas for future applications of chemical thermodynamics research to planetary atmospheres are also described.

  16. Comparative study between cold plasma and hot plasma with ion beam and loss-cone distribution function by particle aspect approach

    Science.gov (United States)

    Patel, Soniya; Varma, P.; Tiwari, M. S.

    2011-03-01

    The electromagnetic ion-cyclotron (EMIC) instabilities with isotropic ion beam and general loss-cone distribution of cold and hot core plasmas are discussed. The growth rate, parallel and perpendicular resonance energies of the electromagnetic ion-cyclotron waves in a low β (ratio of plasma pressure to magnetic pressure), homogeneous plasma have been obtained using the dispersion relation for cold and hot plasmas. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by isotropic ion beam. It is assumed that resonant particles and ion beam participate in energy exchange with the wave whereas non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in cold and hot plasmas by the energy conservation method with a general loss-cone distribution function. The thermal anisotropy of the core plasma acts as a source of free energy for EMIC wave and enhances the growth rate. It is noted that the EMIC wave emissions occur by extracting energy of perpendicularly heated ions in the presence of up flowing ion beam and steep loss-cone distribution in the anisotropic magnetosphere. The effect of the steep loss-cone distribution is to enhance the growth rate of the EMIC wave. The heating of ions perpendicular and parallel to the magnetic field is discussed along with EMIC wave emission in the auroral acceleration region. The results are interpreted for the space plasma parameters appropriate to the auroral acceleration region of the earth's magnetoplasma.

  17. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  18. Renal function and plasma dabigatran level measured at trough by diluted thrombin time assay

    Directory of Open Access Journals (Sweden)

    Marta E. Martinuzzo

    2017-02-01

    Full Text Available Dabigatran etexilate (direct thrombin inhibitor is effective in preventing embolic stroke in patients with atrial fibrillation. It does not require laboratory control, but given the high renal elimination, its measurement in plasma is important in renal failure. The objectives of the study were to verify the analytical quality of the diluted thrombin time assay for measurement of dabigatran plasma concentration (cc, correlate cc with classic coagulation assays, prothrombin time (PT and activated partial thromboplastin time (APTT, and evaluate them according to the creatinine clearance (CLCr. Forty plasma samples of patients (34 consecutive and 6 suspected of drug accumulation receiving dabigatran at 150 (n = 19 or 110 (n = 21 mg/12 hours were collected. Blood samples were drawn at 10-14 hours of the last intake. Dabigatran concentration was determined by diluted thrombin time (HemosIl DTI, Instrumentation Laboratory (IL. PT and APTT (IL were performed on two fotooptical coagulometers, ACL TOP 300 and 500 (IL. DTI presented intra-assay coefficient of variation < 5.4% and inter-assay < 6%, linearity range 0-493 ng/ml. Patients' cc: median 83 (4-945 ng/ml. Individuals with CLCr in the lowest tertile (22.6-46.1 ml/min showed significantly higher median cc: 308 (49-945, compared to the average 72 (12-190 and highest tertile, 60 (4-118 ng/ml. Correlation between cc and APTT or PT were moderate, r2 = 0.59 and -0.66, p < 0.0001, respectively. DTI test allowed us to quantify plasma dabigatran levels, both in patients with normal or altered renal function, representing a useful tool in clinical situations such as renal failure, pre surgery or emergencies

  19. Renal function and plasma levels of arginine vasotocin during free flight in pigeons.

    Science.gov (United States)

    Giladi, I; Goldstein, D L; Pinshow, B; Gerstberger, R

    1997-12-01

    We examined urinary water loss and plasma levels of arginine vasotocin (AVT) in free-flying, tippler pigeons trained to fly continuously for up to 5 h. First, we used [3H]polyethyleneglycol ([3H]PEG) as a glomerular filtration marker by implanting an osmotic minipump into each bird. In two flights (10 birds in winter at an ambient temperature of 13-15 degrees C and seven in summer at 23 degrees C), we measured pre-flight (hydrated, resting control birds) and post-flight [3H]PEG activity and osmolality in blood and ureteral urine. For comparison, we measured these variables in 10 birds in winter before and after controlled dehydration (24 h at 25 or 30 degrees C). Second, we measured plasma levels of AVT in 6-8 birds before and immediately after each of three different summer flights. Urine osmolality increased significantly by up to three times the control level in both post-flight and dehydrated pigeons; urine:plasma osmolality ratios did not exceed 2. Compared with controls, glomerular filtration rate (GFR) was significantly lower after flight in summer, but did not change in either post-flight or dehydrated winter pigeons. In winter, mean post-flight urine flow rate (UFR) decreased significantly to less than half the control level, while in summer, post-flight UFR did not differ from control levels. In general, mean filtered water reabsorption (FrH2O) increased from 95 % in controls to 98 % in post-flight and dehydrated birds. Plasma levels of AVT increased after flight to between three and eight times the preflight levels. The data from this first study of kidney function during flight are consistent with previous studies of dehydration in birds and exercise in mammals in which both increased FrH2O and decreased GFR contribute to renal conservation of water.

  20. Fast plasma sintering delivers functional graded materials components with macroporous structures and osseointegration properties.

    Science.gov (United States)

    Godoy, R F; Coathup, M J; Blunn, G W; Alves, A L; Robotti, P; Goodship, A E

    2016-04-13

    We explored the osseointegration potential of two macroporous titanium surfaces obtained using fast plasma sintering (FPS): Ti macroporous structures with 400-600 µmØ pores (TiMac400) and 850-1000 µmØ pores (TiMac850). They were compared against two surfaces currently in clinical use: Ti-Growth® and air plasma spray (Ti-Y367). Each surface was tested, once placed over a Ti-alloy and once onto a CoCr bulk substrate. Implants were placed in medial femoral condyles in 24 sheep. Samples were explanted at four and eight weeks after surgery. Push-out loads were measured using a material-testing system. Bone contact and ingrowth were assessed by histomorphometry and SEM and EDX analyses. Histology showed early osseointegration for all the surfaces tested. At 8 weeks, TiMac400, TiMac850 and Ti-Growth® showed deep bone ingrowth and extended colonisation with newly formed bone. The mechanical push-out force was equal in all tested surfaces. Plasma spray surfaces showed greater bone-implant contact and higher level of pores colonisation with new bone than FPS produced surfaces. However, the void pore area in FPS specimens was significantly higher, yet the FPS porous surfaces allowed a deeper osseointegration of bone to implant. FPS manufactured specimens showed similar osseointegration potential to the plasma spray surfaces for orthopaedic implants. FPS is a useful technology for manufacturing macroporous titanium surfaces. Furthermore, its capability to combine two implantable materials, using bulk CoCr with macroporous titanium surfaces, could be of interest as it enables designers to conceive and manufacture innovative components. FPS delivers functional graded materials components with macroporous structures optimised for osseointegration.

  1. Functional analysis of the TRIB1 associated locus linked to plasma triglycerides and coronary artery disease.

    Science.gov (United States)

    Douvris, Adrianna; Soubeyrand, Sébastien; Naing, Thet; Martinuk, Amy; Nikpay, Majid; Williams, Andrew; Buick, Julie; Yauk, Carole; McPherson, Ruth

    2014-06-03

    The TRIB1 locus has been linked to hepatic triglyceride metabolism in mice and to plasma triglycerides and coronary artery disease in humans. The lipid-associated single nucleotide polymorphisms (SNPs), identified by genome-wide association studies, are located ≈30 kb downstream from TRIB1, suggesting complex regulatory effects on genes or pathways relevant to hepatic triglyceride metabolism. The goal of this study was to investigate the functional relationship between common SNPs at the TRIB1 locus and plasma lipid traits. Characterization of the risk locus reveals that it encompasses a gene, TRIB1-associated locus (TRIBAL), composed of a well-conserved promoter region and an alternatively spliced transcript. Bioinformatic analysis and resequencing identified a single SNP, rs2001844, within the promoter region that associates with increased plasma triglycerides and reduced high-density lipoprotein cholesterol and coronary artery disease risk. Further, correction for triglycerides as a covariate indicated that the genome-wide association studies association is largely dependent on triglycerides. In addition, we show that rs2001844 is an expression trait locus (eQTL) for TRIB1 expression in blood and alters TRIBAL promoter activity in a reporter assay model. The TRIBAL transcript has features typical of long noncoding RNAs, including poor sequence conservation. Modulation of TRIBAL expression had limited impact on either TRIB1 or lipid regulatory genes mRNA levels in human hepatocyte models. In contrast, TRIB1 knockdown markedly increased TRIBAL expression in HepG2 cells and primary human hepatocytes. These studies demonstrate an interplay between a novel locus, TRIBAL, and TRIB1. TRIBAL is located in the genome-wide association studies identified risk locus, responds to altered expression of TRIB1, harbors a risk SNP that is an eQTL for TRIB1 expression, and associates with plasma triglyceride concentrations. © 2014 The Authors. Published on behalf of the

  2. CO2 capture performance of bi-functional activated bleaching earth modified with basic-alcoholic solution and functionalization with monoethanolamine: isotherms, kinetics and thermodynamics.

    Science.gov (United States)

    Pongstabodee, Sangobtip; Pornaroontham, Phuwadej; Pintuyothin, Nuthapol; Pootrakulchote, Nuttapol; Thouchprasitchai, Nutthavich

    2016-10-01

    CO2 capture performance of bifunctional activated bleaching earth (ABE) was investigated at atmospheric pressure. The sorbents were characterized by means of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Caron-Hydrogen-Nitrogen analysis (CHN), Fourier transform infrared (FT-IR) and thermal gravimetric analysis (TGA). The CO2 capacity was enhanced via basic-modification and monoethanolamine (MEA) loading of the ABE sorbent to obtain a bifunctional surface property. Here, basic-modified calcined ABE with a 30wt.% MEA loading (SAB-30) showed the highest CO2 capture capacity, but this was decreased with excess MEA loading (>30wt.%). At a 10% (V/V) initial CO2 concentration feed, the maximum capacity of SAB-30 increased from 2.71mmol/g at 30°C (without adding moisture to the feed) to 3.3mmol/g at 50°C when adding 10% (V/V) moisture to the feed. Increasing the moisture concentration further reduced the maximum CO2 capacity due to the blocking effect of the excess moisture on the sorbent surface. However, SAB-30 could completely capture CO2 even in a 100% (V/V) initial CO2 concentration feed. A maximum CO2 capacity of 5.7mmol/g for SAB-30 was achieved at 30°C. Varying the ratio of sorbent weight to total flow rate of the gas stream had no discernible effect on the equilibrium CO2 capture capacity. Avrami's equation and Toth's isotherm model provided a good fitting for the data and suggested the presence of more than one reaction pathway in the CO2 capture process and the heterogeneous adsorption surface of SAB-30. Thermodynamics studies revealed that CO2 capture on the bifunctional SAB-30 is feasible, spontaneous and exothermic in nature.

  3. Understanding Thermodynamic and Spectroscopic Properties of Tetragonal Mn12 Single-Molecule Magnets from Combined Density Functional Theory/Spin-Hamiltonian Calculations.

    Science.gov (United States)

    Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin

    2016-09-01

    We apply broken-symmetry density functional theory to determine isotropic exchange-coupling constants and local zero-field splitting (ZFS) tensors for the tetragonal Mn12(t)BuAc single-molecule magnet. The obtained parametrization of the many-spin Hamiltonian (MSH), taking into account all 12 spin centers, is assessed by comparing theoretical predictions for thermodynamic and spectroscopic properties with available experimental data. The magnetic susceptibility (calculated by the finite-temperature Lanczos method) is well approximated, and the intermultiplet excitation spectrum from inelastic neutron scattering (INS) experiments is correctly reproduced. In these respects, the present parametrization of the 12-spin model represents a significant improvement over previous theoretical estimates of exchange-coupling constants in Mn12, and additionally offers a refined interpretation of INS spectra. Treating anisotropic interactions at the third order of perturbation theory, the MSH is mapped onto the giant-spin Hamiltonian describing the S = 10 ground multiplet. Although the agreement with high-field EPR experiments is not perfect, the results clearly point in the right direction and for the first time rationalize the angular dependence of the transverse-field spectra from a fully microscopic viewpoint. Importantly, transverse anisotropy of the effective S = 10 manifold is explicitly shown to arise largely from the ZFS-induced mixing of exchange multiplets. This effect is given a thorough analysis in the approximate D2d spin-permutational symmetry group of the exchange Hamiltonian.

  4. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive SU(w) Fermi Gases

    Science.gov (United States)

    Yu, Yi-Cong; Guan, Xi-Wen

    2017-06-01

    We present a unified derivation of the pressure equation of states, thermodynamics and scaling functions for the one-dimensional (1D) strongly attractive Fermi gases with SU(w) symmetry. These physical quantities provide a rigorous understanding on a universality class of quantum criticality characterized by the critical exponents z = 2 and correlation length exponent ν = 1/2. Such a universality class of quantum criticality can occur when the Fermi sea of one branch of charge bound states starts to fill or becomes gapped at zero temperature. The quantum critical cone can be determined by the double peaks in specific heat, which serve to mark two crossover temperatures fanning out from the critical point. Our method opens to further study on quantum phases and phase transitions in strongly interacting fermions with large SU(w) and non-SU(w) symmetries in one dimension. Supported by the National Natural Science Foundation of China under Grant No 11374331 and the key NSFC under Grant No 11534014. XWG has been partially supported by the Australian Research Council.

  5. Calculation of thermodynamic functions of saturated solid solution of AgIn2Te3I compound in the Ag-In-Te-I system

    Science.gov (United States)

    Moroz, Mykola; Prokhorenko, Sergiy; Prokhorenko, Myroslava; Reshetnyak, Oleksandr

    2016-12-01

    Triangulation of Ag-In-Te-I system in the vicinity of AgIn2Te3I compound was investigated by X-ray diffraction and differential thermal analysis methods. The spatial position of the phase region AgIn2Te3I-InTe-Ag2Te-AgI regarding the figurative point of silver was used in order to write the equation of virtual potential-forming reaction. Potential-forming reaction was performed in electrochemical cell (ECC) of the type (-) C | Ag | Ag3GeS3I(Br) glass | D | C (+) where C are inert (graphite) electrodes; Ag and D are the electrodes of the ECC; D represents the alloy of four-phase region; Ag3GeS3I glass is a membrane with purely ionic Ag+ conductivity). Linear dependence of the EMF of cell on temperature in the range of 440-480 K was used to calculate the standard thermodynamic functions of saturated solid solution of AgIn2Te3I compound in Ag-In-Te-I system.

  6. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  7. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  8. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  9. Equation of State and Thermodynamic Functions of the Ising-like Magnet at $T>T_c$

    CERN Document Server

    Kozlovskii, Miroslaw P

    2006-01-01

    The 3D Ising-like system in the external field is described using the non-perturbative collective variables method. The universal as well as nonuniversal system characteristics are obtained within the framework of this approach. The calculations are carried out on the microscopic level starting from the Hamiltonian. They are valid in the whole $h-T$ plane of the critical region. It is established, that the contributions related with wave vector values $\\vk\\to0$ exhibit the properties of the total system near the critical point. The behaviour of the susceptibility as function of the temperature in the presence of the field is investigated. The locations of the maximums susceptibility on the temperature scale for different values of the field are established.

  10. Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li4SiO4 and its capability for CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Parlinski, K.

    2011-01-01

    The structural, electronic, lattice dynamical, optical, thermodynamic, and CO{sub 2} capture properties of monoclinic and triclinic phases of Li{sub 4}SiO{sub 4} are investigated by combining density functional theory with phonon lattice dynamics calculations. We found that these two phases have some similarities in their bulk and thermodynamic properties. The calculated bulk modulus and the cohesive energies of these two phases are close to each other. Although both of them are insulators, the monoclinic phase of Li{sub 4}SiO{sub 4} has a direct band gap of 5.24 eV while the triclinic Li{sub 4}SiO{sub 4} phase has an indirect band gap of 4.98 eV. In both phases of Li{sub 4}SiO{sub 4}, the s orbital of O mainly contributes to the lower-energy second valence band (VB{sub 2}) and the p orbitals contribute to the fist valence band (VB{sub 1}) and the conduction bands (CBs). The s orbital of Si mainly contributes to the lower portions of the VB1 and VB{sub 2}, and Si p orbitals mainly contribute to the higher portions of the VB{sub 1} and VB{sub 2}. The s and p orbitals of Li contribute to both VBs and to CBs, and Li p orbitals have a higher contribution than the Li s orbital. There is possibly a phonon soft mode existing in triclinic {gamma}-Li{sub 4}SiO{sub 4}; in the monoclinic Li{sub 4}SiO{sub 4}, there are three phonon soft modes, which correspond to the one type of Li disordered over a few sites. Their LO-TO splitting indicates that both phases of Li{sub 4}SiO{sub 4} are polar anisotropic materials. The calculated infrared absorption spectra for LO and TO modes are different for these two phases of Li{sub 4}SiO{sub 4}. The calculated relationships of the chemical potential versus temperature and CO{sub 2} pressure for reaction of Li{sub 4}SiO{sub 4} with CO{sub 2} shows that Li{sub 4}SiO{sub 4} could be a good candidate for a high-temperature CO{sub 2} sorbent while used for postcombustion capture technology.

  11. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  12. The Thermodynamic Machinery of Life

    CERN Document Server

    Kurzynski, Michal

    2006-01-01

    Living organisms are open thermodynamic systems whose functional structure has developed and been kinetically frozen during the historical process of biological evolution. A thermodynamics of both nonequilibrium and complex systems is needed for their description. In this book, the foundations of such a thermodynamics are presented. Biological processes at the cellular level are considered as coupled chemical reactions and transport processes across internal and the cytoplasmic membrane. All these processes are catalyzed by specific enzymes hence the kinetics of enzymatic catalysis and its control are described here in detail. The coupling of several processes through a common enzyme is considered in the context of free energy or signal transduction. Special attention is paid to evidence for a rich stochastic internal dynamics of native proteins and its possible role in the control of enzyme activity and in the action of biological molecular machines.

  13. Nanofluidics thermodynamic and transport properties

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2014-01-01

    This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...

  14. Local non-equilibrium thermodynamics.

    Science.gov (United States)

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-16

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  15. Statistical thermodynamics of clustered populations.

    Science.gov (United States)

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  16. Pitavastatin and HDL: Effects on plasma levels and function(s).

    Science.gov (United States)

    Pirillo, Angela; Catapano, Alberico L

    2017-07-01

    Low high density lipoprotein cholesterol (HDL-C) levels represent an independent risk factor for cardiovascular disease; in addition to the reduced HDL-C levels commonly observed in patients at cardiovascular risk, the presence of dysfunctional HDL, i.e. HDL with reduced atheroprotective properties, has been reported. Despite the established inverse correlation between HDL-C levels and cardiovascular risk, several clinical trials with HDL-C-increasing drugs (such as niacin, CETP inhibitors or fibrate) failed to demonstrate that a significant rise in HDL-C levels translate into a cardiovascular benefit. Statins, that are the most used lipid-lowering drugs, can also increase HDL-C levels, although this effect is highly variable among studies and statins; the most recent developed statin, pitavastatin, beside its role as LDL-C-lowering agent, increases HDL-C levels at a significantly higher extent and progressively upon treatment; such increase was observed also when patients where shifted from another statin to pitavastatin. The stratification by baseline HDL-C levels revealed that only pitavastatin significantly increased HDL-C levels in patients with baseline HDL-C ≤45 mg/dl, while no changes were observed in patients with higher baseline HDL-C levels. In the last years the hypothesis that functional properties of HDL may be more relevant than HDL-C levels has risen from several observations. The treatment with pitavastatin not only increased HDL-C levels, but also increased the phospholipid content of HDL, increased the HDL efflux capacity and their anti-oxidant properties. These observations suggest that, besides its high LDL-C-lowering effect, pitavastatin also exhibits a significantly higher ability to increase HDL-C levels and may also positively affect the quality and functionality of HDL particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    Science.gov (United States)

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  18. Parameterization of the Non-Local Thermodynamic Equilibrium Source Function with Chemical Production by an Equivalent Two-Level Model

    Institute of Scientific and Technical Information of China (English)

    Xun ZHU

    2003-01-01

    The classic two-level or equivalent two-level model that includes only the statistical equilibriumof radiative and thermal processes of excitation and quenching between two vibrational energy levelsis extended by adding chemical production to the rate equations. The modifications to the non-localthermodynamic equilibrium source function and cooling rate are parameterized by φc, which characterizesthe ratio of chemical production to collisional quenching. For applications of broadband emission of O3 at9.6 μm, the non-LTE effect of chemical production on the cooling rate and limb emission is proportionalto the ratio of O to O3. For a typical [O]/[O3], the maximum enhancements of limb radiance and coolingrate are about 15%-30% and 0.03-0.05 K day-1, respectively, both occurring near the mesopause regions.This suggests that the broadband limb radiance above ~80 km is sensitive to O3 density but not sensitiveto the direct cooling rate along the line-of-sight, which makes O3 retrieval feasible but the direct coolingrate retrieval difficult by using the O3 9.6 μm band limb emission.

  19. Investigations of phase transition, elastic and thermodynamic properties of GaP by using the density functional theory

    Institute of Scientific and Technical Information of China (English)

    Liu Li; Wei Jian-Jun; An Xin-You; Wang Xue-Min; Liu Hui-Na; Wu Wei-Dong

    2011-01-01

    The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT).Lattice constant a0,elastic constants cij,bulk modulus B0 and the pressure derivative of bulk modulus B'0 are calculated.The results are in good agreement with numerous experimental and theoretical data.From the usual condition of equal enthalpies,the phase transition from the ZB to the RS structure occurs at 21.9 GPa,which is close to the experimental value of 22.0 GPa.The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained.According to the quasi-harmonic Debye model,in which the phononic effects are considered,the normalized volume V/Vo,the Debye temperature θ,the heat capacity Cv and the thermal expansion coefficient α are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K.

  20. Prediction of gas-phase thermodynamic properties for polychlorinated naphthalenes using G3X model chemistry and density functional theory.

    Science.gov (United States)

    Wang, Liming; Lv, Guowen

    2010-01-01

    The standard gas-phase enthalpies of formation of polychlorinated naphthalenes (PCNs) have been predicted using G3X model chemistry, density functional theory (DFT), and second-order Muller-Plesset (MP2) theory. Two isodesmic reactions are used for better prediction of formation enthalpies. The first (IR1) employs chlorobenzene as a reference species and the second (IR2) employs polychlorinated benzenes as reference species. Among congeners, PCNs with simultaneous Cl-substitutions at positions 1 and 8 or 4 and 5 are the least stable, where the strong repulsion between Cl-atoms leads to non-planar structures for a few PCNs. The potential energy curves for ring-wagging motions in 1,8- or 4,5-PCNs are also extremely flat in the vicinity of equilibrium conformations, leading to extremely low harmonic frequencies for the ring-wagging modes. The contributions of these ring-wagging modes to entropy, heat capacity, and thermal corrections have been calculated using the numerically evaluated energy levels. The PCN isomer patterns are discussed based on the calculated Gibbs free energies.

  1. Effect of ozone exposure on lung functions and plasma prostaglandin and thromboxane concentrations in guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.D.; Ainsworth, D.; Lam, H.F.; Amdur, M.O.

    1987-03-30

    Male Hartley guinea pigs were exposed either to filtered air or to 1 ppm ozone (O/sub 3/) for 1 hr. At 2, 8, 24, or 48 hr after exposure we measured ventilation, respiratory mechanics, lung volumes, diffusing capacity for carbon monoxide (DLCO), and alveolar volume (VA) in anesthetized, tracheotomized animals. Respiratory frequency and tidal volume were unchanged in all groups. Pulmonary resistance was increased 2 hr after O/sub 3/ but returned to control at 8 hr and thereafter. Prolonged reductions in lung volumes (total lung capacity, vital capacity, functional residual capacity, and residual volume) as well as in DLCO and VA occurred after O/sub 3/, with maximum decreases at 8 and 24 hr postexposure. Increased ratios of wet lung weight to body weight were seen at 2, 8, and 24 hr. In separate groups of animals, also exposed either to filtered air or to 1 ppm O/sub 3/, plasma eicosanoid (EC) concentrations were measured at 2, 8, 24, 48, or 72 hr after exposure. Significant increases in thromboxane B2 concentrations were seen at 2, 24, and 48 hr after exposure. Plasma concentrations of 6-keto prostaglandin F1 alpha (PGF1 alpha) and prostaglandin E1 (PGE1) were increased at 24 hr and at 24, 48, and 72 hr, respectively. The nature of this long-term pulmonary response to a short-term exposure to O/sub 3/ suggests alveolar involvement, including probable alveolar duct constriction and localized pulmonary edema. Although changes in plasma EC concentrations were observed concurrent with impaired lung functions, no simple causal relationship was apparent from these studies.

  2. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution.

    Science.gov (United States)

    Sarparanta, Mirkka; Bimbo, Luis M; Rytkönen, Jussi; Mäkilä, Ermei; Laaksonen, Timo J; Laaksonen, Päivi; Nyman, Markus; Salonen, Jarno; Linder, Markus B; Hirvonen, Jouni; Santos, Hélder A; Airaksinen, Anu J

    2012-03-01

    Rapid immune recognition and subsequent elimination from the circulation hampers the use of many nanomaterials as carriers to targeted drug delivery and controlled release in the intravenous route. Here, we report the effect of a functional self-assembled protein coating on the intravenous biodistribution of (18)F-labeled thermally hydrocarbonized porous silicon (THCPSi) nanoparticles in rats. (18)F-Radiolabeling enables the sensitive and easy quantification of nanoparticles in tissues using radiometric methods and allows imaging of the nanoparticle biodistribution with positron emission tomography. Coating with Trichoderma reesei HFBII altered the hydrophobicity of (18)F-THCPSi nanoparticles and resulted in a pronounced change in the degree of plasma protein adsorption to the nanoparticle surface in vitro. The HFBII-THCPSi nanoparticles were biocompatible in RAW 264.7 macrophages and HepG2 liver cells making their intravenous administration feasible. In vivo, the distribution of the nanoparticles between the liver and spleen, the major mononuclear phagocyte system organs in the body, was altered compared to that of uncoated (18)F-THCPSi. Identification of the adsorbed proteins revealed that certain opsonins and apolipoproteins are enriched in HFBII-functionalized nanoparticles, whereas the adsorption of abundant plasma components such as serum albumin and fibrinogen is decreased.

  3. Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings

    Directory of Open Access Journals (Sweden)

    Storey Dan

    2007-01-01

    Full Text Available AbstractBioactive coatings are in high demand to control cellular functions for numerous medical devices. The objective of this in vitro study was to characterize for the first time fibroblast (fibrous scar tissue forming cells adhesion and proliferation on an important polymeric biomaterial (silicone coated with titanium using a novel ionic plasma deposition (IPD process. Fibroblasts are one of the first anchorage-dependent cells to arrive at an implant surface during the wound healing process. Persistent excessive functions of fibroblasts have been linked to detrimental fibrous tissue formation which may cause implant failure. The IPD process creates a surface-engineered nanostructure (with features usually below 100 nm by first using a vacuum to remove all contaminants, then guiding charged metallic ions or plasma to the surface of a medical device at ambient temperature. Results demonstrated that compared to currently used titanium and uncoated silicone, silicone coated with titanium using IPD significantly decreased fibroblast adhesion and proliferation. Results also showed competitively increased osteoblast (bone-forming cells over fibroblast adhesion on silicone coated with titanium; in contrast, osteoblast adhesion was not competitively increased over fibroblast adhesion on uncoated silicone or titanium controls. In this manner, this study strongly suggests that IPD should be further studied for biomaterial applications in which fibrous tissue encapsulation is undesirable (such as for orthopedic implants, cardiovascular components, etc..

  4. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults.

    Science.gov (United States)

    Engler, Mary B; Engler, Marguerite M; Chen, Chung Y; Malloy, Mary J; Browne, Amanda; Chiu, Elisa Y; Kwak, Ho-Kyung; Milbury, Paul; Paul, Steven M; Blumberg, Jeffrey; Mietus-Snyder, Michele L

    2004-06-01

    Dark chocolate derived from the plant (Theobroma cacao) is a rich source of flavonoids. Cardioprotective effects including antioxidant properties, inhibition of platelet activity, and activation of endothelial nitric oxide synthase have been ascribed to the cocoa flavonoids. To investigate the effects of flavonoid-rich dark chocolate on endothelial function, measures of oxidative stress, blood lipids, and blood pressure in healthy adult subjects. The study was a randomized, double-blind, placebo-controlled design conducted over a 2 week period in 21 healthy adult subjects. Subjects were randomly assigned to daily intake of high-flavonoid (213 mg procyanidins, 46 mg epicatechin) or low-flavonoid dark chocolate bars (46 g, 1.6 oz). High-flavonoid chocolate consumption improved endothelium-dependent flow-mediated dilation (FMD) of the brachial artery (mean change = 1.3 +/- 0.7%) as compared to low-flavonoid chocolate consumption (mean change = -0.96 +/- 0.5%) (p = 0.024). No significant differences were noted in the resistance to LDL oxidation, total antioxidant capacity, 8-isoprostanes, blood pressure, lipid parameters, body weight or body mass index (BMI) between the two groups. Plasma epicatechin concentrations were markedly increased at 2 weeks in the high-flavonoid group (204.4 +/- 18.5 nmol/L, p chocolate improves endothelial function and is associated with an increase in plasma epicatechin concentrations in healthy adults. No changes in oxidative stress measures, lipid profiles, blood pressure, body weight or BMI were seen.

  5. Longitudinal dielectric function and dispersion relation of electrostatic waves in relativistic plasmas

    Science.gov (United States)

    Touil, B.; Bendib, A.; Bendib-Kalache, K.

    2017-02-01

    The longitudinal dielectric function is derived analytically from the relativistic Vlasov equation for arbitrary values of the relevant parameters z = m c 2 / T , where m is the rest electron mass, c is the speed of light, and T is the electron temperature in energy units. A new analytical approach based on the Legendre polynomial expansion and continued fractions was used. Analytical expression of the electron distribution function was derived. The real part of the dispersion relation and the damping rate of electron plasma waves are calculated both analytically and numerically in the whole range of the parameter z . The results obtained improve significantly the previous results reported in the literature. For practical purposes, explicit expressions of the real part of the dispersion relation and the damping rate in the range z > 30 and strongly relativistic regime are also proposed.

  6. Biofield-effect protein-sensor: Plasma functionalization of polyaniline, protein immobilization, and sensing mechanism

    Science.gov (United States)

    Cho, Chae-Ryong; Lee, Hyun-Uk; Ahn, Kyun; Jeong, Se-Young; Choi, Jun-Hee; Kim, Jinwoo; Cho, Jiung

    2014-06-01

    We report the fabrication of a biofield-effect protein-sensor (BioFEP) based on atmospheric-pressure plasma (AP) treatment of a conducting polyaniline (PANI) film. Successive H2 and O2 AP (OHAP) treatment generated dominant hydrophilic -OH and O=CO- functional groups on the PANI film surface, which served as strong binding sites to immobilize bovine serum albumin (BSA) protein molecules. The output current changes of the BioFEP as a function of BSA concentration were obtained. The resistance of the OHAP surface could be sensitively increased from 2.5 × 108 Ω to 2.0 × 1012 Ω with increasing BSA concentrations in the range of 0.025-4 μg/ml. The results suggest that the method is a simple and cost-effective tool to determine the concentration of BSA by measuring electrical resistance.

  7. Angular function for the Compton scattering in mildly and ultra relativistic astrophysical plasmas

    CERN Document Server

    Sazonov, S Y; Sazonov, Sergei Y.; Sunyaev, Rashid A.

    1999-01-01

    Compton scattering of low-frequency radiation by an isotropic distribution of(i) mildly and (ii) ultra relativistic electrons is considered. It is shownthat the ensemble-averaged differential cross-section in this case isnoticeably different from the Rayleigh phase function. The scattering by anensemble of ultra-relativistic electrons obeys the law p=1-cos(alpha), wherealpha is the scattering angle; hence photons are preferentially scatteredbackwards. This contrasts the forward scattering behaviour in the Klein-Nishinaregime. Analytical formulae describing first-order Klein-Nishina andfinite-electron-energy corrections to the simple relation above are given forvarious energy distributions of electrons: monoenergetic,relativistic-Maxwellian, and power-law. A similar formula is also given for themildly relativistic (with respect to the photon energy and electrontemperature) corrections to the Rayleigh angular function. One ofmanifestations of the phenomenon under consideration is that hot plasma is morereflecti...

  8. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    Science.gov (United States)

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  9. Thermodynamic and kinetic characterization of two methyl-accepting chemotaxis heme sensors from Geobacter sulfurreducens reveals the structural origin of their functional difference.

    Science.gov (United States)

    Silva, Marta A; Valente, Raquel C; Pokkuluri, P Raj; Turner, David L; Salgueiro, Carlos A; Catarino, Teresa

    2014-06-01

    The periplasmic sensor domains GSU582 and GSU935 are part of methyl-accepting chemotaxis proteins of the bacterium Geobacter sulfurreducens containing one c-type heme and a PAS-like fold. Their spectroscopic properties were shown previously to share similar spectral features. In both sensors, the heme group is in the high-spin form in the oxidized state and low-spin after reduction and binding of a methionine residue. Therefore, it was proposed that this redox-linked ligand switch might be related to the signal transduction mechanism. We now report the thermodynamic and kinetic characterization of the sensors GSU582 and GSU935 by visible spectroscopy and stopped-flow techniques, at several pH and ionic strength values. Despite their similar spectroscopic features, the midpoint reduction potentials and the rate constants for reduction by dithionite are considerably different in the two sensors. The reduction potentials of both sensors are negative and well framed within the typical anoxic subsurface environments in which Geobacter species predominate. The midpoint reduction potentials of sensor GSU935 are lower than those of GSU582 at all pH and ionic strength values and the same was observed for the reduction rate constants. The origin of the different functional properties of these closely related sensors is rationalized in the terms of the structures. The results suggest that the sensors are designed to function in different working potential ranges, allowing the bacteria to trigger an adequate cellular response in different anoxic subsurface environments. These findings provide an explanation for the co-existence of two similar methyl-accepting chemotaxis proteins in G. sulfurreducens.

  10. Estimation Using an Enhancement Factor on Non Local Thermodynamic Equilibrium Behavior of High-lying Energy Levels of Neutral Atom in Argon Radio-Frequency Inductively-Coupled Plasma.

    Science.gov (United States)

    Wagatsuma, Kazuaki; Satoh, Kozue

    2016-01-01

    This paper describes a plasma-diagnostic method using an enhancement factor on the Boltzmann distribution among emission lines of iron atom in an argon radio-frequency inductively-coupled plasma (ICP). It indicated that Boltzmann plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from a linear relationship. This observation could be explained by the fact that ICP is not in a complete thermodynamic equilibrium between direct excitation to energy levels of iron atom, ionization of iron atom, and radiative decay processes to the ground state. Especially, the recombination of iron ion with captured electron should accompany cascade de-excitations between closely-spaced excited levels just below the ionization limit, the rates of which become slower as a whole; as a result, these high-lying levels might be more populated than the low-lying levels as if a different LTE condition coexists on the high energy side. This overpopulation could be quantitatively estimated using an enhancement factor (EF), which was a ratio of the observed intensity to the expected value extrapolated from the normal distribution on the low energy side. The EFs were generally small (less than 3); therefore, the cascade de-excitation process would slightly contribute to the population of these excited levels. It could be considered from variations of the EF that the overpopulation proceeded to a larger extent at lower radio-frequency forward powers, at higher flow rates of the carrier gas, or at higher observation heights. The reason for this is that the kinetic energy of energetic particles, such as electrons, becomes reduced under all of these plasma conditions, thus enabling the high-lying levels to be more populated by cascade de-excitation processes from iron ion rather than by collisional excitation processes with the energetic particles. A similar Boltzmann analysis using the EF

  11. Thermodynamics for dummies

    CERN Document Server

    Pauken, Mike

    2011-01-01

    Take some heat off the complexity of thermodynamics Does the mere thought of thermodynamics make you sweat? It doesn't have to! This hands-on guide helps you score your highest in a thermodynamics course by offering easily understood, plain-English explanations of how energy is used in things like automobiles, airplanes, air conditioners, and electric power plants. Thermodynamics 101 - take a look at some examples of both natural and man-made thermodynamic systems and get a handle on how energy can be used to perform work Turn up the heat - discover how to use the firs

  12. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  13. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  14. [Disorders of information exchange as a basis for disease formation and the second law of thermodynamics for living thermodynamic systems].

    Science.gov (United States)

    Frolov, V A; Moiseeva, T Iu; Zotov, A K

    1998-01-01

    The second law of thermodynamics and the adaptation law have been utilized for analysis of thermodynamic systems functioning in humans. Disturbances in the information exchange are thought to play a pathogenetic role in the disease onset. A new informational-thermodynamic approach to assessment of the system condition (steady, unsteady) is proposed which may help to develop methods of the disease course prognosis.

  15. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans.

    Science.gov (United States)

    Seweryn, Karolina; Karkowska-Kuleta, Justyna; Wolak, Natalia; Bochenska, Oliwia; Kedracka-Krok, Sylwia; Kozik, Andrzej; Rapala-Kozik, Maria

    2015-01-01

    Cell wall proteins of Candida albicans, besides their best known role in the adhesion of this fungal pathogen to host's tissues, also bind some soluble proteins, present in body fluids and involved in maintaining the biochemical homeostasis of the human organism. In particular, three plasma factors - high-molecular-mass kininogen (HK), factor XII (FXII) and prekallikrein (PPK) - have been shown to adhere to candidal cells. These proteins are involved in the surface-contact-catalyzed production of bradykinin-related peptides (kinins) that contribute to inflammatory states associated with microbial infections. We recently identified several proteins, associated with the candidal cell walls, and probably involved in the binding of HK. In our present study, a list of potential FXII- and PPK-binding proteins was proposed, using an affinity selection (on agarose-coupled FXII or PPK) from a whole mixture of β-1,3-glucanase-extrated cell wall-associated proteins and the mass-spectrometry protein identification. Five of these fungal proteins, including agglutinin-like sequence protein 3 (Als3), triosephosphate isomerase 1 (Tpi1), enolase 1 (Eno1), phosphoglycerate mutase 1 (Gpm1) and glucose-6-phosphate isomerase 1 (Gpi1), were purified and characterized in terms of affinities to the human contact factors, using the surface plasmon resonance measurements. Except Gpm1 that bound only PPK, and Als3 that exhibited an affinity to HK and FXII, the other isolated proteins interacted with all three contact factors. The determined dissociation constants for the identified protein complexes were of 10(-7) M order, and the association rate constants were in a range of 10(4)-10(5) M(-1)s(-1). The identified fungal pathogen-host protein interactions are potential targets for novel anticandidal therapeutic approaches.

  16. Towards highly stable aqueous dispersions of multi-walled carbon nanotubes: the effect of oxygen plasma functionalization.

    Science.gov (United States)

    Garzia Trulli, Marta; Sardella, Eloisa; Palumbo, Fabio; Palazzo, Gerardo; Giannossa, Lorena Carla; Mangone, Annarosa; Comparelli, Roberto; Musso, Simone; Favia, Pietro

    2017-04-01

    In order to improve the dispersion of multi-walled carbon nanotubes (MWCNTs) in aqueous media, their surface functionalization was carried out in O2-fed low-pressure plasmas. Differently from what can be found in the literature of this field, homogeneous functionalization was achieved by generating the plasma inside vials containing the nanotube powders properly stirred. Experimental parameters, such as input power, treatment time and pressure, were varied to investigate their influence on the process efficiency. A detailed characterization of the plasma treated nanotubes, dry and in aqueous suspension, was carried out with a multi-diagnostic analytical approach, to evaluate their surface chemical properties, morphology, structural integrity and stability in the colloidal state. The plasma grafting of polar ionizable (e.g. acid) groups has been proved to successfully limit the agglomeration of MWCNTs and to produce nanotubes suspensions that are stable for one month and more in water.

  17. Stationary distribution functions for ohmic Tokamak-plasmas in the weak-collisional transport regime by MaxEnt principle

    Science.gov (United States)

    Sonnino, Giorgio; Peeters, Philippe; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György

    2015-01-01

    In previous works, we derived stationary density distribution functions (DDF) where the local equilibrium is determined by imposing the maximum entropy (MaxEnt) principle, under the scale invariance restrictions, and the minimum entropy production theorem. In this paper we demonstrate that it is possible to reobtain these DDF solely from the MaxEnt principle subject to suitable scale invariant restrictions in all the variables. For the sake of concreteness, we analyse the example of ohmic, fully ionized, tokamak-plasmas, in the weak-collisional transport regime. In this case we show that it is possible to reinterpret the stationary distribution function in terms of the Prigogine distribution function where the logarithm of the DDF is directly linked to the entropy production of the plasma. This leads to the suggestive idea that also the stationary neoclassical distribution functions, for magnetically confined plasmas in the collisional transport regimes, may be derived solely by the MaxEnt principle.

  18. Ab initio thermodynamic results for warm dense matter

    Science.gov (United States)

    Bonitz, Michael

    2016-10-01

    Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.

  19. Higher Plasma LDL-Cholesterol is Associated with Preserved Executive and Fine Motor Functions in Parkinson’s Disease

    OpenAIRE

    Sterling, Nicholas W.; Lichtenstein, Maya; Lee, Eun-Young; Lewis, Mechelle M.; Evans, Alicia; Eslinger, Paul J.; Du, Guangwei; Gao, Xiang; Chen, Honglei; Kong, Lan; Huang, Xuemei

    2016-01-01

    Plasma low density lipoprotein (LDL) cholesterol has been associated both with risk of Parkinson’s disease (PD) and with age-related changes in cognitive function. This prospective study examined the relationship between baseline plasma LDL-cholesterol and cognitive changes in PD and matched Controls. Fasting plasma LDL-cholesterol levels were obtained at baseline from 64 non-demented PD subjects (62.7 ± 7.9 y) and 64 Controls (61.3 ± 6.8 y). Subjects underwent comprehensive neuropsychologica...

  20. Boar seminal plasma exosomes: effect on sperm function and protein identification by sequencing.

    Science.gov (United States)

    Piehl, Lidia L; Fischman, M Laura; Hellman, Ulf; Cisale, Humberto; Miranda, Patricia V

    2013-04-15

    Mammalian seminal plasma contains membranous vesicles (exosomes), with a high content of cholesterol and sphingomyelin and a complex protein composition. Their physiological role is uncertain because sperm stabilization and activation effects have been reported. To analyze a putative modulatory role for semen exosomes on sperm activity in the boar, the effects of these vesicles on several sperm functional parameters were examined. Additionally, boar exosome proteins were sequenced and their incorporation into sperm was explored. Boar sperm were incubated under conditions that induce capacitation, manifested as increased tyrosine phosphorylation, cholesterol loss and greater fluidity in apical membranes, and the ability to undergo the lysophosphatidylcholine-induced acrosome reaction. After establishing this cluster of capacitation-dependent functional parameters, the effect produced by exosomes when present during or after sperm capacitation was analyzed. Exosomes inhibited the capacitation-dependent cholesterol efflux and fluidity increase in apical membranes, and the disappearance of a 14-kD phosphorylated polypeptide. In contrast, the acrosome reaction (spontaneous and lysophosphatidylcholine-induced) was not affected, and sperm binding to the oocyte zona pellucida was reduced only when vesicles were present during gamete coincubation. Liposomes with a lipid composition similar to that present in exosomes mimicked these effects, except the one on zona pellucida binding. Interaction between exosomes and sperm was confirmed by transfer of aminopeptidase activity. In addition, the major exosome protein, identified as actin, appeared to associate with sperm after coincubation. Exosome composition had a predominance for structural proteins (actin, plastin, ezrin, and condensin), enzymes, and several porcine seminal plasma-specific polypeptides (e.g., spermadhesins). Transfer of proteins from exosome to sperm and their ability to block cholesterol efflux supports a

  1. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    Science.gov (United States)

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  2. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    Science.gov (United States)

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  3. Thermodynamical string fragmentation

    Science.gov (United States)

    Fischer, Nadine; Sjöstrand, Torbjörn

    2017-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  4. Thermodynamical String Fragmentation

    CERN Document Server

    Fischer, Nadine

    2016-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from...

  5. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Michael D., E-mail: mdlogue@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  6. Re-thinking the functions of IgA+ plasma cells

    Science.gov (United States)

    Gommerman, Jennifer L; Rojas, Olga L; Fritz, Jörg H

    2014-01-01

    The intestinal mucosa harbors the largest population of antibody (Ab)-secreting plasma cells (PC) in the human body, producing daily several grams of immunoglobulin A (IgA). IgA has many functions, serving as a first-line barrier that protects the mucosal epithelium from pathogens, toxins and food antigens (Ag), shaping the intestinal microbiota, and regulating host–commensal homeostasis. Signals induced by commensal colonization are central for regulating IgA induction, maintenance, positioning and function and the number of IgA+ PC is dramatically reduced in neonates and germ-free (GF) animals. Recent evidence demonstrates that the innate immune effector molecules tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) are required for IgA+ PC homeostasis during the steady state and infection. Moreover, new functions ascribed to PC independent of Ab secretion continue to emerge, suggesting that PC, including IgA+ PC, should be re-examined in the context of inflammation and infection. Here, we outline mechanisms of IgA+ PC generation and survival, reviewing their functions in health and disease. PMID:25483334

  7. Protein kinase Gin4 negatively regulates flippase function and controls plasma membrane asymmetry.

    Science.gov (United States)

    Roelants, Françoise M; Su, Brooke M; von Wulffen, Joachim; Ramachandran, Subramaniam; Sartorel, Elodie; Trott, Amy E; Thorner, Jeremy

    2015-02-02

    Plasma membrane function requires distinct leaflet lipid compositions. Two of the P-type ATPases (flippases) in yeast, Dnf1 and Dnf2, translocate aminoglycerophospholipids from the outer to the inner leaflet, stimulated via phosphorylation by cortically localized protein kinase Fpk1. By monitoring Fpk1 activity in vivo, we found that Fpk1 was hyperactive in cells lacking Gin4, a protein kinase previously implicated in septin collar assembly. Gin4 colocalized with Fpk1 at the cortical site of future bud emergence and phosphorylated Fpk1 at multiple sites, which we mapped. As judged by biochemical and phenotypic criteria, a mutant (Fpk1(11A)), in which 11 sites were mutated to Ala, was hyperactive, causing increased inward transport of phosphatidylethanolamine. Thus, Gin4 is a negative regulator of Fpk1 and therefore an indirect negative regulator of flippase function. Moreover, we found that decreasing flippase function rescued the growth deficiency of four different cytokinesis mutants, which suggests that the primary function of Gin4 is highly localized control of membrane lipid asymmetry and is necessary for optimal cytokinesis. © 2015 Roelants et al.

  8. “Covalent Hydration” Reactions in Model Monomeric Ru 2,2'-Bipyridine Complexes: Thermodynamic Favorability as a Function of Metal Oxidation and Overall Spin States

    Energy Technology Data Exchange (ETDEWEB)

    Ozkanlar, Abdullah; Cape, Jonathan L.; Hurst, James K.; Clark, Aurora E.

    2011-09-05

    Density functional theory (DFT) has been used to investigate the plausibility of water addition to the simple mononuclear ruthenium complexes, [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 2+}/{sup 3+} and [(NH{sub 3}){sub 3}(bpy)RuOH]{sup 3+}, in which the OH fragment adds to the 2,2{prime}-bipyridine (bpy) ligand. Activation of bpy toward water addition has frequently been postulated within the literature, although there exists little definitive experimental evidence for this type of 'covalent hydration'. In this study, we examine the energetic dependence of the reaction upon metal oxidation state, overall spin state of the complex, as well as selectivity for various positions on the bipyridine ring. The thermodynamic favorability is found to be highly dependent upon all three parameters, with free energies of reaction that span favorable and unfavorable regimes. Aqueous addition to [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 3+} was found to be highly favorable for the S = 1/2 state, while reduction of the formal oxidation state on the metal center makes the reaction highly unfavorable. Examination of both facial and meridional isomers reveals that when bipyridine occupies the position trans to the ruthenyl oxo atom, reactivity toward OH addition decreases and the site preferences are altered. The electronic structure and spectroscopic signatures (EPR parameters and simulated spectra) have been determined to aid in recognition of 'covalent hydration' in experimental systems. EPR parameters are found to uniquely characterize the position of the OH addition to the bpy as well as the overall spin state of the system.

  9. Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults.

    Science.gov (United States)

    Xie, Zhuohong; Sintara, Marsha; Chang, Tony; Ou, Boxin

    2015-01-01

    This study was to investigate the absorption and antioxidant effect of a mangosteen-based functional beverage in humans. The beverage contained mangosteen, aloe vera, green tea, and multivitamins. A randomized, double-blind, placebo-controlled clinical trial was conducted with generally healthy male and female subjects between 18 and 60 years of age. Ten men and 10 women participated in this study. Participants were randomly divided into two groups, treatment and placebo group. Participants received either a daily single dose (245 mL) of the beverage or a placebo. Blood samples were collected from each participant at time points 0, 1, 2, 4, and 6 h. The plasma samples were analyzed by LC/MS for α-mangostin and vitamins B2 and B5. Results indicated that the three analytes were bioavailable, with observed C max at around 1 h. The antioxidant capacity measured with the oxygen radical absorbance capacity (ORAC) assay was increased with a maximum effect of 60% after 1 h, and the elevated antioxidant level lasted at least 6 h. This study demonstrated the bioavailability of α-mangostin and B vitamins from a xanthone-rich beverage and the mechanisms of the increase in plasma antioxidant may be direct effects from antioxidants, enhancement of endogenous antioxidant activity through activation of Nrf2 pathway, and synergism of the antioxidants.

  10. Thermodynamic Origin of Life

    CERN Document Server

    Michaelian, K

    2009-01-01

    Understanding the thermodynamic function of life may shed light on its origin. Out of equilibrium structuring in space and time is contingent on continuous entropy production. Entropy production is a measure of the rate of the natural tendency of Nature to explore all available microstates. The process producing the greatest amount of entropy in the biosphere is the absorption and transformation of sunlight, leading to the transpiration of water by plants and cyanobacteria. Here we hypothesize that life began, and exists today, as a dynamic catalyst for the absorption and transformation of sunlight into heat, which could then be efficiently harvested by the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the ultraviolet light that could have penetrated the dense early atmosphere, and are extremely rapid in transforming this light into heat that can be readily absorbed by liquid water. The origin and evolution of life was thus driven...

  11. Sustainable Development within Planetary Boundaries: A Functional Revision of the Definition Based on the Thermodynamics of Complex Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Bart Muys

    2013-05-01

    Full Text Available The dominant paradigm of sustainable development (SD where the environment is just the third pillar of SD has proven inadequate to keep humanity within the safe operational space determined by biophysical planetary boundaries. This implies the need for a revised definition compatible with a nested model of sustainable development, where humanity forms part of the overall social-ecological system, and that would allow more effective sustainable development goals and indicators. In this paper an alternative definition is proposed based on the thermodynamics of open systems applied to ecosystems and human systems. Both sub- systems of the global social-ecological system show in common an increased capability of buffering against disturbances as a consequence of an internal increase of order. Sustainable development is considered an optimization exercise at different scales in time and space based on monitoring the change in the exergy content and exergy dissipation of these two sub- systems of the social-ecological system. In common language it is the increase of human prosperity and well-being without loss of the structure and functioning of the ecosystem. This definition is functional as it allows the straightforward selection of quantitative indicators, discerning sustainable development from unsustainable development, unsustainable stagnation and sustainable retreat. The paper shows that the new definition is compatible with state of the art thinking on ecosystem services, the existence of regime shifts and societal transitions, and resilience. One of the largest challenges in applying the definition is our insufficient understanding of the change in ecosystem structure and function as an endpoint indicator of human action, and its effect on human prosperity and well-being. This implies the continued need to use midpoint indicators of human impact and related thresholds defining the safe operating space of the present generation with respect to

  12. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  13. Carbon Nanofibers Functionalized with Active Screen Plasma-Deposited Metal Nanoparticles for Electrical Energy Storage Devices.

    Science.gov (United States)

    Corujeira Gallo, Santiago; Li, Xiaoying; Fütterer, Klaus; Charitidis, Constantinos A; Dong, Hanshan

    2017-07-12

    Supercapacitors are energy storage devices with higher energy densities than conventional capacitors but lower than batteries or fuel cells. There is a strong interest in increasing the volumetric and gravimetric capacitance of these devices to meet the growing demands of the electrical and electronic sectors. The capacitance depends largely on the electrode material, and carbon nanofibers (CNFs) have attracted much attention because of their relatively low cost, large surface area, and good electrical conductivity as well as chemical and thermal stability. The deposition of metal nanoparticles on CNFs is a promising way to increase their surface properties and, ultimately, the capacitance of the devices. In this study, nickel and silver nanoparticles were deposited on CNFs using the active screen plasma technology. The CNFs were characterized, and their electrochemical performance was assessed in a three-electrode cell. The results show significant improvements over the untreated CNFs, particularly after functionalization with silver nanoparticles.

  14. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  15. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  16. Gallbladder motor function, plasma cholecystokinin and cholecystokinin receptor of gallbladder in cholesterol stone patients

    Institute of Scientific and Technical Information of China (English)

    Jian Zhu; Tian-Quan Han; Sheng Chen; Yu Jiang; Sheng-Dao Zhang

    2005-01-01

    AIM: To study the interactive relationship of gallbladder motor function, plasma cholecystokinin (CCK) and cholecystokinin A receptor (CCK-R) of gallbladder in patients with cholesterol stone disease.METHODS: Gallbladder motility was studied by ultrasonography in 33 patients with gallbladder stone and 10 health subjects as controls. Plasma CCK concentration was measured by radioimmunoassay in fasting status (CCK-f) and in 30 min after lipid test meal (CCK-30).Radioligand method was employed to analyze the amount and activity of CCK-R from 33 gallstone patients having cholecystectomy and 8 persons without gallstone died of severe trauma as controls.RESULTS: The percentage of cholesterol in the gallstone composition was more than 70%. The cholesterol stone type was indicated for the patients with gallbladder stone in this study. Based on the criterion of gallbladder residual fraction of the control group, 33 gallstone patients were divided into two subgroups, contractor group (14 cases)and non-contractor group (19 cases), The concentration of CCK-30 was significantly higher in non-contractor group than that in both contractor group and control group (55.86±3.86 pmol/l vs 37.85±0.88 pmol/l and 37.95±0.74 pmol/L, P<0.01), but there was no difference between contractor group and control group. Meanwhile no significant difference of the concentration of CCK-f could be observed among three groups. The amount of CCK-R was lower in non-contractor group than those in both control group and contractor group (10.27±0.94 fmol/mg vs24.59±2.39 fmol/mg and 22.66±0.55 fmol/mg, P<0.01).The activity of CCK-R shown as KD in non-contractor group decreased compared to that in control group and contractor group. Only was the activity of CCK-R lower in contractor group than that in control group. The ejection fraction correlated closely with the amount of CCK-R (r = 0.9683,P<0.01), and the concentration of CCK-30 correlated negatively with the amount of CCK-R closely (r = -0

  17. Thermodynamics of radiation modes

    Energy Technology Data Exchange (ETDEWEB)

    Pina, Eduardo; De la Selva, Sara Maria Teresa [Departamento de Fisica, Universidad Autonoma Metropolitana - Iztapalapa, PO Box 55 534, Mexico, D F, 09340 (Mexico)], E-mail: pge@xanum.uam.mx, E-mail: tere@xanum.uam.mx

    2010-03-15

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the frequencies. One equation relating frequency and volume is used to define the thermodynamics of one mode, and to explain the mystery of the frequency-dependent quantities having a similar behaviour to the non-frequency-dependent quantities for some thermodynamic equations and different behaviour for others. Besides, this frequency-volume relation is used to count the number of modes in a band of frequency.

  18. A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function.

    Science.gov (United States)

    Ramachandran, Kapil V; Margolis, Seth S

    2017-04-01

    In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It is unclear how proteasomes are able to acutely regulate such processes, as this action is inconsistent with their canonical role in proteostasis. Here we describe a mammalian nervous-system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is closely associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of the membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked the production of extracellular peptides and attenuated neuronal-activity-induced calcium signaling. Moreover, we observed that membrane-proteasome-derived peptides were sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes function primarily to maintain proteostasis, and highlight a form of neuronal communication that takes place through a membrane proteasome complex.

  19. Selective adhesion of intestinal epithelial cells on patterned films with amine functionalities formed by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Seop; Choi, Changrok; Kim, Soo Heon; Choi, Kun oh [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Jeong Min [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Kim, Hong Ja [Department of Internal Medicine, Dankook University College of Medicine, Cheonan 330-715 (Korea, Republic of); Yeo, Sanghak [R and D Center, ELBIO Incorporation, 426-5 Gasan-dong Geumchun-gu, Seoul (Korea, Republic of); Park, Heonyong [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Jung, Donggeun, E-mail: djung@skku.ac.kr [Department of Physics, Brain Korea 21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-11-01

    Control of cell adhesion to surfaces is important to develop analytical tools in the areas of biomedical engineering. To control cell adhesiveness of the surface, we constructed a variety of plasma polymerized hexamethyldisiloxane (PPHMDSO) thin films deposited at the plasma power range of 10-100 W by plasma enhanced chemical vapor deposition (PECVD). The PPHMDSO film that was formed at 10 W was revealed to be resistant to cell adhesion. The resistance to cell adhesion is closely related to physicochemical properties of the film. Atomic force microscopic data show an increase in surface roughness from 0.52 nm to 0.74 nm with increasing plasma power. From Fourier transform infrared (FT-IR) absorption spectroscopy data, it was also determined that the methyl (-CH{sub 3}) peak intensity increases with increasing plasma power, whereas the hydroxyl (-OH) peak decreases. X-ray photoelectron spectroscopy data reveal an increase in C-O bonding with increasing plasma power. These results suggest that C-O bonding and hydroxyl (-OH) and methyl (-CH{sub 3}) functional groups play a critical part in cell adhesion. Furthermore, to enhance a diversity of film surface, we accumulated the patterned plasma polymerized ethylenediamine (PPEDA) thin film on the top of the PPHMDSO thin film. The PPEDA film is established to be strongly cell-adherent. This patterned two-layer film stacking method can be used to form the selectively limited cell-adhesive PPEDA spots over the adhesion-resistant surface.

  20. Impact of plasma transaminase levels on the peripheral blood glutamate levels and memory functions in healthy subjects.

    Science.gov (United States)

    Kamada, Yoshihiro; Hashimoto, Ryota; Yamamori, Hidenaga; Yasuda, Yuka; Takehara, Tetsuo; Fujita, Yuko; Hashimoto, Kenji; Miyoshi, Eiji

    2016-06-01

    Blood aspartate aminotransferase (AST) and alanine transaminase (ALT) levels are the most frequently reliable biomarkers of liver injury. Although AST and ALT play central roles in glutamate production as transaminases, peripheral blood levels of AST and ALT have been regarded only as liver injury biomarkers. Glutamate is a principal excitatory neurotransmitter, which affects memory functions in the brain. In this study, we investigated the impact of blood transaminase levels on blood glutamate concentration and memory. Psychiatrically, medically, and neurologically healthy subjects (n = 514, female/male: 268/246) were enrolled in this study through local advertisements. Plasma amino acids (glutamate, glutamine, glycine, d-serine, and l-serine) were measured using a high performance liquid chromatography system. The five indices, verbal memory, visual memory, general memory, attention/concentration, and delayed recall of the Wechsler Memory Scale-Revised were used to measure memory functions. Both plasma AST and ALT had a significant positive correlation with plasma glutamate levels. Plasma AST and ALT levels were significantly negatively correlated with four of five memory functions, and plasma glutamate was significantly negatively correlated with three of five memory functions. Multivariate analyses demonstrated that plasma AST, ALT, and glutamate levels were significantly correlated with memory functions even after adjustment for gender and education. As far as we know, this is the first report which could demonstrate the impact of blood transaminase levels on blood glutamate concentration and memory functions in human. These findings are important for the interpretation of obesity-induced metabolic syndrome with elevated transaminases and cognitive dysfunction.

  1. Thermodynamic Stability of Wormholes

    CERN Document Server

    Sajadi, S N

    2016-01-01

    In the context of GR, we study the thermodynamic stability of evolving Lorentzian wormholes at the apparent horizon. The average pressure of the anisotrropic components is considered as the pressure of the wormhole. According to the requirements of stable equilibrium in conventional thermodynamics, we calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of the wormhole.

  2. Stochastic Thermodynamics of Learning

    Science.gov (United States)

    Goldt, Sebastian; Seifert, Udo

    2017-01-01

    Virtually every organism gathers information about its noisy environment and builds models from those data, mostly using neural networks. Here, we use stochastic thermodynamics to analyze the learning of a classification rule by a neural network. We show that the information acquired by the network is bounded by the thermodynamic cost of learning and introduce a learning efficiency η ≤1 . We discuss the conditions for optimal learning and analyze Hebbian learning in the thermodynamic limit.

  3. Stochastic Thermodynamics of Learning

    CERN Document Server

    Goldt, Sebastian

    2016-01-01

    Virtually every organism gathers information about its noisy environment and builds models from that data, mostly using neural networks. Here, we use stochastic thermodynamics to analyse the learning of a classification rule by a neural network. We show that the information acquired by the network is bounded by the thermodynamic cost of learning and introduce a learning efficiency $\\eta\\le1$. We discuss the conditions for optimal learning and analyse Hebbian learning in the thermodynamic limit.

  4. Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration.

    Science.gov (United States)

    Lee, Jung-Hwan; Jeong, Won-Seok; Seo, Seog-Jin; Kim, Hae-Won; Kim, Kyoung-Nam; Choi, Eun-Ha; Kim, Kwang-Mahn

    2017-03-01

    Even though roughened titanium (Ti) and Ti alloys have been clinically used as dental implant, they encourage bacterial adhesion, leading to failure of the initial stability. Here, the non-thermal atmospheric pressure plasma jet (NTAPPJ) functionalized Ti and Ti alloy were investigated to promote cellular activities but inhibit the initial attachment of the adherent pioneer bacterium, Streptococcus sanguinis, without topographical changes. After the produced radicals from NTAPPJ were characterized, bacterial adhesion to specimens was assessed by PrestoBlue assay and live-dead staining with or without the NTAPPJ functionalizing. After the surface was characterized using optical profilometry, X-ray photoelectron spectroscopy and contact angle analysis, the ions released from the specimens were investigated. In vitro initial cell attachment (4h or 24h) with adhesion images and alkaline phosphatase activity (ALP, 14 days) measurements were performed using rat bone marrow-derived mesenchymal stem cells. The initial bacterial adhesion to the Ti and Ti alloy was significantly inhibited after NTAPPJ functionalizing (padhesion-resistance effect was induced by carbon cleaning, which was dependent on the working gas used on the Ti specimens (nitrogen>ammonia and air, padhesion with well-developed vinculin localization and consequent ALP activity at 14days to the NTAPPJ-functionalized specimens were superior to the non-treated specimens. For the promising success of dental implants, NTAPPJ functionalizing is suggested as a novel surface modification technique; this technique can help ensure the success of integration between the dental implants and bone tissues with less concern of inflammation. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Numerical Simulation and Experimental Investigation of Multi-function Micro-plasma Jet and Alumina Particle Behaviour

    Directory of Open Access Journals (Sweden)

    Liu Gu

    2016-01-01

    Full Text Available Turbulent flow in multi-function micro-plasma spray, as well as the trajectories and state-changing course of alumina particles in the plasma jet were simulated. The distribution of temperature and velocity of the plasma jet and in-flight alumina particles is discussed. Calculations show that particles are heated and accelerated sufficiently by the plasma flame due to a longer travel time than that of external injection system, therefore, possess higher temperature and velocity. Alumina particles temperature and velocity increase rapidly along the jet axis at the initial stage, but then decrease gradually. The velocity and surface temperature of in-flight alumina particles are measured by Spray Watch-2i system. The velocity and surface temperature of alumina particles measured agree well with the simulation results, confirming that the simulation model is suitable for the prediction of the turbulent flow and the particle characteristics, which also reveals the superiority of the plasma spray gun in this multi-function micro-plasma spraying system.

  6. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  7. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  8. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, M., E-mail: karl-ernst.wirth@fau.de; Schmitt, A., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Peukert, W., E-mail: karl-ernst.wirth@fau.de; Wirth, K-E, E-mail: karl-ernst.wirth@fau.de [Institute of Particle Technology, University of Erlangen-Nuremberg (Germany)

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  9. Dyeing mechanism and optimization of polyamide 6,6 functionalized with double barrier discharge (DBD) plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando Ribeiro [Departamento de Engenharia Têxtil, Universidade Federal do Rio Grande do Norte UFRN, 59.072-970 Natal (Brazil); Zille, Andrea, E-mail: azille@2c2t.uminho.pt [2C2T – Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Universidade do Minho, 4800-058 Guimarães (Portugal); Souto, Antonio Pedro [2C2T – Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Universidade do Minho, 4800-058 Guimarães (Portugal)

    2014-02-28

    The physico-chemical improvements occasioned by DBD plasma discharge in dyeing process of polyamide 6,6 (PA66) fibers were investigated. The SEM, fluorescence microscopy, UV–vis spectroscopy, surface energy, FTIR, XPS and pH of aqueous extracts confirm the high polar functionalization of PA66 fibers due to plasma incorporation of oxygen atoms from atmospheric air. DBD plasma-generated reactive species preferentially break the C-N bonds, and not the aliphatic C-C chain of PA66. Formation of low-molecular weight acidic molecules that act as dye “carrier” and creation of micro-channels onto PA66 surface seems to favor dye diffusion into the fiber cores. Plasma treatment allows high level of direct dye diffusion and fixation in PA66 fibers at lower temperatures and shorter dyeing times than traditional dyeing methods.

  10. Water mediated ligand functional group cooperativity: the contribution of a methyl group to binding affinity is enhanced by a COO(-) group through changes in the structure and thermodynamics of the hydration waters of ligand-thermolysin complexes.

    Science.gov (United States)

    Nasief, Nader N; Tan, Hongwei; Kong, Jing; Hangauer, David

    2012-10-11

    Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2' pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable. Dissection of these differential thermodynamic parameters, X-ray crystallography, and density-functional theory calculations suggest that these cooperativities are caused by variations in the thermodynamics of the complex hydration shell changes accompanying the H→Me replacement. Specifically, the COO(-) reduces both the enthalpic penalty and the entropic advantage of displacing water molecules from the S2' pocket and causes a subsequent acquisition of a more enthalpically, less entropically, favorable water network. This study contributes to understanding the important role water plays in ligand-protein binding.

  11. Electromagnetic instability in high-beta plasmas with generalized distribution functions

    Science.gov (United States)

    Buti, B.

    1974-01-01

    The electrostatic instabilities in an anisotropic plasma have been studied quite extensively, but the electromagnetic instabilities in high-beta plasmas, where they play an important role, have not been thoroughly investigated. Recently, Davidson and Wu (1970) looked into the ordinary mode electromagnetic instability which can arise in high-beta bi-Maxwellian plasmas. Here, the magnetic instability is discussed in (A, beta) space (A is the anisotropy in the temperature of the plasma species and beta is the ratio of the kinetic pressure to the magnetic pressure), which can occur in generalized non-Maxwellian plasmas with an inverted population of different species.

  12. Involvement of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts: spectroscopic and thermodynamic evidence.

    Science.gov (United States)

    Guigues, Stéphanie; Bravin, Matthieu N; Garnier, Cédric; Masion, Armand; Chevassus-Rosset, Claire; Cazevieille, Patrick; Doelsch, Emmanuel

    2016-03-01

    Carboxylic groups located in plant cell walls (CW) are generally considered to be the main copper binding sites in plant roots, despite the presence of other functional groups. The aim of this study was to investigate sites responsible for copper binding in root apoplasts, i.e. CW and outer surface of the plasma membrane (PM) continuum. Binding sites in root apoplasts were investigated by comparing isolated CW of a monocotyledon (Triticum aestivum L.) and dicotyledon (Solanum lycopersicum L.) crop with their respective whole roots. Copper speciation was examined by X-ray absorption (XAS) and (13)C-nuclear magnetic resonance spectroscopies while the affinity of ligands involved in copper binding was investigated by modeling copper sorption isotherms. Homogeneous speciation and binding of copper was found in wheat and tomato root apoplasts. Only Cu-N and Cu-O bonds were detected in wheat and tomato root apoplasts. Nitrogen/oxygen ligands were identified in slightly higher proportions (40-70%) than single oxygen ligands. Furthermore, low- and high-affinity binding sites contributed in an almost equivalent proportion to copper binding in root apoplasts. The high-affinity N functional groups embedded in root apoplasts participated in copper binding in the same magnitude than the low-affinity carboxylic groups.

  13. Thermodynamical stability of the Bardeen black hole

    Energy Technology Data Exchange (ETDEWEB)

    Bretón, Nora [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Apdo. 14-740, D.F. (Mexico); Perez Bergliaffa, Santiago E. [Dpto. de Física, U. Estado do Rio de Janeiro (Brazil)

    2014-01-14

    We analyze the stability of the regular magnetic Bardeen black hole both thermodynamically and dynamically. For the thermodynamical analysis we consider a microcanonical ensemble and apply the turning point method. This method allows to decide a change in stability (or instability) of a system, requiring only the assumption of smoothness of the area functional. The dynamical stability is asserted using criteria based on the signs of the Lagrangian and its derivatives. It turns out from our analysis that the Bardeen black hole is both thermodynamically and dynamically stable.

  14. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  15. The effects of hypoxia and hypercapnia on renal and heart function, haemodynamics and plasma hormone levels in stable COPD patients.

    Science.gov (United States)

    Hemlin, Mats; Ljungman, Susanne; Carlson, Jan; Maljukanovic, Svetlana; Mobini, Reza; Bech-Hanssen, Odd; Skoogh, Bengt-Eric

    2007-12-01

    Fluid retention with oedema is an important clinical problem in advanced chronic obstructive pulmonary disease (COPD). The aim of this study was to investigate cardiovascular, hormonal, renal and pulmonary function data and their possible relation to fluid retention in COPD. The study group consisted of 25 stable outpatients with COPD. The presence of oedema was assessed by clinical examination and the intake of diuretics was recorded. Glomerular filtration rate (GFR) and the renal blood flow (RBF) were measured. Lung function was assessed with standard spirometry. Cardiac function and haemodynamic variables were studied using echocardiography and equilibrium radionucleotide angiography. The plasma levels of noradrenaline, plasma renin activity, angiotensin II, aldosterone, atrial natriuretic peptide, brain natriuretic peptide and antidiuretic hormone were measured. Systolic and diastolic cardiac functions were found to be well preserved in the patients. Hypercapnia and impaired lung function, but not hypoxia, were clearly associated with oedema/intake of diuretics, low diuresis, low GFR, low RBF and high renal vascular resistance. These effects had no significant relationship to central haemodynamics or the measured plasma hormone levels. In stable COPD, renal fluid retention and oedema are enhanced by hypercapnia-induced renal vasoconstriction and antidiuresis. In contrast to some earlier reports, this effect does not seem to be mediated via the central haemodynamic reflex systems or the measured plasma hormones. In addition, hypoxia had no significant effect on fluid retention in this group of patients.

  16. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection.

    Science.gov (United States)

    Gutser, R; Wimmer, C; Fantz, U

    2011-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  17. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  18. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  19. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-02-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  20. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2009-10-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere–ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as ''sea air'' here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  1. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth.

    Directory of Open Access Journals (Sweden)

    Timothy G Bromage

    Full Text Available The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the

  2. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth

    Science.gov (United States)

    Bromage, Timothy G.; Idaghdour, Youssef; Lacruz, Rodrigo S.; Crenshaw, Thomas D.; Ovsiy, Olexandra; Rotter, Björn; Hoffmeier, Klaus; Schrenk, Friedemann

    2016-01-01

    The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien) chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA) drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the biological bases that

  3. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth.

    Science.gov (United States)

    Bromage, Timothy G; Idaghdour, Youssef; Lacruz, Rodrigo S; Crenshaw, Thomas D; Ovsiy, Olexandra; Rotter, Björn; Hoffmeier, Klaus; Schrenk, Friedemann

    2016-01-01

    The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien) chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA) drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the biological bases that

  4. Surface Functionalization of Plasma Treated Ultrananocrystalline Diamond/Amorphous Carbon Composite Films

    Science.gov (United States)

    Koch, Hermann; Popov, Cyril; Kulisch, Wilhelm; Spassov, G.; Reithmaier, Johann Peter

    Diamond possesses a number of outstanding properties which make it a perspective material as platform for preparation of biosensors. The diamond surface needs to be activated before the chemical attachment of crosslinkers with which biomolecules can interact. In the current work we have investigated the modification of ultrananocrystalline diamond/amorphous carbon (UNCD/a-C) films by oxygen and ammonia plasmas. Afterwards the layers were functionalized in a further step to obtain thiol-active maleimide groups on the surface. We studied the possibility for direct binding of maleimide to terminal OH-groups on the UNCD surface and for silanization with 3-aminopropyltriethoxysilane (APTES) to obtain NH2-groups for the following attachment of sulfosuccinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SSMCC). The thiol-bearing fluorescein-related dye 5-((2-(and-3)-S-(acetylmercapto) succinoyl) amino) fluorescein (SAMSA) was immobilized as an model biomolecule to evaluate the achieved thiol-activity by fluorescence microscopy. The results of the above mentioned surface modification and functionalization steps were investigated by Auger electron spectroscopy (AES) and contact angle measurements.

  5. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass.

    Science.gov (United States)

    Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Pawłowski, Lech; Cannillo, Valeria

    2014-04-01

    Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014.

  6. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Don-Sung; Choe, Dong-Hoe; Jeong, Hyun-Dam [Chonnam National University, Gwangju (Korea, Republic of); Yoo, Seung-Wan; Kim, Jung-Hyung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-05-15

    Octadecyl-terminated silicon nanocrystals (ODE-Si NCs) are obtained via a surface-initiated thermal hydrosilylation reaction on hydride-terminated Si NCs (H-Si NCs). Pristine Si NCs were synthesized at the gram scale by using inductively coupled plasma chemical vapor deposition (ICP-CVD) . The H-Si NCs were produced through a chemical etching process with hydrofluoric acid (HF), ethanol (EtOH), and distilled water (d-H{sub 2}O). The results obtained from X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) indicate that the synthesized Si NCs obtained via ICP-CVD have diamond cubic-structured silicon with a grain size of 10 nm and a densely packed Si NC array consisting of individual NCs. Organo-functionalized Si NCs, i.e., ODE-Si NCs, are well soluble in organic solvent whereas pristine Si NCs synthesized through ICP-CVD are not. The surface chemistry of the ODE-Si NCs was confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ({sup 1}H-NMR), and field emission transmission electron microscopy (FE-TEM). Thereby, these newly synthesized and scalable organo-functionalized Si NCs are applicable as raw materials for practical use in devices by tuning the surface chemistry with various capping molecules.

  7. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    Science.gov (United States)

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  8. ADAM10 regulates transcription factor expression required for plasma cell function.

    Directory of Open Access Journals (Sweden)

    Natalia S Chaimowitz

    Full Text Available A disintegrin and metalloprotease 10 (ADAM10 is a key regulator of cellular processes by shedding extracellular domains of transmembrane proteins. We have previously demonstrated that deletion of B cell expressed ADAM10 results in changes in lymphoid tissue architecture and impaired germinal center (GC formation. In this study, mice were generated in which ADAM10 is deleted in B cells following class switch recombination (ADAM10(Δ/ΔIgG1-cre(+/- mice. Despite normal GC formation, antibody responses were impaired in ADAM10(Δ/ΔIgG1-cre(+/- mice, implicating ADAM10 in post-GC and extrafollicular B cell terminal differentiation. Surprisingly, plasma cell (PC numbers were normal in ADAM10(Δ/ΔIgG1-cre(+/- mice when compared to controls. However, PCs isolated from ADAM10(Δ/ΔIgG1-cre(+/- mice exhibited decreased expression of transcription factors important for PC function: Prdm1, Xbp1 and Irf4. Bcl6 is a GC transcriptional repressor that inhibits the PC transcriptional program and thus must be downregulated for PC differentiation to occur. Bcl6 expression was increased in PCs isolated from ADAM10(Δ/ΔIgG1-cre(+/- mice at both the mRNA and protein level. These results demonstrate that ADAM10 is required for proper transcription factor expression in PCs and thus, for normal PC function.

  9. Plasma gelsolin improves lung host defense against pneumonia by enhancing macrophage NOS3 function.

    Science.gov (United States)

    Yang, Zhiping; Chiou, Terry Ting-Yu; Stossel, Thomas P; Kobzik, Lester

    2015-07-01

    Plasma gelsolin (pGSN) functions as part of the "extracellular actin-scavenging system," but its potential to improve host defense against infection has not been studied. In a mouse model of primary pneumococcal pneumonia, recombinant human pGSN (rhu-pGSN) caused enhanced bacterial clearance, reduced acute inflammation, and improved survival. In vitro, rhu-pGSN rapidly improved lung macrophage uptake and killing of bacteria (Streptococcus pneumoniae, Escherichia coli, and Francisella tularensis). pGSN triggers activating phosphorylation (Ser(1177)) of macrophage nitric oxide synthase type III (NOS3), an enzyme with important bactericidal functions in lung macrophages. rhu-pGSN failed to enhance bacterial killing by NOS3(-/-) macrophages in vitro or bacterial clearance in NOS3(-/-) mice in vivo. Prophylaxis with immunomodulators may be especially relevant for patients at risk for secondary bacterial pneumonia, e.g., after influenza. Treatment of mice with pGSN challenged with pneumococci on postinfluenza day 7 (the peak of enhanced susceptibility to secondary infection) caused a ∼15-fold improvement in bacterial clearance, reduced acute neutrophilic inflammation, and markedly improved survival, even without antibiotic therapy. pGSN is a potential immunomodulator for improving lung host defense against primary and secondary bacterial pneumonia. Copyright © 2015 the American Physiological Society.

  10. Pharmacological Correction of Cystic Fibrosis: Molecular Mechanisms at the Plasma Membrane to Augment Mutant CFTR Function.

    Science.gov (United States)

    Arora, Kavisha; Naren, Anjaparavanda P

    2016-01-01

    In the late 1980s, a loss-of-function mutation in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel was identified to be the primary cause of cystic fibrosis (CF); a fatal multiple-organ disorder that mostly affects Caucasians. To date, approximately 2000 genetic mutations have been identified in the CFTR gene (http://www.genet.sickkids.on.ca/cftr/app). The most common cause of morbidity and mortality in persons with CF is a progressive deterioration in lung function leading ultimately to respiratory collapse. The median life expectancy of CF patients currently is estimated to be 39 years in the US. The most prevalent CFTR mutation, F508del, accounts for 70% of CF cases and causes a processing defect in the protein leading to premature endoplasmic reticulum-associated degradation (ERAD) and reduced F508del-CFTR delivery to the cell surface. A CF corrector is defined as a chemical chaperone that increases cell-surface levels of F508del-CFTR. A series of CF correctors have been developed, and VX-809 (lumacaftor) has been cited as the most effective symptomatic CF corrector to date. VX-809 improves the function of the mutant protein by approximately 15% in in vitro culture systems. However, this effect did not completely translate clinically, with only a marginal improvement observed in lung function of the F508del-homozygous patients undergoing the therapy. New studies revealed that even after successful ER retrieval, rescued F508del-CFTR (rF508del-CFTR) once at the cell surface does not function properly, exhibiting poor stability and channel gating and structural abnormalities. This becomes further complicated by the existence of genes termed CFTR modifiers, which can alter CFTR function to be additionally defective and exacerbate the CF phenotype while also alternatively suggested be potentially targeted to improve F508del-CFTR functional outcome. It is necessary to understand the biology of F508del-CFTR post

  11. Dynamics of lipoprotein level in blood plasma of pregnant women as a function of gestational age according to FTIR spectroscopy

    Science.gov (United States)

    Korolik, E. V.; Korolenko, E. A.; Tretinnikov, O. N.; Kozlyakova, O. V.; Korolik, A. K.; Kirkovskiy, V. V.

    2013-01-01

    Results of an IR spectroscopic investigation of films of blood plasma taken from women of reproductive age, pregnant women with positive and negative Rh factors, and Rh-immunized women were presented as a function of gestational age. It was found that the lipoprotein content in blood plasma of all groups of pregnant women increased during the early stages of pregnancy (17-23 weeks) irrespective of the Rh factor and attained its peak value by weeks 30-35. It was shown that the lipoprotein level in blood plasma as a function of gestational age was quantitatively the same for pregnant women with positive and negative Rh factors. It was established for the first time that this dependence for Rh-immunized women featured a considerable increase of lipoprotein content at gestational age 30-32 weeks and declined acutely by week 36.

  12. Biodegradability of oxygen-plasma treated cellulose textile functionalized with ZnO nanoparticles as antibacterial treatment

    Science.gov (United States)

    Primc, Gregor; Tomšič, Brigita; Vesel, Alenka; Mozetič, Miran; Ercegović Ražić, Sanja; Gorjanc, Marija

    2016-08-01

    Samples of bleached cellulose fabric were treated with weakly ionized highly dissociated oxygen plasma in order to improve the binding of ZnO nanoparticles, antibacterial properties and biodegradability. Low specific discharge power of about 24 W l-1 was applied in order to minimize thermal effects following plasma treatment. Optical emission spectroscopy revealed weak etching of the fabric while x-ray photoelectron spectroscopy showed formation of oxygen-rich functional groups. Scanning electron microscopy revealed an improved uptake of ZnO nanoparticles and the standard transfer method highlighted excellent antimicrobial effects for Staphylococcus aureus and Escherichia coli. The biodegradability of all samples was determined using the standard ISO test and revealed excellent results for plasma-treated samples even in cases when they were functionalized using ZnO nanoparticles.

  13. High-temperature thermo-mechanical behavior of functionally graded materials produced by plasma sprayed coating: Experimental and modeling results

    Science.gov (United States)

    Choi, Kang Hyun; Kim, Hyun-Su; Park, Chang Hyun; Kim, Gon-Ho; Baik, Kyoung Ho; Lee, Sung Ho; Kim, Taehyung; Kim, Hyoung Seop

    2016-09-01

    Thermal barrier coatings are widely used in aerospace industries to protect exterior surfaces from harsh environments. In this study, functionally graded materials (FGMs) were investigated with the aim to optimize their high temperature resistance and strength characteristics. NiCrAlY bond coats were deposited on Inconel-617 superalloy substrate specimens by the low vacuum plasma spraying technique. Functionally graded Ni-yttria-stabilized zirconia (YSZ) coatings with gradually varying amounts of YSZ (20%-100%) were fabricated from composite powders by vacuum plasma spraying. Heat shield performance tests were conducted using a high- temperature plasma torch. The temperature distributions were measured using thermocouples at the interfaces of the FGM layers during the tests. A model for predicting the temperature at the bond coating-substrate interface was established. The temperature distributions simulated using the finite element method agreed well with the experimental results.

  14. Heat and thermodynamics

    CERN Document Server

    Brewster, Hilary D

    2009-01-01

    Thermodynamics is an exciting and fascinating subject that deals with energy, which is essential for sustenance of life, and Thermodynamics has long been an essential part of Engineering Curricula all over the world. It has a broad application area ranging from Microscopic Organisms to common Household Appliances, Transportation Vehicles, and Power Generation Systems.

  15. High sensitive virus and bacteria detection using plasma-surface-functionalized and antibody-integrated carbon nanomaterials

    Science.gov (United States)

    Nagatsu, Masaaki

    2015-09-01

    In this study we will present our recent results on the virus and bacteria detection system using the surface-functionalized carbon-encapsulated magnetic nanoparticles (NPs) fabricated by dc arc discharge, and carbon nanotube(CNT) dot-array prepared with a combined thermal and plasma CVD system. Surface functionalization of their surfaces has been carried out by plasma chemical modification using a low-pressure RF plasma for carbon-encapsulated magnetic NPs, and an ultrafine atmospheric pressure plasma jet(APPJ) for CNT dot-array substrate. After immobilization of the relevant biomolecules onto the surface of nano-structured materials, we have carried out the experiments on virus or bacteria detection using these surface-functionalized nano-structured materials. From the preliminary experiments with carbon-encapsulated magnetic NPs, we confirmed that influenza A (H1N1) virus concentration of 17.3-fold was achieved by using anti-influenza A virus hemagglutinin (HA) antibody. We have also confirmed a rapid and sensitive detection of Salmonella using the proposed method. The feasibility of CNT dot-array as a microarray biosensor has been studied by maskless functionalization of amino (-NH2) and carboxyl (-COOH) groups onto CNTs by using a ultrafine APPJ with a micro-capillary. The experimental results of chemical derivatization with the fluorescent dye showed that the CNT dot-array was not only functionalized with amino group and carboxyl group, but was also functionalized without any interference between functional groups. The success of maskless functionalization in the line pattern provides a feasibility of a multi-functionalization CNT dot-array device for future application of a microarray biosensor. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the JSPS and the International Research Collaboration and Scientific Publication Grant (DIPA-23.04.1.673453/2015) from DGHE Indonesia.

  16. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  17. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  18. Evolution of heavy quark distribution function on quark-gluon plasma: Using the Iterative Laplace Transform Method

    Directory of Open Access Journals (Sweden)

    Pari Sharareh Mehrabi

    2016-01-01

    Full Text Available The “Laplace Transform Method” is used to solve the Fokker-Plank equation for finding the time evolution of the heavy quarks distribution functions such as charm and bottom in quark gluon plasma. These solutions will lead us to calculation of nuclear suppression factor RAA. The results have good agreement with available experiment data from the PHENIX collaboration.

  19. Kinetic theory of time correlation functions for a dense one-component plasma in a magnetic field

    NARCIS (Netherlands)

    Schoolderman, A.J.; Suttorp, L.G.

    1988-01-01

    The time-dependent correlations of a one-component plasma in a uniform magnetic field are studied with the help of kinetic theory. The time correlation functions of the particle density, the momentum density, and the kinetic energy density are evaluated for large time intervals. In the collision-dom

  20. Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes

    Science.gov (United States)

    Merenda, Andrea; Ligneris, Elise Des; Sears, Kallista; Chaffraix, Thomas; Magniez, Kevin; Cornu, David; Schütz, Jürg A.; Dumée, Ludovic F.

    2016-08-01

    Plasma treatments are emerging as superior efficiency treatment for high surface to volume ratio materials to tune functional group densities and alter crystallinity due to their ability to interact with matter at the nanoscale. The purpose of this study is to assess for the first time the long term stability of surface functional groups introduced across the surface of carbon nanotube materials for a series of oxidative, reductive and neutral plasma treatment conditions. Both plasma duration dose matrix based exposures and time decay experiments, whereby the surface energy of the materials was evaluated periodically over a one-month period, were carried out. Although only few morphological changes across the graphitic planes of the carbon nanotubes were found under the uniform plasma treatment conditions, the time dependence of pertinent work functions, supported by Raman analysis, suggested that the density of polar groups decreased non-linearly over time prior to reaching saturation from 7 days post treatment. This work provides critical considerations on the understanding of the stability of functional groups introduced across high specific surface area nano-materials used for the design of nano-composites, adsorptive or separation systems, or sensing materials and where interfacial interactions are key to the final materials performance.

  1. Single-molecule imaging technique to study the dynamic regulation of GPCR function at the plasma membrane

    NARCIS (Netherlands)

    Snaar-Jagalska, B.E.; Cambi, A.; Schmidt, T.; Keijzer, S. de

    2013-01-01

    The lateral diffusion of a G-protein-coupled receptor (GPCR) in the plasma membrane determines its interaction capabilities with downstream signaling molecules and critically modulates its function. Mechanisms that control GPCR mobility, like compartmentalization, enable a cell to fine-tune its

  2. Adrenal Function in Females with Low Plasma HDL-C Due to Mutations in ABCA1 and LCAT

    NARCIS (Netherlands)

    Bochem, Andrea E.; Holleboom, Adriaan G.; Romijn, Johannes A.; Hoekstra, Menno; Dallinga, Geesje M.; Motazacker, Mahdi M.; Hovingh, G. Kees; Kuivenhoven, Jan A.; Stroes, Erik S. G.

    2014-01-01

    Introduction: Adrenal steroidogenesis is essential for human survival and depends on the availability of the precursor cholesterol. Male subjects with low plasma levels of high density lipoprotein (HDL) cholesterol are characterized by decreased adrenal function. Whether this is also the case in fem

  3. Asymptotic behavior of correlation functions for electric potential and field fluctuations in a classical one-component plasma

    NARCIS (Netherlands)

    Suttorp, L.G.

    1992-01-01

    The correlations of the electric potential fluctuations in a classical one-component plasma are studied for large distances between the observation points. The two-point correlation function for these fluctuations is known to decay slowly for large distances, even if exponential clustering holds for

  4. Sperm nuclear DNA fragmentation rate is associated with differential protein expression and enriched functions in human seminal plasma.

    Science.gov (United States)

    Intasqui, Paula; Camargo, Mariana; Del Giudice, Paula T; Spaine, Deborah M; Carvalho, Valdemir M; Cardozo, Karina H M; Zylbersztejn, Daniel S; Bertolla, Ricardo P

    2013-10-01

    To analyse the proteomic profile of seminal plasma with the aim of identifying the proteins and post-genomic pathways associated with sperm DNA fragmentation. A cross-sectional study including 89 subjects from a human reproduction service was carried out. All semen samples were assessed for sperm DNA fragmentation using a comet assay. Results from 60 sperm were analysed using Komet 6.0.1 software and the 'Olive tail moment' variable was used to stratify these into low and high sperm DNA fragmentation groups. Seminal plasma proteins from the two groups were pooled and used for proteomic analysis. Quantitative data were used for functional enrichment studies. Seventy-two proteins were identified or quantified in seminal plasma. Of these, nine were differentially expressed in the low group and 21 in the high group. Forty-two proteins were conserved between these groups. Functional enrichment analysis indicated that sperm DNA fragmentation was related to functions such as lipoprotein particle remodelling and regulation, fatty acid binding and immune response. Proteins found exclusively in the low group may be involved in correcting spermatogenesis and/or improving sperm function. Proteins in the high group were associated with increased innate immune response, sperm motility and/or maturation and inhibition of mitochondrial apoptosis. Protein expression and post-genomic pathways of seminal plasma differ according to the rate of sperm DNA integrity. © 2013 The Authors. BJU International © 2013 BJU International.

  5. Tuning the ITO work function by capacitively coupled plasma and its application in inverted organic solar cells

    Science.gov (United States)

    Fang, Ming; Zhang, Chunmei; Chen, Qiang

    2016-11-01

    In this paper, we investigated the performance of inverted organic solar cells (OSCs) with plasma-treated indium tin oxide (ITO) as the cathode for omitting an electron transport layer. The Ar plasma was produced by capcitively coupled plasma setup under 20 Pa chamber pressure. For the device with the structure of plasma-treated ITO/P3HT:PCBM/MoO3/Ag, a power conversion efficiency (PCE) of 3.22% was achieved, whereas PCE of 1.13% was recorded from the device fabricated with the pristine ITO. The photovoltaic performance was found to be dependent on the applied power of plasma. After analyzing by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), we concluded that the chemical component variation of ITOs surface resulted in the decrease of ITO work function, which meant that the ITO Fermi level became shallow relative to the vacuum level. The low work function of ITO should be responsible for the improvement of inverted OSCs because of the better energy level alignment between ITO and the photoactive layer.

  6. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  7. Thermodynamic constraints on fluctuation phenomena

    Science.gov (United States)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  8. Thermodynamics of the PNJL model

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, C. [ECT, Villazzano (Trento) (Italy); INFN, Gruppo Collegato di Trento, Povo (Trento) (Italy); Roessner, S.; Thaler, M.A.; Weise, W. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany)

    2007-01-15

    QCD thermodynamics is investigated by means of the Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL) model, in which quarks couple simultaneously to the chiral condensate and to a background temporal gauge field representing Polyakov loop dynamics. The behaviour of the Polyakov loop as a function of temperature is obtained by minimising the thermodynamic potential of the system. A Taylor series expansion of the pressure is performed. Pressure difference and quark number density are then evaluated up to sixth order in the quark chemical potential and compared to the corresponding lattice data. The validity of the Taylor expansion is discussed within our model through a comparison between the full results and the truncated ones. (orig.)

  9. Gravity and/is Thermodynamics

    CERN Document Server

    Padmanabhan, T

    2015-01-01

    The equations of motion describing all physical systems, except gravity, remain invariant if a constant is added to the Lagrangian. In the conventional approach, gravitational theories break this symmetry exhibited by all other physical systems. Restoring this symmetry to gravity and demanding that gravitational field equations should also remain invariant under the addition of a constant to a Lagrangian, leads to the interpretation of gravity as the thermodynamic limit of the kinetic theory of atoms of space. This approach selects, in a very natural fashion, Einstein's general relativity in $d=4$. Developing this paradigm at a deeper level, one can obtain the distribution function for the atoms of space and connect it up with the thermodynamic description of spacetime. This extension relies on a curious fact that the quantum spacetime endows each event with a finite area but zero volume. This approach allows us determine the numerical value of the cosmological constant and suggests a new perspective on cosmo...

  10. Dissipation Bound for Thermodynamic Control

    Science.gov (United States)

    Machta, Benjamin B.

    2015-12-01

    Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider fully realizable, entropically driven systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is subextensive but cannot be made small by slowing the rate of the protocol.

  11. Thermodynamic constraints on fluctuation phenomena.

    Science.gov (United States)

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  12. Thermodynamic properties of triphenylantimony dibenzoate

    Science.gov (United States)

    Markin, A. V.; Smirnova, N. N.; Lyakaev, D. V.; Klimova, M. N.; Sharutin, V. V.; Sharutina, O. K.

    2016-10-01

    The temperature dependence of the heat capacity of triphenylantimony dibenzoate Ph3Sb(OC(O)Ph)2 is studied in the range of 6-480 K by means of precision adiabatic vacuum calorimetry and differential scanning calorimetry. The melting of the compound is observed in this temperature range, and its standard thermodynamic characteristics are identified and analyzed. Ph3Sb(OC(O)Ph)2 is obtained in a metastable amorphous state in a calorimeter. The standard thermodynamic functions of Ph3Sb(OC(O)Ph)2 in the crystalline and liquid states are calculated from the obtained experimental data: C p ° ( T), H°( T)- H°(0), S°( T), and G°(T)- H°(0) for the region from T → 0 to 480 K. The standard entropy of formation of the compound in the crystalline state at T = 298.15 K is determined. Multifractal processing of the low-temperature ( T topology.

  13. Learning thermodynamics with Boltzmann machines

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2016-10-01

    A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.

  14. Comparative merits of the memory function and dynamic local field correction of the classical one-component plasma

    CERN Document Server

    Mithen, James P; Gregori, G

    2011-01-01

    The complementarity of the liquid and plasma descriptions of the classical one-component plasma (OCP) is explored by studying wavevector and frequency dependent dynamical quantities: the dynamical structure factor (DSF), and the dynamic local field correction (LFC). Accurate Molecular Dynamics (MD) simulations are used to validate/test models of the DSF and LFC. Our simulations, which span the entire fluid regime ($\\Gamma = 0.1 - 175$), show that the DSF is very well represented by a simple and well known memory function model of generalized hydrodynamics. On the other hand, the LFC, which we have computed using MD for the first time, is not well described by existing models.

  15. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  16. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2011-09-01

    Full Text Available We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl, Br, NO3, HSO4, and SO42−. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization

  17. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2011-05-01

    Full Text Available We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl, Br, NO3, HSO4, and SO42−. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization

  18. Chromium functionalized diglyme plasma polymer coating enhances enzyme-linked immunosorbent assay performance.

    Science.gov (United States)

    Welch, Nicholas G; Madiona, Robert M T; Easton, Christopher D; Scoble, Judith A; Jones, Robert T; Muir, Benjamin W; Pigram, Paul J

    2016-11-10

    Ensuring the optimum orientation, conformation, and density of substrate-bound antibodies is critical for the success of sandwich enzyme-linked immunosorbent assays (ELISAs). In this work, the authors utilize a diethylene glycol dimethyl ether plasma polymer (DGpp) coating, functionalized with chromium within a 96 well plate for the enhanced immobilization of a capture antibody. For an equivalent amount of bound antibody, a tenfold improvement in the ELISA signal intensity is obtained on the DGpp after incubation with chromium, indicative of improved orientation on this surface. Time-of-flight secondary-ion-mass-spectrometry (ToF-SIMS) and principal component analysis were used to probe the molecular species at the surface and showed ion fragments related to lysine, methionine, histidine, and arginine coupled to chromium indicating candidate antibody binding sites. A combined x-ray photoelectron spectroscopy and ToF-SIMS analysis provided a surface molecular characterization that demonstrates antibody binding via the chromium complex. The DGpp+Cr surface treatment holds great promise for improving the efficacy of ELISAs.

  19. Characterization of functionally graded hydroxyapatite/titanium composite coatings plasma-sprayed on Ti alloys.

    Science.gov (United States)

    Chen, Chun-Cheng; Huang, Tsui-Hsien; Kao, Chia-Tze; Ding, Shinn-Jyh

    2006-07-01

    Bioceramic coatings like hydroxyapatite (HA) have shown promising bioactive properties in load-bearing implant applications. The aim of this work is to deposit functionally graded HA/Ti layers consisting of an underlying Ti bond coat, the alternating layer, and an HA top-layer on Ti6Al4V substrates using plasma spray to improve the coating-substrate interface properties. The alternating layers were created by means of changing the feeding rate and input power of Ti and HA powders, which gradually decrease Ti content with increasing depth from the Ti bond-coat. The major consideration is to examine the stability of the graded coatings. Experimental results indicated that surface chemistry and morphology of the graded coatings were similar to those of monolithic HA coatings. The bond strength values of the as-sprayed graded coatings were much superior to those of monolithic HA coatings. The cyclic fatigue did have a statistically significant effect on bond strength of monolithic HA coatings, with a decrease of 23%. However, the graded coatings were able to survive 1 million cycles of loading in air without significantly reduced bond strength. The in vitro electrochemical measurement results also indicated that the graded coatings had a more beneficial and desired behavior than monolithic HA coatings after fatigue.

  20. Amino-terminal cysteine residues differentially influence RGS4 protein plasma membrane targeting, intracellular trafficking, and function.

    Science.gov (United States)

    Bastin, Guillaume; Singh, Kevin; Dissanayake, Kaveesh; Mighiu, Alexandra S; Nurmohamed, Aliya; Heximer, Scott P

    2012-08-17

    Regulator of G-protein signaling (RGS) proteins are potent inhibitors of heterotrimeric G-protein signaling. RGS4 attenuates G-protein activity in several tissues. Previous work demonstrated that cysteine palmitoylation on residues in the amino-terminal (Cys-2 and Cys-12) and core domains (Cys-95) of RGS4 is important for protein stability, plasma membrane targeting, and GTPase activating function. To date Cys-2 has been the priority target for RGS4 regulation by palmitoylation based on its putative role in stabilizing the RGS4 protein. Here, we investigate differences in the contribution of Cys-2 and Cys-12 to the intracellular localization and function of RGS4. Inhibition of RGS4 palmitoylation with 2-bromopalmitate dramatically reduced its localization to the plasma membrane. Similarly, mutation of the RGS4 amphipathic helix (L23D) prevented membrane localization and its G(q) inhibitory function. Together, these data suggest that both RGS4 palmitoylation and the amphipathic helix domain are required for optimal plasma membrane targeting and function of RGS4. Mutation of Cys-12 decreased RGS4 membrane targeting to a similar extent as 2-bromopalmitate, resulting in complete loss of its G(q) inhibitory function. Mutation of Cys-2 did not impair plasma membrane targeting but did partially impair its function as a G(q) inhibitor. Comparison of the endosomal distribution pattern of wild type and mutant RGS4 proteins with TGN38 indicated that palmitoylation of these two cysteines contributes differentially to the intracellular trafficking of RGS4. These data show for the first time that Cys-2 and Cys-12 play markedly different roles in the regulation of RGS4 membrane localization, intracellular trafficking, and G(q) inhibitory function via mechanisms that are unrelated to RGS4 protein stabilization.