WorldWideScience

Sample records for plasma surface modification

  1. Plasma surface modification of polymers

    Science.gov (United States)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  2. Atmospheric pressure plasma for surface modification

    CERN Document Server

    Wolf, Rory A

    2012-01-01

    This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma process

  3. Practical applications of plasma surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.D.

    1993-12-01

    Radio frequency activated gas plasma is an environmentally conscious manufacturing process which provides surface treatments for improved product quality. Plasma processing offers significant potential for reducing the use of solvents and other wet processing chemicals now used in surface treatments such as cleaning, activation for bonding, and moisture removal. Plasma treatments are generally accomplished without creating hazardous waste streams to dispose of. Plasma process development and application is ongoing at Allied Signal Inc., Kansas City Division.

  4. Surface modification of titanium by plasma nitriding

    Directory of Open Access Journals (Sweden)

    Kapczinski Myriam Pereira

    2003-01-01

    Full Text Available A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can be improved for samples treated with the following conditions: nitriding time of 3 h; plasma atmosphere consisting of 80%N2+20%H2 or 20%N2+80%H2; sample temperature during nitriding of 600 or 800 degreesC.

  5. Surface modification of polymeric materials by cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, K.G., E-mail: kostov@feg.unesp.br [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil); Nishime, T.M.C.; Castro, A.H.R. [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil); Toth, A. [Institute of Material and Environmental Chemistry, Hungarian Academy of Science P.O. Box 17, H-1525, Budapest (Hungary); Hein, L.R.O. [Faculty of Engineering in Guaratinguetá–FEG, Universidade Estadual Paulista–UNESP Guaratiguetá, 12516-410, SP (Brazil)

    2014-09-30

    Highlights: • We investigate polymer surface modification by atmospheric pressure plasma jet APPJ. • Jet operation conditions for uniform surface modification were determined. • The APPJ added O atoms to the polymer surface and also enhanced the roughness. • The degree of polymer surface modification by APPJ and DBD were compared. • The APPJ is more efficient in attaching O atoms and produces less polymer fragments. - Abstract: In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source – the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  6. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability

    Directory of Open Access Journals (Sweden)

    Veronica Satulu

    2016-12-01

    Full Text Available Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.

  7. Surface modification of polymeric materials by cold atmospheric plasma jet

    Science.gov (United States)

    Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

    2014-09-01

    In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  8. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  9. Modification of W surfaces by exposure to hollow cathode plasmas

    Science.gov (United States)

    Stancu, C.; Stokker-Cheregi, F.; Moldovan, A.; Dinescu, M.; Grisolia, C.; Dinescu, G.

    2017-10-01

    In this work, we assess the surface modifications induced on W samples following exposure to He and He/H2 radiofrequency plasmas in hollow cathode discharge configuration. Our study addresses issues that relate to the use of W in next-generation fusion reactors and, therefore, the investigation of W surface degradation following exposure and heating by plasmas to temperatures above 1000 °C is of practical importance. For these experiments, we used commercially available tungsten samples having areas of 30 × 15 mm and 0.1 mm thickness. The hollow cathode plasma was produced using a radiofrequency (RF) generator (13.56 MHz) between parallel plate electrodes. The W samples were mounted as one of the electrodes. The He and He/H2 plasma discharges had a combined effect of heating and bombardment of the W surfaces. The surface modifications were studied for discharge powers between 200 and 300 W, which resulted in the heating of the samples to temperatures between 950 and 1230 °C, respectively. The samples were weighed prior and after plasma exposure, and loss of mass was measured following plasma exposure times up to 90 min. The analysis of changes in surface morphology was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, optical emission spectra of the respective plasmas were recorded from the region localized inside the hollow cathode gap. We discuss the influence of experimental parameters on the changes in surface morphology.

  10. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    Science.gov (United States)

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P plasma technology in contact lens surface modification.

  11. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... and the material surface, and thus, many reactive species generated in the plasma can reach the surface before they are inactivated and can be efficiently utilised for surface modification. In the present work, glass fibre reinforced polyester plates were treated using a dielectric barrier discharge and a gliding...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  12. Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vušković, L

    2014-01-01

    Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simple cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl2/Ar gas mixtures, residence...

  13. The study of UHMWPEF surface modification with plasma- induced polymerization

    Science.gov (United States)

    Zhang, Yu-Fang; Jia, Qing-Xiu; Wang, Xin; Zhang, Pei-Ran

    2015-07-01

    In order to improve the surface activity levels of the ultrahigh molecular weight polyethylene fiber (UHMWPEF), as well as enhancing the interface strength of the UHMWPEF based composite materials, the method of plasma-induced polymerization was applied to modify the UHMWPEF surface. In this study, the plasma's power, time, pressure and the grafting monomer concentration were introduced. Also, through a well-conducted comparison and analysis of the grafting rate, fabric surface functional groups and the microcosmic morphology, the most suitable plasma modification process was discovered and determined. The mechanics performance of hybrid composites with the modified UHMWPEF and unidirectional carbon fiber cloth (CF) was tested to reveal that, compared with the unmodified composites, the tensile strength and the laminar shear strength could be improved.

  14. Surface Modification of Medical Polyurethane by Plasma Treatment

    Science.gov (United States)

    Li, Dejun; Zhao, Jie; Gu, Hanqing; Lu, Mozhu; Ding, Fuqing; Hu, Jianfang

    1992-02-01

    The wettability and surface structure of plasma treatment on medical polyurethane were studied. Two kinds of gas, N2, Ar, were used to create the low-temperature plasma under low pressure. The wettability was investigated by means of the sessile drop method using water, the results show that the contact angle of water decreases from 78.8° to 61.9° as the treatment time increases. The results of electron spectroscopy for chemical analysis indicate that original chemical bonds were broken up after plasma treatment, which was the main reason for the surface modification. At same time, the results of electron spinning resonance show that the amounts of radicals did not increase significantly after treatment, which is advantageous to clinical practice of polyurethane.

  15. Surface modification of PE film by DBD plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Ren, C.-S. [State Key Laboratory of Material Modification by Electron, Ion and Laser Beams, Dalian University of Technology, Dalian 116023 (China)], E-mail: rchsh@dlut.edu.cn; Wang, K.; Nie, Q.-Y.; Wang, D.-Z.; Guo, S.-H. [State Key Laboratory of Material Modification by Electron, Ion and Laser Beams, Dalian University of Technology, Dalian 116023 (China)

    2008-12-30

    In this paper, surface modification of polyethylene (PE) films is studied by dielectric barrier discharge plasma treatment in air. The treated samples were examined by water contact angle measurement, calculation of surface free energy, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The water contact angle changes from the original value of 93.2{sup o} to the minimum value of 53.3{sup o} and surface free energy increases from 27.3 to 51.89 J/m{sup 2} after treatment time of 50 s. Both ATR and XPS show some oxidized species are introduced into the sample surface by the plasma treatment and that the change tendencies of the water contact angle and surface free energy with the treatment time are the same as that of the oxygen concentration on the treated sample surface. Cu films were deposited on the treated and untreated PE surfaces. The peel adhesive strength between the Cu film and the treated sample is 1.5 MPa, whereas the value is only 0.8 MPa between the Cu film and the untreated PE. SEM pictures show that the Cu film deposited on the plasma treated PE surface is smooth and the crystal grain is smaller, contrarily the Cu film on the untreated PE surface is rough and the crystal grain is larger.

  16. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  17. Surface modification by plasma polymerization: film deposition, tailoring of surface properties and biocompatibility

    OpenAIRE

    Os, van, J.

    2000-01-01

    The work described in this thesis concerns the surface modification of materials by thin film deposition in a plasma reactor. In particular, thin polymeric films bearing amine functionalities were synthesized by plasma polymerization of amino group containing monomers. In addition to the synthesis, attention was directed towards the characterization of these films, and the tailoring of their surface properties on a molecular level. Finally, the amino groups introduced by plasma polymerization...

  18. Surface modification by plasma polymerization: film deposition, tailoring of surface properties and biocompatibility

    NARCIS (Netherlands)

    Os, van Menno Thomas

    2000-01-01

    The work described in this thesis concerns the surface modification of materials by thin film deposition in a plasma reactor. In particular, thin polymeric films bearing amine functionalities were synthesized by plasma polymerization of amino group containing monomers. In addition to the synthesis,

  19. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, H...... temperature for a month the O/C ratio at the plasma treated surfaces decreased to 0.151, which is close to that of the untreated ones. It can be attributed to the adsorption of hydrocarbon contamination at the plasma treated surfaces....

  20. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Science.gov (United States)

    Moraczewski, Krzysztof; Stepczyńska, Magdalena; Malinowski, Rafał; Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian

    2016-07-01

    The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  1. Surface modification of polymeric materials by plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ricky K.Y. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Cheung, I.T.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Mei, Y.F. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Shek, C.H. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Siu, G.G. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Yang, W.M. [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Leng, Y.X. [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Y.X. [State Key Laboratory of Welding Production Technology, Harbin Institute of Technology, Harbin (China); Tian, X.B. [State Key Laboratory of Welding Production Technology, Harbin Institute of technology, Harbin (China); Yang, S.Q. [State Key Laboratory of Welding Production Technology, Harbin Institute of Technology, Harbin (China)

    2005-08-01

    Polymer surfaces typically have low surface tension and high chemical inertness and so they usually have poor wetting and adhesion properties. The surface properties can be altered by modifying the molecular structure using plasma immersion ion implantation (PIII). In this work, Nylon-6 was treated using oxygen/nitrogen PIII. The observed improvement in the wettability is due to the oxygenated and nitrogen (amine) functional groups created on the polymer surface by the plasma treatment. X-ray photoelectron spectroscopy (XPS) results show that nitrogen and oxygen plasma implantation result in C-C bond breaking to form the imine and amine groups as well as alcohol and/or carbonyl groups on the surface. The water contact angle results reveal that the surface wetting properties depend on the functional groups, which can be adjusted by the ratio of oxygen-nitrogen mixtures.

  2. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    Science.gov (United States)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal

  3. Effect of plasma surface modification on the biocompatibility of UHMWPE

    Energy Technology Data Exchange (ETDEWEB)

    Kaklamani, G; Chen, J; Dong, H; Stamboulis, A [School of Metallurgy and Materials, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Mehrban, N; Bowen, J; Grover, L, E-mail: a.stamboulis@bham.ac.u [School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2010-10-01

    In this paper active screen plasma nitriding (ASPN) is used to chemically modify the surface of UHMWPE. This is an unexplored and new area of research. ASPN allows the homogeneous treatment of any shape or surface at low temperature; therefore, it was thought that ASPN would be an effective technique to modify organic polymer surfaces. ASPN experiments were carried out at 120 {sup 0}C using a dc plasma nitriding unit with a 25% N{sub 2} and 75% H{sub 2} atmosphere at 2.5 mbar of pressure. UHMWPE samples treated for different time periods were characterized by nanoindentation, FTIR, XPS, interferometry and SEM. A 3T3 fibroblast cell line was used for in vitro cell culture experiments. Nanoindentation of UHMWPE showed that hardness and elastic modulus increased with ASPN treatment compared to the untreated material. FTIR spectra did not show significant differences between the untreated and treated samples; however, some changes were observed at 30 min of treatment in the range of 1500-1700 cm{sup -1} associated mainly with the presence of N-H groups. XPS studies showed that nitrogen was present on the surface and its amount increased with treatment time. Interferometry showed that no significant changes were observed on the surfaces after the treatment. Finally, cell culture experiments and SEM showed that fibroblasts attached and proliferated to a greater extent on the plasma-treated surfaces leading to the conclusion that ASPN surface treatment can potentially significantly improve the biocompatibility behaviour of polymeric materials.

  4. Effect of plasma surface modification on the biocompatibility of UHMWPE.

    Science.gov (United States)

    Kaklamani, G; Mehrban, N; Chen, J; Bowen, J; Dong, H; Grover, L; Stamboulis, A

    2010-10-01

    In this paper active screen plasma nitriding (ASPN) is used to chemically modify the surface of UHMWPE. This is an unexplored and new area of research. ASPN allows the homogeneous treatment of any shape or surface at low temperature; therefore, it was thought that ASPN would be an effective technique to modify organic polymer surfaces. ASPN experiments were carried out at 120 °C using a dc plasma nitriding unit with a 25% N(2) and 75% H(2) atmosphere at 2.5 mbar of pressure. UHMWPE samples treated for different time periods were characterized by nanoindentation, FTIR, XPS, interferometry and SEM. A 3T3 fibroblast cell line was used for in vitro cell culture experiments. Nanoindentation of UHMWPE showed that hardness and elastic modulus increased with ASPN treatment compared to the untreated material. FTIR spectra did not show significant differences between the untreated and treated samples; however, some changes were observed at 30 min of treatment in the range of 1500-1700 cm(-1) associated mainly with the presence of N-H groups. XPS studies showed that nitrogen was present on the surface and its amount increased with treatment time. Interferometry showed that no significant changes were observed on the surfaces after the treatment. Finally, cell culture experiments and SEM showed that fibroblasts attached and proliferated to a greater extent on the plasma-treated surfaces leading to the conclusion that ASPN surface treatment can potentially significantly improve the biocompatibility behaviour of polymeric materials.

  5. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    This invention relates to a plasma surface modification process (and a corresponding a system) of a solid object (100) comprising creating plasma (104) by a plasma source (106), application of the plasma (104) to at least a part of a surface (314) of the solid object (100), generating ultrasonic...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  6. Surface modification of polyethylene by plasma; Modificacion superficial de polietileno por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Colin O, E

    2003-07-01

    The products made of polyethylene (PE) go from construction materials, electric insulating until packing material. The films for bags and pack occupy 83.6% of the distribution of the market of PE approximately. The enormous quantity of PE that is generated by its indiscriminate use brings as consequence a deterioration to the atmosphere, due to the long life that they present as waste. This work is a study on the modification of low density polyethylene films. In this type of thin materials, the changes in the surface meet with largely on the conformation of the rest of the material. To induce changes that modify the surface of PE, plasmas were used with reactive atmospheres of air, oxygen and nitrogen. The experimentation that was carries out went to introduce the PE to a cylindrical reactor where it was generated the plasma of air, oxygen and nitrogen to different times of exposure. After having carried out the exposure to the plasma, it was found that in the polyethylene it modifies their morphology, crystallinity, hydrophobicity, composition and electric conductivity. The analytical techniques that were used to characterize later to the polyethylene of being in contact with the plasma were: X-ray diffraction, Scanning Electron Microscopy, Infrared spectroscopy, Electric conductivity, Angle of contact and finally Thermal Gravimetric Analysis. The content of this work it is presented in five chapters: In the chapter 1 there are presented some general concepts of plasma and of the one polymer in study PE. In the chapter 2 it is made a general revision on modification of surfaces, as well as the properties that were modified in polymeric materials that were exposed to plasma in previous works. In the chapter 3 the experimental part and the conditions used are described in the modification of the PE. Also in this chapter a brief description it is made of the used characterization techniques. The results and discussion are presented in the chapter 4. These results

  7. Surface modification of nanoporous alumina membranes by plasma polymerization.

    Science.gov (United States)

    Losic, Dusan; Cole, Martin A; Dollmann, Björn; Vasilev, Krasimir; Griesser, Hans J

    2008-06-18

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  8. Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility.

    Science.gov (United States)

    Ren, T B; Weigel, Th; Groth, Th; Lendlein, A

    2008-07-01

    The microwave plasma surface modification of silicone elastomer with allylamine was studied to improve the biocompatibility of the material. An effort was made to clarify the relationships among plasma conditions and surface chemical composition, physical surface properties and biocompatibility of material, as well as the stability of plasma deposited layers. ATR-IR, XPS, Ellipsometry measurements, and contact angle measurements were used to investigate the changes of surface. The stability of plasma-treated silicone surfaces were also studied. The results demonstrated that the temperature and pressure had a strong influence on the chemical composition and structure of surface-deposited layer. The layer was nearly completely crosslinking when the modification was carried out at 60 degrees C. The polymerization speed decreased linearly with temperature. The XPS analysis results showed that the nitrogen element content in the surface layer was very high, especially under low pressure. The nitrogen/carbon ratio in the layer even greatly surpassed that of the allylamine monomer. The wettability of the silicone surface was greatly improved after plasma modification, and increased with the quantities of amine groups. The plasma-treated surfaces have good storage stability in air up to 3 months. The wettability of the surfaces decreased incipiently and then it dramatically increased with further time. The human skin fibroblasts were used to evaluate biocompatibility of plasma-treated silicone elastomer. The surface biocompatibility was greatly improved after modification; human skin fibroblasts adhered quickly and grew well on the modified silicone surface.

  9. Plasma Surface Modification of Polyaramid Fibers for Protective Clothing

    Science.gov (United States)

    Widodo, Mohamad

    2011-12-01

    The purpose of this research was to develop a novel process that would achieve biocidal properties on Kevlar fabric via atmospheric pressure plasma jet (APPJ) induced-graft polymerization of monomers. In the course of the study, experiments were carried out to understand plasma-monomer-substrate interactions, particularly, how each of the main parameters in the plasma processing affects the formation of surface radicals and eventually the degree of graft polymerization of monomers. The study also served to explore the possibility of developing plasma-initiated and plasma-controlled graft polymerization for continuous operation. In this regards, three methods of processing were studied, which included two-step plasma graft-polymerization with immersion, two-step and one-step plasma graft-polymerization with pad-dry. In general, plasma treatment did not cause visible damage to the surface of Kevlar fibers, except for the appearance of tiny globules distributed almost uniformly indicating a minor effect of plasma treatment to the surface morphology of the polymer. From the examination of SEM images, however, it was found that a very localized surface etching seemed to have taken place, especially at high RF power (800 W) and long time of exposure (60 s), even in plasma downstream mode of operation. It was suggested that a small amount of charged particles might have escaped and reached the substrate surface. High density of surface radicals, which is the prerequisite for high graft density and high antimicrobial activity, was achieved by the combination of high RF power and short exposure time or low RF power and long time of exposure. This was a clear indication that the formation of surface radicals is a function of amount of the dissipated energy, which also explained the two-factor interaction between the two process parameters. XPS results showed that hydrolysis of the anilide bond of PPTA chains took place to some extent on the surface of Kevlar, leading to the

  10. Plasma Polymerization Surface Modification of Carbon Black and its Effect in Elastomers

    NARCIS (Netherlands)

    Mathew, T.; Datta, R.N.; Dierkes, W.K.; Talma, A.G.; Ooij, van W.J.; Noordermeer, J.W.M.

    2011-01-01

    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known surfa

  11. Plasma-Based Surface Modification of Polydimethylsiloxane for PDMS-PDMS Molding

    OpenAIRE

    Lopera, S.; Mansano, R. D.

    2012-01-01

    We present and compare two processes for plasma-based surface modification of Polydimethylsiloxane (PDMS) to achieve the antisticking behavior needed for PDMS-PDMS molding. The studied processes were oxygen plasma activation for vapor phase silanization and plasma polymerization with tetrafluoromethane/hydrogen mixtures under different processing conditions. We analyzed topography changes of the treated surfaces by atomic force microscopy and contact angle measurements. Plasma treatment were ...

  12. PLASMA POLYMERIZATION OF HYDROPHILIC AND HYDROPHOBIC MONOMERS FOR SURFACE MODIFICATION OF NUCLE-MICROPOROUS MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    LI Xuefen; LI Zhifen; CHEN Chuanfu; WU Wenhui

    1990-01-01

    Surface modification of nucle-microporous membrane by plasma polymerization of HEMA, NVP and D4 has been studied. The hydrophilicity of membranes was increased with increasing of plasma polymerization time of hydrophilic monomers HEMA and NVP. The flow rate of water through the membrane was increased remarkably after plasma polymerization of HEMA on it.

  13. Application of plasma surface modification techniques to improve hemocompatibility of vascular grafts: A review.

    Science.gov (United States)

    Solouk, Atefeh; Cousins, Brian G; Mirzadeh, Hamid; Seifalian, Alexander M

    2011-01-01

    Surface modification using plasma processing can significantly change the chemical and physical characteristics of biomaterial surfaces. When used in combination with additional modification techniques such as direct chemical or biochemical methods, it can produce novel biomaterial surfaces, which are anticoagulant, bioactive, and biomimetic in nature. This article reviews recent advances in improving hemocompatibility of biomaterials by plasma surface modification (PSM). The focus of this review is on PSM of the most commonly used polymers for vascular prostheses such as expanded polytetrafluoroethylene (PTFE), polyethylene terephthalate (Dacron(®) ), and next generation of biomaterials, including polyhedral oligomeric silsesquioxane nanocomposite.

  14. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Stepczyńska, Magdalena [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87‐100 Toruń (Poland); Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2016-07-30

    Highlights: • Plasma modification affects surface roughness, wettability and surface energy. • Polylactide and polycaprolactone aging causes decay of the modification effects. • Changes in the surface characteristic and wettability deterioration were observed. • The decay occurs due to migration of low molecular weight molecules to the surface. • Plasma modification effect lasts longer in the case of polycaprolactone. - Abstract: The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  15. Surface modification of poly (vinyl chloride) by long-distance and direct argon RF plasma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reports the effects of long- distance and direct argon radio frequency (RF) plasma surface treatment on polyvinyl chloride (PVC) films in terms of changes in surface wettability and surface chemistry. The surface properties are characterized by the water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The mechanism is further analyzed and the role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. Results show that the long-distance and direct RF plasma treatments modify the PVC surface in morphology and composition, and both modifications cause surface oxidation of PVC films, in the forming of functional groups enhancing polymer wettability. The effect of the long-distance argon RF plasma is more notable. This suggests that long-distance argon RF plasma could restrain the ion and electron eroding effect and enhance free radical reaction.

  16. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    OpenAIRE

    Mudtorlep Nisoa; Pikul Wanichapichart

    2010-01-01

    Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effec...

  17. The Aging Study on Polyethylene Terephthalate with Surface Modification by Water Vapor Plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aging effects of the contact angle and surface energy on polyethylene tereph thalate (PET) have been investigated with surface modification by water vapor plasma. The experimental results show that the contact angle of water and PET decreases obviously and sur face energy increases. However, with the increase of the aging time, the contact angle and surface energy change back gradually to original state.

  18. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    OpenAIRE

    Rackel Reis; Dumée, Ludovic F.; Tardy, Blaise L.; Raymond Dagastine; John D. Orbell; Jürg A. Schutz; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membra...

  19. Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid. I. Influence of plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Du, M. [College of Textiles and Clothing, Yancheng Institute of Industry Technology, Jiangsu 224000 (China); Lv, J.C.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Liu, G.L.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-09-15

    Highlights: • Aramid fiber surface was modified by PIVPGP of AA to improve wettability, adhesion. • Surface modification effect by PIVPGP of AA increased and then decreased with time. • Surface modification effect increased and then stayed unaltered with output power. • Ar plasma was the most effective in PIVPGP of AA on aramid fiber surface. • In studied range, optimum technology of PIVPGP of AA: Ar plasma, 15 min, 300 W. - Abstract: Plasma induced vapor phase graft polymerization (PIVPGP) method was applied to modify aramid fiber surface. In this study, aramid fibers were pretreated under various plasma conditions such as different treatment times, output powers and working gases to see how these plasma processing parameters influenced the PIVPGP of acrylic acid (AA) on aramid fiber surface and its surface structure and properties. The analysis results of atomic force microscope (AFM) and X-ray photoelectron spectroscope (XPS) showed the increase of surface roughness and the introduction of O=C−OH, which confirmed that the PIVPGP of AA on aramid fiber surface was achieved. The contact angle and interfacial shear strength (IFSS) of the aramid fibers modified by PIVPGP of AA prominently decreased and increased, respectively, indicating the obvious improvements of surface wettability and adhesion between aramid fiber and matrix. The surface modification effects of aramid fiber by PIVPGP of AA firstly increased and then after 15 min slightly decreased with the increasing plasma treatment time, and but firstly increased and then after 300 W nearly remained unchanged with the increasing output power, respectively. Among different working gases, Ar plasma occupied first place, O{sub 2} plasma and N{sub 2} plasma came second and third in the aspect of PIVPGP of AA on aramid fiber surface, respectively. It could be concluded that the PIVPGP of AA on aramid fiber surface could effectively improve surface wettability and adhesion. Plasma conditions had signally

  20. Surface modification of tube inner wall by transferred atmospheric pressure plasma

    Science.gov (United States)

    Chen, Faze; Liu, Shuo; Liu, Jiyu; Huang, Shuai; Xia, Guangqing; Song, Jinlong; Xu, Wenji; Sun, Jing; Liu, Xin

    2016-12-01

    Tubes are indispensable in our daily life, mechanical engineering and biomedical fields. However, the practical applications of tubes are sometimes limited by their poor wettability. Reported herein is hydrophilization of the tube inner wall by transferred atmospheric pressure plasma (TAPP). An Ar atmospheric pressure plasma jet (APPJ) is used to induce He TAPP inside polytetrafluoroethylene (PTFE) tube to perform inner wall surface modification. Optical emission spectrum (OES) is used to investigate the distribution of active species, which are known as enablers for surface modification, along the TAPP. Tubes' surface properties demonstrate that after TAPP treatment, the wettability of the tube inner wall is well improved due to the decrease of surface roughness, the removal of surface fluorine and introduction of oxygen. Notably, a deep surface modification can significantly retard the aging of the obtained hydrophilicity. The results presented here clearly demonstrate the great potential of TAPP for surface modification of the inner wall of tube or other hollow bodies, and thus a uniform, effective and long-lasting surface modification of tube with any length can be easily realized by moving the tube along its axis.

  1. Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma-Based Ion Implantation

    Science.gov (United States)

    Sakudo, N.; Ikenaga, N.; Ikeda, F.; Nakayama, Y.; Kishi, Y.; Yajima, Z.

    2011-01-01

    Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will be simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.

  2. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    Directory of Open Access Journals (Sweden)

    Mudtorlep Nisoa

    2010-03-01

    Full Text Available Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effects on the cellulose membranes. When appropriated conditions are used, a thin brownish film of hydrocarbon was formed on the membrane, and the water contact angle increased from 35 to 130 degrees.

  3. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  4. Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification.

    Science.gov (United States)

    Pegalajar-Jurado, A; Joslin, J M; Hawker, M J; Reynolds, M M; Fisher, E R

    2014-08-13

    Herein, we describe the surface modification of an S-nitrosated polymer derivative via H2O plasma treatment, resulting in polymer coatings that maintained their nitric oxide (NO) releasing capabilities, but exhibited dramatic changes in surface wettability. The poly(lactic-co-glycolic acid)-based hydrophobic polymer was nitrosated to achieve a material capable of releasing the therapeutic agent NO. The NO-loaded films were subjected to low-temperature H2O plasma treatments, where the treatment power (20-50 W) and time (1-5 min) were varied. The plasma treated polymer films were superhydrophilic (water droplet spread completely in plasma-treated materials; however, they still result in physiologically relevant NO fluxes. XPS, SEM-EDS, and ATR-IR characterization suggests the plasma treatment resulted in polymer rearrangement and implantation of hydroxyl and carbonyl functional groups. Plasma treated samples maintained both hydrophilic surface properties and NO release profiles after storage at -18 °C for at least 10 days, demonstrating the surface modification and NO release capabilities are stable over time. The ability to tune polymer surface properties while maintaining bulk properties and NO release properties, and the stability of those properties under refrigerated conditions, represents a unique approach toward creating enhanced therapeutic biopolymers.

  5. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  6. Surface modification of chitosan/PEO nanofibers by air dielectric barrier discharge plasma for acetylcholinesterase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Dorraki, Naghme, E-mail: n.dorraki@web.sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Safa, Nasrin Navab [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Jahanfar, Mehdi [Protein Research Center, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Ranaei-Siadat, Seyed-Omid [Protein Research Center, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of)

    2015-09-15

    Highlights: • We used an economical and effective method for surface modification. • Chitosan/PEO nanofibrous membranes were modified by air-DBD plasma. • The most NH{sub 3}{sup +} group was generated on the 6 min plasma modified membrane. • We immobilized acetylcholinesterase on the plasma modified and unmodified membranes. • More enzyme activity was detected on the modified membrane by plasma. - Abstract: There are different methods to modify polymer surfaces for biological applications. In this work we have introduced air-dielectric barrier discharge (DBD) plasma at atmospheric pressure as an economical and safe method for modifying the surface of electrospun chitosan/PEO (90/10) nanofibers for acetylcholinesterase (AChE) immobilization. According to the contact angle measurement results, the nanofibers become highly hydrophilic when they are exposed to the DBD plasma for 6 min in compared to unmodified membrane. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) results reveal hydroxyl, C=O and NH{sub 3}{sup +} polar groups increment after 6 min plasma treatment. Contact angle measurements and ATR-FTIR results are confirmed by X-ray photoelectron spectroscopy (XPS). AChE at pH 7.4 carries a negative charge and after immobilization on the surface of plasma-treated nanofibrous membrane attracts the NH{sub 3}{sup +} group and more enzyme activity is detected on the plasma-modified nanofibers for 6 min in compared to unmodified nanofibers. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used for the surface topography and morphology characterization. The results have proved that air-DBD plasma is a suitable method for chitosan/PEO nanofibrous membrane modification as a biodegradable and functionalized substrate for enzyme immobilization.

  7. STUDY ON THE SURFACE MODIFICATION OF NANOMETER CARBON PARTICLES IN ATMOSPHERIC PLASMA

    Institute of Scientific and Technical Information of China (English)

    Y.J. Ge; G.Q. Zhang; Y.M. Liu; X.G. Guo; Z.F. Zhao

    2002-01-01

    The surface modification of nanometer carbon material has been studied by usingan Induced Dielectric Barrier Discharge Plasma device (IDBD). The experimentalresults show that with different work gases and different discharge conditions, thesurface behaviors of carbon black can be changed according to needs, including theuse of different functional groups and the change of the surface roughness of carbonparticles etc., which increased the grinding and dispersion abilities in binder.

  8. Surface modification of chromatography adsorbents by low temperature low pressure plasma.

    Science.gov (United States)

    Arpanaei, A; Winther-Jensen, B; Theodosiou, E; Kingshott, P; Hobley, T J; Thomas, O R T

    2010-10-29

    before and after exposure to plasmas enabled effective modification depths within hydrated Q HyperZ adsorbent particles to be calculated as 0.2-1.2 μm, depending on the conditions applied. The depth of plasma induced alteration was strongly influenced by the power input and size of the treated batch, i.e. dropping the power or increasing the batch size resulted in reduced plasma penetration and therefore shallower modification. The selectivity of 'surface vs. core' modification imparted to Q HyperZ by the various plasma treatments was evaluated in static and dynamic binding studies employing appropriate probes, i.e. plasmid DNA, sonicated calf thymus DNA and bovine serum albumin. In static binding studies performed with adsorbents that had been exposed to plasmas at the 5 g scale (25 g L(-1) of plasma reactor), the highest 'surface/core' modification selectivity was observed for Q HyperZ that had been subjected to 3 h of air plasma etching at 220 V (35.8 W L(-1)). This treatment removed ∼53% of 'surface' DNA binding at the expense of a 9.3% loss in 'core' protein binding. Even more impressive results were obtained in dynamic expanded bed adsorption studies conducted with Q HyperZ adsorbents that had been treated with air (220 V, 3 h) and 'vinyl acetate/argon' (170 V, 3 h) plasmas at 10.5 g scale (52.5 g L(-1) of plasma reactor). Following both plasma treatments: the 10% breakthrough capacities of the modified Q HyperZ adsorbents towards 'surface' binding DNA probes dropped very significantly (30-85%); the DNA induced inter-particle cross-linking and contraction of expanded beds observed during application of sonicated DNA on native Q HyperZ was completely eradicated; but the 'core' protein binding performance remained unchanged cf. that of the native Q HyperZ starting material.

  9. Surface modification by allylamine plasma polymerization promotes osteogenic differentiation of human adipose-derived stem cells.

    Science.gov (United States)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2014-06-25

    Tuning the material properties in order to control the cellular behavior is an important issue in tissue engineering. It is now well-established that the surface chemistry can affect cell adhesion, proliferation, and differentiation. In this study, plasma polymerization, which is an appealing method for surface modification, was employed to generate surfaces with different chemical compositions. Allylamine (AAm), acrylic acid (AAc), 1,7-octadiene (OD), and ethanol (ET) were used as precursors for plasma polymerization in order to generate thin films rich in amine (-NH2), carboxyl (-COOH), methyl (-CH3), and hydroxyl (-OH) functional groups, respectively. The surface chemistry was characterized by X-ray photoelectron spectroscopy (XPS), the wettability was determined by measuring the water contact angles (WCA) and the surface topography was imaged by atomic force microscopy (AFM). The effects of surface chemical compositions on the behavior of human adipose-derive stem cells (hASCs) were evaluated in vitro: Cell Count Kit-8 (CCK-8) analysis for cell proliferation, F-actin staining for cell morphology, alkaline phosphatase (ALP) activity analysis, and Alizarin Red S staining for osteogenic differentiation. The results show that AAm-based plasma-polymerized coatings can promote the attachment, spreading, and, in turn, proliferation of hASCs, as well as promote the osteogenic differentiation of hASCs, suggesting that plasma polymerization is an appealing method for the surface modification of scaffolds used in bone tissue engineering.

  10. Integration of plasma-assisted surface chemical modification, soft lithography, and protein surface activation for single-cell patterning

    Science.gov (United States)

    Cheng, Q.; Komvopoulos, K.

    2010-07-01

    Surface patterning for single-cell culture was accomplished by combining plasma-assisted surface chemical modification, soft lithography, and protein-induced surface activation. Hydrophilic patterns were produced on Parylene C films deposited on glass substrates by oxygen plasma treatment through the windows of polydimethylsiloxane shadow masks. After incubation first with Pluronic F108 solution and then serum medium overnight, surface seeding with mesenchymal stem cells in serum medium resulted in single-cell patterning. The present method provides a means of surface patterning with direct implications in single-cell culture.

  11. LDPE Surface Modifications Induced by Atmospheric Plasma Torches with Linear and Showerhead Configurations

    CERN Document Server

    Rich, Sami Abou; Leroy, Perrine; Reniers, François; Nittler, Laurent; Pireaux, Jean-Jacques

    2016-01-01

    Low density polyethylene (LDPE) surfaces have been plasma modified to improve their nanostructural and wettability properties. These modifications can significantly improve the deposition of subsequent layers such as films with specific barrier properties. For this purpose, we compare the treatments induced by two atmospheric plasma torches with different configurations (showerhead vs. linear). The modifications of LDPE films in terms of chemical surface composition and surface morphology are evidenced by X-ray photoelectron spectro-scopy, water contact angles measurements, and atomic force microscopy. A comparison between the two post-discharge treatments is achieved for several torch-to-substrate distances (gaps), treatment times, and oxygen flow rates in terms of etching rate, roughening rate, diffusion of oxygen into the subsur-face and hydrophilicity. By correlating these results with the chemical composition of the post-discharges, we identify and compare the 'species which are responsible for the chemi...

  12. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  13. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Yao; LIU ZhenMei; XU ZhiKang; YAO Ke

    2009-01-01

    Surface modification with dielectric barrier discharge (DBD) plasma was carried out at atmospheric pressure (argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens (IOL). Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy (XPS),field emission scanning electron microscopy (FESEM),atomic force microscopy (AFM) and water contact angle (WCA) measurements. The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells (LECs) in vitro. After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved. The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect. The existence of low molecular weight oxidized material (LMWOM) was proved on the plasma treated IOL which was caused by the chain scission effect of the plasma treatment. The plasma-treated lOLs resisted the adhesion of platelets and macrophages significantly. The LECs spreading and proliferation were postponed on the lOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs. The IOL biocompatibility was improved after the DBD plasma treatment. We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification (ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  14. Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Surface modification with dielectric barrier discharge(DBD) plasma was carried out at atmospheric pressure(argon as the discharge gas) to improve the biocompatibility of hydrophobic acrylate intraocular lens(IOL).Changes of the plasma-treated IOL surface in chemical composition,morphology and hydrophilicity were comprehensively evaluated by X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM) and water contact angle(WCA) measurements.The surface biocompatibility of the untreated and plasma-treated IOLs was compared with the adhesion behavior of platelets,macrophages and lens epithelial cells(LECs) in vitro.After DBD plasma treatment,the hydrophilicity of the IOL surface was obviously improved.The changes in WCA with treatment extension may be attributed to both the introduction of oxygen or/and nitrogen-containing polar groups and the increase of surface roughness induced by plasma etching effect.The existence of low molecular weight oxidized material(LMWOM) was proved on the plasma-treated IOL which was caused by the chain scission effect of the plasma treatment.The plasma-treated IOLs resisted the adhesion of platelets and macrophages significantly.The LECs spreading and proliferation were postponed on the IOLs plasma-treated for more than 180 s,with a well maintained epithelial phenotype of LECs.The IOL biocompatibility was improved after the DBD plasma treatment.We speculate that slighter foreign-body reaction and later incidence of anterior capsule opacification(ACO) may be expected after implantation of the argon DBD plasma-treated IOL.

  15. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush

    Science.gov (United States)

    Chen, Mingsheng; Zhang, Ying; Driver, M. Sky; Caruso, Anthony N.; Yu, Qingsong; Wang, Yong

    2013-01-01

    Objective The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Methods Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (~2 mm thick, ~10 mm diameter). The prepared surfaces were treated for 5–45 s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38 °C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). Results The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5 s plasma treatment of all these substrates. After 30 s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Significance Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. PMID:23755823

  16. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Lv, J.C. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Zhi, T.; Chen, J.Y.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Lu, Z.Q.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-12-30

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O{sub 2} plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O{sub 2} plasma treated and SWCNT coated PET fabric was better and worse than that of N{sub 2} or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the

  17. The third generation multi-purpose plasma immersion ion implanter for surface modification of materials

    CERN Document Server

    Tang Bao Yin; Wang Xiao Feng; Gan Kong Yin; Wang Song Yan; Chu, P K; Huang Nian Ning; Sun Hong

    2002-01-01

    The third generation multi-purpose plasma immersion ion implantation (PIII) equipment has been successfully used for research and development of surface modification of biomedical materials, metals and their alloys in the Southwest Jiaotong University. The implanter equipped with intense current, pulsed cathodic arc metal plasma sources which have both strong coating function and gas and metal ion implantation function. Its pulse high voltage power supply can provide big output current. It can acquire very good implantation dose uniformity. The equipment can both perform ion implantation and combine ion implantation with sputtering deposition and coating to form many kinds of synthetic surface modification techniques. The main design principles, features of important components and achievement of research works in recent time have been described

  18. Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment

    OpenAIRE

    Fatma Yalcinkaya; Baturalp Yalcinkaya; Adam Pazourek; Jana Mullerova; Martin Stuchlik; Jiri Maryska

    2016-01-01

    Nanofibres are very promising for water remediation due to their high porosity and small pore size. Mechanical properties of nanofibres restrict the application of pressure needed water treatments. Various PAN, PVDF, and PVDF/PAN nanofibre layers were produced, and mechanical properties were improved via a lamination process. Low vacuum plasma treatment was applied for the surface modification of nanofibres. Atmospheric air was used to improve hydrophilicity while sulphur hexafluoride gas was...

  19. Plasma immersion ion implantation for the efficient surface modification of medical materials

    Energy Technology Data Exchange (ETDEWEB)

    Slabodchikov, Vladimir A., E-mail: dipis1991@mail.ru; Borisov, Dmitry P., E-mail: borengin@mail.ru; Kuznetsov, Vladimir M., E-mail: kuznetsov@rec.tsu.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate. The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment.

  20. Active screen plasma surface modification of polycaprolactone to improve cell attachment.

    Science.gov (United States)

    Fu, Xin; Sammons, Rachel L; Bertóti, Imre; Jenkins, Mike J; Dong, Hanshan

    2012-02-01

    To tailor polycaprolactone (PCL) surface properties for biomedical applications, film samples of PCL were surface modified by the active screen plasma nitriding (ASPN) technique. The chemical composition and structure were characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The wettability of the surface modified polymers was investigated by contact angle and surface energy methods. Biocompatibility of the prepared PCL samples was evaluated in vitro using MC3T3-E1 osteoblast-like cells. The degradability was assessed by determining the self-degradation rate (catalyzed by lipase). The results show that ASPN surface modification can effectively improve osteoblast cell adhesion and spreading on the surface of PCL. The main change in chemical composition is the exchange of some carboxyl groups on the surface for hydroxyl groups. The active-screen plasma nitriding technique has been found to be an effective and practical method to effectively improve osteoblast cell adhesion and spreading on the PCL surface. Such changes have been attributed to the increase in wettablity and generation of new hydroxyl groups by plasma treatment. After active-screen plasma treatment, the PCL film is still degradable, but the enzymatic degradation rate is slower compared with untreated PCL film. Copyright © 2011 Wiley Periodicals, Inc.

  1. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Niranjan, Ram, E-mail: niranjan@barc.gov.in [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rout, R.K.; Srivastava, R. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravarthy, Y. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, P. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, T.C.; Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-11-15

    Graphical abstract: - Highlights: • Exposure of materials (W, Ni, SS, Mo and Cu) to fusion plasma in a plasma focus device. • The erosion and the formations of blisters, pores, craters, micro-cracks after irradiation. • The structural phase transformation in the SS sample after irradiation. • The surface layer alloying of the samples with the plasma focus anode material. - Abstract: An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.

  2. Surface modification of silicon-containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Jin, Yoonyoung; Desta, Yohannes; Goettert, Jost; Lee, G. S.; Ajmera, P. K.

    2005-07-01

    Surface modification of silicon-containing fluorocarbon (SiCF) films achieved by wet chemical treatments and through x-ray irradiation is examined. The SiCF films were prepared by plasma-enhanced chemical vapor deposition, using gas precursors of tetrafluoromethane and disilane. As-deposited SiCF film composition was analyzed by x-ray photoelectron spectroscopy. Surface modification of SiCF films utilizing n-lithiodiaminoethane wet chemical treatment is discussed. Sessile water-drop contact angle changed from 95°+/-2° before treatment to 32°+/-2° after treatment, indicating a change in the film surface characteristics from hydrophobic to hydrophilic. For x-ray irradiation on the SiCF film with a dose of 27.4 kJ/cm3, the contact angle of the sessile water drop changed from 95°+/-2° before radiation to 39°+/-3° after x-ray exposure. The effect of x-ray exposure on chemical bond structure of SiCF films is studied using Fourier transform infrared measurements. Electroless Cu deposition was performed to test the applicability of the surface modified films. The x-ray irradiation method offers a unique advantage in making possible surface modification in a localized area of high-aspect-ratio microstructures. Fabrication of a Ti-membrane x-ray mask is introduced here for selective surface modification using x-ray irradiation.

  3. Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2016-01-01

    Full Text Available Nanofibres are very promising for water remediation due to their high porosity and small pore size. Mechanical properties of nanofibres restrict the application of pressure needed water treatments. Various PAN, PVDF, and PVDF/PAN nanofibre layers were produced, and mechanical properties were improved via a lamination process. Low vacuum plasma treatment was applied for the surface modification of nanofibres. Atmospheric air was used to improve hydrophilicity while sulphur hexafluoride gas was used to improve hydrophobicity of membranes. Hydrophilic membranes showed higher affinity to attach plasma particles compared to hydrophobic membranes.

  4. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review.

    Science.gov (United States)

    Desmet, Tim; Morent, Rino; De Geyter, Nathalie; Leys, Christophe; Schacht, Etienne; Dubruel, Peter

    2009-09-14

    In modern technology, there is a constant need to solve very complex problems and to fine-tune existing solutions. This is definitely the case in modern medicine with emerging fields such as regenerative medicine and tissue engineering. The problems, which are studied in these fields, set very high demands on the applied materials. In most cases, it is impossible to find a single material that meets all demands such as biocompatibility, mechanical strength, biodegradability (if required), and promotion of cell-adhesion, proliferation, and differentiation. A common strategy to circumvent this problem is the application of composite materials, which combine the properties of the different constituents. Another possible strategy is to selectively modify the surface of a material using different modification techniques. In the past decade, the use of nonthermal plasmas for selective surface modification has been a rapidly growing research field. This will be the highlight of this review. In a first part of this paper, a general introduction in the field of surface engineering will be given. Thereafter, we will focus on plasma-based strategies for surface modification. The purpose of the present review is twofold. First, we wish to provide a tutorial-type review that allows a fast introduction for researchers into the field. Second, we aim to give a comprehensive overview of recent work on surface modification of polymeric biomaterials, with a focus on plasma-based strategies. Some recent trends will be exemplified. On the basis of this literature study, we will conclude with some future trends for research.

  5. Investigation of Atmospheric Plasma Discharge and Its Application to Surface Modification of Textile Materials

    Institute of Scientific and Technical Information of China (English)

    TANG Xiao-liang; QIU Gao; FENG Xian-ping; YAN Yong-hui; SHI Yun-cheng; YAN Zhi-ren; WANG Liang

    2005-01-01

    In this paper, an improved quasi-stable atmospheric pressure dielectric barrier discharge (DBD) plasma source is achieved after carefully controlled discharge voltage and current, discharge power, working gas, treatment period,and gap between the electrodes. This plasma source has been used to modify the surface of Polybutylene Terephthalate (PBT) melt-blown nonwovens and Polyester(PET) fabrics, and the various influences on surface modification and the aging effeet of treated polymeric materials have been systematically investigated. In addition, the method of spectrum analysis is also used for diagnosing plasma parameters such as electron temperature.Experimental results indicate that both the wettablity and permeation of treated PBT melt-blown nonwovens and dyeing ability of treated PET fabrics are certainly improved.

  6. Surface modification of cellulosic substrates via atmospheric pressure plasma polymerization of acrylic acid: Structure and properties

    Science.gov (United States)

    Garcia-Torres, Jose; Sylla, Dioulde; Molina, Laura; Crespo, Eulalia; Mota, Jordi; Bautista, Llorenç

    2014-06-01

    Surface chemical modification of cellulose-based substrates has been carried out by atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) of acrylic acid. The structure/properties relationship of the samples was studied as a function of the plasma experimental conditions. Acrylic acid monomer/helium ratio and treatment speed clearly influences the wettability properties of the paper substrate: advancing contact angle values were reduced to the half if compare to non-treated paper. Surface morphology of the films did not greatly vary at short polymerization times but fibers were covered by a poly(acrylic acid) film at longer times. FTIR and XPS techniques allowed detecting the retention of carboxylic acid groups/moieties. The possibility to quickly design architectures with tunable carboxylic functions by modifying the plasma processing parameters is shown.

  7. Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sounghee [Woosuk University, Jinchon (Korea, Republic of)

    2015-10-15

    A plasma surface modification of powders has been carried out in a circulating fluidized bed reactor under reduced pressure. Polystyrene (PS) particles treated by plasma are grafted with polyethylene glycol (PEG) on the surface. The virgin, plasma-treated and grafted powders were characterized by DPPH method, FTIR, SEM and contact angle meter. The plasma-treated PS powders have well formed peroxide on the surface, By PEG grafting polymerization, PEG is well grafted and dispersed on the surface of the plasma-treated PS powders. The PEG-g-PS particle was successfully synthesized using the plasma circulating fluidized bed reactor under reduced pressure.

  8. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  9. Modification of a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion

    Science.gov (United States)

    Muboyadzhyan, S. A.

    2008-12-01

    A new process for modifying a metallic surface in a vacuum arc discharge plasma using thermally stimulated ion diffusion is considered. The effect of the bias voltage (negative substrate potential) on the processes that occur on the surface of a treated part is studied when the substrate material interacts with an accelerated metallic-ion flow. The phase and elemental compositions of the modified layer are studied for substrates made of nickel-based superalloys, austenitic and martensitic steels, and titanium-based alloys. The heat resistance, the salt corrosion resistance, and the corrosion cracking resistance of steels and titanium-based alloys are investigated after their modification in vacuum arc plasmas of pure metals (Ti, Zr, Al, Cr, Y) and related alloys. The surface modification caused by the thermally stimulated ion saturation of the surfaces of parts made from structural materials is shown to change the structural-phase states of their surfaces and, correspondingly, the properties of these materials in relation to the state of the surface.

  10. Silicon surface modifications produced by non-equilibrium He, Ne and Kr plasma jets

    Science.gov (United States)

    Engelhardt, Max; Kartaschew, Konstantin; Bibinov, Nikita; Havenith, Martina; Awakowicz, Peter

    2017-01-01

    In this publication the interaction of non-equilibrium plasma jets (N-APPJs) with silicon surfaces is studied. The N-APPJs are operated with He, Ne and Kr gas flows under atmospheric pressure conditions. Plasma bullets are produced by the He and Ne N-APPJs, while a filamentary discharge is ignited in the Kr flow. All these N-APPJs produce remarkable traces on silicon wafer surfaces treated in their effluents. Different types of etching tracks, blisters and crystals are observed on the treated surfaces. The observed traces and surface modifications of silicon wafers are analyzed with optical, atomic-force, scanning electron and Raman microscopes. Based on the material composition within the etching tracks and the position and dimension of blisters and crystals, the traces observed on the silicon wafer surfaces are interpreted as traces of micro-plasmoids. Amorphous silicon is found in the etching tracks. Blisters are produced through the formation of cracks inside the silicon crystal by the interaction with micro-plasmoids. The reason for these modifications is not clear now. The density of micro-plasmoids traces on the treated silicon surface and the depth and length of the etching tracks depends strongly on the type of the used carrier gas of the N-APPJ.

  11. Tracer techniques for the assessment of material migration and surface modification of plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M., E-mail: rubel@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology, 100 44 Stockholm (Sweden); Weckmann, A.; Ström, P.; Petersson, P.; Garcia-Carrasco, A. [Department of Fusion Plasma Physics, Royal Institute of Technology, 100 44 Stockholm (Sweden); Brezinsek, S.; Coenen, J.; Kreter, A.; Möller, S.; Wienhold, P. [Institute of Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Wauters, T. [LPP-ERM/KMS, Association EURATOM-Belgian State, 1000 Brussels (Belgium); Fortuna-Zaleśna, E. [Faculty of Materials Science, Warsaw University of Technology, 02-507 Warsaw (Poland)

    2015-08-15

    Highlights: • Tracer techniques were used in the TEXTOR tokamak to determine high-Z metal migration and the retention of species used for plasma edge cooling or wall cleaning under different operation conditions. • Volatile molybdenum hexa-fluoride, nitrogen-15 and oxygen-18 were used as markers in tokamak or ion cyclotron wall conditioning discharges (ICWC). • The objective was to obtain qualitative and quantitative of a global and local deposition pattern and material mixing effects. • The deposition and retention was studied on plasma-facing components, collector probes and test limiters. • Optical spectroscopy and ex-situ analysis techniques were used to determine the plasma response to tracer injection and surface composition modification. - Abstract: Tracer techniques were used in the TEXTOR tokamak to determine high-Z metal migration and the deposition of species used for plasma edge cooling or wall conditioning under different types of operation conditions. Volatile molybdenum hexa-fluoride, nitrogen-15 and oxygen-18 were used as markers in tokamak or ion cyclotron wall conditioning discharges (ICWC). The objective was to obtain qualitative and quantitative of a global and local deposition pattern and material mixing effects. The deposition and retention was studied on plasma-facing components, collector probes and test limiters. Optical spectroscopy and ex-situ analysis techniques were used to determine the plasma response to tracer injection and the modification of surface composition. Molybdenum and light isotopes were detected on all types of limiters and short-term probes retrieved from the vessel showing that both helium and nitrogen are trapped following wall conditioning and edge cooling. Only small amounts below 1 × 10{sup 19} m{sup −2} of {sup 18}O were detected on surfaces treated by oxygen-assisted ICWC.

  12. Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor - process, wettability improvement and ageing effects

    Energy Technology Data Exchange (ETDEWEB)

    Arpagaus, C. [ETH Swiss Federal Institute of Technology Zurich, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zentrum, Sonneggstrasse 3, CH-8092 Zurich (Switzerland); Rossi, A. [ETH Swiss Federal Institute of Technology Zurich, Laboratory for Surface Science and Technology, Department of Materials, ETH Hoenggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland); Universita degli Studi di Cagliari, Dipartimento di Chimica Inorganica ed Analitica, UdR INSTM I-09100 Cagliari (Italy); Rudolf von Rohr, Ph. [ETH Swiss Federal Institute of Technology Zurich, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zentrum, Sonneggstrasse 3, CH-8092 Zurich (Switzerland)]. E-mail: vonrohr@ipe.mavt.ethz.ch

    2005-12-15

    The effectiveness of improving the wettability of HDPE powders within less than 0.1 s by plasma surface modification in a Plasma Downer Reactor is investigated. A correlation is revealed between the XPS results (O/C-ratio) and the wettability (contact angle, polar surface tension by capillary rise method). The O{sub 2}-content in the plasma feed gas has been adjusted for best wettability properties. XPS results indicate the formation of C=O and COOH functional groups on the powder surface. The O/C-ratio increased from 0.0 (no oxygen on the non-treated powder) up to 0.15 for the plasma treated HDPE powder surface. With pure O{sub 2}-plasma treatment, a water contact angle reduction from >90{sup o} (no water penetration into the untreated PE powder) down to 65{sup o} was achieved. The total surface free energy increased from 31.2 to 45 mN/m. Ageing of treated powders occurs and proceeds mostly within the first 7 days of storage. Contact angle measurements and O1s/O2s intensity ratio data support that ageing is mainly a diffusion-controlled process. Nevertheless, XPS results show the presence of oxygen functional groups even after 40 days, which explains why the powder is still dispersible in water without any addition of surfactants.

  13. Mechanism of surface modification in the plasma-surface interaction in electrical arcs

    CERN Document Server

    Timko, H; Nordlund, K; Costelle, L; Matyash, K; Schneider, R; Toerklep, A; Arnau-Izquierdo, G; Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2010-01-01

    Electrical sparks and arcs are plasma discharges that carry large currents and can strongly modify surfaces. This damage usually comes in the form of micrometer-sized craters and frozen-in liquid on the surface. Using a combination of experiments, plasma and atomistic simulation tools, we now show that the observed formation of deep craters and liquidlike features during sparking in vacuum is explained by the impacts of energetic ions, accelerated under the given conditions in the plasma sheath to kiloelectron volt energies, on surfaces. The flux in arcs is so high that in combination with kiloelectron volt energies it produces multiple overlapping heat spikes, which can lead to cratering even in materials such as Cu, where a single heat spike normally does not.

  14. Mechanism of surface modification in the plasma surface interaction in electrical arcs

    CERN Document Server

    Timko, Helga; Djurabekova, Flyura; Nordlund, Kai; Matyash, Konstantin; Schneider, Ralf; Toerklep, Anders; Arnau-Izquierdo, Gonzalo; Descoeudres, Antoine; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2010-01-01

    Electrical sparks and arcs are plasma discharges that carry large currents and can strongly modify surfaces. This damage usually comes in the form of micrometer-sized craters and frozen-in liquid on the surface. Using a combination of experiments, plasma and atomistic simulation tools, we now show that the observed formation of deep craters and liquidlike features during sparking in vacuum is explained by the impacts of energetic ions, accelerated under the given conditions in the plasma sheath to kiloelectron volt energies, on surfaces. The flux in arcs is so high that in combination with kiloelectron volt energies it produces multiple overlapping heat spikes, which can lead to cratering even in materials such as Cu, where a single heat spike normally does not.

  15. Controlled chemical and morphological surface modifications via pulsed plasma polymerizations: Synthesis of ultrahydrophobic surfaces

    Science.gov (United States)

    Qiu, Haibo

    The RF plasma polymerization of saturated linear and cyclic perfluoroalkane monomers and vinyl acetic acid were studied in this dissertation. Film chemical compositions, deposition rates, surface wettabilities and morphologies were characterized as functions of various plasma processing conditions. Large progressive changes in chemical compositions with sequential variations in plasma duty cycle were demonstrated in polymerization of both perfluoroalkane and vinyl acetic acid monomers. As anticipated, polymer films obtained from the perfluorocarbon monomers exhibited a general trend towards more linear structures with decreasing plasma duty cycles. However, completely unexpectedly, ultrahydrophobic films were obtained from some of these monomers under restricted duty cycle and power input conditions. SEM and XPS characterizations revealed that a rough, fibrous-like surface morphology is responsible for this ultrahydrophobicity, as opposed to unusual chemical compositions. The growth of the fibrous surface is believed to arise from nucleation and hillock-like growth patterns on selectively activated sites of the growing polymer film. Surface mobility of plasma generated reactive species apparently plays an important role in the growth of the fibrous ultrahydrophobic surfaces, as shown by substrate temperature studies. Additionally, the present study revealed a number of interesting new observations of significant differences in the chemical compositions and deposition rates of polymer films obtained from the diverse range of perfluorocarbon monomers employed in this work. The ultrahydrophobic fluorocarbon films discovered in this investigation were evaluated for use in several biomaterial applications. The results obtained show excellent marine antifouling properties for these surfaces, as documented in ocean testing experiments. These surfaces have also been shown to be useful in controlling protein and peptide surface adsorptions, as well as in the inflammatory

  16. Plasma Processing of Large Surfaces with Application to SRF Cavity Modification

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Janardan; Popovic, Svetozar; Vuskovic, Leposova; Im, Do; Valente, Anne-Marie; Phillips, H

    2013-09-01

    Plasma based surface modifications of SRF cavities present promising alternatives to the wet etching technology currently applied. To understand and characterize the plasma properties and chemical kinetics of plasma etching processes inside a single cell cavity, we have built a specially-designed cylindrical cavity with 8 observation ports. These ports can be used for holding niobium samples and diagnostic purposes simultaneously. Two frequencies (13.56 MHz and 2.45 GHz) of power source are used for different pressure, power and gas compositions. The plasma parameters were evaluated by a Langmuir probe and by an optical emission spectroscopy technique based on the relative intensity of two Ar 5p-4s lines at 419.8 and 420.07 nm. Argon 5p-4s transition is chosen to determine electron temperature in order to optimize parameters for plasma processing. Chemical kinetics of the process was observed using real-time mass spectroscopy. The effect of these parameters on niobium surface would be measured, presented at this conference, and used as guidelines for optimal design of SRF etching process.

  17. Comparison of two different plasma surface-modification techniques for the covalent immobilization of protein monolayers.

    Science.gov (United States)

    Cifuentes, Anna; Borrós, Salvador

    2013-06-04

    The immobilization of biologically active species is crucial for the fabrication of smart bioactive surfaces. For this purpose, plasma polymerization is frequently used to modify the surface nature without affecting the bulk properties of the material. Thus, it is possible to create materials with surface functional groups that can promote the anchoring of all kinds of biomolecules. Different methodologies in protein immobilization have been developed in recent years, although some drawbacks are still not solved, such as the difficulties that some procedures involve and/or the denaturalization of the protein due to the immobilization process. In this work, two different strategies to covalently attach bovine serum albumin (BSA) protein are developed. Both techniques are compared in order to understand how the nature of the surface modification affects the conformation of the protein upon immobilization.

  18. Surface Modification of Polyethylene (PE) Films Using Dielectric Barrier Discharge Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; LI Jian; REN Chunsheng; WANG Dezhen; WANG Younian

    2008-01-01

    Modification of the surface properties of polyethylene (PE) films is studied using air dielectric barrier discharge at atmospheric pressure. The treated samples are examined by water contact angle measurements, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). With the increase in treating time, the water contact angle changes from 93.2° before treatment to a minimum of 53.3° after a treatment for 50 s. Both ATR and XPS results show some oxidized" species are introduced into the sample surface by the plasma treatment and the tendency of the water contact angle with the treating time is the same as that of oxygen concentration on the treated sample surface. SEM result shows the surface roughness of PE samples increases with the treatment time increasing.

  19. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    Science.gov (United States)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  20. Deuterium retention and surface modifications of nanocrystalline tungsten films exposed to high-flux plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, M.H.J. ' t [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, 3439 MN Nieuwegein (Netherlands); Dellasega, D.; Pezzoli, A.; Passoni, M. [Politecnico di Milano, EURATOM-ENEA-CNR Association, Milano (Italy); Kleyn, A.W., E-mail: A.W.Kleijn@uva.nl [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, 3439 MN Nieuwegein (Netherlands); University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Center of Interface Dynamics for Sustainability, CDCST, CAEP, Chengdu, Sichuan 610207 (China); Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, 3439 MN Nieuwegein (Netherlands)

    2015-08-15

    Highlights: • The films withstand the intense plasma exposure maintaining overall integrity. • An increase of deuterium retention was observed with decreasing tungsten density. • Formation of micrometer-sized blisters as well as structures on the nanometer scale depending on the layer type. - Abstract: Deuterium retention studies are presented for nanostructured tungsten films exposed to high-flux deuterium plasmas. Thin tungsten films of ∼1 μm thickness were deposited with pulsed laser deposition (PLD) on bulk tungsten. Surface modifications were studied with scanning electron microscopy and deuterium retention with thermal desorption spectroscopy. Three types of PLD films with different densities and crystallinity were studied after exposure to deuterium plasmas. The surface temperature ranged from about 460 K at the periphery to about 520 K in the centre of the targets. The films withstand the intense plasma exposure well and maintain their overall integrity. An increase of deuterium retention is observed with decreasing tungsten density and crystallite size. We found that the filling of these thin films with deuterium is significantly faster than for pre-damaged polycrystalline tungsten. We observed formation of micrometer-sized blisters as well as structures on the nanometer scale, both depending on the layer type.

  1. Surface Modification of Conventional Polymers by Depositing Plasma Polymers of Trimethylsilane and of Trimethylsilane + O2.

    Science.gov (United States)

    Weikart; Miyama; Yasuda

    1999-03-01

    The static wetting properties of TMS (trimethylsilane) and TMS + O2 plasma deposited films on eleven low energy conventional polymers were investigated using the sessile droplet method. The static advancing contact angle is an excellent indication of the change in surface state properties from plasma surface modification. However, traditional contact angle measuring techniques possess a methodological limitation, which can leave a water droplet on the substrate surface for up to 3 min before a measurement is obtained. The static "advancing" contact angles of different size water droplets on teflon and nylon surfaces were observed to change significantly in 2 min while equilibrating with the surface and surroundings. A new quick image-capturing device enables static contact angle measurement 2 to 4 s after contact with the substrate. This technique virtually eliminates the time dependent effects of evaporation and surface state change, which are believed to be responsible for the change in static advancing contact angles. Furthermore, static contact angles independent of droplet volume and contact time may be taken as a surface characteristic property, which is denoted as the intrinsic static contact angle, θS. The static "advancing" contact angle, measured in this fashion, indicated that the wetting properties of TMS and TMS + O2 plasma polymer deposition on 10 conventional polymers were modified virtually independent of the underlying substrate. The average advancing contact angles on TMS and TMS + O2 modified polymers are θS = 94 +/- 2.2 (cos θS = -0.0645) and θS = 32 +/- 6.9 (cos θS = 0.8452), respectively. Copyright 1999 Academic Press.

  2. Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems.

    Science.gov (United States)

    Barbier, Valessa; Tatoulian, Michaël; Li, Hong; Arefi-Khonsari, Farzaneh; Ajdari, Armand; Tabeling, Patrick

    2006-06-06

    We describe a method based on plasma polymerization for the modification and control of the surface properties of poly(dimethylsiloxane) (PDMS) surfaces. By depositing plasma polymerized acrylic acid coatings on PDMS, we succeeded to fabricate stable (several days) hydrophilic and patterned hydrophobic/hydrophilic surfaces. We used this approach to generate direct and (for the first time in this material) double emulsions in PDMS microchannels.

  3. Titanium surface modification by using microwave-induced argon plasma in various conditions to enhance osteoblast biocompatibility

    OpenAIRE

    Seon, Gyeung Mi; Seo, Hyok Jin; Kwon, Soon Young; Lee, Mi Hee; Kwon, Byeong-Ju; Kim, Min Sung; Koo, Min-Ah; Park, Bong Joo; Park,Jong-Chul

    2015-01-01

    Background Titanium is a well proven implantable material especially for osseointegratable implants by its biocompatibility and anti-corrosive surface properties. Surface characteristics of the implant play an important role for the evolution of bone tissue of the recipient site. Among the various surface modification methods, plasma treatment is one of the promising methods for enhance biocompatibility. We made microwave-induced argon plasma at atmospheric pressure to improve in titanium sur...

  4. Surface Modification of Asymmetric Polysulfone/Polyethylene Glycol Membranes by DC Ar-Glow Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chalad Yuenyao

    2016-01-01

    Full Text Available Polysulfone/polyethylene glycol (PSF/PEG membranes were prepared by dry/wet phase inversion method. Effects of direct current glow discharge plasma using argon as working gas on morphological structures and gas separation properties of membranes were studied. Alteration of membrane characteristics were analyzed by various techniques like contact angle, scanning electron microscope, Fourier transform infrared spectroscopy, and dynamic mechanical thermal analysis. Gas separation properties were measured in terms of permeation and ideal O2/N2 selectivity. Results showed that hydrophilic and gas separation properties of PSF/PEG membranes increased by plasma surface modification. It was also shown that the dosage of PEG and plasma treatment affected the morphological structures and mechanical and gas separation properties. The macro voids and transmembrane structure disappeared with a little amount of PEG dosage. Pore size and mechanical strength tend to decrease with increasing PEG dosage up to 10 wt%. Glass transition temperature (Tg receded from 201.8 to 143.7°C for pure PSF and PSF/PEG with PEG dosage of 10 wt%. O2 and N2 gases permeation through the 10-minute plasma treated membranes tend to increase. However, the permeation strongly dispersed when treatment time was more extended.

  5. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    Science.gov (United States)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  6. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    Science.gov (United States)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2017-02-01

    Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  7. Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland); Tracz, Adam [Centre for Molecular and Macromolecular Studies of the Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź (Poland); Żenkiewicz, Marian [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland)

    2015-03-01

    The paper presents the results of studies to determine the applicability of plasma modification in the process of polylactide (PLA) surface preparation prior to the autocatalytic metallization. The polylactide plasma modification was carried out in an oxygen or nitrogen chemistry. The samples were tested with the following methods: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and electron spectrophotometry (XPS). Scanning electron microscopy and atomic force microscopy images were demonstrated. The results of surface free energy calculations, performed based on the results of the contact angle measurements have been presented. The results of the qualitative (degree of oxidation or nitridation) and quantitative analysis of the chemical composition of the polylactide surface layer have also been described. The results of the studies show that the DC plasma modification performed in the proposed condition is a suitable as a method of surface preparation for the polylactide metallization. - Highlights: • We modified polylactide surface layer with plasma generated in oxygen or nitrogen. • We tested selected properties and surface structure of modified samples. • DC plasma modification can be used to prepare the PLA surface for metallization. • For better results metallization should be preceded by sonication process.

  8. Surface, electrical and mechanical modifications of PMMA after implantation with laser produced iron plasma ions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Qazi Salman; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Jalil, Sohail Abdul; Shabbir, Muhammad Kaif; Mahmood, Khaliq; Akram, Mahreen; Khalid, Ayesha; Yaseen, Nazish; Arshad, Atiqa

    2016-07-01

    Laser Produced Plasma (LPP) was employed as an ion source for the modifications in surface, electrical and mechanical properties of poly methyl (methacrylate) PMMA. For this purpose Nd:YAG laser (532 nm, 6 ns, 10 Hz) at a fluence of 12.7 J/cm{sup 2} was employed to generate Fe plasma. The fluence and energy measurements of laser produced Fe plasma ions were carried out by employing Thomson Parabola Technique in the presence of magnetic field strength of 0.5 T, using CR-39 as Solid State Nuclear Track Detector (SSNTD). It has been observed that ion fluence ejecting from ablated plasma was maximum at an angle of 5° with respect to the normal to the Fe target surface. PMMA substrates were irradiated with Fe ions of constant energy of 0.85 MeV at various ion fluences ranging from 3.8 × 10{sup 6} ions/cm{sup 2} to 1.8 × 10{sup 8} ions/cm{sup 2} controlled by varying laser pulses from 3000 to 7000. Optical microscope and Scanning Electron Microscope (SEM) were utilized for the analysis of surface features of irradiated PMMA. Results depicted the formation of chain scission, crosslinking, dendrites and star like structures. To explore the electrical behavior, four probe method was employed. The electrical conductivity of ion irradiated PMMA was increased with increasing ion fluence. The surface hardness was measured by shore D hardness tester and results showed the monotonous increment in surface hardness with increasing ion fluence. The increasing trend of surface hardness and electrical conductivity with increasing Fe ion fluence has been well correlated with the surface morphology of ion implanted PMMA. The temperature rise of PMMA surface due to Fe ion irradiation is evaluated analytically and comes out to be in the range of 1.72 × 10{sup 4} to 1.82 × 10{sup 4} K. The values of total Linear Energy Transfer (LET) or stopping power of 0.8 MeV Fe ions in PMMA is 61.8 eV/Å and their range is 1.34 μm evaluated by SRIM simulation.

  9. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  10. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the contac

  11. Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility

    Science.gov (United States)

    Tverdokhlebov, S. I.; Bolbasov, E. N.; Shesterikov, E. V.; Antonova, L. V.; Golovkin, A. S.; Matveeva, V. G.; Petlin, D. G.; Anissimov, Y. G.

    2015-02-01

    Surface modification of polylactic acid (PLLA) by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering was investigated. Increased biocompatibility was demonstrated using studies with bone marrow multipotent mesenchymal stromal cells. Atomic force microscopy demonstrates that the plasma treatment modifies the surface morphology of PLLA to produce rougher surface. Infrared spectroscopy and X-ray diffraction revealed that changes in the surface morphology are caused by the processes of PLLA crystallization. Fluorescent X-ray spectroscopy showed that the plasma treatment also changes the chemical composition of PLLA, enriching it with ions of the sputtered target: calcium, phosphorus and oxygen. It is hypothesized that these surface modifications increase biocompatibility of PLLA without increasing toxicity.

  12. Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and μPlasma printing

    Science.gov (United States)

    Verkuijlen, R. O. F.; van Dongen, M. H. A.; Stevens, A. A. E.; van Geldrop, J.; Bernards, J. P. C.

    2014-01-01

    In this study, we investigated the effect of UV-ozone and μPlasma printing on surface modification of polycarbonate (PC) and polyethylene naphthalate (PEN). The effects on the wetting behaviour was studied, in terms of surface energy and chemical modification of the treated substrate, by analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Both UV-ozone and μPlasma printing are effective ways to modify the wettability of both polymer substrates, substantially increasing the wetting envelope after a short treatment period. This increase is primarily due to an increase of the polar part of the surface energy. This is confirmed by ATR-FTIR and XPS, which show the formation of oxygen containing groups as well as a decrease in the aromatic Csbnd C bonds on the surface of the substrate due to the treatment. For both types of surface treatment, prolonged exposure showed no further increase in wettability, although continuous change in chemical composition of the surface was measured. This effect is more evident for UV-ozone treatment, as a larger increase in O/C ratio of the surface was measured as compared to μPlasma printing. It can be concluded that μPlasma printing results in a more chemically selective modification as compared to UV-ozone. In the case that chemical selectivity and treatment time are considered important, μPlasma printing is favourable over UV-ozone.

  13. Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and μPlasma printing

    Energy Technology Data Exchange (ETDEWEB)

    Verkuijlen, R.O.F. [Expertise Centre Thin Films and Functional Materials, Fontys University of Applied Sciences, 5600 AH Eindhoven (Netherlands); Dongen, M.H.A. van, E-mail: mha.vandongen@fontys.nl [Expertise Centre Thin Films and Functional Materials, Fontys University of Applied Sciences, 5600 AH Eindhoven (Netherlands); Stevens, A.A.E. [InnoPhysicsB.V., 5627 JM Eindhoven (Netherlands); Geldrop, J. van; Bernards, J.P.C. [Expertise Centre Thin Films and Functional Materials, Fontys University of Applied Sciences, 5600 AH Eindhoven (Netherlands)

    2014-01-30

    In this study, we investigated the effect of UV-ozone and μPlasma printing on surface modification of polycarbonate (PC) and polyethylene naphthalate (PEN). The effects on the wetting behaviour was studied, in terms of surface energy and chemical modification of the treated substrate, by analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Both UV-ozone and μPlasma printing are effective ways to modify the wettability of both polymer substrates, substantially increasing the wetting envelope after a short treatment period. This increase is primarily due to an increase of the polar part of the surface energy. This is confirmed by ATR-FTIR and XPS, which show the formation of oxygen containing groups as well as a decrease in the aromatic C-C bonds on the surface of the substrate due to the treatment. For both types of surface treatment, prolonged exposure showed no further increase in wettability, although continuous change in chemical composition of the surface was measured. This effect is more evident for UV-ozone treatment, as a larger increase in O/C ratio of the surface was measured as compared to μPlasma printing. It can be concluded that μPlasma printing results in a more chemically selective modification as compared to UV-ozone. In the case that chemical selectivity and treatment time are considered important, μPlasma printing is favourable over UV-ozone.

  14. Plasma Surface Modification of Glass-Fibre-Reinforced Polyester Enhanced by Ultrasonic Irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander

    2010-01-01

    .295, 0.385 and 0.447, respectively. This indicated that the plasma treatment oxidized and roughened the GFRP surface, and the ultrasonic irradiation further enhanced the oxidation. It is concluded that plasma treatment efficiency for adhesion improvement of GFRPs is enhanced by the ultrasonic irradiation.......During atmospheric pressure plasma treatment, reactive species generated in the plasma diffuse through a boundary gas layer which is adsorbed at the material surface. Many of the reactive species become inactivated before reaching the surface due to their short lifetime. The efficiency of plasma....... The surface characterizations were performed using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force mictroscopy (AFM). O/C ratios at the GFRP surfaces before the treatments, after 30-s plasma treatment, and after 30-s plasma treatment with ultrasonic irradiation were 0...

  15. Tribocorrosion studies of metallic biomaterials: The effect of plasma nitriding and DLC surface modifications.

    Science.gov (United States)

    Zhao, Guo-Hua; Aune, Ragnhild E; Espallargas, Nuria

    2016-10-01

    The medical grade pure titanium, stainless steel and CoCrMo alloy have been utilized as biomaterials for load-bearing orthopedic prosthesis. The conventional surgery metals suffer from a combined effect of wear and corrosion once they are implanted, which may significantly accelerate the material degradation process. In this work, the tribocorrosion performance of the metallic biomaterials with different surface modifications was studied in the simulated body fluid for the purpose of investigating the effect of the surface treatments on the tribocorrosion performance and eventually finding the most suitable implantation materials. The metals were subjected to surface modifications by plasma nitriding in different treatment temperatures or physical vapor deposition (PVD) to produce diamond-like carbon (DLC) coating, respectively. The dry wear and tribocorrosion properties of the samples were evaluated by using a reciprocating ball-on-disc tribometer equipped with an electrochemical cell. Prior to the tribocorrosion tests, their electrochemical behavior was measured by the potentiodynamic polarization in phosphate buffer saline (PBS) solution at room temperature. Both stainless steel and CoCrMo after low temperature nitriding kept their passive nature by forming an expanded austenite phase. The DLC coated samples presented the low anodic corrosion current due to the chemical inertness of the carbon layer. During the tribocorrosion tests at open circuit potential, the untreated and low temperature nitrided samples exhibited significant potential drop towards the cathodic direction, which was a result of the worn out of the passive film. Galvanic coupling was established between the depassivated (worn) area and the still passive (unworn) area, making the materials suffered from wear-accelerated corrosion. The DLC coating performed as a solid lubricant in both dry wear and tribocorrosion tests, and the resulting wear after the tests was almost negligible. Copyright

  16. Transience of plasma surface modification as an adhesion promoter for polychlorotrifluorethylene

    CERN Document Server

    Subramanian, S; Love, B J; Romand, M; Charbonnier, M

    2002-01-01

    Poly(chlorotrifluoroethylene) (PCTFE) and other fluoropolymers are increasingly used as inner layer dielectrics. However, these polymers have low surface energies and correspondingly poor adhesive properties. Results are presented on the use of a low-pressure ammonia plasma to enhance the surface bondability of PCTFE. The plasma modified PCTFE film surfaces were characterized by x-ray photoelectron spectroscopy and contact angle measurements. Surface modified films exhibited improved adhesion to electroless copper deposits (180 deg. peel test) compared to coated PCTFE controls and that underwent no plasma exposure. Annealing studies were conducted between 30 and 100 deg. C to examine the stability of the plasma-modified surfaces. For samples annealed below T sub g , contact angle measurements indicated that the plasma-introduced groups remained bound on the surface for four weeks. For specimens annealed above T sub g , the surface functionalities were absorbed within the bulk and surface rearrangement occurre...

  17. Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maia, J.V. da, E-mail: jaisondamaia@hotmail.com [Plasmas and Processes Laboratory, Department of Physics, Technological Institute of Aeronautics, 12228-900 S. J. dos Campos, SP (Brazil); Department of Physics, Federal Institute of Santa Catarina, 89251-000 Jaraguá do Sul, SC (Brazil); Pereira, F.P. [Plasmas and Processes Laboratory, Department of Physics, Technological Institute of Aeronautics, 12228-900 S. J. dos Campos, SP (Brazil); Dutra, J.C.N.; Mello, S.A.C. [EBO, Chemistry Division, IAE, CTA, 12228-900 S. J. dos Campos, SP (Brazil); Becerra, E.A.O. [Department of Physics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Massi, M.; Sobrinho, A.S. da Silva [Plasmas and Processes Laboratory, Department of Physics, Technological Institute of Aeronautics, 12228-900 S. J. dos Campos, SP (Brazil)

    2013-11-15

    The ethylene propylene diene monomer (EPDM) rubber possesses excellent physical/chemical bulk properties, is cost-effective, and has been used in the mechanical and aerospace industry. However, it has an inert surface and needs a surface treatment in order to improve its adhesion properties. Plasma modification is the most accepted technique for surface modification of polymers without affecting the properties of the bulk. In this study, an afterglow microwave plasma reactor was used to generate the plasma species responsible for the EPDM surface modification. The plasma modified surfaces were analyzed by means of contact angle measurement, adhesion tests, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. Two experimental variables were analyzed: type of the plasma gases and exposure time were considered. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed and the best conditions tested there was an increase of the rupture strength of about 27%, that can be associated mainly with the creation of oxygen containing functional groups on the rubber surface (C-O, C-O-C and C=O) identified by spectroscopic methods. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed. In various conditions tested the contact angles easily decreased more than 500%. What can be concluded that high wettability is a necessary condition to obtain good adhesion, but this is not a sufficient condition.

  18. Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Tverdokhlebov, S.I., E-mail: tverd@tpu.ru [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Bolbasov, E.N.; Shesterikov, E.V. [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Antonova, L.V.; Golovkin, A.S.; Matveeva, V.G. [Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Disease, 6 Sosnovy Blvd, Kemerovo 650002 (Russian Federation); Petlin, D.G.; Anissimov, Y.G. [Griffith University, School of Natural Sciences, Engineering Dr., Southport, QLD 4222 (Australia)

    2015-02-28

    Highlights: • The treatment by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering improves the biocompatibility of PLLA surface. • The treatment significantly increases the roughness of PLLA surface. • The formation of rough highly porous surface is due to the etching and crystallization processes on PLLA surface during treatment. • Maximum concentration of the ions from the sputtered target is achieved at 60 s of the plasma treatment. - Abstract: Surface modification of polylactic acid (PLLA) by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering was investigated. Increased biocompatibility was demonstrated using studies with bone marrow multipotent mesenchymal stromal cells. Atomic force microscopy demonstrates that the plasma treatment modifies the surface morphology of PLLA to produce rougher surface. Infrared spectroscopy and X-ray diffraction revealed that changes in the surface morphology are caused by the processes of PLLA crystallization. Fluorescent X-ray spectroscopy showed that the plasma treatment also changes the chemical composition of PLLA, enriching it with ions of the sputtered target: calcium, phosphorus and oxygen. It is hypothesized that these surface modifications increase biocompatibility of PLLA without increasing toxicity.

  19. O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties.

    Science.gov (United States)

    Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill

    2017-05-16

    Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O2 plasma etching and antistatic gun treatment. O2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.

  20. Surface modification of silicone rubber membrane by plasma induced graft copolymerization as artificial cornea.

    Science.gov (United States)

    Hsiue, G H; Lee, S D; Chang, P C

    1996-11-01

    In this study a highly biocompatible polymer membrane was prepared by surface modification. An artificial cornea was also developed for clinical applications. Silicone rubber (SR) membrane was grafted with hydrophilic monomers such as 2-hydroxyethyl methacrylate (HEMA) and acrylic acid by plasma induced grafted polymerization. Surface properties of the SR were characterized using secondary ions mass spectra, Fourier transform infrared/attenuated total reflection, and element spectra for chemical analysis. The corneal epithelial (CE) cell was cultured in vitro, and penetrating keratoplasty of albino rabbit cornea (in vivo) was performed to evaluate biological properties of modified SR membranes. The ability of the CE cell to attach onto various SR membranes was observed by inverted microscopy. The proliferation of CE cell was conducted in approximately 96 h. Experimental results indicated that the attachment and growth of CE onto SR-g-pHEMA (75 micrograms/ cm2) is enhanced. The morphologies of an attached CE cell are similar to those of a primary CE cell. In the in vivo study, the depth of anterior chamber was maintained 2 weeks after penetrating keratoplasty was performed with a SR grafted with pHEMA (210 micrograms/cm2). This phenomenon displayed a high biocompatibility of modified SR membrane with the CE cell. Furthermore, results in this study provide a valuable reference for application of the modified SR for an artificial cornea.

  1. Surface modification technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wonbaek; Yu, Hyosin; Chung, Inwha; Rhee, Kang In; Choi, Good Sun; Lee, Chulkyung; Youn, In Ju; Chung, Jinki; Suh, Chang Youl; Yang, Dong Hyo [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Domestic production of rare metals has not been achieved due to the low metal content in their ores in the nation. For these reasons, a strategy for the value addition of rare metal sponges by processes like vacuum melting should be seek to meet the growing domestic demand for titanium metals and alloys. However, current domestic market appears not to be sufficient enough for the large scale investment for the expensive vacuum-melting equipment. Besides, related ingot-processing technologies like rolling, extrusion, and forging of titanium should be prepared in advance. In the mean time, the attempt to recycle expensive titanium scraps produced in our nation would be worthwhile in view of the reduction of import from foreign countries and of saving valuable secondary resources. The objectives for this research is to develop a multipurpose inductively-coupled plasma enhanced-surface modification (ICPESM) process to upgrade powder products. Stable plasma was obtained by the impedance harmonization between plasma generator and matching networks maintaining the reflected power at near zero. The chamber vacuum went down to 10{sup -3} torr offering no difficulties to maintain 1.0 torr at which the present experiments were conducted. However, the fluidization in the chamber was unstable when operated in vacuum. The gas distributor and chamber design may need modifications. Argon plasma treatment on the titanium powders changed the surface morphology slightly even though the effect was not significant due possibly to the short treatment duration of 60 minutes. Oxygen plasma oxidized the surface of titanium powders to TiO{sub 2} as confirmed by XRD. The carbon black powders were clustered during oxidation treatment by the fluidization or surface activation by the high power of low temperature plasma. (author). 4 tabs., 15 figs.

  2. Development of non-thermal atmospheric pressure plasma system for surface modification of polymeric materials

    Science.gov (United States)

    Kasih, T. P.

    2017-04-01

    Non-thermal plasma has become one of the new technologies which are highly developed now days. This happens because the cold plasma using the principle of generated reactive gases that have the ability to modify the surface properties of a material or product without changing the original characteristics of the material. The purpose of this study is to develop a cold plasma system that operates at atmospheric pressure and investigates the effect of cold plasma treatment to change the surface characteristics of the polymer material polyethylene (PE) at various time conditions. We are successfully developing a non-thermal plasma system that can operate at atmospheric pressure and can be run with Helium or Argon gas. The characteristics of plasma will be discussed from the view of its electrical property, plasma discharge regime andoperation temperature. Experiment results on plasma treatment on PE material shows the changes of surface properties of originally hydrophobic material PE becomes hydrophilic by only few seconds of plasma treatment and level of hydrophilicity become greater with increasing duration of plasma treatment. Confirmation of this is shown by the measurement of contact angle of droplets of water on the surface of PE are getting smaller.

  3. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W.

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  4. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  5. Air plasma or UV-irradiation applied to surface modification of pectin/poly(vinyl alcohol) blends

    Science.gov (United States)

    Kowalonek, Jolanta; Kaczmarek, Halina; Dąbrowska, Aldona

    2010-10-01

    Poly(vinyl alcohol), pectin and their blends with different components ratio were exposed to low-temperature air plasma or high energy UV-irradiation ( λ = 254 nm) for the purpose of surface modification. The physico-chemical changes in surface properties have been studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle measurements. Surface free energy of polymeric films, its polar and dispersive components have been calculated by Owens-Wendt method. Moreover, the work of adhesion was estimated and the recovery of hydrophobic properties of modified films after storage have been also studied. The few seconds air-plasma treatment caused more effective surface modification than 5-6 h UV-irradiation. The observed changes were partially reversible, contrary to these caused by photo-modification. It was found that pectin/PVA (50:50) blend was characterised by larger susceptibility to plasma modification compared to pure pectin and pure PVA, whereas the photosensitivity to radiation of 254 nm wavelength was the lowest for this specimen in comparison to other studied samples.

  6. Modification of glassy carbon surfaces by atmospheric pressure cold plasma torch

    DEFF Research Database (Denmark)

    Mortensen, Henrik Junge; Kusano, Yukihiro; Leipold, Frank

    2006-01-01

    The effect of plasma treatment on glassy carbon (GC) surfaces was studied with adhesion improvement in mind. A newly constructed remote plasma source was used to treat GC plates. Pure He and a dilute NH3/He mixture were used as feed gases. Optical emission spectroscopy was performed for plasma...... torch diagnostics. The treatment resulted in surface etching, substantially enhanced by NH3, as well as a roughening of the surface as measured by atomic force microscopy. Furthermore, the treated area showed an increased wettability indicating the addition of polar functional groups to the surface. X......-ray photoelectron spectroscopy confirmed the introduction of several oxygen and nitrogen containing surface functional groups. The adhesion to epoxy was dramatically improved after exposure to either plasma, the effect being largest when NH3 was present in the feed gas. © 2006 The Japan Society of Applied Physics....

  7. Cold Plasma Surface Modification of NiTi for Biomedical Applications

    Institute of Scientific and Technical Information of China (English)

    Jun YANG; Jianhua WANG

    2004-01-01

    Surface-grafted poly(ethylene glycol) (PEG) molecules are known to prevent protein adsorption to the surface. Nitinol samples were coated under tetraglyme ECR cold plasma conditions to enhance its biocompatibility. The modified Nitinol surfaces were characterized by high resolution ESCA and contact angle, it was demonstrated that the deposited PEG-like coatings were built up mainly of -CH2-CH2-O- linkages in surfaces. The surface wettability of the modified Nitinol was increased compared with the control surface. Human plasma protein was adsorbed on Nitinol evaluated by SEM, the protein adsorption on modified surfaces decreased rapidly. Thus, the potential benefits of cold plasma technique will be of use to the biomedical industries improving the biocompatibility of metals.

  8. Surface modification of carbon nanohorns by helium plasma and ozone treatments

    Science.gov (United States)

    Lin, Zaw; Iijima, Toru; Selvam Karthik, Paneer; Yoshida, Mitsunobu; Hada, Masaki; Nishikawa, Takeshi; Hayashi, Yasuhiko

    2017-01-01

    In this paper, we describe the effects of helium plasma and ozone treatments on the dispersibility of carbon nanohorns (CNHs) in water. The experimental setups have been designed to efficiently generate helium plasma and ozone by dielectric barrier discharge at atmospheric pressure. After being treated with ozone, the oxygen-containing functional groups were introduced to the surface of CNHs, and are responsible for better dispersion. Helium plasma treatment was performed separately and it resulted in hydroxyl functional groups on the surface of CNHs. It was also found that the sizes of CNHs in water were smaller after ozone treatment. However, plasma-treated CNHs were bigger than ozone treated CNHs. The dispersed CNHs modified by ozone treatment were stable for more than three months without precipitation. In contrast, though helium plasma treatment introduced hydroxyl groups to the surface of CNHs, the dispersibility decreased and the flocculation of CNHs was observed in a few minutes.

  9. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  10. Surface Modification of Poly Vinyl Chloride (PVC) Using Low Pressure Argon and Oxygen Plasma

    Science.gov (United States)

    Mahmood, Ghoranneviss; Sheila, Shahidi; Jakub, Wiener

    2010-04-01

    In this study, commercial poly vinyl chloride (PVC) films were treated by oxygen and argon plasmas in a cylindrical glass tube which was surrounded by a DC variable magnetic field, with different sample positions in the plasma reactor and also different exposure durations. Effects of the plasma treatment on the hydrophilic properties of the films were studied by measuring the water drop contact angle on the surface of the samples. The surface topography of the untreated and plasma treated films was analyzed and compared by atomic force microscopy (AFM). The optical characteristic changes in treated samples were investigated using reflective spectrophotometry. Also, the chemical changes which appeared on the surface of the samples were investigated using Fourier transform infrared spectroscopy (FTIR). The results show that the plasma treated PVC becomes more hydrophilic with an enhanced wettability. A sharp decrease in the water contact angle may also be a consequence of the surface texturization. The aging effect on wettability of the samples was also investigated. The results show that the effect of oxygen plasma on the surface properties of the samples is more pronounced compared with that of argon plasma.

  11. Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet

    Science.gov (United States)

    Shaw, David; West, Andrew; Bredin, Jerome; Wagenaars, Erik

    2016-12-01

    Plasma treatments are common for increasing the surface energy of plastics, such as polypropylene (PP), to create improved adhesive properties. Despite the significant differences in plasma sources and plasma properties used, similar effects on the plastic film can be achieved, suggesting a common dominant plasma constituent and underpinning mechanism. However, many details of this process are still unknown. Here we present a study into the mechanisms underpinning surface energy increase of PP using atmospheric-pressure plasmas. For this we use the effluent of an atmospheric-pressure plasma jet (APPJ) since, unlike most plasma sources used for these treatments, there is no direct contact between the plasma and the PP surface; the APPJ provides a neutral, radical-rich environment without charged particles and electric fields impinging on the PP surface. The APPJ is a RF-driven plasma operating in helium gas with small admixtures of O2 (0-1%), where the effluent propagates through open air towards the PP surface. Despite the lack of charged particles and electric fields on the PP surface, measurements of contact angle show a decrease from 93.9° to 70.1° in 1.4 s and to 35° in 120 s, corresponding to a rapid increase in surface energy from 36.4 mN m-1 to 66.5 mN m-1 in the short time of 1.4 s. These treatment effects are very similar to what is found in other devices, highlighting the importance of neutral radicals produced by the plasma. Furthermore, we find an optimum percentage of oxygen of 0.5% within the helium input gas, and a decrease of the treatment effect with distance between the APPJ and the PP surface. These observed effects are linked to two-photon absorption laser-induced fluorescence spectroscopy (TALIF) measurements of atomic oxygen density within the APPJ effluent which show similar trends, implying the importance of this radical in the surface treatment of PP. Analysis of the surface reveals a two stage mechanism for the production of polar

  12. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Jin Lee, Seung [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  13. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Science.gov (United States)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  14. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    Science.gov (United States)

    Kan, C. W.; Kwong, C. H.; Ng, S. P.

    2015-08-01

    Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  15. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kan, C.W., E-mail: tccwk@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Kwong, C.H. [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Ng, S.P. [Hong Kong Community College, The Hong Kong Polytechnic University (Hong Kong)

    2015-08-15

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  16. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  17. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration

    NARCIS (Netherlands)

    Nandakumar, A.; Tahmasebi Birgani, Z.; Reis Santos, D.; Mentink, A.; Auffermann, N.; Werf, van der K.O.; Bennink, M.L.; Moroni, L.; Blitterswijk, van C.A.; Habibovic, P.

    2013-01-01

    Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour, w

  18. Surface modification of poly(ethylene terephthalate) by plasma polymerization of poly(ethylene glycol).

    Science.gov (United States)

    Sakthi Kumar, D; Fujioka, Masayori; Asano, Kentaro; Shoji, Atsumu; Jayakrishnan, Athipettah; Yoshida, Yasuhiko

    2007-09-01

    Poly(ethylene glycol) (PEG) was 'polymerized' onto poly(ethylene terephthalate) (PET) surface by radio frequency (RF) plasma polymerization of PEG (average molecular weight 200 Da) at a monomer vapour partial pressure of 10 Pa. Thin films strongly adherent onto PET could be produced by this method. The modified surface was characterized by infra red (IR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), cross-cut test, contact angle measurements and static platelet adhesion studies. The modified surface, believed to be extensively cross-linked, however showed all the chemical characteristics of PEG. The surface was found to be highly hydrophilic as evidenced by an interfacial free energy of about 0.7 dynes/cm. AFM studies showed that the surface of the modified PET became smooth by the plasma polymerized deposition. Static platelet adhesion studies using platelet rich plasma (PRP) showed considerably reduced adhesion of platelets onto the modified surface by SEM. Plasma 'polymerization' of a polymer such as PEG onto substrates may be a novel and interesting strategy to prepare PEG-like surfaces on a variety of substrates since the technique allows the formation of thin, pin-hole free, strongly adherent films on a variety of substrates.

  19. Modification of SrTiO3 single-crystalline surface after plasma flow treatment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Alexandr A.; Weissbach, Torsten; Leisegang, Tilmann; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Kulagin, Nikolay A. [Kharkiv National University for Radioelectronics, av. Shakespeare 6-48, 61045 Kharkiv (Ukraine); Langer, Enrico [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-07-01

    Surface of pure and transition metal-doped SrTiO3(STO) single crystals before and after hydrogen plasma-flow treatment (energy of 5..20 J/cm2) is investigated by wide-angle X-ray diffraction (WAXRD), fluorescence X-ray absorption near edge structure (XANES) and scanning electron microscopy (SEM) techniques. Plasma treatment results in the formation of a textured polycrystalline layer at the surface of the single-crystalline samples with different orientation. The formation of the quasi-ordered structures consisting of nanoscale-sized pyramids is observed by SEM. XANES evidences the change of the valency of the part of Ti4+ to Ti3+ due to the plasma treatment. The data obtained together with results of X-ray spectroscopy measurements gives evidences of the change of stoichiometry of the STO samples resulting in a change of their physical properties after plasma treatment.

  20. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.; Ueda, Y.; Kurishita, H.

    2015-08-01

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m-2 was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  1. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kurishita, H. [Institute for Materials Research, Tohoku University, Ibaraki 311-1313 (Japan)

    2015-08-15

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m{sup −2} was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  2. Surface modification of SERS substrates with plasma-polymerized trimethylsilane nanocoating

    Science.gov (United States)

    Kim, Young Jo; Sun, Xin; Jones, John E.; Lin, Mengshi; Yu, Qingsong; Li, Hao

    2015-03-01

    Surface-enhanced Raman scattering (SERS) substrates were modified by depositing a nanometer-thick polymer coating on top of SERS-active surface. This thin hydrophobic nanocoating, achieved by low temperature plasma polymerization of trimethylsilane, was found to reduce surface energy of SERS substrate and in turn help relieve the analyte spreading on the surface of SERS substrates. Detection of melamine molecules with these surface-modified SERS substrates showed that this plasma nanocoating improved, not significantly though, SERS sensitivity in comparison with unmodified SERS substrates. It is believed that the increased hydrophobicity induced by this plasma nanocoating had two folds of beneficial effects on SERS sensitivity. First, the as-produced hydrophobic surface gave rise to preconcentration effect due to the reduced contact area between analyte molecules and the substrate surface. Second, the decreased surface energy of SERS substrates was helpful in placing analyte molecules in SERS hot spots. These two combined gains were deemed to outweigh the loss of SERS sensitivity caused by enlarged distance between metal surface and analyte molecules.

  3. Surface Modification of Nanometre Silicon Carbide Powder with Polystyrene by Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    WEI Gang; MENG Yuedong; ZHONG Shaofeng; LIU Feng; JIANG Zhongqing; SHU Xingsheng; REN Zhaoxing; WANG Xiangke

    2008-01-01

    An investigation was made into polystyrene (PS) grafted onto nanometre sili-con carbide (SIC) particles. In our experiment, the grafting polymerization reaction was in-duced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanome-tre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spec-troscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.

  4. Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hengjun; Pei Yanan [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Xie Dong [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Deng Xingrui [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Leng, Y.X., E-mail: yxleng@263.net [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Jin Yong, E-mail: jyct@163.com [Interventional Therapy Department, The Second Affiliated Hospital, Soochow University, Suzhou 215004 (China); Huang Nan [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2010-04-01

    In this work, argon (Ar) plasma generated by microwave electron cyclotron resonance (MWECR) has been used to modify the UHMWPE in order to increase the wear resistance. The results showed that the wettability, anti-scratch and wear resistance of UHMWPE treated by the Ar plasma had been improved, comparing with native UHMWPE. The FTIR and XPS spectra indicated the improvement of wettability should come from the oxygen based functional groups generated on the surface of UHMWPE. The improvement of anti-scratch and wear resistance may come from the enhancement of crosslinking of UHMWPE by Ar plasma treatment.

  5. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Afshari, Esmail, E-mail: e.afshari@mail.sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Mazinani, Saeedeh [Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, 15875-4413, Tehran (Iran, Islamic Republic of); Ranaei-Siadat, Seyed-Omid [Protein Research Center, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of)

    2016-11-01

    Highlights: • We fabricated polyvinyl alcohol/malonic acid nanofibers using electrospinning. • The surface nanofibers were modified by gaseous (air, nitrogen, CO{sub 2} and argon) dielectric barrier discharge. • Among them, air plasma had the most significant effect on glucose oxidase immobilization. • Chemical analysis showed that after modification of nanofibers by air plasma, the carboxyl group increased. • After air plasma treatment, reusability and storage stability of glucose oxidase immobilized on nanofibers improved. - Abstract: Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO{sub 2}, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  6. Surface modification of stainless steel by plasma-based fluorine and silver dual ion implantation and deposition.

    Science.gov (United States)

    Shinonaga, Yukari; Arita, Kenji

    2009-11-01

    The aims of this study were to modify dental device surface with fluorine and silver and to examine the effectiveness of this new surface modification method. Stainless steel plates were modified by plasma-based fluorine and silver ion implantation-deposition method. The surface characteristics and brushing abrasion resistance were evaluated by XPS, contact angle and brushing abrasion test. XPS spectra of modified specimens showed the peaks of fluoride and silver. These peaks were detected even after brushing abrasion test. Water contact angle significantly increased due to implantation-deposition of both fluorine and silver ions. Moreover, the contact angle of the modified specimen was significantly higher than that of fluorine only deposited specimen with the same number of brushing strokes. This study indicates that this new surface modification method of fluorine and silver ion implantation-deposition improved the brushing abrasion resistance and hydrophobic property making it a potential antimicrobial device.

  7. Deuterium retention and morphological modifications of the surface in five grades of tungsten after deuterium plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Balden, M., E-mail: Martin.Balden@ipp.mpg.de; Manhard, A.; Elgeti, S.

    2014-09-15

    Highlights: • D retention for used W grades varies by more than one order of magnitude. • Hydrogen loading-induced damaging manifests in surface modifications and retention. • Effects of plasma flux on retention and surface modifications are discussed. • Higher fluxes produce more severe hydrogen loading-induced damaging. - Abstract: Five tungsten (W) grades were simultaneously exposed to deuterium (D) plasma with 10{sup 20} D/(m{sup 2} s) of 38 eV/D up to 10{sup 26} D/m{sup 2} at 500 K specimen temperature. The D inventories and their depth profiles within the topmost 12 μm were determined by nuclear reaction analysis (D({sup 3}He, p)α). Morphological modifications at and below the surface were analysed by confocal laser scanning microscopy and scanning electron microscopy assisted by focused ion beam cross-sectioning. The observed variation of the D inventory by more than one order of magnitude (0.5–15 × 10{sup 20} D/m{sup 2}) is attributed only to the different properties of each W grade. Spherical blisters and stepped flat-topped extrusions are observed depending on the W grade. These modifications are interpreted as an indication for hydrogen loading-induced damaging. The exposure conditions and W grades were chosen to allow a comparison between published data sets.

  8. Surface Modification of Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Qi Huang

    2016-01-01

    Full Text Available Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs. Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol, polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO 2 , heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs.

  9. The effect of surface modification by nitrogen plasma on photocatalytic degradation of polyvinyl chloride films

    Science.gov (United States)

    Xiao-jing, L.; Guan-jun, Q.; Jie-rong, C.

    2008-08-01

    The solid-phase photocatalytic degradation of poly(vinyl chloride) (PVC) films was investigated under the ambient air in order to assess the feasibility of developing photodegradable polymers. Nitrogen plasma was used to modify PVC films to enhance the photocatalytic degradation of PVC with nano-sized anatase TiO 2. The plasma parameter varied in this study is discharge power from 30 to 120 W for a constant treatment time of 60 s and a constant gas pressure of 10 Pa. The photodegradation of the plasma-treated PVC-TiO 2 films was compared with that of pure PVC films and PVC-TiO 2 films performing weight loss monitoring, scanning electron microscopy (SEM) analysis, contact angle measurements, electron spin resonance (ESR), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The wettability of the plasma-treated PVC is improved significantly. ESR revealed that the signal of radicals on the surface of the plasma-treated PVC film was enhanced after the treatment. Furthermore, the weight loss indicated that TiO 2 speeds up the photocatalytic degradation of PVC chains. The SEM image of the plasma-treated PVC-TiO 2 film showed a lot of crack on the film surface after irradiation. XPS indicated that the C and Cl atomic concentration reached minimum values on the surface of plasma-treated PVC-TiO 2 under identical photocatalytic condition. The experimental results reveal that plasma treatment can obviously enhance the photocatalytic degradation of PVC.

  10. Polyimide surface modification by using microwave plasma for adhesion enhancement of Cu electroless plating.

    Science.gov (United States)

    Cho, Sang-Jin; Nguyen, Trieu; Boo, Jin-Hyo

    2011-06-01

    Microwave (MW) plasma was applied to the surface of polyimide (PI) films as a treatment to enhance the adhesion between copper deposition layer and PI surface for electroless plating. The influences of nitrogen MW plasma treatment on chemical composition of the PI surface were investigated by using X-Ray photoelectron spectroscopy (XPS). The wettability was also investigated by water contact angle measurement. The surface morphologies of PI films before and after treatment were characterized with atomic force microscopy (AFM). The contact angle results show that was dramatically decreased to 16.1 degrees at the optimal treatment condition from 72.1 degrees (untreated PI). However, the root mean square (RMS) roughness of treated PI film was almost unchanged. The AFM roughness was stayed from 1.0 to 1.2 with/without plasma treatment. XPS data show a nitrogen increase when PI films exposed to N2 MW plasma. Electroless copper depositions were carried out with the free-formaldehyde method using glyoxylic acid as the reducing reagent and mixture palladium chloride, tin chloride as activation solution. Adhesion property between polyimide surface and copper layer was investigated by tape test.

  11. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials.

    Science.gov (United States)

    Kocaman, Suheyla; Karaman, Mustafa; Gursoy, Mehmet; Ahmetli, Gulnare

    2017-03-01

    In this study, surface-modified grinded coconut waste (CW) particles were used as bio-fillers to prepare polymeric composite materials with enhanced properties. Epoxy resin modified with acrylated and epoxidized soybean oil (AESO) was used as the polymer matrix. Two different strategies, namely chemical treatment and plasma enhanced chemical vapor deposition (PECVD) were utilized to modify the surface of CW particles for using them as compatible bio-fillers in composite preparation. Chemical modification involved the treatment of CW particles in a highly alkali NaOH solution, while PECVD modification involved coating of a thin film of hydrophobic poly(hexafluorobutyl acrylate) (PHFBA) around individual CW particle surfaces. Untreated and surface-modified CW particles were used in 10-50wt% for preparation of epoxy composites. FTIR analysis was performed to study the effect of modification on the structures of particles and as-prepared composites. The composite morphologies were investigated by XRD and SE. TGA test was conducted to study the thermal behavior of the composites. Also, the effects of CW particle surface modification on the mechanical and water sorption properties of epoxy resin composites were investigated in detail. It was observed that PECVD-treated CW particles had much more positive effects on the thermal, mechanical, wettability and flammability properties of composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Time-related surface modification of denture base acrylic resin treated by atmospheric pressure cold plasma.

    Science.gov (United States)

    Qian, Kun; Pan, Hong; Li, Yinglong; Wang, Guomin; Zhang, Jue; Pan, Jie

    2016-01-01

    The changes of denture base acrylic resin surface properties under cold plasma and the relationships with time were investigated. Cold plasma treated the specimens for 30 s, 60 s, 90 s, and 120 s, respectively. Water contact angles were measured immediately after the treatment, 48 h, 15 days and 30 days later. Surface roughness was measured with 3-D laser scanning microscope. Candida albicans adherence was evaluated by CFU counting. Chemical composition was monitored by X-ray photoelectron spectroscopy analysis. Water contact angle reduced after treated for 30 s. No changes were observed with time prolonged, except the durability. There were no differences in roughness among all groups. However, treatment groups showed significantly lower C. albicans adherence. XPS demonstrated a decrease in C/O, and this reduction was affected by treatment time. Cold plasma was an effective means of increasing hydrophilicity of acrylic resin and reducing C. albicans adherence without affecting physical properties.

  13. Surface Modification of Carbon Nanofibers and Graphene Platelets Mixtures by Plasma Polymerization of Propylene

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Covarrubias-Gordillo

    2017-01-01

    Full Text Available Carbon nanofibers (CNFs, graphene platelets (GPs, and their mixtures were treated by plasma polymerization of propylene. The carbon nanoparticles (CNPs were previously sonicated in order to deagglomerate and increase the surface area. Untreated and plasma treated CNPs were analyzed by dynamic light scattering (DLS, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, and thermogravimetric analysis (TGA. DLS analysis showed a significant reduction of average particle size, due to the sonication pretreatment. Plasma polymerized propylene was deposited on the CNPs surface; the total amount of polymerized propylene was from 4.68 to 6.58 wt-%. Raman spectroscopy indicates an increase in the sp3 hybridization of the treated samples, which suggest that the polymerized propylene is grafted onto the CNPs.

  14. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance.

    Science.gov (United States)

    Ye, Sang Ho; Johnson, Carl A; Woolley, Joshua R; Oh, Heung-Il; Gamble, Lara J; Ishihara, Kazuhiko; Wagner, William R

    2009-11-01

    To improve the thromboresistance of a titanium alloy (TiAl(6)V(4)) surface which is currently utilized in several ventricular assist devices (VADs), a plasma-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) was carried out and poly(MPC) (PMPC) chains were covalently attached onto a TiAl(6)V(4) surface by a plasma induced technique. Cleaned TiAl(6)V(4) surfaces were pretreated with H(2)O-vapor-plasma and silanated with 3-methacryloylpropyltrimethoxysilane (MPS). Next, a plasma-induced graft polymerization with MPC was performed after the surfaces were pretreated with Ar plasma. Surface compositions were verified by X-ray photoelectron spectroscopy (XPS). In vitro blood biocompatibility was evaluated by contacting the modified surfaces with ovine blood under continuous mixing. Bulk phase platelet activation was quantified by flow cytometric analysis, and surfaces were observed with scanning electron microscopy after blood contact. XPS data demonstrated successful modification of the TiAl(6)V(4) surfaces with PMPC as evidenced by increased N and P on modified surfaces. Platelet deposition was markedly reduced on the PMPC grafted surfaces and platelet activation in blood that contacted the PMPC-grafted samples was significantly reduced relative to the unmodified TiAl(6)V(4) and polystyrene control surfaces. Durability studies under continuously mixed water suggested no change in surface modification over a 1-month period. This modification strategy shows promise for further investigation as a means to reduce the thromboembolic risk associated with the metallic blood-contacting surfaces of VADs and other cardiovascular devices under development.

  15. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Science.gov (United States)

    Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian

    2015-08-01

    The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  16. Surface bioactivity modification of titanium by CO 2 plasma treatment and induction of hydroxyapatite: In vitro and in vivo studies

    Science.gov (United States)

    Hu, Xixue; Shen, Hong; Shuai, Kegang; Zhang, Enwei; Bai, Yanjie; Cheng, Yan; Xiong, Xiaoling; Wang, Shenguo; Fang, Jing; Wei, Shicheng

    2011-01-01

    Since metallic biomaterials used for orthopedic and dental implants possess a paucity of reactive functional groups, bioactivity modification of these materials is challenging. In the present work, the titanium discs and rods were treated with carbon dioxide plasma and then incubated in a modified simulated body fluid 1.5SBF to obtain a hydroxyapatite layer. Surface hydrophilicity of samples, changes of surface chemistry, surface morphologies of samples, and structural analysis of formed hydroxyapatite were investigated by contact angle to water, X-ray photoelectron spectrometer (XPS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). The results demonstrated that hydrophilicity of titanium surface was improved and hydroxyl groups increased after modification with carbon dioxide plasma treatment. The hydroxyl groups on the surface of titanium were the richest after carbon dioxide plasma treatment under the condition of 20 W for less than 30 s. The hydroxyapatite formability of titanium surface was enhanced by carbon dioxide plasma pretreatment, which was attributed to the surface chemistry. MC3T3-E1 cell as a model cell was cultured on the Ti, CPT-Ti and CPT/SBF-Ti discs in vitro, and the results of the morphology and differentiation of the cell showed that CPT/SBF-Ti was the highest bioactive. The relative parameters of the new bone around the Ti and CPT/SBF-Ti rods including bone mineral density (BMD), a ratio of bone volume to total volume (BV/TV), trabecular thickness (Tb.Th.) and trabecular number (Tb.N.) were analyzed by a micro-computed tomography (micro-CT) after 4-, 8- and 12-week implantation periods in vivo. The results indicated that the CPT/SBF-Ti was more advantageous for new bone formation.

  17. Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Surucu, Seda [Department of Metallurgical and Materials Engineering, Atilim University, Incek, Golbasi, 06836, Ankara (Turkey); Masur, Kai [Leibniz Institute for Plasma Science and Technology (Germany); Turkoglu Sasmazel, Hilal, E-mail: hilal.sasmazel@atilim.edu.tr [Department of Metallurgical and Materials Engineering, Atilim University, Incek, Golbasi, 06836, Ankara (Turkey); Von Woedtke, Thomas; Weltmann, Klaus Dieter [Leibniz Institute for Plasma Science and Technology (Germany)

    2016-11-01

    Highlights: • Electrospun PCL/chitosan/PCL scaffolds introduced to the literature by us were modified with atmospheric pressure plasma jets. • Plasma was fed into the system with different gas flow rates, time and distances. • Topographical and functional changes were examined by various characterization methods. • Optimum plasma treatment parameters for enhanced topography and functionality were determined. • Electrospun hybrid plasma surface modified samples showed the increased biocompatibility performance of L929 fibroblast cells. - Abstract: This paper reports Ar gas, Ar + O{sub 2}, Ar + O{sub 2} + N{sub 2} gas mixtures and dry air plasma modifications by atmospheric pressure argon driven kINPen and air driven Diener (PlasmaBeam) plasma jets to alter surface properties of three dimensional (3D), electrospun PCL/Chitosan/PCL layer by layer hybrid scaffolds to improve human fibroblast (MRC5) cell attachment and growth. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS) analysis. The results showed that the plasma modification carried out under dry air and Ar + O{sub 2} + N{sub 2} gas mixtures were altered effectively the nanotopography and the functionality of the material surfaces. It was found that the samples treated with Ar + O{sub 2} + N{sub 2} gas mixtures for 1 min and dry air for 9 min have better hydrophilicity 78.9° ± 1.0 and 75.6° ± 0.1, respectively compared to the untreated samples (126.5°). Biocompatibility performance of the scaffolds was determined with alamarBlue (aB) assay and MTT assay methods, Giemsa staining, fluorescence microscope, confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analyses. The results showed that plasma treated samples increased the hydrophilicity and oxygen functionality and topography of the surfaces significantly, thus affecting the cell viability and proliferation on

  18. Plasma-based surface modification of polystyrene microtiter plates for covalent immobilization of biomolecules.

    Science.gov (United States)

    North, Stella H; Lock, Evgeniya H; Cooper, Candace J; Franek, James B; Taitt, Chris R; Walton, Scott G

    2010-10-01

    In recent years, polymer surfaces have become increasingly popular for biomolecule attachment because of their relatively low cost and desirable bulk physicochemical characteristics. However, the chemical inertness of some polymer surfaces poses an obstacle to more expansive implementation of polymer materials in bioanalytical applications. We describe use of argon plasma to generate reactive hydroxyl moieties at the surface of polystyrene microtiter plates. The plates are then selectively functionalized with silanes and cross-linkers suitable for the covalent immobilization of biomolecules. This plasma-based method for microtiter plate functionalization was evaluated after each step by X-ray photoelectron spectroscopy, water contact angle analysis, atomic force microscopy, and bioimmobilization efficacy. We further demonstrate that the plasma treatment followed by silane derivatization supports direct, covalent immobilization of biomolecules on microtiter plates and thus overcomes challenging issues typically associated with simple physisorption. Importantly, biomolecules covalently immobilized onto microtiter plates using this plasma-based method retained functionality and demonstrated attachment efficiency comparable to commercial preactivated microtiter plates.

  19. Surface modification of chromatography adsorbents by low temperature low pressure plasma

    DEFF Research Database (Denmark)

    Arpanaei, Ayyoob; Winther-Jensen, Bjørn; Theodosiou, E.

    2010-01-01

    changes to the elemental composition of Q HyperZ's exterior had been inflicted in all cases. The atomic percent changes in carbon, nitrogen, oxygen, yttrium and zirconium observed after being exposed to air plasma etching were entirely consistent with: the removal of pendant Q (trimethylammonium...... and zirconium provided clear evidence that thin polymer coats had been created at the exteriors of Q HyperZ adsorbent particles. No changes in adsorbent size and surface morphology, nor any evidence of plasma-induced damage could be discerned from scanning electron micrographs, light micrographs...

  20. Surface modification of PET films using pulsed AC plasma polymerisation aimed at preventing protein adsorption

    DEFF Research Database (Denmark)

    Ademovic, Z.; Wei, J.; Winther-Jensen, Bjørn

    2005-01-01

    We utilise pulsed AC plasma polymerisation to create thin films that either contain reactive acid functional groups (by deposition of maleic anhydride (MAH) followed by hydrolysis) or are poly(ethylene glycol) (PEG)-like in nature (by using diethylene glycol vinyl ether (DEGVE) as monomer). The MAH...... films were further modified with PEG chains using a two-step wet chemical method. For the DEGVE films the plasma power was varied in order to change the degree of monomer fragmentation and thus retention of PEG-like character. The chemistry of the surfaces was determined using Fourier-transform infrared...

  1. Surface Modification of SiC Nanoparticles with PMMA by Low Temperature Plasma

    Institute of Scientific and Technical Information of China (English)

    WEI Gang; ZHONG Shaofeng; MENG Yuedong; SHU Xingsheng

    2007-01-01

    An investigation into Poly (methyl methacrylate) (PMMA) grafted onto nano-SiC particles is reported in this study. In our experiment, the grafting polymerization reaction is induced by radio frequency (RF) discharge of N2 plasma treatment of the nanosized powder. FTIR (Fourier transform infrared spectrum), XPS (X-ray photoelectron spectroscopy) and TGA (Thermogravimetric analysis) results reveal that PMMA is grafted onto the surface of silicon carbide powder, and the crystal structure of the silicon carbide powder observed with XRD (X-ray diffraction) spectra is unchanged before and after the plasma graft polymerization.

  2. A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    Science.gov (United States)

    Zheng, Yanyan; Xiong, Chengdong; Wang, Zhecun; Li, Xiaoyu; Zhang, Lifang

    2015-07-01

    Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (sbnd COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that sbnd COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which gives beneficial information of its potential use in orthopedic or dental implants.

  3. Surface modification of PdlLGA microspheres with gelatine methacrylate: Evaluation of adsorption, entrapment, and oxygen plasma treatment approaches.

    Science.gov (United States)

    Baki, Abdulrahman; Rahman, Cheryl V; White, Lisa J; Scurr, David J; Qutachi, Omar; Shakesheff, Kevin M

    2017-01-16

    Injectable poly (dl-lactic-co-glycolic acid) (PdlLGA) microspheres are promising candidates as biodegradable controlled release carriers for drug and cell delivery applications; however, they have limited functional groups on the surface to enable dense grafting of tissue specific biocompatible molecules. In this study we have evaluated surface adsorption, entrapment and oxygen plasma treatment as three approaches to modify the surfaces of PdlLGA microspheres with gelatine methacrylate (gel-MA) as a biocompatible and photo cross-linkable macromolecule. Time of flight secondary ion mass spectroscopy (TOF SIMS) and X-ray photoelectron spectroscopy (XPS) were used to detect and quantify gel-MA on the surfaces. Fluorescent and scanning electron microscopies (SEM) were used to image the topographical changes. Human mesenchymal stem cells (hMSCs) of immortalised cell line were cultured on the surface of gel-MA modified PdlLGA microspheres and Presto-Blue assay was used to study the effect of different surface modifications on cell proliferation. Data analysis showed that the oxygen plasma treatment approach resulted in the highest density of gel-MA deposition. This study supports oxygen plasma treatment as a facile approach to modify the surface of injectable PdlLGA microspheres with macromolecules such as gel-MA to enhance proliferation rate of injected cells and potentially enable further grafting of tissue specific molecules.

  4. Surface modification by plasma etching impairs early vascularization and tissue incorporation of porous polyethylene (Medpor(®) ) implants.

    Science.gov (United States)

    Laschke, Matthias W; Augustin, Victor A; Sahin, Fadime; Anschütz, Dieter; Metzger, Wolfgang; Scheuer, Claudia; Bischoff, Markus; Aktas, Cenk; Menger, Michael D

    2016-11-01

    Porous polyethylene (Medpor®) is commonly used in craniofacial reconstructive surgery. Rapid vascularization and tissue incorporation are crucial for the prevention of migration, extrusion, and infection of the biomaterial. Therefore, we analyzed whether surface modification by plasma etching may improve the early tissue response to Medpor®. Medpor® samples were treated in a plasma chamber at low (20 W; LE-PE) and high energy levels (40 W; HE-PE). The samples and non-treated controls were implanted into mouse dorsal skinfold chambers to analyze angiogenesis, inflammation, and granulation tissue formation over 14 days using intravital fluorescence microscopy, histology, and immunohistochemistry. Scanning electron microscopy (SEM) analyses revealed that elevating energy levels of plasma etching progressively increase the oxygen surface content and surface roughness of Medpor®. This did not affect the leukocytic response to the implants. However, LE-PE and HE-PE samples exhibited an impaired vascularization. This was associated with a reduced formation of a collagen-rich granulation tissue at the implantation site. Additional in vitro experiments showed a reduced cell attachment on plasma-etched Medpor®. Thus, plasma etching may not be recommended to improve the clinical outcome of reconstructive interventions using Medpor®. However, it may be beneficial for temporarily implanted polyethylene-based biomedical devices for which tissue incorporation is undesirable. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1738-1748, 2016. © 2015 Wiley Periodicals, Inc.

  5. A combination of CO{sub 2} laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Wang, Zhecun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2015-07-30

    Highlights: • COOH and microgrooves containing micropores or microcraters structure were constructed on PEEK surface by a combination of CO{sub 2} laser and plasma treatment. • The mechanical properties of PEEK are maintained after single or dual surface treatment. • Pre-osteoblast cells (MC3T3-E1) adhesion, spreading and proliferation were improved remarkably on dual treated PEEK surface. • Cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (−COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that −COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which

  6. Oxygen plasma surface modification augments poly(L-lactide-co-glycolide) cytocompatibility toward osteoblasts and minimizes immune activation of macrophages.

    Science.gov (United States)

    Scislowska-Czarnecka, Anna; Szmigiel, Dariusz; Genet, Michel; Dupont-Gillain, Christine; Pamula, Elzbieta; Kolaczkowska, Elzbieta

    2015-12-01

    Here, we report on modification of one of the model biomedical polymers, poly L-lactide-co-glycolide (PLGA; 85:15), by reactive ion etching (RIE) oxygen plasma treatment. PLGA's major disadvantage is high hydrophobicity which restrains binding of cell-adhesive proteins and host cells. In the current approach, we aimed to answer two questions: (1) will only short (10 s) and moderate (20-200 mTorr, 45-90 W) RIE oxygen plasma treatment, leading to decrease of water contact angle by only up to 10°, sufficiently improve PLGA adherence to cells, and (2) how will this affect osteoblasts and activation of the immune system? All obtained modified PLGAs had improved hydrophilicity but unaltered roughness (as revealed by water contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy) resulting in significantly improved adhesion of osteoblasts (MG-63) and their low activation. Importantly, macrophages (RAW 264.7), one of the key cells initiating inflammation and bone resorption, responded significantly less vigorously to the modified polymers, expressing/releasing lower amounts of nitric oxide, matrix metalloproteinases (MMP-9), and pro-inflammatory cytokines (TNF-α, IL-6, IL-12p70, IFN-γ, IL-10). We conclude that already slight RIE oxygen plasma modification of PLGA is sufficient to improve its surface properties, and enhance cytocompatibility. Most importantly, this type of modification prevents excessive immune response.

  7. Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation

    Science.gov (United States)

    Surucu, Seda; Masur, Kai; Turkoglu Sasmazel, Hilal; Von Woedtke, Thomas; Weltmann, Klaus Dieter

    2016-11-01

    This paper reports Ar gas, Ar + O2, Ar + O2 + N2 gas mixtures and dry air plasma modifications by atmospheric pressure argon driven kINPen and air driven Diener (PlasmaBeam) plasma jets to alter surface properties of three dimensional (3D), electrospun PCL/Chitosan/PCL layer by layer hybrid scaffolds to improve human fibroblast (MRC5) cell attachment and growth. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS) analysis. The results showed that the plasma modification carried out under dry air and Ar + O2 + N2 gas mixtures were altered effectively the nanotopography and the functionality of the material surfaces. It was found that the samples treated with Ar + O2 + N2 gas mixtures for 1 min and dry air for 9 min have better hydrophilicity 78.9° ± 1.0 and 75.6° ± 0.1, respectively compared to the untreated samples (126.5°). Biocompatibility performance of the scaffolds was determined with alamarBlue (aB) assay and MTT assay methods, Giemsa staining, fluorescence microscope, confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analyses. The results showed that plasma treated samples increased the hydrophilicity and oxygen functionality and topography of the surfaces significantly, thus affecting the cell viability and proliferation on/within scaffolds.

  8. Surface modification by cold-plasma technique for dental implants—Bio-functionalization with binding pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Masao Yoshinari

    2011-08-01

    At the bone tissue/implant interface, a thin calcium phosphate coating and rapid heating with infrared radiation were effective in controlling the dissolution without cracking the coating. These thin calcium phosphate coatings may directly promote osteogenisis, but also enable immobilization and subsequent drug delivery system (DDS of bisphosphonates. Simvastatin is also an effective candidate that is reported to increase the expression of BMP-2. The thin-film of hexamethyldisiloxane (HMDSO was plasma-polymerized onto titanium, and then HMDSO surface was activated by O2-plasma treatment. A quartz crystal microbalance (QCM-D technique demonstrated that simvastatin was immobilized on the plasma-treated surfaces due to introduction of O2-functional groups. At the soft tissue/implant interface, multi-grooved surface topographies and utilizing the adhesive proteins such as fibronectin or laminin-5 may help in providing a biological seal around the implant. At the oral fluid/implant interface, an alumina coating, F+-implantation and immobilization of anti-microbial peptides were responsible for inhibiting the biofilm accumulation.

  9. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    Science.gov (United States)

    Tompkins, Brendan D.

    This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the

  10. Surface modification of polymethyl methacrylate intraocular lenses by plasma for improvement of antithrombogenicity and transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lihua; Wu Di; Chen Yashao; Wang Xiaoli; Zhao Guowei; Wan Haiyan [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, School of Chemistry and Materials Science, Chang' an South Road 199, Xi' an 710062 (China); Huang Changzheng [Able Eye Device Co. Ltd, Zhengzhou 450008 (China)

    2009-05-15

    To improve antithrombogenicity and reduce ultraviolet transmittance, polymethyl methacrylate intraocular lenses (PMMA IOLs) were pretreated with Ar plasma and combined with heparin (Hp), with polyglycol (PEG) and with both Hp and PEG in a plasma atmosphere. The resulting modified PMMA IOLs denoted as PEG-PMMA, Hp-PMMA and Hp-PEG-PMMA were characterized by attenuated total reflectance Fourier transfer infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis), contact angle (CA) and platelet adhesion experiments. The results indicated that Hp and PEG had been successfully immobilized onto the surfaces of PMMA IOLs. Antithrombogenicity was improved remarkably and ultraviolet transmittance was reduced as well.

  11. Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup.

    Science.gov (United States)

    Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke

    2016-02-01

    Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results.

  12. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  13. Surface Modification by Nitrogen Plasma Immersion Ion Implantation on Austenitic AISI 304 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Miguel CASTRO-COLIN; William DURRER; Jorge ALPEZ; Enrique RAMIREZ-HOMS

    2016-01-01

    Surfaces of AISI 304 austenitic stainless steel plates nitrided by plasma immersion ion implantation (PIII) technology were studied by means of Auger electron spectroscopy (AES)and X-ray photoelectron spectroscopy (XPS)to determine the effect of the nitriding process on the surface and subjacent layers.Elemental compositions obtained by AES and XPS at varying depths indicate that the saturation of N is relatively constant as a function of depth,indicating the reliability of PIII technology for subsurface saturation.It is concluded that the concentrations of both Cr and O increase with depth,the subjacent oxide is driven by the Ar+ sputtering process used to access the lower layers,and then N is bound to Cr.

  14. Surface Modification of Commercially Pure Titanium by Plasma Nitrocarburizing at Different Temperatures and Duration Process

    Directory of Open Access Journals (Sweden)

    Agung Setyo Darmawan

    2013-02-01

    Full Text Available One of potential metals to be used in biomechanical applications is the commercially pure (cp titanium. This material requires a process to improve the mechanical properties of the surface, because it is relatively soft. The purpose of this study is to determine the effect of plasma nitro carburizing process to cp titanium surface hardness. In this study, cp titanium plasma nitro carburizing process is conducted at different temperatures, i.e., at 350°C for 3, 4, and 5 h, and at 450°C for 2, 3, and 4 h, respectively. Hardness tests are then performed on each specimen. The depth of penetration in the hardness test is also recorded; the microstructure captures are also taken using an optical microscope. The results show that the longer processing time, the higher the hardness value. In higher temperature, the hardness values correspond to the increasing temperature. In terms of the depth direction, there is a reduction in hardness value compared to the raw material.

  15. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Chaio-Ru [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China); Lin, Cheng-Wei [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); Chou, Chia-Man, E-mail: cmchou@vghtc.gov.tw [Department of Surgery, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung City 40705, Taiwan (China); Department of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City 11221, Taiwan (China); Chung, Chi-Jen, E-mail: cjchung@seed.net.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City 40601, Taiwan (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen District, Taichung City 40724, Taiwan (China)

    2015-08-15

    Highlights: • Biomaterials modified by nanoparticle-containing plasma polymerized films. • A superhydrophoic film was obtained, and the properties of the coating were examined. • In vitro blood compatibility tests revealed neither platelet adhesion nor fibrinogen adsorption. • Surface modification technology of medical devices: non-cytotoxic and no blood clot formation. - Abstract: This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF{sub 4}) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF{sub 4} (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF{sub 4} (f{sub H}) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiO{sub x} nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The −CF functional group, −CF{sub 2} bonding, and SiO{sub x} were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply

  16. Surface modification of NiTi by plasma based ion implantation for application in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.M., E-mail: rogerio@plasma.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), S. J. Campos, SP (Brazil); Fernandes, B.B.; Carreri, F.C.; Goncalves, J.A.N.; Ueda, M.; Silva, M.M.N.F. [Instituto Nacional de Pesquisas Espaciais (INPE), S. J. Campos, SP (Brazil); Silva, M.M. [Instituto Tecnologico de Aeronautica (ITA), S. J. Campos, SP (Brazil); Pichon, L. [Laboratoire de Metallurgie Physique, University of Poitiers, Poitiers (France); Camargo, E.N.; Otubo, J. [Instituto Tecnologico de Aeronautica (ITA), S. J. Campos, SP (Brazil)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer New nitrogen PBII set up was used to treat samples of NiTi in moderate temperature of 450 Degree-Sign C. Black-Right-Pointing-Pointer A very rich nitrogen atomic concentration was achieved on the top surface. Black-Right-Pointing-Pointer Nitrogen diffused at least for 11 {mu}m depth. Black-Right-Pointing-Pointer Improved tribological and corrosion properties were achieved. Black-Right-Pointing-Pointer A concentration dependent diffusion coefficient was calculated. - Abstract: The substitution of conventional components for NiTi in distinct devices such as actuators, valves, connectors, stents, orthodontic arc-wires, e.g., usually demands some kind of treatment to be performed on the surface of the alloy. A typical case is of biomaterials made of NiTi, in which the main drawback is the Ni out-diffusion, an issue that has been satisfactorily addressed by plasma based ion implantation (PBII). Even though PBII can tailor selective surface properties of diverse materials, usually, only thin modified layers are attained. When NiTi alloys are to be used in the harsh space environment, as is the case of devices designed to remotely release the solar panels and antenna arrays of satellites, e.g., superior mechanical and tribological properties are demanded. For this case the thickness of the modified layer must be larger than the one commonly achieved by conventional PBII. In this paper, new nitrogen PBII set up was used to treat samples of NiTi in moderate temperature of 450 Degree-Sign C, with negative voltage pulses of 7 kV/250 Hz/20 {mu}s, in a process lasting 1 h. A rich nitrogen atomic concentration of 85 at.% was achieved on the near surface and nitrogen diffused at least for 11 {mu}m depth. Tribological properties as well as corrosion resistance were evaluated.

  17. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    Science.gov (United States)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  18. Functionalised Polymers by Surface Modification

    Institute of Scientific and Technical Information of China (English)

    Jon-Paul Griffiths; M. G. Moloney

    2005-01-01

    @@ 1Introduction Surface-active polymers are of substantial importance in many diverse aspects of modern technology, with applications ranging from solid phase chemical synthesis related to drug discovery and chemical catalysis to biocompatible/bioactive medical implants and prostheses, and to surface-modified fabrics. Whilst there are a number of existing physical (e. g. corona or plasma discharge, ion beam irradiation[1] ) and chemical (e. g.silanisation, oxidation, chlorination, acylation and quaternisation[2-4]) methods for the surface modification of polymers, the frequent requirement for significant infrastructure, harsh reaction conditions, and limitation to specific polymer types (e. g. polybutadiene[5] ), which must possess suitable chemical functionality capable of direct modification, led us to consider alternative chemical methods. Desirable was an alternative that would be amenable to a large range of polymers, permitting direct chemical modification under mild conditions and using inexpensive reagents.

  19. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification.

    Science.gov (United States)

    Wang, Weiping; Zheng, Zhi; Huang, Xin; Fan, Wenling; Yu, Wenkui; Zhang, Zhibing; Li, Lei; Mao, Chun

    2016-05-14

    Polyethylene glycol (PEG) and heparin (Hep) were grafted onto polysulfone (PSF) membrane by plasma-induced surface modification to prepare PSF-PEG-Hep membranes used for artificial lung. The effects of plasma treatment parameters, including power, gas type, gas flow rate, and treatment time, were investigated, and different PEG chains were bonded covalently onto the surface in the postplasma grafting process. Membrane surfaces were characterized by water contact angle, PEG grafting degree, attenuated total reflectance-Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, X-ray photoelectron spectroscopy, critical water permeability pressure, and scanning electron microscopy. Protein adsorption, platelet adhesion, and coagulation tests showed significant improvement in the hemocompatibility of PSF-PEG-Hep membranes compared to pristine PSF membrane. Gas exchange tests through PSF-PEG6000-Hep membrane showed that when the flow rate of porcine blood reached 5.0 L/min, the permeation fluxes of O2 and CO2 reached 192.6 and 166.9 mL/min, respectively, which were close to the gas exchange capacity of a commercial membrane oxygenator. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  20. Modification of Low-Alloy Steel Surface by Plasma Electrolytic Nitriding

    Science.gov (United States)

    Kusmanov, S. A.; Smirnov, A. A.; Silkin, S. A.; Belkin, P. N.

    2016-07-01

    The structure of the low-alloy steel after plasma electrolytic nitriding (PEN) in electrolyte containing ammonium nitrate was investigated. The cross-sectional microstructure, composition, and phase constituents of modified layer under different processing conditions were characterized. It is shown that anode PEN provides the saturation of steel with nitrogen and formation of α-Fe2O3, FeO, and Fe3O4 oxides, Fe2-3N nitride, and martensite. The aqueous solution that contained 15 wt.% NH4Cl and 5 wt.% NH4NO3 allows one to obtain the hardened layer with a thickness of 80 μm and a microhardness up to 740 HV during 5 min at 850 °C. Surface roughness decreases from 1.5 to 0.8 μm after 5-min PEN at 650 °C. The proposed electrolyte and processing mode (750 °C, 10 min) enable to obtain the decrease in the weight loss after lubricate wear testing by a factor of 2.7. The base-nitrate electrolyte conditioned a decrease in the corrosion current density by a factor of 9 due to passivating effect of the oxide and nitride of iron.

  1. Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences

    Science.gov (United States)

    Zibrov, M.; Balden, M.; Morgan, T. W.; Mayer, M.

    2017-04-01

    Deuterium (D) retention and surface modifications of hot-rolled polycrystalline tungsten (W) exposed to a low-energy (~40 eV D‑1), high-flux (2–5  ×  1023 D m‑2 s‑1) D plasma at temperatures of ~380 K and ~1140 K to fluences up to 1.2  ×  1028 D m‑2 have been examined by using nuclear reaction analysis, thermal desorption spectroscopy, and scanning electron microscopy. The samples exposed at ~380 K exhibited various types of surface modifications: dome-shaped blister-like structures, stepped flat-topped protrusions, and various types of nanostructures. It was observed that a large fraction of the surface was covered with blisters and protrusions, but their average size and the number density showed almost no fluence dependence. The D depth distributions and total D inventories also barely changed with increasing fluence at ~380 K. A substantial amount of D was retained in the subsurface region, and thickness correlated with the depth where the cavities of blisters and protrusions were located. It is therefore suggested that defects appearing during creation of blisters and protrusions govern the D trapping in the investigated fluence range. In addition, a large number of small cracks was observed on the exposed surfaces, which can serve as fast D release channels towards the surface, resulting in a reduction of the effective D influx into the W bulk. On the samples exposed at ~1140 K no blisters and protrusions were found. However, wave-like and faceted terrace-like structures were formed instead. The concentrations of trapped D were very low (<10‑5 at. fr.) after the exposure at ~1140 K.

  2. Surface modification of Poly(tetrafluorethylene) magnetic stirring bars with plasma of hexamethyldisiloxane and its applications in the stir bar sorptive extraction technique

    OpenAIRE

    R. Baeza-Marrufo; P. Acereto-Escoffié; C. Carrera-Figueiras; D. Muñoz-Rodriguez; A. Ávila-Ortega; J. A. López-Barrera; J. Morales-Corona; Olayo-González, R.

    2012-01-01

    This paper explores the potential of plasma polymerization to modify the surface of stir bars for its use in Stir Bar Sorptive Extraction (SBSE). The modification of the poly(tetrafluoroethylene) surface of stir bars was done through plasma polymerization of hexamethyldisiloxane (30 min, 110 W and 1.4×10-1 Torr). The coating was characterized by contact angle, Fourier transform infrared spectroscopy, energy dispersive x-ray analysis and scanning electron microscopy. The modified stir bars wer...

  3. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2017-04-01

    Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

  4. Modification of surface properties of bell metal by radiofrequency plasma polymerization

    Science.gov (United States)

    Chutia, Joyanti; Choudhury, Arup Jyoti; Pal, Arup Ratan; Gogoi, Dolly

    2012-11-01

    Radiofrequency (RF) plasma polymerization is a convenient thin film deposition process as it facilitates the synthesis of polymer films with stable physico-chemical properties suitable for various applications in microelectronic, optical, and biomedical fields. The unique properties of these plasma polymerized films as compared to the conventional ones are strongly related to the proper adjustment of the external plasma discharge parameters and selection of suitable monomer. It is also important to study the fundamental chemistry of RF plasma polymerization process, so that one can successfully correlate the internal features of the discharge with the film properties and explore their possible technological applications. The possibility of using styrene-based plasma polymer (SPP) films on bell metal as protective coatings is explored in this work. Depositions of the films are carried out in RF Ar/styrene discharge at working pressure of 1.2 × 10-1 mbar and at the RF power range of 20 to 110 W. Optical emission spectroscopy (OES) is used to study the active species generated during plasma polymerization, while Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) are used to analyze the internal chemical structures of the films. The protective performances of the SPP films are attempted to correlate with the results obtained from OES, FT-IR, and XPS analyses.

  5. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu-Ri [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kwon, Jae-Sung [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Song, Doo-Hoon [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Choi, Eun Ha [Plasma Bioscience Research Center Kwangwoon University, Seoul 139-701, 447-1 Wokgye-Dong, Nowon-Gu, Seoul (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn, E-mail: kmkim@yuhs.ac [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2013-11-29

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering.

  6. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, L., E-mail: l.buzi@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster (Netherlands); Gent University, Sint-Pietersnieuwstraat 41, B-9000 Gent (Belgium); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); De Temmerman, G. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster (Netherlands); Unterberg, B.; Reinhart, M.; Dittmar, T.; Matveev, D.; Linsmeier, Ch. [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Breuer, U. [Central Institute of Engineering, Electronics and Analytics, ZEA-3 Analytics, Research Centre Jülich GmbH, 52425 Jülich (Germany); Kreter, A. [Forschungszentrum Jülich GmbH, Institut für Energie – und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Van Oost, G. [Gent University, Sint-Pietersnieuwstraat 41, B-9000 Gent (Belgium)

    2015-08-15

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (10{sup 26} m{sup −2}) and incident ion energy (40 eV) to two different ion fluxes (low flux: 10{sup 22} m{sup −2} s{sup −1}, high flux: 10{sup 24} m{sup −2} s{sup −1}). The maximum of deuterium retention was observed at ∼630 K for low flux density and at ∼870 K for high flux density, as indicated from the thermal desorption spectroscopy data (TDS). Scanning electron microscopy observations revealed the presence of blisters with a diameter of up to 1 μm which were formed at high flux density and high temperature (1170 K) contrasting with previously reported surface modification results at such exposure conditions.

  7. Understanding the role of nitrogen in plasma-assisted surface modification of magnetic recording media with and without ultrathin carbon overcoats.

    Science.gov (United States)

    Dwivedi, Neeraj; Yeo, Reuben J; Satyanarayana, Nalam; Kundu, Shreya; Tripathy, S; Bhatia, C S

    2015-01-14

    A novel scheme of pre-surface modification of media using mixed argon-nitrogen plasma is proposed to improve the protection performance of 1.5 nm carbon overcoats (COC) on media produced by a facile pulsed DC sputtering technique. We observe stable and lower friction, higher wear resistance, higher oxidation resistance, and lower surface polarity for the media sample modified in 70%Ar + 30%N2 plasma and possessing 1.5 nm COC as compared to samples prepared using gaseous compositions of 100%Ar and 50%Ar + 50%N2 with 1.5 nm COC. Raman and X-ray photoelectron spectroscopy results suggest that the surface modification process does not affect the microstructure of the grown COC. Instead, the improved tribological, corrosion-resistant and oxidation-resistant characteristics after 70%Ar + 30%N2 plasma-assisted modification can be attributed to, firstly, the enrichment in surface and interfacial bonding, leading to interfacial strength, and secondly, more effective removal of ambient oxygen from the media surface, leading to stronger adhesion of the COC with media, reduction of media corrosion and oxidation, and surface polarity. Moreover, the tribological, corrosion and surface properties of mixed Ar + N2 plasma treated media with 1.5 nm COCs are found to be comparable or better than ~2.7 nm thick conventional COC in commercial media.

  8. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    Science.gov (United States)

    Rezaei, Fatemeh; Shokri, Babak; Sharifian, M.

    2016-01-01

    This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid-base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was observed that plasma-treated samples exhibited significantly better biocompatibility, comparing to the pristine one.

  9. The Modification of Cellulosic Surface with Fatty Acids via Plasma Mediated Reactions

    Science.gov (United States)

    Nada, Ahmed Ali Ahmed

    Much attention has been paid recently to understand the healing process made by the human body, in order to develop new approaches for promoting healing. The wound healing process includes four main phases, namely, hemostatic, inflammatory, proliferation, and remodeling, which take place successively. The human body can provide all the requirements of the healing process in normal wounds, unless there is a kind of deficiency of the skin function or massive fluid losses of vast wounds. Therefore, wound care of non-healing wounds has recently been the growing concern of many applications. The goal of this work is to explore the development of a new cellulose-based wound dressing composite that contain or release wound healing agents attained via dry textile chemical finishing techniques (thermal curing-plasma treatment). The synthesis of different wound healing agents derived from fatty acids and attached chemically to cellulose or even delivered through cyclodextrine modified cellulose are reported in this work. First, free fatty acids, which are obtained from commercial vegetable oils, were identified as wound healing agents. Many of these free acids are known to bind with and deactivate the proteases associated with inflammation at a wound site. Linoleic acid is extracted from commercial products of safflower seed oil while ricinoleic acid is obtained from castor oil. Conjugated linoleic acid was synthesized. Un-conjugated linoleic acid was used to prepare two derivatives namely linoleic azide and allylic ketone of linoleic acid. Different cellulose derivatives such as cellulose peroxide, iododeoxycellulose and cellulose diazonium salt in different degree of substitutions were synthesized in order to facilitate the free radical reaction with the fatty acid derivatives. New modified cellulosic products were synthesized by reacting the cellulosic and the linoleic acid derivatives via thermal or plasma technique and characterized by FT-IR ATR, the wettability test

  10. Surface modification of tungsten and tungsten-tantalum alloys exposed to high-flux deuterium plasma and its impact on deuterium retention

    NARCIS (Netherlands)

    Zayachuk, Y.; Hoen, M. H. J. 't; van Emmichoven, P. A. Zeijlma; Terentyev, D.; Uytdenhouwen, I.; Van Oost, G.

    2013-01-01

    Samples of tungsten and tungsten-tantalum alloy (with 5 mass per cent of Ta) were exposed to high-flux deuterium plasma at different fluences. The surface modification was studied with scanning electron microscopy, and deuterium retention was measured by thermal desorption spectroscopy (TDS). In the

  11. Surface modification of Polymers by plasma polymerization techniques for tissue engineering

    OpenAIRE

    Francesch de Castro, Laia

    2008-01-01

    El treball que es presenta en aquesta tesi pretén contribuir al camp de la ciència de superfícies biològiques, amb el desenvolupament de superfícies adaptades amb cadenes lateral reactives per tal de unir covalentment biomolècul·les d'interès a la superfície.La polimerització assistida per plasma del recobriments actius és un mètode atractiu per tal d'obtenir cadenes laterals reactives, mitjançant pel·lícules nanomètriques amb densitats de grups funcionals adaptats. Sota control de les condic...

  12. Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells

    NARCIS (Netherlands)

    Barradas, A.M.C.; Lachmann, K.; Hlawacek, G.; Frielink, C.; Truckenmuller, R.K.; Boerman, O.C.; Gastel, van R.; Garritsen, H.S.P.; Thomas, M.; Moroni, L.; Blitterswijk, van C.A.; Boer, de J.

    2012-01-01

    Numerous studies have shown that the physicochemical properties of biomaterials can control cell activity. Cell adhesion, proliferation, differentiation as well as tissue formation in vivo can be tuned by properties such as the porosity, surface micro- and nanoscale topography and chemical compositi

  13. Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells.

    NARCIS (Netherlands)

    Barradas, A.M.; Lachmann, K.; Hlawacek, G.; Frielink, C.; Truckenmoller, R.; Boerman, O.C.; Gastel, R. van; Garritsen, H.; Thomas, M.; Moroni, L.; Blitterswijk, C. Van; Boer, J. den

    2012-01-01

    Numerous studies have shown that the physicochemical properties of biomaterials can control cell activity. Cell adhesion, proliferation, differentiation as well as tissue formation in vivo can be tuned by properties such as the porosity, surface micro- and nanoscale topography and chemical compositi

  14. Microporous Titanium through Metal Injection Moulding of Coarse Powder and Surface Modification by Plasma Oxidation

    Directory of Open Access Journals (Sweden)

    Mohammed Menhal Shbeh

    2017-01-01

    Full Text Available Titanium is one of the most attractive materials for biomedical applications due to having excellent biocompatibility accompanied by good corrosion resistance. One popular processing technique for Ti is Metal Injection Moulding (MIM. However, there are several issues associated with the use of this technique, such as the high cost of the fine powder used, the high level of contamination and consequent alteration to material properties, as well as the large volume shrinkage that occurs during sintering. In this study, the use of a relatively coarse Ti powder with a mean particle size of 75 μm to process Ti parts with the potential for biomedical applications by MIM will be examined, compared to a commercial Ti feedstock, and subsequently coated using Plasma Electrolytic Oxidation (PEO. The results show that samples produced with the coarse powder shrink 35% less and have a relative density 14% less with an average pore size three-times larger than that of the commercial feedstock. This helps increase the potential competitiveness of MIM in the production of biomedical parts, as it reduces cost, shrinkage and results in more intentionally-induced micropores, such as are desired for biomedical implants. PEO treatment of the samples yields a thick rough coating comprised of a mixture of rutile and anatase with interconnected microporous channels and openings resembling the mouth of a volcanic crater.

  15. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    Science.gov (United States)

    Pransilp, Porntapin; Pruettiphap, Meshaya; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat; Kiatkamjornwong, Suda

    2016-02-01

    Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O2), nitrogen (N2) and sulfur hexafluoride (SF6), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O2 plasma treatments produced new functional groups, sbnd Osbnd Csbnd O/Cdbnd O and Osbnd Cdbnd O while N2 plasma treatments produced additionally new functional groups, Csbnd N and Odbnd Csbnd NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF6 plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF6 plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and ink adhesion. Cotton fabrics exhibited higher ink adhesion and wider color gamut after the O2 plasma treatment comparing with those after N2 plasma treatment.

  16. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing

    Energy Technology Data Exchange (ETDEWEB)

    Pransilp, Porntapin, E-mail: lookpad_hae@hotmail.com [Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University (Thailand); Pruettiphap, Meshaya, E-mail: pruettiphap_m@hotmail.com [Program of Petrochemistry, Faculty of science, Chulalongkorn University (Thailand); Bhanthumnavin, Worawan, E-mail: worawan.b@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University (Thailand); Paosawatyanyong, Boonchoat, E-mail: paosawat@sc.chula.ac.th [Department of Physics, Faculty of Science, Chulalongkorn University (Thailand); Kiatkamjornwong, Suda, E-mail: ksuda@chula.ac.th [Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University (Thailand); Department of Imaging and Printing Technology, Faculty of Science, Chulalongkorn University (Thailand); Academy of Science, The Royal Society of Thailand, Sueapa, Dusit, Bangkok 10300 (Thailand)

    2016-02-28

    Graphical abstract: - Highlights: • Both O{sub 2} and N{sub 2} plasma increased cotton surface wettability and higher K/S. • SF6 plasma gave hydrophobicity on cotton surface and increased contact angle to 138°. • Plasma treatment on cotton fabric produced surface roughness. • XPS confirmed the generation of new functional groups on cotton fabric. • Wettability and surface roughness controlled K/S and good ink adhesion. - Abstract: Surface properties of cotton fabric were modified by three types of gas plasma pretreatment, namely, oxygen (O{sub 2}), nitrogen (N{sub 2}) and sulfur hexafluoride (SF{sub 6}), to improve ink absorption of water-based pigmented inkjet inks and color reproduction of the treated surfaces. Effects of gas plasma exposure parameters of power, exposure time and gas pressure on surface physical and chemical properties of the treated fabrics were investigated. XPS (X-ray photoelectron spectroscopy) was used to identify changes in functional groups on the fabric surface while AFM (atomic force microscopy) and SEM (scanning electron microscopy) were used to reveal surface topography of the fabric. Color spectroscopic technique was used to investigate changes in color strength caused by different absorptions of the printed fabrics. The O{sub 2} plasma treatments produced new functional groups, −O−C−O/C=O and O−C=O while N{sub 2} plasma treatments produced additionally new functional groups, C−N and O=C−NH, onto the fabric surface which increased hydrophilic properties and surface energy of the fabric. For cotton fabric treated with SF{sub 6} plasma, the fluorine functionalization was additionally found on the surface. Color strength values (K/S) increased when compared with those of the untreated fabrics. SF{sub 6} plasma-treated fabrics were hydrophobic and caused less ink absorption. Fabric surface roughness caused by plasma etching increased fabric surface areas, captured more ink, and enhanced a larger ink color gamut and

  17. Surface modification of low activation ferritic–martensitic steel EK-181 (Rusfer) by high temperature pulsed plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Emelyanova, O.V.; Dzhumaev, P.S.; Yakushin, V.L.; Kalin, B.A.; Ganchenkova, M.G.; Khein, A.T. [National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Leontyeva-Smirnova, M.V. [JSC A.A. Bochvar All-Russian Scientific Research Institute for Inorganic Materials, Moscow (Russian Federation); Valiev, R.Z.; Enikeev, N.A. [Ufa State Aviation Technical University, Ufa (Russian Federation); Shao, L.; Aydogan, E. [Texas A& M University, College Station, TX 77840 (United States); Short, M. [Massachusetts Institute of Technology, Cambridge, MA (United States); Garner, F. [Radiation Effects Consulting, Richland, WA 99354 (United States)

    2015-12-15

    The changes due to pulsed plasma flow irradiation on the near-surface microstructure and mechanical properties of the high-chromium, ferritic–martensitic steel EK-181 (Fe16Cr12W2VTaB) have been quantified. Irradiation of EK-181 in this manner produces a microstructural gradient near the material surface, with a two dimensional nanostructured cellular surface. The microstructure and mechanical properties of the modified layer are independent of the initial microstructure and phase composition, and are strongly defined solely by parameters of the plasma flow. High thermal stability of the pulsed plasma-modified layer was explicitly demonstrated.

  18. Surface modification and biocompatible improvement of polystyrene film by Ar, O{sub 2} and Ar + O{sub 2} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yashao, E-mail: yschen@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, School of Chemistry and Chemical Engineering, Xi' an 710062 (China); Gao Qiang; Wan Haiyan; Yi Jinhong; Wei Yanlin [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, School of Chemistry and Chemical Engineering, Xi' an 710062 (China); Liu Peng [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing 400044 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer NVP is successfully grafted onto the different discharge gases (Ar, O{sub 2}, and Ar + O{sub 2}) plasma-treated PS film surface by Ar plasma induced graft polymerization. Black-Right-Pointing-Pointer Compare with Ar and O{sub 2} plasma, the Ar + O{sub 2} plasma-treated film surface introduced large amounts of NVP, as known from ATR-FTIR and XPS results. Black-Right-Pointing-Pointer According to SEM, the surface roughness increased at different levels after plasma treatment. Contact angle reveal that the hydrophilicity of the PS film surface was greatly improved. Black-Right-Pointing-Pointer Cellular compatibility tests indicate that Ar + O{sub 2} plasma is more capable of increasing cell adhesion and proliferation. - Abstract: This paper reports the surface modification of different discharge gases (Ar, O{sub 2}, and Ar + O{sub 2}) plasma-treated polystyrene (PS) film by Ar plasma induced graft polymerization, with biocompatible monomer N-vinyl-2-pyrrolidone (NVP) is carried out to improve biocompatibility. The films are characterized by attenuated total reflectance Fourier transfer infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Water contact angle measurement demonstrates the modified films possess a relatively hydrophilic surface. Furthermore, the films are also examined cell attachment and proliferation in vitro using mouse fibroblasts (L929 cells). The modified film surface shows a better cell distribution and growth than that of the pristine PS surface. From cell culture experiments, it is also observed that Ar + O{sub 2} plasma is more capable of increasing cell adhesion and proliferation. This method will provide a potential and effective solution for grafting useful component in future tissue-engineering applications.

  19. Degradation and modification of stainless-steel surface using Cl{sub 2}/Ar inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hanbyeol [Dept. of Control and Instrumentation Engineering, Korea University, 2511 Sejong-Ro (Korea, Republic of); Efremov, Alexander [Dept. of Electronic Devices and Materials Technology, State University of Chemistry and Technology, 7 F. Engels st., 153000 Ivanovo (Russian Federation); Yun, Sun Jin [Electronic and Telecommunications Research Institute, Daejon 305-350 (Korea, Republic of); Yeom, Geun Young [Dept. of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Kyoung Bo [POSCO Global R and D Center, Open Innovation Lab., Incheon 406-840 (Korea, Republic of); Kwon, Kwang-Ho, E-mail: kwonkh@korea.ac.kr [Dept. of Control and Instrumentation Engineering, Korea University, 2511 Sejong-Ro (Korea, Republic of)

    2013-08-15

    The investigations of stainless steel (SS) etching behavior in the Cl{sub 2}/Ar inductively coupled plasma as well as the etched surface characteristics were carried out. It was found that an increase in Ar fraction in the Cl{sub 2}/Ar plasma from 0 to 100% at fixed gas pressure, input power and bias power results in decreasing both etching (degradation) rate of the SS surface (41.3–1.5 nm/min) and mean SS surface roughness (84–20 nm). Plasma diagnostics by Langmuir probes and 0-dimensional plasma modeling provided the data on plasma parameters, steady-state densities and fluxes of active species on the etched surface. It was shown that the maximum changes in mean roughness as well as in both polar and dispersive components of free surface energy correspond to a maximum value of Cl atom flux/ion flux ratio. Also, the linear correlation between free surface energy and mean roughness was obtained.

  20. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Dittmar, T.; Matveev, D.; Linsmeier, C.; Breuer, U.; Kreter, A.; Van Oost, G.

    2015-01-01

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (1026 m−2) and i

  1. Surface modification of bioceramics

    Science.gov (United States)

    Monkawa, Akira

    Hydroxyapatite [Ca10(PO4)6(OH)2, HAp] is a major inorganic component of bone and teeth tissues and has the excellent biocompatibility and high osteoconductivity. The interactions between HAp and protein or cell have been studied. The HAp related bioceramics such as bone substitute, coating substance of metal implants, inorganic-polymer composites, and cell culture. We described two methods; (1) surface modification of HAp using organosilane; (2) fabrication of HAp ultra-thin layer on gold surface for protein adsorption analyzed with QCM-D technique. The interfacial interaction between collagen and HAp in a nano-region was controlled by depositing the organosilane of n-octadecyltrimethoxysilane (ODS: -CH3) or aminopropyltriethoxysilane (APTS: -NH2) with a chemical vapor deposition method. The morphologies of collagen adsorbed on the surfaces of HAp and HAp deposited with APTS were similar, however that of the surface with ODS was apparently different, due to the hydrophobic interaction between the organic head group of -CH3 and residual groups of collagen. We present a method for coating gold quartz crystal microbalance with dissipation (QCM-D) sensor with ultra-thin layer of hydroxyapatite nanocrystals evenly covering and tightly bound to the surface. The hydroxyapatite sensor operated in liquid with high stability and sensitivity. The in-situ adsorption mechanism and conformational change of fibrinogen on gold, titanium and hydroxyapatite surfaces were investigated by QCM-D technique and Fourier-transform infrared spectroscopy. The study indicates that the hydroxyapatite sensor is applicable for qualitative and conformational analysis of protein adsorption.

  2. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Fatemeh [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Laser-Plasma Research Institute, Shahid Beheshti University G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Sharifian, M. [Faculty of Physics, Science Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2016-01-01

    Highlights: • Cell viability and antibacterial activity was investigated on PMMA modified by DBD. • Treated-samples got hydrophilic by introducing oxygen-containing functional groups. • Mouse embryonic fibroblast (MEF) adhesion was significantly enhanced. • Samples exhibited acceptable antibacterial activity against E. Coli. • Optimum antibacterial performance and cell attachment were obtained. - Abstract: This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid–base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was

  3. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    Science.gov (United States)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  4. Surface modification of poly(dimethylsiloxane) through oxygen and nitrogen plasma treatment to improve its characteristics towards biomedical applications

    Science.gov (United States)

    Gomathi, N.; Mishra, I.; Varma, S.; Neogi, S.

    2015-09-01

    Polymeric materials successfully applied in biomedical applications have an issue of poor surface properties which may restrict their applications as biomaterials. The present paper aims to study the effect of oxygen and nitrogen plasma treatment on physico-chemical properties of poly(dimethylsiloxane) (PDMS) and enhancement in its biocompatibility. Various characterization techniques including Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy (SEM), atomic force microscopy were used to evaluate the changes in surface chemistry and morphology of plasma treated PDMS. Changes in the wettability after plasma treatments and the effects of ageing on wettability were studied by contact angle measurement. Ageing studies showed that the contact angle was stable after two hours. The effect of plasma treatment on biocompatibility was studied through cell adhesion and MTT using 3T3 fibroblast cells. Morphology of cells obtained through SEM was analyzed using ImageJ software. Among the different treated and untreated samples, substantial enhancement in biocompatibility was observed for nitrogen plasma treated PDMS for 5 min in terms of highest cell area observed from cell adhesion test and highest cell viability observed from MTT test. This may be probably due to its highest polarity (0.4) and surface energy (33.3 N mm-2) with a moderate surface roughness (Rrms = 100.24 nm) among the other treated and untreated samples.

  5. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves.

    Science.gov (United States)

    Alves, P; Cardoso, R; Correia, T R; Antunes, B P; Correia, I J; Ferreira, P

    2014-01-01

    Prosthetic cardiac valves implantation is a common procedure used to treat heart valve diseases. Although there are different prostheses already available in the market (either mechanical or bioprosthetic), their use presents several problems, specifically concerning thrombogenicity and structural failure. Recently, some progresses have been achieved in developing heart valves based on synthetic materials with special emphasis in polymers. Among them, polyurethanes are one of the most commonly used for the production of these devices. Herein, Elastollan(®)1180A50, a thermoplastic polyurethane (TPU), was used to formulate films whose surfaces were modified by grafting 2-hydroxyethylmethacrylate (HEMA) either by ultra-violet (UV) or by plasma treatment. All films were analyzed before and after grafting. X-ray photoelectron spectroscopy (XPS) measurements were used to evaluate TPU surfaces functionalization. HEMA grafting was confirmed by the increase of the hydroxyl (OH) groups' concentration at the surface of the films. Atomic force microscopy (AFM) analysis was done to evaluate the surface topography of the biomaterials. Results showed that the roughness of the surface decreased when HEMA was grafted, especially for plasma treated samples. After grafting the films' hydrophilicity was improved, as well as the polar component of the surface energy, by 15-30%. Hydrophobic recovery studies using milli Q water or PBS were also performed to characterize the stability of the modified surface, showing that the films maintained their surface properties along time. Furthermore, blood-contact tests were performed to evaluate haemolytic and thrombogenic potential. The results obtained for HEMA grafted surfaces, using plasma treatment, confirmed biomaterials biocompatibility and low thrombogenicity. Finally, the cytotoxicity and antibacterial activity of the materials was assessed through in vitro assays for both modified films. The obtained results showed enhanced

  6. The Plasma Chemistry of Polymer Surfaces

    CERN Document Server

    Friedrich, Jö

    2012-01-01

    This book illustrates plasma properties, polymer characteristics, surface specifics, and how to purposefully combine plasma and polymer chemistry. In so doing, it covers plasma polymerization, surface functionalization, etching, crosslinking, and deposition of monotype functional-group-bearing plasma polymers. It explains different techniques and plasma types, such as pressure-pulsed, remote, low-wattage plasmas and plasma polymerization in liquids. Finally, among the numerous applications discussed are plasmas for chemical synthesis, industrial processes or the modification of membranes and p

  7. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment.

    Science.gov (United States)

    Yu, Hai-Yin; He, Xiao-Chun; Liu, Lan-Qin; Gu, Jia-Shan; Wei, Xian-Wen

    2007-12-01

    Fouling is the major obstacle in membrane processes applied in water and wastewater treatment. The polypropylene hollow fiber microporous membranes (PPHFMMs) were surface modified by N(2) low-temperature plasma treatment to improve the antifouling characteristics. Morphological changes on the membrane surface were characterized by field emission scanning electron microscopy (FE-SEM). The change of surface wettability was monitored by contact angle measurements. The static water contact angle of the modified membrane reduced obviously; the relative pure water flux of the modified membranes increased with the increase of plasma treatment time. To assess the relation between plasma treatment and membrane fouling in a submerged membrane bioreactor (SMBR), filtration of activated sludge was carried out by using synthetic wastewater. After continuous operation in the SMBR for about 90 h, flux recoveries for the N(2) plasma-treated PPHFMM for 8 min were 62.9% and 67.8% higher than those of the virgin membrane after water and NaOH cleaning. The irreversible fouling resistance decreased after plasma treatment.

  8. Surface Modification of a Titanium Alloy with a Phospholipid Polymer Prepared by a Plasma-Induced Grafting Technique to Improve Surface Thromboresistance

    OpenAIRE

    Ye, Sang Ho; Johnson, Carl A.; Woolley, Joshua R.; Oh, Heung-Il; Gamble, Lara J.; Ishihara, Kazuhiko; Wagner, William R.

    2009-01-01

    To improve the thromboresistance of a titanium alloy (TiAl6V4) surface which is currently utilized in several ventricular assist devices (VADs), a plasma-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) was carried out and poly(MPC) (PMPC) chains were covalently attached onto a TiAl6V4 surface by a plasma induced technique. Cleaned TiAl6V4 surfaces were pretreated with H2O-vapor-plasma and silanated with 3-methacryloylpropyltrimethoxysilane (MPS). Next, a plasma-...

  9. Organic plasma process for simple and substrate-independent surface modification of polymeric BioMEMS devices.

    Science.gov (United States)

    Hiratsuka, Atsunori; Muguruma, Hitoshi; Lee, Kyong-Hoon; Karube, Isao

    2004-07-15

    A polymeric bio micro electromechanical systems (BioMEMS) device was fabricated using organic plasma polymerization, by which the surface of a polymeric substrate could easily be modified through vapor-phase deposition of organic thin films. This technique, capable of polymeric deposition of any kind of monomer, can serve the purpose of anti-fouling coating, wettability control, or layer-to-layer interface creation, on the surface of any given chemically-inert polymeric substrate without involving cumbersome surface organic reactions. A prototype device was fabricated to have an array of electrochemical glucose biosensors with the three electrode configuration, each of which has a microfluidic channel (500 microm x 800 microm) for capillary-action-driven sample delivery and the concerned enzymatic reaction. Stressing the advantages of the plasma polymerization process using a polymeric substrate together with some additional features accomplished in our device fabrication, new possibilities in the field of polymeric BioMEMS are discussed.

  10. Surface Modification of Water Purification Membranes.

    Science.gov (United States)

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Modification of amorphous poly(ethylene terephthalate) surface by UV light and plasma for fabrication of an electrophoresis chip with an integrated gold microelectrode.

    Science.gov (United States)

    Hao, Zhenxia; Chen, Hengwu; Zhu, Xiaoying; Li, Jingmin; Liu, Chong

    2008-10-31

    Amorphous poly(ethylene terephthalate) (PET), which possess a low softening temperature (T(s)=75 degrees C), was exploited to fabricate the electrophoresis chip with an integrated gold electrode for amperometric detection, with emphases being focused on the PET surface modification via UV light and air plasma. Both UV irradiation and plasma treatment were found to be able to improve the surface wettability, enhance the supported electroosmotic flow (EOF), and increase thermal bonding strength of PET sheets, with the latter being more efficient and less time-consuming than the former in the surface modification. Upon treated with plasma for 2 min, the PET sheets could be thermally bonded at 65 degrees C. T-peer test showed that the bonding strength increased from 10 g/cm for native PET sheets to 1250 g/cm for the plasma treated sheets when chips were bonded at the softening point, Attenuated-total-internal-reflection spectrum showed that, after being exposed to the UV light, carboxylic groups site-selectively formed in the UV-exposed region on PET surface. These UV-induced carboxylic groups were further utilized as the scaffold for preparation of micro-gold electrode via electroless gold plating. By using this established UV-directed electroless plating and the plasma-assisted thermal bonding techniques, the full PET electrophoresis chip with an integrated micro-gold electrode could be fabricated in common chemistry laboratory without the need of clean rooms. The fabricated PET chips were demonstrated for separation and detection of model analytes of dopamine (DA) and catechol (CA). Satisfactory resolution of the two analytes was achieved within 40s, and detection limits of 0.87 microM and 1.28 microM for DA and CA were obtained, respectively.

  12. Surface Modification of Polypropylene Microporous Membrane by Atmospheric-pressure Plasma Induced N-vinyl-2-pyrrolidone Graft Polymerization

    Institute of Scientific and Technical Information of China (English)

    ZHONG Shaofeng

    2012-01-01

    Membrane surfaces modified with poly(N-vinyl-2-pyrrolidone) (PNVP) can be endowed with hydrophilicity,biocompatibility and functionality.In this work,atmospheric pressure dielectric barrier discharge plasma graft polymerization of N-vinyl-2-pyrrolidone (NVP) onto polypropylene (PP) microporous membrane surface was studied.The experimental results reveal that plasma treatment conditions,such as discharge power,treatment time and adsorbed NVP amount,have remarkable effects on the grafting degree of NVP.Structural and morphological changes on the membrane surfaces were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR),X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM).Water contact angles of the membrane surfaces were also measured by the sessile drop method.Water contact angles on the membrane surfaces decrease with the increase of NVP grafting degree,which indicates an enhanced hydrophilicity for the modified membranes.The effects of grafting degrees on pure water fluxes were also measured.It is shown that pure water fluxes increase with grafting degree firstly and then decrease adversely.Finally,filtration of bovine serum albumin (BSA) solution and platelets adhesion of the PNVP modified membranes show good protein resistance and potential biocompatibility due to the enhancement of surface hydrophilicity.

  13. Understanding the molecular-level chemistry of water plasmas and the effects of surface modification and deposition on a selection of oxide substrates

    Science.gov (United States)

    Trevino, Kristina J.

    2011-12-01

    This dissertation first examines electrical discharges used to study wastewater samples for contaminant detection and abatement. Two different water samples contaminated with differing concentrations of either methanol (MeOH) or methyl tert-butyl ether (MTBE) were used to follow breakdown mechanisms. Emission from CO* was used to monitor the contaminant and for molecular breakdown confirmation through actinometric OES as it can only arise from the carbon-based contaminant in either system. Detection was achieved at concentrations as low as 0.01 ppm, and molecular decomposition was seen at a variety of plasma parameters. This dissertation also explores the vibrational (thetaV), rotational (thetaR) and translational (thetaT) temperatures for a range of diatomic species in different plasma systems. For the majority of the plasma species studied, thetaV are much higher than thetaR and thetaT. This suggests that more energy is partitioned into the vibrational degrees of freedom in our plasmas. The thetaR reported are significantly lower in all the plasma systems studied and this is a result of radical equilibration to the plasma gas temperature. thetaT values show two characteristics; (1) they are less than the thetaV and higher than the theta R and (2) show varying trends with plasma parameters. Radical energetics were examined through comparison of thetaR, thetaT, and thetaV, yielding significant insight on the partitioning of internal and kinetic energies in plasmas. Correlations between energy partitioning results and corresponding radical surface scattering coefficients obtained using our imaging of radicals interacting with surfaces (IRIS) technique are also presented. Another aspect of plasma process chemistry, namely surface modification via plasma treatment, was investigated through characterization of metal oxides (SiOxNy, nat-SiO2, and dep-SiO2) following their exposure to a range of plasma discharges. Here, emphasis was placed on the surface wettability

  14. Surface Modification of Polyethylene Film by RF-Ar Plasma Treatment%RF-Ar等离子体对聚乙烯薄膜的表面改性

    Institute of Scientific and Technical Information of China (English)

    解林坤; 黄元波; 代沁伶; 梁艳君; 柴希娟

    2012-01-01

    The surfaces of the low density polyethylene (LDPE) sheet were modified by RF argon glow discharge plasma.The impacts of the surface modification conditions, including the pressure, plasma power, and modification time, on the surface morphologies and properties of the LDPE films were studied. The surfaces of the LDPE films, before and after the plasma treatment,were characterized with X-ray photoelectron spectroscopy,atomic force microscopy,static contact angle measurement,and differential scanning calorimetry. The results show that the plasma treatment time significantly affects the surface microstructures and properties. For instance, the plasma treatment for 20 s markedly improves the wetta-bilty of the LDPE surface;but a treatment time longer than 20 s little influences the contact angle. We suggest that the existence of a high density of oxygen-containing and a low density of nitrogen-containing functional groups in the surfaces of the plasma modified LDPE films, may account for the slow the aging evolution of the surface contact angle.%采用射频辉光放电氩等离子体,在工作压力为20Pa、功率为30W的条件下对低密度聚乙烯薄膜进行了不同时间的表面处理.借助静态接触角、X射线光电子能谱仪、原子力显微镜、差示扫描量热仪对薄膜改性前后的性能进行了表征及分析.研究结果表明:氩等离子体短时间(20s)处理便可以有效改善薄膜表面的亲水性,处理时间大于20s后接触角的变化并不明显;处理后的薄膜表面引人了大量的含氧及少量的含氮官能团;薄膜表面所形成的交联层阻挡了极性基团的翻转,有效延长了接触角的时效性;薄膜的表面形貌和结晶度发生了变化.

  15. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric

    Science.gov (United States)

    Vaideki, K.; Jayakumar, S.; Rajendran, R.; Thilagavathi, G.

    2008-02-01

    A thorough investigation on the antimicrobial activity of RF air plasma and azadirachtin (neem leaf extract) treated cotton fabric has been dealt with in this paper. The cotton fabric was given a RF air plasma treatment to improve its hydrophilicity. The process parameters such as electrode gap, time of exposure and RF power have been varied to study their effect in improving the hydrophilicity of the cotton fabric and they were optimized based on the static immersion test results. The neem leaf extract (azadirachtin) was applied on fabric samples to impart antimicrobial activity. The antimicrobial efficacy of the samples have been analysed and compared with the efficacy of the cotton fabric treated with the antimicrobial finish alone. The investigation reveals that the RF air plasma has modified the surface of the fabric, which in turn increased the antimicrobial activity of the fabric when treated with azadirachtin. The surface modification due to RF air plasma treatment has been analysed by comparing the FTIR spectra of the untreated and plasma treated samples. The molecular interaction between the fabric, azadirachtin and citric acid which was used as a cross linking agent to increase the durability of the antimicrobial finish has also been analysed using FTIR spectra.

  16. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering

    Science.gov (United States)

    Roh, Hee-Sang; Jung, Sang-Chul; Kook, Min-Suk; Kim, Byung-Hoon

    2016-12-01

    Three-dimensional (3D) scaffolds have many advantageous properties for bone tissue engineering application, due to its controllable properties such as pore size, structural shape and interconnectivity. In this study, effects on oxygen plasma surface modification and adding of nano-hydroxyapatite (n-HAp) and β-tricalcium phosphate (β-TCP) on the 3D PLGA/n-HAp/β-TCP scaffolds for improving preosteoblast cell (MC3T3-E1) adhesion, proliferation and differentiation were investigated. The 3D PLGA/n-HAp/β-TCP scaffolds were fabricated by 3D Bio-Extruder equipment. The 3D scaffolds were prepared with 0°/90° architecture and pore size of approximately 300 μm. In addition 3D scaffolds surface were etched by oxygen plasma to enhance the hydrophilic property and surface roughness. After oxygen plasma treatment, the surface chemistry and morphology were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. And also hydrophilic property was measured by contact angle. The MC3T3-E1 cell proliferation and differentiation were investigated by MTT assay and ALP activity. In present work, the 3D PLGA/HAp/beta-TCP composite scaffold with suitable structure for the growth of osteoblast cells was successfully fabricated by 3D rapid prototyping technique. The surface hydrophilicity and roughness of 3D scaffold increased by oxygen plasma treatment had a positive effect on cell adhesion, proliferation, and differentiation. Furthermore, the differentiation of MC3T3-E1 cell was significantly enhanced by adding of n-HAp and β-TCP on 3D PLGA scaffold. As a result, combination of bioceramics and oxygen plasma treatment showed a synergistic effect on biocompatibility of 3D scaffolds. This result confirms that this technique was useful tool for improving the biocompatibility in bone tissue engineering application.

  17. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  18. Effects of surface modification by atmospheric oxygen dielectric barrier discharge plasma on PBO fibers and its composites

    Science.gov (United States)

    Liu, Zhe; Chen, Ping; Zhang, Xiaoliang; Yu, Qi; Ma, Keming; Ding, Zhenfeng

    2013-10-01

    In this paper, oxygen dielectric barrier discharge (oxy-DBD) plasma was employed to modify PBO fibers and enhance the interfacial adhesion of PBO fiber/bismaleimide composites. The interlaminar shear strength (ILSS) of the composites was improved greatly to 62.0 MPa with an increment of 41.2% at 30 W/cm3, 24 s. The SEM images of fracture morphology indicated that the failure place shifted from the interface to the matrix, and the water absorption decreased from 1.96 to 1.53%, the two results demonstrated the improved adhesive strength in other ways. In addition, the ILSS retention ratio of PBO/BMI composites after boiling in water were about 90%, confirming good humid resistance of the composites. The results obtained from XPS and AFM revealed that some polar groups were introduced onto PBO fibers and the surface morphology of PBO fibers was roughened. As a result, the wettability, reactivity and roughness of PBO fibers were all improved, they contributed to the improvement of the ILSS of the composites. The comparisons with air-DBD plasma showed that the chemical changes of PBO fibers were not alike because of different plasma gases.

  19. [Structural modifications of the surface of Escherichia coli bacteria and copper-induced permeability of plasma membrane].

    Science.gov (United States)

    Lebedev, V S; Volodina, L A; Deĭnega, E Iu; Fedorov, Iu I

    2005-01-01

    The effect of Cu2+ on the structural organization of the cell surface of Escherichia coli bacteria during the induction of conductivity of a plasma membrane was studied. A fluorescent study did not reveal any substantial changes in the microviscosity of lipids by the action of copper ions. At the same time, a substantial reorganization of membrane proteins during plasmolysis was observed. A model of the copper-induced structural reorganization of membrane lipids was constructed, according to which the reorganization leads to the opening in the membrane of channels of nonspecific conductivity for cations. The opening of conductivity channels results from the break of disulfide bonds in critical membrane proteins during the interaction with Cu+, which form either due to the reduction of Cu2+ on specific sites of cell surface or by means of external reducing agents.

  20. Modifications in surface, structural and mechanical properties of brass using laser induced Ni plasma as an ion source

    Directory of Open Access Journals (Sweden)

    Shahbaz Ahmad

    2016-03-01

    Full Text Available Laser induced Ni plasma has been employed as source of ion implantation for surface, structural and mechanical properties of brass. Excimer laser (248 nm, 20 ns, 120mJ and 30 Hz was used for the generation of Ni plasma. Thomson parabola technique was employed to estimate the energy of generated ions using CR39 as a detector. In response to stepwise increase in number of laser pulses from 3000 to 12000, the ion dose varies from 60 × 1013 to 84 × 1016 ions/cm2 with constant energy of 138 KeV. SEM analysis reveals the growth of nano/micro sized cavities, pores, pits, voids and cracks for the ion dose ranging from 60 × 1013 to 70 × 1015 ions/cm2. However, at maximum ion dose of 84 × 1016 ions/cm2 the granular morphology is observed. XRD analysis reveals that new phase of CuZnNi (200 is formed in the brass substrate after ion implantation. However, an anomalous trend in peak intensity, crystallite size, dislocation line density and induced stresses is observed in response to the implantation with various doses. The increase in ion dose causes to decrease the Yield Stress (YS, Ultimate Tensile Strength (UTS and hardness. However, for the maximum ion dose the highest values of these mechanical properties are achieved. The variations in the mechanical properties are correlated with surface and crystallographical changes of ion implanted brass.

  1. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification

    Science.gov (United States)

    Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn

    2017-02-01

    In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3-4 μm and 7-8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.

  2. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  3. Surface modification of cellulose nanocrystals

    Science.gov (United States)

    Eyley, Samuel; Thielemans, Wim

    2014-06-01

    Chemical modification of cellulose nanocrystals is an increasingly popular topic in the literature. This review analyses the type of cellulose nanocrystal modification reactions that have been published in the literature thus far and looks at the steps that have been taken towards analysing the products of the nanocrystal modifications. The main categories of reactions carried out on cellulose nanocrystals are oxidations, esterifications, amidations, carbamations and etherifications. More recently nucleophilic substitutions have been used to introduce more complex functionality to cellulose nanocrystals. Multi-step modifications are also considered. This review emphasizes quantification of modification at the nanocrystal surface in terms of degree of substitution and the validity of conclusions drawn from different analysis techniques in this area. The mechanisms of the modification reactions are presented and considered with respect to the effect on the outcome of the reactions. While great strides have been made in the quality of analytical data published in the field of cellulose nanocrystal modification, there is still vast scope for improvement, both in data quality and the quality of analysis of data. Given the difficulty of surface analysis, cross-checking of results from different analysis techniques is fundamental for the development of reliable cellulose nanocrystal modification techniques.

  4. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  5. Surface Modification of PDMS and Plastics with Zwitterionic Polymers.

    Science.gov (United States)

    Tanaka, Mutsuo; Kurosawa, Shigeru

    2017-07-01

    Surface modification of PDMS, polycarbonate, and acrylic resin was examined using various methacryl polymers bearing sulfobetaine, phosphoryl choline, and oligoethylene glycol units. We have found that zwitterionic polymers are adsorbed on the PDMS surface treated with plasma. The surface of PDMS is stable to keep high hydrophilicity after a month of the modification. On the other hand, one of sulfobetaine polymers showed distinguished adsorption behavior in the case of polycarbonate surface treated with plasma. Suppression effect for nonspecific adsorption of BSA was evaluated using polycarbonate and acrylic resin modified with the polymers. The modified surfaces showed suppression effect for nonspecific adsorption of BSA compared with the surface only treated with plasma.

  6. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation.

    Science.gov (United States)

    Kuo, Wei-Hsuan; Wang, Meng-Jiy; Chien, Hsiu-Wen; Wei, Ta-Chin; Lee, Chiapyng; Tsai, Wei-Bor

    2011-12-12

    Zwitterionic sulfobetaine methacrylate (SBMA) polymers were known to possess excellent antifouling properties due to high hydration capacity and neutral charge surface. In this study, copolymers of SBMA and acrylic acid (AA) with a variety of compositions were synthesized and were immobilized onto polymeric substrates with layer-by-layer polyelectrolyte films via electrostatic interaction. The amounts of platelet adhesion and fibrinogen adsorption were determined to evaluate hemocompatibility of poly(SBMA-co-AA)-modified substrates. Among various deposition conditions by modulating SBMA ratio in the copolymers and pH of the deposition solution, poly(SBMA(56)-co-AA(44)) deposited at pH 3.0 possessed the best hemocompatibility. This work demonstrated that poly(SBMA-co-AA) copolymers adsorbed on polyelectrolyte-base films via electrostatic interaction improve hemocompatibility effectively and are applicable for various substrates including TCPS, PU, and PDMS. Furthermore, poly(SBMA-co-AA)-coated substrate possesses great durability under rigorous conditions. The preliminary hemocompatibility tests regarding platelet adhesion, fibrinogen adsorption, and plasma coagulation suggest the potential of this technique for the application to blood-contacting biomedical devices.

  7. Surface modification for corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1993-06-01

    The raw gas environments that arise from coal gasification have chemical compositions that are low in pO{sub 2} and moderate-to-high in pS{sub 2}. Metallic materials for service in such an environment undergo predominantly sulfidation attack at temperatures of 400 to 700{degree}C. Modification of alloy compositions in bulk can alter the scaling processes and lead to improvements in corrosion resistance, but the benefits can only be attained at temperatures much higher than the service temperatures of the components. Modification of surfaces of structural components by several of the coating techniques examined in this study showed substantial benefit in corrosion resistance when tested in simulated coal gasification environments. The paper presents several examples of surface modification and their corrosion performance.

  8. Laser surface modification and adhesion

    CERN Document Server

    Mittal, K L

    2014-01-01

    The book provides a unique overview on laser techniques and applications for the purpose of improving adhesion by altering surface chemistry and topography/morphology of the substrate. It details laser surface modification techniques for a wide range of industrially relevant materials (plastics, metals, ceramics, composites) with the aim to improve and enhance their adhesion to other materials. The joining of different materials is of critical importance in the fabrication of many and varied products.

  9. Application of Cold Plasma in Surface Modification%低温等离子体在材料表面改性中的应用

    Institute of Scientific and Technical Information of China (English)

    肖梅; 凌一鸣

    2001-01-01

    概要介绍了目前低温等离子体在材料表面改性方面的研究进展.材料的许多特性,如金属的表面硬度、耐腐蚀、耐摩擦,聚合物的表面浸润性、亲水性、粘附性以及生物功能材料的生物相容性等,决定了材料的应用.低温等离子体并不改变材料的块材特性而仅影响材料的表面特性.对金属如不锈钢等用氮气等离子源离子注入,可以在表面形成Fe2N,Fe3N和Fe4N的铁的氮化物,提高表面的硬度和耐腐蚀性能;氧气、氮气等离子体会在聚合物材料表面形成微针孔结构,改善其浸润性、粘附性;用等离子聚合法在生物材料表面聚合高分子材料,如氯化对二甲苯可以降低血小板的吸附.因此,低温等离子体在材料的表面改性方面有很好的应用前景.%This paper briefly reviews the research state of surfacemodification with cold plasma. Many properties of materials like microhardness, corrosion resistance, and tribological properties of metal, wettability, hydrophilicity, and adhesion of polymer and biomaterials' biocompatibility, often determine their application. The cold plasma can only influence material's surface properties, but cannot change its bulk property. For example, to metal like stainless steel,N2 ion source ion implantation can form iron's nitrides like Fe2N,Fe3 and Fe4N which can improve its microhardness and corrosion resistance; O2, N2 plasma can induce the formation of micro-pinhole on the surface of polymer materials, that improves their wettability and adhesion properties. The high-molecular material like poly(2-chloro paraxylyylene) polymerized on biomaterials using plasma polymerization can reduce the adsorption of blood platelet. Therefore cold plasma has a good foreground at the modification of materials.

  10. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  11. Surface Modification for Microreactor Fabrication

    Directory of Open Access Journals (Sweden)

    Wladyslaw Torbicz

    2006-04-01

    Full Text Available In this paper, methods of surface modification of different supports, i.e. glass andpolymeric beads for enzyme immobilisation are described. The developed method ofenzyme immobilisation is based on Schiff’s base formation between the amino groups onthe enzyme surface and the aldehyde groups on the chemically modified surface of thesupports. The surface of silicon modified by APTS and GOPS with immobilised enzymewas characterised by atomic force microscopy (AFM, time-of-flight secondary ion massspectroscopy (ToF-SIMS and infrared spectroscopy (FTIR. The supports withimmobilised enzyme (urease were also tested in combination with microreactors fabricatedin silicon and Perspex, operating in a flow-through system. For microreactors filled withurease immobilised on glass beads (Sigma and on polymeric beads (PAN, a very high andstable signal (pH change was obtained. The developed method of urease immobilisationcan be stated to be very effective.

  12. Study of the modification of spherical melamine-formaldehyde particles levitating in complex plasma

    Science.gov (United States)

    Karasev, V. Yu.; Polishchyuk, V. A.; Gorbenko, A. P.; Dzlieva, E. S.; Ermolenko, M. A.; Makar, M. M.

    2016-05-01

    The surface modification of spherical melamine-formaldehyde particles during their levitation in a dusty plasma as a part of plasma-dust structures in a trap formed in strata in a neon glow discharge has been investigated using scanning electron microscopy. The dependence of the particle size on the time of plasma exposure has been found and measured, and the modification of the surface structure has been studied. The source of the observed modification has been interpreted.

  13. Surface modification and deuterium retention in reduced-activation steels under low-energy deuterium plasma exposure. Part I: undamaged steels

    Science.gov (United States)

    Ogorodnikova, O. V.; Zhou, Z.; Sugiyama, K.; Balden, M.; Gasparyan, Yu.; Efimov, V.

    2017-03-01

    In this paper, reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthening (ODS) steels by the addition of Y2O3 particles with different amounts of Cr, namely, (9-16)Cr were exposed to low energy deuterium (D) plasma (~20-200 eV per D) up to a fluence of 2.9  ×  1025 D m-2 in the temperature range from 290 K to 700 K. The depth profile of D in steels was measured up to 8 µm depth by nuclear reaction analysis (NRA) and the total retained amount of D in those materials was determined by thermal desorption spectroscopy (TDS). It was found that the D retention in ODS steels is higher compared to Eurofer due to the much higher density of fine dispersoids and finer grain size. This work shows that in addition to the sintering temperature and time, the type, size and concentration of the doping particles have an enormous effect on the increase in the D retention. The D retention in undamaged ODS steels strongly depends on the Cr content: ODS with 12Cr has a minimum and the D retention in the case of ODS with (14-16)Cr is higher compared to (9-12)Cr. The replacing of Ti by Al in ODS-14Cr steels reduces the D retention. The formation of nano-structure surface roughness enriched in W or Ta due to combination of preferential sputtering of light elements and radiation-induced segregation was observed at incident D ion energy of 200 eV for both Eurofer and ODS steels. Both the surface roughness and the eroded layer enhance with increasing the temperature. The surface modifications result in a reduction of the D retention near the surface due to increasing the desorption flux and can reduce the overall D retention.

  14. Micro and nanopatterning of functional materials on flexible plastic substrates via site-selective surface modification using oxygen plasma

    NARCIS (Netherlands)

    George, A.; Stawski, T.M.; Unnikrishnan, S.; Veldhuis, S.A.; Elshof, J.E. ten

    2012-01-01

    A simple and cost effective methodology for large area micro and nanopatterning of a wide range of functional materials on flexible substrates is presented. A hydrophobic-hydrophilic chemical contrast was patterned on surfaces of various flexible plastic substrates using molds and shadow masks with

  15. Micro and nanopatterning of functional materials on flexible plastic substrates via site-selective surface modification using oxygen plasma

    NARCIS (Netherlands)

    George, A.; Stawski, T.M.; Unnikrishnan, S.; Veldhuis, S.A.; Elshof, J.E. ten

    2012-01-01

    A simple and cost effective methodology for large area micro and nanopatterning of a wide range of functional materials on flexible substrates is presented. A hydrophobic-hydrophilic chemical contrast was patterned on surfaces of various flexible plastic substrates using molds and shadow masks with

  16. Micro- and nanopatterning of functional materials on flexible plastic substrates via site-selective surface modification using oxygen plasma

    NARCIS (Netherlands)

    George, A.; Stawski, T.M.; Unnikrishnan, S.; Veldhuis, S.A.; Elshof, ten J.E.

    2012-01-01

    A simple and cost effective methodology for large area micro and nanopatterning of a wide range of functional materials on flexible substrates is presented. A hydrophobic-hydrophilic chemical contrast was patterned on surfaces of various flexible plastic substrates using molds and shadow masks with

  17. Bioactive Surface Modification of Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Yasuhiko Abe

    2013-01-01

    Full Text Available The purpose of this study was to establish an acid-etching procedure for altering the Ca/P ratio of the nanostructured surface of hydroxyapatite (HAP by using surface chemical and morphological analyses (XPS, XRD, SEM, surface roughness, and wettability and to evaluate the in vitro response of osteoblast-like cells (MC3T3-E1 cells to the modified surfaces. This study utilized HAP and HAP treated with 10%, 20%, 30%, 40%, 50%, or 60% phosphoric acid solution for 10 minutes at 25°C, followed by rinsing 3 times with ultrapure water. The 30% phosphoric acid etching process that provided a Ca/P ratio of 1.50, without destruction of the grain boundary of HAP, was selected as a surface-modification procedure. Additionally, HAP treated by the 30% phosphoric acid etching process was stored under dry conditions at 25°C for 12 hours, and the Ca/P ratio approximated to 1.00 accidentally. The initial adhesion, proliferation, and differentiation (alkaline phosphatase (ALP activity and relative mRNA level for ALP of MC3T3-E1 cells on the modified surfaces were significantly promoted (P<0.05 and 0.01. These findings show that the 30% phosphoric acid etching process for the nanostructured HAP surface can alter the Ca/P ratio effectively and may accelerate the initial adhesion, proliferation, and differentiation of MC3T3-E1 cells.

  18. Tailoring Wettability Through the Surface Modification of Electro-spun Polymers by Plasma and Sol-gel Treatments

    Science.gov (United States)

    2014-11-01

    water repellency of electrospun materials, two polymers with different surface energies were used: polyurethane containing urethane and phenyl...study concluded that for water repellency , thin beaded fibres were superior to thicker non-beaded fibres if the bead density was sufficiently high and...hydrophobic due to the roughness imparted by electrospinning. Sol-gel coating increased the water repellency to superhydrophobic ranges, achieving contact

  19. Surface modification and functionalization of nanostructured carbons

    Directory of Open Access Journals (Sweden)

    A. Stanishevsky

    2009-12-01

    Full Text Available Purpose: Nanostructured carbon nanomaterials (e.g., nanocrystalline diamond films and particles, carbon nanotubes, carbon onions, fullerenes, etc. are being extensively explored for numerous biomedical applications in surgical implants, therapy, drug delivery, and biosensoring due to their interesting physical, chemical, and biological properties. Such applications of carbon nanomaterials often require specific surface functionality to be introduced for better integration of these materials with physiological environment. In the last decade, substantial progress has been made in the development of controllable surface modification methods and in the introduction of different functional groups on the surface of carbon nanomaterials.Design/methodology/approach: This paper briefly overviews the surface modification and functionalization approaches for various carbon nanomaterials, and it focuses on the plasma modification and functionalization of nanocrystalline diamond films, diamond nanoparticles, and carbon nanospheres. The results on the surface characterization using FTIR and XPS techniques, and the preliminary studies of cellular response to these modified carbon nanomaterials are presented and discussed.Findings: The results of surface modification of NCD films, detonation nanodiamonds, and carbon nanospheres, demonstrate the flexibility of nanocarbons to attain various surface functionality that can be adjusted for specific applications. It has been shown that neither of tested nanocarbon materials was cytotoxic in this study, although the attachement and proliferation of various cells was strongly affected by the specific type of surface functionalization.Research limitations/implications: At the present, it is not clear to what degree the available surface sites on NCD films or carbon nanoparticles can be occupied with functional groups. Furthermore, while there is clear selectivity of cellular response to H, O, and F surface

  20. Characterization of Surface Modification of Polyethersulfone Membrane

    Science.gov (United States)

    Surface modification of polyethersulfone (PES) membrane surface using UV/ozone-treated grafting and interfacial polymerization on membrane surface was investigated in order to improve the resistance of membrane surface to protein adsorption. These methods of surface modification were compared in te...

  1. Effect of Atmospheric Pressure Plasma Modification on Polyimide and Adhesive Joining with Titanium

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.; Ajeesh, G.; Ahmed, S.; Chakraborty, D.

    2015-01-01

    This investigation highlights the effect of surface modification on polyimide by atmospheric pressure plasma treatment with different exposure time. Surface modification of polymer by plasma treatment essentially creates physical and chemical changes such as cross-linking and formation of free

  2. surface modification of polyethylene films using atmospheric ...

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    measured an increase of ozone with increasing oxygen admixture. Neither of ... Detailed modeling of both the chemistry inside the plasma and plasma effluent as well as the ... Film Treated by Air Dielectric Barrier Discharge. Plasma. Surface ...

  3. Surface modification of cellulose nanocrystals

    Institute of Scientific and Technical Information of China (English)

    WANG Neng; DING Enyong; CHENG Rongshi

    2007-01-01

    In order to improve the dispersibility of cellulose nanocrystal(CNC) particles,three difierent grafted reactions of acetylation,hydroxyethylation and hydroxypropylation were introduced to modify the CNC surface.The main advantages of these methods were the simple and easily controlled reaction conditions,and the dispersibility of the resulting products was distinctly improved.The properties of the modified CNC were characterized by means of Fourier transform infrared spectroscopy(FT-IR),13 C nuclear magnetic resonance(NMR),transmission electron microscopy(TEM)and thermogravimetric analyses(TGA).The results indicated mat after desiccation,the modification products could be dispersed again in the proper solvents by ultrasonic treatments,and the diameter of their particles had no obvious changes.However,their thermal degradation behaviors were quite different.The initial decomposition temperature of the modified products via hydroxyethylation or hydroxypropylation was lower than that of modified products via acetylation.

  4. Comparative Study of Surface Chemical Composition and Oxide Layer Modification upon Oxygen Plasma Cleaning and Piranha Etching on a Novel Low Elastic Modulus Ti25Nb21Hf Alloy

    Science.gov (United States)

    Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María

    2017-08-01

    Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.

  5. Surface modification of polypropylene based particle foams

    Science.gov (United States)

    Schreier, P.; Trassl, C.; Altstädt, V.

    2014-05-01

    This paper deals with the modification of the surface properties of expanded polypropylene (EPP). EPP is a semi-hard to soft elastic thermoplastic foam. The characteristic surface of EPP shows process-related steam nozzle imprints and gussets. Therefore EPP does not satisfy the quality requirements for visible automotive applications. In order to meet these demands, plastic surfaces are usually enhanced with functional or decorative coatings, e.g. textiles, plastic films or paint. The coating of plastics with low surface energies such as PP often leads to adhesion problems by reason of the missing polar and functional groups. This paper gives an evaluation of activation and pre-treatment methods of EPP, with the aim to identify the most suitable pre-treatment method. For this purpose five typical surface treatment methods - flame treatment, corona, fluorination, atmospheric and low-pressure plasma - were performed on EPP samples. As a comparison criterion the maximum increase in the adhesion force between a polyurethane-based coating and the modified EPP substrate was selected. Moreover the influence of the selected pre-treatment method on the increase in the total surface energy and its polar component was investigated by the drop shape analysis method. The results showed that the contact angle measurement is a suitable method to determine the polar and disperse fractions of the surface tension of EPP. Furthermore, all performed methods increased the adhesion of EPP.

  6. Modification of Polyester and Polyamide Fabrics by Different in Situ Plasma Polymerization Methods

    OpenAIRE

    ÖKTEM, T.; SEVENTEKİN, N.

    2000-01-01

    In order to increase the hydrophilicities, and therefore to impart soil resistance and to improve dyeability, poly(ethylene terephthalate) (PET) and polyamide (PAm) fabrics were treated in low-temperature plasmas. Five different modification types were applied. Fabrics were directly treated in acrylic acid, water, air, O2 and argon plasma. The plasma conditions (i.e., exposure time and discharge power) were changed to control the extent of plasma surface modification. Wettability, soil resist...

  7. Modification of Composite Material Fillers by Atmospheric Plasma Discharge

    Directory of Open Access Journals (Sweden)

    David Tichy

    2013-01-01

    Full Text Available This work is focused on the observation of the influence of cold atmospheric dielectric barrier discharge (DBD on a modification of textile samples. The main objective of the experiment is to research wettability change of textiles modified by different exposure times and also the observation of the influence of a modification ageing effect. An ambient air was used as a working gas for DBD plasma. The wettability evaluation was carried out by a drop method, in which an imprint of the dropwas observed on the textile surface during various time intervals. An ageing effect of the modification was monitored within an interval of 28 days. Considerable increase of wettability of all modified samples has been proved. A fibre surface analysis was carried out by means of SEM.

  8. Influence of surface modification of nitinol with silicon using plasma-immersion ion implantation on the alloy corrosion resistance in artificial physiological solutions

    Science.gov (United States)

    Kashin, O. A.; Borisov, D. P.; Lotkov, A. I.; Abramova, P. V.; Korshunov, A. V.

    2015-10-01

    Cyclic voltammetry and potentiostatic polarization have been applied to study electrochemical behavior and to determine corrosion resistance of nitinol, which surface was modified with silicon using plasma-immersion ion implantation, in 0.9% NaCl solution and in artificial blood plasma. It was found out that continuous, and also homogeneous in composition, thin Si-containing layers are resistant to corrosion damage at high positive potentials in artificial physiological solutions due to formation of stable passive films. Breakdown potential Eb of Si-modified NiTi depends on the character of silicon and Ni distribution at the alloy surface, Eb values amounted to 0.9-1.5 V (Ag/AgCl/KCl sat.) for the alloy samples with continuous Si-containing surface layers and with decreased Ni surface concentration.

  9. Surface Modification of Fillers and Curatives by Plasma Polymerization for Enhanced Performance of Single Rubbers and Dissimilar Rubber/Rubber Blends

    Science.gov (United States)

    Noordermeer, J. W. M.; Datta, R. N.; Dierkes, W. K.; Guo, R.; Mathew, T.; Talma, A. G.; Tiwari, M.; van Ooij, W.

    Plasma polymerization is a technique for modifying the surface characteristics of fillers and curatives for rubber from essentially polar to nonpolar. Acetylene, thiophene, and pyrrole are employed to modify silica and carbon black reinforcing fillers. Silica is easy to modify because its surface contains siloxane and silanol species. On carbon black, only a limited amount of plasma deposition takes place, due to its nonreactive nature. Oxidized gas blacks, with larger oxygen functionality, and particularly carbon black left over from fullerene production, show substantial plasma deposition. Also, carbon/silica dual-phase fillers react well because the silica content is reactive. Elemental sulfur, the well-known vulcanization agent for rubbers, can also be modified reasonably well.

  10. Surface modification to prevent oxide scale spallation

    Science.gov (United States)

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  11. 氨气低温等离子体技术对聚碳酸酯聚氨酯表面改性%Surface Modification of Polycarbonate Urethane by LoW-Temperature Ammonia Plasma

    Institute of Scientific and Technical Information of China (English)

    冯亚凯; 关文丽; 赵海洋; 郭锦棠; 陈庆良; 刘建实

    2011-01-01

    The polycarbonateurethane (PU) surface was modified by low-temperature ammonia plasma. The influences of modification conditions on the contact angle, amine content and surface morphology were investigated by water contact angle, scanning electron microscope (SEM) and X-ray photoelectron specroscopy (XPS). The results show that the hydrophilicity of PU surface is improved significantly after ammonia plasma modification. The water contact angle decreases with amine content on the surface increasing. The smooth surface gradually becomes rough after plasma modification. The surface morphology is different with different modified conditions. The C/N ratio on the surface increases from 2.44 % to 3.98 % after treatment. Water contact angle increases quickly in 5 h and then does not change any more within 10 h after plasma modification. As expected the ammonia plasma modified PU has good biocompatibility as preferred candidates for vascular graft.%利用氨气低温等离子体对聚碳酸酯聚氨酯材料进行表面修饰改性研究,讨论了改性条件对材料表面亲水性和表面形态的影响.蛄果表明,修饰材料表面的亲水性得到改善,随着表面氨基浓度增大,接触角降低;表面形态由高度平整光滑变为粗糙结构,而且粗糙程度因修饰条件不同而异;材料表面N/C比值从原始材料的2.44%上升到3.98%.时效性考察结果表明,水接触角在5 h内迅速上升,在10 h之后趋于一个穗定值.预期改性后的聚碳酸酯聚氨酯具有优异生物相容性,是人工血管适宜材料之一.

  12. XPS analysis of down stream plasma treated wool: Influence of the nature of the gas on the surface modification of wool

    Energy Technology Data Exchange (ETDEWEB)

    Molina, R. [Departamento de Tecnologia de Tensioactivos, IIQAB-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona (Spain)]. E-mail: rmmqst@iiqab.csic.es; Espinos, J.P. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla), Departamento de Quimica Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla), Departamento de Quimica Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Erra, P. [Departamento de Tecnologia de Tensioactivos, IIQAB-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Gonzalez-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla), Departamento de Quimica Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain)

    2005-12-15

    A microwave plasma treatment in a down stream configuration was used to modify the natural hydrophobocity of untreated wool fibers. This property is a consequence of the presence of a Fatty acid monolayer (F-layer) on the outermost part of the fiber surface. The wool fibers treated with plasma were analyzed by means of X-ray photoelectron spectroscopy (XPS) without previous exposure to the air. Experiments have been carried out with air, water vapor, oxygen and nitrogen as plasma gas. The 'in situ' analysis of the treated samples has permitted to differentiate between the plasma effects and those other linked to the exposure of the fibers to the air after their treatment. The results have evidenced the effects induced by the different active species generated by plasma from the different components of the air. In general, the intensity of C-C peaks decreases and that of the C-O, C=O and O-C=O increases when using a gas containing oxygen species. Simultaneously, the intensity of the S-S groups decreases and that of the sulphonate (SO{sub 3} {sup -}) increases. Other changes are also detected in the intensity of the N 1s level. The extent and characteristics of the oxidation and functionalisation of the hydrocarbon chains of the F-layer depend on the nature of gas. Thus, whereas treatments with plasmas of air and water vapor strongly affect the hydrocarbon chains of the F-layer, oxygen is less effective in the oxidation process. It has been also noted that the active species formed in the nitrogen plasma do not induce any significant change in the surface composition of the wool fibers.

  13. 21 CFR 640.74 - Modification of Source Plasma.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. (a) Upon approval by the Director, Center for Biologics Evaluation and Research, Food and...

  14. Compréhension des mécanismes de modification de surface d’élastomères non réticulés consécutifs à une exposition plasma et ses conséquences sur le comportement adhésif

    OpenAIRE

    Henry, Alicia

    2015-01-01

    Plasma treatment has become a powerful candidate to modify surface properties without any change in bulk properties. It combines high chemical reactivity with low operational costs, in environmentally friendly processes. Plasma treatment has been intensively applied for surface modification of vulcanized rubbers. Almost no studies have been dedicated to plasma treatment of unvulcanized rubbers. The role of each additive during plasma exposure is poorly understood. It is also admitted that sur...

  15. Covalent Surface Modifications of Carbon Nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Pavia Sanders, Adriana [Sandia National Lab. (SNL-CA), Livermore, CA (United States); O' Bryan, Greg [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.

  16. Surface modification of materials to encourage beneficial biofilm formation

    Directory of Open Access Journals (Sweden)

    Amreeta Sarjit

    2015-10-01

    Full Text Available Biofilms are communities of sessile microorganisms that grow and produce extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated with negative impacts, the role of beneficial biofilms is wide and include applications in bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential step in biofilm formation. Surface modification therefore represents an important way to modulate microbial attachment and ultimately biofilm formation by microorganisms. In this review different surface modification processes such as organosilane surface modification, plasma treatment, and chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and their industrial applications are also discussed. There is inadequate literature on surface modification as a process to enhance beneficial biofilm formation. These methods need to be safe, economically viable, scalable and environmental friendly and their potential to fulfil these criteria for many applications has yet to be determined.

  17. Application of plasma technology for the modification of polymer and textile materials

    OpenAIRE

    Radetić Maja M.; Petrović Zoran Lj.

    2004-01-01

    Plasma treatment is based on the physico-chemical changes of the material surface and as an ecologically and economically acceptable process it can be an attractive alternative to conventional modifications. The possibilities of plasma technology application to the modification of polymer and textile materials are discussed. Different specific properties of the material can be achieved by plasma cleaning, etching, functionalization or polymerization. The final effects are strongly influenced ...

  18. Effect of surface modification of poly(lactic acid) by low-pressure ammonia plasma on adsorption of human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayuthaya Road, Bangkok 10400 (Thailand); Boonyawan, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayuthaya Road, Bangkok 10400 (Thailand); Chaiwong, C., E-mail: cchwng@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayuthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Highlights: • Poly(lactic acid) (PLA) films were treated by low-pressure ammonia plasma. • Human serum albumin (HSA) attachment on the treated PLA was reduced. • The treated PLA films were characterized. • Hydrophilicity enhancement due to polar groups introduced was the reason. • Reduced HSA adhesion could promote cell attachment on PLA for biomedicine. - Abstract: The final goal of the study was to promote understanding of mechanisms involved in cell attachment on biomedical polymer poly(lactic acid) (PLA). As the cell attachment on the material surface was preceded by blood protein adsorption which would critically affect subsequent cell adhesion, for the clinic application purpose, human serum albumin (HSA) was used in the investigation on its adsorption on PLA, which was however treated by low-pressure ammonia (NH{sub 3}) plasma. The NH{sub 3}-plasma-treated PLA was found to adsorb less HSA than the untreated PLA. The PLA was characterized using various techniques such as atomic force microscopy, contact angle and surface energy analysis and x-ray photoelectron spectroscopy. All of the characterization results indicated that due to NH{sub 3}-plasma-induced polar groups the PLA enhanced its hydrophilicity which in turn inhibited the HSA adsorption. The decreased HSA adsorption would consequently increase the cell attachment because of the cell adhesion barrier reduced.

  19. Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen plasma treated PDMS and oleic acid content.

    Science.gov (United States)

    Gezer, P Gizem; Brodsky, Serena; Hsiao, Austin; Liu, G Logan; Kokini, Jozef L

    2015-11-01

    Zein has been widely studied as a biopolymer due to its unique film-forming abilities. Surface properties are of high importance for certain applications which include microfluidics and tissue engineering, as they drastically affect the end result. It is important to develop techniques to modify zein surface properties without compromising bulk material properties. In this study, we developed a facile technique to change the water affinity of zein film surfaces, compatible with patterning techniques via soft lithography. This is achieved by a simple solvent casting technique onto a polydimethylsilohexane (PDMS) substrate that was exposed to oxygen plasma. Water contact angle measurements (WCA) were used to assess the hydrophillicity of zein surfaces and they reached as low as 20°. Atomic force microscopy, optical absorbance and light microscopy were used to study the characteristics of the film and its surface topography. Hydrophilic zein surfaces had higher roughness values compared to hydrophobic ones. Surface roughness, introduced by sandpaper and gratings does not have the same effect as surface chemistry. The amphiphilic nature of plasticizer oleic acid also contributed to the change in the water contact angle of the films. In conclusion, we demonstrated that zein film's surface properties can be controlled by its ability to self-assemble depending on the substrate that it is being cast on.

  20. Surface modification of substrates for bacteria and cell culture.

    Science.gov (United States)

    Baede, Tom; Sladek, Raymond; Stoffels, Eva

    2006-10-01

    The plasma needle is a medical device that consists of a tungsten wire placed in a tube through which helium flows. A RF voltage frequency of 13.05 MHz is applied to the wire to produce the plasma. The device has a non-thermal effect and is therefore suited for both organic and inorganic surfaces. It was designed to manipulate tissues, but can also be used to modify the bacterial adhesion properties of material surfaces. The surface modification has a number of applications, most notably cell culture and the preventive treatment of caries. The research consists of two sets of experiments. In the first experiments the effect of the plasma treatment on the wettability was studied by means of contact angle measurements. The wettability quantifies the hydrophilic behavior of a surface. Plasma treatment with the plasma needle significantly increased the wettability of the studied materials. The persistence of the wettability change was also examined. For some materials the effect was only temporary. Bacteria are very particular about the surfaces they adhere to and the wettability of the surface plays an important role in their preference. The next set of experiments dealt with the effect of plasma treatment on bacterial adhesion. This effect was measured by comparing the growth rates of E. coli and S. mutans bacteria that were cultured on both plasma and non-treated surfaces. The effect appears to be species specific.

  1. Surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum

    Science.gov (United States)

    Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun

    2017-08-01

    For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF4) mixtures are used as working gases with the concentration of CF4 ranging 0%-5%, and when CF4 is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.

  2. Surface chemical modification of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Helms, Brett Anthony; Milliron, Delia Jane; Rosen, Evelyn Louise; Buonsanti, Raffaella; Llordes, Anna

    2017-03-14

    Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.

  3. Surface modification of graphite-encapsulated iron nanoparticles by RF excited Ar/NH3 gas mixture plasma and their application to Escherichia coli capture

    Science.gov (United States)

    Viswan, Anchu; Chou, Han; Sugiura, Kuniaki; Nagatsu, Masaaki

    2016-09-01

    Graphite-encapsulated iron nanoparticles with an average diameter of 20 nm were synthesized using the DC arc discharge method. For biomedical application, the nanoparticles were functionalized with amino groups using an inductively coupled radio-frequency (RF) plasma. The Ar, NH3, and Ar/NH3 plasmas that were used for functionalization were diagnosed using optical emission spectroscopy, confirming the presence of the required elements. The best conditions for functionalization were optimized by changing various parameters. The pretreatment time with Ar plasma was varied from 0 to 12.5 min, the post-treatment time from 30 s to 3 min. The dependence of the RF power and the gas mixture ratio of Ar/NH3 on the amino group population was also analyzed. From Raman spectroscopy, x-ray photoelectron spectroscopy, and determination of absolute number of amino groups through chemical derivatization, it was found that 5 min of Ar pretreatment and 6%NH3/94%Ar plasma post-treatment for 3 min with an RF power of 80 W gives the best result of about 5  ×  104 amino groups per particle. The nanoparticles that were amino functionalized under optimized conditions and immobilized with an Escherichia coli (E.coli) antibody on their surface were incubated with E.coli bacteria to determine the efficiency of collection by direct culture assay.

  4. Ion-Induced Surface Modification of Magnetically Operated Contacts

    Directory of Open Access Journals (Sweden)

    Karen Arushanov

    2012-02-01

    Full Text Available A study has been made of permalloy (iron-nickel contacts of reed switches before and after ion-induced surface modification using atomic force and optical microscopy, Auger electron and X-ray photoelectron spectroscopy. It has been found that the formation of surface nitride layers enhances corrosion and erosion resistance of contacts. We proposed to produce such layers directly into sealed reed switches by means of pulsing glow-discharge nitrogen plasma.

  5. Direct fabrication of nanoscale bio-adhesive patterns by electron beam surface modification of plasma polymerized poly ethylene oxide-like coatings.

    Science.gov (United States)

    Brétagnol, Frédéric; Sirghi, Lucel; Mornet, Stéphane; Sasaki, Takao; Gilliland, Douglas; Colpo, Pascal; Rossi, Francois

    2008-03-26

    In this study we present a method to produce nanostructured surfaces containing bio-adhesive features inside a non bio-adhesive matrix. The strategy is based on the combination of low pressure plasma polymerization and electron beam lithography processes and allows the fabrication of the structured materials in just two steps without using any solvents. In a first step, a thin protein-and-cell-repelling coating (∼10 nm) is obtained by plasma polymerization of Di-glyme. Then, in a second step, the bio-adhesive properties of the layer are tuned by monitoring the concentration of ether bonds of the film by irradiating it locally by different irradiation doses with an electron beam. Time-of-flight secondary ion mass spectroscopy and atomic force microscopy analysis have been used to characterize the produced surfaces. Experiments with a model protein (bovine serum albumin) on the patterned surfaces show preferential adhesion to the irradiated regions, indicating the potential of this simple technique for the development of highly compacted sensitive bio-sensing devices.

  6. Surface modification by nitrogen plasma immersion ion implantation into new steel 460Li–21Cr in a capacitively coupled radio frequency discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, H., E-mail: hbhuyan@fis.puc.cl [Institute of Physics, Pontificia Universidad Católica de Chile, Santiago (Chile); Mändl, S. [Leibniz-Institut für Oberflächenmodifizierung, Leipzig (Germany); Bora, B.; Favre, M.; Wyndham, E.; Maze, J.R. [Institute of Physics, Pontificia Universidad Católica de Chile, Santiago (Chile); Walczak, M. [Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Santiago (Chile); Manova, D. [Leibniz-Institut für Oberflächenmodifizierung, Leipzig (Germany)

    2014-10-15

    Highlights: • Nitriding of a novel steel has been done in a RF plasma by PIII technique. • Improved hardness and wear behavior have been observed. • Hardness was improved by a factor 4 and the wear by 2 orders of magnitude. • Fast, anomalous diffusion, similar to nitrogen in expanded austenite is observed. - Abstract: A novel steel 460Li–21Cr belonging to a new generation of superferritic grade steel has been implanted with nitrogen in a low power 13.56 MHz radio frequency plasma by the plasma immersion ion implantation (PIII) technique in order to study its physical and chemical properties under different experimental conditions. We observed improved hardness and wear behavior of 460Li–21Cr steel with a layer thickness between 1.5 and 4.0 μm after 60 min implantation in the temperature range from 350 to 550 °C. The modified surface layer containing nitrogen does not show CrN in X-ray diffraction (XRD). Compared to untreated substrates, the hardness can be increased by a factor of 4, depending on the experimental conditions, and the wear behavior was also improved by two orders of magnitude. The results are very similar to those for austenitic stainless steel with a similar pronounced increase in wear resistance and plateau-like nitrogen depth profiles.

  7. Plasma-surface modification vs air oxidation on carbon obtained from peach stone: Textural and chemical changes and the efficiency as adsorbents

    Science.gov (United States)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.

    2016-10-01

    Carbons were prepared from peach stones (Prunus persica) using different carbonization temperatures (600, 800 and 1000 °C). A selected sample was modified by oxidation using conventional oxidation techniques (thermal treatment in air atmosphere) and with cold oxygen plasma oxidation, under different conditions. Samples were characterized using elemental analysis, FT-IR spectroscopy, nitrogen adsorption isotherms at -196 °C, SEM/EDX analysis, potentiometric titration and XPS analysis. Carbons with and without oxidation were employed in the adsorption of Pb2+ in aqueous solution. Results obtained indicated that the materials with high contents of acidic oxygen groups were more efficient in the removal of Pb2+, values as high as approx. 40 mg g-1 being obtained for the best performing carbon. Textural properties of the original, un-oxidized carbon were significantly altered only after oxidation under air atmosphere at 450 °C. On the other hand, the samples oxidized with plasma show little changes in the textural parameters and a slight increase in the specific surface was observed for the sample treated at high RF power (100 W). Additionally, a significant increment of the oxygen content was observed for the plasma oxidized samples, as measured by XPS.

  8. A Comparative Study of Hydrophilic Modification of Polypropylene Membranes by Remote and Direct Ar Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Suzhen; CHENG Cheng; LAN Yan; MENG Yuedong

    2009-01-01

    Surface modification of polypropylene membrane by argon (Ar) plasma-induced graft polymerization with hydrophilic monomer [acrylic acid (AA) in this work]was investigated.It was found that both the distance of the membrane from the Ar plasma center and the plasma power had a strong influence on the surface modification,hydrophilicity and graft yield (GY) of the treated membrane.Results suggest that remote plasma treatment with a proper sample position,plasma power and graft polymerization leads to a membrane surface with not only less damage,but also more permanent hydrophilicity,than direct plasma treatment does.By analyzing the morphology and the chemical composition of the membrane surface by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS),as well as Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) respectively,a possible mechanism was tentatively revealed.

  9. Surface Modification of Catalytic Materials

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev

    aggregation techniques. With the use of two different filter mechanisms, the Quadrupole and the Lateral Time Of Flight, the nanoparticles were mass selected. This was done to correlate nanoparticle size with reactivity. Selected key findings can be summarized as: 1) CO induced surface changes of Pt based...

  10. Surface Modification of Biomaterials in Hard Tissue Applications

    Institute of Scientific and Technical Information of China (English)

    LIU Xuan-yong; DING Chuan-xian; CHU Paul K

    2004-01-01

    Surface modification technologies are quite common in the biomedical field to improve the mechanical,chemical, physical and biological properties of implants such as artificial joint and cardiovascular devices. In this paper, recent progress in the investigation of the bioactivity and biocompatibility enhancement of implants using plasma spraying and plasmabased ion implantation (PIII) is described. Plasma sprayed hydroxyapatite (HA) coatings are commonly used as bioactive coatings but the relatively poor adhesion between the coatings and titanium is one of main disadvantages which have limited their biomedical applications. In our recent studies, novel bioactive coatings, such as wollastonite and dicalcium silicate, were deposited onto titanium to enhance the surfaces bioactivity and biocompatibility. Our results indicate that plasma sprayed wollastonite and dicalcium silicate coatings possess excellent bioactivity as well as relatively high bonding strength. Plasma immersion ion implantation was also employed to improve the anti-corrosion and biological properties of implants.

  11. Gaseous phase coal surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  12. IMMOBILISATION OF HUMIC SUBSTANCES USING PLASMA MODIFICATION

    Directory of Open Access Journals (Sweden)

    Pavlína Hájková

    2015-04-01

    Full Text Available This paper presents a study of the immobilization of humic substances (HSs on a polypropylene (PP nonwoven fabric. In order to attach the HSs, the PP nonwoven fabric was modified in a volume of nonthermal atmospheric pressure dielectric barrier discharge (DBD under defined conditions. An unmodified PP nonwoven fabric was used as a reference sample. The modified and unmodified samples were both dipped in an aqueous solution of potassium humate, and then the samples were washed in water and the amount of HSs attached to the PP fabric was monitored. An aqueous solution of cadmium salts was filtered through the treated fabric, the content of Cd2+ in the solution was monitored using ICP-OES analysis, and the Cd2+ sorbed on the fabric was proved by SEM/EDS analysis. The efficiency of the PP plasma modification was proved by XPS analysis, and the presence and the distribution of the HSs along the fibers was proved by SEM analysis.

  13. Selective Surface Modification on Lubricant Retention

    Science.gov (United States)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2016-11-01

    While surface patterns are effective in improving tribological properties, nevertheless they alter the surface wettability, which will in turn affect the surface-lubricant interactions. When there is a shortage of lubricant on a patterned surface, the lubricant stored inside the cavities will be extracted to compensate the surface lubricant dissipation. Additionally, the lubricant retention effect provided by the cavities is competing with the release of the lubricant. With weak surface-lubricant interaction, the retention is limited. Therefore, the lubrication will have a sudden failure, giving a dramatic transition to abrasive wear. To improve the performance of polar lubricants on hydrophobic polymer surfaces, both topographical and selective surface modifications were incorporated on injection molded polypropylene surfaces. Distinctive lubrication improvement was observed when the surface structure density for the lubricant storage was high, and the release of the lubricant was controlled by the interaction with the selectively modified surfaces.

  14. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  15. Surface Modification of Nanocellulose Substrates

    Science.gov (United States)

    Zoppe, Justin Orazio

    Cellulose fibers constitute an important renewable raw material that is utilized in many commercial applications in non-food, paper, textiles and composite materials. Chemical functionalization is an important approach for improving the properties of cellulose based materials. Different approaches are used to graft polymeric chains onto cellulose substrates, which can be classified by two principal routes, namely 'grafting onto' or 'grafting from' methods. Never-dried cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with various macromolecules. In addition, the use of cellulose nanocrystals to reinforce poly(epsilon-caprolactone) (PCL) nanofibers was studied. Chemical grafting with low molecular weight polycaprolactone diol onto cellulose nanocrystals was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Significant improvements in the mechanical properties of the nanofibers after reinforcement with unmodified cellulose nanocrystals were confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNCs showed ca. 1.5-fold increase in Young's modulus and ultimate strength compared to PCL webs. The CNCs were also grafted with poly(N-isopropylacrylamide) (poly(NiPAAm)) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SETLRP) under various conditions at room temperature. The grafting process depended on the initiator and/or monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. In addition, the colloidal stability and thermo

  16. Surface property modification of silicon

    Science.gov (United States)

    Danyluk, S.

    1984-01-01

    The main emphasis of this work has been to determine the wear rate of silicon in fluid environments and the parameters that influence wear. Three tests were carried out on single crystal Czochralski silicon wafers: circular and linear multiple-scratch tests in fluids by a pyramidal diamond simulated fixed-particle abrasion; microhardness and three-point bend tests were used to determine the hardness and fracture toughness of abraded silicon and the extent of damage induced by abrasion. The wear rate of (100) and (111) n and p-type single crystal Cz silicon abraded by a pyramidal diamond in ethanol, methanol, acetone and de-ionized water was determined by measuring the cross-sectional areas of grooves of the circular and linear multiple-scratch tests. The wear rate depends on the loads on the diamond and is highest for ethanol and lowest for de-ionized water. The surface morphology of the grooves showed lateral and median cracks as well as a plastically deformed region. The hardness and fracture toughness are critical parameters that influence the wear rate. Microhardness tests were conducted to determine the hardness as influenced by fluids. Median cracks and the damage zone surrounding the indentations were also related to the fluid properties.

  17. Influence the loading effect on modification of PET film and fiber by Argon Plasma

    Science.gov (United States)

    Vasilkin, D. P.; Shikova, T. G.; Titov, V. A.; Smirnov, S. A.; Kuzmicheva, L. A.

    2017-01-01

    Poly(ethylene terepthalate) films and fabrics were modified by low-pressure argon plasma at different area of samples been treated. Contact angles for water and glycerol were measured and surface energy was calculated for film surface characterization. Height of water capillary rise was measured for fabric. The changes in chemical structure of surface layer were analyzed by ATR-FTIR method. Influence of sample area on non-homogeneity of plasma modification was shown. Some experiments were performed with polypropylene treatment in flowing plasma afterglow to confirm the reactions of oxygen active species originated from gas products of poly(ethylene terepthalate) etching in argon plasma.

  18. Mechanism of Surface Modification for Sericite

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface modification of sericite by wet method was conducted with the addition of 1.0% (w/w) silane. The resulting wetting contact angle and activity ratio of sericite were 130° and 98% respectively.Good pre-evaluation indexes of oil value (40.8%) and dispersivity (14.0 mL) were obtained. When 30% of sericite was filled into acrylonitrile butadiene styrene(ABS) plastic, the bending strength and tensile strength of the composite material were reduced by 7% and 14.3% in comparison to those of pure ABS plastic, while the rigidity was increased by 3 times, and the impact strength and breaking elongation were reduced significantly.The mechanism of surface modification was investigated and the configuration of silane coupling agent on the surface of sericite was given. Infrared (IR) spectroscopic analysis indicates that the adsorption of silane on the surface of sericite belongs to chemical adsorption.

  19. Carbon Surface Modification for Enhanced Corrosion Resistance

    Science.gov (United States)

    2008-01-01

    2 R. Rayne,1 and R.A. Bayles1 1Chemistry Division 2SAIC Introduction: Case hardening by carburization has long been recognized to produce wear... carburization technique has been developed for intro- ducing carbon into stainless steel surfaces without formation of carbides.1,2 This surface modification...Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal, and A.H. Heuer, “Carbon Supersaturation due to Paraequilibrium Carburization : Stainless

  20. Inorganic Surface Modification of Nonwoven Polymeric Substrates

    Science.gov (United States)

    Halbur, Jonathan Chandler

    In this study, atomic layer deposition (ALD), a vapor phase inorganic thin film deposition technique, is used to modify the surface of a range of industrially relevant polymers to enhance surface properties or impart additional functionalities. Several unique demonstrations of polymer surface modification are presented including uniform nanomaterial photodeposition to the surface of nonowoven fabrics and the first application of photocatalytic thin film coated nonwovens for advanced filtration of heavy metals from solution. Recent advances in polymer synthesis and processing technologies have resulted in the production of novel polymer systems with unique chemistries and sub-micron scale dimensions. As a result, advanced fiber systems have received much attention for potential use in a wide range of industrially and medically important applications such as advanced and selective filtration, catalysis, flexible electronics, and tissue engineering. However, tailoring the surface properties of the polymer is still needed in order to realize the full range of advanced applications, which can be difficult given the high complexity and non-uniformity of nonwoven polymeric structures. Uniform and controllable inorganic surface modification of nonwovens allows the introduction or modification of many crucial polymer properties with a wide range of application methods.

  1. Surface Modification of Polymer Substrates for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oldřich Neděla

    2017-09-01

    Full Text Available While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces—mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  2. Study on Surface Modification of PET Film by Low Temperature Oxygen Plasma Treatment%低温氧等离子体对PET薄膜的表面改性研究

    Institute of Scientific and Technical Information of China (English)

    解林坤; 杜官本; 代沁伶; 柴希娟; 刘刚连

    2011-01-01

    采用氧气低温等离子体,在工作压力为20Pa,功率为60W的条件下对聚对苯二甲酸乙二醇酯(PET)薄膜进行了表面改性,借助接触角、X射线光电子能谱仪、扫描探针显微镜、差示扫描量热仪对薄膜改性前后的性能进行了分析和表征.结果表明,处理后的薄膜表面引入了C-N、N-C =O、C=O等新的极性官能团,接触角显著减小;薄膜表面出现了圆锥状或圆球状的突起,粗糙度增加;薄膜的热性能(主要是结晶度)发生了改变.%The surface of PET film was modified using low temperature O2 plasma under the condition of working pressure of 20 Pa and treatment power of 60 W. The changes of the properties of the film before and after modification were analyzed with water contact angle measurement, XPS, atomic force microscopy (AFM) , DSC. The results showed that the contact angles decreased obviously after modification and the surface of PET film formed some polar groups such as C-N, N-C =O, C =O, etc. Moreover, the surface roughness was improved and appeared conical or globular protuberances; the thermal behaviors ( mainly crys-tallinity) were changed after treatment by low temperature O2 plasma.

  3. A comparative study of biomolecule and polymer surface modifications by a surface microdischarge

    Science.gov (United States)

    Bartis, Elliot A. J.; Luan, Pingshan; Knoll, Andrew J.; Graves, David B.; Seog, Joonil; Oehrlein, Gottlieb S.

    2016-02-01

    Cold atmospheric plasma (CAP) sources are attractive sources of reactive species with promising industrial and biomedical applications, but an understanding of underlying surface mechanisms is lacking. A kHz-powered surface microdischarge (SMD) operating with N2/O2 mixtures was used to study the biological deactivation of two immune-stimulating biomolecules: lipopolysaccharide (LPS) and peptidoglycan (PGN), found in bacteria such as Escherichia coli and Staphylococcus aureus, respectively. Model polymers were also studied to isolate specific functional groups. Changes in the surface chemistry were measured to understand which plasma-generated species and surface modifications are important for biological deactivation. The overall goal of this work is to determine which effects of CAP treatment are generic and which bonds are susceptible to attack. CAP treatment deactivated biomolecules, oxidized surfaces, and introduced surface bound NO3. These effects can be controlled by the N2 fraction in O2 and applied voltage and vary among different target surfaces. The SMD was compared with an Ar/O2/N2-fed kHz-powered atmospheric pressure plasma jet and showed much higher surface modifications and surface chemistry tunability compared to the jet. Possible mechanisms are discussed and findings are compared with recent computational investigations. Our results demonstrate the importance of long-lived plasma-generated species and advance an atomistic understanding of CAP-surface interactions.

  4. Graphite Surface Modification by Heterogeneous Nucleation Process

    Institute of Scientific and Technical Information of China (English)

    CAO Ran; LI Hongxia

    2006-01-01

    Flaky graphite particles were coated by ZrOCl2·8H2O as precursors by heterogeneous nucleation process.The effects of factors such as pH values (2.4-5.1),concentration of the precursor solution (0.005-0.1 mol·L-1 ) , mixing method of graphite and precursor solution on the surface modification of graphite were studied. Result shows that: 1) the preferable technical process for heterogeneous nucleation modified graphite is to mix the graphite suspension and precursor solution with concentration 0. 025 mol·L -1 and then drip ammonia water to adjust the pH value to 3.6; 2)By surface modification, the ZrO2 particles are evenly coated on graphite surface and therefore improve oxidation resistance and dispersion ability of graphite.

  5. Surface modification of poly(dimethylsiloxane) for microfluidic assay applications

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, Christine; McLachlan, Jessica M.; Norton, Peter R. [Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7 (Canada); Lagugne-Labarthet, Francois, E-mail: flagugne@uwo.ca [Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7 (Canada)

    2010-02-01

    The surface of a poly(dimethylsiloxane) (PDMS) film was imparted with patterned functionalities at the micron-scale level. Arrays of circles with diameters of 180 and 230 {mu}m were functionalized using plasma oxidation coupled with aluminum deposition, followed by silanization with solutions of 3-aminopropyltrimethoxy silane (3-APTMS) and 3-mercaptopropyltrimethoxy silane (3-MPTMS), to obtain patterned amine and thiol functionalities, respectively. The modification of the samples was confirmed using X-ray photoelectron spectroscopy (XPS), gold nanoparticle adhesion coupled with optical microscopy, as well as by derivatization with fluorescent dyes. To further exploit the novel surface chemistry of the modified PDMS, samples with surface amine functionalities were used to develop a protein assay as well as an array capable of cellular capture and patterning. The modified substrate was shown to successfully selectively immobilize fluorescently labeled immunoglobulin G (IgG) by tethering Protein A to the surface, and, for the cellular arrays, C2C12 rat endothelial cells were captured. Finally, this novel method of patterning chemical functionalities onto PDMS has been incorporated into microfluidic channels. Finally, we demonstrate the in situ chemical modification of the protected PDMS oxidized surface within a microfluidic device. This emphasizes the potential of our method for applications involving micron-scale assays since the aluminum protective layer permits to functionalize the oxidized PDMS surface several weeks after plasma treatment simply after etching away the metallic thin film.

  6. Surface modification: advantages, techniques, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    2000-03-01

    Adequate performance of materials at elevated temperatures is a potential problem in many systems within the chemical, petroleum, process, and power-generating industries. Degradation of materials occurs because of interaction between the structural material and the exposure environment. These interactions are generally undesired chemical reactions that can lead to accelerated wastage and alter the functional requirements and/or structural integrity of the materials. Therefore, material selection for high-temperature applications must be based not only on a material strength properties but also on resistance to the complex environments prevalent in the anticipated exposure environment. As plants become larger, the satisfactory performance and reliability of components play a greater role in plant availability and economics. However, system designers are becoming increasingly concerned with finding the least expensive material that will satisfactorily perform the design function for the desired service life. This present paper addresses the benefits of surface modification and identified several criteria for selection and application of modified surfaces in the power sector. A brief review is presented on potential methods for modification of surfaces, with the emphasis on coatings. In the final section of the paper, several examples address the requirements of different energy systems and surface modification avenues that have been applied to resolve the issues.

  7. Modification of Plasma Solitons by Resonant Particles

    DEFF Research Database (Denmark)

    Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul;

    1979-01-01

    Experimental and numerical results are compared with new theoretical results describing soliton propagation and deformation in a strongly magnetized, plasma-loaded waveguide.......Experimental and numerical results are compared with new theoretical results describing soliton propagation and deformation in a strongly magnetized, plasma-loaded waveguide....

  8. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    Science.gov (United States)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-02-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle ( θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low- k to high- k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  9. Surface Modification of Textured Dielectrics and Their Wetting Behavior

    Science.gov (United States)

    Kumar, Vijay; Dhillon, Ajaypal Singh; Sharma, Niti Nipun

    2017-01-01

    Controlling the wettability on dielectric materials is a classical topic in surface engineering. Surface texturing and deposition of self-assembled monolayers (SAMs) are major approaches to achieve lower or higher water contact angle (θ c) and thereby making surface less or more wettable (more hydrophobic). Dielectric surfaces wetting has been engineered by surface modification and has been shown to achieve θ c to a maximum of 120° ± 5°. Further improvement in θ c to an extent greater than 150° ± 5° is desired to render the surface superhydrophobic. We report in this work an achievement of θ c > 150° ± 5° by combining the plasma-treated surface and octadecyltrichlorosilane (OTS) SAMs deposition on dielectrics, and this had been shown on dielectric ranging from low-k to high-k values. The improvement in wetting behavior and quality of dielectric surface with monolayer on plasma-treated surfaces are (is) investigated and characterized using atomic-force microscope (AFM), scanning electron microscope (SEM), contact angle goniometer, and Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) and are compared with untreated dielectric surface with OTS monolayers.

  10. Surface modification of closed plastic bags for adherent cell cultivation

    Science.gov (United States)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  11. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  12. Application of plasma technology for the modification of polymer and textile materials

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Plasma treatment is based on the physico-chemical changes of the material surface and as an ecologically and economically acceptable process it can be an attractive alternative to conventional modifications. The possibilities of plasma technology application to the modification of polymer and textile materials are discussed. Different specific properties of the material can be achieved by plasma cleaning, etching, functionalization or polymerization. The final effects are strongly influenced by the treatment parameters (treatment time, pressure, power, gas flow, the applied gas and nature of the material. The plasma treatment of polymers is predominantly focused on cleaning and activation of the surfaces to increase adhesion, binding, wettability, dye ability and printability. Current studies deal more with plasma polymerization where an ultra thin film of plasma polymer is deposited on the material surface and, depending on the applied monomer, different specific properties can be obtained (i.e. chemical and thermal resistance, abrasion resistance, antireflexion, water repellence, etc.. Plasma application to textiles is mostly oriented toward wool and synthetic fibres, though some studies also consider cotton, hemp, flax and silk. The main goal of plasma treatment is to impart a more hydrophilic fibre surface and accordingly increase wettability, dye ability, printability and particularly, shrink resistance in the case of wool. Recent studies have favored technical textiles, where plasma polymerization can offer a wide range of opportunities.

  13. Surface modification of barite nanoparticles using stearate

    Institute of Scientific and Technical Information of China (English)

    LI Lin-lin; HANG Jian-zhong; SHI Li-yi

    2009-01-01

    In this study,the barite nanoparticles were successfully modified with stearate and the influence of stearate addition on the performance of barite nanoparticles was systematically investigated.The products were characterized by activating factor analysis,contact angle test,surface energy calculation,sedimentation rate calculation,rheological measurement,and FT-IR analysis,etc.As the quantity of added stearate increased,both the activating factor and contact angle of barite nanoparticles increased first then decreased.When the stearate content was 5% of the mass of barite nanoparticles,the activating factor and water contact angle of modified particles reached maximum value,97% and 126~ respectively.At this time,the sedimentation rate reached minimum,and so did the surface energy.The rheological test reveals that the viscosity of modified barite nanoparticles/ petronol system decreases greatly,indicating the surface performance of barite nanoparticles has changed from hydrophilicity to lipophilicity after modification.C=O and COO stretching vibration peaks were found in the FT-IR spectra,which proves that the stearate has combined onto the surface of barite nanoparticles.Finally,according to the zeta potential result of unmodified barite,the possible modification mechanism was provided.

  14. Electric Field Induced Surface Modification of Au

    Energy Technology Data Exchange (ETDEWEB)

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  15. Surface modification of ultra-high molecular weight polyethylene for joint prosthesis and sports applications

    Institute of Scientific and Technical Information of China (English)

    H.Dong

    2004-01-01

    The recent progresses in the surfaee modification of ultra high molecular weight polyethylene (UHMWPE) using such advanced surface modification technologies as conventional ion implantation (CⅡ), new plasma immersion ion implantation (PⅢ) and novel active screen plasma (ASP), were all reported. Significantly improved wear resistance was achieved, which has great potential for extending the life-span of joint replacement prostheses and enhancing the performance of such sports equipment as skis and snowboards.

  16. Role of water in polymer surface modification using organosilanes

    Science.gov (United States)

    Thallapalle, Pradeep Kumar; Zhang Newby, Bi-Min

    2002-03-01

    In general, polymers exhibit excellent bulk properties but may not possess specific surface properties for successful applications in biomaterials and nanotechnology. Surface modification of polymers with the self-assembled monolayers (SAMs) of organosilanes - ‘Silanization’ - is an attractive approach to alter surface properties without altering the polymer’s desired bulk properties. However, a pretreatment such as exposure to UV/O or plasma is normally required to generate active surface groups prior to silanization. These pretreatments cause undesirable surface changes such as severe surface roughening and excessive surface damage. Recent studies in silanization suggest that the presence of water or OH groups on the surface is essential to form SAMs. In this study we investigated the importance of surface water layer and OH groups in the formation of SAMs for a variety of polymers. The pre and post-modified polymers were examined using fourier transform infrared spectrometry, scanning probe microscopy and contact angle measurements. The results show that organosilanes can be grafted to a polymer surface as long as a water layer can be physisorbed to the surface or the polymer itself contains OH groups. However the monolayers formed are less organized compared to those formed on silicon wafers due to the amorphous nature of the polymers.

  17. Modification of Plasma Solitons by Resonant Particles

    DEFF Research Database (Denmark)

    Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul;

    1980-01-01

    A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... Korteweg–de Vries equation. Laboratory measurements carried out in a strongly magnetized, plasma‐filled waveguide and results from particle simulation are interpreted in terms of the analytical results....

  18. Surface Modification of Aerospace Flywheel-Bearings by Nitrogen Plasma Immersion Ion Implantation%空间飞轮轴承等离子体浸没离子注入氮层性能研究

    Institute of Scientific and Technical Information of China (English)

    李兆光; 张人佶; 杨宇; 王浪平

    2011-01-01

    研究了氮等离子体浸没离子注入(PⅢ)技术处理后空间飞轮轴承内圈的摩擦学性能.通过原子力显微镜分析改性前后试样表面形貌,利用X射线电子能谱分析试样表面成分及结构,通过显微硬度计测量改性前后及不同注入时间下试样表面硬度,考察改性前后试样摩擦系数变化情况.结果表明,空间飞轮轴承内圈进行表面注氮后,表面形成Cr-N化合物,形成第二相及固溶强化使得试样表面硬度显著增加,摩擦系数明显减小,耐磨性增加,轴承组件工作电流明显减小.%The surfaces of the bearings, used in aerospace flywheels, were modified by nitrogen plasma immersion ion implantation (PⅢ),to improve its mechanical properties, such as wear resistance, surface hardness, and friction coefficients. The impacts of the coating conditions on the microstructures and mechanical properties was characterized with Xray photoelectron spectroscopy, atomic force microscopy and conventional probes. The results show that the surface modification of the bearings by PⅢ significantly improves its mechanical properties. For instance, formation of the Cr-N compound,the second phase and solid phase,considerably increased its surface micro-hardness and wear-resistance, and reduced both its surface friotion coefficients and the rotating current of the bearing

  19. Surface Modification of Elastomeric Stamps for Microcontact Printing of Polar Inks

    NARCIS (Netherlands)

    Sadhu, Veera Bhadraiah; Perl, András; Peter, Mária; Rozkiewicz, Dorota I.; Engbers, Gerard; Ravoo, Bart Jan; Reinhoudt, David N.; Huskens, Jurriaan

    2007-01-01

    Chemical modification of the surface of a stamp used for microcontact printing (uCP) is interesting for controling the surface properties, such as the hydrophilicity. To print polar inks, plasma polymerization of allylamine (PPAA) was employed to render the surface of poly(dimethylsiloxane) (PDMS),

  20. Plasma Surface Modification of Polyhedral Oligomeric Silsequioxane-Poly(carbonate-urea) Urethane with Allylamine Enhances the Response and Osteogenic Differentiation of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Chaves, Camilo; Alshomer, Feras; Palgrave, Robert G; Kalaskar, Deepak M

    2016-07-27

    This study present amino functionalization of biocompatible polymer polyhedral oligomeric silsequioxane-poly(carbonate-urea) urethane (POSS-PCU) using plasma polymerization process to induce osteogenic differentiation of adipose derived stem cells (ADSCs). Optimization of plasma polymerization process was carried out keeping cell culture application in mind. Thus, samples were rigorously tested for retention of amino groups under both dry and wet conditions. Physio-chemical characterization was carried out using ninhydrin test, X-ray photon spectroscopy, scanning electron microscopy, and static water contact analysis. Results from physio chemical characterization shows that functionalization of the amino group is not stable under wet conditions and optimization of plasma process is required for stable bonding of amino groups to the POSS-PCU polymer. Optimized samples were later tested in vitro in short and long-term culture to study differentiation of ADSCs on amino modified samples. Short-term cell culture shows that initial cell attachment was significantly (p < 0.001) improved on amine modified samples (NH2-POSS-PCU) compared to unmodified POSS-PCU. NH2-POSS-PCU samples also facilitates osteogenic differentiation of ADSCs as confirmed by immunological staining of cells for extracellular markers such as collagen Type I and osteopontin. Quantification of total collagen and ALP activity also shows significant (p < 0.001) increase on NH2-POSS-PCU samples compared to unmodified POSS-PCU. A pilot study also confirms that these optimized amino modified POSS-PCU samples can further be functionalized using bone inducing peptide such as KRSR using conventional wet chemistry. This further provides an opportunity for biofunctionalization of the polymer for various tissue specific applications.

  1. Site specific modification of the human plasma proteome by methylglyoxal.

    Science.gov (United States)

    Kimzey, Michael J; Kinsky, Owen R; Yassine, Hussein N; Tsaprailis, George; Stump, Craig S; Monks, Terrence J; Lau, Serrine S

    2015-12-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC-MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R+72) and hydroimidazolone (R+54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan-HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients.

  2. Site Specific Modification of the Human Plasma Proteome by Methylglyoxal

    Science.gov (United States)

    Kimzey, Michael J.; Kinsky, Owen R.; Yassine, Hussein N.; Tsaprailis, George; Stump, Craig; Monks, Terrence J.; Lau, Serrine S.

    2015-01-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC-MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R+72) and hydroimidazolone (R+54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan-HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. PMID:26435215

  3. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

    National Research Council Canada - National Science Library

    Biazar, Esmaeil; Heidari, Majid; Asefnejad, Azadeh; Asefnezhad, Azadeh; Montazeri, Naser

    2011-01-01

    .... The conventional method for surface modification of polystyrene is treatment with plasma. In this study, conventional polystyrene was exposed to microwave plasma treatment with oxygen and argon gases for 30, 60, and 180 seconds...

  4. Corona plasma modification of polyamide 66 for the design of textile delivery systems for cosmetic therapy

    Science.gov (United States)

    Labay, C.; Canal, J. M.; Navarro, A.; Canal, C.

    2014-10-01

    Cosmetic and medical applications of technical textiles are a research expanding field. One of the added values of these new materials would be that they are suitable to contain and release active ingredients in a controlled manner. The influence of the initial state of the surface of polyamide 6.6 (PA66) fibers on the wetting properties of the fibers as well as on the incorporation of caffeine on the fibers and on its release kinetics from the fibers has been investigated. Comparison between industrially-finished PA66 fabrics and laboratory washed fabrics has been done to carry out this study. Furthermore, surface modification of the PA66 fibers by low temperature plasma has been studied regarding the modification of the physical, chemical and topographical properties of the textile fibers. Corona plasma treatment has been investigated to achieve surface modification in the first nanometers of polymer fibers surface in order to modulate the incorporation and the release of caffeine. It has been demonstrated that both initial state of the PA66 surface and prior plasma treatment of the PA66 fibers before the active principle incorporation condition caffeine release kinetics from the textile fibers. The final release percentage increases linearly with the C-O and Cdbnd O functional groups incorporated by plasma on the surface. It has also been established that the release amounts of caffeine achieved after 8 h from the PA66 fabric are in the same order of magnitude than topical doses of commercial gel-based formulations.

  5. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization.

    Science.gov (United States)

    Abednejad, Atiye Sadat; Amoabediny, Ghasem; Ghaee, Azadeh

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H2 and O2 plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37°C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant.

  6. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Abednejad, Atiye Sadat, E-mail: atiyeabednejad@gmail.com [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Amoabediny, Ghasem [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 63894-14179, Tehran (Iran, Islamic Republic of); Ghaee, Azadeh [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H{sub 2} and O{sub 2} plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37 °C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant. - Highlights: • H{sub 2} and O{sub 2} plasma graft polymerization of PEG on polypropylene membrane was carried out. • Changes in surface properties were investigated by FTIR, XPS, SEM, and AFM. • Surface wettability enhanced as a result of poly ethylene glycol grafting. • PEG grafting degree increase causes reduction of fouling and adhesion.

  7. Femtosecond laser-induced surface wettability modification of polystyrene surface

    Science.gov (United States)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  8. Surface modification of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer and its plasma protein adsorption by QCM-D

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [Northeast Normal University, School of Physics, Changchun 130022 (China); Jin, Jing, E-mail: jjin@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Sun, Yingchun, E-mail: sunyc149@nenu.edu.cn [Northeast Normal University, School of Physics, Changchun 130022 (China)

    2014-05-01

    Graphical abstract: - Highlights: • Grafting concentration of PEG was defined by the peak-area ratio of [C–O]/[C]. • Quantitatively investigated the adsorption processes of BSA and fibrinogen using QCM-D. • The inactivated BSA on SEBS surface could induce the subsequent fibrinogen adsorption. • SEBS-g-PEG with graft concentration of 0.207 has excellent protein resistance. - Abstract: Protein adsorption is a dynamic process and plays a major role in determining the hemocompatibility of biomaterials. We have obtained different poly (ethylene glycol) (PEG) graft concentrations of SEBS-g-PEG and the surface chemical compositions are confirmed by X-ray photoelectron spectroscopy (XPS). Graft concentration is defined by peak-area ratio of [C-O]/[C] on modified SEBS surface. With increasing graft concentration, water contact angles of the modified SEBS have significantly decreased. The platelet adhesion and static protein adsorption demonstrate that the hemocompatibility of copolymers films are improved effectively and SEBS-g-PEG-2 with larger graft concentration has more superior anticoagulation than that of SEBS-g-PEG-1. Moreover, we have quantitatively investigated the adsorption process of bovine serum albumin (BSA) and fibrinogen (Fib) on the surfaces of pristine SEBS and modified SEBS using quartz crystal microbalance with dissipation (QCM-D) in real time. The results indicate that the inactivated BSA on the pristine SEBS can continuously induce the subsequent Fib adsorption. The hemocompatibility of SEBS-g-PEG-2 with the graft concentration of 0.207 has excellent anti-protein property and the bio-inert BSA layer on the film can resist the subsequent Fib adsorption.

  9. Green aqueous surface modification of polypropylene for novel polymer nanocomposites.

    Science.gov (United States)

    Thakur, Vijay Kumar; Vennerberg, Danny; Kessler, Michael R

    2014-06-25

    Polypropylene is one of the most widely used commercial commodity polymers; among many other applications, it is used for electronic and structural applications. Despite its commercial importance, the hydrophobic nature of polypropylene limits its successful application in some fields, in particular for the preparation of polymer nanocomposites. Here, a facile, plasma-assisted, biomimetic, environmentally friendly method was developed to enhance the interfacial interactions in polymer nanocomposites by modifying the surface of polypropylene. Plasma treated polypropylene was surface-modified with polydopamine (PDA) in an aqueous medium without employing other chemicals. The surface modification strategy used here was based on the easy self-polymerization and strong adhesion characteristics of dopamine (DA) under ambient laboratory conditions. The changes in surface characteristics of polypropylene were investigated using FTIR, TGA, and Raman spectroscopy. Subsequently, the surface modified polypropylene was used as the matrix to prepare SiO2-reinforced polymer nanocomposites. These nanocomposites demonstrated superior properties compared to nanocomposites prepared using pristine polypropylene. This simple, environmentally friendly, green method of modifying polypropylene indicated that polydopamine-functionalized polypropylene is a promising material for various high-performance applications.

  10. Atmospheric Microplasma Application for Surface Modification of Biomaterials

    Science.gov (United States)

    Shimizu, Kazuo; Fukunaga, Hodaka; Tatematsu, Shigeki; Blajan, Marius

    2012-11-01

    Atmospheric microplasma has been intensively studied for applications in various fields, since in this technology the generated field is only 1 kV (approx) under atmospheric pressure and a dielectric barrier discharge gap of 10 to 100 µm. A low discharge voltage atmospheric plasma process is an economical and effective solution for various applications such as indoor air control including sterilization, odor removal, and surface treatment, and would be suitable for medical applications in the field of plasma life sciences. In this paper, we present the application of microplasma for the surface treatment of materials used in medical fields. Moreover, a biomaterial composed of L-lactic acid is used in experiments, which can be biodecomposed in the human body after medical operations. The surface modification process was carried out with active species generated between the microplasma electrodes, which were observed by emission spectrometry. Microplasma treatment of a polymer sheet using Ar as the process gas decreased the contact angle of a water droplet at the surface of the polymer from 78.3 to 45.6° in 10 s, indicating improved surface adhesive characteristics.

  11. Surface modification of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer and its plasma protein adsorption by QCM-D

    Science.gov (United States)

    Li, Rui; Jin, Jing; Sun, Yingchun

    2014-05-01

    Protein adsorption is a dynamic process and plays a major role in determining the hemocompatibility of biomaterials. We have obtained different poly (ethylene glycol) (PEG) graft concentrations of SEBS-g-PEG and the surface chemical compositions are confirmed by X-ray photoelectron spectroscopy (XPS). Graft concentration is defined by peak-area ratio of [C--O]/[C] on modified SEBS surface. With increasing graft concentration, water contact angles of the modified SEBS have significantly decreased. The platelet adhesion and static protein adsorption demonstrate that the hemocompatibility of copolymers films are improved effectively and SEBS-g-PEG-2 with larger graft concentration has more superior anticoagulation than that of SEBS-g-PEG-1. Moreover, we have quantitatively investigated the adsorption process of bovine serum albumin (BSA) and fibrinogen (Fib) on the surfaces of pristine SEBS and modified SEBS using quartz crystal microbalance with dissipation (QCM-D) in real time. The results indicate that the inactivated BSA on the pristine SEBS can continuously induce the subsequent Fib adsorption. The hemocompatibility of SEBS-g-PEG-2 with the graft concentration of 0.207 has excellent anti-protein property and the bio-inert BSA layer on the film can resist the subsequent Fib adsorption.

  12. Highly permselective membrane surface modification by cold plasma-induced grafting polymerization of molecularly imprinted polymer for recognition of pyrethroid insecticides in fish.

    Science.gov (United States)

    Zhang, Rongrong; Guo, Xiaoqing; Shi, Xizhi; Sun, Aili; Wang, Lin; Xiao, Tingting; Tang, Zigang; Pan, Daodong; Li, Dexiang; Chen, Jiong

    2014-12-02

    Specific molecularly imprinted membranes (MIMs) for pyrethroid insecticides were developed and characterized for the first time in this study by cold plasma-induced grafting polymerization using methacrylic acid as a functional monomer and cypermethrin (CYP) as a template. The nonimprinted membranes (NIMs) were also synthesized using the same procedure without the template. Meanwhile, AFM, XPS, ATR-FTIR, contact angle, and permselectivity experiments were conducted to elucidate the imprinting and recognition properties of MIMs. Results demonstrated that MIMs exhibited excellent imprinting effect and high permselectivity. A molecularly imprinted-membrane-assisted solvent extraction (MI-MASE) method based on the MIMs was established. The operating conditions were optimized for group-selective extraction of the five pyrethroid insecticides. Compared with NIMs, higher extraction recoveries (83.8% to 100.6%) of the five pyrethroid insecticides by gas chromatography-electron capture detector (GC-ECD) were obtained using MIMs at three spiked levels in fish samples; the RSD values were lower than 8.3%. The limits of detection (LOD) and quantification (LOQ) defined as the concentrations at which the signal-to-noise (S/N) ratio is 3:1 and 10:1, respectively, were in the range of 0.26 to 0.42 μg/kg and 0.77 to 1.27 μg/kg, respectively. No matrix effect of the developed MI-MASE was observed by gas chromatography/tandem mass spectrometry (GC/MS/MS). These results demonstrated a highly selective, efficient, and environment-friendly MI-MASE technique for preconcentration and purification of pyrethroid insecticides from seafood, followed by GC-ECD and GC/MS/MS. The excellent applicability and potential of MI-MASE for routine monitoring of pyrethroid pesticides in food samples has also been confirmed.

  13. Plasma diagnostics and plasma-surface interactions in inductively coupled plasmas

    Science.gov (United States)

    Titus, Monica Joy

    square root of the plasma density at the plasma-sheath interface, one-fourth root of the electron temperature, and one-fourth root of the RF bias voltage under conditions where the sheath is predominantly capacitive. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. Vacuum ultraviolet (VUV) emissions in Ar ICPs are characterized and the chemical and physical modifications to 193 nm photoresist (PR) polymer materials processed in Ar ICPs are investigated. Fourier transform infrared (FTIR) transmission measurements as a function of VUV photon fluence demonstrate that VUV-induced bond breaking occurs over a period of time. A numerical model demonstrates that VUV photons deplete near-surface O-containing bonds, leading to deeper, subsequent penetration and more bond losses, while the remaining near-surface C--C bonds absorb the incident radiation and slow VUV photon penetration. The roughening mechanism of blanket and patterned 193 nm PR samples are explored in a well characterized Ar ICP. FTIR and atomic force microscopy (AFM) analysis of plasma processed 193 nm PR suggests that ion-induced generation of a graphitized layer at high energies, combined with VUV bulk modification of 193 nm PR may initiate PR roughening. The roughness of blanket samples increases as a function of VUV fluence, ion energy, and substrate temperature. Line width roughness (LWR) measurements of patterned samples demonstrate a similar trend suggesting that LWR may correlate with surface roughness of patterns. The results are compared to PR studies previously conducted in an ultra-high vacuum beam system demonstrating that the vacuum beam system is a useful tool that can deconvolute and simplify complex plasma systems.

  14. Surface Emission of Quark Gluon Plasma at RHIC and LHC

    Institute of Scientific and Technical Information of China (English)

    XIANG Wen-Chang; WAN Ren-Zhuo; ZHOU Dai-Cui

    2008-01-01

    Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor RLHCAA~0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC.

  15. Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications

    Science.gov (United States)

    da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

    2011-11-01

    Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

  16. He和Ne均匀DBD聚对苯二甲酸乙二酯薄膜改性效果比较%Surface Modifications of Polyethylene Terephthalate Membrane by Homogeneous Dielectric Barrier Discharge Plasma in He and Ne

    Institute of Scientific and Technical Information of China (English)

    蔡玲玲; 方志; 刘源

    2012-01-01

    The surfaces of the polyethylene terephthalate ( PET) membrane were modified with the non-thermal plasma generated by homogeneous dielectric barrier discharge in helium and neon atmospheres, respectively. The impacts of the modification conditions, including the gas types, gas flow rate, and energy density, on the surface properties were evaluated . The surface properties of the PET membranes, before and after the modification, were characterized with attenuated total reflectance Fourier transform infrared spectroscopy, and contact angle measurement. The results show that instead of gas types,the energy density strongly affects the contact angle and the PET surface energy. As the energy density increased, the contact angle decreased and the surface energy increased to their saturated values, respectively. At a given energy density, Ne gas outpaces He gas in surface modification. We suggest that Ne gas may increase efficiency, and He gas reduce production cost.%相对于丝状放电模式,均匀介质阻挡放电(DBD)产生的等离子体功率密度适中,可以对材料表面进行更均匀的处理,在大规模工业应用上具有更为广阔的前景.本文用He和Ne均匀DBD产生的低温等离子体对聚对苯二甲酸乙二酯(PET)薄膜进行表面改性,通过接触角、表面能测量以及ATR-FTIR等手段研究了等离子体处理前后PET的表面特性,从能量密度角度比较了两种气体中均匀DBD处理后PET表面特性的变化规律,并对所得到结果进行分析.结果表明,两种气体均匀DBD改性后,PET薄膜表面水接触角随能量密度的增加而减小,表面能随能量密度的增加而增加,两者均在一定能量密度时达到饱和值;未达到饱和前,在相同能量密度下,Ne均匀DBD改性更迅速,但处理饱和后,两种均匀DBD的改性效果相差不大.因此,选择Ne作为工作气体可以提高生产效率,而选择He作为工作气体可以节约生产成本,两者均能得到良好的改性效果.

  17. Surface modification and deuterium retention in reduced-activation steels under low-energy deuterium plasma exposure. Part II: steels pre-damaged with 20 MeV W ions and high heat flux

    Science.gov (United States)

    Ogorodnikova, O. V.; Zhou, Z.; Sugiyama, K.; Balden, M.; Pintsuk, G.; Gasparyan, Yu.; Efimov, V.

    2017-03-01

    The reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthened (ODS) steels by the addition of Y2O3 particles investigated in Part I were pre-damaged either with 20 MeV W ions at room temperature at IPP (Garching) or with high heat flux at FZJ (Juelich) and subsequently exposed to low energy (~20-200 eV per D) deuterium (D) plasma up to a fluence of 2.9  ×  1025 D m-2 in the temperature range from 290 K to 700 K. The pre-irradiation with 20 MeV W ions at room temperature up to 1 displacement per atom (dpa) has no noticeable influence on the steel surface morphology before and after the D plasma exposure. The pre-irradiation with W ions leads to the same concentration of deuterium in all kinds of investigated steels, regardless of the presence of nanoparticles and Cr content. It was found that (i) both kinds of irradiation with W ions and high heat flux increase the D retention in steels compared to undamaged steels and (ii) the D retention in both pre-damaged and undamaged steels decreases with a formation of surface roughness under the irradiation of steels with deuterium ions with incident energy which exceeds the threshold of sputtering. The increase in the D retention in RAFM steels pre-damaged either with W ions (damage up to ~3 µm) or high heat flux (damage up to ~10 µm) diminishes with increasing the temperature. It is important to mention that the near surface modifications caused by either implantation of high energy ions or a high heat flux load, significantly affect the total D retention at low temperatures or low fluences but have a negligible impact on the total D retention at elevated temperatures and high fluences because, in these cases, the D retention is mainly determined by bulk diffusion.

  18. Impurity screening and edge-plasma modifications for plasma devices with liquid walls.

    Science.gov (United States)

    Rognlien, Thomas D.

    2001-10-01

    The edge-plasma region of magnetic fusion confinement devices plays various important roles, two of which are (1), shielding the core plasma from gas and impurities, and (2), influencing the core-boundary plasma temperature and density. The first role is crucial to the successful use of liquid walls, and the second role, if controllable, could enhance core energy confinement by reducing drives for core turbulence. In fusion reactors, liquid walls would allow higher wall power-loading, and sufficiently thick walls would greatly reduce neutron activation of support structures.(R.W. Moir, Nucl. Fusion 37), 557 (1997); M. Abdou, et al., Fusion Eng. Design 54, 181 (2001). In addition, liquid divertors could largely eliminate the surface erosion problem.(J.N. Brooks, et al.), J. Nucl. Mater. 290-293, 185 (2001.); R.F. Mattas, et al., Fusion Eng. Design 49-50, 127 (2000). In this talk, results of self-consistent, 2-D edge transport simulations are presented to quantify the allowable influx of liquid-wall vapor for various candidate liquids (Li, Flibe, SnLi, Sn) which, in turn, set the allowable surface operating temperatures that controls the vapor evaporation rates. The results are explained and summarized by a reduced model that includes the radiation characteristics of different impurity species, and the competition between anomalous radial transport and parallel flow along the B-field. The modification of the edge plasma properties by liquid walls is also presented, with an emphasis on the low-recycling regime thought possible by the use of lithium, which naturally leads to a high edge-temperature regime. The effect of long mean-free-path parallel transport in the high-temperature regime is described by the bounce-averaged, particle- and energy-loss model.

  19. Surface modification using ionic liquid ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Gikan H.; Hamaguchi, Takuya; Takeuchi, Mitsuaki; Ryuto, Hiromichi

    2014-12-15

    We developed an ionic liquid (IL) ion source using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}) and produced IL ion beams by applying a high electric field between the tip and the extractor. Time-of-flight measurements showed that small cluster and fragment ions were contained in the positive and negative ion beams. The positive and negative cluster ions were deposited on Si(1 0 0) substrates. X-ray photoelectron spectroscopy measurements showed that the composition of the deposited layers was similar to that of an IL solvent. This suggests that a cation (A{sup +}) or an anion (B{sup −}) was attached to an IL cluster (AB){sub n}, resulting in the formation of positive cluster ions (AB){sub n}A{sup +} or negative cluster ions (AB){sub n}B{sup −}, respectively. The surfaces of the IL layers deposited on Si(1 0 0) substrates were flat at an atomic level for positive and negative cluster ion irradiation. Moreover, the contact angles of the deposited layers were similar to that of the IL solvent. Thus, surface modification of Si(1 0 0) substrates was successfully demonstrated with BMIM-PF{sub 6} cluster ion beams.

  20. Surface modification of polytetrafluoroethylene film using single liquid electrode atmosphericpressure glow discharge

    Institute of Scientific and Technical Information of China (English)

    Zhou Lan; Lü Guo-Hua; Chen Wei; Pang Hua; Zhang Gu-Ling; Yang Si-Ze

    2011-01-01

    Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water contact angle of polytetrafluoroethylene film drops from 114° to 46° and the surface free energy increases from 22.0 mJ/m2 to 59.1 mJ/m2. The optical emission spectrum indicates that there are reactive species such as O2+, O and He in the plasma plume. After plasma treatment, a highly crosslinking structure is formed on the film surface and the oxygen element is incorporated into the film surface in the forms of -C-O-C-, -C=O, and -O-C=O groups. Over a period of 10 days, the contact angle of the treated film is recovered by only about 10°, which indicates that the plasma surface modification is stable with time.

  1. Modifications in SnS thin films by plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, H., E-mail: hm@fis.unam.mx [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210 Cuernavaca, Morelos (Mexico); Avellaneda, D. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-02-01

    The present study shows the modifications of structural, optical and electrical characteristics that occur in tin sulfide (SnS) thin films treated in air and in nitrogen plasma at different pressure conditions. The films were obtained by the chemical bath deposition method, which results in SnS thin films with an orthorhombic crystalline structure, band gap (E{sub g}) of 1.1-1.2 eV, and electrical conductivities ({sigma}) in the order of 10{sup -6} {Omega}{sup -1}cm{sup -1}. The films treated with air plasma at pressures between 1 and 4 Torr, showed the presence of SnS{sub 2}, Sn{sub 2}S{sub 3}, and SnO{sub 2} phases, within the band gap values ranging from 0.9 to 1.5 eV. On the other hand, the films treated with nitrogen plasma presented the same phases, but showed a significant modification in the electrical conductivity, increasing from 10{sup -6} {Omega}{sup -1}cm{sup -1} (as-deposited) up to 10{sup -2}-10{sup -3} {Omega}{sup -1}cm{sup -1} (plasma treated). This result is a suitable range of conductivity for the improvement of the solar cells with SnS as an absorber material. Also, emission spectroscopy measurements were carried out in both air and nitrogen plasma treatments.

  2. Surface modification of nano-apatite by grafting organic polymer

    NARCIS (Netherlands)

    Liu, Qing; Wijn, de Joost R.; Groot, de Klaas; Blitterswijk, van Clemens A.

    1998-01-01

    Since surface properties of hydroxyapatite (HA) play an important role in its performance, surface modification of HA has gained much attention from researchers. Silane coupling agents have been the focus of the research. In this study, an effective surface modification method was developed using he

  3. Surface modification of polyester biomaterials for tissue engineering.

    Science.gov (United States)

    Jiao, Yan-Peng; Cui, Fu-Zhai

    2007-12-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition.

  4. Resonance broadening modification of weak plasma turbulence theory

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, A. (Max-Planck-Inst. fuer Aeronomie, Katlenburg-Lindau (West Germany))

    1991-02-01

    The author examines the effects on energy spectra of weak Langmuir turbulence when he includes a nonlinear damping due to the perturbation of electron orbits. The physical mechanism under consideration is usually known as a resonance broadening effect. The calculations show that the inclusion of this additional damping reduces the number of cascades predicted from weak turbulence theory for waves detectable with the EISCAT UHF (933 MHz) radar in Tromso, Norway, during RF modification of the ionospheric plasma.

  5. Organic light emitting diode with surface modification layer

    Energy Technology Data Exchange (ETDEWEB)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  6. Gas Plasma Surface Chemistry for Biological Assays.

    Science.gov (United States)

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development.

  7. PET表面改性研究进展%Research progress in PET surface modification

    Institute of Scientific and Technical Information of China (English)

    王甜甜; 王晓春; 赵国樑

    2011-01-01

    The research progress in polyethylene terephthalate ( PET) surface modification was reviewed in China and abroad. The PET surface modification technologies included chemical grafting modification, ultraviolet irradiation grafting modification, high energy irradiation grafting modification, plasma grafting modification and ozone oxidizing modification. The surface modification could improve the hydrophilicity, antistatic behavior, adhesion and biocompatibility of PET. The application of modified PET was introduced in the related fields. It was pointed out that the key scientific and technical problems in PET surface modification should be solved.%综述了国内外聚对苯二甲酸乙二醇酯(PET)的表面改性研究进展.PET表面改性方法主要有:化学接枝改性、紫外光辐照接枝改性、高能射线辐照接枝改性、等离子体处理接枝改性以及臭氧氧化改性等;通过PET表面改性,可以改善PET的亲水性、抗静电性、粘附性和生物相容性等性能;介绍了改性PET在相关领域中的应用;指出PET的表面改性技术尚有许多关键科学问题和技术难题需解决.

  8. Plasma flow interaction with ITER divertor related surfaces

    Science.gov (United States)

    Dojčinović, Ivan P.

    2010-11-01

    It has been found that the plasma flow generated by quasistationary plasma accelerators can be used for simulation of high energy plasma interaction with different materials of interest for fusion experiments. It is especially important for the studies of the processes such as ELMs (edge localized modes), plasma disruptions and VDEs (vertical displacement events), during which a significant part of the confined hot plasma is lost from the core to the SOL (scrape off layer) enveloping the core region. Experiments using plasma guns have been used to assess erosion from disruptions and ELMs. Namely, in this experiment modification of different targets, like tungsten, molybdenum, CFC and silicon single crystal surface by the action of hydrogen and nitrogen quasistationary compression plasma flow (CPF) generated by magnetoplasma compressor (MPC) has been studied. MPC plasma flow with standard parameters (1 MJ/m2 in 0.1 ms) can be used for simulation of transient peak thermal loads during Type I ELMs and disruptions. Analysis of the targets erosion, brittle destruction, melting processes, and dust formation has been performed. These surface phenomena are results of specific conditions during CPF interaction with target surface. The investigations are related to the fundamental aspects of high energy plasma flow interaction with different material of interest for fusion. One of the purposes is a study of competition between melting and cleavage of treated solid surface. The other is investigation of plasma interaction with first wall and divertor component materials related to the ITER experiment.

  9. A general strategy for the ultrafast surface modification of metals

    OpenAIRE

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing au...

  10. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process

  11. Chemical Modification Methods of Nanoparticles of Silicon Carbide Surface

    Directory of Open Access Journals (Sweden)

    Anton S. Yegorov

    2015-09-01

    Full Text Available silicon carbide exhibits exceptional properties: high durability, high thermal conductivity, good heat resistance, low thermal expansion factor and chemical inactivity. Reinforcement with silicon carbide nanoparticles increases polymer’s tensile strength and thermal stability.Chemical methods of modification of the silicon carbide surface by means of variety of reagents from ordinary molecules to macromolecular polymers are reviewed in the review.The structure of silicon carbide surface layer and the nature of modificator bonding with the surface of SiC particles are reviewed. General examples of surface modification methodologies and composite materials with the addition of modified SiC are given.

  12. Proceedings of the 10th international symposium on polymer surface modification

    Science.gov (United States)

    Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...

  13. Module for dielectric surfaces modification by fast neutral particles beams

    Science.gov (United States)

    Barchenko, V. T.; Lisenkov, A. A.; Babinov, N. A.

    2014-11-01

    In this paper, we describe the module for dielectric and wide-gap semiconductor surfaces modification by fast neutral beam. The module can be used for cleaning, etching or assisting of films deposition. The surface proceeding by neutral beam can prevent an accumulation of surface charge without using current compensation by inserting electrons to the beam or RF power supply. The module beside cathode and anode contains an electrode with floating potential. Insertion of the additional electrode causes electron retention in an electrostatic trap resulting the reducing of the module operating pressure. Moreover, the electrode with floating potential allows increasing the current efficient of the module. An important feature of the module is that neutralization of the ions extracted from the plasma occurs in the cathode potential well. Thereby ions that have not neutralized cannot leave nearcathode region and there are no fast ions in the output beam. Module does not contain sources of the magnetic fields or elements heated by external sources. Module operates with free cooling. Thus, the module does not need water cooling and can be freely moved in the vacuum chamber.

  14. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Park, Daewon; Kim, Hoonbae [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Hyerim; Park, Heonyong [Department of Molecular Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Kim, Hong Ja [Department of Internal Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Jung, Donggeun, E-mail: djung@skku.ac.kr [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-03-01

    Graphical abstract: - Highlights: • The surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts. • Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment using micro plasma discharge. - Abstract: Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature

  15. Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.

    Science.gov (United States)

    da Silva, Jose Sandro Pereira; Amico, Sandro Campos; Rodrigues, Almir Olegario Neves; Barboza, Carlos Augusto Galvao; Alves, Clodomiro; Croci, Alberto Tesconi

    2011-01-01

    The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nitriding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion.

  16. The Progress on Laser Surface Modification Techniques of Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    LIANG Cheng; PAN Lin; Al Ding-fei; TAO Xi-qi; XIA Chun-huai; SONG Yan

    2004-01-01

    Titanium alloy is widely used in aviation, national defence, automobile, medicine and other fields because of their advantages in lower density, corrosion resistance, and fatigue resistance etc. As titanium alloy is higher friction coefficients, weak wear resistance, bad high temperature oxidation resistance and lower biocompatibility, its applications are restricted. Using laser surface modification techniques can significantly improve the surface properties of titanium alloy. a review is given for progress on laser surface modification techniques of titanium alloy in this paper.

  17. Enhanced chromium adsorption capacity via plasma modification of natural zeolites

    Science.gov (United States)

    Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.

    2017-01-01

    Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.

  18. Modification of ink-jet paper by oxygen-plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, A [Jozef Stefan Institute, Jamova 39, Ljubljana 1000 (Slovenia); Mozetic, M [Jozef Stefan Institute, Jamova 39, Ljubljana 1000 (Slovenia); Hladnik, A [Pulp and Paper Institute, Bogisiceva 8, Ljubljana 1001 (Slovenia); Dolenc, J [Pulp and Paper Institute, Bogisiceva 8, Ljubljana 1001 (Slovenia); Zule, J [Pulp and Paper Institute, Bogisiceva 8, Ljubljana 1001 (Slovenia); Milosevic, S [Institute of Physics, Bijenicka 46, Zagreb 10000 (Croatia); Krstulovic, N [Institute of Physics, Bijenicka 46, Zagreb 10000 (Croatia); Klanjsek-Gunde, M [National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000 (Slovenia); Hauptmann, N [National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000 (Slovenia)

    2007-06-21

    A study on oxygen-plasma treatment of ink-jet paper is presented. Paper was exposed to a weakly ionized, highly dissociated oxygen plasma with an electron temperature of 5 eV, a positive-ion density of 8 x 10{sup 15} m{sup -3} and a density of neutral oxygen atoms of 5 x 10{sup 21} m{sup -3}. Optical emission spectroscopy (OES) was applied as a method for detection of the reaction products during the plasma treatment of the paper. OES spectra between 250 and 1000 nm were measured continuously during the plasma treatment. The wettability of the samples before and after the plasma treatment was determined by measuring the contact angle of a water drop. The appearance of the surface-functional groups was determined by using high-resolution x-ray photoelectron spectroscopy (XPS), while changes in the surface morphology were monitored with scanning electron microscopy (SEM). Already after 1 s of the plasma treatment the surface, which was originally hydrophobic, changed to hydrophilic, as indicated by a high absorption rate of a water drop into the paper. The OES showed a rapid increase of the CO and OH bands for the first few seconds of the plasma treatment, followed by a slow decrease during the next 40 s. The intensity of the O atom line showed reversed behaviour. The XPS analyses showed a gradual increase of oxygen-rich functional groups on the surface, while SEM analyses did not show significant modification of the morphology during the first 10 s of the plasma treatment. The results were explained by degradation of the alkyl ketene dimer sizing agent during the first few seconds of the oxygen-plasma treatment.

  19. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification

    DEFF Research Database (Denmark)

    Lackner, Susanne; Holmberg, Maria; Terada, Akihiko;

    2009-01-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG...... similar trends: biofilms on -PEG-NH2 modified surfaces were much stronger compared to the other modifications and the unmodified reference surfaces. Electrostatic interactions between the protonated amino group and negatively charged bacteria as well as PEG chain density which can affect the surface...... structure might be possible explanations of the superiority of the -PEG-NH2 modification. The success of the-PEG-NH2 modification was independent of the original surface and might, therefore, be used in wastewater treatment bioreactors to improve reactor performance by making biofilm formation more stable...

  20. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    Science.gov (United States)

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Surface modification of alumina nanoparticles with silane coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Luis A.S.A.; Sriyai, Montira; Ghislandi, Marcos; Schulte, Karl [Technische Universitaet Hamburg-Harburg, Hamburg (Germany). Inst. fuer Kunststoffe und Verbundwerkstoffe (M-11); Barros-Timmons, Ana [University of Aveiro (Portugal). Dept. of Chemistry. Centro de Investigacao em Materiais Ceramicos e Compositos (CICECO)

    2010-07-01

    In the present paper we describe the surface modification of alumina nanoparticles using epoxy-containing alkoxysilanes (silane coupling agents, SCA). The materials were characterized using infrared spectroscopy and solid-state nuclear magnetic resonance. Whereas, neat alumina nanoparticles could be expectedly modified with the afore mentioned SCA, as evidenced by {sup 13}C CPMAS NMR, the presence of arylsulphonates at the surface of alumina caused the ringopening polymerization of the epoxide. This polymerization reaction facilitated the surface modification of alumina by the SCA. X-ray powder diffraction and {sup 27}Al MAS NMR clearly demonstrated that in spite of the SCA polymerization, there were neither structural changes nor phase transitions in the alumina after the surface modification. The surface modification decreased the thermal stability of alumina, in comparison to pristine alumina nanoparticles. (author)

  2. Comparison of several innovative bridge cable surface modifications

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos T.

    Over the last two decades, several bridge cable manufacturers have introduced surface modifications on the high-density polyethylene (HDPE) sheathing that is installed for the protection of inner cable strands or wires. The modifications are based on research undertaken predominantly in Europe an...

  3. Surface Modification of Exfoliated Graphite Nano-Reinforcements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I results showed that two surface treatments, oxidative plasma and reactive finishes, are effective means of modifying the surface chemistry of exfoliated...

  4. A model for plasma modification of polypropylene using atmospheric pressure discharges

    CERN Document Server

    Dorai, R

    2003-01-01

    Atmospheric pressure plasmas are commonly used to improve the wetting and adhesion properties of polymers. In spite of their use, the mechanisms for achieving these properties are unclear. In this regard, we report on a computational investigation of the gas phase and surface kinetics during humid-air corona treatment of polypropylene (PP) and the resulting modification of its surface properties while varying energy deposition, relative humidity (RH), web speed, and gas temperature. Using results from a global plasma chemistry model validated against experiments, we found that increasing energy deposition increased the densities of alcohol, carbonyl, acid, and peroxy radicals on the PP surface. In doing so, significant amounts of gas phase O sub 3 and N sub x O sub y are produced. Increasing the RH increased the production of peroxy and acid groups, while decreasing those of alcohol and carbonyl groups. Production of O sub 3 decreased while that of HNO sub 3 increased. Increasing the temperature decreased the...

  5. Advances of Titanium Alloys and Its Biological Surface Modification

    Institute of Scientific and Technical Information of China (English)

    XU Ke-wei; HUANG Ping

    2004-01-01

    This paper reviews the past, present and future of surface modification of titanium alloy from the point of view of preparation of hard tissue replacement implants. The development of titanium alloy is also described.

  6. Plasma Glow Discharge as a Tool for Surface Modification of Catalytic Solid Oxides: A Case Study of La0.6Sr0.4Co0.2Fe0.8O3−δ Perovskite

    Directory of Open Access Journals (Sweden)

    Yanxiang Zhang

    2016-09-01

    Full Text Available Performance of solid oxide fuel cells (SOFCs is hindered by the sluggish catalytic kinetics on the surfaces of cathode materials. It has recently been reported that improved electrochemical activity of perovskite oxides can be obtained with the cations or the oxides of some metallic elements at the surface. Here, we used a cost-effective plasma glow charge method as a generic tool to deposit nano-size metallic particles onto the surface of SOFC materials. Ni nano-scale patterns were successfully coated on the La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF surface. The microstructure could be well controlled. The kinetics of oxygen exchange on the modified LSCF surface was promoted significantly, confirmed by electrical conductivity relaxation (ECR measurement.

  7. Modification of Cu surface with picosecond laser pulses

    NARCIS (Netherlands)

    Obona, J. Vincenc; Ocelik, V.; Rao, J. C.; Skolski, J. Z. P.; Romer, G. R. B. E.; in't Veld, A. J. Huis; de Hosson, Jeff

    2014-01-01

    High purity, mirror-polished polycrystalline Cu surface was treated with single picosecond laser pulses at fluence levels close to the single-pulse modification threshold. The induced surface topography and sub-surface changes were examined with scanning and transmission electron microscopy, respect

  8. Impact of Dental Implant Surface Modifications on Osseointegration

    OpenAIRE

    Ralf Smeets; Bernd Stadlinger; Frank Schwarz; Benedicta Beck-Broichsitter; Ole Jung; Clarissa Precht; Frank Kloss; Alexander Gröbe; Max Heiland; Tobias Ebker

    2016-01-01

    Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require...

  9. MICROWAVE-ASSISTED SURFACE MODIFICATION OF CALCIUM BICARBONATE

    Institute of Scientific and Technical Information of China (English)

    Jing Ye; Xiaofei Zhang

    2004-01-01

    Surface modification of calcium bicarbonate powder with isopropyl triisostearoyl titanate (TTS) by microwave-assisted heating was studied in the present work. The features of microwave treated powder show obvious superiority to those of powder samples treated by traditional surface modification method and of untreated calcium bicarbonate - in suspension turbidity, suction potential, contact angle with water, and mechanical properties of their composites with PVC resin.

  10. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Science.gov (United States)

    Lai, Jiangnan; Sunderland, Bob; Xue, Jianming; Yan, Sha; Zhao, Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang, Yugang

    2006-03-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C dbnd O bond is the key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  11. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lai Jiangnan [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Sunderland, Bob [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Xue Jianming [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Yan, Sha [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Zhao Weijiang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China); Folkard, Melvyn [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Michael, Barry D. [Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Wang Yugang [Key Laboratory of Heavy Ion Physics, Peking University, MOE, Beijing (China)]. E-mail: ygwang@pku.edu.cn

    2006-03-15

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity.

  12. Effect of Surface Modification on Behaviors of Cerium Oxide Nanopowders

    Institute of Scientific and Technical Information of China (English)

    Li Mei; Shi Zhenxue; Liu Zhaogang; Hu Yanhong; Wang Mitang; Li Hangquan

    2007-01-01

    Study was made on the effect of surface modification on the behaviors of cerium oxide nanopowders. A surfactant-sodium dodecyl sulfate(C12H25SO4Na) was used to modify the surface of CeO2 powder particles. The unmodified and modified CeO2 powders were characterized by using a powder comprehensive characteristic tester, laser particle size analyzer, specific surface area tester, X-ray diffraction tester, and a scanning electron microscope. The testing and analysis results showed that C12H25SO4Na surface modification might increase the flowability and dispersity, and decrease the specific surface area and agglomeration of CeO2 powders. The mechanism of the surface modification of CeO2 powder particles was also discussed.

  13. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation.

    Science.gov (United States)

    Inam Ul Ahad; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Korczyc, Barbara; Ciach, Tomasz; Brabazon, Dermot

    2014-09-01

    Polymeric biomaterials are being widely used for the treatment of various traumata, diseases and defects in human beings due to ease in their synthesis. As biomaterials have direct interaction with the extracellular environment in the biological world, biocompatibility is a topic of great significance. The introduction or enhancement of biocompatibility in certain polymers is still a challenge to overcome. Polymer biocompatibility can be controlled by surface modification. Various physical and chemical methods (e.g., chemical and plasma treatment, ion implantation, and ultraviolet irradiation etc.) are in use or being developed for the modification of polymer surfaces. However an important limitation in their employment is the alteration of bulk material. Different surface and bulk properties of biomaterials are often desirable for biomedical applications. Because extreme ultraviolet (EUV) radiation penetration is quite limited even in low density mediums, it could be possible to use it for surface modification without influencing the bulk material. This article reviews the degree of biocompatibility of different polymeric biomaterials being currently employed in various biomedical applications, the surface properties required to be modified for biocompatibility control, plasma and laser ablation based surface modification techniques, and research studies indicating possible use of EUV for enhancing biocompatibility.

  14. Polymer grafting modification of the surface of nano silicon dioxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the composite modification technology of the surface of nano silicon dioxide by non-soap emulsion polymerization, it is verified that there are polymer grafted on the surface of nano silicon dioxide. The modification mechanism and the bonding status on the surface of nano silicon dioxide after modification were suggested via the results of the infrared spectrum, transmission electronic microscope photograph and X-ray photoelectron spectrum. The hydroxyl formed by hydrolyzing of silane coupling agent reacts with hydroxyl on the surface of nano silicon dioxide to form Si-O-Si bonds by losing water molecules and hence the double bonds are introduced onto the surface of nano silicon dioxide. The surface of nano silicon dioxide is grafted with polymer through free radical polymerization between the double bonds on the surface of nano silicon dioxide and styrene under the action of initiating agent. The dispersibility of nano silicon dioxide and the controllability of surface modification of nano silicon dioxide can be greatly improved by the modification process.

  15. Collagen immobilization on polyethylene terephthalate surface after helium plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena, E-mail: maflori@icmpp.ro [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Drobota, Mioara [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Dimitriu, Dan Gh. [Faculty of Physics, “Alexandru Ioan Cuza” University, 20A Bulevardul Carol I, 700505 Iasi (Romania); Stoica, Iuliana [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 71141 Bucharest (Romania); Harabagiu, Valeria [Department of Polymers Physics and Polymeric Materials, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    An attractive alternative to add new functionalities such as biocompatibility due to the micro- and nano-scaled modification of polymer surfaces is offered by plasma processing. Many vital processes of tissue repair and growth following injuries depend on the rate of adsorption and self-assembling of the collagen molecules at the interfaces. Consequently, besides the amount of protein, it is necessary to investigate the form in which the collagen molecules are organizing on the polymer surface. In this study, direct current (DC) helium plasma treatment was used in order to obtain poly(ethylene terephthalate) (PET) films with different amounts of collagen and different shapes of aggregates formed from the collagen molecules. The immobilization of collagen on PET surface was confirmed by XPS measurements, an increase of the nitrogen content by increasing the plasma exposure time being recorded. The SEM and AFM measurements revealed the presence of grains and dendrites of collagen formed on the polymer surface. At 15 min plasma treatment time, the polymer surface after collagen immobilization has a homogenous topography. Usually, one can find fibrils, coil or dendrimers of collagen formed in buffer solutions and immobilized on different polymer surfaces. On the other hand, in this particular configuration, the combination of DC plasma and helium gas as a PET functionalization tool is an original one. As the collagen is not covalently immobilized on the surfaces, it may interact with the cell culture medium proteins, part of the collagen might being replaced by other serum proteins.

  16. Enzymatic surface modification of Kevlar fibers

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Jingchan; FAN; Guoning; GUO; Zhian; ZHANG; Yongke; W

    2005-01-01

    Horseradish peroxidase catalyzed grafting of acrylamide (AM) onto Kevlar fibers has been studied. The modified fiber has been characterized with scanning electron microscopy (SEM), elemental analysis and the grafting yield. From the SEM micrographs, the surface of the grafted Kevlar fiber is rougher than that of the untreated fiber, and the elemental analysis indicated that the nitrogen content of the treated fibers is higher than that of the untreated fiber. All the results suggested that AM must have been grafted onto the Kevlar surface through HRP-mediated radical initiated grafting reaction. The probably mechanism of HRP catalyzed grafting of AM onto Kevlar surface is proposed.

  17. Surface disorder production during plasma immersion implantation

    NARCIS (Netherlands)

    Lohner, T.; Khanh, N.Q.; Petrik, P.; Biro, L.P.; Fried, M.; Pinter, I.; Lehnert, W.; Frey, L.; Ryssel, H.; Wentink, D.J.; Gyulai, J.

    1998-01-01

    Comparative investigations were performed using high-depth-resolution Rutherford backscattering (RBS) combined with channeling, spectroellipsometry (SE) and atomic force microscopy (AFM) to analyze surface disorder and surface roughness formed during plasma immersion implantation of silicon (100) su

  18. Surface studies of plasma processed Nb samples

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Puneet V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Doleans, Marc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Hannah, Brian S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Afanador, Ralph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Stewart, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Mammosser, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Howell, Matthew P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Saunders, Jeffrey W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Degraff, Brian D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  19. Modification methods for poly(arylsulfone) membranes: A mini-review focusing on surface modification

    NARCIS (Netherlands)

    Nady, N.; Franssen, M.C.R.; Zuilhof, H.; Mohy Eldin, M.S.; Boom, R.M.; Schroën, C.G.P.H.

    2011-01-01

    Surface modification of membranes is thought to be equally important to the membrane industry as membrane material and process development; surface functionalization has already become a key technology, the major aims being performance improvement (flux and selectivity) by reduction of unwanted prot

  20. Surface bioactivity of plasma implanted silicon and amorphous carbon

    Institute of Scientific and Technical Information of China (English)

    Paul K CHU

    2004-01-01

    Plasma immersion ion implantation and deposition (PⅢ&D) has been shown to be an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification single-crystal silicon and amorphous carbon is reviewed. Silicon is the most important material in the integrated circuit industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PⅢ into silicon and observed the biomimetic growth of apatite on its surface in simulated body fluid. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness. The use of this material in biomedical engineering has also attracted much attention. It has been observed in our laboratory that doping DLC with nitrogen by means of PⅢ can improve the surface blood compatibility. The properties as well as in vitro biological test results will be discussed in this article.

  1. Surface modification of solid state gas sensors

    Science.gov (United States)

    Morris, Ljuibov

    The phenomenon of electrical conductivity being controlled by the chemical state of a surface grafted reactive centre, resulting in a room temperature gas response, is demonstrated. The reactive centres can be chosen to be specific to a particular gas, providing a route to new types of gas detectors tailored for a particular application. Generalization of the phenomenon was verified. Surface grafting of Ti, Ru and Pt centres onto SnO2; Ti and Pt centres onto Ti02 ; and Pt centres onto BaSn0.97Sb0.03O3 resulted in a room temperature gas sensitivity specific to each system. Surface grafting of Ru centres onto SnO2 resulted in additional electronic states in the SnO2 band gap associated with surface Ru species, revealed by XPS and correlated with resistance increase of the material. An electronic interaction between grafted Ru centres and the SnO2 support was manifested in conductivity being controlled by the surface state of the Ru. Variations in the chemical state of the surface grafted Ru caused by gas chemisorption were revealed by XPS and this was correlated with conductivity change measured as gas response of the device at room temperature. The samples were characterized by EXAFS to confirm the structure of the surface Ru species, TPD, UV- visible spectroscopy, XPS and electrical measurements. DFT molecular cluster calculations were also performed to ascertain the origin of the gas response. The mechanism of the room temperature CO response of SnO2 decorated with small Pt particles was refined. In this case Pt was applied by common impregnation techniques. The conductivity was shown to be controlled by the surface state of the Pt. The CO response at room temperature was found to be specific to the presence of Pt(II) species. The mechanism was assigned to CO chemisorption onto Pt(II), resulting in charge transfer, measured as conductivity increase. The samples were characterized by XPS, TPD, SEM, mass spectrometry and electrical measurements. Comparison of the

  2. Nanoscale Surface Modification of Layered Materials

    Science.gov (United States)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  3. Bone tissue response to plasma-nitrided titanium implant surfaces

    Directory of Open Access Journals (Sweden)

    Emanuela Prado FERRAZ

    2015-02-01

    Full Text Available A current goal of dental implant research is the development of titanium (Ti surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces.

  4. Bone tissue response to plasma-nitrided titanium implant surfaces.

    Science.gov (United States)

    Ferraz, Emanuela Prado; Sverzut, Alexander Tadeu; Freitas, Gileade Pereira; Sá, Juliana Carvalho; Alves, Clodomiro; Beloti, Marcio Mateus; Rosa, Adalberto Luiz

    2015-01-01

    A current goal of dental implant research is the development of titanium (Ti) surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces.

  5. Design and operation of a rotating drum radio frequency plasma reactor for the modification of free nanoparticles.

    Science.gov (United States)

    Shearer, Jeffrey C; Fisher, Ellen R

    2013-06-01

    A rotating drum rf plasma reactor was designed to functionalize the surface of nanoparticles and other unusually shaped substrates through plasma polymerization and surface modification. This proof-of-concept reactor design utilizes plasma polymerized allyl alcohol to add OH functionality to Fe2O3 nanoparticles. The reactor design is adaptable to current plasma hardware, eliminating the need for an independent reactor setup. Plasma polymerization performed on Si wafers, Fe2O3 nanoparticles supported on Si wafers, and freely rotating Fe2O3 nanoparticles demonstrated the utility of the reactor for a multitude of processes. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to characterize the surface of the substrates prior to and after plasma deposition, and scanning electron microscopy was used to verify that no extensive change in the size or shape of the nanoparticles occurred because of the rotating motion of the reactor. The reactor design was also extended to a non-depositing NH3 plasma modification system to demonstrate the reactor design is effective for multiple plasma processes.

  6. Magellan: initial analysis of venus surface modification.

    Science.gov (United States)

    Arvidson, R E; Baker, V R; Elachi, C; Saunders, R S; Wood, J A

    1991-04-12

    Initial Magellan observations reveal a planet with high dielectric constant materials exposed preferentially in elevated regions with high slopes, ejecta deposits extending up to 1000 kilometers to the west of several impact craters, windblown deposits and features in areas where there are both obstacles and a source of particulate material, and evidence for slow, steady degradation by atmosphere-surface interactions and mass movements.

  7. Site-selective electroless metallization on porous organosilica films by multisurface modification of alkyl monolayer and vacuum plasma.

    Science.gov (United States)

    Chen, Giin-Shan; Chen, Sung-Te; Chen, Yenying W; Hsu, Yen-Che

    2013-01-15

    Taking plasma-enhanced chemical vapor deposited porous SiOCH (p-SiOCH) and octadecyltrichlorosilane (OTS) as model cases, this study elucidates the chemical reaction pathways for alkyl-based self-assembled monolayers (SAMs) on porous carbon-doped organosilica films under N(2)-H(2) vacuum plasma illumination. In contrast to previous findings that carboxylic groups are found in alkyl-based SAMs only by exposure to oxygen-based plasma, this study discovers that, upon exposure to reductive nitrogen-based vacuum plasma, surface carboxylic functional groups can be instantly formed on OTS-coated p-SiOCH films. Particular attention is given to developing a multisurface modification process, starting with the modification of p-SiOCH films by N(2)-H(2) plasma and continuing with SAM deposition and plasma patterning; this ultimately leads to site-selective seeding for the spatially controlled fabrication of Cu-wire metallization by electroless deposition. Plasma diagnosis and X-ray near-edge absorption and Fourier transform infrared spectroscopies show that, by adequately controlling the plasma parameters, the bulk of the p-SiOCH films are free from plasma damage (in terms of degradation in bonding structures and electrical properties); the formation of the seed-trapping carboxylic functional groups on the surface, the key factor for the validity of this new seeding process, is due to a water-mediated chemical oxygenation route.

  8. A general strategy for the ultrafast surface modification of metals

    Science.gov (United States)

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-12-01

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.

  9. A general strategy for the ultrafast surface modification of metals.

    Science.gov (United States)

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-12-07

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.

  10. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.

    2012-01-01

    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques are a

  11. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.

    2012-01-01

    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques are a

  12. Membrane surface modification via polymer grafting and interfacial polymerization

    Science.gov (United States)

    Membrane separation is an important technology for separating food ingredients and fractionating high-value substances from food processing by-products. Long-term uses of polymeric membranes in food protein processing are impeded by formation of fouled layers on the membrane surface. Surface modif...

  13. Surface Modification by Physical Vapour Deposition,

    Science.gov (United States)

    1983-07-13

    effect of the rare-earth metals is to form a stable oxide at the surface, or to form stable perovskites such as CaTiO3 or EuTiO3 , and thus prevent...Bunshah, "High Rate Deposition Of Hafnium By Activated Reactive Evaporation", Thin Solid Films, 63, 327, (1979). 5 B.E. Jacobson, R. Nimuagadda, R.F

  14. Surface modification of solid state gas sensors

    CERN Document Server

    Morris, L

    2000-01-01

    mechanism of the room temperature CO response of SnO sub 2 decorated with small Pt particles was refined. In this case Pt was applied by common impregnation techniques. The conductivity was shown to be controlled by the surface state of the Pt. The CO response at room temperature was found to be specific to the presence of Pt(ll) species. The mechanism was assigned to CO chemisorption onto Pt(ll), resulting in charge transfer, measured as conductivity increase. The samples were characterized by XPS, TPD, SEM, mass spectrometry and electrical measurements. Comparison of the results presented for Pt decorated BaSn sub 0 sub . sub 9 sub 7 Sb sub 0 sub . sub 0 sub 3 O sub 3 and BaFeO sub 3 demonstrated the phenomenon to be general providing that Pt particles act as surface traps, controlling the conductivity. The phenomenon of electrical conductivity being controlled by the chemical state of a surface grafted reactive centre, resulting in a room temperature gas response, is demonstrated. The reactive centres can ...

  15. Tailoring surface properties of polyethylene separator by low pressure 13.56 MHz RF oxygen plasma glow discharge

    Science.gov (United States)

    Li, Chun; Liang, Chia-Han; Huang, Chun

    2016-01-01

    Low-pressure plasma surface modification in a radio-frequency capacitively coupled glow discharge of oxygen gas was carried out to induce polar functional groups onto polyethylene membrane separator surfaces to enhance its hydrophilicity. The surface changes in surface free energy were monitored by static contact angle measurement. A significant increase in the surface energy of polyethylene membrane separators caused by the oxygen gas plasma modifications was observed. The static water contact angle of the plasma-modified membrane separator significantly decreased with the increase in treatment duration and plasma power. An obvious increase in the surface energy of the membrane separators owing to the oxidative effect of oxygen-gas-plasma modifications was also observed. Optical emission spectroscopy was carried out to analyze the chemical species generated by oxygen gas plasma surface modification. The variations in the surface morphology and chemical structure of the separators were confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). XPS showed significantly higher surface concentrations of oxygen functional groups in the oxygen-gas-plasma-modified polymeric separator surfaces than in the unmodified polymeric separator surface. The experimental results show the important role of chemical species in the interaction between oxygen gas plasmas and the separator surface, which can be controlled by surface modification to tailor the hydrophilicity of the separator.

  16. Plasma diagnostics surface analysis and interactions

    CERN Document Server

    Auciello, Orlando

    2013-01-01

    Plasmas and their interaction with materials have become subjects of major interest because of their importance in modern forefront technologies such as microelectronics, fusion energy, and space. Plasmas are used in microelectronics to process semiconductors (etching of patterns for microcircuits, plasma-induced deposition of thin films, etc.); plasmas produce deleterious erosion effects on surfaces of materials used for fusion devices and spaceships exposed to the low earth environment.Diagnostics of plasmas and materials exposed to them are fundamental to the understanding of the physical a

  17. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Subhadeep

    2011-01-01

    Full Text Available Abstract Polymethylmethacrylate (PMMA microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices.

  18. Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas

    OpenAIRE

    Titus, Monica Joy

    2010-01-01

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactio...

  19. Surface modification of poly(L-lactic acid) with biomolecules to promote endothelialization.

    Science.gov (United States)

    Xia, Yun; Boey, Freddy; Venkatraman, Subbu S

    2010-09-01

    Rapid endothelialization is important for biodegradable blood-contacting devices not only to prevent thrombosis but also to prevent degradation debris from entering the bloodstream and causing further complications. Here the authors report a three-step surface modification method, by which biomolecules, such as gelatin and chitosan, are covalently immobilized on the surface of plasma-treated poly(L-lactic acid) (PLLA) via -COOH groups introduced by acrylic acid grafting polymerization. Surface characterization techniques, including x-ray photoelectron spectroscopy, contact angle measurement, and colorimetric methods for surface density of functional groups, proved the feasibility and stability of this surface modification method. Surface wettability was increased by biomolecules immobilization. The -COOH surface density was measured to be 4.17±0.15 μmol/cm(2), the and amount of gelatin immobilized was 4.8 μg/cm(2). Human umbilical vein endothelial cell was used during in vitro study at seeding density of 10(4) cells/cm(2). PLLA-gAA-gelatin surface was found to enhance cell adhesion, spreading, focal adhesion formation, and proliferation significantly. Chitosan-modified PLLA shows marginally improvement in cell adhesion and proliferation. Endothelialization was achieved within 7 days on both modified PLLA surfaces. In conclusion, this work demonstrates the feasibility of the surface modification method, and its ability to promote complete endothelialization for cardiovascular applications.

  20. Surface Modification Mechanism of Fine Coal by Electrochemical Methods

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong; WANG Fang-hui; WANG Dian-zuo; OU Ze-shen

    2006-01-01

    In order to reveal the surface modification mechanism of fine coal by electrochemical methods, the structural changes of the coal surface before and after electrochemical modification were investigated by Fourier Transform Infrared Spectra (FTIR) and Raman Spectra. The results show that under certain electrochemical conditions, the oxygen-containing functional group in the coal structure and the oxygen content of absorption could be reduced and the floatability of coal improved. At the same time, the sulfur in the coal was reduced to the hydrophilic S2- which could be separated easily from coal. Thus electrochemical modification methods could be used to change the structure and functional group on the coal surface and to enhance the floatability of coal.

  1. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    -friendly alternative processes. In the present work high temperature steam-based process has been investigated as a possible chromate free conversion coating. Investigations in the thesis includes the effect of alloy type, substrate microstructure, surface finish, and various chemistries on the coating formation......, and interface structure of the coatings were analysed using SEM, FIB-SEM,TEM, GI-XRD, FTIR, XPS, AFM, contact angle, and boiling test. Chapter 1 of this thesis provides a background to the work and available literature information. Materials and experimental methods are outlined in chapter 2. The chapters 3...... using autoclave or using spray system, and with or without various chemistries as accelerators. In general, results show the formation of 650 nm – 3000 nm thick conversion coating, where the thickness depend on the treatment parameters and steam chemistry. Further, the formed coating provide good...

  2. Electron-ion plasma modification of Al-based alloys

    Science.gov (United States)

    Ivanov, Yurii; Rygina, Mariya; Petrikova, Elizaveta; Krysina, Olga; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina

    2016-01-01

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN-AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film-substrate system were estimated by numerical simulation in a wide range of electron energy densities (5-30 J/cm2) and pulse durations (50-200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young's modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu-Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN-AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ˜14 GPa.

  3. Modification of plasma polymer films by ion implantation

    Directory of Open Access Journals (Sweden)

    Santos Deborah Cristina Ribeiro dos

    2004-01-01

    Full Text Available In this work, thin polymer films were prepared from acetylene and argon radiofrequency (13.56 MHz, 80 W glow discharges. Post-deposition treatment was performed by plasma immersion ion implantation in nitrogen or helium glow discharges (13.56 MHz, 70 W. In these cases, samples were biased with 25 kV negative pulses. Exposure time to the bombardment plasma, t, ranged from 900 to 7200 s. Chemical composition of the film surfaces was investigated by X-ray Photoelectron Spectroscopy and the resistance to oxidation by the etching process, in reactive oxygen plasmas. Oxygen and nitrogen were detected in all the samples. While the concentration of the former continuously changed with t, that of N kept practically constant in small proportions. The film is predominantly formed by sp² states, but the proportion of sp³ hybridization slightly increased with t. The etching rate dropped under certain conditions of nitrogen bombardment whereas helium implantation has not significantly improved it. These results are ascribed to the crosslinking degree of the polymeric chains, ruled by the total amount of energy delivered to the film.

  4. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  5. The surface parameters modifications at nano scale for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Safonov, V; Zykova, A; Smolik, J; Rogovska, R; Donkov, N; Georgieva, V, E-mail: zykov@bi.com.u

    2010-11-01

    Functional coatings deposition is an effective way of surface modification with direct control of stoichiometry, impurity elements, functional groups and surface charges. Modified surface properties such as composition, roughness, wettability have effect on the most important processes at biomaterial interface. The aim of present study was the analysis of surface roughness and surface free energy parameters of oxide Al{sub 2}O{sub 3} and Ta{sub 2}O{sub 5} coatings and the possibility to separate the influence of such factors on the regularities and mechanisms of nano materials interactions with the biological objects.

  6. Polydopamine-Assisted Surface Modification for Bone Biosubstitutes

    Science.gov (United States)

    Zhou, Xin

    2016-01-01

    Polydopamine (PDA) prepared in the form of a layer of polymerized dopamine (DA) in a weak alkaline solution has been used as a versatile biomimetic surface modifier as well as a broadly used immobilizing macromolecule. This review mainly discusses the progress of biomaterial surface modification inspired by the participation of PDA in bone tissue engineering. A comparison between PDA-assisted coating techniques and traditional surface modification applied to bone tissue engineering is first presented. Secondly, the chemical composition and the underlying formation mechanism of PDA coating layer as a unique surface modifier are interpreted and discussed. Furthermore, several typical examples are provided to evidence the importance of PDA-assisted coating techniques in the construction of bone biosubstitutes and the improvement of material biocompatibility. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration. PMID:27595097

  7. Polydopamine-Assisted Surface Modification for Bone Biosubstitutes

    Directory of Open Access Journals (Sweden)

    Shishu Huang

    2016-01-01

    Full Text Available Polydopamine (PDA prepared in the form of a layer of polymerized dopamine (DA in a weak alkaline solution has been used as a versatile biomimetic surface modifier as well as a broadly used immobilizing macromolecule. This review mainly discusses the progress of biomaterial surface modification inspired by the participation of PDA in bone tissue engineering. A comparison between PDA-assisted coating techniques and traditional surface modification applied to bone tissue engineering is first presented. Secondly, the chemical composition and the underlying formation mechanism of PDA coating layer as a unique surface modifier are interpreted and discussed. Furthermore, several typical examples are provided to evidence the importance of PDA-assisted coating techniques in the construction of bone biosubstitutes and the improvement of material biocompatibility. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration.

  8. [Surface modification of poly methyl methacrylate intraocular lens by alpha-allyl glucoside].

    Science.gov (United States)

    Qu, Chao; Yao, Ke; Kou, Ruiqiang; Xu, Zhikang

    2004-02-01

    A method for improving the biocompatibility of the intraocular lens (IOL) and reducing the cell attachment was adopted in this study. The alpha-Allyl glucoside was used for the surface modification of the poly methyl methacrylate (PMMA) IOL by way of plasma-induced in situ polymerization. The surfaces of the control and treatment IOLs were characterized by contact angle estimation and ESCA techniques. The resolution, diopter and anti-fatigue of loops were determined by physical and optical methods. Cell attachment on the surfaces was examined by light microscopy. The results indicated that all of the treatment groups had excellent physical and optical properties. The modification with the use of alpha-Allyl glucoside could improve the hydrophilicity of the anterior surface of the PMMA IOLs and reduce the cell attachment.

  9. Impact of Dental Implant Surface Modifications on Osseointegration

    Science.gov (United States)

    Smeets, Ralf; Stadlinger, Bernd; Schwarz, Frank; Beck-Broichsitter, Benedicta; Jung, Ole; Precht, Clarissa; Kloss, Frank; Gröbe, Alexander; Heiland, Max

    2016-01-01

    Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions. PMID:27478833

  10. Impact of Dental Implant Surface Modifications on Osseointegration

    Directory of Open Access Journals (Sweden)

    Ralf Smeets

    2016-01-01

    Full Text Available Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions.

  11. Effects of Surface Modification on the Dispersion Property of VGCF

    Institute of Scientific and Technical Information of China (English)

    FU Yaqin; HAN Chunshao; NI Qingqing

    2009-01-01

    In view of the easy agglomeration issue of vapor grown carbon fiber (VGCF) and the poor interfacial adhesion between VGCF and matrix resin, two-step surface modification with hydrogen peroxide and concentrated nitric acid was performed on VGCF. The surface structure and dispersion of VGCF before and after modification were tested and analyzed by XRD, TGA, FTIR, UV-visible spectrum and SEM. Moreover, VGCF/SMPU composites were prepared via a solution mixing method taking shape memory polyurethane (SMPU) as matrix, and the mechanical properties of the composites were also tested. The graphite crystal structure of VGCF showed very little change af-ter modification, the concentration of oxygen-containing functional groups on the surface of VGCF was visibly in-creased, and the dispersion and dispersion stability of VGCF in organic solvent were also clearly improved. In the cross section of the VGCF/SMPU composites, the dispersion of VGCF in matrix and the VGCF-matrix interfacial adhesion observed through SEM were both enhanced to a certain extent after surface modification. The two-step surface modified VGCF had more obvious mechanical reinforcement effects on the composites than that of the pris-tine VGCF.

  12. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    Science.gov (United States)

    Lan, Shengjie; Li, Lijuan; Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng

    2016-09-01

    In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material's crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Sisbnd Osbnd Mg) formed by the reaction between Si-OC2H5 and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  13. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    Science.gov (United States)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer; Nojeh, Alireza; Takahata, Kenichi

    2016-08-01

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ˜30% and ˜300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.

  14. Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma

    Science.gov (United States)

    Sun, Fang; Hung, Hsiang-Chieh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Galvan, Daniel David; Jain, Priyesh; Li, Bowen; Jiang, Shaoyi; Yu, Qiuming

    2016-11-01

    Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive analytical technique with molecular specificity, making it an ideal candidate for therapeutic drug monitoring (TDM). However, in critical diagnostic media including blood, nonspecific protein adsorption coupled with weak surface affinities and small Raman activities of many analytes hinder the TDM application of SERS. Here we report a hierarchical surface modification strategy, first by coating a gold surface with a self-assembled monolayer (SAM) designed to attract or probe for analytes and then by grafting a non-fouling zwitterionic polymer brush layer to effectively repel protein fouling. We demonstrate how this modification can enable TDM applications by quantitatively and dynamically measuring the concentrations of several analytes--including an anticancer drug (doxorubicin), several TDM-requiring antidepressant and anti-seizure drugs, fructose and blood pH--in undiluted plasma. This hierarchical surface chemistry is widely applicable to many analytes and provides a generalized platform for SERS-based biosensing in complex real-world media.

  15. Formation of superpower volume discharges and their application for modification of surface of metals

    Science.gov (United States)

    Tarasenko, Victor F.; Shulepov, M. A.

    2008-05-01

    The results of experimental investigations of a volume avalanche discharge initiated by an e-beam (VADIEB) and surface layer of Cu and AlBe foils modifications at the plasma action of VADIEB are given. The volume discharge in the air of atmosphere pressure formed in the gap with the cathode having small curvature radius and with high voltage pulses of nanosecond duration and positive and negative polarity. A supershort avalanche electron beam (SAEB) with formation conditions in gases under atmospheric pressure have been investigated. It is proved that the surface layer is cleared of carbon at foil treatment, and atoms of oxygen penetrate into a foil. It is show that the cleaning depth depends on polarity of voltage pulses. At positive polarity of a copper foil electrode the cleaning is observed at the depth over 50 nm, and atoms of oxygen penetrate at the depth up to 25 nm. Plasma of the superpower volume discharge of nanosecond duration with a specific excitation power of hundreds of MW/cm3, and SAEB, and the discharge plasma radiation of various spectral ranges (including UV, VUV and X-ray) has the influence on the anode. The supershort avalanche electronic beam is generated only at negative polarity of a voltage pulse on an electrode with a small radius of curvature. SAEB influence on modifications of the copper foil surface is registered. VADIEB is easily realized in various gases and at various pressures, and, at gas pressure decrease the density of the beam current in helium can achieve 2 kA/cm2. It allows predicting an opportunity of VADIEB application for metal surface modifications in various technological processes, and for surface dielectric modifications at the certain design of the anode.

  16. Grafting modification on the surface of titanium dioxide by polystyrene

    Institute of Scientific and Technical Information of China (English)

    Wei Wu; Shouci Lu; Jianfeng Chen; Lei Shao; CheeKing Tan

    2003-01-01

    Based on the technology of titanium dioxide grafting modification with polystyrene (PS), the modification mechanisms are studied and the polystyrene-grafting states on the surface of titanium dioxide have been set up. Under the synergistic actions of mechanical force, chemistry and heat, macromolecular free radicals of PS are created, at the same time, the O-O bonds of titanium dioxide are broken and the oxide free radicals produced, and the numbers of oxygen atom are increased and crystal lattice defects rich electrons are formed on the surface of titanium dioxide. The radical polymerization is the main reaction between PS and titanium dioxide and C-O bonds form in the process of modification. Multi-sites chemical adsorption also exists besides grafting between PS and titanium dioxide.

  17. Surface Modification of Hydroxyapatite by Using γ-aminopropyl Silane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Surface modification of hydroxyapatite(HA) powder was performed with r-aminopropyl silane in toluent solvent. The modification effects were characterized by using XPS and FT-IR methods. The results indicated that the P2p electron binding energy of the modified HA decreases 0.4eV compared to that of HA. Furthermore, a new peak, 998cm-1 absorption appeared in IR differential spectra of modified HA and HA, which is due to a stretching vibration of structure P-O-Si, meaning that a direct covalent bonding between hydroxyl group on HA surface and the organic silane molecule was realized after modification, and the chemical bonding type was P-O-Si. The formation of the above structure suggested that the more effective interfacial adhesion between the modified HA and polymer matrix could be carried out.

  18. Partial hydrophilic modification of biaxially oriented polypropylene film by an atmospheric pressure plasma jet with the allylamine monomer

    Science.gov (United States)

    Chen, W. X.; Yu, J. S.; Hu, W.; Chen, G. L.

    2016-11-01

    In this paper, the partial modification of the biaxially oriented polypropylene (BOPP) film for potential biological and packaging applications was achieved via hydrophilic modification using atmospheric pressure plasma jet (APPJ). In the APPJ system, the allylamine (ALA) monomer was polymerized on the BOPP surface by either the Ar/O2 or the He/O2 plasma. The results showed that plasmatic modification created many micro/nano sized holes on the BOPP film, which increased the surface roughness dramatically and the increased roughness enhanced the combining intensity between the BOPP film and the ALA polymer. However, such a plasmatic modification increased the water vapor permeability. The FTIR and XPS characterizations showed that the amine groups were grafted onto the BOPP film, and the contact angle of the BOPP film decreases from 98.5° to 8°. Compared with the BOPP films treated by the Ar or He plasma, the barrier property of the modified BOPP film increased significantly when the ALA polymer was incorporated. The bio-affinity/toxicity of ALA polymer was illustrated by the attachment of the cultured SMMC-7721 hepatoma cells on the modified BOPP film. The significant enhancement in the cell density indicated that modified BOPP film was highly bio-compatible and non-toxic, especially treated with the Ar/O2/ALA plasma.

  19. Towards a methodology for the effective surface modification of porous polymer scaffolds.

    Science.gov (United States)

    Safinia, Laleh; Datan, Nathalie; Höhse, Marek; Mantalaris, Athanassios; Bismarck, Alexander

    2005-12-01

    A novel low-pressure radio-frequency plasma treatment protocol was developed to achieve the effective through-thickness surface modification of large porous poly (D,L-lactide) (PDLLA) polymer scaffolds using air or water: ammonia plasma treatments. Polymer films were modified as controls. Scanning electron micrographs and maximum bubble point measurements demonstrated that the PDLLA foams have the high porosity, void fraction and interconnected pores required for use as tissue engineering scaffolds. The polymer surface of the virgin polymer does contain acidic functional groups but is hydrophobic. Following exposure to air or water: ammonia plasma, an increased number of polar functional groups and improved wetting behaviour, i.e. hydrophilicity, of wet surfaces was detected. The number of polar surface functional groups increased (hence the decrease in water contact angles) with increasing exposure time to plasma. The change in surface composition and wettablility of wet polymer constructs was characterised by zeta potential and contact angle measurements. The hydrophobic recovery of the treated PDLLA polymer surfaces was also studied. Storage of the treated polymer constructs in ambient air caused an appreciable hydrophobic recovery, whereas in water only partial hydrophobic recovery occurred. However, in both cases the initial surface characteristics decay as function of time.

  20. Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure

    Science.gov (United States)

    Peng, Shi; Li, Lingjun; Li, Wei; Wang, Chaoliang; Guo, Ying; Shi, Jianjun; Zhang, Jing

    2016-04-01

    In this paper, polyimide (PI) films are modified using an atmospheric pressure plasma generated by a dielectric barrier discharge (DBD) in argon. Surface performance of PI film and its dependence on exposure time from 0 s to 300 s are investigated by dynamic water contact angle (WCA), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy in attenuated total multiple reflection mode (FTIR-ATR). The study demonstrates that dynamic WCA exhibits a minimum with 40 s plasma treatment, and evenly distributed nano-dots and shadow concaves appeared for 40 s and 12 s Ar plasma treatment individually. A short period of plasma modification can contribute to the scission of the imide ring and the introduction of C-O and C=O (-COOH) by detailed analysis of FTIR-ATR.

  1. SURFACE-MODIFICATION OF FINE RED IRON OXIDE PIGMENT

    Institute of Scientific and Technical Information of China (English)

    Shuilin Zheng; Qinghui Zhang

    2003-01-01

    Surface-modification of fine red iron oxide pigment was carried out in an aqueous solution of sodium polyacrylate. The sedimentation time of modified samples in water increased from 1.05 to 264.4 hours while the particle size (d50) decreased from 1.09 to 0.85 μm, and the tinting strength increased from 100 to 115. The surface-modification as well as the dispersing and stabilizing mechanisms in aqueous solution of the samples were studied by means of IR,Thermal analysis and Zeta potential. The results showed that the modifier molecules acted on the surface of the particles by chemical and physical adsorption, and after the particles were dispersed in aqueous solution, endowing the particle surface with a relatively high negative Zeta potential, thus enhancing electrostatic and steric repulsion between particles for their effective stabilization.

  2. [Improvement of PVC bio-carrier surface property by remote plasma].

    Science.gov (United States)

    Li, Ru; Chen, Jie-Rong; Chen, Jun; Yao, Xin

    2006-01-01

    The effects of various remote plasma, such as Ar, He, O2 and N2 on PVC bio-carrier surface modification were studied. The surface properties were characterized by the contact angle measurement and X-ray photoelectron spectroscopy (XPS). The role of all kinds of active species such as electrons, ions and free radicals involved in plasma surface modification were evaluated. Results show that the remote plasma treatments modify the PVC surface in both wettability and composition, the (O + N)/C of PVC surface increases from 7% to 22%, and the water contact angle decreases from 97 degrees to 15 degrees. The optimal results was achieved when plasma treatment parameters were set, that is treatment time 3 min, Ar flux at 20 cm3/s, power at 60W, sample position of 40 cm. The results show that the modified PVC Bio-carrier adhesion rate and capacity on the modified surface are greatly increased.

  3. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    Science.gov (United States)

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  4. Chemical Modification Methods of Nanoparticles of Silicon Carbide Surface

    OpenAIRE

    Anton S. Yegorov; Vitaly S. Ivanov; Alexey V. Antipov; Alyona I. Wozniak; Kseniia V. Tcarkova.

    2015-01-01

    silicon carbide exhibits exceptional properties: high durability, high thermal conductivity, good heat resistance, low thermal expansion factor and chemical inactivity. Reinforcement with silicon carbide nanoparticles increases polymer’s tensile strength and thermal stability.Chemical methods of modification of the silicon carbide surface by means of variety of reagents from ordinary molecules to macromolecular polymers are reviewed in the review.The structure of silicon carbide surface layer...

  5. Long-term stable surface modification of DLC coatings

    Directory of Open Access Journals (Sweden)

    Gotzmann Gaby

    2017-09-01

    Full Text Available The use of coatings based on diamond like carbon (DLC for medical applications was established during the last years. Main advantages of these coatings are its high hardness, good wear and friction behavior and its biocompatibility. Using low-energy electron-beam treatment, we addressed the surface modification of DLC coatings. The aim was to generate new biofunctional surface characteristics that are long-term stable.

  6. Enhanced biocompatibility of TiO2 surfaces by highly reactive plasma

    Science.gov (United States)

    Junkar, Ita; Kulkarni, Mukta; Drašler, Barbara; Rugelj, Neža; Recek, Nina; Drobne, Damjana; Kovač, Janez; Humpolicek, Petr; Iglič, Aleš; Mozetič, Miran

    2016-06-01

    In the present study the biological response to various nanotopographic features after gaseous plasma treatment were studied. The usefulness of nanostructured surfaces for implantable materials has already been acknowledged, while less is known on the combined effect of nanostructured plasma modified surfaces. In the present work the influence of oxygen plasma treatment on nanostructured titanium oxide (TiO2) surfaces was studied. Characterization of the TiO2 surface chemical composition and morphological features was analyzed after plasma modification by x-ray photoelectron spectroscopy and by scanning electron microscopy while surface wettability was studied with measuring the water contact angle. Cell adhesion and morphology was assessed from images taken with scanning electron microscopy, whereas cell viability was measured with a calorimetric assay. The obtained results showed that oxygen plasma treatment of TiO2 nanotube surfaces significantly influences the adhesion and morphology of osteoblast-like cells in comparison to untreated nanostructured surfaces. Marked changes in surface composition of plasma treated surfaces were observed, as plasma treatment removed hydrocarbon contamination and removed fluorine impurities, which were present due to the electrochemical anodization process. However no differences in wettability of untreated and plasma treated surfaces were noticed. Treatment with oxygen plasma stimulated osteoblast-like cell adhesion and spreading on the nanostructured surface, suggesting the possible use of oxygen plasma surface treatment to enhance osteoblast-like cell response.

  7. Electron-ion plasma modification of Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yurii, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Rygina, Mariya, E-mail: l-7755me@mail.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com; Krysina, Olga, E-mail: krysina-82@mail.ru; Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, Tomsk, 634002, Russia, Tomsk, 2 Solyanaya Sq (Russian Federation)

    2016-01-15

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm{sup 2}) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa.

  8. Spatially selective modification of PLLA surface: From hydrophobic to hydrophilic or to repellent

    Science.gov (United States)

    Bastekova, Kristina; Guselnikova, Olga; Postnikov, Pavel; Elashnikov, Roman; Kunes, Martin; Kolska, Zdenka; Švorčík, Vaclav; Lyutakov, Oleksiy

    2017-03-01

    A universal approach to controlled surface modification of polylactic acid (PLLA) films using diazonium chemistry was proposed. The multistep procedure includes surface activation of PLLA by argon plasma treatment and chemical activation of arenediazonium tosylates by NaBH4. The surface of PLLA film was grafted with different functional organic groups (OFGs), changing the PLLA surface properties (wettability, morphology, zeta potential, chemical composition, and mechanical response). Three approaches of OFG grafting were examined: (i) plasma treatment following by PLLA immersion into diazonium salt aqueous solution; (ii) grafting of PLLA surface through the reaction with chemically created aryl radicals; (iii) mutual combination of both methods The best results were achieved in the last case, where the previous plasma treatment was combined with further reaction of PLLA surface with generated aryl radicals. Using this method PLLA surface was successfully grafted with amino, carboxyl, aliphatic and fluorinated OFGs. Further investigation of surface properties from potential biological and medical points of view was performed using zeta potential, biodegradation and biofouling tests. It was shown that proposed technique allows preparation of biorepellent or bioabsorptive surfaces, tuning of PLLA biodegradation rate and nanomechanical properties, as well as the introduction of inverse properties (such as hydrophilic and hydrophobic) on both sides of PLLA films.

  9. Effect of Plasma Processing and Organosilane Modifications of Polyethylene on Aeromonas hydrophila Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Dorota Kregiel

    2014-01-01

    Full Text Available The aim of our research was to study how the modifications of polyethylene—a material commonly used in medicine and water industry—influence bacterial cell attachment and biofilm formation. The native surface was activated and modified using two-step process consisting in the activation of native surface with a H2O vapor plasma followed by its treatment with various organosilanes, namely, [3(tertbutylamine-2hydroxy propyloxypropyl] diethoxymethylsilane, 1H,1H,2H,2H-perfluorooctylmethyldimethoxysilane, dimethoxydimethylsilane, and isobutylmethyldimethoxysilane. The effect of polyethylene modification after chemical treatment was analyzed using surface tension measurement. The adhesive properties of Aeromonas hydrophila LOCK0968 were studied in water with a low concentration of organic compounds, using luminometric and microscopic methods, and the viability of the adhered bacterial cells was evaluated using the colony forming units method. After two-week incubation the chemically modified materials exhibited better antiadhesive and antibacterial characteristics in comparison to the native surface. Among the examined modifying agents, dimethoxydimethylsilane showed the best desired properties.

  10. Effect of plasma processing and organosilane modifications of polyethylene on Aeromonas hydrophila biofilm formation.

    Science.gov (United States)

    Kregiel, Dorota; Niedzielska, Kamila

    2014-01-01

    The aim of our research was to study how the modifications of polyethylene--a material commonly used in medicine and water industry--influence bacterial cell attachment and biofilm formation. The native surface was activated and modified using two-step process consisting in the activation of native surface with a H2O vapor plasma followed by its treatment with various organosilanes, namely, [3(tertbutylamine-2hydroxy) propyloxypropyl] diethoxymethylsilane, 1H,1H,2H,2H-perfluorooctylmethyldimethoxysilane, dimethoxydimethylsilane, and isobutylmethyldimethoxysilane. The effect of polyethylene modification after chemical treatment was analyzed using surface tension measurement. The adhesive properties of Aeromonas hydrophila LOCK0968 were studied in water with a low concentration of organic compounds, using luminometric and microscopic methods, and the viability of the adhered bacterial cells was evaluated using the colony forming units method. After two-week incubation the chemically modified materials exhibited better antiadhesive and antibacterial characteristics in comparison to the native surface. Among the examined modifying agents, dimethoxydimethylsilane showed the best desired properties.

  11. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

    CERN Document Server

    Hubert, Julie; Dufour, Thierry; Vandencasteele, Nicolas; Reniers, François; Viville, Pascal; Lazzaroni, Roberto; Raes, M; Terryn, Herman

    2016-01-01

    The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115{\\textdegree}, but only the filamentary argon d...

  12. Surface modification for interaction study with bacteria and preosteoblast cells

    Science.gov (United States)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted

  13. Surface modification of low temperature plasma-pretreated ePTFE film by AAc graft copolymerization%低温等离子体处理及丙烯酸接枝改性膨化聚四氟乙烯薄膜

    Institute of Scientific and Technical Information of China (English)

    陈亏; 高晶; 俞建勇; 还伟海; 马一梓

    2011-01-01

    PTFE adheres poorly to other materials due to its low surface energy and chemical inertness,which leads to failure of PTFE in many industrial applications. To spread the applications, numerous methods for surface modification have been developed to activate the PTFE surface for improving its wettability and adhesion ability. This study focused on the surface modification of expanded poly (tetrafluoroethylene)(ePTFE) film by a two-step process based on low-pressure plasma treatment followed by acrylic acid (AAc) graft copolymerization. The influences of different plasma treatments and graft copolymerization conditions on the hydrophilicity of film surface were studied. The wettability of the ePTFE film surface was determined by water contact angle, and the surface elemental compositions and the type of functional groups on the surface of the treated ePTFE samples were evaluated by X-ray photoelectron spectroscopy (XPS). The results indicated that the contact angle of ePTFE film declined from 145° to 102° when it was only treated by plasma treatment. After AAc grafted copolymerization, the contact angle decreased further to a smaller value. And the wettability of the film was improved obviously and kept constant. The condition of plasma treatment was He, 100 W, 90 s. The condition of AAc graft copolymerization was 30% (vol.), 70C, 3 h. XPS analysis showed that the element ratio of F/C declined from 1. 960 to 0. 853, while the element ratio of O/C rose from 0 to 0. 147. The result indicated that plasma treatment could greatly change the surface chemistry as well as morphology of ePTFE films. The surface roughness increased with plasma treatment time. From XPS measurements, it could be seen that the polar hydrophilic groups had been successfully grafted onto the ePTFE surface. The inert fluorine elements were partly replaced by oxygen polar groups, which was the fundamental reason for the improvement of hydrophilicity of ePTFE film.%采用He等离子体对膨化

  14. Impulse Plasma In Surface Engineering - a review

    Science.gov (United States)

    Zdunek, K.; Nowakowska-Langier, K.; Chodun, R.; Okrasa, S.; Rabinski, M.; Dora, J.; Domanowski, P.; Halarowicz, J.

    2014-11-01

    The article describes the view of the plasma surface engineering, assuming the role of non-thermal energy effects in the synthesis of materials and coatings deposition. In the following study it was underlined that the vapor excitation through the application of an electric field during coatings deposition gives new possibilities for coatings formation. As an example the IPD method was chosen. During the IPD (Impulse Plasma Deposition) the impulse plasma is generated in the coaxial accelerator by strong periodic electrical pulses. The impulse plasma is distributed in the form of energetic plasma pockets. Due to the almost completely ionization of gas, the nucleation of new phases takes place on ions directly in the plasma itself. As a result the coatings of metastable materials with nano-amorphous structure and excellent adhesion to the non-heated intentionally substrates could be deposited. Recently the novel way of impulse plasma generation during the coatings deposition was proposed and developed by our group. An efficient tool for plasma process control, the plasma forming gas injection to the interelectrode space was used. Periodic changing the gas pressure results in increasing both the degree of dispersion and the dynamics of the plasma pulses. The advantage of the new technique in deposition of coatings with exceptionally good properties has been demonstrated in the industrial scale not only in the case of the IPD method but also in the case of very well known magnetron sputtering method.

  15. Improved LWR Cladding Performance by EPD Surface Modification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  16. Natural bone-like biomimetic surface modification of titanium

    Science.gov (United States)

    Yoon, Il-Kyu; Hwang, Ji-Young; Jang, Won-Cheoul; Kim, Hae-Won; Shin, Ueon Sang

    2014-05-01

    An implantable metallic surface consisting of titanium (Ti) was modified with natural bone-mimicking CNT-Gelatin-HA nanohybrids to create a new surface with similar properties to the surrounding bone tissue in terms of the chemical constitution, nanotopography, wettability, and biocompatibility. The biomimetic surface modification was achieved through the covalent immobilization of carbon nanotubes (CNTs) onto the Ti surface, the covalent tethering of gelatin molecules onto the CNT surface, and then the deposition of hydroxyl apatite (HA) crystals onto the gelatin-tethered CNTs in SBF solution. The SEM microscopic images demonstrated that the modified Ti surface continually maintained a fibrous structure of CNTs, but that the CNT fibers were hybridized with gelatin and HA in a multi-core-shell structure of similar constitution to that of the collagen fibers of natural bone. The new surface of the Ti substrates showed significantly higher mechanical properties and favorable wettability and biocompatibility.

  17. Surface modification on silicon with chitosan and biological research

    Energy Technology Data Exchange (ETDEWEB)

    Lue Xiaoying; Cui Wei; Huang Yan; Zhao Yi [State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 (China); Wang Zhigong, E-mail: luxy@seu.edu.c [Institute of RF- and OE-ICs, Southeast University, Nanjing, 210096 (China)

    2009-08-15

    The aim of the present study was to investigate the effect of chitosan modification of silicon (Si) on protein adsorption, cell adhesion and cell proliferation. Chitosan was first immobilized on the Si surface through a (3-aminopropyl)triethoxysilane (APTES) bridge. The surface was then characterized by contact angle measurement, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX). The amount of protein adsorbed on the native Si and chitosan-modified Si surface was evaluated by a modified Coomassie brilliant blue (CBB) protein assay. The adhesion and proliferation behavior of L-929 and pc12 cells were then assessed by microscopy and methylthiazoltetrazolium (MTT) tests. The results showed that the chitosan modification could resist protein adsorption and inhibit the adhesion and proliferation of two kinds of cells on Si.

  18. Effect of surface modification on semiconductor nanocrystal fluorescence lifetime.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Orte, Angel; Hall, Elizabeth A H; Alvarez-Pez, Jose M; Talavera, Eva M

    2011-04-04

    Semiconductor nanocrystals, namely, quantum dots (QDs), present a set of unique photoluminescence properties, which has led to increased interest in using them as advantageous alternatives to conventional organic dyes. Many applications of QDs involve surface modification to enhance the solubility or biocompatibility of the QDs. One of the least exploited properties of QDs is the very long photoluminescence lifetime that usually has complex kinetics owing to the effect of quantum confinement. Herein, we describe the effect of different surface modifications on the photoluminescence decay kinetics of QDs. The different surface modifications were carefully chosen to provide lipophilic or water-soluble QDs with either positive or negative surface net charges. We also survey the effect on the QD lifetime of several ligands that interact with the QD surface, such as organic chromophores or fluorescent proteins. The results obtained demonstrate that time-resolved fluorescence is a useful tool for QD-based sensing to set the basis for the development of time-resolved-based nanosensors.

  19. 用于纺织品表面永久改性的工业真空等离子体技术%Industrial vacuum plasma technology for permanent modification of textile surface

    Institute of Scientific and Technical Information of China (English)

    R.Alam; K.M.G.Hossain; C.Grabher; M.M.Hossain; 黄明(译)

    2016-01-01

    通过等离子体处理,合成材料(如涂覆聚氨酯的聚酯或聚酰胺)表面的黏附性得以显著提高。研究还表明:通过聚合物和非聚合物形成的气体混合物引入极性基团,可显著改善材料的亲水耐久性;且可聚合性气体,如 CH 4,C2 H 2,C2 H 4及其混合物,或诸如丙烯酸、硅氧烷等一些液体单体,对织物表面永久性亲水、防油和防污改性方面发挥着重要的作用。%In this work, the adhesion of synthetic materials such as polyester, polyamide surfaces with polyurethane were enhanced remarkably by plasma treatments. It was also investigated that the durability of hydrophilicity can be improved markedly by the incorporation of polar groups using polymer and non-polymer forming gaseous mixtures. On the other hand, polymerizable gases such as CH4 ,C2 H2 ,C2 H4 or their mixtures, or some liquid monomers such as acrylates, siloxanes etc. play an important role to alter the surface permanently from hydrophilic to water, oil and soil-repellent.

  20. Surface modification of porous polypropylene membrane by plasma-initiated RAFT graft polymerization%等离子体引发的RAFT接枝聚合对聚丙烯多孔膜的表面改性

    Institute of Scientific and Technical Information of China (English)

    周月; 汪思孝; 黄健; 王晓琳

    2012-01-01

    采用可逆加成-断裂链转移(RAFT)可控/活性自由基聚合方法,以二硫代苯甲酸-2-腈基异丙酯(CPDB)为RAFT链转移剂并以丙烯酸(AA)为单体,在聚丙烯(PP)多孔膜表面进行了等离子体引发的RAFT接枝聚合改性.聚合动力学研究结果表明:聚合反应具有RAFT聚合动力学特征,等离子体处理可以引发RAFT自由基聚合.以傅立叶红外光谱仪(FT- IR)、扫描电子显微镜(SEM)、压汞、水通量等方法,研究了改性多孔膜的表面化学与形态结构及孔结构特征.改性多孔膜表面的接枝率随单体转化率的提高呈线性增长,表面亲水性得到显著改善,同时膜孔径及水通量随接枝聚合时间的提高持续减小.其趋势符合RAFT可控/活性自由基聚合机制,实现了多孔膜膜孔径控制的目的.%A reversible addition-fragment chain transfer (RAFT) graft polymerization method, initiated by the pulsed plasma, was used to modify the surface of porous polypropylene ( PP) membrane, with 2-cyanoprop-2-yl dithiobenzoate (CPDB) used as the RAFT agent and acrylic acid as the monomer. The result of the graft polymerization kinetics was in agreement with that of the RAFT polymerization, and the plasma-initiated method was feasible. The surface chemistry, the surface morphology and the porous structure of modified PP membranes were evaluated by Fourier transform minfrared spectroscopy ( FT-IR) , scanning electron microscope (SEM) ,mercury intrusion, and water flux measurements. Graft amounts of modified membranes exhibited a linear increase with the increase of the conversion, while pore sizes and water fluxes were decreased continuously with the prolonging of polymerization time. The pore size of the porous PP membrane was regulated by a simple tune of the polymerization time or the monomer conversion by the RAFT graft polymerization.

  1. 氩气低温等离子体处理HDPE薄膜表面的性能研究%Study on Surface Modification of High Density Polyethylene ( HDPE ) Film by Low Temperature Plasma Treatment of Argon

    Institute of Scientific and Technical Information of China (English)

    王建龙; 王正祥; 解林坤; 顾丽争

    2012-01-01

    The surface of high density polyethylene was modified using low temperature Ar plasma technology under the condition of vacuum pressure of 20 Pa and treatment power of 30 W. The results have been analyzed and characterized with water contact angle measurement, scanned electron microscopy(SEM), atomic force microscopy(AFM), XPS, etc. The results show that the weight loss rate of per unit area has reached maximum value at discharge time of 90 seconds during the treatment time of 0 -300 s; the water contact angle sharply decreased in the 0 - 160 s treatment time and their values did not cause significant changes during the 160 -300 s treatment time; the water contact angle gradually increased with the longer standing time; the surface of HDPE could form some polar species such as carbonyl, hydroxyl and carboxyl groups and the binding energy of the surface changed after treatment by low temperature Ar plasma.%利用低温等离子体,以氩气为工作气体,在工作压强为20Pa、处理功率为30w的条件下对HDPE薄膜进行了表面改性。用接触角、SEM、AFM、XPS等手段对改性结果进行了分析和表征。研究结果表明:在0~300s的处理时间内,失重率在处理时间为90s左右时达最大值;接触角在0~160s内随处理时间的增加显著减小,而在160~300s的处理时间内没有发生明显变化;改性后的接触角随着放置时间的推移出现微弱回复;HDPE薄膜经过氩气低温等离子体处理后,能在其表面形成各种极性基团,主要是羰基、羟基和羧基,且薄膜经处理后,其表面的结合能及平面光洁度发生了改变。

  2. Measurements of an expanding surface flashover plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R., E-mail: john.harris@colostate.edu [Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2014-05-21

    A better understanding of vacuum surface flashover and the plasma produced by it is of importance for electron and ion sources, as well as advanced accelerators and other vacuum electronic devices. This article describes time-of-flight and biased-probe measurements made on the expanding plasma generated from a vacuum surface flashover discharge. The plasma expanded at velocities of 1.2–6.5 cm/μs, and had typical densities of 10{sup 10}–10{sup 12} cm{sup −3}. The expansion velocity of the plasma leading edge often exhibited a sharp increase at distances of about 50 mm from the discharge site. Comparison with biased-probe data suggests that, under most conditions, the plasma leading edge was dominated by negative ions, with the apparent increase in velocity being due to fast H{sup −} overtaking slower, heavier ions. In some cases, biased-probe data also showed abrupt discontinuities in the plasma energy distribution co-located with large changes in the intercepted plasma current, suggesting the presence of a shock in the leading edge of the expanding plasma.

  3. Polarity functions' characterization and the mechanism of starch modification by DC glow discharge plasma.

    Science.gov (United States)

    Khorram, S; Zakerhamidi, M S; Karimzadeh, Z

    2015-01-01

    The wheat starch was investigated, before and after exposure to the argon and oxygen glow discharge plasma, without any added chemical reagents, using a novel media polarity functions method. The mechanisms of modification of starch in plasma discharge irradiation were explained using some methods such as; NMR, IR spectroscopy, Kamlet-Abboud-Taft polarity functions (specific and nonspecific interaction) of modified starch. The starch modification, by plasma treatment, shows valuable changes with plasma gas and relative ionized or active species. Characterizations indicate that argon glow discharge plasma increases crosslink in C-2 site of starch. Also, oxygen plasma discharge irradiation tends to oxidize the OH group in C-6 site of carbonyl group. Furthermore, the reported mechanisms show the highest efficiency, because of the stereo-chemical orientation of active sites of starch and plasma potential of wall in plasma media. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  5. Modifications of aluminum film caused by micro-plasmoids and plasma spots in the effluent of an argon non-equilibrium plasma jet

    Science.gov (United States)

    Engelhardt, Max; Ries, Stefan; Hermanns, Patrick; Bibinov, Nikita; Awakowicz, Peter

    2017-09-01

    A smooth layer of hard aluminium film is deposited onto a glass substrate with a multi-frequency CCP discharge and then treated in the effluent of a non-equilibrium atmospheric pressure plasma jet (N-APPJ) operated with Ar flow. A thin filament is formed in the argon N-APPJ through contraction of a diffuse feather-like discharge. The aluminium surface treated in the effluents of the N-APPJ is significantly modified. Erosion tracks of different forms and micro-balls composed of aluminium are observed on the treated surface. Based on CCD images of active plasma discharge channels, SEM images of the treated surface and current-voltage characteristics, these surface modifications are interpreted as traces of plasma spots and plasmoids. Plasma spots are focused plasma channels, which are characterized by an intense emission in CCD images at the contact point of a plasma channel with the treated metal surface and by deep short tracks on the aluminium surface, observed in SEM images. Plasmoids are plasma objects without contact to any power supply which can produce long, thin and shallow traces, as can be observed on the treated surface using electron microscopy. Based on observed traces and numerous transformations of plasma spots to plasmoids and vice versa, it is supposed that both types of plasma objects are formed by an extremely high axial magnetic field and differ from each other due to the existence or absence of contact to a power supply and the consequential transport of electric current. The reason for the magnetic field at the axis of these plasma objects is possibly a circular current of electron pairs in vortices, which are formed in plasma by the interaction of ionization waves with the substrate surface. The extremely high magnetic field of plasma spots and plasmoids leads to a local destruction of the metal film and top layer of the glass substrate and to an attraction of paramagnetic materials, namely aluminium and oxygen. The magnetic attraction of

  6. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid;

    2014-01-01

    Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium...... in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real...

  7. Design and Application of Surface Modification at Molecular Scale

    Institute of Scientific and Technical Information of China (English)

    CHEN Miao; XUE Qun-Ji; ZHOU Feng; GUAN Fei; LIU Wei-Min

    2004-01-01

    The structuring of surfaces on a nanoscale level-both chemically and topographically has become an increasingly relevant field of research in nanotechnology with widespread application potential in various fields of science ( e. g.surface engineering, electronics, biotechnology, optics). Two examples on surface modification at molecular scale with self-assembly monolayers are shown: ( 1 ) Chemically attaching ultra-thin polymer films through the self-assembly of silane fictionalized copolymer have been approved in this article. (2) The patterned films with microstructures on different substrates have been prepared through micro-contact printing technique and electro polymerization.

  8. Experimental Study on Material Surface Modification of Tool Steel

    Institute of Scientific and Technical Information of China (English)

    沈丽如; 童洪辉; 王珂; 铁军; 孙爱萍

    2002-01-01

    This paper presents the surface temperature behavior of M42 high-speed tool steel samples during N+ implantation in an industrialized GLZ-100 metal-ion implantation machine. A detail study has been made on the parameters ofN+ implantation. Optimized technical parameters have been presented. The microhardness of the sample surface implanted under these parameters has been increased by a factor of 2.3, and the wear-resistance has been improved by about 5.4 times.The research on the mechanism of surface modification of M42 steel by nitrogen ion implantation has also been made.

  9. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Noh, I. S.; Kim, H. R.; Choi, Y. J.; Park, H. S. [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2007-04-15

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  10. Tribological effects of polymer surface modification through plastic deformation

    Indian Academy of Sciences (India)

    K O Low; K J Wong

    2011-12-01

    The efficacy of using polymers in cylindrical applications depends closely on its surface friction and wear characteristics. In this regard, a surface modification technique through plastic deformation has been implemented. Roller burnishing is commonly used to improve the surface quality of non-ferrous surfaces, but no work showed concern about roller burnishing as a polymer surface treatment process. The objective of the present work is to investigate the influence of burnishing force and burnishing speed on the friction and wear performance of acetal homopolymer and polyurethane under dry and lubricated sliding conditions. The results reveal that the coefficient of friction and wear rate decreased to a minimum value and then increased as higher burnishing force and speed were applied. It was shown that roller burnishing had favourable prospective to be utilized as a valuable polymer surface treatment technique.

  11. Surface Modification of Nitinol by Chemical and Electrochemical Etching

    Science.gov (United States)

    Yang, Zhendi; Wei, Xiaojin; Cao, Peng; Gao, Wei

    2013-07-01

    In this paper, Nitinol, an equiatomic binary alloy of nickel and titanium, was surface modified for its potential biomedical applications by chemical and electrochemical etching. The main objective of the surface modification is to reduce the nickel content on the surface of Nitinol and simultaneously to a rough surface microstructure. As a result, better biocompatibility and better cell attachment would be achieved. The effect of the etching parameters was investigated, using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometry (EDX) and X-ray photoelectron spectrometry (XPS). The corrosion property of modified Nitinol surfaces was investigated by electrochemical work station. After etching, the Ni content in the surface layer has been reduced and the oxidation of Ti has been enhanced.

  12. Surface modification of promising cerium oxide nanoparticles for nanomedicine applications

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-14

    Cerium oxide nanoparticles (CNPs) or nanoceria have emerged as a potential nanomedicine for the treatment of several diseases such as cancer. CNPs have a natural tendency to aggregate or agglomerate in their bare state, which leads to sedimentation in a biological environment. Since the natural biological environment is essentially aqueous, nanoparticle surface modification using suitable biocompatible hydrophilic chemical moieties is highly desirable to create effective aqueous dispersions. In this report, (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl)triethoxysilane was used as a functional, biocompatible organosilane to modify the surface of CNPs to produce promising nanoparticles which open substantial therapeutic avenues. The surface modified nanoparticles were produced in situ via an ammonia-induced ethylene glycol-assisted precipitation method and were characterized using complimentary characterization techniques. The interaction between the functional moiety and the nanoparticle was studied using powerful cross polarization/magic angle sample spinning solid state nuclear magnetic resonance spectroscopy. The surface-modified nanoparticles were extremely small and demonstrated a significant improvement in aqueous dispersibility. Moreover, the existence of a strong ionic coordination between the functional moiety and the surface of the nanoparticle was realised, indicating that the surface modified nanoceria are stable and that the nanoparticles should demonstrate an enhanced circulation time in a biological environment. The surface modification approach should be promising for the production of CNPs for nanomedicine applications. © The Royal Society of Chemistry.

  13. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Biazar E

    2011-03-01

    Full Text Available Esmaeil Biazar1, Majid Heidari2, Azadeh Asefnezhad2, Naser Montazeri11Department of Chemistry, Islamic Azad University, Tonekabon Branch, Mazandaran; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IranBackground: Surface modification of medical polymers can improve biocompatibility. Pure polystyrene is hydrophobic and cannot provide a suitable environment for cell cultures. The conventional method for surface modification of polystyrene is treatment with plasma. In this study, conventional polystyrene was exposed to microwave plasma treatment with oxygen and argon gases for 30, 60, and 180 seconds.Methods and results: Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated clearly the presence of functional groups. Atomic force microscopic images of samples irradiated with inert and active gases indicated nanometric surface topography. Samples irradiated with oxygen plasma showed more roughness (31 nm compared with those irradiated with inert plasma (16 nm at 180 seconds. Surface roughness increased with increasing duration of exposure, which could be due to reduction of the contact angle of samples irradiated with oxygen plasma. Contact angle analysis showed reduction in samples irradiated with inert plasma. Samples irradiated with oxygen plasma showed a lower contact angle compared with those irradiated by argon plasma.Conclusion: Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation for samples radiated by oxygen plasma with increasing duration of exposure than those of normal samples.Keywords: surface topography, polystyrene, plasma treatment, argon, oxygen

  14. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu [Vanderbilt Institute for Integrative Biosystems Research and Education and Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2015-06-15

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  15. A REVIEW OF OXYGEN-CONTAINING SURFACE GROUPS AND SURFACE MODIFICATION OF ACTIVATED CARBON

    Institute of Scientific and Technical Information of China (English)

    WU Yongwen; LI Zhong; XI Hongxia; XIA Qibin

    2004-01-01

    This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.

  16. The effect of substrate modification on microbial growth on surfaces

    CERN Document Server

    Brown, A A

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process...

  17. New developments in surface functionalization of polymers using controlled plasma treatments

    Science.gov (United States)

    Vesel, Alenka; Mozetic, Miran

    2017-07-01

    We are presenting recent advances in surface functionalization of materials such as functional polymers using gaseous plasma treatments. Functionalization is a result of chemical interaction between solid materials and reactive plasma species including charged particles, neutral radicals, excited species and UV radiation. The degree of surface functionalization depends on the type of polymers and fluxes of reactive plasma species. An appropriate choice of plasma parameters thus enables almost arbitrary tailoring of the surface wettability. This review paper gives a brief introduction to the formation of reactive gaseous species upon plasma conditions in different discharge configurations and describes plasma-surface interaction with an emphasis on the differences between different reactive plasma species. Analysis of the relevant literature is given and correlations between treatment parameters and surface finish are drawn. Numerous authors have used plasma treatment for modification of the surface functionalities, however, the obtained surface properties often differ even for the same materials. The reason for such diverse results is the application of various gaseous discharges for plasma generation. Apart from the type and amount of functional groups induced by plasma treatment, the surface functionality depends also on the surface morphology on the sub-micron scale; therefore, this effect is stressed as well. Finally, some future guidelines are given.

  18. Surface chemical modification of fullerene by mechanochemical treatment

    Science.gov (United States)

    Todorović Marković, B.; Jokanović, V.; Jovanović, S.; Kleut, D.; Dramićanin, M.; Marković, Z.

    2009-06-01

    In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C 60 after surface functionalization.

  19. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    Science.gov (United States)

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-14

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices.

  20. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups.

    Science.gov (United States)

    Choi, Hyung Woo; Lee, Hong Jae; Kim, Kyung Ja; Kim, Hyun-Min; Lee, Sang Cheon

    2006-12-01

    A novel approach for the surface modification of hydroxyapatite (HAp) nanocrystals is described by grafting polymerization of vinyl phosphonic acid (VPA) using a redox initiating system in an aqueous media. Fourier transform infrared (FT-IR) and XRD analyses confirmed the modification reaction on HAp surfaces. Inductively coupled plasma mass spectroscopy (ICP MS) showed that the Ca/P molar ratio decreased from 1.67 to 1.36 with increasing the feed VPA amount. Zeta potentials of unmodified HAp and modified HAp in phosphate-buffered saline (PBS) solutions (pH 7.4, ionic strength = 10 mM) were negative and decreased with increasing the amount of grafted PVPA. Transmission electron microscopy (TEM) measurements and time-dependent phase monitoring indicated that the colloidal stability of modified HAp over unmodified HAp in water dramatically increased and tended to exist as single nanocrystals without aggregation.

  1. Plasma Limiter Based on Surface Wave Plasma Excited by Microwave

    Institute of Scientific and Technical Information of China (English)

    YANG Geng; TAN Jichun; SHEN Benjian

    2008-01-01

    A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres-sure, ionization degree and density of seed electrons under low pressure (0.01 ~1 Torr) and high pressure (10 ~1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 1016 m-3, and ionization degree of 10-4, has a breakdown time of approximate 19.6 ns.

  2. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenjie [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Wang, Heyun [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002 (China); Yang, Dazhi [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); An, Bo [Department of Orthopedics, Affiliated Hospital of Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Zhang, Wencheng [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-10-15

    The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P = 0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels. Highlights: • Electrospun nanofibrous scaffolds were successfully

  3. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    Science.gov (United States)

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  4. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification.

    Science.gov (United States)

    Lackner, Susanne; Holmberg, Maria; Terada, Akihiko; Kingshott, Peter; Smets, Barth F

    2009-08-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG) chains with two different functional groups (-PEG-NH(2) and -PEG-CH(3)). Biofilm growth experiments using a mixed nitrifying bacterial culture revealed that the specific combination of PEG chains with amino groups resulted in most biofilm formation on both PP and PE samples. Detachment experiments showed similar trends: biofilms on -PEG-NH(2) modified surfaces were much stronger compared to the other modifications and the unmodified reference surfaces. Electrostatic interactions between the protonated amino group and negatively charged bacteria as well as PEG chain density which can affect the surface structure might be possible explanations of the superiority of the -PEG-NH(2) modification. The success of the-PEG-NH(2) modification was independent of the original surface and might, therefore, be used in wastewater treatment bioreactors to improve reactor performance by making biofilm formation more stable and predictable.

  5. Surface Modification of the Conducting Polymer, Polypyrrole, via Affinity Peptide**

    Science.gov (United States)

    Nickels, Jonathan D.; Schmidt, Christine E.

    2012-01-01

    A novel strategy for affinity-based surface modification of the conducting polymer, polypyrrole, (PPy), has been developed. A 12-amino acid peptide (THRTSTLDYFVI, hereafter denoted T59) was previously identified via the phage display technique. This peptide non-covalently binds to the chlorine-doped conducting polymer polypyrrole (PPyCl). Studies have previously shown that conductive polymers have promising application in neural electrodes, sensors, and for improving regeneration and healing of peripheral nerves and other tissues. Thus, the strong and specific attachment of bio-active molecules to the surface of PPy using the T59 affinity peptide is an exciting new approach to enhance the bioactivity of electrically active materials for various biomedical applications. We demonstrate this by using T59 as a tether to modify PPyCl with the laminin fragment IKVAV to enhance cell interactions, as well as with the so-called stealth molecule poly(ethylene glycol; PEG) to decrease cell interactions. Using these two modification strategies, we were able to control cell attachment and neurite extension on the PPy surface, which is critical for different applications (i.e., the goal for tissue regeneration is to enhance cell interactions, whereas the goal for electrode and sensor applications is to reduce glial cell interactions and thus decrease scarring). Significantly, the conductivity of the PPyCl surface was unaffected by this surface modification technique, which is not the case with other methods that have been explored to surface modify conducting polymers. Finally, using subcutaneous implants, we confirmed that the PPyCl treated with the T59 peptide did not react in vivo differently than untreated PPyCl. PMID:23129217

  6. Surface modification of the conducting polymer, polypyrrole, via affinity peptide.

    Science.gov (United States)

    Nickels, Jonathan D; Schmidt, Christine E

    2013-05-01

    A novel strategy for affinity-based surface modification of the conducting polymer, polypyrrole, (PPy), has been developed. A 12-amino acid peptide (THRTSTLDYFVI, hereafter denoted T59) was previously identified via the phage display technique. This peptide noncovalently binds to the chlorine-doped conducting polymer polypyrrole (PPyCl). Studies have previously shown that conductive polymers have promising application in neural electrodes, sensors, and for improving regeneration and healing of peripheral nerves and other tissues. Thus, the strong and specific attachment of bioactive molecules to the surface of PPy using the T59 affinity peptide is an exciting new approach to enhance the bioactivity of electrically active materials for various biomedical applications. We demonstrate this by using T59 as a tether to modify PPyCl with the laminin fragment IKVAV to enhance cell interactions, as well as with the so-called stealth molecule poly(ethylene glycol; PEG) to decrease cell interactions. Using these two modification strategies, we were able to control cell attachment and neurite extension on the PPy surface, which is critical for different applications (i.e., the goal for tissue regeneration is to enhance cell interactions, whereas the goal for electrode and sensor applications is to reduce glial cell interactions and thus decrease scarring). Significantly, the conductivity of the PPyCl surface was unaffected by this surface modification technique, which is not the case with other methods that have been explored to surface modify conducting polymers. Finally, using subcutaneous implants, we confirmed that the PPyCl treated with the T59 peptide did not react in vivo differently than untreated PPyCl. Copyright © 2012 Wiley Periodicals, Inc.

  7. Surface characterization of alloy Ti-6Al-7Nb treated plasma; Caracterizacao superficial de ligas de Ti-6Al-7Nb tratadas a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moura, J.K.L.; Macedo, H.R.A.; Brito, E.M.; Brandim, A.S., E-mail: jessika.kaline@hotmail.com [Instituto Federal do Piaui (PPGEM/IFPI), Teresina, PI (Brazil)

    2014-07-01

    Plasma surface modifications are subject of numerous studies to improve the quality of a given material. Titanium and its alloys are widely used in biomedical applications and plasma treatment technique is increasingly used to improve the surface properties thereof. The research have a objective in the comparative analysis of the change in microstructure of Ti-6Al-7Nb alloys after treatment of plasma nitriding. The technical are: nitriding with cathode cage (NGC) and planar discharge. The characterization was obtained by MEV (Scanning Electronic Microscope) and hardness. The results was compared about the better surface modification that meets future prospects of the biocompatibility of the alloy.(author)

  8. Surface morphology and deuterium retention of tungsten after low- and high-flux deuterium plasma exposure

    NARCIS (Netherlands)

    Hoen, M. H. J. 't; Balden, M.; Manhard, A.; Mayer, M.; Elgeti, S.; Kleyn, A. W.; van Emmichoven, P. A. Zeijlma

    2014-01-01

    The surface morphology and deuterium retention were investigated of polycrystalline tungsten targets that were exposed to deuterium plasmas at widely varying conditions. By changing only one parameter at a time, the isolated effects of flux, time and pre-damaging on surface modifications and deuteri

  9. Self-Assembled Fluorinated Organogelators for Surface Modification

    Directory of Open Access Journals (Sweden)

    Anilkumar Raghavanpillai

    2012-03-01

    Full Text Available A new class of alkyl- and perfluoroalkyl-containing urea and amide derivatives was synthesized from amino acid derivatives. Most of these compounds showed excellent gelation behavior in organic solvents at low concentrations. A few organogelators selected from the initial screening were used for surface modification of fibrous substrates to create hydrophobic and oleophobic composites. The hydrophobic and oleophobic behaviors of these composites were ascribed to a combination of increased surface roughness and the alkyl/fluorinated functionalities present in the gelator backbone.

  10. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kaklamani, Georgia, E-mail: g.kaklamani@bham.ac.uk [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Bowen, James; Mehrban, Nazia [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Dong, Hanshan [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Grover, Liam M. [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Stamboulis, Artemis [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-05-15

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N{sub 2}/H{sub 2} ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  11. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.

    Science.gov (United States)

    Yuan, Wenjie; Feng, Yakai; Wang, Heyun; Yang, Dazhi; An, Bo; Zhang, Wencheng; Khan, Musammir; Guo, Jintang

    2013-10-01

    The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P=0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels.

  12. Modification of polymeric substrates using surface-grafted nanoscaffolds

    Science.gov (United States)

    Thompson, Kimberlee Fay

    Surface grafting and modification of poly(acrylic acid) (PAA) were performed on nylon 6,6 carpet fibers to achieve permanent stain and soil resistance. PAA was grafted to nylon and modified with 1H, 1H-pentadecafluorooctyl amine (PDFOA) using an amidation agent, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). The first goal was to optimize acrylamide modification of PAA in solution. Aqueous reactions with taurine, hydroxyethyl amine, and butyl amine progressed ˜100%, while PDFOA reactions in MeOH progressed ˜80%. Reaction products precipitated at 77% butyl or 52% PDFOA acrylamide contents. The second goal was to optimize the PAA grafting process. First, PAA was adsorbed onto nylon 6,6 films. Next, DMTMM initiated grafting of adsorbed PAA. PAA surface coverage was ˜78%, determined by contact angle analysis of the top 0.1--1 nm and x-ray photoelectron spectroscopy (XPS) analysis of the top 3--10 nm. The third goal was to modify PAA grafted nylon films with butyl amine and PDFOA. Randomly methylated beta-cyclodextrin (RAMEB) solubilized PDFOA in water. Contact angle detected ˜100% surface reaction for each amine, while XPS detected ˜77% butyl amine (H2O) and ˜50% for PDFOA (MeOH or H2O pH = 7) reactions. In H2O pH = 12, the PDFOA reaction progressed ˜89%, perhaps due to greater efficiency, access and solubility. The fourth goal was to perform surface depth profiling via angle-resolved XPS analysis (ARXPS). The PAA surface coverage from contact angle and XPS was confirmed. Further, adsorbed PAA was thicker than grafted PAA, supporting the theory that PAA adsorption occurs in thick layers onto nylon followed by DMTMM-activated spreading and grafting of thinner PAA layers across the surface. The PDFOA reaction in McOH produced a highly fluorinated but thin exterior and an unreacted PAA interior. The PDFOA reaction in H 2O pH = 12 produced a completely fluorinated exterior and highly fluorinated interior. Thus surface modification levels

  13. Surface modification of fluorocarbon polymers by synchrotron radiation

    CERN Document Server

    Kanda, K; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The surface modification of a poly (tetrafluoroethylene) sheet was carried out by synchrotron radiation in the soft X-ray region. The poly (tetrafluoroethylene) substrate was exposed to synchrotron radiation while varying the substrate temperature from room temperature to 200degC. The contact angle of the modified surfaces with a water drop decreased from 96deg to 72deg by the irradiation at room temperature, while the contact angle increased to 143deg by the irradiation at the substrate temperature of 200degC. Scanning electron microscopy suggested that this repellence was ascribable to the microstructure of the poly (tetrafluoroethylene) surface. We succeeded in controlling the wettability of the poly (tetrafluoroethylene) surface from hydrophobic to hydrophilic by irradiation of the soft X-ray light. (author)

  14. Surface modification and characterization of aramid fibers with hybrid coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin, E-mail: fyq01@zstu.edu.cn; Fu, Xiang

    2014-12-01

    Graphical abstract: - Highlights: • Aramid fibers modification sizing synthesized by sol–gel in the absence of water. • The strength and interfacial adhesion property of modified fibers were improved. • Modified fibers show a special surface structure. • The mechanism explains the function of structure. - Abstract: Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO{sub 2}/shape memory polyurethane (SiO{sub 2}/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO{sub 2}/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special “pizza-like” structure on the fiber surface.

  15. PMMA and FEP surface modifications induced with EUV pulses in two selected wavelength ranges

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M. [Military University of Technology, Institute of Optoelectronics, Warsaw (Poland)

    2010-01-15

    Surface modification of PMMA and FEP polymers using extreme ultraviolet (EUV) in two spectral ranges was investigated. A laser-plasma EUV source based on a double stream gas puff target equipped with an Au coated ellipsoidal collector was used for the experiment. The spectrum of the focused radiation from Kr plasma consisted of a narrow feature with a maximum at 10 nm and a long-wavelength tail up to 70 nm. Al and Zr filters were employed for the selection of radiation from these two spectral regions. The radiation fluences in the two cases were comparable. Polymer samples were mounted in the focal plane of the EUV collector and irradiated for 1-2 min with a 10 Hz repetition rate. Weak ablation accompanied by creation of micro- and nanostructures of different kinds was obtained in both cases. Significant differences in the surface structures after irradiation of PMMA and FEP in these two spectral regions were revealed. (orig.)

  16. Laser surface and subsurface modification of sapphire using femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, G., E-mail: eberle@iwf.mavt.ethz.ch [Institute of Machine Tools and Manufacturing, ETH Zurich, Leonhardstrasse 21, 8092 Zurich (Switzerland); Schmidt, M. [Chair of Photonic Technologies, University of Erlangen-Nuremberg, Konrad-Zuse-Strasse 3-5, 91052 Erlangen (Germany); Pude, F. [Inspire AG, Technoparkstrasse 1, 8005 Zurich (Switzerland); Wegener, K. [Institute of Machine Tools and Manufacturing, ETH Zurich, Leonhardstrasse 21, 8092 Zurich (Switzerland); Inspire AG, Technoparkstrasse 1, 8005 Zurich (Switzerland)

    2016-08-15

    Highlights: • Single and multipulse ablation threshold of aluminium oxide is determined. • Laser ablation, and in-volume modification followed by wet etching are demonstrated. • Quality following laser processing and laser-material interactions are studied. - Abstract: Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  17. PREFACE Surface Modifications and Functionalization of Materials for Biomedical Applications

    Science.gov (United States)

    Endrino, Jose Luis; Puértolas, Jose A.; Albella, Jose M.

    2010-11-01

    Conference photograph This special issue contains selected papers which were presented as invited and contributed communications at the workshop entitled 'Surface modification and functionalization of materials for biomedical applications' (BIO-COAT 2010) which was held on 24 June 2010 in Zaragoza (Spain). The surface of a material plays a major role in its interaction with the biological medium. Processes related to the mechanical stability of articular devices in contact, osseointegration, thrombogenicity, corrosion and leaching, or the inflammatory response of rejection of a material, are clearly conditioned by the surface properties. Therefore, the modification or functionalization of surfaces can have an important impact on these issues. New techniques for functionalization by thin film deposition or surface treatments help to improve superficial properties, while understanding the interaction of the surface-biological medium is critical for their application in new devices. Jointly organized by the Spanish Materials Research Society, BIO-COAT 2010 provided an open forum to discuss the progress and latest developments in thin film processing and the engineering of biomaterials. Invited lectures were particularly aimed at providing overviews on scientific topics and were given by recognized world-class scientists. Two of them have contributed with a proceedings article to this selected collection (articles 012001 and 012008). The contributed communications were focused on particular cutting-edge aspects of thin film science and functionalization technologies for biomaterials, showing the major scientific push of Spanish research groups in the field. The 2010 BIO-COAT conference was organized along four main topics: (1) functionalization and texture on surfaces, (2) tribology and corrosion, (3) the surface modification of biomaterials, and (4) surface-biological environment interactions. The papers published in this volume were accepted for publication after

  18. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution

    Science.gov (United States)

    Takai, Eisuke; Kitamura, Tsuyoshi; Kuwabara, Junpei; Ikawa, Satoshi; Yoshizawa, Shunsuke; Shiraki, Kentaro; Kawasaki, Hideya; Arakawa, Ryuichi; Kitano, Katsuhisa

    2014-07-01

    Plasma medicine is an attractive new research area, but the principles of plasma modification of biomolecules in aqueous solution remain elusive. In this study, we investigated the chemical effects of atmospheric-pressure cold plasma on 20 naturally occurring amino acids in aqueous solution. High-resolution mass spectrometry revealed that chemical modifications of 14 amino acids were observed after plasma treatment: (i) hydroxylation and nitration of aromatic rings in tyrosine, phenylalanine and tryptophan; (ii) sulfonation and disulfide linkage formation of thiol groups in cysteine; (iii) sulfoxidation of methionine and (iv) amidation and ring-opening of five-membered rings in histidine and proline. A competitive reaction experiment using 20 amino acids demonstrated that sulfur-containing and aromatic amino acids were preferentially decreased by the plasma treatment. These data provide fundamental information for elucidating the mechanism of protein inactivation for biomedical plasma applications.

  19. Surface modification by alkali and heat treatments in titanium alloys.

    Science.gov (United States)

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  20. Coatings and surface modifications imparting antimicrobial activity to orthopedic implants.

    Science.gov (United States)

    Kargupta, Roli; Bok, Sangho; Darr, Charles M; Crist, Brett D; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Sengupta, Shramik

    2014-01-01

    Bacterial colonization and biofilm formation on an orthopedic implant surface is one of the worst possible outcomes of orthopedic intervention in terms of both patient prognosis and healthcare costs. Making the problem even more vexing is the fact that infections are often caused by events beyond the control of the operating surgeon and may manifest weeks to months after the initial surgery. Herein, we review the costs and consequences of implant infection as well as the methods of prevention and management. In particular, we focus on coatings and other forms of implant surface modification in a manner that imparts some antimicrobial benefit to the implant device. Such coatings can be classified generally based on their mode of action: surface adhesion prevention, bactericidal, antimicrobial-eluting, osseointegration promotion, and combinations of the above. Despite several advances in the efficacy of these antimicrobial methods, a remaining major challenge is ensuring retention of the antimicrobial activity over a period of months to years postoperation, an issue that has so far been inadequately addressed. Finally, we provide an overview of additional figures of merit that will determine whether a given antimicrobial surface modification warrants adoption for clinical use.

  1. Silane surface modification for improved bioadhesion of esophageal stents

    Science.gov (United States)

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-08-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability.

  2. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  3. Plasma polymerized epoxide functional surfaces for DNA probe immobilization.

    Science.gov (United States)

    Chu, Li-Qiang; Knoll, Wolfgang; Förch, Renate

    2008-09-15

    The development of functional surfaces for the immobilization of DNA probe is crucial for a successful design of a DNA sensor. In this report, epoxide functional thin films were achieved simply by pulsed plasma polymerization (PP) of glycidyl methacrylate (GMA) at low duty cycle. The presence of epoxide groups in the resulting ppGMA films was confirmed by Fourier transform infrared spectroscopy. The ppGMA coatings were found to be resistant to the non-specific adsorption of DNA strands, while the epoxide groups obtained could react with amine-modified DNA probes in a mild basic environment without any activation steps. A DNA sensor was made, and was successfully employed to distinguish different DNA sequences with one base pair mismatch as seen by surface plasmon enhanced fluorescence spectroscopy (SPFS). The regeneration of the present DNA sensor was also discussed. This result suggests that surface modification with ppGMA films is very promising for the fabrication of various DNA sensors.

  4. Surface modification on PMMA : PVDF polyblend: hardening under chemical environment

    Indian Academy of Sciences (India)

    R Bajpai; V Mishra; Pragyesh Agrawal; S C Datt

    2002-02-01

    The influence of chemical environment on polymers include the surface alteration as well as other deep modifications in surface layers. The surface hardening, as an effect of organic liquids on poly(methyl methacrylate): poly(vinylidene fluoride) (PMMA: PVDF), which is one of the few known miscible blends, has been detected using microhardness testing. Organic liquids like acetone, toluene, xylene and benzene were introduced on the surface of blend specimens for different durations. Vickers microhardness (v) was measured for treated and untreated specimens. The study reveals both hardening and plasticization of specimens at different exposure times. The degree of surface hardening is maximum under acetone treatment. All the specimens exhibit surface hardening at an exposure time of 1 h with all the four liquids. This feature is prominent with longer exposures for specimens with increasing content of PVDF. However, the degree of hardening decreases with the time of exposure in the respective environments. In general, acetone and toluene impart surface hardening, whereas, xylene and benzene soften the specimen. PMMA: PVDF (83 : 17) blend exhibits surface hardening under all the four treatments when compared with the respective untreated specimens.

  5. Surface chemical modification for exceptional wear life of MEMS materials

    Directory of Open Access Journals (Sweden)

    R. Arvind Singh

    2011-12-01

    Full Text Available Micro-Electro-Mechanical-Systems (MEMS are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE nanolubricant on (i silicon coated with SU-8 thin films (500 nm and (ii MEMS process treated SU-8 thick films (50 μm. After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times. The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min, cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  6. Copper circuit patterning on polymer using selective surface modification and electroless plating

    Science.gov (United States)

    Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun

    2017-02-01

    We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.

  7. Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) for control of biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Ahad, Inam Ul, E-mail: inam-ul.ahad@wat.edu.pl [Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw (Poland); Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Faculty of Engineering & Computing, Dublin City University, Dublin 9 (Ireland); Butruk, Beata [Department of Biotechnology and Bioprocess Engineering, Warsaw University of Technology, Ul. Waryńskiego 1, 00-645 Warsaw (Poland); Ayele, Mesfin; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw (Poland); Ciach, Tomasz [Department of Biotechnology and Bioprocess Engineering, Warsaw University of Technology, Ul. Waryńskiego 1, 00-645 Warsaw (Poland); Brabazon, Dermot [Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Faculty of Engineering & Computing, Dublin City University, Dublin 9 (Ireland)

    2015-12-01

    Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) was performed in order to enhance the degree of biocompatibility. Polymer samples were irradiated by different number of EUV shots using a laser–plasma based EUV source in the presence of nitrogen gas. The physical and chemical properties of EUV modified PTFE samples were studied using Atomic Force Microscopy, X-ray photoelectron spectroscopy and water contact angle (WCA) methods. Pronounced wall type micro and nano-structures appeared on the EUV treated polymer surfaces resulting in increased surface roughness and hydrophobicity. Stronger cell adhesion and good cell morphology were observed on EUV modified surfaces by in-vitro cell culture studies performed using L929 fibroblasts.

  8. Surface modifications of W divertor components for EAST during exposure to high heat loads with He

    Energy Technology Data Exchange (ETDEWEB)

    Li, C., E-mail: lichun10@mails.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Greuner, H. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Yuan, Y. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhao, S.X.; Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Böswirth, B. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Fu, B.Q.; Jia, Y.Z. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, X. [Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-08-15

    Flat-type W/Cu plasma-facing components have been developed for the new generation divertor of the Chinese Experimental Advanced Superconducting Tokamak. Surface modifications of such actively water-cooled W components following short and long pulse high heat loading coupled with He particle loads with fluence of 3 × 10{sup 22} m{sup −2} have been investigated. An adiabatically loaded W block was investigated as a comparison and exposed to short pulse loads. Blistering was observed on all sample surfaces, but was less pronounced on the components than on the W block, due to the significant lower surface temperature caused by active cooling. For components, longer pulse loads gave rise to a rougher surface. Furthermore, most blisters on components are found to be less than 1 μm in diameter, with just a very few blisters larger than 1 μm, observed only in some near 〈1 1 1〉 grains.

  9. Surface modification with both phosphorylcholine and stearyl groups to adjust hydrophilicity and hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Lv Jiuan; Ma Jiani; Huangfu Pengbo; Yang Shan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry, Northwest University, Xi' an 710069 (China); Gong Yongkuan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry, Northwest University, Xi' an 710069 (China)], E-mail: gongyk@nwu.edu.cn

    2008-11-15

    A new monolayer film with tunable hydrophilicity and hydrophobicity was constructed on glass coverslips by stepwise grafting with both phosphorylcholine (PC) and stearyl groups. The glass coverslips were firstly hydroxylized to provide reactive sites on the surfaces. Subsequently, chlorodimethyl-n-octadecylsilane was chemically adsorbed onto the surface to impart the required hydrophobicity. The remaining hydroxyl groups were grafted with 1,6-diisocyanatohexane. Finally, 2-hydroxy-2-ethylphosphorylcholine was grafted onto the attached isocyanate groups. Dynamic contact angle (DCA) measurement and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the step-by-step modification process was successful. The adsorption of bovine serum albumin and bovine plasma fibrinogen, as well as the adhesion and aggregation of platelets were suppressed with the introduction of phospholipid moieties on the surfaces. This tunable surface may have potential applications in the fields of separation science, tissue engineering, cytobiology, drug delivery and gene therapy.

  10. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  11. MHD simulations of Plasma Jets and Plasma-surface interactions in Coaxial Plasma Accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan

    2016-10-01

    Coaxial plasma accelerators belong to a class of electromagnetic acceleration devices which utilize a self-induced Lorentz force to accelerate magnetized thermal plasma to large velocities ( 40 Km/s). The plasma jet generated as a result, due to its high energy density, can be used to mimic the plasma-surface interactions at the walls of thermonuclear fusion reactors during an Edge Localized Mode (ELM) disruption event. We present the development of a Magnetohydrodynamics (MHD) simulation tool to describe the plasma acceleration and jet formation processes in coaxial plasma accelerators. The MHD model is used to study the plasma-surface impact interaction generated by the impingement of the jet on a target material plate. The study will characterize the extreme conditions generated on the target material surface by resolving the magnetized shock boundary layer interaction and the viscous/thermal diffusion effects. Additionally, since the plasma accelerator is operated in vacuum conditions, a novel plasma-vacuum interface tracking algorithm is developed to simulate the expansion of the high density plasma into a vacuum background in a physically consistent manner.

  12. Surface modification of multilayer graphene using Ga ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Shao, Ying; Ge, Daohan; Ren, Naifei [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yang, Qizhi [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State key laboratory of Robotics, Chinese Academy of Sciences, Shengyang 110000 (China)

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  13. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  14. Surface modification of ceramic matrix composites induced by laser treatment

    Science.gov (United States)

    Costil, S.; Lukat, S.; Langlade, C.; Coddet, C.

    2008-12-01

    Ceramics or ceramic composites present many advantages (hardness, chemical resistance, low density, etc.) which induce some more and more important applications particularly from the industrial point of view. The evolution of technology can also be beneficial to enlarge their global application areas. This is particularly the aim of this work which consists in applying a laser beam on the ceramic in order to clean its surface. A Nd:YAG laser has been used to study the basic mechanism roughening the surface of silicon carbide composite (ceramic matrix composite (CMC)). Investigations on different surfaces (two chemical compositions) show a strong influence of the nature of the material on the development of a characteristic conic structure. Microscopic studies (SEM) and elementary analyses (EDS and RMS) demonstrated the formation of a regular cone-like structure with a kinetic and a chemical modification specific to each material.

  15. Surface Organic Modification of Fe3O4 Magnetic Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    CUI Sheng; SHEN Xiaodong; LIN Benlan; JIANG Guodong; ZHANG Weihua

    2008-01-01

    The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied.The modified and unmodified nanoparticles were characterized by FT-IR,XPS and TEM.The spectra of FT-IR and XPS revealed that KH570 was coated onto the surface of Fe3O4 nanoparticles to get Fe-O-Si bond and an organic coating layer also was formed.Fe3O4 nanoparticles were spheres partly with mean size of 18.8 nm studied by TEM,which was consistent with the result 17.9 nm calculated by Scherrer'S equation.KH570 was adsorbed on surface and formed chemistry bond to be steric hindrance repulsion which prevented nanoparticles from reuniting.Then glycol-based Fe3O4 magnetic liquids dispersed stably was gained.

  16. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures......The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...

  17. [Surface grafting modification and stabilization of Kevlar fiber].

    Science.gov (United States)

    Zheng, Yu-ying; Fu, Ming-lian; Wang, Can-yao; Wang, Liang-en

    2005-11-01

    Chemical disposal was used to bring the activity group onto the surface of Kevlar fiber for the purpose of surface grafting modification. The interfacial constitution of the grafting of toluene-2,4-diisocyanate (TDI) onto Kevlar fiber was determined by Fourier transform infrared spectroscopy. In the mean time, hexyl-lactam stabilization and poly-glycol (400, PEG) stabilization on the grafted product were also studied. The effects of different nTDI:nPEG ratios on the production's interfacial constitution was analysed. It is concluded that the stabilization took place on the surface. The intensity of the bands relented at about 3300 cm(-1) and was reinforced at about 1700-1720 cm(-1) when the ratio of nTDI:nPEG = 1:3, but when the ratio is 1:1 and 1:2, the bands at about 3 300 and 1700-1720 cm(-1) are almost the same.

  18. Surface Modification of SnO2 with Phosphonic Acids

    Directory of Open Access Journals (Sweden)

    Ramona Gheonea

    2017-01-01

    Full Text Available The aim of the present work was the study of phosphonic acids grafting on the surface of SnO2 at different molar ratios. In this paper we describe the functionalization of SnO2 surfaces with phosphonic acids RPO(OH2. The surface modification process was achieved by using phenyl-phosphonic acid (PPA and vinyl-phosphonic acid (VPA. The synthesized materials were investigated by using FT-IR, TGA (in air and in nitrogen, EDX, ESEM, and TEM methods. This synthetic approach has many advantages: films with optical quality and controlled thickness can be obtained using low temperatures and cheap raw materials, by using “green chemistry” synthetic routes. The hybrid materials have structures diversity and fascinating applications, attracting attention for a long time, due to their potential.

  19. Regulating the antibiotic drug release from β-tricalcium phosphate ceramics by atmospheric plasma surface engineering.

    Science.gov (United States)

    Canal, C; Modic, M; Cvelbar, U; Ginebra, M-P

    2016-10-20

    Calcium phosphate (CaP) ceramics are of interest in bone substitution due to their good biocompatibility and bioresorbability. Currently certain CaPs in the market are loaded with antibiotics in order to prevent infections but further control is needed over antibiotic release patterns. Cold plasmas have emerged as a useful means of modifying the interactions with drugs through surface modification of polymer materials. In this work we explore the possibility of using atmospheric pressure plasmas as a tool for the surface modification of these CaP materials with newly populated bonds and charges, with views on enabling higher loading and controlled drug release. Herein the surface modification of β-tricalcium phosphate ceramics is investigated using an atmospheric pressure helium plasma jet as a tool for tuning the controlled release of the antibiotic doxycycline hyclate, employed as a drug model. The surface chemistry is tailored mainly by plasma jet surface interaction with an increasing O/C ratio without changes in the topography as well as by build-up of surface charges. With this surface tailoring it is demonstrated that the atmospheric plasma jet is a new promising tool that leads to the design of a control for drug release from bioceramic matrices.

  20. Surface modification of droplet polymeric microfluidic devices for the stable and continuous generation of aqueous droplets.

    Science.gov (United States)

    Subramanian, Balamurugan; Kim, Namwon; Lee, Wonbae; Spivak, David A; Nikitopoulos, Dimitris E; McCarley, Robin L; Soper, Steven A

    2011-06-21

    Droplet microfluidics performed in poly(methyl methacrylate) (PMMA) microfluidic devices resulted in significant wall wetting by water droplets formed in a liquid-liquid segmented flow when using a hydrophobic carrier fluid such as perfluorotripropylamine (FC-3283). This wall wetting led to water droplets with nonuniform sizes that were often trapped on the wall surfaces, leading to unstable and poorly controlled liquid-liquid segmented flow. To circumvent this problem, we developed a two-step procedure to hydrophobically modify the surfaces of PMMA and other thermoplastic materials commonly used to make microfluidic devices. The surface-modification route involved the introduction of hydroxyl groups by oxygen plasma treatment of the polymer surface followed by a solution-phase reaction with heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane dissolved in fluorocarbon solvent FC-3283. This procedure was found to be useful for the modification of PMMA and other thermoplastic surfaces, including polycyclic olefin copolymer (COC) and polycarbonate (PC). Angle-resolved X-ray photoelectron spectroscopy indicated that the fluorination of these polymers took place with high surface selectivity. This procedure was used to modify the surface of a PMMA droplet microfluidic device (DMFD) and was shown to be useful in reducing the wetting problem during the generation of aqueous droplets in a perfluorotripropylamine (FC-3283) carrier fluid and could generate stable segmented flows for hours of operation. In the case of PMMA DMFD, oxygen plasma treatment was carried out after the PMMA cover plate was thermally fusion bonded to the PMMA microfluidic chip. Because the appended chemistry to the channel wall created a hydrophobic surface, it will accommodate the use of other carrier fluids that are hydrophobic as well, such as hexadecane or mineral oils.

  1. Photochemical surface modification of PET by excimer UV lamp irradiation

    Science.gov (United States)

    Gao, S. L.; Häßler, R.; Mäder, E.; Bahners, T.; Opwis, K.; Schollmeyer, E.

    2005-09-01

    UV irradiation has interesting potential for the photochemical modification of polymers. In order to study cross-linking effects and/or thin-layer deposition following a treatment in the presence of bi-functional media or in inert atmosphere, irradiation of PET in various atmospheres was performed using a KrCl excimer lamp. Surface properties were investigated by atomic force microscopy, nanoindentation, micro-thermal analysis, and X-ray photo-electron spectroscopy. The studies reveal that surface chemical composition, morphology, adhesion, thermomechanics, and stiffness/modulus are strongly affected by UV irradiation in the presence of bi-functional media. Films treated in octadiene and argon show an increase of surface modulus, much less expansion, and lower soft/melt temperatures, which is an indication of the surface cross-linking effect and a decrease of crystallinity within the near-surface layer. In the case of a diallylphthalate-treated film, depending on the local structure, either a strong decrease of melting temperature or no melting point is found, which is attributed to the irregular cross linking and thickness of the modified layer associated with a decrease of surface modulus. A significant increase of the alkali resistance is found after irradiation, as a result of both wetting and cross-linking effects on the polymer surface.

  2. Surface modification of polycarbonate in homogeneous atmospheric pressure discharge

    Energy Technology Data Exchange (ETDEWEB)

    SIra, M; Trunec, D; St' ahel, P; BursIkova, V; Navratil, Z [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2008-01-07

    A homogeneous atmospheric pressure dielectric barrier discharge was used for the surface modification of polycarbonate (PC). The discharge was generated between two planar metal electrodes, the top electrode was covered by glass and the bottom electrode was covered by a polymer sample. The discharge burned in pure nitrogen or in a mixture of nitrogen and hydrogen. The surface properties of both treated and untreated polymers were characterized by atomic force microscopy, surface free energy (SFE) measurements and x-ray photoelectron spectroscopy. The influence of the treatment time and power input to the discharge on the surface properties of polymers was studied. The ageing of treated samples was also investigated. The treatment of polymers in the homogeneous atmospheric pressure discharge was homogeneous and the polymer surfaces showed a smaller degree of roughness in comparison with the polymer surfaces treated in a filamentary discharge. The SFE of the treated PC obtained at optimum conditions was 53 mJ m{sup -2} and the corresponding contact angle of water was 38{sup 0}. The maximum decrease in the SFE during ageing was about 13%. The analysis of the chemical composition showed an increase in the nitrogen concentration in the surface layer, but almost a zero increase in the oxygen concentration. This result was discussed concerning the measured values of the SFE measurement.