WorldWideScience

Sample records for plasma solar x-ray

  1. Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma

    Science.gov (United States)

    Moore, R. L.

    1979-01-01

    The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed.

  2. X-raying hot plasma in solar active regions with the SphinX spectrometer

    CERN Document Server

    Miceli, M; Gburek, S; Terzo, S; Barbera, M; Collura, A; Sylwester, J; Kowalinski, M; Podgorski, P; Gryciuk, M

    2012-01-01

    The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board CORONAS-PHOTON mission is sensitive to X-ray emission well above 1 keV and provides the opportunity to detect the hot plasma component. We analyzed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistics and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 x 10^44 cm^-3. The X-ray emission from the hot plasma dominat...

  3. X-rays from solar system objects

    CERN Document Server

    Bhardwaj, Anil; Gladstone, G Randall; Cravens, Thomas E; Lisse, Carey M; Dennerl, Konrad; Branduardi-Raymont, Graziella; Wargelin, Bradford J; Waite, J Hunter; Robertson, Ina; Ostgaard, Nikolai; Beiersdorfer, Peter; Snowden, Steven L; Kharchenko, Vasili; 10.1016/j.pss.2006.11.009

    2010-01-01

    During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-ray...

  4. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    Rajmal Jain; Malini Aggarwal; Raghunandan Sharma

    2008-03-01

    Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.

  5. MASS AND ENERGY OF ERUPTING SOLAR PLASMA OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Raymond, John C.; Reeves, Katharine K., E-mail: jlee@khu.ac.kr [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-01-10

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light coronal mass ejection features are visible in some events. Five events are observed in several passbands in X-rays, which allows for the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the X-ray Telescope (XRT) temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ∼3 × 10{sup 13}-5 × 10{sup 14} g, are smaller in their upper limit than the total masses obtained by LASCO, ∼1 × 10{sup 15} g. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive plasma in X-rays. For four events, we find that the thermal conduction timescales are much shorter than the duration of eruption. This result implies that additional heating during the eruption may be required to explain the plasma observations in X-rays for the four events.

  6. Mass and energy of erupting solar plasma observed with the X-Ray Telescope on Hinode

    CERN Document Server

    Lee, Jin-Yi; Reeves, Katharine K; Moon, Yong-Jae; Kim, Kap-Sung

    2014-01-01

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light CME features are visible in some events. Five events are observed in several passbands in X-rays, which allows the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the XRT temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ~3x10 13 - 5x10 14 g, are smaller in their upper limit than total masse...

  7. Constraining Hot Plasma in a Non-flaring Solar Active Region with FOXSI Hard X-ray Observations

    CERN Document Server

    Ishikawa, Shin-nosuke; Christe, Steven; Ishibashi, Kazunori; Brooks, David H; Williams, David R; Shimojo, Masumi; Sako, Nobuharu; Krucker, Sam

    2015-01-01

    We present new constraints on the high-temperature emission measure of a non-flaring solar active region using observations from the recently flown Focusing Optics X-ray Solar Imager sounding rocket payload. FOXSI has performed the first focused hard X-ray (HXR) observation of the Sun in its first successful flight on 2012 November 2. Focusing optics, combined with small strip detectors, enable high-sensitivity observations with respect to previous indirect imagers. This capability, along with the sensitivity of the HXR regime to high-temperature emission, offers the potential to better characterize high-temperature plasma in the corona as predicted by nanoflare heating models. We present a joint analysis of the differential emission measure (DEM) of active region 11602 using coordinated observations by FOXSI, Hinode/XRT and Hinode/EIS. The Hinode-derived DEM predicts significant emission measure between 1 MK and 3 MK, with a peak in the DEM predicted at 2.0-2.5 MK. The combined XRT and EIS DEM also shows emi...

  8. X-ray scattering from dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    McSherry, D.J

    2000-09-01

    Dense plasmas were studied by probing them with kilovolt x-rays and measuring those scattered at various angles. The Laser-Produced x-ray source emitted Ti He alpha 4.75 keV x-rays. Two different plasma types were explored. The first was created by laser driven shocks on either side of a sample foil consisting of 2 micron Al layer, sandwiched between two 1 micron CH layers. We have observed a peak in the x-ray scattering cross section, indicating diffraction from the plasma. However, the experimentally inferred plasma density, broadly speaking, did not always agree with the hydrodynamic simulation MEDX (A modified version of MEDUSA). The second plasma type that we studied was created by soft x-ray heating on either side of a sample foil, this time consisting of 1 micron layer of Al, sandwiched between two 0.2 micron CH layers. Two foil targets, each consisting of a 0.1 micron thick Au foil mounted on 1 micron of CH, where placed 4 mm from the sample foil. The soft x-rays where produced by laser irradiating these two foil targets. We found that, 0.5 ns after the peak of the laser heating pulses, the measured cross sections more closely matched those simulated using the Thomas Fermi model than the Inferno model. Later in time, at 2 ns, the plasma is approaching a weakly coupled state. This is the first time x-ray scattering cross sections have been measured from dense plasmas generated by radiatively heating both sides of the sample. Moreover, these are absolute values typically within a factor of two of expectation for early x-ray probe times. (author)

  9. X-ray scattering from dense plasmas

    Science.gov (United States)

    McSherry, Declan Joseph

    Dense plasmas were studied by probing them with kilovolt x-rays and measuring those scattered at various angles. The laser produced x-ray source emitted Ti He alpha 4.75 keV x-rays. Two different plasma types were explored. The first was created by laser driven shocks on either side of a sample foil consisting of 2 micron thickness of Al, sandwiched between two 1 micron CH layers. We have observed a peak in the x-ray scattering cross section, indicating diffraction from the plasma. However, the experimentally inferred plasma density, did not always agree broadly with the hydrodynamic simulation MEDX (A modified version of MEDUSA). The second plasma type that we studied was created by soft x-ray heating on either side of a sample foil, this time consisting of 1 micron thickness of Al, sandwiched between two 0.2 micron CH layers. Two foil targets, each consisting of a 0.1 micron thick Au foil mounted on 1 micron of CH, were placed 4 mm from the sample foil. The soft x-rays were produced by laser irradiating these two foil targets. We found that, 0.5 ns after the peak of the laser heating pulses, that the measured cross sections more closely matched those simulated using the Thomas Fermi model than the Inferno model. Later in time, at 2 ns, the plasma is approaching a weakly coupled state. This is the first time x-ray scattering cross sections have been measured from dense plasmas generated by radiatively heating both sides of the sample. Moreover, these are absolute values typically within a factor of two of expectation for early x-ray probe times.

  10. X-ray Studies of Flaring Plasma

    Indian Academy of Sciences (India)

    B. Sylwester; J. Sylwester; K. J. H. Phillips

    2008-03-01

    We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a number of individual spectral lines have been obtained. The analysis of these lines allows us to follow the evolution of important thermodynamic parameters characterizing the emitting plasma throughout this flare evolution.

  11. Magnetic Untwisting in Most Solar X-Ray Jets

    Science.gov (United States)

    Moore, Ronald; Sterling, Alphonse; Falconer, David; Robe, Dominic

    2013-01-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode's X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory's Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T is approximately 105 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field. This work was funded by NASA's Heliophysics Division

  12. Element abundances in X-ray emitting plasmas in stars

    CERN Document Server

    Testa, Paola

    2010-01-01

    Studies of element abundances in stars are of fundamental interest for their impact in a wide astrophysical context, from our understanding of galactic chemistry and its evolution, to their effect on models of stellar interiors, to the influence of the composition of material in young stellar environments on the planet formation process. We review recent results of studies of abundance properties of X-ray emitting plasmas in stars, ranging from the corona of the Sun and other solar-like stars, to pre-main sequence low-mass stars, and to early-type stars. We discuss the status of our understanding of abundance patterns in stellar X-ray plasmas, and recent advances made possible by accurate diagnostics now accessible thanks to the high resolution X-ray spectroscopy with Chandra and XMM-Newton.

  13. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    Science.gov (United States)

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  14. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  15. NEON INSIGHTS FROM OLD SOLAR X-RAYS: A PLASMA TEMPERATURE DEPENDENCE OF THE CORONAL NEON CONTENT

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Jeremy J., E-mail: jdrake@cfa.harvard.edu [Smithsonian Astrophysical Observatory, MS-3, 60 Garden Street, Cambridge, MA 02138 (United States)

    2011-12-10

    An analysis using modern atomic data of fluxes culled from the literature for O VIII and Ne IX lines observed in solar active regions by the P78 and Solar Maximum Mission satellites confirms that the coronal Ne/O abundance ratio varies by a factor of two or more, and finds an increase in Ne/O with increasing active region plasma temperature. The latter is reminiscent of evidence for increasing Ne/O with stellar activity in low-activity coronae that reaches a 'neon saturation' in moderately active stars at approximately twice the historically accepted solar value of about 0.15 by number. We argue that neon saturation represents the underlying stellar photospheric compositions, and that low-activity coronae, including that of the Sun, are generally depleted in neon. The implication would be that the solar Ne/O abundance ratio should be revised upward by a factor of about two to n(Ne)/n(O) {approx} 0.3. Diverse observations of neon in the local cosmos provide some support for such a revision. Neon would still be of some relevance for reconciling helioseismology with solar models computed using recently advocated chemical mixtures with lower metal content.

  16. Solar quiescent Active Region temperature distribution inferred from the Miniature Solar X-ray Solar Spectrometer (MinXSS) CubeSat soft X-ray spectra, Hinode X-ray Telescope (XRT) soft X-ray filter images and EUV measurements.

    Science.gov (United States)

    Moore, C. S.; Woods, T. N.; Caspi, A.; Mason, J. P.

    2016-12-01

    Soft X-rays serve as an important diagnostic tool for hot (T > 106 K) solar coronal plasma elemental composition, elemental ionization states, density of emitting plasma and dynamical events triggered by magnetic field structures. Spectrally resolved, solar disc averaged, soft X-ray spectra from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat combined with spatially resolved soft X-ray filter images from the Hinode X-ray Telescope (XRT) and complimentary EUV data can yield unique inferences of the quiescent (non-flaring) active regions' emitting plasma temperature distribution and chemical composition. This talk will discuss how the MinXSS spectra and Hinode XRT images from the sparsely measured 0.7 - 10 keV ( 0.124 - 1.77 nm) region, can augment estimations of active region temperature distribution and elemental abundance variations that are currently being assessed primarily from typical EUV and hard X-ray observations.

  17. Modeling the Soft X-Ray During Solar Flares

    Science.gov (United States)

    Leaman, C. J.

    2016-12-01

    Solar Radiation can effect our communication and navigation systems here on Earth. In particular, solar X-ray (SXR) and extreme ultraviolet (EUV) radiation is responsible for ionizing (charging) earth's upper atmosphere, and sudden changes in the ionosphere can disrupt high frequency communication systems (e.g. airplane-to-ground) and degrade the location accuracy for GPS navigation. New soft X-ray flare data are needed to study the sources for the SXR radiation and variability of the solar flares and thus help to answer questions if all flares follow the same trend or have different plasma characteristics? In December 2015, the Miniature X-Ray Solar Spectrometer (MinXSS) launched from Cape Canaveral Florida to answer those questions. The MinXSS CubeSat is a miniature satellite that was designed to measure the soft X-ray spectra and study flares in the 1-15 Å wavelength range. So far, the CubeSat has observed more than ten flares. The MinXSS flare data are plotted in energy vs irradiance to display the soft X-ray spectra, and these spectra are compared with different types of CHIANTI models of the soft X-ray radiation. One comparison is for non-flaring spectra using AIA EUV images to identify solar features called active regions, coronal holes, and quiet sun, and then using the fractional area of each feature to calculate a CHIANTI-based spectrum. This comparison reveals how important the active region radiation is for the SXR spectra. A second comparison is for flare spectra to several isothermal models that were created using CHIANTI. The isothermal model comparisons were done with both the raw count spectra from MinXSS and the derived irradiance spectra. This dual comparison helps to validate the irradiance conversion algorithm for MinXSS. Comparisons of the MinXSS data to the models show that flares tend to follow a temperature pattern. Analysis of the MinXSS data can help us understand our sun better, could lead to better forecasts of solar flares, and thus

  18. The spatial, spectral and polarization properties of solar flare X-ray sources

    CERN Document Server

    Jeffrey, Natasha L S

    2014-01-01

    X-rays are a valuable diagnostic tool for the study of high energy accelerated electrons. Bremsstrahlung X-rays produced by, and directly related to, high energy electrons accelerated during a flare, provide a powerful diagnostic tool for determining both the properties of the accelerated electron distribution, and of the flaring coronal and chromospheric plasmas. This thesis is specifically concerned with the study of spatial, spectral and polarization properties of solar flare X-ray sources via both modelling and X-ray observations using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Firstly, a new model is presented, accounting for finite temperature, pitch angle scattering and initial pitch angle injection. This is developed to accurately infer the properties of the acceleration region from the observations of dense coronal X-ray sources. Moreover, examining how the spatial properties of dense coronal X-ray sources change in time, interesting trends in length, width, position, number density ...

  19. GOES-12 Solar X-ray Imager Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GOES Solar X-ray Imager is integrated into the GOES-12 satellite, whose primary mission is to provide Earth-weather monitoring. The SXI is operated by NOAA's...

  20. Electronic Structure of Dense Plasmas by X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Rogers, F J; Pollaine, S M; Froula, D H; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R; Landen, O L

    2003-10-07

    We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

  1. Coordinated soft X-ray and H-alpha observation of solar flares

    Science.gov (United States)

    Zarro, D. M.; Canfield, R. C.; Metcalf, T. R.; Lemen, J. R.

    1988-01-01

    Soft X-ray, Ca XIX, and H-alpha observations obtained for a set of four solar flares in the impulsive phase are analyzed. A blue asymmetry was observed in the coronal Ca XIX line during the soft-Xray rise phase in all of the events. A red asymmetry was observed simultaneously in chromospheric H-alpha at spatial locations associated with enhanced flare heating. It is shown that the impulsive phase momentum of upflowing soft X-ray plasma equalled that of the downflowing H-alpha plasma to within an order of magnitude. This supports the explosive chromospheric evaporation model of solar flares.

  2. Search for Saturn's X-ray aurorae at the arrival of a solar wind shock

    Science.gov (United States)

    Branduardi-Raymont, G.; Ford, P. G.; Hansen, K. C.; Lamy, L.; Masters, A.; Cecconi, B.; Coates, A. J.; Dougherty, M. K.; Gladstone, G. R.; Zarka, P.

    2013-05-01

    After a decade of observations, evidence for X-ray auroral emission from Saturn has yet to be found. By analogy with processes known to take place on Jupiter, Saturnian X-ray aurorae may be expected to be powered by charge exchange (CX) between energetic ions and the planet's atmospheric neutrals; if the ions are of solar origin, the emission should be brightest during episodes of enhanced solar wind (SW). We have explored this possibility by propagating SW parameters measured near the Earth to Saturn, and triggering X-ray observations at the time SW enhancements were expected to reach the planet. This was done in April-May 2011 with the Chandra X-ray Observatory, and we report on two observations carried out at the time when a significant SW disturbance reached Saturn, as indicated by Cassini magnetic field, plasma and radio measurements: variability is observed between the two Chandra datasets, but we do not find evidence for X-ray brightening in the auroral regions. The variability can be explained by scattering of solar X-rays in Saturn's atmosphere during an episode of solar X-ray flaring. We conclude that the strength of any CX auroral X-ray emission on Saturn was below Chandra's detectability threshold. By-products of this investigation are stringent upper limits on the X-ray emission of Titan and Enceladus. The Cassini measurements concurrent with the Chandra observations confirm and pinpoint temporally the arrival of the SW enhancement at Saturn. SW propagation predictions are a useful tool for investigating and interpreting the effects of SW interactions with planetary environments.

  3. Exotic x-ray emission from dense plasmas

    Science.gov (United States)

    Rosmej, F. B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozières, M.; Šmíd, M.; Renner, O.

    2015-11-01

    Exotic x-ray emission from dense matter is identified as the complex high intensity satellite emission from autoionizing states of highly charged ions. Among a vast amount of possible transitions, double K-hole hollow ion (HI) x-ray emission K0L X → K1L X-1 + hν hollow is of exceptional interest due to its advanced diagnostic potential for matter under extreme conditions where opacity and radiation fields play important roles. Transient ab initio simulations identify intense short pulse radiation fields (e.g., those emitted by x-ray free electron lasers) as possible driving mechanisms of HI x-ray emission via two distinct channels: first, successive photoionization of K-shell electrons, second, photoionization followed by resonant photoexciation among various ionic charge states that are simultaneously present in high density matter. We demonstrated that charge exchange of intermixing inhomogenous plasmas as well as collisions driven by suprathermal electrons are possible mechanisms to populate HIs to observable levels in dense plasmas, particularly in high current Z-pinch plasmas and high intensity field-ionized laser produced plasmas. Although the HI x-ray transitions were repeatedly identified in many other cases of dense optical laser produced plasmas on the basis of atomic structure calculations, their origin is far from being understood and remains one of the last holy grails of high intensity laser-matter interaction.

  4. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  5. Solar wind charge exchange X-ray emission from Mars Model and data comparison

    CERN Document Server

    Koutroumpa, Dimitra; Chanteur, Gerard; Chaufray, Jean-Yves; Kharchenko, Vasili; Lallement, Rosine

    2012-01-01

    Aims. We study the soft X-ray emission induced by charge exchange (CX) collisions between solar-wind, highly charged ions and neutral atoms of the Martian exosphere. Methods. A 3D multi species hybrid simulation model with improved spatial resolution (130 km) is used to describe the interaction between the solar wind and the Martian neutrals. We calculated velocity and density distributions of the solar wind plasma in the Martian environment with realistic planetary ions description, using spherically symmetric exospheric H and O profiles. Following that, a 3D test-particle model was developed to compute the X-ray emission produced by CX collisions between neutrals and solar wind minor ions. The model results are compared to XMM-Newton observations of Mars. Results. We calculate projected X-ray emission maps for the XMM-Newton observing conditions and demonstrate how the X-ray emission reflects the Martian electromagnetic structure in accordance with the observed X-ray images. Our maps confirm that X-ray imag...

  6. Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    Science.gov (United States)

    Dennis, B. R.; Skinner, G. K.; Li, M. J.; Shih, A. Y.

    2012-01-01

    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the greater than or equal to 10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approximately equal to 10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics.We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approximately equal to 100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approximately equal to 100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.

  7. Picosecond resolution soft x-ray laser plasma interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  8. X-ray absorption spectra of plasmas

    Institute of Scientific and Technical Information of China (English)

    PENG; Yonglun彭永伦; HAN; Xiaoying韩小英; LI; Jiaming李家明; DING; Yaonan丁耀南; YANG; Jiamin杨家敏; ZHENG; Zhijian郑志坚

    2002-01-01

    In this paper we present a theoretical method to calculate the absorption spectra of hot dense plasmas. Based on our fully relativistic treatment incorporated with the quantum defect theory to handle the huge number of transition arrays from many configurations with high principal quantum number, we can calculate the absorption spectra for any element or multi-element plasmas with little computational efforts. We calculate the absorption spectra of C10H1605 plasmas, which are in good agreement with the experimental spectra. We can then provide diagnostic analysis for plasmas in relevant inertial confinement fusion (lCF) experiments; namely not only to determine plasmas' temperatures and densities, but also to provide the population densities of various ionic stages. Our theoretical method verified by "benchmark experiments" will be a basic tool to provide "precise" opacity data for the ICF research.``

  9. Solar hard X-rays and gamma-rays

    Institute of Scientific and Technical Information of China (English)

    甘为群; 常进; 李友平; 林春梅

    2002-01-01

    We briefly introduce our recent work on the spectral evolution of energetic protons, the beam property of accelerated electrons, the gamma-ray flare classification, the temporal features of the annihilation line, the hard X-ray delayed events, the hydrodynamic process, and the continuum emission in solar flares.

  10. Catheterized plasma X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Derzon, Mark S.; Robinson, Alex; Galambos, Paul C.

    2017-06-20

    A radiation generator useful for medical applications, among others, is provided. The radiation generator includes a catheter; a plasma discharge chamber situated within a terminal portion of the catheter, a cathode and an anode positioned within the plasma discharge chamber and separated by a gap, and a high-voltage transmission line extensive through the interior of the catheter and terminating on the cathode and anode so as to deliver, in operation, one or more voltage pulses across the gap.

  11. The High Energy X-ray Imager Technology (HEXITEC) for Solar Hard X-ray Observations

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew

    2015-04-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For current high resolution X-ray mirrors, the HPD is about 25 arcsec. Over a 6-m focal length this converts to 750 µm, the optimum pixel size is around 250 µm. Annother requirement are that the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. The Rutherford Appleton Laboratory (RAL) in the UK has been developing the electronics for such a detector. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT), to create a fine (250 µm pitch) HXR detector. The NASA Marshall Space Flight CenterMSFC and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present on recent results and capabilities as applied to solar observations.

  12. Plasma debris sputter resistant x-ray mirror.

    Science.gov (United States)

    Amano, Sho; Inoue, Tomoaki; Harada, Tetsuo

    2013-06-01

    A diamond-like carbon (DLC) mirror, used as a grazing incident mirror in a plasma x-ray source, exhibits a high resistance to plasma debris sputtering. Good mirror reflectivity at a wavelength of 13.5 nm was confirmed using synchrotron radiation at the NewSUBARU facility. The erosion rate due to plasma debris sputtered at the incident debris angle of 20° was measured using a laser-produced Xe plasma source developed by the authors. The results indicate that the DLC film has a 5- and 15-fold higher sputtering resistance compared to films made of the traditional mirror materials Ru and Au, respectively. Because the DLC mirror retains a high sputtering resistance to Sn ions, it may be effective in Sn plasma source applications. We conclude that a grazing incident x-ray mirror coated with DLC can be of use as a plasma debris sputtering resistant mirror.

  13. High resolution solar soft X-ray spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; WANG Huan-Yu; PENG Wen-Xi; LIANG Xiao-Hua; ZHANG Chun-Lei; CAO Xue-Lei; JIANG Wei-Chun; ZHANG Jia-Yu; CUI Xing-Zhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed.A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer.The spectrometer consists of the detectors and their readout electronics,a data acquisition unit and a payload data handling unit.A ground test system is also developed to test SOX.The test results show that the design goals of the spectrometer system have been achieved.

  14. K alpha line emission during solar X-ray bursts

    Science.gov (United States)

    Phillips, K. J. H.; Neupert, W. M.

    1973-01-01

    The expected flux of K alpha line emission from sulfur, argon, calcium, and iron is calculated during both thermal and nonthermal solar X-ray events. Such emission is shown to be weak during the course of most of the nonthermal hard X-ray bursts that Kane and Anderson (1970) have observed. If Compton backscattering is significant at high energies, the flux is reduced still further for disk flares, but it is noted that the strong, near-limb burst of June 26 would have produced about 100 photons /sq cm/sec of sulfur and iron K alpha emission. The impulsive hard X-ray bursts may in general be too short-lived for much K alpha emission. It may be noted that sulfur K alpha emission in particular depends sensitively on the lower-energy limit of the nonthermal electron spectrum, assuming such a sharply defined boundary exists. During soft X-ray bursts, when temperatures of a few 10 to the 7th power K are obtained, K alpha emission from certain iron ions, specifically Fe XVIII-XXIII, may be important.

  15. SphinX: The Solar Photometer in X-Rays

    Science.gov (United States)

    Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Kordylewski, Zbigniew; Podgorski, Piotr; Plocieniak, Stefan; Siarkowski, Marek; Sylwester, Barbara; Trzebinski, Witold; Kuzin, Sergey V.; Pertsov, Andrey A.; Kotov, Yurij D.; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2013-04-01

    Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0.4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed.

  16. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    CERN Document Server

    Gu, Liyi; Raassen, A J J

    2016-01-01

    Charge exchange X-ray emission provides unique insights into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to $n$ and $l$ atomic subshells, and carrying out complete radiative cascade calculation, we create a new spectral code to evaluate the charge exchange emission in the X-ray band. Comparing to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-$n$ shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge ...

  17. Simulated performance of a single pixel PIN spectrometer SCXM equipped with concentrator optics in Solar coronal X-ray observations

    CERN Document Server

    Alha, L; Nevalainen, J

    2011-01-01

    In this paper we present simulated solar coronal X-ray observations to verify the sensitivity of a new hypothetical instrument design. These simulations are folded through this X-ray spectrometer having a moderate size circular field of view of 1.6 degrees. This SCXM (Solar Coronal X-ray Mapper) is designed to compose of a single pixel silicon PIN detector equipped with a single reflection double frustum X-ray optics. A moderate FoV would enable a morphological study of the expanded X-ray emission from the solar corona during a high activity of the Sun. The main scientific task of SCXM would be the mapping of the coronal X-ray emission, i.e. to resolve the radial distribution of the X-ray surface brightness around the Sun. These kind of off-limb observations would help to interpret the coronal plasma diagnostics as a function of the elongation angle. Direct solar full disc observations could be also performed with SCXM. In this work we have applied real solar coronal X-ray data obtained by the SMART-1 XSM (X-...

  18. Solar X-Ray Spectroscopy And Polarimetry By Instrument Ping-M Onboard Interhelioprobe

    Science.gov (United States)

    Kotov, Yury; Dergachev, Valentin; Kochemasov, Alexey; Yurov, Vitaly; Tyshkevich, V.; Glyanenko, Alexander; Savchenko, Mikhail; Lazutkov, Vadim; Skorodumov, Dmitry; Trofimov, Yury; Zakharov, Mikhail; Rubtsov, Igor; Kruglov, Evgeniy

    The instrument PING-M for X-ray spectroscopy and polarimetry of solar full disk radiation is described. It will be the part of scientific instrument set for the InterHelioProbe space mission. Instrument consists of three detectors: the Soft X-ray detector (SXRD), the Hard X-ray detector (HXRD) and Hard X-ray polarimeter (PING-P). Spectrometer SXRD is based on a relatively novel type of semiconductor detector SDD (Silicon Drift Detector) that will operate in the energy range 1.5-25 keV, which is similar to GOES X-Ray Sensor (XRS) region. Unlike GOES the SXRD is capable to measure the energy of each photon with high resolution (better 200 eV at 5.9 keV) and operate with high count rate. The X-ray spectra of solar flares obtained by the SXRD should show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. HXRD operates in energy range 15-150 keV. Fast nonorganic scintillator (is based on LaBr3(Ce)) with good energy resolution (≤12% at 60keV and ≤3.5% at 662keV) is used. Apart from measurement of spectra the value of the break energy point that separates the thermal and non-thermal processes in flare would be revealed. In the talk the results of testing of laboratory models are presented. PING-P Hard X-ray polarimeter consists of active scatterer made of three organic p-terphenyl scintillators and six peripheral scattered radiation detectors made of CsI(Tl) scintillators. Effective area of polarimeter is about 5 cm2 in its energy range. Minimal measurable degree of polarization is 0.9 % for 100 sec exposition and X1 solar flare.

  19. X-ray Synchrotron Radiation in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  20. X-ray emission of exotic ions in dense plasmas

    Science.gov (United States)

    Rosmej, F. B.; Khaghani, D.; Dozières, M.; Dachicourt, R.; Šmíd, M.; Renner, O.

    2017-03-01

    Hollow ion X-ray emission has been observed in experiments studying interaction of heavy ion beams with solids and their occurrence has been ascribed to charge exchange processes occurring when highly charged ions interact with a metal surface. In high temperature high-density plasmas, like, e.g., high intensity laser produced plasmas or high current Z-pinches, numerous researchers have reported about "exotic" X-ray transitions of hollow ions: K0LX →K1LX-1+hνhollow. Although atomic structure calculations seem to confirm that measured line positions correspond to transitions in hollow ions, line identification is difficult and the observed high intensity remains a mystery (by orders of magnitude) up to present days.

  1. Soft X-ray measurements in magnetic fusion plasma physics

    Science.gov (United States)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  2. Athena as the next generation X-ray observatory: Solar system targets and exoplanets

    Science.gov (United States)

    Branduardi-Raymont, Graziella; Sciortino, Salvatore

    Athena studies of the solar system, by providing ever deeper insights in the complex workings of planetary magnetospheres and exospheres, will answer many of the questions left open by the pioneering work of Chandra and XMM-Newton and will add enormously to our understanding of the interactions of space plasmas and magnetic fields. The non-dispersive character of X-IFU spectroscopy will enable Jupiter’s auroral and scattered solar emissions, and the Io Plasma Torus, to be mapped spatially and spectrally at high resolution; will enable surface composition analysis through fluorescence spectra of the Galilean satellites; will establish how planetary exospheres, such as Mars’, and comets respond to the interaction with the solar wind, in a global way that in situ measurements cannot provide. The X-IFU, with its two orders of magnitude improved effective area over current spectrometers, will push the search for auroral X-ray emission on Saturn to much fainter limits, and set very sensitive constraints on Uranus X-ray emission. Athena will explore the magnetic interplay between stars and planets in X-rays by searching for X-ray spectral variability over the planet's orbital phases and for systems of different orbital eccentricity, and will investigate ingress/eclipse/egress effects for transiting hot-Jupiter exoplanets; again instrumental to this will be the vastly improved signal-to-noise ratio provided by Athena over that achieved by XMM-Newton or Chandra.

  3. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Daniel F.; Gallagher, Peter T. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-10-15

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  4. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer CubeSat

    Science.gov (United States)

    Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Jones, Andrew; Kohnert, Richard; Mason, James Paul; Moore, Christopher S.; Palo, Scott; Rouleau, Colden; Solomon, Stanley C.; Machol, Janet; Viereck, Rodney

    2017-02-01

    The goal of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1–10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5–30 keV with a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS-1, has been making science observations since 2016 June 9 and has observed numerous flares, including more than 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal plasma, improved irradiance accuracy, and higher resolution spectral irradiance as input to planetary ionosphere simulations. MinXSS spectra obtained during the M5.0 flare on 2016 July 23 highlight these advantages and indicate how the elemental abundance appears to change from primarily coronal to more photospheric during the flare. MinXSS-1 observations are compared to the Geostationary Operational Environmental Satellite (GOES) X-ray Sensor (XRS) measurements of SXR irradiance and estimated corona temperature. Additionally, a suggested improvement to the calibration of the GOES XRS data is presented.

  5. Progress in the applicability of plasma X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, T., E-mail: T.Kuehl@gsi.de; Aurand, B.; Bagnoud, V.; Ecker, B.; Eisenbarth, U. [GSI (Germany); Guilbaud, O. [Universite Paris Sud (France); Fils, J.; Goette, S. [GSI (Germany); Habib, J. [Universite Paris Sud (France); Hochhaus, D.; Javorkova, D. [GSI (Germany); Neumayer, P. [Extreme Matter Institute, EMMI (Germany); Kazamias, S.; Pittman, M.; Ros, D. [Universite Paris Sud (France); Seres, J.; Spielmann, Ch. [Friedrich Schiller-University (Germany); Zielbauer, B.; Zimmer, D. [GSI (Germany)

    2010-02-15

    Proposed as satellite-based weapons during the 1980s, X-ray lasing was for a long time only achieved with enormous amounts of pump energy in either nuclear explosions or at kilojoule-class laser installations. During the last few years a tremendous development was achieved, most visible in the realisation of the FEL lasers at DESY and SLAC. As important for a wider applicability is the enormous reduction in pump energy for laser pumped plasma X-ray lasers, which now brings such devices into the range of applications for diagnostics and spectroscopy even in smaller laboratories. Main developments were the transient excitation scheme and the optimized pumping concepts. This paper concentrates on developments at the GSI Helmholtzcenter at Darmstadt aiming towards reliable X-ray laser sources in the range from 50 to several 100 eV. The main driving forces for the laser development at GSI are the possible application for the spectroscopy of Li-like ions in the storage ring ESR and the future storage ring NESR at FAIR, and the interest in novel plasma diagnostics.

  6. Pulse pile-up in hard X-ray detector systems. [for solar X-rays

    Science.gov (United States)

    Datlowe, D. W.

    1975-01-01

    When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.

  7. X-ray calibration facility for plasma diagnostics of the MégaJoule laser

    Directory of Open Access Journals (Sweden)

    Hubert S.

    2013-11-01

    Full Text Available The Laser MégaJoule (LMJ located at CEA-CESTA will be equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors and cameras. To guarantee LMJ measurements, detectors such as x-ray cameras need to be regularly calibrated. An x-ray laboratory is devoted to this task and performs absolute x-ray calibrations for similar x-ray cameras running on Laser Integration Line (LIL. This paper presents the x-ray calibration bench with its x-ray tube based High Energy x-ray Source (HEXS and some calibration results. By mean of an ingenious transposition system under vacuum absolute x-ray calibration of x-ray cameras, like streak and stripline ones, can be carried out. Coupled to a new collimation system with micrometric accuracy on aperture sensitivity quantum efficiency measurements can be achieved with reduced uncertainties.

  8. Soft X-ray Pulsations in Solar Flares

    CERN Document Server

    Simões, Paulo J A; Fletcher, Lyndsay

    2014-01-01

    The soft X-ray emissions of solar flares come mainly from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the bulk of the total flare energy goes elsewhere. Recently Dolla et al. (2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES (Geostationary Operational Environmental Satellite) spacecraft. We analyze the suitability of the GOES data for this kind of analysis and find them to be generally valuable after Sept. 2010 (GOES-15). We then extend Dolla et al. results to a list of X-class flares from Cycle 24, and show that most of them display QPP in the impulsive phase. During the impulsive phase the footpoints of the newly-forming flare loops may also contribute to the observed soft X-ray variations. The QPP show up cleanly in both channels of the GOES dat...

  9. Energetic Electrons in Solar Flares - As Viewed in X-Rays

    Science.gov (United States)

    Holman, Gordon D.

    2004-01-01

    Hard X-ray observations provide the most direct diagnostic we have of the suprathermal electrons and the hottest thermal plasma present in solar flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is obtaining the most comprehensive observations of individual solar flares ever available in hard X-rays. For the first time, high-resolution spectra are available for a large number of flares that accurately display the spectral shape and its evolution and, in many cases, allow us to identify the transition from the bremsstrahlung X-rays produced by suprathermal electrons to the bremsstrahlung at lower energies emitted by thermal plasma. Also, for the first time, images can be produced in arbitrary energy bands above 3 keV, and spectra of distinct imaged components can be obtained. I will review what we have learned from RHESSI observations about flare suprathermal electron distributions and their evolution Next, I will present computations of the energy deposited by these suprathermal electrons in individual flares and compare this with the energy contained in the hot thermal plasma. I will point out unsolved problems in deducing both suprathermal electron distributions and the energy content of the thermal plasma, and discuss possible solutions. Finally, I will present evidence that electron acceleration is associated with magnetic reconnection in the corona.

  10. X-ray observations of the impulsive phase of solar flares with the Yohkoh satellite

    Science.gov (United States)

    Phillips, Andrew

    This thesis starts with an overview of the physics of the solar corona, concentrating on X-ray emission and the plasma dynamics associated with the impulsive or rise phase of solar flares. The Yohkoh satellite is described, with a section on each major instrument on board. Analysis techniques used in the thesis are then introduced, with a section of soft X-ray spectroscopy and on the application of the Maximum Entropy Method image reconstruction technique to data from the Hard X-ray Telescope on Yohkoh. The instrumental effect known as fixed pattern noise is described, leading to a numerical model of the BCS digitisation process, which is used both to understand the limits of the detector, and to correct the data in a limited way. Alternative methods for the avoidance of fixed pattern noise are evaluated. The analysis of a solar flare with unusually large soft X-ray blue shifts is then performed. Physical parameters of the plasma during the initial stages of the flare are derived, which are used in an energy balance calculation. Agreement is found between the energy in nonthermal electrons and that contained in the coronal plasma, supporting the nonthermal beam driven chromospheric evaporation theory of impulsive flares. The location of superhot plasma in two impulsive flares and one hot thermal flare is then investigated. Superhot plasma is found to be located close to the chromosphere, and related to the nonthermal burst in the two impulsive flares. Superhot plasma in the hot thermal flare is distributed uniformly throughout the loop. The differences are explained as being due to the different energy transport processes active in each type of flare.

  11. Soft X ray/extreme ultraviolet images of the solar atmosphere with normal incidence multilayer optics

    Science.gov (United States)

    Lindblom, Joakim Fredrik

    The first high resolution Soft X-Ray/Extreme Ultraviolet (XUV) images of the Sun with normal incidence multilayer optics were obtained by the Standford/MSFC Rocket X-Ray Spectroheliograph on 23 Oct. 1987. Numerous images at selected wavelengths from 8 to 256 A were obtained simultaneously by the diverse array of telescopes flown on-board the experiment. These telescopes included single reflection normal incidence multilayer systems (Herschelian), double reflection multilayer systems (Cassegrain), a grazing incidence mirror system (Wolter-Schwarzschild), and hybrid systems using normal incidence multilayer optics in conjunction with the grazing incidence primary (Wolter-Cassegrain). Filters comprised of approximately 1700 A thick aluminum supported on a nickel mesh were used to transmit the soft x ray/EUV radiation while preventing the intense visible light emission of the Sun from fogging the sensitive experimental T-grain photographic emulsions. These systems yielded high resolution soft x ray/EUV images of the solar corona and transition region, which reveal magnetically confined loops of hot solar plasma, coronal plumes, polar coronal holes, supergranulation, and features associated with overlying cool prominences. The development, testing, and operation of the experiments, and the results from the flight are described. The development of a second generation experiment, the Multi-Spectral Solar Telescope Array, which is scheduled to fly in the summer of 1990, and a recently approved Space Station experiment, the Ultra-High Resolution XUV Spectroheliograph, which is scheduled to fly in 1996 are also described.

  12. Hard X-ray sources from miniature plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Silva, P.; Moreno, J.; Zambra, M.; Soto, L. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    2004-07-01

    As first stage of a program to design a repetitive pulsed radiation generator for industrial applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, {approx} 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, {approx} 300 ns time to peak current). Hard X-rays are being studied in these devices operating with hydrogen. Images of metallic plates with different thickness were obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize the energy of the hard X-ray outside of the discharge chamber of PF-400 J. An effective energy of the order of 90 keV was measured under those conditions. X ray images of different metallic objects also have been obtained. (authors)

  13. Development of precision Wolter mirrors for future solar x-ray observations

    Science.gov (United States)

    Sakao, Taro; Matsuyama, Satoshi; Kime, Ayumi; Goto, Takumi; Nishihara, Akihiko; Nakamori, Hiroki; Yamauchi, Kazuto; Kohmura, Yoshiki; Miyake, Akira; Hashizume, Hirokazu; Maezawa, Tadakazu; Suematsu, Yoshinori; Narukage, Noriyuki

    2015-09-01

    High resolution imagery of the solar X-ray corona provides a crucial key to understand dynamics and heating processes of plasma particles there. However, X-ray imagery of the Sun with sub-arcsecond resolution has yet to be conducted due to severe technical difficulty in fabricating precision Wolter mirrors. For future X-ray observations of the Sun's corona, we are attempting to realize precision Wolter mirrors with sub-arcsecond resolution by adopting advanced surface polish and metrology methods based on nano-technology to sector mirrors which consist of a portion of an entire annulus. Following fabrication of the first engineering mirror and subsequent evaluation on the X-ray focusing performance in 2013, the second engineering mirror was made with improvements in both precision polish and metrology introduced. Measurement of focusing performance on the second mirror at SPring-8 synchrotron facility with 8 keV X-rays has demonstrated that the FWHM size of the PSF core reached down to 0.2" while its HPD (Half Power Diameter) size remained at ~3" due to the presence of small-angle scatter just outside of the core. Also, there was notable difference in the focal length between sagittal and meridional focusing which could have been caused by an error in the sag in the meridional direction of mirror area. Further improvements to overcome these issues have been planned for the next engineering mirror.

  14. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  15. Implications of X-ray Observations for Electron Acceleration and Propagation in Solar Flares

    CERN Document Server

    Holman, Gordon D; Aurass, Henry; Battaglia, Marina; Grigis, Paolo C; Kontar, Eduard P; Liu, Wei; Saint-Hilaire, Pascal; Zharkova, Valentina V

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general fla...

  16. Soft X-Ray Pulsations in Solar Flares

    Science.gov (United States)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  17. Solar Flare Element Abundances from the Solar Assembly for X-rays (SAX) on MESSENGER

    CERN Document Server

    Dennis, B R; Schwartz, R A; Tolbert, A K; Starr, R D; Nittler, L R

    2015-01-01

    X-ray spectra in the range $1.5-8.5$~keV have been analyzed for 526 large flares detected with the Solar Assembly for X-rays (SAX) on the Mercury {\\em MESSENGER} spacecraft between 2007 and 2013. For each flare, the temperature and emission measure of the emitting plasma were determined from the spectrum of the continuum. In addition, with the SAX energy resolution of 0.6 keV (FWHM) at 6~keV, the intensities of the clearly resolved Fe-line complex at 6.7~keV and the Ca-line complex at 3.9~keV were determined, along with those of unresolved line complexes from S, Si, and Ar at lower energies. Comparisons of these line intensities with theoretical spectra allow the abundances of these elements relative to hydrogen to be derived, with uncertainties due to instrument calibration and the unknown temperature distribution of the emitting plasma. While significant deviations are found for the abundances of Fe and Ca from flare to flare, the abundances averaged over all flares are found to be enhanced over photospheri...

  18. X-ray emission from a small 2 kJ plasma focus

    Science.gov (United States)

    Beg, F. N.; Ross, I.; Dangor, A. E.

    1997-05-01

    We report on a study of a 2 kJ, 200 kA plasma focus device as an x-ray source. The x-ray yield from a number of pure gases, deuterium, nitrogen, neon, argon, and xenon, was measured as a function of pressure. X-ray emission is mainly due to line radiation. Maximum x-ray yield of 12.5 J obtained for neon. At lower pressures, electron beams are generated which play an important role.

  19. High-intensity X-rays interaction with matter processes in plasmas, clusters, molecules and solids

    CERN Document Server

    Hau-Riege, Stefan P

    2012-01-01

    Filling the need for a book bridging the effect of matter on X-ray radiation and the interaction of x-rays with plasmas, this monograph provides comprehensive coverage of the topic. As such, it presents and explains such powerful new X-ray sources as X-ray free-electron lasers, as well as short pulse interactions with solids, clusters, molecules, and plasmas, and X-ray matter interactions as a diagnostic tool. Equally useful for researchers and practitioners working in the field.

  20. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    Science.gov (United States)

    Gu, Liyi; Kaastra, Jelle; Raassen, A. J. J.

    2016-04-01

    Charge exchange X-ray emission provides unique insight into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to n and l atomic subshells and carrying out complete radiative cascade calculation, we have created a new spectral code to evaluate the charge exchange emission in the X-ray band. Compared to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-n shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge exchange model will allow us to probe the ion properties remotely, including charge state, dynamics, and composition, at the interface between the cold and hot plasmas.

  1. X-ray plasma diagnostics for totally and partially photoionized plasmas such as Warm Absorber in AGN

    CERN Document Server

    Porquet, D; Porquet, Delphine; Dubau, Jacques

    1999-01-01

    Thanks to the new generation of X-ray satellites such as Chandra and XMM, high resolution and high sensitivity spectra are available. In particular, for the first time, the three most intense lines (resonance, intercombination and forbidden) of low charged (low Z) He-like ions are splitted for non solar plasmas. We present density, ionizing process and temperature diagnostics, for totally and partially photoionized plasmas, based on ratios of these three lines. These powerful plasma diagnostics could be used for hot astrophysical plasmas such as AGN, starburst galaxies, X-ray binaries, etc. In particular, they could be applied to Warm Absorber often seen in Active Galactic Nuclei (Porquet & Dubau 2000), which is an important key tool to understand central region of different types of AGN (Seyfert 1 and 2, high and low redshift quasars).

  2. The CubeSat Imaging X-ray Solar Spectrometer (CubIXSS) Mission Concept

    Science.gov (United States)

    Caspi, Amir; Shih, Albert Y.; Warren, Harry; DeForest, Craig; Laurent, Glenn Thomas; Schwartz, Richard A.; Woods, Thomas N.; Mason, James; Palo, Scott; Steslicki, Marek; Sylwester, Janusz; Gburek, Szymon; Mrozek, Tomasz; Kowalinski, Miroslaw; Torre, Gabriele; Crowley, Geoffrey; Schattenburg, Mark

    2017-08-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics, origins, and evolution of these energetic processes, providing probes both into the temperature distributions and elemental compositions of hot plasmas; spatially-resolved measurements are critical for understanding energy transport and mass flow. A better understanding of the thermal plasma improves our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed small satellite mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-FastSDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. Multiple detectors and tailored apertures provide sensitivity to a wide range of solar conditions, optimized for a launch during solar minimum. The precise spectra from these instruments will provide detailed measurements of the coronal temperature distribution and elemental abundances from the quiet Sun to active regions and flares. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a custom pinhole camera and Chandra-heritage X-ray transmission diffraction grating to provide spatially- resolved, full-Sun imaging spectroscopy from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. MOXSI’s unique capabilities enable SXR spectroscopy and temperature diagnostics of individual

  3. First flight of SMASH, the SwRI Miniature Assembly for Solar Hard X-rays

    Science.gov (United States)

    Caspi, Amir; Laurent, Glenn Thomas; Shoffner, Michael; Higuera Caubilla, David; Meurisse, Jeremie; Smith, Kelly; Shih, Albert Y.; Saint-Hilaire, Pascal; DeForest, Craig; Mansour, Nagi N.; Hathaway, David H.

    2016-05-01

    The SwRI Miniature Assembly for Solar Hard X-rays (SMASH) was successfully flown from Antarctica in January (19-30) 2016, as a piggy-back instrument on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) high altitude balloon payload. SMASH is a technological demonstration of a new miniaturized hard X-ray (HXR) detector for use on CubeSats and other small spacecraft, including the proposed CubeSat Imaging X-ray Solar Spectrometer (CubIXSS).HXRs are the observational signatures of energetic processes on the Sun, including plasma heating and particle acceleration. One of the goals of CubIXSS will be to address the question of how plasma is heated during solar flares, including the relationship between thermal plasma and non-thermal particles. SMASH demonstrated the space-borne application of the commercial off-the-shelf Amptek X123-CdTe, a miniature cadmium telluride photon-counting HXR spectrometer. The CdTe detector has a physical area of 25 mm^2 and 1 mm fully-depleted thickness, with a ~100 micron Be window; with on-board thermoelectric cooling and pulse pile-up rejection, it is sensitive to solar photons from ~5 to ~100 keV with ~0.5-1.0 keV FWHM resolution. Photons are accumulated into histogram spectra with customizable energy binning and integration time. With modest resource requirements (~1/8 U, ~200 g, ~2.5 W) and low cost (~$10K), the X123-CdTe is an attractive solution for HXR measurements from budget- and resource-limited platforms such as CubeSats. SMASH flew two identical X123-CdTe detectors for redundancy and increased collecting area; the supporting electronics (power, CPU) were largely build-to-print using the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat design.We review the SMASH mission, design, and detector performance during the 12-day Antarctic flight. We present current progress on our data analysis of observed solar flares, and discuss future applications of the space-qualified X123-CdTe detector, including the CubIXSS mission

  4. Solar Hard X-ray Source Sizes in a Beam-Heated and Ionised Chromosphere

    CERN Document Server

    O'Flannagain, A; Gallagher, P T

    2014-01-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) have shown that HXR source sizes are 3-6 times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionisation (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionised plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionised region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to...

  5. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Science.gov (United States)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  6. K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

    2006-11-21

    The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

  7. Solar X-ray polarimetry and spectrometry instrument PING-M for the Interhelioprobe mission

    Science.gov (United States)

    Kotov, Yu. D.; Yurov, V. N.; Glyanenko, A. S.; Lupar, E. E.; Kochemasov, A. V.; Trofimov, Yu. A.; Zakharov, M. S.; Faradzhaev, R. M.; Tyshkevich, V. G.; Rubtsov, I. V.; Dergachev, V. A.; Kruglov, E. M.; Lazutkov, V. P.; Savchenko, M. I.; Skorodumov, D. V.

    2016-08-01

    The PING-M experiment is designed to investigate solar X-ray activity. The instrument includes a hard X-ray polarimeter (PING-P), a hard X-ray spectrometer (HXRS) and a soft X-ray spectrometer (SXRS). PING-P has the energy range of 20-150 keV and an effective area of about 2.5 cm2. It uses three organic scintillation detectors as active scatterers, which work in coincidence with six absorber detectors, based on CsI(Tl) scintillator. This technique allows us to considerably improve the polarimeter sensitivity. HXRS has the energy range of 20-600 keV and an effective area of about 15 cm2. It is based on a fast inorganic scintillator (LaBr3(Ce) or CeBr3) with a relatively high energy resolution of 3.5-4.5% at 662 keV. The SXRS energy range is 1.5-25 keV, and its aperture is ø0.1 mm, which provides the registration of solar flares in the range from C1 to X20 class of GOES scale. It is based on a SDD semiconductor detector with an energy resolution better than 200 eV at 5.9 keV line. The experiment will be performed onboard the Russian interplanetary mission Interhelioprobe which is planned for launch after 2025. The instrument will allow us to investigate angular and energy distributions of accelerated electrons, plasma heating processes, etc. Stereoscopic polarimetry and spectrometric observations will be possible if a similar instrument is installed onboard a near Earth satellite, or the second probe of the Interhelioprobe mission.

  8. X-ray studies of solar system objects: now and the next decade

    Science.gov (United States)

    Branduardi-Raymont, G.

    2016-06-01

    XMM-Newton and Chandra have revealed the multiplicity of X-ray emissions from planets, comets and minor bodies in our solar system. This presentation will review the main findings so far and will look forward to the unique contributions that XMM-Newton can continue to provide in solar system exploration. As a prime example, Jupiter's polar regions show bright soft X-ray aurorae with a line-rich spectrum arising from charge exchange interactions of atmospheric neutrals with local and/or solar wind high charge-state heavy ions. At energies above ˜3 keV the auroral X-ray spectrum is featureless, pointing to an origin from electron bremsstrahlung. Jupiter's atmosphere scatters solar X-rays, so that the planet's disk displays an X-ray spectrum that closely resembles that of solar flares. The arrival of Juno at Jupiter this July will enable in situ measurements simultaneous with XMM-Newton observations, offering unique opportunities to validate models developed to describe the planet's behaviour. Unlike Jupiter, Mars and Venus lack a strong magnetic field, yet they show X-ray emissions from their disks and exospheres, via solar X-ray scattering and charge exchange. Future XMM-Newton observations of solar system targets, under different solar activity conditions, will provide ever deeper insights into their close relationships with their parent star.

  9. X-ray Magnetosheath Emission from Solar Wind Charge Exchange During Two CME Events in 2001

    Science.gov (United States)

    Sembay, S.; Whittaker, I. C.; Read, A.; Carter, J. A.; Milan, S. E.; Palmroth, M.

    2016-12-01

    Using a combination of the GUMICS-4 MHD model and observed solar wind heavy ion abundances from ACE, we produce case studies looking at X-ray emission from charge exchange in the Earth's magnetosheath. We specifically look in the 0.5-0.7 keV range, which is dominated by highly ionised oxygen emission. Previous studies looking at solar wind charge exchange (SWCX) emission have verified our modelling process via comparison to the XMM-Newton X-ray observatory, and we use the same simulation process here. This study investigates the emission magnitude changes that occur during two coronal mass ejection (CME) events (31 March 2001 and 21 October 2001). As part of this work we also provide a novel masking technique to exclude the plasma of terrestrial origin in the MHD model. As expected the two CME cases examined provide an increased dynamic pressure which pushes the magnetopause closer to the Earth, with a high temporal variation. We show how these changes cause an increase in the peak SWCX emission signature by over an order of magnitude from the quiescent solar wind case. Imaging of this SWCX emission allows a global view of the magnetopause shape and position, a technique planned for future missions such as SMILE (Solar wind Magnetosphere Ionosphere Link Explorer).

  10. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    CERN Document Server

    Struminsky, Alexei

    2015-01-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X-ray >100 keV were not found during time intervals, when prolonged hard {\\gamma}-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated du...

  11. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Nicoul, Matthieu

    2010-09-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase

  12. X-ray optical diagnostic of laser produced plasmas for nuclear fusion and X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Butzbach, R.

    2001-07-01

    In the present work, the conception, design and appliance of toroidally bent crystals for the X-ray optical diagnostics of laser produced plasmas is discussed. The first part of this work deals with the development, design and characterization of an X-Ray microscope for the observation of Rayleigh-Taylor instabilities, which act against the confinement and ignition of the fuel in the inertial confinement fusion process. The aim of the second part of the present work was the diagnostic of the lasing medium for amplified spontaneous emission close to the water window. For this purpose, an one-dimensionally (1-D) imaging X-ray spectrometer based on toroidally bent quartz crystals was developed for the observation of the Ni-like 4f-3d transition of Yb, Hf, Ta, and W ions, which should be related to the amplified 4d-4p emission, since the 4f niveau is very close to the 4d niveau. Thus, the 4f-3d transition can serve as an indicator for the population of the 4d niveau. (orig.)

  13. Thermalisation and hard X-ray bremsstrahlung efficiency of self-interacting solar flare fast electrons

    CERN Document Server

    Galloway, R K; MacKinnon, A L; Brown, J C

    2010-01-01

    Most theoretical descriptions of the production of solar flare bremsstrahlung radiation assume the collision of dilute accelerated particles with a cold, dense target plasma, neglecting interactions of the fast particles with each other. This is inadequate for situations where collisions with this background plasma are not completely dominant, as may be the case in, for example, low-density coronal sources. We aim to formulate a model of a self-interacting, entirely fast electron population in the absence of a dense background plasma, to investigate its implications for observed bremsstrahlung spectra and the flare energy budget. We derive approximate expressions for the time-dependent distribution function of the fast electrons using a Fokker-Planck approach. We use these expressions to generate synthetic bremsstrahlung X-ray spectra as would be seen from a corresponding coronal source. We find that our model qualitatively reproduces the observed behaviour of some flares. As the flare progresses, the model's...

  14. Behaviour of Electron Content in the Ionospheric D-Region During Solar X-Ray Flares

    Science.gov (United States)

    Todorović Drakul, M.; Čadež, V. M.; Bajčetić, J.; Popović, L. Č.; Blagojević, D.; Nina, A.

    2016-12-01

    One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC) representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km - 90 km above Earth's surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D-region's electron content (TEC_{D) during activity of a solar X-ray flare (it rises by a factor of 136 in the considered case) when TEC_{D} contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.

  15. Behaviour of Electron Content in the Ionospheric D-Region During Solar X-Ray Flares

    Science.gov (United States)

    Todorović Drakul, M.; Čadež, V. M.; Bajčetić, J.; Popović, L. Č.; Blagojević, D.; Nina, A.

    2016-08-01

    One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC) representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km - 90 km above Earth's surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D-region's electron content (TEC_{D}) during activity of a solar X-ray flare (it rises by a factor of 136 in the considered case) when TEC_{D} contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.

  16. X-ray Diagnostics of Thermal Conditions of the Hot Plasmas in the Centaurus Cluster

    CERN Document Server

    Takahashi, I; Makishima, K; Matsushita, K; Fukazawa, Y; Ikebe, Y; Kitaguchi, T; Kokubun, M; Nakazawa, K; Okuyama, S; Ota, N; Tamura, T

    2009-01-01

    X-ray data of the Centaurus cluster, obtained with {\\it XMM-Newton} for 45 ksec, were analyzed. Deprojected EPIC spectra from concentric thin shell regions were reproduced equally well by a single-phase plasma emission model, or by a two-phase model developed by {\\it ASCA}, both incorporating cool (1.7--2.0 keV) and hot ($\\sim 4$ keV) plasma temperatures. However, EPIC spectra with higher statistics, accumulated over 3-dimentional thick shell regions, were reproduced better by the two-phase model than by the singe-phase one. Therefore, hot and cool plasma phases are inferred to co-exist in the cluster core region within $\\sim 70$ kpc. The iron and silicon abundances of the plasma were reconfirmed to increase significantly towards the center, while that of oxygen was consistent with being radially constant. The implied non-solar abundance ratios explains away the previously reported excess X-ray absorption from the central region. Although an additional cool ($\\sim 0.7$ keV) emission was detected within $\\sim ...

  17. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    Science.gov (United States)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  18. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    CERN Document Server

    Tsai, Hai-En; Shaw, Joseph; Li, Zhengyan; Arefiev, Alexey V; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V; Shvets, G; Downer, M C

    2014-01-01

    We present results of the first tunable Compton backscattering (CBS) x-ray source that is based on the easily aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The LPA is driven in the blowout regime by 30 TW, 30 fs laser pulses, and produces high-quality, tunable, quasi-monoenergetic electron beams. A thin plastic film near the gas jet exit efficiently retro-reflects the LPA driving pulse with relativistic intensity into oncoming electrons to produce $2\\times10^{7}$ CBS x-ray photons per shot with 10-20 mrad angular divergence and 50 % (FWHM) energy spread without detectable bremsstrahlung background. The x-ray central energy is tuned from 75 KeV to 200 KeV by tuning the LPA e-beam central energy. Particle-in-cell simulations of the LPA, the drive pulse/PM interaction and CBS agree well with measurements.

  19. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    Science.gov (United States)

    Effenberger, Frederic; Rubio da Costa, Fatima; Oka, Mitsuo; Saint-Hilaire, Pascal; Liu, Wei; Petrosian, Vahé; Glesener, Lindsay; Krucker, Säm

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  20. Mapping the X-Ray Emission Region in a Laser-Plasma Accelerator

    Science.gov (United States)

    Corde, S.; Thaury, C.; Phuoc, K. Ta; Lifschitz, A.; Lambert, G.; Faure, J.; Lundh, O.; Benveniste, E.; Ben-Ismail, A.; Arantchuk, L.; Marciniak, A.; Stordeur, A.; Brijesh, P.; Rousse, A.; Specka, A.; Malka, V.

    2011-11-01

    The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.

  1. x-ray irradiation analysis based on wavelet transform in tokamak plasma.

    Science.gov (United States)

    Ghanbari, K; Ghoranneviss, M; Elahi, A Salar; Saviz, S

    2014-01-01

    Hard x-ray emission from the Runaway electrons is an important issue in tokamaks. Suggesting methods to reduce the Runaway electrons and therefore the emitted hard x-ray is important for tokamak plasma operation. In this manuscript, we have investigated the effects of external fields on hard x-ray intensity and Magneto-Hydro-Dynamic (MHD) activity. In other words, we have presented the effects of positive biased limiter and Resonant Helical Field (RHF) on the MHD fluctuations and hard x-ray emission from the Runaway electrons. MHD activity and hard x-ray intensity were analyzed using Wavelet transform in the presence of external fields and without them. The results show that the MHD activity and therefore the hard x-ray intensity can be controlled by the external electric and magnetic fields.

  2. Laser-Plasma Sources for Soft-X-Ray Projection Lithography

    NARCIS (Netherlands)

    F. Bijkerk,; Shmaenok, L.; Vanhonk, A.; Bastiaensen, R.; Platonov, Y. Y.; Shevelko, A. P.; Mitrofanov, A. V.; Voss, F.; Desor, R.; Frowein, H.; Nikolaus, B.

    1994-01-01

    Results are reported concerning high-repetition-rate excimer lasers with average powers up to 415 W and their usage for generating laser-plasma soft X-ray sources. A conversion efficiency of laser light into monochromatized soft X-ray radiation of 0.7% at 13.5 nm (2% bandwidth) was achieved using an

  3. Laser-Plasma Sources for Soft-X-Ray Projection Lithography

    NARCIS (Netherlands)

    F. Bijkerk,; Shmaenok, L.; Vanhonk, A.; Bastiaensen, R.; Platonov, Y. Y.; Shevelko, A. P.; Mitrofanov, A. V.; Voss, F.; Desor, R.; Frowein, H.; Nikolaus, B.

    1994-01-01

    Results are reported concerning high-repetition-rate excimer lasers with average powers up to 415 W and their usage for generating laser-plasma soft X-ray sources. A conversion efficiency of laser light into monochromatized soft X-ray radiation of 0.7% at 13.5 nm (2% bandwidth) was achieved using an

  4. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    Science.gov (United States)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  5. Soft X-ray polychromator for the Solar Maximum Mission

    Science.gov (United States)

    Haisch, B. M.; Levay, M.; Stern, R. A.; Strong, K. T.; Wolfson, C. J.; Acton, L. W.

    1984-01-01

    The XRP was designed to measure the following temporal and spatial properties of the active and flaring Sun: electron temperature, departures from steady state, ion kinetic temperatures, and electron density. The Bent Crystal Spectrometer (BCS) is capable of measuring the broadening and blue shifts often observed in the impulsive phase of flares. The six simultaneous line fluxes indicative of six different temperatures of formation observable by the Flat Crystal Spectrometer (FCS) allows the derivation of the differential emission measure of the plasma at each raster point. During the operational periods of the XRP hundreds of flares of C-level (GOES classification) were observed and brighter in both the FCS and BCS, including 5 X-flares. Associated theoretical work in atomic physics, stimulated in part by the promise of XRP measurements, has benefitted from the experimental data on solar plasmas which the XRP has provided in abundance.

  6. Development of low-energy x-ray fluorescence micro-distribution analysis using a laser plasma x-ray source and multilayer optics?

    NARCIS (Netherlands)

    Stuik, R.; Shmaenok, L. A.; Fledderus, H.; Andreev, S. S.; Shamov, E. A.; Zuev, S. Y.; Salashchenko, N. N.; F. Bijkerk,

    1999-01-01

    A new technique is presented for low-energy X-ray fluorescence micro-distribution analysis of low-Z elements at micrometer spatial resolutions. The technique is based on the use of a laser plasma X-ray source and spherically curved multilayer optics. A large collimator is used to focus the light fro

  7. Temporal and Spectral Resolved Measurement of Soft X-ray From Ultrashort Pulse Laser Produced Plasma

    Institute of Scientific and Technical Information of China (English)

    W.Theobald; L.Veisz; H.Schwoerer; R.Sauerbrey; X.Z.Tang

    2001-01-01

    Ultrashort laser pulse produced plasmas are powerful sources of incoherent XUV/soft X-ray radiation and have important applications range from microscopy to lithography. Adding a prepulse is one possible way to enhance soft X-ray emission. The experiment is performed on the Jena 10 TW laser system in IOQ, Germany. The main purpose is to measure the time-resolved soft X-ray spectrum, and study how a prepulse play an important role and enhance the X-ray emission as well as and pulse duration. We clarified the temporal behavior of X-ray emission from quartz plasma produced by intensive femtosecond 800 nm laser pulse, and obtained a quantitative pictures of the

  8. Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Adams, Mitzi

    2015-07-01

    Solar X-ray jets are thought to be made by a burst of reconnection of closed magnetic field at the base of a jet with ambient open field. In the accepted version of the `emerging-flux' model, such a reconnection occurs at a plasma current sheet between the open field and the emerging closed field, and also forms a localized X-ray brightening that is usually observed at the edge of the jet's base. Here we report high-resolution X-ray and extreme-ultraviolet observations of 20 randomly selected X-ray jets that form in coronal holes at the Sun's poles. In each jet, contrary to the emerging-flux model, a miniature version of the filament eruptions that initiate coronal mass ejections drives the jet-producing reconnection. The X-ray bright point occurs by reconnection of the `legs' of the minifilament-carrying erupting closed field, analogous to the formation of solar flares in larger-scale eruptions. Previous observations have found that some jets are driven by base-field eruptions, but only one such study, of only one jet, provisionally questioned the emerging-flux model. Our observations support the view that solar filament eruptions are formed by a fundamental explosive magnetic process that occurs on a vast range of scales, from the biggest mass ejections and flare eruptions down to X-ray jets, and perhaps even down to smaller jets that may power coronal heating. A similar scenario has previously been suggested, but was inferred from different observations and based on a different origin of the erupting minifilament.

  9. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  10. The effect of bound states on X-ray Thomson scattering for partially ionized plasmas

    OpenAIRE

    Nilsen, J.; Johnson, W.R.; Cheng, K. T.

    2012-01-01

    X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. X-ray laser sources have always been of interest because of the need to have a bright monochromatic x-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the xray free electron laser (X-FEL) at the SLAC Linac Coh...

  11. Charge transfer reactions at interfaces between neutral gas and plasma: Dynamical effects and X-ray emission

    Science.gov (United States)

    Provornikova, E.; Izmodenov, V. V.; Lallement, R.

    2012-04-01

    Charge-transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge-transfer with respect to the dynamics and the structure of neutral gas-plasma interfaces. We consider the following phenomena: (1) the heliospheric interface - region where the solar wind plasma interacts with the partly-ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so-called ``Local Bubble". In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two-component model of the cloud-plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud-plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X-ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X-ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge-transfer X-ray emission from the neutral cloud-plasma interface may be comparable to the diffuse thermal X-ray emission from the million degree gas cavity itself.

  12. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  13. The Chandra X-ray Observatory is prepped for solar panel deployment

    Science.gov (United States)

    1999-01-01

    In the Vertical Processing Facility, a TRW technician checks the attachment of the solar panel array (out of sight to the right) to the Chandra X-ray Observatory, at left. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93.

  14. Low Energy Plasma Focus as an Intense X-ray Source for Radiography

    Institute of Scientific and Technical Information of China (English)

    S. Hussain; M. Zakaullah; Shujaat Ali; A. Waheed

    2004-01-01

    Study on X-ray emission from a low energy (1.8 k J) plasma focus device powered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175 kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energy windows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry is found to be (27.3±1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52 ±0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at the anode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device as an intense X-ray source for radiography is demonstrated.

  15. Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat

    Science.gov (United States)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Moore, Christopher; Jones, Andrew; Kohnert, Rick; Li, Xinlin; Palo, Scott; Solomon, Stanley C.

    2016-01-01

    The miniature x-ray solar spectrometer is a three-unit CubeSat developed at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at University of Colorado, Boulder and from Laboratory for Atmospheric and Space Physics scientists and engineers. The scientific objective of the miniature x-ray solar spectrometer is to study processes in the dynamic sun, from quiet sun to solar flares, and to further understand how these changes in the sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays. The enabling technology providing the advanced solar soft x-ray spectral measurements is the Amptek X123, a commercial off-the-shelf silicon drift detector. The Amptek X123 has a low mass (approx. 324 g after modification), modest power consumption (approx. 2.50 W), and small volume (6.86 x 9.91 x 2.54 cm), making it ideal for a CubeSat. This paper provides an overview of the miniature x-ray solar spectrometer mission: the science objectives, project history, subsystems, and lessons learned, which can be useful for the small-satellite community.

  16. Investigation of the Electronic Structure of Solid Density Plasmas by X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Forest, F J; Kuhlbrodt, S; Redmer, R; Faussurier, G; Blancard, C; Renaudin, P; Landen, O L

    2003-05-19

    We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

  17. Electronic Structure Measurement of Solid Density Plasmas using X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Rogers, F J; Landen, O L; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R

    2003-08-23

    We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

  18. Comparative study of X-ray emission from plasma focus relative to different preionization schemes

    Science.gov (United States)

    Ahmad, S.; Qayyum, A.; Hassan, M.; Zakaullah, M.

    2017-07-01

    A 2.7-kJ Mather-type plasma focus has been investigated for X-ray emission with preionization produced by an α-source, a β-source, and a shunt resistor. Time-resolved and time integrated measurements are carried out using a PIN-diode-based X-ray spectrometer and pinhole camera. The β-source (28Ni63) assisted preionization enhances the X-ray emission up to 25%, while preionization induced by depleted uranium (92U238) increases both Cu-Kα and total X-ray yield of about 100%. The preionization caused by the optimum shunt resistor enhances the Cu-Kα and total X-ray yield of about 53%. It is found that preionization also broadens the working pressure range for the high X-ray yield and improves the shot-to-shot reproducibility of the system. Pinhole images reveal that the X-ray emission from the anode tip is dominant owing to impact of electron bombardment, while the X-ray emission from hot spots is also visible.

  19. Behaviour of electron content in the ionospheric D-region during solar X-ray flares

    Directory of Open Access Journals (Sweden)

    Todorović-Drakul M.

    2016-01-01

    Full Text Available One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km { 90 km above Earth's surface is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS signal analyses, and they show noticeable variations in the D-region's electron content (TECD during activity of a solar X-ray °are (it rises by a factor of 136 in the considered case when TECD contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites. [Projekat Ministarstva nauke Republike Srbije, br. III-44002, 176001, 176002, 176004 and TR36020

  20. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    CERN Document Server

    Shelton, Robin L

    2008-01-01

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local...

  1. Advances in understanding the anomalous dispersion of plasmas in the X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J; Cheng, K T; Johnson, W R

    2008-09-24

    Over the last several years we have predicted and observed plasmas with an index of refraction greater than one in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main computational tool has been the average atom code AVATOMKG that enables us to calculate the index of refraction for any plasma at any wavelength. In the last year we have improved this code to take into account many-atomic collisions. This allows the code to converge better at low frequencies. In this paper we present our search for plasmas with strong anomalous dispersion that could be used in X-ray laser interferometer experiments to help understand this phenomena. We discuss the calculations of anomalous dispersion in Na vapor and Ne plasmas near 47 nm where we predict large effects. We also discuss higher Z plasmas such as Ce and Yb plasmas that look very interesting near 47 nm. With the advent of the FLASH X-ray free electron laser in Germany and the LCLS X-FEL coming online at Stanford in another year we use the average atom code to explore plasmas at higher X-ray energy to identify potential experiments for the future. In particular we look near the K shell lines of near solid carbon plasmas and predict strong effects. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

  2. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer CubeSat

    CERN Document Server

    Woods, Thomas N; Chamberlin, Phillip C; Jones, Andrew; Kohnert, Richard; Mason, James Paul; Moore, Christopher S; Palo, Scott; Rouleau, Colden; Solomon, Stanley C; Machol, Janet; Viereck, Rodney

    2016-01-01

    The goal of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares, and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1 to 10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5-30 keV with a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS-1, has been making science observations since 2016 June 9, and has observed numerous flares, including 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal pl...

  3. Quasi-stereoscopic imaging of the solar X-ray corona

    Science.gov (United States)

    Batchelor, David

    1994-01-01

    The first published three-dimensional images of the solar X-ray corona obtained by means of solar rotational parallax, are presented in stereographic form. Image pairs approximately 12 hours apart during times of stable coronal conditions were selected from the digitized images obtained with the Skylab X-ray Spectrographic Telescope. The image resolution limit is approximately 10 arc sec. Many coronal structures not visible in the separate images are clearly observed when the image pairs are viewed stereoscopically. This method gives a preview of the potential resources for solar research and forecasting of solar-geomagnetic interactions that could be provided by stereoscopic observations of the Sun using a small group of spacecraft. The method is also applicable to other X-ray, ultraviolet, or other wavebands in which the corona has extended, transparent structure.

  4. SphinX: A Fast Solar Photometer in X-rays

    Indian Academy of Sciences (India)

    J. Sylwester; S. Kuzin; Yu. D. Kotov; F. Farnik; F. Reale

    2008-03-01

    The scientific goals and construction details of a new design, Polish X-ray spectrophotometer are given. It will be incorporated within the Russian TESIS X and EUV complex aboard the forthcoming CORONAS solar mission. SphinX (Solar Photometer in X-rays) will use PIN silicon detectors for high time resolution (0.01 s) measurements of the solar spectra of quiet and active corona in the range 0.5–15 keV. A new filter-fluorescence target concept will be employed to allow for a fast photometry of the solar X-ray flux variations in selected, well defined narrow spectral bands including the Fe xxvi and Fe xxv iron line groups.

  5. Using the Maximum X-ray Flux Ratio and X-ray Background to Predict Solar Flare Class

    CERN Document Server

    Winter, Lisa M

    2015-01-01

    We present the discovery of a relationship between the maximum ratio of the flare flux (namely, 0.5-4 Ang to the 1-8 Ang flux) and non-flare background (namely, the 1-8 Ang background flux), which clearly separates flares into classes by peak flux level. We established this relationship based on an analysis of the Geostationary Operational Environmental Satellites (GOES) X-ray observations of ~ 50,000 X, M, C, and B flares derived from the NOAA/SWPC flares catalog. Employing a combination of machine learning techniques (K-nearest neighbors and nearest-centroid algorithms) we show a separation of the observed parameters for the different peak flaring energies. This analysis is validated by successfully predicting the flare classes for 100% of the X-class flares, 76% of the M-class flares, 80% of the C-class flares and 81% of the B-class flares for solar cycle 24, based on the training of the parametric extracts for solar flares in cycles 22-23.

  6. The Thermal Properties of Solar Flares Over Three Solar Cycles Using GOES X-ray Observations

    CERN Document Server

    Ryan, Daniel F; Gallagher, Peter T; Dennis, Brian R; Tolbert, A Kim; Schwartz, Richard A; Young, C Alex

    2012-01-01

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) onboard the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated temperature and emission measure-based background subtraction method (TEBBS), which builds on the methods of Bornmann (1990). Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. (2005). TEBBS was successfully applied to over 50,...

  7. The Sun's X-ray Emission During the Recent Solar Minimum

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  8. Low-photon-energy plasma flash x-ray generator (LPFXG-2002)

    Science.gov (United States)

    Komatsu, Makoto; Sato, Eiichi; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Tanaka, Etsuro; Mori, Hidezo; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2003-07-01

    In this study, we have made a low photon energy flash x-ray generator with a titanium target and have measured the radiographic characteristics. The flash x-ray generator consists of a high-voltage power supply, a high-voltage condenser, a turbo molecular pump and a flash x-ray tube. The condenser is charged up to about 30 kV, and the electric charges in the condenser are discharged to the tube after triggering the cathode. The linear plasma x-ray source forms from the target evaporation, and then the flash x-rays are generated from the plasma in the axial direction. K-series emission of titanium has been confirmed in experiments qualitatively and characteristics of the generator have been measured. K-series x-ray of titanium had a high resolution and enable us to take radiographs of a thin rabbit's ear clearly using the CR (Computed Radiography) system. The effect of titanium on the target of the soft flash x-ray tube has been indicated accordingly.

  9. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Science.gov (United States)

    Rácz, R.; Biri, S.; Pálinkás, J.; Mascali, D.; Castro, G.; Caliri, C.; Romano, F. P.; Gammino, S.

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  10. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Mascali, D.; Castro, G.; Caliri, C.; Gammino, S. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Romano, F. P. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy)

    2016-02-15

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  11. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    Science.gov (United States)

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  12. HEXITEC: A Next Generation Hard X-ray Detector for Solar Observations

    Science.gov (United States)

    Ryan, Daniel; Christe, Steven; Shih, Albert; Inglis, Andrew R.; Gregory, Kyle; Baumgartner, Wayne H.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew; Veale, Matthew C.; Panessa, Marco

    2016-05-01

    There is an increasing demand in solar physics for high resolution X-ray spectroscopic imaging. Such observations would present ground-breaking opportunities to study the poorly understood high energy processes in the solar corona such as solar flares, coronal heating, etc. However, such observations require a new breed of solid-state detectors sensititve to high energy X-rays with fine independent pixels to subsample the point spread function (PSF) of the X-ray optics. They must also be capable of handling very high count rates as photon fluxes from solar flares often cause pileup in current detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new Cadmium Telluride (CdTe) detector system, dubbed HEXITEC (High Energy X-ray Imaging Technology). It is an 80x80 array of 250 micron independent pixels sensitive in the 4--80 keV band and capable of a high full frame readout rate of 10 kHz. HEXITEC provides the smallest independently read out pixels currently available, and are well matched to the few arcsecond PSF produced by the current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space-borne hard X-ray focusing telescopes. In this poster we show the latest results on HEXITEC's imaging capability, high read out rate, and energy sensitivity and reveal it to be ideal for such future instruments. The potential observations obtained by combining HEXITEC with the next generation of X-ray focusing optics could to revolutionize our understanding of high energy processes in the solar corona.

  13. Behavior of the x-ray spectrum of multiply charged ions during forced plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.G.; Marchenko, V.S.

    1982-07-01

    The behavior of the x-ray emission spectrum of a dense plasma during forced expansion is studied. The optical transparency of the plasma varies during the expansion. The plasma emission spectrum integrated over the expansion time is calculated from the analytic solutions of the equations. The intensity of the line emission is calculated in the average-ion approximation.

  14. Plasma-based X-ray laser speckle and its application on ferroelectric material

    Institute of Scientific and Technical Information of China (English)

    TAI Ren-Zhong; NAMIKAWA Kazumichi

    2005-01-01

    A new type of soft X-ray source, i.e. a plasma-based X-ray laser, is found to be promising to conduct transient measurement. By means of picosecond X-ray laser speckles, the dynamic microscopic polarization clusters within cubic (paraelectric) BaTiO3 was directly observed and characterized in a microscopic scale for the first time.This opens a way to study this type of clusters, which usually manifest large external-field response for ferroelectric materials.

  15. A novel X-ray spectrometer for plasma hot spot diagnosis

    Science.gov (United States)

    Shi, Jun; Guo, Yongchao; Xiao, Shali; Yang, Zuhua; Qian, Feng; Cao, LeiFeng; Gu, Yuqiu

    2017-09-01

    A novel X-ray spectrometer is designed to diagnose the different conditions in plasmas. It can provide both X-ray spectroscopy and plasma image information simultaneously. Two pairs of elliptical crystal analyzers are used to measure the X-ray spectroscopy in the range of 2-20 keV. The pinhole imaging system coupled with gated micro-channel plate(MCP) detectors are developed, which allows 20 images to be collected in a single individual experiment. The experiments of measuring spectra were conducted at ;Shenguang-II upgraded laser; in China Academy of Engineering Physics to demonstrate the utility of the spectrometer. The X-ray spectroscopy information was obtained by the image plate(IP). The hot spot imaging experiments were carried out at ;Shenguang-III prototype facility;. We have obtained the hot sport images with the spectrometer, and the signal to noise ratio of 30 ∼ 40 is observed.

  16. The effect of turbulent density fluctuations on wave-particle interactions and solar flare X-ray spectrum

    CERN Document Server

    Hannah, I G; Reid, H A S

    2012-01-01

    To demonstrate the effect of turbulent background density fluctuations on flare accelerated electron transport in the solar corona. Using the quasi-linear approximation, we numerically simulate the propagation of a beam of accelerated electrons from the solar corona to chromosphere, including the self-consistent response of the inhomogeneous background plasma in the form of Langmuir waves. We calculate the X-ray spectrum from these simulations using the bremsstrahlung cross-section and fit the footpoint spectrum using the collisional "thick-target" model, a standard approach adopted in observational studies. We find that the interaction of the Langmuir waves with the background electron density gradient shifts the waves to higher phase velocity where they then resonate with higher velocity electrons. The consequence is that some of the electrons are shifted to higher energies, producing more high energy X-rays than expected in the cases where the density inhomogeneity is not considered. We find that the level...

  17. Silicon Drift Detector for Soft x-ray Spectrometer in Fusion Plasmas

    Institute of Scientific and Technical Information of China (English)

    LI Mei; JU Hong-jun

    2008-01-01

    Silicon drift detector(SDD) is used in the soft x-ray pulse height analyzer(PHA) to measure soft x-ray emissions in fusion plasmas. SDD has the virtues of high count rates and high energy resolution, and the good performances at work temperature of about -10 ℃ achieved by single stage peltier element. The performance and first experimental results from SDD system are presented.

  18. Spectroscopic Separation of Solar Wind Charge Exchange, Local Bubble, and Nearby Supernova Remnant X-rays: Diffuse X-ray Spectrometer Recent Results

    Science.gov (United States)

    Morgenthaler, Jeffrey P.; Edgar, R. J.; Sanders, W. T.; Smith, R. K.; Koutroumpa, D.; Henley, D. B.; Shelton, R. L.; Robertson, I. P.; Collier, M. R.; Cravens, T. E.

    2011-05-01

    The Diffuse X-ray Spectrometer (DXS) was a Space Shuttle Payload of Opportunity that flew in 1993. DXS measured the spectrum of the diffuse X-ray background (DXRB) between 150 eV and 284 eV (the 1/4 keV band) using a Bragg crystal spectrometer. Higher order Bragg reflections included the OVII and OVIII features. The counting statistics and spectroscopic resolving power of the DXS measurements have yet to be rivaled in the 1/4 keV band. DXS had a 15°x15° FOV that was repeatedly scanned over a 140° arc in the Galactic plane centered roughly toward the Galactic anti-center. The Vela-Puppis and the Monogem ring supernova remnants were studied, as well 3 adjacent regions typical of the DXRB. During the 5-day Shuttle flight, the total sky-looking DXS count rate unexpectedly dropped by 20%, suggesting a significant and variable local source of X-rays, likely generated by the solar wind charge exchange mechanism (SWCX) in the geocorona and/or a passing coronal mass ejection. We use this unique dataset to: (1) Show that a state-of-the-art heliospheric SWCX model compares reasonably well to the DXS DXRB spectrum in the 190-284 eV range, but falls short in the 150-190 eV range. (2) Spectroscopically resolve the OVII forbidden and resonance lines, showing that the resonance line is somewhat stronger. This confirms there is a contribution to the DXRB from a source other than the SWCX. (3) Present spectra of the Vela-Puppis and Monogem regions cleaned of all foreground X-ray emission and compare to standard collisional ionization equilibrium plasma models. The discrepancies between the models and data highlight the need for continued progress in understanding the L-shell ions of Mg, Si, S and the M-shell ions of Fe. (4) Present the first isolated spectrum of the SWCX in the 1/4 keV band that resolves lines/line complexes.

  19. Comets: mechanisms of x-ray activity

    Science.gov (United States)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  20. [Experimental investigation of laser plasma soft X-ray source with gas target].

    Science.gov (United States)

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  1. Development of a soft x-ray plasma camera with a Fresnel zone plate to image laser produced plasmas

    Science.gov (United States)

    Kado, M.; Mori, M.; Nishiuchi, M.; Ishino, M.; Kawachi, T.

    2009-09-01

    A soft x-ray plasma camera operated at 3.35nm in the water window x-ray region is developed and demonstrated imaging gas jet plasmas of several spices produced with a 10TW Ti: sapphire laser. The plasma camera consists of a 300nm thick Ag/Ti/Si3N4 x-ray band pass filter with bandwidth of 1.43nm to cut visible light and also to reduce colour aberration of the Fresnel zone plate, a Fresnel zone plate with diameter of 1mm and outermost zone width of 300nm, and a soft x-ray CCD camera. The magnification of the plasma camera is 10. The soft x-ray plasma camera powered by a Fresnel zone plate is a very powerful tool to observe laser produced plasmas since it is 1000 times brighter and has 5 times higher spatial resolution comparing ordinary x-ray pinhole camera. The soft x-ray images of helium, nitrogen, argon, krypton, and xenon gas jet plasmas are obtained changing gas pressure from 0.01MPa to 1MPa.

  2. Searching for plasmas with anomalous dispersion in the soft X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J; Johnson, W R; Cheng, K T

    2007-08-24

    Over the last decade the electron density of plasmas has been measured using X-ray laser interferometers in the 14 to 47 nm wavelength regime. With the same formula used in decades of experiments with optical interferometers, the data analysis assumes the index of refraction is due only to the free electrons, which makes the index less than one. Over the last several years, interferometer experiments in C, Al, Ag, and Sn plasmas have observed plasmas with index of refraction greater than one at 14 or 47 nm and demonstrated unequivocally that the usual formula for calculating the index of refraction is not always valid as the contribution from bound electrons can dominate the free electrons in certain cases. In this paper we search for other materials with strong anomalous dispersion that could be used in X-ray laser interferometer experiments to help understand this phenomena. An average atom code is used to calculate the plasma properties. This paper discusses the calculations of anomalous dispersion in Ne and Na plasmas near 47 nm and Xe plasmas near 14 nm. With the advent of the FLASH X-ray free electron laser in Germany and the LCLS X-FEL coming online at Stanford in 2 years the average atom code will be an invaluable tool to explore plasmas at higher X-ray energy to identify potential experiments for the future. During the next decade X-ray free electron lasers and other X-ray sources will be used to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

  3. Volume effect of laser produced plasma on X-ray emissions

    Indian Academy of Sciences (India)

    V K Senecha; Y B S R Prasad; M P Kamath; A S Joshi; G S Solanki; A P Kulkarni; S Gupta; R Pareek; H C Pant

    2000-11-01

    An investigation of x-ray emission from Cu plasma produced by 1.054 m Nd:glass laser pulses of 5 ns duration, at 2 × 1012-2 × 1013 W cm-2 is reported. The x-ray emission has been studied as a function of target position with respect to the laser beam focus position. It has been observed that x-ray emissions from ns duration plasma show a volume effect similar to subnanosecond plasmas. Due to this effect the x-ray yield increases when target is moved away relative to the best focal plane of the laser beam. This result supports the theoretical model of Tallents and has also been testified independently using suitably modified theoretical model for our experimental conditions. While above result is in good agreement with similar experimental results obtained for sub-nanosecond laser produced plasmas, it differs from result claiming filamentation rather than pure geometrical effect leading to x-ray enhancement for ns plasmas.

  4. Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes

    Energy Technology Data Exchange (ETDEWEB)

    Foord, M E; Heeter, R F; Chung, H; vanHoof, P M; Bailey, J E; Cuneo, M E; Liedahl, D A; Fournier, K B; Jonauskas, V; Kisielius, R; Ramsbottom, C; Springer, P T; Keenan, K P; Rose, S J; Goldstein, W H

    2005-04-29

    The charge state distributions of Fe, Na and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate the ionization parameter {zeta} in the plasma reaches values {zeta} = 20-25 erg cm s{sup -1} under near steady-state conditions. A curve-of-growth analysis, which includes the effects of velocity gradients in a one-dimensional expanding plasma, fits the observed line opacities. Absorption lines are tabulated in the wavelength region 8-17 {angstrom}. Initial comparisons with a number of astrophysical x-ray photoionization models show reasonable agreement.

  5. Space solar telescope in soft X-ray and EUV band

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we have reviewed our achievements in soft X-ray and extreme ultraviolet (EUV) optics. Up to now, the research system of soft X-ray and EUV optics has been established, including light sources, detectors, calibrations, optical testing and machining of super smooth mirrors, and fabrications of multilayer film mirrors. Based on our achievements, we have developed two types of solar space telescopes for the soft X-ray and EUV space solar observations. One is an EUV multilayer normal incident telescope array including 4 different operation wavelength telescopes. The operation wavelengths of the EUV telescope are 13.0, 17.1, 19.5 and 30.4 nm. The other is a complex space solar telescope, which is composed of an EUV multilayer normal incident telescope and a soft X-ray grazing incident telescope. The EUV multilayer normal incident telescope stands in the central part of the soft X-ray grazing incident telescope. The normal incident telescope and the grazing incident telescope have a common detector. The different operation wavelengths can be changed by rotating a filter wheel.

  6. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Christoph [Univ. of California, Los Angeles, CA (United States)

    2012-05-05

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  7. Calibration Of A KrF Laser-Plasma Source For X-Ray Microscopy Applications

    Science.gov (United States)

    Turcu, I. C. E.; O'Neill, F.; Zammit, U.; Al-Hadithi, Y.; Eason, R. W.; Rogayski, A. M.; Hills, C. P. B.; Michette, A. G.

    1988-02-01

    Plasma X-ray sources for biological microscopy in the water-window have been produced by focusing tige 200 3, 50 ns Sprit q KrF laser onto carbon targets at irradiance between 2.2 x 10" W/cm4 and 3.7 x 10i3W/cm. Absolute measurements of X-ray production have been made using a calibrated, vacuum X-ray diode detector. A peak conversion efficiency . 10% is measured from KrF laseri)Tight tcto wate-window X-rays at 280 eV < hv < 530 eV for a target irradiance . 1 x x 10 W/cm'. Some measurements with gold and tungsten targets give conversion efficiencies 2$25% at a similar laser irradiance.

  8. Hard X-Ray Burst Detected From Caltech Plasma Jet Experiment Magnetic Reconnection Event

    Science.gov (United States)

    Marshall, Ryan S.; Bellan, Paul M.

    2016-10-01

    In the Caltech plasma jet experiment a 100 kA MHD driven jet becomes kink unstable leading to a Rayleigh-Taylor instability that quickly causes a magnetic reconnection event. Movies show that the Rayleigh-Taylor instability is simultaneous with voltage spikes across the electrodes that provide the current that drives the jet. Hard x-rays between 4 keV and 9 keV have now been observed using an x-ray scintillator detector mounted just outside of a kapton window on the vacuum chamber. Preliminary results indicate that the timing of the x-ray burst coincides with a voltage spike on the electrodes occurring in association with the Rayleigh-Taylor event. The x-ray signal accompanies the voltage spike and Rayleigh-Taylor event in approximately 50% of the shots. A possible explanation for why the x-ray signal is sometimes missing is that the magnetic reconnection event may be localized to a specific region of the plasma outside the line of sight of the scintillator. The x-ray signal has also been seen accompanying the voltage spike when no Rayleigh-Taylor is observed. This may be due to the interframe timing on the camera being longer than the very short duration of the Rayleigh-Taylor instability.

  9. Study of x-ray emission from a table top plasma focus and its application as an x-ray backlighter

    Science.gov (United States)

    Beg, F. N.; Ross, I.; Lorenz, A.; Worley, J. F.; Dangor, A. E.; Haines, M. G.

    2000-09-01

    A study of a 2 kJ, 200 kA, table top plasma focus device as an intense x-ray source is reported. The x-ray yield from a number of gases, (deuterium, nitrogen, neon, argon, and xenon) is measured as a function of filling pressure and in neon as a function of anode length. In gases with Zplasma implodes to form a uniform cylindrical column, whereas for Z⩾18, the plasma consists of a number of hot spots. A maximum x-ray yield of 16.6 J and pulse length of 10-15 ns was obtained in neon. The x-ray emission was established to be due to H- and He-like line radiation. The temperature estimated from spectroscopic observations was about 300-400 eV at an electron density of (3-5)×1020cm-3 in neon. At low pressures in neon, hard x-ray radiation, presumably due to electron beams was dominant. Mesh images of different wire materials were recorded at the optimum pressure in neon as a proof of principle for x-ray backlighting.

  10. Generation of intense soft X-rays from capillary discharge plasmas

    Indian Academy of Sciences (India)

    Y B S R Prasad; S Nigam; K Aneesh; S Barnwal; P K Tripathi; P A Naik; C P Navathe; P D Gupta

    2011-06-01

    X-ray lasing through high voltage, high current discharges in gas filled capillaries has been demonstrated in several laboratories. This method gives highest number of X-ray photons per pulse. The fast varying current and the j x B magnetic force compress the plasma towards the axis forming a hot, dense, line plasma, wherein under appropriate discharge conditions lasing occurs. At Laser Plasma Division, RRCAT, a program on high voltage capillary discharge had been started. The system consists of a 400 kV Marx bank, water line capacitor, spark gap and capillary chamber. The initial results of the emission of intense short soft X-ray pulses (5–10 ns) from the capillary discharge are reported.

  11. Final Report LDRD 02-ERD-013 Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Gregori, G; Pollaine, S M; Hammer, J H; Rogers, F; Meezan, N B; Chung, H; Lee, R W

    2005-02-11

    We have successfully demonstrated spectrally-resolved x-ray scattering in a variety of dense plasmas as a powerful new technique for providing microscopic dense plasma parameters unattainable by other means. The results have also been used to distinguish between ionization balance models. This has led to 10 published or to be published papers, 8 invited talks and significant interest from both internal and external experimental plasma physicists and the international statistical plasma physics theory community.

  12. Models of Heliospheric solar wind charge exchange X-ray emission

    Science.gov (United States)

    Koutroumpa, Dimitra

    2016-04-01

    The first models of the solar wind charge exchange (SWCX) X-ray production in the heliosphere were developed shortly after the discovery of SWCX emission at the end of 1990s. Since then, continuous monitoring of the global solar wind evolution through the solar cycle has allowed better constraints on its interaction with the interstellar neutrals. We have a fairly accurate description of the interstellar neutral density distributions in interplanetary space. However, the solar wind heavy ion fluxes, and especially their short term variability and propagation through interplanetary space, have remained relatively elusive due to the sparseness or lack of in situ data, especially towards high ecliptic latitudes. In this talk, I will present a summary the heliospheric SWCX modeling efforts, and an overview of the global solar cycle variability of heliospheric SWCX emission, while commenting on the difficulties of modeling the real-time variability of the heliospheric X-ray signal.

  13. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Oliveros, Juan Carlos Martinez; Hudson, Hugh S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  14. Correlation of hard X-ray and white light emission in solar flares

    CERN Document Server

    Kuhar, Matej; Oliveros, Juan Carlos Martínez; Battaglia, Marina; Kleint, Lucia; Casadei, Diego; Hudson, Hugh S

    2015-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and HMI (Helioseismic and Magnetic Imager). We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 \\r{A} summed over the hard X-ray flare ribbons with an integration time of 45 seconds around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ~50 keV. At higher electron energies the co...

  15. The WATCH solar X-ray burst catalogue

    DEFF Research Database (Denmark)

    Crosby, N.; Lund, Niels; Vilmer, N.

    1998-01-01

    The WATCH experiment aboard the GRANAT satellite provides observations of the Sun in the deka-keV range covering the years 1990 through mid-1992. An introduction to the experiment is given followed by an explanation of how the WATCH solar burst catalogue was created. The different parameters listed...

  16. Testing EUV/X-ray Atomic Data for the Solar Dynamics Observatory

    CERN Document Server

    Testa, Paola; Landi, Enrico

    2011-01-01

    The Atmospheric Imaging Assembly (AIA) and the Exteme-ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory include spectral windows in the X-ray/EUV band. Accuracy and completeness of the atomic data in this wavelength range is essential for interpretation of the spectrum and irradiance of the solar corona, and of SDO observations made with the AIA and EVE instruments. Here we test the X-ray/EUV data in the CHIANTI database to assess their completeness and accuracy in the SDO bands, with particular focus on the 94A and 131A AIA passbands. Given the paucity of solar observations adequate for this purpose, we use high-resolution X-ray spectra of the low-activity solar-like corona of Procyon obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We find that while spectral models overall can reproduce quite well the observed spectra in the soft X-ray range ll 130A, they significantly underestimate the observed flux in the 50-130A wavelength range. The model und...

  17. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-10-15

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10{sup 14} to 1.8 × 10{sup 15} W/cm{sup 2}. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.

  18. Scaling of X-ray emission and ion velocity in laser produced Cu plasmas

    Science.gov (United States)

    Prasad, Y. B. S. R.; Senecha, V. K.; Pant, H. C.; Kamath, M. P.; Solanki, G. S.; Tripathi, P. K.; Kulkarni, A. P.; Gupta, S.; Pareek, R.; Joshi, A. S.; Sreedhar, N.; Nigam, Sameer; Navathe, C. P.

    2000-11-01

    The x-ray emission from slab targets of copper irradiated by Nd:glass laser (1.054 m m, 5 and 15 ns) at intensities between 1012 and 1014 W/cm2 has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2--1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances from the target position. The variation of the ion velocity with the laser intensity follows a scaling of the form Fb where b ~ 0.22 which is in good agreement with the reported scaling factor values. The results on the x-ray emission from Cu plasma are reported.

  19. Scaling of x-ray emission and ion velocity in laser produced Cu plasmas

    Indian Academy of Sciences (India)

    Y B S R Prasad; V K Senecha; H C Pant; M P Kamath; G S Solanki; P K Tripathi; A P Kulkarni; S Gupta; R Pareek; A S Joshi; N Sreedhar; Sameer Nigam; C P Navathe

    2000-11-01

    The x-ray emission from slab targets of copper irradiated by Nd:glass laser (1.054 m, 5 and 15 ns) at intensities between 1012 and 1014W/cm2 has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2–1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances from the target position. The variation of the ion velocity with the laser intensity follows a scaling of the form where ∼ 0.22 which is in good agreement with the reported scaling factor values. The results on the x-ray emission from Cu plasma are reported.

  20. Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    CERN Document Server

    Bhardwaj, A; Elsner, R F; Ford, P G; Gladstone, G R; Bhardwaj, Anil; Cravens, Thomas E.; Elsner, Ronald F.; Ford, Peter G.

    2005-01-01

    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn's non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn's disk X-ray emissions are found to be variable on time scales of hours to weeks to months, and correlated with solar F10.7 cm flux. Unlike Jupiter, X-rays from Saturn's polar (auroral) region have characteristics similar to those from its disk. This report, combined with earlier studies, establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.

  1. Catalytic action of β source on x-ray emission from plasma focus

    Science.gov (United States)

    Ahmad, S.; Sadiq, Mehboob; Hussain, S.; Shafiq, M.; Zakaullah, M.; Waheed, A.

    2006-01-01

    The influence of preionization around the insulator sleeve by a mesh-type β source (Ni6328) for the x-ray emission from a (2.3-3.9 kJ) plasma focus device is investigated. Quantrad Si p-i-n diodes along with suitable filters are employed as time-resolved x-ray detectors and a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray emission in 4π geometry is measured as a function of argon and hydrogen gas filling pressures with and without β source at different charging voltages. It is found that the pressure range for the x-ray emission is broadened, x-ray emission is enhanced, and shot to shot reproducibility is improved with the β source. With argon, the CuKα emission is estimated to be 27.14 J with an efficiency of 0.7% for β source and 21.5 J with an efficiency of 0.55% without β source. The maximum x-ray yield in 4π geometry is found to be about 68.90 J with an efficiency of 1.8% for β source and 54.58 J with an efficiency of 1.4% without β source. With hydrogen, CuKα emission is 11.82 J with an efficiency of 0.32% for β source and 10.07 J with an efficiency of 0.27% without β source. The maximum x-ray yield in 4π geometry is found to be 30.20 J with an efficiency of 0.77% for β source and 25.58 J with an efficiency of 0.6% without β source. The x-ray emission with Pb insert at the anode tip without β source is also investigated and found to be reproducible and significantly high. The maximum x-ray yield is estimated to be 46.6 J in 4π geometry with an efficiency of 1.4% at 23 kV charging voltage. However, degradation of x-ray yield is observed when charging voltage exceeds 23 kV for Pb insert. From pinhole images it is observed that the x-ray emission due to the bombardment of electrons at the anode tip is dominant in both with and without β source.

  2. Ion and X-ray techniques used for study of laser-produced plasmas

    Science.gov (United States)

    Wolowski, J.; Parys, P.; Rosinski, M.; Ryć, L.; Woryna, E.

    2015-04-01

    This review article describes apparatus for ion and X-ray diagnostics, which were used in experimental studies of laser-produced plasmas performed by the IPPLM's team in collaboration with other researchers at IPPLM and PALS Research Centre in Prague (the Czech Republic). The investigations of expanding laser-produced plasma properties in dependence on laser beam parameters were done by means of ion diagnostics devices: ion collectors (ICs), cylindrical ion energy analyzer (IEA) and the mass spectrograph of the Thomson type. At IPPLM, different types of detectors have been developed for measurement of X-ray emission. Properties of laser-produced beams of ions and X-ray radiation were analysed in the cooperative experiments performed with the use of a high-energy iodine laser PALS at the PALS Research Centre ASCR in the Czech Republic and the low-energy repetitive laser at IPPLM.

  3. Hard x-ray photoelectron spectroscopy of chalcopyrite solar cell components

    Science.gov (United States)

    Gloskovskii, A.; Jenkins, C. A.; Ouardi, S.; Balke, B.; Fecher, G. H.; Dai, X.-F.; Gruhn, T.; Johnson, B.; Lauermann, I.; Caballero, R.; Kaufmann, C. A.; Felser, C.

    2012-02-01

    Hard x-ray photoelectron spectroscopy is used to examine the partial density of states of Cu(In,Ga)Se2 (CIGSe), a semiconducting component of solar cells. The investigated, thin Cu(In,Ga)Se2 films were produced by multi-stage co-evaporation. Details of the measured core level and valence band spectra are compared to the calculated density of states. The semiconducting type electronic structure of Cu(In,Ga)Se2 is clearly resolved in the hard x-ray photoelectron spectra.

  4. High-temperature differential emission measure and altitude variations in the temperature and density of solar flare coronal X-ray sources

    OpenAIRE

    2015-01-01

    The detailed knowledge of plasma heating and acceleration region properties presents a major observational challenge in solar flare physics. Using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the high temperature differential emission measure, DEM(T), and the energy-dependent spatial structure of solar flare coronal sources are studied quantitatively. The altitude of the coronal X-ray source is observed to increase with energy by ~+0.2 arcsec/keV between 10 and 25 keV. Although...

  5. X-ray calculations for a NLTE Ar plasma

    Institute of Scientific and Technical Information of China (English)

    WU Ze-qing; PANG Jin-qiao; HAN Guo-xing

    2004-01-01

    A model is developed to calculate emission spectrum of non-local thermodynamic equilibrium(NLTE) plasmas. The Collisional-Radiative model is adopted for non-LTE population calculations. Configuration-averaged rate coefficients that needed in the rate equations are obtained based on the first order perturbation theory. The Hatree-Fock-Slater self-consistent-field method is used to calculate electron wave functions. The present model is applied to the calculation of emissivity from a Ar plasma. The features of the spectra are in good agreement with those calculated by other theoretical models, but the data of the integrated emissivity differ by a factor 2~8.

  6. IAU Colloquium on UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas, 102nd, Beaulieu-sur-Mer, France, Sept. 9-11, 1987, Proceedings

    Science.gov (United States)

    Bely-Dubau, F.; Faucher, P.

    1988-03-01

    The present conference discusses the solar physics results of Spacelab 2, spectroscopic methods for electron density determination, microcalorimeters for X-ray spectroscopy, spectral observations of the XUV astronomical background radiation, XUV lasers, spectroscopic diagnoses of tokamaks, nonthermal X-ray spectra from a tokamak, and space- and time-resolved plasma diagnostics in laser-produced plasmas. Also discussed are the application in atomic physics of coupled differential equations, the interpretation of unresolved hyperfine and/or Zeeman structures in stellar spectra, atomic physics for hot plasmas, IUE satellite-based UV astronomy contributions, plasma shifts of ion lines, and the use of Ti, Si, C, Be, and LiF in soft X-ray optics.

  7. Analysis of coronal and chromospheric hard X-ray sources in an eruptive solar flare

    Science.gov (United States)

    Zimovets, Ivan; Golovin, Dmitry; Livshits, Moisey; Vybornov, Vadim; Sadykov, Viacheslav; Mitrofanov, Igor

    We have analyzed hard X-ray emission of an eruptive solar flare on 3 November 2010. The entire flare region was observed by the STEREO-B spacecraft. This gave us an information that chromospheric footpoints of flare magnetic loops were behind the east solar limb for an earth observer. Hard X-ray emission from the entire flare region was detected by the High Energy Neutron Detector (HEND) onboard the 2001 Mars Odyssey spacecraft while hard X-rays from the coronal part of the flare region were detected by the RHESSI. This rare situation has allowed us to investigate both coronal and chromospheric sources of hard X-ray emission separately. Flare impulsive phase was accompanied by eruption of a magnetic flux rope and formation of a plasmoid detected by the AIA/SDO in the EUV range. Two coronal hard X-ray sources (S_{1} and S_{2}) were detected by the RHESSI. The upper source S_{1} coincided with the plasmoid and the lower source S_{2} was near the tops of the underlying flare loops that is in accordance with the standard model of eruptive flares. Imaging spectroscopy with the RHESSI has allowed to measure energetic spectra of hard X-ray emission from the S_{1} and S_{2} sources. At the impulsive phase peak they have power-law shape above ≈ 15 keV with spectral slopes gamma_{S_{1}}=3.46 ± 1.58 and gamma_{S_{2}}=4.64 ± 0.12. Subtracting spatially integrated spectrum of coronal hard X-ray emission measured by the RHESSI from the spectrum measured by the HEND we found spectrum of hard X-rays emitted from the footpoints of the flare loops (source S_{0}). This spectrum has a power-law shape with gamma_{S_{0}}=2.21 ± 0.57. It is shown that it is not possible to explain the measured spectra of the S_{2} and S_{0} sources in frames of the thin and thick target models respectively if we assume that electrons were accelerated in the energy release site situated below the plasmoid and above the flare loops as suggested by the standard flare model. To resolve the contradiction

  8. A study of solar flare energy transport based on coordinated H-alpha and X-ray observations

    Science.gov (United States)

    Canfield, Richard C.; Wulser, Jean-Pierre; Zarro, Dominic M.; Dennis, Brian R.

    1991-01-01

    The temporal evolution of the ratio between H-alpha to nonthermal hard X-ray emission was investigated using coordinated H-alpha and hard- and soft-X-ray observations of five solar flares (on May 7, June 23, June 24, and June 25, 1980 and on April 30, 1985). These observations were used to estimate the emitted flare energy flux F(H-alpha) in H-alpha, the flux of F(2O) energy deposited by nonthermal electrons with energies above 20 keV, and the pressure p(c) of soft X-ray-emitting plasma as functions of time during the impulsive phase of each flare. It was found that the F(H-alpha)/F(2O) ratio shows a power-law dependence on F(2O), with a slope that differs slightly from that predicted by the static thick-target model of solar transport. Results also indicate that the power-law dependence is modified by hydrostatic pressure effects.

  9. Direct X-ray detection with hybrid solar cells based on organolead halide perovskites

    Science.gov (United States)

    Gill, Hardeep Singh; Elshahat, Bassem; Sajo, Erno; Kumar, Jayant; Kokil, Akshay; Zygmanski, Piotr; Li, Lian; Mosurkal, Ravi

    2014-03-01

    Organolead halide perovskite materials are attracting considerable interest due to their exceptional opto-electronic properties, such as, high charge carrier mobilities, high exciton diffusion length, high extinction coefficients and broad-band absorption. These interesting properties have enabled their application in high performance hybrid photovoltaic devices. The high Z value of their constituents also makes these materials efficient for absorbing X-rays. Here we will present on the efficient use of hybrid solar cells based on organolead perovskite materials as X-ray detectors. Hybrid solar cells based on CH3NH3PbI3 were fabricated using facile processing techniques on patterned indium tin oxide coated glass substrates. The solar cells typically had a planar configuration of ITO/CH3NH3PbI3/P3HT/Ag. High sensitivity for X-rays due to high Z value, larger carrier mobility and better charge collection was observed. Detecting X-rays with energies relevant to medical oncology applications opens up the potential for diagnostic imaging applications.

  10. Space solar telescope in soft X-ray and EUV band

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; LIU Zhen; YANG Lin; GAO Liang; HE Fei; WANG XiaoGuang; NI QiLiang

    2009-01-01

    In this paper we have reviewed our achievements in soft X-ray and extreme ultraviolet (EUV) optics. Up to now, the research system of soft X-ray and EUV optics has been established, including light sources, detectors, calibrations, optical testing and machining of super smooth mirrors, and fabrications of multilayer film mirrors. Based on our achievements, we have developed two types of solar space tele-scopes for the soft X-ray and EUV space solar observations. One is an EUV multilayer normal incident telescope array including 4 different operation wavelength telescopes. The operation wavelengths of the EUV telescope are 13.0, 17.1, 19.5 and 30.4 nm. The other is a complex space solar telescope, which is composed of an EUV multilayer normal incident telescope and a soft X-rey grazing incident telescope. The EUV multilayer normal incident telescope stands in the central part of the soft X-ray grazing inci-dent telescope. The normal incident telescope and the grazing incident telescope have a common de-tector. The different operation wavelengths can be changed by rotating a filter wheel.

  11. Numbers of Electrons in Solar Flares as Deduced from Microwave and X-Ray Bursts

    Institute of Scientific and Technical Information of China (English)

    YU Xing-Feng; YAO Jin-Xing

    2001-01-01

    We discuss whether the numbers of x-ray and radio-produced electrons in solar flares are the same. The number of radio-produced electrons that is estimated with an inhomogeneous source increases by a factor of 103 - 104because of the inhomogeneity and the decreased magnetic field (B = 120 G) of the radio source. The number of x-ray-produced electrons decreases by a factor of 10 - 30 due to the increase of the number density of ions (3 × 1010 cm-3). These are the reasons why the number of radio-produced electrons is approximately equal tothat of x-ray-produced electrons in the 1981 April 27 burst.

  12. Forecasting methods for occurrence and magnitude of proton storms with solar hard X rays

    Science.gov (United States)

    Garcia, H. A.

    2004-06-01

    A hard X-ray spectrometer (HXRS) was developed jointly by the National Oceanic and Atmospheric Administration (NOAA) Space Environment Center and the Astronomical Institute of the Czech Republic to determine if proton storms could be forecast with greater accuracies than presently available by the existing methods. The HXRS experiment was conceived as a means of proof testing previously discovered empirical relationships between anomalous hard X-ray spectra of hard X-ray flares and solar energetic proton events (SEPs) for space weather forecasting applications. SEPs are showers of highly energetic electrons and ions, mostly protons, that can reach Earth's vicinity within minutes to hours following a moderate to large flare and have the potential of affecting the performance of civilian, military and research satellites as well as certain surface assets. The primary SEP predictor criterion educed during the present study is the requirement that the spectral index, γ, must decline (harden) to at least <=4 for at least 3 min. Flares meeting this criterion have a high association with SEPs. Flares that fail this criterion do not. Other SEP correlative phenomena such as depressed hard X-ray flux and anomalous low temperatures were studied to determine their utility for forecasting purposes. During the study period, March 2000 through December 2002, 107 hard X-ray flares were spectrally analyzed including 16 SEP-associated flares. Fourteen SEP flares were correctly identified, two SEPs were missed, and three false alarms (untrue predictions) were incurred.

  13. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  14. Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics

    Science.gov (United States)

    Musset, Sophie; Kontar, Eduard; Vilmer, Nicole

    2017-08-01

    Solar flares are associated with efficient particle acceleration. In particular, energetic electrons are diagnosed through X-ray and radio emissions produced as they interact with the solar atmosphere. Particle transport from the acceleration region to the emission sites remains one of the challenging topics in the field of high energy solar physics and has a crucial impact on the interpretation of particles emissions in the context of acceleration models.In order to address the transport of flare associated energetic electrons in the low corona, we used the imaging spectroscopy capabilities of the RHESSI spacecraft to analyze the X-ray emission during the 2004 May 21 solar flare. We show that non-thermal X-ray emitting energetic electrons are trapped in the coronal part of the flaring loop. In the hypothesis of turbulent pitch-angle scattering of energetic electrons (Kontar et al. 2014), diffusive transport can lead to a confinement of energetic electrons in the coronal part of the loop. We show that this model can explain the X-ray observations with a scattering mean free path of the order of 10^8 cm, much smaller than the length of the loop itself.Such results are compared with the study by Kuznetsov and Kontar (2015) of the gyrosynchrotron emission of the same flare. The diffusive transport model can explain the radio observations with a scattering mean free path of the order of 10^7 cm. This combination of X-ray and radio observations during a flare leads to the first estimate of the energy dependence of the scattering mean free path of energetic electrons in the low corona. This result is comparable with studies of the energy dependence of the scattering mean free path of electrons in the interplanetary medium.

  15. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    Science.gov (United States)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, Jack E.; Smith, Stephen J.; Smith, Randall K.

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  16. Modeling of laser produced plasma and z-pinch x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J; Frati, M; Gonzales, J J; Kalashnikov, M P; Marconi, M C; Moreno, C H; Nickels, P V; Osterheld, A L; Rocca, J J; Sandner, W; Shlyaptsev, V N

    1999-02-07

    In this work we describe our theoretical activities in two directions of interest. First, we discuss progress in modeling laser produced plasmas mostly related to transient collisional excitation scheme experiments with Ne- and recently with Ni-like ions. Calculations related to the delay between laser pulses, transient gain duration and hybrid laser/capillary approach are described in more detail. Second, the capillary discharge plasma research, extended to wider range of currents and rise-times has been outlined. We have systematically evaluated the major plasma and atomic kinetic properties by comparing near- and far-field X-ray laser output with that for the capillary Argon X-ray laser operating under typical current values. Consistent with the experiment insight was obtained for the 469{angstrom} X-ray laser shadowgraphy experiments with very small kiloamp currents. At higher currents, as much as {approximately}200 kA we evaluated plasma temperature, density and compared x-ray source size and emitted spectra.

  17. Population Inversion and Gain Measurements for Soft X-Ray Laser Development in a Magnetically Confined Plasma Column.

    Science.gov (United States)

    1985-09-01

    INVERSION AND GAIN MEASUREMENTS FOR ’I SOFT X-RAY LASER DEVELOPMENT IN A MAGNET ICALLY CONFINED PLASMA COLUMN" For the Period: Nov. 1, 1983 t hr u Sept...proposal to AFOSR entitled "Population Inversion and Gain Measurements for X-Ray Laser Development in Magnetically Confined Plasma Column," Princeton, March...I* INTRODUCTION Extensive research on x-ray laser development has provided a number of interesting results for different schemes, e.g. recombination

  18. Two distinct phases of hard x-ray emissions in a solar eruptive flare

    CERN Document Server

    Joshi, Bhuwan; Cho, K -S; Bong, S -C; Moon, Y -J; Lee, Jeongwoo; Somov, B V; Manoharan, P K; Kim, Y -H

    2008-01-01

    We present a detailed analysis of the evolution of an M7.6 flare that occurred near the south-east limb on October 24, 2003 utilizing a multi-wavelength data set. Preflare images at TRACE 195 A show that the bright and complex system of coronal loops already existed at the flaring site. The X-ray light curves clearly reveal two phases of flare evolution. The emission during the first phase is seen in GOES and RHESSI measurements at energies below 25 keV, while the second phase is evident in all the X-ray energies as high as 300 keV. The first phase is gradual whereas the second phase shows impulsive emission with several individual hard X-ray bursts. The first phase starts with the appearance of an X-ray loop-top (LT) source in RHESSI images below 25 keV. About 5 minute later, the TRACE 195 A images show an intense emission that is cospatial with RHESSI LT source. This hot and diffuse TRACE emission is attributed to the existence of 15-20 MK plasma, heated directly from the primary energy source. Both X-ray a...

  19. Applicability of X-ray reflectometry to studies of polymer solar cell degradation

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Gevorgyan, Suren; Schleputz, C.M.;

    2008-01-01

    Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough interf...... interfaces of the polymer solar cell constituent layers seriously obstruct the sensitivity of the technique, rendering it impossible to elucidate changes in the layer/interface structure at the sub-nanometer level. (c) 2008 Elsevier B.V. All rights reserved.......Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough...

  20. Numerical Experiments on Oxygen Plasma Focus: Scaling Laws of Soft X-Ray Yields

    Science.gov (United States)

    Akel, M.

    2013-08-01

    Numerical experiments have been investigated on UNU/ICTP PFF low energy plasma focus device with oxygen filling gas. In these numerical experiments, the temperature window of 119-260 eV has been used as a suitable temperature range for generating oxygen soft X-rays. The Lee model was applied to characterize the UNU/ICTP PFF plasma focus. The optimum soft X-ray yield (Ysxr) was found to be 0.75 J, with the corresponding efficiency of about 0.03 % at pressure of 2.36 Torr and the end axial speed was va = 5 cm/μs. The practical optimum combination of p0, z0 and `a' for oxygen Ysxr was found to be 0.69 Torr, 4.8 cm and 2.366 cm respectively, with the outer radius b = 3.2 cm. This combination gives Ysxr ~ 5 J, with the corresponding efficiency of about 0.16 %. Thus we expect to increase the oxygen Ysxr of UNU/ICTP PFF, without changing the capacitor bank, merely by changing the electrode configuration and operating pressure. Scaling laws on oxygen soft X-ray yield, in terms of storage energies E0, peak discharge current Ipeak and focus pinch current Ipinch were found over the range from 1 kJ to 1 MJ. It was found that the oxygen soft X-ray yields scale well with and for the low inductance (L0 = 30 nH) (where yields are in J and currents in kA). While the soft X-ray yield scaling laws in terms of storage energies were found to be as (E0 in kJ and Ysxr in J) with the scaling showing gradual deterioration as E0 rises over the range. The oxygen soft X-ray yield emitted from plasma focus is found to be about 8.7 kJ for storage energy of 1 MJ. The optimum efficiency for soft X-ray yield (1.1 %) is with capacitor bank energy of 120 kJ. This indicates that oxygen plasma focus is a good soft X-ray source when properly designed.

  1. Observations of non-collective x-ray scattering in warm dense carbon plasma

    Science.gov (United States)

    Lihua, Bao; Jiyan, Zhang; Xiaoding, Zhang; Yang, Zhao; Yongkun, Ding

    2012-12-01

    An experiment for observing the spectrally resolved non-collective x-ray scattering in warm dense carbon plasma is presented in this paper. The experiment used Ta M-band x-rays to heat a foamed carbon cylinder sample isochorically and measured the scattering spectrum with a HOPG crystal spectrometer. The spectrum was compared with the calculation results using a Born-Mermin-approximation model. The best fitting was found at an electron temperature of Te=34 eV and an electron density of ne=1.6×1023cm-3.

  2. Strong higher-order resonant contributions to x-ray line polarization in hot plasmas

    CERN Document Server

    Shah, Chintan; Steinbrügge, Rene; Beilmann, Christian; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; López-Urrutia, José R Crespo; Tashenov, Stanislav

    2016-01-01

    We studied angular distributions of x rays emitted in resonant recombination of highly charged iron and krypton ions, resolving dielectronic, trielectronic, and quadruelectronic channels. A tunable electron beam drove these processes, inducing x rays registered by two detectors mounted along and perpendicular to the beam axis. The measured emission asymmetries comprehensively benchmarked full-order atomic calculations. We conclude that accurate polarization diagnostics of hot plasmas can only be obtained under the premise of inclusion of higher-order processes that were neglected in earlier work.

  3. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  4. X-ray emission from the local hot bubble and solar wind charge exchange

    Science.gov (United States)

    Uprety, Youaraj

    DXL (Diffuse X-rays from the Local galaxy) is a sounding rocket mission to quantify the Solar Wind Charge Exchange (SWCX) X-ray emission in the interplanetary medium, and separate its contribution from the Local Hot Bubble (LHB) emission. The first launch of DXL took place in December 2012. This thesis will describe the DXL instrumentation and calibrations, and discuss the results obtained. The mission uses two large area proportional counters to scan through the Helium Focusing Cone (HFC), a high helium density region in the solar system emitting excess X-rays due to SWCX. Using well determined models of the interplanetary neutral distribution and comparing the DXL results with data from the same region obtained by the ROSAT satellite away from the cone, we calculated that SWCX contributes at most 36% to the ¼ keV ROSAT band and 13% to the ¾ keV ROSAT band, in the galactic plane. This provides a firm proof for existence of a LHB which dominates the Diffuse X-ray Background (DXB) at ¼ keV, while raising new questions on the origin of the ¾ keV emission.

  5. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    CERN Document Server

    Hannah, I G; Smith, D M; Glesener, L; Krucker, S; Hudson, H S; Madsen, K K; Marsh, A; White, S M; Caspi, A; Shih, A Y; Harrison, F A; Stern, D; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Zhang, W W

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using NuSTAR, a focusing hard X-ray telescope capable of studying faint solar emission from high temperature and non-thermal sources. We analyze the first directly imaged and spectrally resolved X-rays above 2~keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures $3.1-4.4$~MK and emission measures $1-8\\times 10^{46}$~cm$^{-3}$. We do not observe emission above 5~MK but our short effective exposure times restrict the spectral dynamic range. With few counts above 6~keV, we can place constraints on the presence of an additional hotter component between 5 and 12~MK of $\\sim 10^{46}$cm$^{-3}$ and $\\sim 10^{43}$ cm$^{-3}$, respectively, at least an order of magnitude stricter than previous limits. With longer duration observations and a weakening solar c...

  6. Science Goals and First Light Analysis from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat

    Science.gov (United States)

    Caspi, Amir; Woods, Thomas N.; Warren, Harry; Chamberlin, Phillip C.; Jones, Andrew; Mason, James; McTiernan, James; Moore, Christopher; Palo, Scott; Solomon, Stanley

    2016-05-01

    The Miniature X-ray Solar Spectrometer (MinXSS) is a 3U CubeSat with deployment from the ISS planned in Q2 2016. Its goal is to measure the solar soft X-ray (SXR) spectral irradiance, an observational signature of hot plasma in the solar corona. Over the last few decades, there have been very few spectrally resolved observations from ~0.2 to ~4 keV (~0.3-6 nm). This range is sensitive to high-temperature plasma and contains many spectral lines (e.g., Mg, Si, Fe, S, Ar), the abundances of which probe plasma transport and provide valuable constraints on plasma heating mechanisms during both flares and quiescence. This solar SXR emission is primarily absorbed in the E-region of Earth's ionosphere, and the subsequently driven dynamical processes are still poorly understood, in large part because the energy distribution of the incident SXRs is not yet well characterized.MinXSS flies a miniature commercial off-the-shelf soft X-ray (SXR) spectrometer, the Amptek X123-SDD. The silicon drift detector has 0.5 mm fully depleted thickness and a 25 mm^2 physical area, with a ~16 micron Be entrance window; with on-board thermoelectric cooling and pulse pile-up rejection, it is sensitive to solar SXRs from ~0.5 to 30 keV with ~0.15 keV FWHM resolution. MinXSS also includes a broadband SXR photometer, providing an integrated intensity over a similar energy range for comparison, cross-calibration, and additional data, especially useful during more intense flares at the upper end of the X123 dynamic range.We present the MinXSS science goals for studying hot plasma in the solar corona, including impulsive flare heating and quiescent coronal heating, and the impact of the resultant SXR emission on Earth's ionosphere, thermosphere, and mesosphere. We present analysis of MinXSS first light results (depending on deployment date from the ISS), as well as modeling and predictions of future observations over the MinXSS 6-12 month mission lifetime.

  7. Estimation of Energy Equation Correlate of CMEs with X-Ray Flares during Solar Cycle 23rd

    Science.gov (United States)

    Shaltout, Mosalam; Shaltout, Mosalam; Ramy Mawad, Rr.

    . The aim of this paper is estimating the energy equation of CMEs with associated X-ray flares. In addition, we studied, when and where X-ray flares can eject CMEs? We are used CMEs data which observed from SOHO/LASCO, during the full solar cycle 23rd (1996- 2006), we have 12433 events. Also we are used the X-Ray flares data observed by Geostationary Operational Environmental Satellite (GEOS), during the same interval (1996-2006) in the 1-8 Ao GEOS Channel, it is recorded 22688 X-ray flare events. We had estimated energy equation between CMEs and associated X-ray flares during solar cycle 23rd (1996-2006). It is found the energy equation between them is polynomial series with correlation coefficient 92%. The characteristics of the CMEs and associated X-ray flares have been studied.

  8. Elliptically-bent crystal spectrograph for X-ray diagnosis of laser-produced plasmas

    Institute of Scientific and Technical Information of China (English)

    Xiancai Xiong(熊先才); Xianxin Zhong(钟先信); Shali Xiao(肖沙里); Guohong Yang(杨国洪); Jie Gao(高洁)

    2004-01-01

    In order to measure spatially and temporarily resolved laser-produced plasma X-ray spectra in 0.2 - 2nm region, a novel two-channel elliptically-bent crystal spectrograph has been developed. Dispersive elements are LiF, PET, Mica, and KAP crystals, which cover Bragg angles in the range of 30 - 67.5degrees. Eccentricity and focal distance of twin ellipses are 0.9586 and 1350 mm, respectively. Spatially resolved spectrum is photographically recorded with an X-ray film or X-CCD camera in one channel, and temporarily resolved one is photographically recorded with an X-ray streak camera in another channel,thus spatially and temporarily resolved spectra can be simultaneously obtained. Spectral images were acquired with X-CCD and PET in SHENGUANG-Ⅱ laser facility, and experimental results show that the spectral resolution of the spectrograph is about 0.002 nm.

  9. Target optimization for desired X-ray spectra produced by laser plasma accelerated electrons

    Science.gov (United States)

    Lobok, Maxim; Brantov, Andrey; Bychenkov, Valery

    2016-10-01

    Different regimes of electron acceleration from low-density targets are investigated using three-dimensional numerical simulations. Multiple spatial target density profiles were examined, including laser pre-pulse modified targets. The size of the plasma corona is shown to be one of the main parameters characterizing the temperature and number of hot electrons, which determine the yield of X-ray radiation and its hardness. The generation of X-ray radiation by laser accelerated electrons, which impact the converter target located behind the laser target, was studied. The X-ray spectra were computed using Monte-Carlo simulations. This work was partially supported by the Russian Foundation for Basic Research 16-02-00088-a.

  10. Multiframe, Single Line-of-Sight X-Ray Imager for Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kevin L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR or OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.

  11. On the variation of solar flare coronal x-ray source sizes with energy

    CERN Document Server

    Jeffrey, Natasha L S; Bian, Nicolas H; Emslie, A Gordon

    2014-01-01

    Observations with {\\em RHESSI} have enabled the detailed study of the structure of dense hard X-ray coronal sources in solar flares. The variation of source extent with electron energy has been discussed in the context of streaming of non-thermal particles in a one-dimensional cold-target model, and the results used to constrain both the physical extent of, and density within, the electron acceleration region. Here we extend this investigation to a more physically realistic model of electron transport that takes into account the finite temperature of the ambient plasma, the initial pitch-angle distribution of the accelerated electrons, and the effects of collisional pitch-angle scattering. The finite temperature results in the thermal diffusion of electrons, that leads to the observationally-inferred value of the acceleration region volume being an overestimate of its true value. The different directions of the electron trajectories, a consequence of both the non-zero injection pitch-angle and scattering with...

  12. Soft x-ray scattering using FEL radiation for probing near-solid density plasmas at few electronvolt temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Toleikis, S; Faustlin, R R; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Tavella, F; Thiele, R; Tiggesbaumker, J; Truong, N X; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-03-03

    We report on soft x-ray scattering experiments on cryogenic hydrogen and simple metal targets. As a source of intense and ultrashort soft x-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 100 {micro}J and durations below 50 fs provide interaction with the target leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft x-ray inelastic scattering from near-solid density hydrogen plasmas at few electronvolt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft x-ray excitation of few electronvolt solid-density plasmas in simple metals could be studied by recording soft x-ray line and continuum emission integrated over emission times from fs to ns.

  13. Soft X-Ray Excess from Shocked Accreting Plasma in Active Galactic Nuclei

    CERN Document Server

    Fukumura, Keigo; Clark, Peter; Tombesi, Francesco; Takahashi, Masaaki

    2016-01-01

    We propose a novel theoretical model to describe a physical identity of the soft X-ray excess, ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit (ISCO) around a black hole (BH) accretion disk. We extend our earlier theoretical investigations on general relativistic magnetohydrodynamic (GRMHD) accretion which has implied that the accreting plasma can develop into a standing shock for suitable physical conditions causing the downstream flow to be sufficiently hot due to shock compression. We numerically calculate to examine, for sets of fiducial plasma parameters, a physical nature of fast MHD shocks under strong gravity for different BH spins. We show that thermal seed photons from the standard accretion disk can be effectively Compton up-scattered by the energized sub-relativistic electrons in the hot downstream plasma to produce the soft excess feature in X-rays. As a case study, we construct a three-paramet...

  14. The Project PLASMONX for Plasma Acceleration Experiments and a Thomson X-Ray Source at SPARC

    CERN Document Server

    Serafini, Luca; Alessandria, Franco; Bacci, Alberto; Baldeschi, Walter; Barbini, Alessandro; Bellaveglia, Marco; Bertolucci, Sergio; Biagini, Maria; Boni, Roberto; Bonifacio, Rodolfo; Boscolo, Ilario; Boscolo, Manuela; Bottigli, Ubaldo; Broggi, Francesco; Castellano, Michele; Cecchetti, Carlo A; Cialdi, Simone; Clozza, Alberto; De Martinis, Carlo; Di Pirro, Giampiero; Drago, Alessandro; Esposito, Adolfo; Ferrario, Massimo; Ficcadenti, L; Filippetto, Daniele; Fusco, Valeria; Galimberti, Marco; Gallo, Alessandro; Gatti, Giancarlo; Ghigo, Andrea; Giove, Dario; Giulietti, Antonio; Giulietti, Danilo; Gizzi, Leonida A; Golosio, Bruno; Guiducci, Susanna; Incurvati, Maurizio; Köster, Petra; Labate, Luca; Ligi, Carlo; Marcellini, Fabio; Maroli, Cesare; Mauri, Marco; Migliorati, Mauro; Mostacci, Andrea; Oliva, Pier N; Palumbo, Luigi; Pellegrino, Luigi; Petrillo, Vittoria; Piovella, Nicola; Poggiu, Angela; Pozzoli, Roberto; Preger, Miro; Ricci, Ruggero; Rome, Massimiliano; Rossi, Antonella; Sanelli, Claudio; Serio, Mario; Sgamma, Francesco; Spataro, Bruno; Stecchi, Alessandro; Stella, Angelo; Stumbo, Simone; Tazzioli, Franco; Tommasini, Paolo; Vaccarezza, Cristina; Vescovi, Mario; Vicario, Carlo

    2005-01-01

    We present the status of the activity on the project PLASMONX, which foresees the installation of a multi-TW Ti:Sa laser system at the CNR-ILIL laboratory to conduct plasma acceleration experiments and the construction of an additional beam line at SPARC to develop a Thomson X-ray source at INFN-LNF. After pursuing self-injection experiments at ILIL, when the electron beam at SPARC will be available the SPARC laser system will be upgraded to TW power level in order to conduct either external injection plasma acceleration experiments and ultra-bright X-ray pulse generation with the Thomson source. Results of numerical simulations modeling the interaction of the SPARC electron beam and the counter-propagating laser beam are presented with detailed discussion of the monochromatic X-ray beam spectra generated by Compton backscattering: X-ray energies are tunable in the range 20 to 1000 keV, with pulse duration from 30 fs to 20 ps. Preliminary simulations of plasma acceleration with self-injection are illustrated,...

  15. Probing near-solid density plasmas using soft x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Toleikis, S; Duesterer, S; Faeustlin, R R; Laarmann, T; Redlin, H [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany); Bornath, T; Goede, S; Irsig, R; Meiwes-Broer, K-H; Przystawik, A [Institut fuer Physik, Universitaet Rostock, Universitaetsplatz 3, 18051 Rostock (Germany); Doeppner, T; Glenzer, S H [Lawrence Livermore National Laboratory, 7000 East Av., Livermore, CA 94550 (United States); Foerster, E [Institut fuer Optik und Quantenelektronik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Fortmann, C [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Gregori, G; Mithen, J [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Lee, H J; Nagler, B [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Li, B [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Radcliffe, P, E-mail: sven.toleikis@desy.d [European XFEL GmbH, Albert-Einstein-Ring 19, 22671 Hamburg (Germany)

    2010-10-14

    X-ray scattering using highly brilliant x-ray free-electron laser (FEL) radiation provides new access to probe free-electron density, temperature and ionization in near-solid density plasmas. First experiments at the soft x-ray FEL FLASH at DESY, Hamburg, show the capabilities of this technique. The ultrashort FEL pulses in particular can probe equilibration phenomena occurring after excitation of the plasma using ultrashort optical laser pumping. We have investigated liquid hydrogen and find that the interaction of very intense soft x-ray FEL radiation alone heats the sample volume. As the plasma establishes, photons from the same pulse undergo scattering, thus probing the transient, warm dense matter state. We find a free-electron density of (2.6 {+-} 0.2) x 10{sup 20} cm{sup -3} and an electron temperature of 14 {+-} 3.5 eV. In pump-probe experiments, using intense optical laser pulses to generate more extreme states of matter, this interaction of the probe pulse has to be considered in the interpretation of scattering data. In this paper, we present details of the experimental setup at FLASH and the diagnostic methods used to quantitatively analyse the data.

  16. Gain dynamics measurement in injection-seeded soft x-ray laser plasma amplifiers

    Science.gov (United States)

    Wang, Yong; Wang, S.; Li, L.; Oliva, E.; Thuy Le, T. T.; Ros, D.; Berrill, M.; Dunn, J.; Zeitoun, Ph.; Yin, L.; Luther, B.; Rocca, J. J.

    2013-10-01

    Herein we report the first measurement of the gain dynamics in a soft x-ray plasma amplifier seeded by high harmonic pulses. A sequence of two time-delayed spatially-overlapping high harmonic pulses was injected into a λ = 18.9 nm Ni-like Mo plasma amplifier to measure the regeneration of the population inversion that follows the gain depletion caused by the amplification of the first seed pulse. Collisional excitation is observed to re-establish population inversion depleted during the amplification of the seed pulse in about ~1.75 ps. The measured gain-recovery time is compared to model simulations to gain insight on the population inversion mechanisms that create the transient gain in these amplifiers. This result supports the concept of a soft x-ray laser amplification scheme based on the continuous extraction of energy from a soft x-ray plasma-based amplifier by an stretched seed pulse has the potential to generate ultra-intense fully phase-coherent soft x-ray laser pulses. Work supported by AMOS program, Office of Basic Energy Sciences of the US DoE, and the NSF ERC Program with equipment developed under NSF Award MRI-ARRA 09-561, and by LASERLAB3-INREX European project and SHYLAX plus CIBORG RTRA `Triangle de la Physique.'

  17. Modeling of the EUV and X-Ray Emission Spectra Induced by the Solar Winds Ions in the Heliosphere

    Science.gov (United States)

    Kharchenko, Vasili

    2005-01-01

    We have carried out investigation of the EUV and X-ray emission spectra induced in interaction between the Solar Wind (SW) and interstellar neutral gas. The spectra of most important SW ions have been computed for the charge-exchange mechanism of X-ray emission using new accurate spectroscopic data from recent laboratory measurements and theoretical calculations. Total spectra have been constructed as a sum of spectra induced in the charge-exchange collisions by individual O(exp q+), C(exp q+), N(exp q+), Ne(exp q+), Mg (exp q+) and Fe(exp q+) ions. Calculations have been performed for X-ray emission from the heliospheric hydrogen and helium gas. X-ray maps of the heliosphere have been computed. The power density of X-ray sources in the heliospheric ecliptic plane is shown for the H gas and for the He gas. Distances from the Sun (0,0) are given in AU. The helium cone is clear seen in the X-ray map of the charge-exchange emission induced by the solar wind. X-ray emission spectra detected by the Chandra X-ray telescope from the "dark" side of Moon has been identified as a X-ray background emission induced by the solar wind from the geocorona. Spectra and intensities of this charge-exchange X-rays have been compared with the heliospheric component of the X-ray background. Observations and modeling of the SW spectra induced from the geocorona indicate a strong presence of emission lines of highly charged oxygen ions. Anisotropy in distribution of heliospheric X-rays has been predicted and calculated for the regions of the fast and slow solar winds.

  18. Non-thermal electron populations in microwave heated plasmas investigated with X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belapure, Jaydeep Sanjay

    2013-04-15

    An investigation of the generation and dynamics of superthermal electrons in fusion plasma is carried out. A SDD+CsI(Tl) based X-ray diagnostic is constructed, characterized and installed at ASDEX Upgrade. In various plasma heating power and densities, the fraction and the energy distribution of the superthermal electrons is obtained by a bi-Maxwellian model and compared with Fokker-Planck simulations.

  19. Data Acquisition, Control, Communication and Computation System of Solar X-ray Spectrometer (SOXS) Mission

    Indian Academy of Sciences (India)

    Amish B. Shah; N. M. Vadher; Rajmal Jain; Hemant Dave; Vishal Shah; K. S. B. Manian; Satish Kayasth; Vinod Patel; Girish Ubale; Kirit Shah; Chirag Solanki; M. R. Deshpande; Ramkrishna Sharma; C. N. Umapathy; N. Viswanath; Ravi Kulkarni; P. S. Kumar

    2006-06-01

    The Solar X-ray Spectrometer (SOXS) mission onboard GSAT-2 Indian Spacecraft was launched on 08 May 2003 using GSLV–D2 rocket by Indian Space Research Organization (ISRO). SOXS aims to study solar flares, which are the most violent and energetic phenomena in the solar system, in the energy range of 4–56 keV with high spectral and temporal resolution. SOXS employs state-of-the-art semiconductor devices, viz., Si-Pin and CZT detectors to achieve sub-keV energy resolution requirements. In this paper, we present an overview of data acquisition, control, communication and computation of low energy payload of the SOXS mission.

  20. Deka-keV X-ray observations of solar bursts with WATCH/GRANAT: frequency distributions of burst parameters

    Science.gov (United States)

    Crosby, N.; Vilmer, N.; Lund, N.; Sunyaev, R.

    1998-06-01

    Solar flare observations in the deka-keV range are performed by the WATCH experiment on board the GRANAT satellite. The WATCH experiment is presented, including the energy calibration as applied in the present work. The creation of the solar burst catalogue covering two years of observation is described and some examples of solar observations are given. The estimated energy releases in the flares presented here are found to extend below the range of hard X-ray flares which were previously studied by ISEE-3 and HXRBS/SMM detectors. The X-ray emitting component cannot be exclusively explained by contributions from a thermal plasma around a few keV. Either a hotter component or a non-thermal population of particles must also be present to produce the observed deka-keV emission. The WATCH data furthermore shows that the relative contributions of these components may change during an event or from event to event and that the injection of energy contained in suprathermal electrons may occur throughout an event and not only during the rise phase. For the most energetic WATCH flares simultaneous observations performed by other experiments at higher energies further indicate that non-thermal emission can be observed as low as 10 keV. A statistical study is performed on the total WATCH solar database and frequency distributions are built on measured X-ray flare parameters. It is also investigated how the properties of these frequency distributions behave when subgroups of events defined by different ranges of parameters are considered. No correlation is found between the elapsed time interval between successive flares arising from the same active region and the peak intensity of the flare.

  1. Hard X-ray and microwave sources located around the apex of a solar flare loop

    Science.gov (United States)

    Masuda, S.; Shimojo, M.; Watanabe, K.; Minoshima, T.; Yaji, K.

    2010-12-01

    The apex of a flare loop is one of important regions to understand particle acceleration in solar flares, under the framework of the flare model based on magnetic reconnection. At that portion, nonthermal emissions are observed in hard X-rays and microwave. These two emissions are originated from electrons accelerated/energized in different energy ranges. Hard X-rays (~ 50 - 100 keV ) are emitted by relatively lower-energy (~ 100 keV) accelerated electrons. On the other hand, microwaves (17 GHz) are emitted by relatively higher-energy (~ 1 MeV) electrons. The locations (heights) of these two emitting regions impose considerable constraints on the acceleration/transport/loss processes of electrons in solar flares. To compare hard X-ray and microwave sources, we chose twenty-three events among all events detected by Nobeyama Radio Heliograph (NoRH) during the almost whole period of its operation (1992 - 2008). The criteria are (1) limb event, (2) simultaneous observation with Yohkoh/HXT or RHESSI, (3) enough number of photons in the energy range of 33 - 53 keV, and (4) microwave source large enough to resolve the flare loop into footpoint and looptop sources. However, only seven events among them can be used for this study. The remaining sixteen events are displaced from the list due to no hard X-ray looptop source, too complex structure of multiple loops, and so force. Among the seven events, six events show that the looptop hard X-ray source is located at a higher altitude than the looptop microwave source. This result suggests that lower-energy accelerated electrons (~ 100 keV) are located at a higher altitude than higher-energy (~ 1 MeV) electrons. What makes this height difference? We discuss the cause of it from various kinds of viewpoints, e.g. emission mechanism, trapping effect, transport process, loss process.

  2. Hard X-Ray Imaging of Individual Spectral Components in Solar Flares

    CERN Document Server

    Caspi, Amir; McTiernan, James M; Krucker, Säm

    2015-01-01

    We present a new analytical technique, combining Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) high-resolution imaging and spectroscopic observations, to visualize solar flare emission as a function of spectral component (e.g., isothermal temperature) rather than energy. This computationally inexpensive technique is applicable to all spatially-invariant spectral forms and is useful for visualizing spectroscopically-determined individual sources and placing them in context, e.g., comparing multiple isothermal sources with nonthermal emission locations. For example, while extreme ultraviolet images can usually be closely identified with narrow temperature ranges, due to the emission being primarily from spectral lines of specific ion species, X-ray images are dominated by continuum emission and therefore have a broad temperature response, making it difficult to identify sources of specific temperatures regardless of the energy band of the image. We combine RHESSI calibrated X-ray visibilities wi...

  3. Radiography using a dense plasma focus device as a source of pulsed X-rays

    Science.gov (United States)

    Herrera, Julio; Castillo, Fermín; Gamboa, Isabel; Rangel, José

    2007-11-01

    Soft and hard X-ray emissions have been studied in the FN-II, which is a small dense plasma focus machine (5 kJ), operating at the Instituto de Ciencias Nucleares, UNAM, using aluminum filtered pin-hole cameras. Their angular distribution has been measured using TLD-200 dosimeters [1]. Their temporal evolution has been observed by means of a PIN diode, and scinltillators coupled to photomultipliers outside the discharge chamber. The X rays source can be concentrated by placing a needle on the end of the electrode. X-rays crossing across a 300 micron aluminum window, through the axis of the machine, can be used to obtain high contrast radiographs, with an average dose of 0.4 mGy per shot. In contrast, the average dose with a hollow cathode is 0.2 mGy per shot. This work is partially supported by grant IN105705 de la DGAPA-UNAM. [1] F. Castillo, J.J.E. Herrera, J. Rangel, I. Gamboa, G. Espinosa y J.I. Golzarri ``Angular Distribution of fusion products and X-rays emitted by a small dense plasma focus machine'' Journal of Applied Physics 101 013303-1-7 (2007).

  4. Development of single frame X-ray framing camera for pulsed plasma experiments

    Indian Academy of Sciences (India)

    J Upadhyay; J A Chakera; C P Navathe; P A Naik; A S Joshi; P D Gupta

    2006-10-01

    A single-frame X-ray framing camera has been set up for fast imaging of X-ray emissions from pulsed plasma sources. It consists of two parts, viz. an X-ray pin-hole camera using an open-ended microchannel plate (MCP) detector coupled to a CCD camera, and a high voltage short duration gate pulse for the MCP. The camera uses a 10-m pin-hole aperture for imaging on the MCP detector with a magnification of 6X. The high voltage pulser circuit generates a pulse of variable duration from 5 to 30 ns (at 70% of peak amplitude) with variable amplitude from 800 V to 1·25 kV, and is triggered through a laser pulse synchronized with the event to be recorded. The performance of the system has been checked by recording X-ray emission from a laser-produced copper plasma. A reduction factor of ∼6·5 is seen in the dark current contribution as the MCP gate pulse is decreased from 250s to 5 ns duration.

  5. TESTING EUV/X-RAY ATOMIC DATA FOR THE SOLAR DYNAMICS OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Testa, Paola; Drake, Jeremy J. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); Landi, Enrico, E-mail: ptesta@cfa.harvard.edu [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States)

    2012-02-01

    The Atmospheric Imaging Assembly (AIA) and the Extreme-ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) include spectral windows in the X-ray/EUV band. Accuracy and completeness of the atomic data in this wavelength range is essential for interpretation of the spectrum and irradiance of the solar corona, and of SDO observations made with the AIA and EVE instruments. Here, we test the X-ray/EUV data in the CHIANTI database to assess their completeness and accuracy in the SDO bands, with particular focus on the 94 A and 131 A AIA passbands. Given the paucity of solar observations adequate for this purpose, we use high-resolution X-ray spectra of the low-activity solar-like corona of Procyon obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We find that while spectral models overall can reproduce quite well the observed spectra in the soft X-ray range {lambda} {approx}< 50 A, and at the EUV wavelengths {lambda} {approx}> 130 A, they significantly underestimate the observed flux in the 50-130 A wavelength range. The model underestimates the observed flux by a variable factor ranging from Almost-Equal-To 1.5, at short wavelengths below {approx}50 A, up to Almost-Equal-To 5-7 in the {approx}70-125 A range. In the AIA bands covered by LETGS, i.e., 94 A and 131 A, we find that the observed flux can be underestimated by large factors ({approx}3 and {approx}1.9, respectively, for the case of Procyon presented here). We discuss the consequences for analysis of AIA data and possible empirical corrections to the AIA responses to model more realistically the coronal emission in these passbands.

  6. The Relation Between Magnetic Fields and X-ray Emission for Solar Microflares and Active Regions

    Science.gov (United States)

    Kirichenko, A. S.; Bogachev, S. A.

    2017-09-01

    We present the result of a comparison between magnetic field parameters and the intensity of X-ray emission for solar microflares with Geosynchronous Operational Environmental Satellites (GOES) classes from A0.02 to B5.1. For our study, we used the monochromatic MgXII Imaging Spectroheliometer (MISH), the Full-disk EUV Telescope (FET), and the Solar PHotometer in X-rays (SphinX) instruments onboard the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon CORONAS- Photon spacecraft because of their high sensitivity in soft X-rays. The peak flare flux (PFF) for solar microflares was found to depend on the strength of the magnetic field and on the total unsigned magnetic flux as a power-law function. In the spectral range 2.8 - 36.6 Å, which shows very little increase related to microflares, the power-law index of the relation between the X-ray flux and magnetic flux for active regions is 1.48 ±0.86, which is close to the value obtained previously by Pevtsov et al. ( Astrophys. J. 598, 1387, 2003) for different types of solar and stellar objects. In the spectral range 1 - 8 Å, the power-law indices for PFF(B) and PFF(Φ) for microflares are 3.87 ±2.16 and 3 ±1.6, respectively. We also make suggestions on the heating mechanisms in active regions and microflares under the assumption of loops with constant pressure and heating using the Rosner-Tucker-Vaiana scaling laws.

  7. Numerical simulations of chromospheric hard X-ray source sizes in solar flares

    CERN Document Server

    Battaglia, Marina; Fletcher, Lyndsay; MacKinnon, Alec L

    2012-01-01

    X-ray observations are a powerful diagnostic tool for transport, acceleration, and heating of electrons in solar flares. Height and size measurements of X-ray footpoints sources can be used to determine the chromospheric density and constrain the parameters of magnetic field convergence and electron pitch-angle evolution. We investigate the influence of the chromospheric density, magnetic mirroring and collisional pitch-angle scattering on the size of X-ray sources. The time-independent Fokker-Planck equation for electron transport is solved numerically and analytically to find the electron distribution as a function of height above the photosphere. From this distribution, the expected X-ray flux as a function of height, its peak height and full width at half maximum are calculated and compared with RHESSI observations. A purely instrumental explanation for the observed source size was ruled out by using simulated RHESSI images. We find that magnetic mirroring and collisional pitch-angle scattering tend to ch...

  8. Ionospheric Effects of X-Ray Solar Bursts in the Brazilian Sector

    Science.gov (United States)

    Becker-Guedes, F.; Takahashi, H.; Costa, J. E.; Otsuka, Y.

    2011-12-01

    When the solar X-ray flux in the interplanetary medium reaches values above a certain threshold, some undesired effects affecting radio communications are expected. Basically, the magnitudes of these effects depend on the X-ray peak brightness and duration, which drive the intensity of the ionosphere response when the associated electromagnetic wave hit the sunlit side of the Earth atmosphere. An important aspect defining the severity of damages to HF radio communications and LF navigation signals in a certain area is the local time when each event takes place. In order to create more accurate warnings referred to possible radio signal loss or degradation in the Brazilian sector, we analyze TEC maps obtained by a GPS network, formed by dual-frequency receivers spread all over the country, to observe ionospheric local changes during several X-ray events in the 0.1-0.8 nm range measured by GOES satellite. Considering the duration, peak brightness, and local time of the events, the final purpose of this study is to understand and predict the degree of changes suffered by the ionosphere during these X-ray bursts. We intend using these results to create a radio blackout warning product to be offered by the Brazilian space weather program named EMBRACE (Estudo e Monitoramento BRAsileiro do Clima Espacial): Brazilian Monitoring and Study of Space Weather.

  9. The X-ray signature of the solar axion flux observed by XMM-Newton

    CERN Document Server

    Fraser, G W; Sembay, S; Carter, J A; Schyns, E

    2014-01-01

    Recent calculations of the 3-D scattering of X-rays produced by the conversion of solar axions suggest that the sunward magnetosphere could be a source of 0.2-10keV photons, observable without violating the Sun-/Earth-avoidance constraints of operational telescopes. Observed from High Earth Orbit, this conversion X-ray intensity may be seasonally modulated due to the changing visibility of the sunward magnetic field region. A simple model of the geomagnetic field is combined with the full ephemeris of XMM to predict the seasonal variation of the conversion X-ray intensity and its north-south asymmetry relative to the ecliptic. This model is compared with stacked XMM EPIC pn, MOS1 and MOS2 blank sky datasets from which point sources have been systematically removed and which have been rigorously screened against 1-500keV soft protons. Remarkably, when the residual flux is segregated according to spacecraft season, a very significant (>3sigma), seasonally-varying X-ray background signal is observed. The EPIC co...

  10. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers

    Science.gov (United States)

    Zhong, Jiayong; Li, Yutong; Wang, Xiaogang; Wang, Jiaqi; Dong, Quanli; Xiao, Chijie; Wang, Shoujun; Liu, Xun; Zhang, Lei; An, Lin; Wang, Feilu; Zhu, Jianqiang; Gu, Yuan; He, Xiantu; Zhao, Gang; Zhang, Jie

    2010-12-01

    Magnetic reconnection is a process by which oppositely directed magnetic field lines passing through a plasma undergo dramatic rearrangement, converting magnetic potential into kinetic energy and heat. It is believed to play an important role in many plasma phenomena including solar flares, star formation and other astrophysical events, laser-driven plasma jets, and fusion plasma instabilities. Because of the large differences of scale between laboratory and astrophysical plasmas, it is often difficult to extrapolate the reconnection phenomena studied in one environment to those observed in the other. In some cases, however, scaling laws do permit reliable connections to made, such as the experimental simulation of interactions between the solar wind and the Earth's magnetosphere. Here we report well-scaled laboratory experiments that reproduce loop-top-like X-ray source emission by reconnection outflows interacting with a solid target. Our experiments exploit the mega-gauss-scale magnetic field generated by interaction of a high-intensity laser with a plasma to reconstruct a magnetic reconnection topology similar to that which occurs in solar flares. We also identify the separatrix and diffusion regions associated with reconnection in which ions become decoupled from electrons on a scale of the ion inertial length.

  11. Deka-keV X-ray observations of solar bursts with WATCH/GRANAT: frequency distributions of burst parameters

    DEFF Research Database (Denmark)

    Crosby, N.; Vilmer, N.; Lund, Niels

    1998-01-01

    is described and some examples of solar observations are given. The estimated energy releases in the flares presented here are found to extend below the range of hard X-ray flares which were previously studied by ISEE-3 and HXRBS/SMM detectors. The X-ray emitting component cannot be exclusively explained...

  12. Solar X-ray Flare Hazards on the Surface of Mars

    CERN Document Server

    Smith, D S; Smith, David S.; Scalo, John M.

    2006-01-01

    Putative organisms on the Martian surface would be exposed to potentially high doses of ionizing radiation during strong solar X-ray flares. We extrapolate the observed flare frequency-energy release scaling relation to releases much larger than seen so far for the sun, an assumption supported by observations of flares on other solar- and subsolar-mass main sequence stars. We calculate the surficial reprocessed X-ray spectra using a Monte Carlo code we have developed. Biological doses from indirect genome damage are calculated for each parameterized flare spectrum by integration over the X-ray opacity of water. We estimate the mean waiting time for solar flares producing a given biological dose of ionizing radiation on Mars and compare with lethal dose data for a wide range of terrestrial organisms. These timescales range from decades for significant human health risk to 0.5 Myr for D. radiodurans lethality. Such doses require total flare energies of 10^33--10^38 erg, the lower range of which has been observe...

  13. Dynamics of laser-imploded core plasmas observed by ultrafast two-dimensional x-ray imaging with animation display

    Energy Technology Data Exchange (ETDEWEB)

    Heya, Manabu; Shiraga, Hiroyuki; Shimada, Kyoko; Miyanaga, Noriaki; Takabe, Hideaki; Yamanaka, Tatsuhiko; Mima, Kunioki [Osaka Univ., Inst. of Laser Engineering, Suita, Osaka (Japan)

    1999-05-01

    In order to observe time-resolved, two-dimensional (2D) spatial distribution of x rays emitted from core plasmas at the final stage of the implosion, we have developed a multi-imaging x-ray streak camera (MIXS) and a multi-channel MIXS (McMIXS) methods as new ultrafast 2D x-ray imaging techniques. The observed time-resolved 2D x-ray and electron-temperature images of core plasmas, which are sequentially changing with time, have been displayed by using an animation method. Temporal evolutions of nonuniform structures, including shape, size, and movement of core plasmas can be observed instinctively with the animated display. The ultrafast 2D x-ray imaging with the animation display is a new powerful tool for understanding the dynamics of laser-imploded core plasmas. (author)

  14. Evidence of the radio-quiet hard X-ray precursor of the 13 December 2006 solar flare

    Energy Technology Data Exchange (ETDEWEB)

    Zimovets, I.V.; Struminsky, A.B. [Space Res Inst IKI, Moscow 117997, (Russian Federation); Gros, M. [CEA Saclay, DSM, DAPNIA, Serv Astrophys, F-91191 Gif Sur Yvette, (France); Struminsky, A.B. [IZMIRAN, Troitsk 142190, Moscow Region, (Russian Federation)

    2009-07-01

    We report multi-wavelength investigation of the pre-impulsive phase of the 13 December 2006 X-class solar flare. We use hard X-ray data from the anticoincidence system of spectrometer onboard INTEGRAL (ACS) jointly with soft X-ray data from the GOES-12 and Hinode satellites. Radio data are from Nobeyama and Learmonth solar observatories and from the Culgoora Solar Radio Spectrograph. The main finding of our analysis is a spiky increase of the ACS count rate accompanied by surprisingly gradual and weak growth of microwave emission and without detectable radio emission at meter and decimeter wavelengths about 10 min prior to the impulsive phase of the solar flare. At the time of this pre-flare hard X-ray burst the onset of the GOES soft X-ray event has been reported, positive derivative of the GOES soft X-ray flux started to rise and a bright spot has appeared in the images of the Hinode X-ray telescope (XRT) between the flare ribbons near the magnetic inversion line close to the sources of thermal and non-thermal hard X-ray emission observed by Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) during the flare. These facts we consider as evidences of solar origin of the increased pre-flare ACS count rate. We briefly discuss a possible cause of the pre-flare emission peculiarities. (authors)

  15. Inverse problem in ionospheric science: prediction of solar soft-X-ray spectrum from very low frequency radiosonde results

    Science.gov (United States)

    Palit, S.; Ray, S.; Chakrabarti, S. K.

    2016-05-01

    X-rays and gamma-rays from astronomical sources such as solar flares are mostly absorbed by the Earth's atmosphere. Resulting electron-ion production rate as a function of height depends on the intensity and wavelength of the injected spectrum and therefore the effects vary from one source to another. In other words, the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we investigate whether we can invert the problem uniquely by deconvolution of the VLF amplitude signal to obtain the details of the injected spectrum. We find that it is possible to do this up to a certain accuracy. This leads us to the possibility of uninterrupted observation of X-ray photon spectra of solar flares that are often hindered by the restricted observation window of space satellites to avoid charge particle damages. Such continuous means of observation are essential in deriving information on time evolution of physical processes related to electron acceleration and interaction with plasma in solar atmosphere. Our method is useful to carry out a similar exercise to infer the spectra of more energetic events such as the Gamma Ray Bursts (GRBs), Soft Gamma-ray Repeaters (SGRs) etc., by probing even the lower part of the Earth's atmosphere. We thus show that to certain extent, the Earth's atmosphere could be used as a gigantic detector of relatively strong astronomical events.

  16. On the power-law distributions of X-ray fluxes from solar flares observed with GOES

    Science.gov (United States)

    Li, You-Ping; Feng, Li; Zhang, Ping; Liu, Si-Ming; Gan, Wei-Qun

    2016-10-01

    The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power-law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites. The temperature (T) distribution, on the other hand, approaches a power-law distribution with an index of 2 for high values of T. Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.

  17. Kinetic and radiation-hydrodynamic modeling of x-ray heating in laboratory photoionized plasmas

    Science.gov (United States)

    Mancini, Roberto

    2017-06-01

    In experiments performed at the Z facility of Sandia National Laboratories a cm-scale cell filled with neon gas was driven by the burst of broadband x-rays emitted at the collapse of a wire-array z-pinch turning the gas into a photoionized plasma. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the plasma. The data show a highly-ionized neon plasma with a rich line absorption spectrum that permits the extraction of the ionization distribution among Be-, Li-, He- and H-like ions. Analysis of the spectra produced atomic ground and low excited state areal densities in these ions, and from the ratio of first-excited to ground state populations in Li-like neon a temperature of 19±4eV was extracted to characterize the x-ray heating of the plasma. To interpret this observation, we have performed data-constrained view-factor calculations of the spectral distribution of the x-ray drive, self-consistent modeling of electron and atomic kinetics, and radiation-hydrodynamic simulations. For the conditions of the experiment, the electron distribution thermalizes quickly, has a negligible high-energy tail, and is very well approximated by a single Maxwellian distribution. Radiation-hydrodynamic simulations with either LTE or NLTE (i.e. non-equilibrium) atomic physics provide a more complete modeling of the experiment. We found that in order to compute electron temperatures consistent with observation inline non-equilibrium collisional-radiative neon atomic kinetics needs to be taken into account. We discuss the details of LTE and NLTE simulations, and the impact of atomic physics on the radiation heating and cooling rates that determine the plasma temperature. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  18. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    Science.gov (United States)

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  19. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  20. Comparing plasma and X-ray exposure and identifying vulnerable cell parts

    Science.gov (United States)

    Graham, Bill

    2012-10-01

    Here two issues in plasma medicine that are being addressed in a collaboration between the Centre of Plasma Physics and the School of Pharmacy at Queen's University Belfast and the Plasma Institute at York University UK will be discussed. Recent measurements of the interaction of plasmas created directly in DMEM cell medium and MDAMB-231, a human breast cancer cell line, showed evidence of reduced cell viability and of DNA damage. The same set of experiments were undertaken but with X-ray exposure. A correlation of the dependence on plasma exposure time and X-ray dose was observed which might point the way to dose definition in plasma medicine. We have also been working to identify the cell parts most vulnerable to plasma exposure. In this study a 10 kHz atmospheric pressure non-thermal plasma jet, operating in He/0.5%O2 and characterized to determine the behavior of many of the plasma species, was incident onto the surface of media containing either bacterial strains, in their planktonic and biofilm forms, or isolated bacterial plasmid DNA. The results of measurements to look for changes in plasmid structural conformation, rates of single and double strand breaks, the catalytic activity of certain bacterial enzymes, the peroxidation of lipid content of the bacterial cells, the leakage of ATP and Scanning Electron Microscope (SEM) images will be discussed.

  1. XMM-Newton detects X-ray 'solar cycle' in distant star

    Science.gov (United States)

    2004-05-01

    The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to

  2. X-ray Spectroscopic Characterization of Shock-Ignition-Relevant plasmas

    Directory of Open Access Journals (Sweden)

    Michal Šmíd

    2013-01-01

    Full Text Available Experiments with multilayer plastic/Cu targets performed at a PALS laser system aimed at the study of matter at conditions relevant to a shock ignition ICF scheme, and, in particular, at the investigation of hot electrons generation. Plasma temperature and density were obtained using high-resolution X-ray spectroscopy. 2D-spatially resolved quasi–monochromatic imaging was observing the hot electrons via fluorescence K emission in the copper tracer layer. Found values of plasma temperature 690 ± 10 eV, electron density 3 × 1022 cm-3 and the effective energy of hot electrons 45 ± 20 keV demonstrate the potential of X-ray methods in the characterization of the shock ignition environmental conditions.

  3. Interpretation of perturbed temperature based on X-ray emissivity in fusion plasma experiments

    Science.gov (United States)

    Janicki, C.; Cote, A.; Dichaud, D.

    1995-05-01

    The relationship between the dynamical response to perturbations of the soft X-ray emissivity (δE), the electron temperature (δTe), the electron density (δne) and the impurity concentration (δni) for a Maxwellian plasma is analysed in detail. In particular, the so-called 'impurity function' F(Zeff) is also strongly dependent on Te via the direct radiative recombination (DRR) contribution to the X-ray emission, which significantly affects the relation between the perturbed quantities as derived from the popular expression E propto F(Zeff)ne2Tealpha even if the impurity content (or Zeff) remains constant. In order to overcome this difficulty, a simple analytical approximation is derived for F(Zeff,Te) that can be used as a formula to relate the perturbed quantities δE, δTe, δne and δF with ease and accuracy. This simple approximation is illustrated by studying saw-toothing discharges on the Tokamak de Varennes (TdeV) with Te, ne and E measured by the Thomson scattering, the FIR interferometer and the X-ray camera diagnostics, and its accuracy is tested against the predictions of a full X-ray modelling code

  4. X-ray Computed Tomographic Investigation of the Porosity and Morphology of Plasma Electrolytic Oxidation Coatings.

    Science.gov (United States)

    Zhang, Xun; Aliasghari, Sepideh; Němcová, Aneta; Burnett, Timothy L; Kuběna, Ivo; Šmíd, Miroslav; Thompson, George E; Skeldon, Peter; Withers, Philip J

    2016-04-06

    Plasma electrolytic oxidation (PEO) is of increasing interest for the formation of ceramic coatings on metals for applications that require diverse coating properties, such as wear and corrosion resistance, low thermal conductivity, and biocompatibility. Porosity in the coatings can have an important impact on the coating performance. However, the quantification of the porosity in coatings can be difficult due to the wide range of pore sizes and the complexity of the coating morphology. In this work, a PEO coating formed on titanium is examined using high resolution X-ray computed tomography (X-ray CT). The observations are validated by comparisons of surface views and cross-sectional views of specific coating features obtained using X-ray CT and scanning electron microscopy. The X-ray CT technique is shown to be capable of resolving pores with volumes of at least 6 μm(3). Furthermore, the shapes of large pores are revealed and a correlation is demonstrated between the locations of the pores, nodules on the coating surface, and depressions in the titanium substrate. The locations and morphologies of the pores, which constitute 5.7% of the coating volume, indicate that they are generated by release of oxygen gas from the molten coating.

  5. Low-Energy Plasma Focus as a Tailored X-Ray Source

    Science.gov (United States)

    Zakaullah, M.; Alamgir, K.; Shafiq, M.; Sharif, M.; Waheed, A.; Murtaza, G.

    2000-06-01

    A low-energy (2.3 kJ) plasma focus energized by a single 32-μF capacitor charged at 12 kV with filling gases hydrogen, neon, and argon is investigated as an X-ray source. Experiments are conducted with a copper and an aluminum anode. Specifically, attention is given to tailoring the radiation in different windows, e.g., 1.2-1.3 keV, 1.3-1.5 keV, 2.5-5 keV, and Cu-Kα line radiation. The highest X-ray emission is observed with neon filling and the copper anode in the 1.2-1.3 keV window, which we speculate to be generated due to recombination of hydrogenlike neon ions with a few eV to a few 10s of eV electrons. The wall-plug efficiency of the device is found to be 4%. The other significant emission occurs with hydrogen filling, which exhibits wall-plug efficiency of 1.7% for overall X-ray emission and 0.35% for Cu-Kα line radiation. The emission is dominated by the interaction of electrons in the current sheath with the anode tip. The emission with the aluminum anode and hydrogen filling is up to 10 J, which corresponds to wall-plug efficiency of 0.4%. The X-ray emission with argon filling is less significant.

  6. Stereoscopic observations of hard x ray sources in solar flares made with GRO and other spacecraft

    Science.gov (United States)

    Kane, S. R.; Hurley, K.; Mctiernan, J. M.; Laros, J. G.

    1992-01-01

    Since the launch of the Gamma Ray Observatory (GRO) in Apr. 1991, the Burst and Transient Source Experiment (BATSE) instrument on GRO has recorded a large number of solar flares. Some of these flares have also been observed by the Gamma-Ray Burst Detector on the Pioneer Venus Orbiter (PVO) and/or by the Solar X-Ray/Cosmic Gamma-Ray Burst Experiment on the Ulysses spacecraft. A preliminary list of common flares observed during the period May-Jun. 1991 is presented and the possible joint studies are indicated.

  7. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    Science.gov (United States)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U

  8. Spectrograph complex for laser plasma X-ray radiation research in ISKRA-4, ISKRA-5 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bessarab, A.V.; Bel`kov, S.A.; Zhidkov, N.V.; Tokarev, V.A. [VNIIEF Russian Federal Nuclear Center, Novgorod (Russian Federation)

    1994-12-31

    A spectrograph complex, developed for the ISKRA-4 and ISKRA-5 facilities, is described. The complex was developed to study continuous and line spectra in the 0.06-3 keV range. It comprises diffraction-grating, multilayer-mirror, and grazing-incidence crystal spectrographs. Recorded laser plasma X-ray spectra are compared with the ones predicted by the gas-dynamical theory. 9 refs., 2 figs.

  9. Evidence for Alfvén waves in solar x-ray jets.

    Science.gov (United States)

    Cirtain, J W; Golub, L; Lundquist, L; van Ballegooijen, A; Savcheva, A; Shimojo, M; Deluca, E; Tsuneta, S; Sakao, T; Reeves, K; Weber, M; Kano, R; Narukage, N; Shibasaki, K

    2007-12-07

    Coronal magnetic fields are dynamic, and field lines may misalign, reassemble, and release energy by means of magnetic reconnection. Giant releases may generate solar flares and coronal mass ejections and, on a smaller scale, produce x-ray jets. Hinode observations of polar coronal holes reveal that x-ray jets have two distinct velocities: one near the Alfvén speed ( approximately 800 kilometers per second) and another near the sound speed (200 kilometers per second). Many more jets were seen than have been reported previously; we detected an average of 10 events per hour up to these speeds, whereas previous observations documented only a handful per day with lower average speeds of 200 kilometers per second. The x-ray jets are about 2 x 10(3) to 2 x 10(4) kilometers wide and 1 x 10(5) kilometers long and last from 100 to 2500 seconds. The large number of events, coupled with the high velocities of the apparent outflows, indicates that the jets may contribute to the high-speed solar wind.

  10. The normalization of solar X-ray data from many experiments.

    Science.gov (United States)

    Wende, C. D.

    1972-01-01

    A conversion factor is used to convert Geiger (GM) tube count rates or ion chamber currents into units of the incident X-ray energy flux in a specified passband. A method is described which varies the passband to optimize these conversion factors such that they are relatively independent of the spectrum of the incident photons. This method was applied to GM tubes flown on Explorers 33 and 35 and Mariner 5 and to ion chambers flown on OSO 3 and OGO 4. Revised conversion factors and passbands are presented, and the resulting absolute solar X-ray fluxes based on these are shown to improve the agreement between the various experiments. Calculations have shown that, although the GM tubes on Explorer 33 viewed the Sun off-axis, the effective passband did not change appreciably, and the simple normalization of the count rates to the count rates of a similar GM tube on Explorer 35 was justified.

  11. High resolution X-ray spherically bent crystal spectrometer for laser-produced plasma diagnostics

    Institute of Scientific and Technical Information of China (English)

    Shali Xiao; Hongjian Wang; Jun Shi; Changhuan Tang; Shenye Liu

    2009-01-01

    A new high spectral resolution crystal spectrometer is designed to measure very low emissive X-ray spectra of laser-produced plasma in 0.5 - 0.9 nm range. A large open aperture (30 x 20 (mm)) mica (002) spherically bent crystal with curvature radius R = 380 mm is used as dispersive and focusing element. The imaging plate is employed to obtain high spectral resolution with effective area of 30 x 80 (mm). The long designed path of the X-ray spectrometer beam is 980 mm from the source to the detector via the crystal. Experiment is carried out at a 20-J laser facility. X-ray spectra in an absolute intensity scale is obtained from Al laser produced plasmas created by laser energy of 6.78 J. Samples of spectra obtained with spectral resolution of up to E/鈻矱 ~ 1500 are presented. The results clearly show that the device is good to diagnose laser high-density plasmas.

  12. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  13. Application of soft X-ray lasers for probing high density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.B.; Barbee, T.W. Jr.; Cauble, R. [and others

    1996-08-01

    The reliability and characteristics of collisionally pumped soft x-ray lasers make them ideal for a wide variety of plasma diagnostics. These systems now operate over a wavelength range extending from 35 to 400 {Angstrom} and have output energies as high as 10 mJ in 150 ps pulses. The beam divergence of these lasers is less than 15 mrad and they have a typical linewidth of {Delta}{lambda}/{lambda} {approximately} 10{sup -4} making them the brightest xuv sources available. In this paper we will describe the use of x-ray lasers to probe high density plasmas using a variety of diagnostic techniques. Using an x-ray laser and a multilayer mirror imaging system we have studied hydrodynamic imprinting of laser speckle pattern on directly driven thin foils with 1-2 {mu}m spatial resolution. Taking advantage of recently developed multilayer beamsplitters we have constructed and used a Mach-Zehnder interferometer operating at 155 {Angstrom} to probe 1-3 mm size laser produced plasmas with peak electron densities of 4 x 10{sup 21} cm{sup -3}. A comparison of our results with computer simulations will be presented.

  14. An ultracompact X-ray source based on a laser-plasma undulator.

    Science.gov (United States)

    Andriyash, I A; Lehe, R; Lifschitz, A; Thaury, C; Rax, J-M; Krushelnick, K; Malka, V

    2014-08-22

    The capability of plasmas to sustain ultrahigh electric fields has attracted considerable interest over the last decades and has given rise to laser-plasma engineering. Today, plasmas are commonly used for accelerating and collimating relativistic electrons, or to manipulate intense laser pulses. Here we propose an ultracompact plasma undulator that combines plasma technology and nanoengineering. When coupled with a laser-plasma accelerator, this undulator constitutes a millimetre-sized synchrotron radiation source of X-rays. The undulator consists of an array of nanowires, which are ionized by the laser pulse exiting from the accelerator. The strong charge-separation field, arising around the wires, efficiently wiggles the laser-accelerated electrons. We demonstrate that this system can produce bright, collimated and tunable beams of photons with 10-100 keV energies. This concept opens a path towards a new generation of compact synchrotron sources based on nanostructured plasmas.

  15. Search for Solar Axions with the CCD Detector and X-ray Telescope at CAST Experiment

    CERN Document Server

    Rosu, Madalin Mihai; Zioutas, Konstantin

    2015-06-09

    The CERN Axion Solar Telescope (CAST) is an experiment that uses the world’s highest sensitivity Helioscope to date for solar Axions searches. Axions are weakly interacting pseudoscalar particles proposed to solve the so-called Strong Charge-Parity Problem of the Standard Model. The principle of detection is the inverse Primakoff Effect, which is a mechanism for converting the Axions into easily detectable X-ray photons in a strong transverse magnetic field. The solar Axions are produced due to the Primakoff effect in the hot and dense core of from the coupling of a real and a virtual photon. The solar models predict a peak Axion luminosity at an energy of 3 keV originating mostly from the inner 20% of the solar radius. Thus an intensity peak at an energy of 3 keV is also expected in the case of the X-ray radiation resulting from Axion conversion. CAST uses a high precision movement system for tracking the Sun twice a day with a LHC dipole twin aperture prototype magnet, 9.26 meters long and with a field of...

  16. kHz femtosecond laser-plasma hard X-ray and fast ion source

    Science.gov (United States)

    Thoss, A.; Korn, G.; Richardson, M. C.; Faubel, M.; Stiel, H.; Voigt, U.; Siders, C. W.; Elsaesser, T.

    2002-04-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and Kα emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, Kα and Kβ lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ~500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  17. Development of a X-UV Michelson interferometer for probing laser produced plasmas with a X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, S. [Paris-Sud Univ., Orsay (France). LSAI; CEA Centre d' Etudes de Bruyeres-le-Chatel, 91 (France). DAM/CEB.3/ODIR; Zeitoun, Ph.; Vanbostal, L.; Carillon, A.; Fourcade, P.; Idir, M.; Pape, S. le; Ros, D.; Jamelot, G. [Paris-Sud Univ., Orsay (France). LSAI; Bechir, E. [CEA Centre d' Etudes de Bruyeres-le-Chatel, 91 (France). DAM/CEB.3/ODIR; Delmotte, F.; Ravet, M.F. [IOTA, Univ. Paris-Sud, Orsay (France)

    2001-07-01

    We have developed and used a soft X-ray Michelson interferometer to probe large laser-produced plasmas. The aim investigated is to obtain electron density profiles and thus important informations on the plasma dynamic. This paper describes our design and presents some preliminary results using a nickel-like X-ray laser operating at 13.9 nm. We present numericals results which show the interest of using X-ray laser to probe laser-produced plasma by interferometry. (orig.)

  18. Observation of asymmetrically imploded core plasmas with a two-dimensional sampling image x-ray streak camera.

    Science.gov (United States)

    Shiraga, Hiroyuki; Lee, Myongdok; Mahigashi, Norimitsu; Fujioka, Shinsuke; Azechi, Hiroshi

    2008-10-01

    A shell target with a cone for guiding the heating beam has been proposed for the fast ignition scheme. Implosion of such target is no longer symmetric because of the cone. A fast two-dimensional x-ray imaging technique, two-dimensional (2D) sampling image x-ray streak camera was applied for the first time to observation of the dynamics of implosion and core plasma. X-ray emission image of the plasma was sampled with two-dimensionally distributed image sampling points, streaked with the tube, and the recorded signals were reconstructed as sequential 2D frame images. Shape and movement of the core plasma were clearly observed.

  19. On the Detectability of Oxygen X-ray Fluorescence and its Use as a Solar Photospheric Abundance Diagnostic

    CERN Document Server

    Drake, Jeremy J

    2008-01-01

    Monte Carlo calculations of the O Kalpha line fluoresced by coronal X-rays and emitted just above the temperature minimum region of the solar atmosphere have been employed to investigate the use of this feature as an abundance diagnostic. While quite weak, we estimate line equivalent widths in the range 0.02-0.2 AA, depending on the X-ray plasma temperature. The line remains essentially uncontaminated by blends for coronal temperatures T =~ 2 ph/s/arcmin^2. Model calculations for solar chemical mixtures with an O abundance adjusted up and down by a factor of 2 indicate 35-60% changes in O Kalpha line equivalent width, providing a potentially useful O abundance diagnostic. Sensitivity of equivalent width to differences between recently recommended chemical compositions with ``high'' and ``low'' complements of the CNO trio important for interpreting helioseismological observations is less accute, amounting to 20-26% at coronal temperatures T ~= 1000 and suitably well-behaved instrumental profile can be built, X...

  20. On the Power-Law Distributions of X-ray Fluxes from Solar Flares Observed with GOES

    CERN Document Server

    Li, You-ping; Zhang, Ping; Liu, Siming; Gan, Weiqun

    2016-01-01

    Power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system of self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power-law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES. The temperature ($T$) distribution, on the other hand, approaches a ...

  1. Observation of solar events using hard X-ray polarimeter POLAR

    Science.gov (United States)

    Hajdas, Wojtek; Zhang, Ping; Xiao, Hualin; Marcinkowski, Radek

    2017-04-01

    The main purpose of the novel polarimeter POLAR is to study polarization of Gamma Ray Bursts in the hard X-rays energy regime. Several analyses have shown that it is also possible to conduct semi-permanent observation of the Sun and complete the long lasting goal of polarization measurements in solar flares in the non-thermal parts of the energy spectra. POLAR was developed by collaboration between Switzerland, China and Poland. The instrument is located onboard of the China Space Laboratory TG2 that was launched in September 2016. Despite of many past attempts, the key energy range of hard X-rays was only rarely explored and results were inconclusive. To large extend it was due to greater instrumental complications. Polarization data from POLAR measurements would shed light about mechanisms and processes leading to electron acceleration and photon production. POLAR was not only designed as a dedicated instrument for polarization studies but also underwent very careful calibration campaigns on-ground supplemented by precise modeling and tests. Orientation of the TG2 space laboratory as well as instrument pointing direction allow for precise measurements of polarization in solar flares. POLAR is currently in the commissioning phase lasting until April 2017. Already in this phase it was possible to detect several weak class flares the data from which is being currently analyzed. We will provide the instrument status and present first information on detected solar events in comparison with other solar observatories such as RHESSI.

  2. Design of Molecular Solar Cells via Feedback from Soft X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Himpsel, Franz J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-12

    Spectroscopy with soft X-rays was used to develop new materials and novel designs for solar cells and artificial photosynthesis. In order to go beyond the widely-used trial-and-error approach of gradually improving a particular design, we started from the most general layout of a solar cell (or a photo-electrochemical device) and asked which classes of materials are promising for best performance. For example, the most general design of a solar cell consists of a light absorber, an electron donor, and an electron acceptor. These are characterized by four energy levels, which were measured by a combination of spectroscopic X-ray techniques. Tuning synchrotron radiation to the absorption edges of specific elements provided element- and bond-selectivity. The spectroscopic results were complemented by state-of-the-art calculations of the electronic states. These helped explaining the observed energy levels and the orbitals associated with them. The calculations were extended to a large class of materials (for example thousands of porphyrin dye complexes) in order to survey trends in the energy level structure. A few highlights serve as examples: 1) Organic molecules combining absorber, donor, and acceptor with atomic precision. 2) Exploration of highly p-doped diamond films as inert, transparent electron donors. 3) Surface-sensitive characterization of nanorod arrays used as photoanodes in water splitting. 4) Computational design of molecular complexes for efficient solar cells using two photons.

  3. Second flight of the Focusing Optics X-ray Solar Imager sounding rocket [FOXSI-2

    Science.gov (United States)

    Buitrago-Casas, J. C.; Krucker, S.; Christe, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Foster, N. D.

    2015-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket experiment that has flown twice to test a direct focusing method for measuring solar hard X-rays (HXRs). These HXRs are associated with particle acceleration mechanisms at work in powering solar flares and aid us in investigating the role of nanoflares in heating the solar corona. FOXSI-1 successfully flew for the first time on November 2, 2012. After some upgrades including the addition of extra mirrors to two optics modules and the inclusion of new fine-pitch CdTe strip detectors, in addition to the Si detectors from FOXSI-1, the FOXSI-2 payload flew successfully again on December 11, 2014. During the second flight four targets on the Sun were observed, including at least three active regions, two microflares, and ~1 minute of quiet Sun observation. This work is focused in giving an overview of the FOXSI rocket program and a detailed description of the upgrades for the second flight. In addition, we show images and spectra investigating the presence of no thermal emission for each of the flaring targets that we observed during the second flight.

  4. X-rays from the youngest stars

    Science.gov (United States)

    Feigelson, Eric D.

    1994-01-01

    The X-ray properties of classical and weak-lined T Tauri stars are briefly reviewed, emphasizing recent results from the ROSAT satellite and prospects for ASCA. The interpretation of the high level of T Tauri X-rays as enhanced solar-type magnetic activity is discussed and criticized. The census of X-ray emitters is significantly increasing estimates of galactic star formation efficiency, and X-ray emission may be important for self-regulation of star formation. ASCA images will detect star formation regions out to several kiloparsecs and will study the magnetically heated plasma around T Tauri stars. However, images will often suffer from crowding effects.

  5. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    Science.gov (United States)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  6. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    Science.gov (United States)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  7. A Novel Spectrometer for Measuring Laser-Produced Plasma X-Ray in Inertial Confinement Fusion

    Directory of Open Access Journals (Sweden)

    Zhu Gang

    2012-01-01

    Full Text Available In the experimental investigations of inertial confinement fusion, the laser-produced high-temperature plasma contains very abundant information, such as the electron temperature and density, ionization. In order to diagnose laser-plasma distribution in space and evolution in time, an elliptical curved crystal spectrometer has been developed and applied to diagnose X-ray of laser-produced plasma in 0.2~2.46 nm region. According to the theory of Bragg diffraction, four kinds of crystal including LiF, PET, MiCa, and KAP were chosen as dispersive elements. The distance of crystal lattice varies from 0.4 to 2.6 nm. Bragg angle is in the range of 30°~67.5°, and the spectral detection angle is in 55.4°~134°. The curved crystal spectrometer mainly consists of elliptical curved crystal analyzer, vacuum configuration, aligning device, spectral detectors and three-dimensional microadjustment devices. The spectrographic experiment was carried out on the XG-2 laser facility. Emission spectrum of Al plasmas, Ti plasma, and Au plasmas have been successfully recorded by using X-ray CCD camera. It is demonstrated experimentally that the measured wavelength is accorded with the theoretical value.

  8. Development of X-ray Emission Computed Tomography for Laser-Plasma.

    Science.gov (United States)

    Shao'En, Jiang; Zhongli, Liu; Nan, Li; Zhijian, Zheng; Dao'Yuan, Tang; Yongkun, Ding; Xin, Hu

    1996-11-01

    A computed tomography (CT) technique has been developed to diagnose laser produced plasma using X-ray emission. The three dimensional X-ray distribution was reconstructed by using a multiplicate algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. A three dimensional reconstruction program (CT3D) has been worked out, the accuracy of which reaches 92% and 86%, without and with noise (S/N-10), respectively. The experimental data, obtained from the ICF on the ``Xinguang-II'' facilities (λ = 0.35 μm, EL = 100J, τ = 700ps), are processed by using the CT3D program and good reconstruction results have been obtained.

  9. Enhancement of x-ray yields from heteronuclear cluster plasmas irradiated by intense laser light

    Energy Technology Data Exchange (ETDEWEB)

    Jha, J; Mathur, D; Krishnamurthy, M [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India)

    2005-09-28

    We report a new method to enhance the x-ray emission from nano-cluster plasmas formed upon irradiation by intense femtosecond-duration laser pulses. Our experiments demonstrate that when Ar clusters are doped with H{sub 2}O the time-integrated yield of Ar K x-ray emission is enhanced by approximately 12-fold in comparison to that obtained from pure Ar clusters under otherwise identical experimental conditions. A significant alteration in the time-dependent electron density is achieved by the presence of an H{sub 2}O dopant, and this could be the possible reason for the enhancement that is observed. (letter to the editor)

  10. MCNP Simulation to Hard X-Ray Emission of KSU Dense Plasma Focus Machine

    CERN Document Server

    Mohamed, Amgad E

    2015-01-01

    The MCNP program used to simulate the hard x-ray emission from KSU dense plasma focus device, an electron beam spectrum of maximum energy 100 keV was used to hit anode target. The bremsstrahlung radiation was measured using the F2 tally functions on the chamber walls and on a virtual sphere surrounding the machine, the radiation spectrum was recorded for various anode materials like tungsten, stainless steel and molybdenum. It was found that tungsten gives the best and the most intense radiation for the same electron beam. An aluminum filter of thickness 2mm and 4mm was used to cutoff the lower energy band from the x-ray spectrum. It was found that the filters achieved the mission and there is no distinct difference in between.

  11. MIT modular x-ray source systems for the study of plasma diagnostics

    Science.gov (United States)

    Coleman, J. W.; Wenzel, K. W.; Petrasso, R. D.; Lo, D. H.; Li, C. K.; Lierzer, J. R.; Wei, T.

    1992-10-01

    Two new x-ray source systems are now on line at our facility. Each provides an e-beam to 25 kV. Targets are interchangeable between machines, and four x-ray detectors may be used simultaneously with a target. The gridded e-gun of the RACEHORSE system gives a 0.5-1.0-cm pulsable spot on target. The nongridded e-gun of the SCORPION system provides a 0.3-mm or smaller dc microspot on target. RACEHORSE is being used to study and characterize type-II diamond photoconductors for use in diagnosing plasmas, while SCORPION is being used to develop a slitless spectrograph using photographic film. Source design details and some RACEHORSE results are presented.

  12. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Alan G., E-mail: lynn@ece.unm.edu; Gilmore, Mark [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  13. Absolute calibration of space-resolving soft X-ray spectrograph for plasma diagnostics

    Science.gov (United States)

    Yoshikawa, M.; Okamoto, Y.; Kawamori, E.; Watanabe, Y.; Watabe, C.; Yamaguchi, N.; Tamano, T.

    2001-07-01

    A grazing incidence flat-field soft X-ray (20-350 Å) spectrograph was constructed and applied for impurity diagnostics in the GAMMA 10 fusion plasma. The spectrograph consisted of a limited height entrance slit, an aberration-corrected concave grating, a microchannel-plate intensified detector and an instant camera/a high speed solid state camera. An absolute calibration experiment for the SX spectrograph was performed at the Photon Factory in the High Energy Accelerator Research Organization with monitoring the incident synchrotron beam intensity by using an absolutely calibrated XUV silicon photodiode. From the results of absolute calibration of the spectrograph, the radiation loss from the plasma was obtained.

  14. Absolute calibration of space-resolving soft X-ray spectrograph for plasma diagnostics

    CERN Document Server

    Yoshikawa, M; Kawamori, E; Watanabe, Y; Watabe, C; Yamaguchi, N; Tamano, T

    2001-01-01

    A grazing incidence flat-field soft X-ray (20-350 A) spectrograph was constructed and applied for impurity diagnostics in the GAMMA 10 fusion plasma. The spectrograph consisted of a limited height entrance slit, an aberration-corrected concave grating, a microchannel-plate intensified detector and an instant camera/a high speed solid state camera. An absolute calibration experiment for the SX spectrograph was performed at the Photon Factory in the High Energy Accelerator Research Organization with monitoring the incident synchrotron beam intensity by using an absolutely calibrated XUV silicon photodiode. From the results of absolute calibration of the spectrograph, the radiation loss from the plasma was obtained.

  15. X-ray tomography on plasmas with arbitrary cross sections and limited access

    Science.gov (United States)

    Decoste, R.

    1985-05-01

    An x-ray imaging system is described for 2D reconstructions of plasmas with viewing access limitations. A relatively small number of 72 detectors distributed over six fan arrays first provides partial views of the toroidal plasma in a poloidal plane. Next, the line-integrated data is deconvoluted using a computerized tomographic approach based on linear algebra and a least-squares fit. The arrangement and the number of detectors have been optimized to the point where significant reconstruction improvements are limited by available viewing access rather than by the number of lines of sight.

  16. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    Science.gov (United States)

    Lynn, Alan G.; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ˜104 T (100 Megagauss) over small volumes (˜10-10m3) at high plasma densities (˜1028m-3) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  17. Study of fast capillary discharge plasma columns for soft x-ray amplifiers

    Science.gov (United States)

    Rocca, Jorge J. G.; Cortazar, O. D.; Szapiro, Benito T.; Tomasel, Fernando G.; Hartshorn, D.

    1994-02-01

    The efficient generation, by a fast discharge, of capillary plasma channels containing Ne-like and Ni-like ions for collisionally excited soft-x-ray lasers is reported. Rapid pulse excitation of capillary channels 1.5 mm in diameter with currents of less than 70 kA produced Ca and Ti plasmas in which atoms are ionized up to the F-like state. Line emission at the wavelengths corresponding to the 3p - 3s and 3d - 3p transitions of Ne-like Ca has been observed.

  18. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  19. Wire number doubling in plasma-shell regime increases z-accelerator x-ray power

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A. [and others

    1997-11-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40{+-}20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the {open_quotes}plasma shell{close_quotes} regime, where the plasmas generated by the individual wires merge prior to the inward implosion of the entire array.

  20. Curved crystal spectrometer for the measurement of X-ray lines from laser-produced plasmas

    Institute of Scientific and Technical Information of China (English)

    SHI Jun; XIAO Sha-li; WANG Hong-jian; TANG Chang-huan; LIU Shen-ye

    2008-01-01

    In order to diagnose the laser-produced plasmas, a focusing curved crystal spectrometer has been developed for measuring the X-ray lines radiated from a laser-produced plasmas. The design is based on the fact that the ray emitted from a source located at one focus of an ellipse will converge on the other focus by the reflection of the elliptical surface. The focal length and the eccentricity of the ellipse are 1350 mm and 0.9586, respectively. The spectrometer can be used to measure the X-ray lines in the wavelength range of 0.2-0.37 nm, and a LiF crystal (200) (2d = 0.4027 nm) is used as dispersive element covering Bragg angle from 30° to 67.5°. The spectrometer was tested on Shenguang-Ⅱ which can deliver laser energy of 60-80 J/pulse and the laser wavelength is 0.35 μm. Photographs of spectra including the 1s2p 1p1-1s2 1S0 resonance line(w),the 1s2p 3P2-1s2 1S0 magnetic quadrupole line(x), the 1s2p 3p1 1s2 1S0 intercombination lines(y), the 1s2p 3S1-1s2 1S0 forbidden line(z) in helium-like Ti X XI and the 1s2s2p 2P3/2-1s22s 2S1/2 line(q) in lithium-like Ti X X have been recorded with a X-ray CCD camera. The experimental result shows that the wavelength resolution(λ/△λ) is above 1000 and the elliptical crystal spectrometer is suitable for X-ray spectroscopy.

  1. Soft X-ray variability over the present minimum of solar activity as observed by SphinX

    Science.gov (United States)

    Gburek, S.; Siarkowski, M.; Kepa, A.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Podgorski, P.; Kordylewski, Z.; Plocieniak, S.; Sylwester, B.; Trzebinski, W.; Kuzin, S.

    2011-04-01

    Solar Photometer in X-rays (SphinX) is an instrument designed to observe the Sun in X-rays in the energy range 0.85-15.00 keV. SphinX is incorporated within the Russian TESIS X and EUV telescope complex aboard the CORONAS-Photon satellite which was launched on January 30, 2009 at 13:30 UT from the Plesetsk Cosmodrome, northern Russia. Since February, 2009 SphinX has been measuring solar X-ray radiation nearly continuously. The principle of SphinX operation and the content of the instrument data archives is studied. Issues related to dissemination of SphinX calibration, data, repository mirrors locations, types of data and metadata are discussed. Variability of soft X-ray solar flux is studied using data collected by SphinX over entire mission duration.

  2. Hard X-ray morphology of the X1.3 April 25, 2014 partially occulted limb solar flare

    CERN Document Server

    Effenberger, Frederic; Petrosian, Vahe

    2016-01-01

    At hard X-ray energies, the bright footpoint emission from solar flare loops often prevents a detailed analysis of the weaker loop-top source morphology due to the limited dynamic range available for X-ray imaging. Here, we study the X1.3 April 25, 2014 flare with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). This partially occulted limb flare allows the analysis of the loop-top emission in isolation. We present results on the flare light curve at different energies, the source morphology from X-ray imaging and a detailed spectral analysis of the different source components by imaging spectroscopy. The loop-top source, a likely site of particle acceleration, shows a clear composition of different emission components. The results indicate the opportunities that detailed imaging of hard X-rays can provide to learn about particle acceleration, transport and heating processes in solar flares.

  3. Mission Overview of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat

    Science.gov (United States)

    Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Jones, Andrew; Kohnert, Rick; Li, Xinlin; Mason, James; Moore, Christopher; Palo, Scott; Rouleau, Colden; Solomon, Stanley

    2016-05-01

    The Miniature X-ray Solar Spectrometer (MinXSS) is a 3-Unit (3U) CubeSat to study the energy distribution of solar flare soft X-ray (SXR) emissions of the quiet Sun, active regions, and during flares and to model the solar SXR impact in Earth’s ionosphere, thermosphere, and mesosphere (ITM) using these MinXSS solar measurements. The energy variability in the SXR range can vary by more than a factor of 100, yet we have limited spectral measurements in the SXR to accurately quantify the spectral dependence of this variability. Energy from SXR radiation is deposited mostly in the ionospheric E-region, from ~80 to ~150 km, but the precise altitude is strongly dependent on the SXR spectrum because of the steep slope and structure of the photoionization cross sections of atmospheric gases in this wavelength range. The new MinXSS solar SXR spectra measurements and associated modeling of the solar spectra and Earth’s ITM response will address these outstanding issues. MinXSS includes an Amptek X123 X-ray spectrometer to measure solar irradiance spectra from 0.5 - 30 keV [2.5- 0.04 nm] with a nominal 0.15 keV energy resolution [spectral resolution of 0.7 nm at 2.5 nm and 0.0002 nm at 0.04 nm] and a SXR photometer with similar spectral sensitivity. Both of these SXR instruments had pre-flight calibrations with an accuracy of about 5% at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF). This presentation will include an overview of the MinXSS CubeSat design and development that involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. The MinXSS CubeSat was launched in December 2015 to the International Space Station (ISS) and awaits deployment from the ISS in April-May 2016. Assuming MinXSS has been deployed before June, we also intend to present first light observations from MinXSS to highlight solar SXR spectra and SXR variability during May 2016.

  4. Scavenging of hydroxyl radicals generated in human plasma following X-ray irradiation.

    Science.gov (United States)

    Hosokawa, Yoichiro; Sano, Tomoaki

    2015-11-01

    There are various antioxidant materials that scavenge free radicals in human plasma. It is possible that the radical-scavenging function causes a radiation protective effect in humans. This study estimated the hydroxyl (OH) radical-scavenging activity induced by X-ray irradiation in human plasma. The test subjects included 111 volunteers (75 males and 36 females) ranging from 22 to 35 years old (average, 24.0). OH radicals generated in irradiated human plasma were measured by electron spin resonance (ESR). The relationships between the amount of the OH radical and chemical and biological parameters [total protein, total cholesterol, triglycerides and hepatitis B surface (HBs) antibodies] were estimated in the plasma of the 111 volunteers by a multivariate analysis. The presence of HBs antibodies had the greatest influence on OH radical-scavenging activity. One volunteer who did not have the HBs antibody was given an inoculation of the hepatitis B vaccine. There was a remarkable decrease in the amount of OH radical generated from plasma after the HBs antibody was produced. The results indicate that the HBs antibody is an important factor for the scavenging of OH radicals initiated by X-ray irradiation in the human body.

  5. High-efficiency fast scintillators for "optical" soft x-ray arrays for laboratory plasma diagnostics.

    Science.gov (United States)

    Delgado-Aparicio, L F; Stutman, D; Tritz, K; Vero, R; Finkenthal, M; Suliman, G; Kaita, R; Majeski, R; Stratton, B; Roquemore, L; Tarrio, C

    2007-08-20

    Scintillator-based "optical" soft x-ray (OSXR) arrays have been investigated as a replacement for the conventional silicon (Si)-based diode arrays used for imaging, tomographic reconstruction, magnetohydrodynamics, transport, and turbulence studies in magnetically confined fusion plasma research. An experimental survey among several scintillator candidates was performed, measuring the relative and absolute conversion efficiencies of soft x rays to visible light. Further investigations took into account glass and fiber-optic face-plates (FOPs) as substrates, and a thin aluminum foil (150 nm) to reflect the visible light emitted by the scintillator back to the optical detector. Columnar (crystal growth) thallium-doped cesium iodide (CsI:Tl) deposited on an FOP, was found to be the best candidate for the previously mentioned plasma diagnostics. Its luminescence decay time of the order of approximately 1-10 micros is thus suitable for the 10 micros time resolution required for the development of scintillator-based SXR plasma diagnostics. A prototype eight channel OSXR array using CsI:Tl was designed, built, and compared to an absolute extreme ultraviolet diode counterpart: its operation on the National Spherical Torus Experiment showed a lower level of induced noise relative to the Si-based diode arrays, especially during neutral beam injection heated plasma discharges. The OSXR concept can also be implemented in less harsh environments for basic spectroscopic laboratory plasma diagnostics.

  6. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    Science.gov (United States)

    Holman, Gordon D.

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  7. Control of the Soft X-ray Polychromator on the Solar Maximum Mission Satellite

    Science.gov (United States)

    Springer, L. A.; Levay, M.; Gilbreth, C. W.; Finch, M. L.; Bentley, R. D.; Firth, J. G.

    1981-01-01

    The Soft X-ray Polychromator on the Solar Maximum Mission Satellite consists of two largely independent instruments: the Flat Crystal Spectrometer, a highly collimated scanning spectrometer mounted on a raster platform, and the Bent Crystal Spectrometer, a broadly collimated spectrometer providing high time-resolution (128 ms) spectra for the study of rapidly evolving phenomena. Each instrument is controlled by a microcomputer system built around an RCA 1802 microprocessor. This paper presents a discussion of the motivation for using a microprocessor in this application, and the design concepts that were implemented. The effectiveness of the approach as seen after several months of operation will also be discussed.

  8. Solar X-ray Spectrometer (SOXS) Mission – Low Energy Payload – First Results

    Indian Academy of Sciences (India)

    Rajmal Jain; Vishal Joshi; S. L. Kayasth; Hemant Dave; M. R. Deshpande

    2006-06-01

    We present the first results from the ‘Low Energy Detector’ payload of ‘Solar X-ray Spectrometer (SOXS)’ mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and fabricated by Physical Research Laboratory (PRL) in collaboration with Space Application Centre (SAC), Ahmedabad and ISRO Satellite Centre (ISAC), Bangalore of the Indian Space Research Organization (ISRO). The SLD payload employs the state-of-the-art solid state detectors viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (-20° C). The dynamic energy range of Si PIN and CZT detectors are 4–25 keV and 4–56 keV respectively. The Si PIN provides sub-keV energy resolution while CZT reveals ∼ 1.7 keV energy resolution throughout the dynamic range. The high sensitivity and sub-keV energy resolution of Si PIN detector allows the measuring of the intensity, peak energy and equivalent width of the Fe-line complex at approximately 6.7 keV as a function of time in all 8 M-class flares studied in this investigation. The peak energy () of Fe-line feature varies between 6.4 and 6.8 keV with increase in temperature from 9 to 34 MK. We found that the equivalent width () of Fe-line feature increases exponentially with temperature up to 20 MK but later it increases very slowly up to 28 MK and then it remains uniform around 1.55 keV up to 34 MK. We compare our measurements of with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both and with temperature as the changes in the ionization and recombination conditions in the plasma during the flare interval and as a consequence the contribution from different ionic emission lines also varies.

  9. Solar X-ray Emission Measured by the Vernov Mission During September - October of 2014

    Science.gov (United States)

    Myagkova, I. N.; Bogomolov, A. V.; Kashapova, L. K.; Bogomolov, V. V.; Svertilov, S. I.; Panasyuk, M. I.; Kuznetsova, E. A.; Rozhkov, G. V.

    2016-11-01

    Solar hard X-ray and γ-ray emissions were measured by the Detector of the Roentgen and Gamma-ray Emissions (DRGE) instrument, which is part of the RELEC set of instruments operated onboard the Russian satellite Vernov, from July 8, 2014 until December 10, 2014 (on a solar-synchronous orbit with an apogee of 830 km, perigee of 640 km, and an inclination of 98.4°). RELEC measurements of 18 flares with X-ray energy {>} 30 keV, taken in September - October 2014, were connected with the same active region with the number AR 12172 during the first rotation and AR 12192 during the next one. These measurements were compared to the data obtained with RHESSI, Konus-Wind, Fermi Observatory, Radio Solar Telescope Net (RSTN), and the Nobeyama Radioheliograph (NoRH) operating at the same time. Quasi-periodicities with similar periods of 7±2 s were found in about one third of all flares measured by RELEC ( Vernov) from September 24 until October 30, 2014.

  10. Solar Flare X-ray Source Motion as a Response to Electron Spectral Hardening

    CERN Document Server

    O'Flannagain, A; Brown, J; Milligan, R; Holman, G

    2013-01-01

    Context: Solar flare hard X-rays (HXRs) are thought to be produced by nonthermal coronal electrons stopping in the chromosphere, or remaining trapped in the corona. The collisional thick target model (CTTM) predicts that sources produced by harder power-law injection spectra should appear further down the legs or footpoints of a flare loop. Therefore, hardening of the injected power-law electron spectrum during flare onset should be concurrent with a descending hard X-ray source. Aims: To test this implication of the CTTM by comparing its predicted HXR source locations with those derived from observations of a solar flare which exhibits a nonthermally-dominated spectrum before the peak in HXRs, known as an early impulsive event. Methods: HXR images and spectra of an early impulsive C-class flare were obtained using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Images were reconstructed to produce HXR source height evolutions for three energy bands. Spatially-integrated spectral analysis was perf...

  11. Observations of solar X-ray and EUV jets and their related phenomena

    CERN Document Server

    Innes, Davina; Guo, Li-Jia; Nitte, Nariaka

    2016-01-01

    Solar jets are fast-moving, elongated brightenings related to ejections seen in both images and spectra on all scales from barely visible chromospheric jets to coronal jets extending up to a few solar radii. The largest, most powerful jets are the source of type III radio bursts, energetic electrons and ions with greatly enhanced $^3$He and heavy element abundances. The frequent coronal jets from polar and equatorial coronal holes may contribute to the solar wind. The primary acceleration mechanism for all jets is believed to be release of magnetic stress via reconnection; however the energy buildup depends on the jets' source environment. In this review, we discuss how certain features of X-ray and EUV jets, such as their repetition rate and association with radio emission, depends on their underlying photospheric field configurations (active regions, polar and equatorial coronal holes, and quiet Sun).

  12. The X-ray emission of solar flares generated by anisotropic electron beams

    Science.gov (United States)

    Bogovalov, S. V.; Kelner, S. R.; Kotov, Y. D.

    1987-12-01

    For three types of the initial angle distribution of fast electrons, energy spectra, directivity, and polarization of the bremsstrahlung have been computed with an account for multiple scattering and energy losses. The influence of Compton scattering and of photoabsorption on the observed hard X-ray emission of solar flares has been investigated. It is obtained that the photon spectrum index depends not only on the spectrum of electrons but also on the registered energy range and on the angle of view of the flare. In the 10 - 40 keV range the spectrum is softer at the limb than in the solar disc centre; in the 60 - 360 keV the situation is reverse, the spectrum being softer in the solar disc centre.

  13. Design of solar cell materials via soft X-ray spectroscopy

    DEFF Research Database (Denmark)

    Himpsel, F.J.; Cook, P.L.; de la Torre, G.

    2013-01-01

    to an oxide acceptor. The bridge to device fabrication is crossed by correlating spectroscopic features with the photocurrent in hematite photoanodes for water splitting. For speeding up the development of new materials and designs of solar cells a feedback loop between spectroscopy, theory, synthesis......This overview illustrates how spectroscopy with soft X-rays can assist the development of new materials and new designs for solar cells. The starting point is the general layout of a solar cell, which consists of a light absorber sandwiched between an electron donor and an electron acceptor......) as a function of the metal atom are presented for the metal 2p and N 1s absorption edges. In combination with density functional theory one can discern trends that are useful for tailoring absorber molecules. A customized porphyrin molecule is investigated that combines an absorber with a donor and a linker...

  14. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: spectrometer characterization techniques, spectrometer capabilities, and solar science objectives

    Science.gov (United States)

    Moore, Christopher S.; Woods, Thomas N.; Caspi, Amir; Mason, James P.

    2016-07-01

    The Miniature X-ray Solar Spectrometer (MinXSS) are twin 3U CubeSats. The first of the twin CubeSats (MinXSS-1) launched in December 2015 to the International Space Station for deployment in mid-2016. Both MinXSS CubeSats utilize a commercial off the shelf (COTS) X-ray spectrometer from Amptek to measure the solar irradiance from 0.5 to 30 keV with a nominal 0.15 keV FWHM spectral resolution at 5.9 keV, and a LASP-developed X-ray broadband photometer with similar spectral sensitivity. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. The majority of previous solar soft X-ray measurements have been either at high spectral resolution with a narrow bandpass or spectrally integrating (broadband) photometers. MinXSS will conduct unique soft X-ray measurements with moderate spectral resolution over a relatively large energy range to study solar active region evolution, solar flares, and the effects of solar soft X-ray emission on Earth's ionosphere. This paper focuses on the X-ray spectrometer instrument characterization techniques involving radioactive X-ray sources and the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF). Spectrometer spectral response, spectral resolution, response linearity are discussed as well as future solar science objectives.

  15. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  16. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Science.gov (United States)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  17. Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, R.; Takahashi, K.; Tanaka, K.A.; Kato, Y. [Institute of Laser Engineering (ILE), Osaka University, Suita, Osaka 565 (Japan); Murai, K. [DMP, ONRI, Ikeda, Osaka 563 (Japan); Weber, F.; Barbee, T.W.; DaSilva, L.B. [Lawrence Livermore National Laboratory, University of California, Livermore, California 94550 (United States)

    1999-01-01

    We developed a 19.6 nm laser x-ray laser grid-image refractometer (XRL-GIR) to diagnose laser-hole boring into overdense plasmas. The XRL-GIR was optimized to measure two-dimensional electron density perturbation on a scale of a few tens of {mu}m in underdense plasmas. Electron density profiles of laser-produced plasmas were obtained for 10{sup 20}{endash}10{sup 22}thinspcm{sup {minus}3} with the XRL-GIR and for 10{sup 19}{endash}10{sup 20}thinspcm{sup {minus}3} from an ultraviolet interferometer, the profiles of which were compared with those from hydrodynamic simulation. By using this XRL-GIR, we directly observed laser channeling into overdense plasmas accompanied by a bow shock wave showing a Mach cone ascribed to supersonic propagation of the channel front. {copyright} {ital 1999 American Institute of Physics.}

  18. Effects of plasma radiation on wound healing compared with X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Azorin V, E.; Pena E, R. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Azorin V, J. C., E-mail: erica.azorin@inin.gob.mx [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Blvd. Prol. Calz. de los Heroes No. 908, Col. La Martinica, Leon, Guanajuato (Mexico)

    2015-10-15

    Full text: The radiation emitted by the plasma needle has shown high efficiency in the inactivation of microorganisms and the acceleration of the healing process; apparently such effects are related to the antioxidant activity, induction of cell damage and the generation of free radicals. To take advantage of plasma clinical applications it is essential to understand the cellular mechanisms activated by the exposure of human cells to radiation emitted by cold plasma. In this work we present the results of the characterization of the responses of human skin fibroblasts exposed to the radiation emitted by a plasma by varying the magnitude of flow, electrical power, time and composition of the cell culture medium comparing it with the response of these fibroblasts to low energy X-rays. (Author)

  19. Kilohertz sources of hard x rays and fast ions with femtosecond laser plasmas

    Science.gov (United States)

    Thoss, A.; Richardson, M.; Korn, G.; Faubel, M.; Stiel, H.; Vogt, U.; Elsaesser, T.

    2003-01-01

    We demonstrate a new, stable, kilohertz femtosecond laser plasma source of hard-x-ray continuum and Kα emission that uses a microscopic liquid jet target that is continuous and debris free. Plasmas produced by ultrashort (50-fs) intense laser pulses from a fine (10-30-μm diameter) liquid Ga jet emit bright 9.3- and 10.3-keV Kα and Kβ lines superimposed on a multikilovolt bremmstrahlung continuum. Kilohertz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high-intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot to shot and debris free. Our target provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We show the hard-x-ray spectrum described above. The source was generated by a 50-fs-duration, 1-kHz, 2-W, high-intensity Ti:sapphire laser. Using the same technology, we also generate forward-going sub-mega-electron-volt (sub-MeV) protons from a 10-μm liquid water target at 1-kHz repetition rates. Kilohertz sources of high-energy ions will find many applications in time-resolved particle interaction studies and will lead to efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors in both the forward and the backward directions up to energies of ~500 keV. As the intensity of compact high-repetition-rate lasers sources increases, we can expect improvements in the energy, conversion efficiency, and directionality to occur. The effect of these developments is discussed. As compact, high-repetition-rate femtosecond laser technology reaches focused intensities of ~1019 W/cm2, many new applications of high-repetition-rate hard-x-ray and MeV ion sources will become practical.

  20. An X-ray Imaging System for Hard-to-Reach Facility Diagnosis Using Femtosecond Laser-Plasma

    Science.gov (United States)

    Oishi, Yuji; Nayuki, Takuya; Nakajima, Chikahito; Fujii, Takashi; Zhidkov, Alexei; Nemoto, Koshichi

    2010-04-01

    For hard-to-reach facility diagnosis, a radiographic testing system that consists of a compact laser-plasma X-ray (LPX) generator and a compact X-ray imaging sensor is shown to be competitive to that based on the isotope imaging. A 1-mm-thick CsI charge-coupled device (CCD) sensor supplied with a cooling system was developed to tolerate a long X-ray exposition. Even without optimization of X-ray yield from a Ta thin film irradiated by 230 mJ, 70 fs laser pulses, clear X-ray images of a SUS304 pipe (outer diameter 34 mm with 4.5 mm thickness) with an elbow were produced.

  1. The Chandra X-ray Observatory is prepped for solar panel deployment copy form; photos beginning with

    Science.gov (United States)

    1999-01-01

    TRW workers in the Vertical Processing Facility check equipment after deployment of the solar panel array above them, attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93.

  2. X-ray Probes of Magnetospheric Interactions with Jupiter's Auroral zones, the Galilean Satellites, and the Io Plasma Torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  3. Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures

    Science.gov (United States)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.

    2015-10-01

    The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  4. Performance Optimization of a High-Repetition-Rate KrF Laser Plasma X-Ray Source for Microlithography.

    Science.gov (United States)

    Bukerk, F; Louis, E; Turcu, E C; Tallents, G J; Batani, D

    1992-01-01

    In order to develop a high-intensity laser plasma x-ray source appropriate for industrial application of x-ray lithography, experiments have been carried out using a high-repetition-rate (up to 40 Hz) excimer laser (249 nm, 300 mJ) with a power density of 2 × 1013 W/ cm2 in the laser focus. In this study emphasis is given to remedying specific problems inherent in operating the laser plasma x-ray source at high repetition rates and in its prolonged operation. Two different methods of minimizing the production of target debris are investigated. First, the use of helium as a quenching gas results in a reduction of the amount of atomic debris particles by more than two orders of magnitude with negligible x-ray absorption. Second, a tape target as opposed to a solid target reduces the production of larger debris particles by a further factor of 100. Remaining debris is stopped by an aluminized plastic or beryllium filter used to avoid exposure of the resist by plasma ultraviolet radiation. The x-ray source has been used to image x-ray transmission mask structures down to 0.3 μm onto general purpose x-ray photo-resist. Results have been analyzed with SEM. The x-ray emission spectrum of the repetitive laser plasmas created from an iron target has been recorded and the conversion efficiency of the laser light into x-rays that contribute to exposure of the resist was measured to be 0.3% over 2π sr.

  5. The Focusing Optics X-ray Solar Imager Small Explorer Concept Mission

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Dennis, Brian R.; Glesener, Lindsay; Krucker, Sam; Saint-Hilaire, Pascal; Gubarev, Mikhail; Ramsey, Brian

    2016-05-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics combined withpixelated solid-state detectors, allowing for direct imaging of solar X-rays. The current design being studied features multiple telescopes with a 14 meter focal length enabled by a deployable boom.FOXSI will observe the Sun in the 3-100 keV energy range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution. FOXSI is a direct imaging spectrometer with high dynamic range and sensitivity and will provide a brand-new perspective on energy release on the Sun. We describe the mission and its science objectives.

  6. HEXITEC: A next generation hard X-ray Detector for Solar Observations

    Science.gov (United States)

    Panessa, M.; Christe, S.; Shih, A.; Gaskin, J.; Wilson, M. D.; Seller, P.; Baumgartner, W.; Inglis, A. R.

    2015-12-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Recent developments at the Rutherford Appleton Laboratory (RAL) have resulted in a new hard X-ray (HXR) detector system with the smallest independent pixels currently available, 250 microns. This matches perfectly with the best angular resolution currently achievable by HXR focusing optics which is about 5 arcsec (FWHM). For a SMEX mission with a 15 meter focal length each pixel would cover an angular size of about 3 arcsec thereby subsampling the PSF. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) which provide high efficiency in the HXR region, good energy resolution, low background, low power, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. This ASIC can read each pixel 10,000 times per second. The NASA Marshall Space Flight Center (MSFC) and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present recent progress on this development effort and its capabilities as applied to solar observations.

  7. Recent Developments in Transition-Edge Strip Detectors for Solar X-Rays

    Science.gov (United States)

    Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.

    2008-01-01

    LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ delta E approximately equals 1600) and temporal (single photon delta t approximately equals 10 micro s) resolutions with imaging capabilities, these devices will be able to study high-temperature (>l0 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of delta E(sub fwhm) approximately equals 30 eV and spatial resolutions of approximately 10-15 micron, suggesting the strip-detector concept is viable.

  8. Parameterization of x-ray production in laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Peek, J.M.

    1980-10-01

    A simple and algebraically tractable model is developed for the efficiency of x-ray production in a certain spectral region by laser driven plasmas. The model is used as a interpolation/extrapolation device for experimental and theoretical results from three different target concepts. These tests indicate that it is of use in its intended capacity. Certain relationships between independent parameters and scaling laws also result from this construction. Most notable among these is the prediction that the efficiency for producing line radiation in a certain narrow energy range scales like the inverse square of this energy.

  9. Conversion Efficiency of Kilovolt X- Ray Line Emission in Laser-heated NaF Plasma

    Institute of Scientific and Technical Information of China (English)

    孔令华; 淳于书泰; 何绍堂; 陈涵德; 杨向东; 李孝昌; 王永国

    1994-01-01

    This paper reports the theoretical and experimental work on converting focused Nd-glass laser radiation of LI-11 facility into kilovolt X-ray line emission in laser-heated NaF plasma.This conversion efficiency ε turns out to he in the range from 0.2% to 1% for the laser (λ=1.06μm) power density changing from 10×1013 to 3.5×1013 W/cm2 The relationship between ε and λ has also been discussed.Simultaneously,theoretical results are compared with the experimental.

  10. Research on soft x-rays in high-current plasma-focus discharges and estimation of plasma electron temperature

    Science.gov (United States)

    Skladnik-Sadowska, E.; Zaloga, D.; Sadowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Miklaszewski, R.; Paduch, M.; Surala, W.; Zielinska, E.; Tomaszewski, K.

    2016-09-01

    The paper presents results of experimental studies of dense and high-temperature plasmas, which were produced by pulsed high-current discharges within a modernised PF-1000U facility operated at different initial gas conditions, and supplied from a condenser bank which delivered energy of about 350 kJ. The investigated discharges were performed at the initial deuterium filling under pressure of 1.6-2.0 hPa, with or without an additional puffing of pure deuterium (1 cm3, under pressure 0.15 MPa, at instants 1.5-2 ms before the main discharge initiation). For a comparison discharges were also performed at the initial neon filling under pressure of 1.1-1.3 hPa, with or without the addition of deuterium puffing. The recorded discharge current waveforms, laser interferometric images, signals of hard x-rays and fusion neutrons, as well as time-integrated x-ray pinhole images and time-resolved x-ray signals were compared. From a ratio of the x-ray signals recorded behind beryllium filters of different thickness there were estimated values of a plasma electron temperature (T e) in a region at the electrode outlets. For pure deuterium discharges an averaged T e value amounted to 150-170 eV, while for neon discharges with the deuterium puffing it reached 330-880 eV (with accuracy of  ±20%).

  11. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, Nicholas Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, John Oliver [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coleman, Joshua Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.

  12. High-resolution X-ray focusing concave (elliptical) curved crystal spectrograph for laser-produced plasma

    Institute of Scientific and Technical Information of China (English)

    Shali xiao(肖沙里); Yingjun Pan(潘英俊); Xianxin Zhong(钟先信); Xiancai Xiong(熊先才); Guohong Yang(杨国洪); Zongli Liu(刘宗礼); Yongkun Ding(丁永坤)

    2004-01-01

    The X-ray spectrum emitted from laser-produced plasma contains plentiful information.X-ray spectrometer is a powerful tool for plasma diagnosis and studying the information and evolution of the plasma.X-ray concave(elliptical)curved crystals analyzer was designed and manufactured to investigate the properties of laser-produced plasma.The experiment was carried out on Mianyang Xingguang-ⅡFacility and aimed at investigating the characteristics of a high density iron plasma.Experimental results using KAP,LIF,PET,and MICA curved crystal analyzers are described,and the spectra of Au,Ti laser-produced plasma are shown.The focusing crystal analyzer clearly gave an increase in sensitivity over a flat crystal.

  13. Laser-Hole Boring into Overdense Plasmas Measured with Soft X-Ray Laser Probing

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Kodama, R. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Tanaka, K. A. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Hashimoto, H. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Kato, Y. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Mima, K. [Institute of Laser Engineering, Osaka University, Yamada Oka 2-6, Suita, Osaka 565-0871, (Japan); Weber, F. A. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Barbee, T. W. Jr. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Da Silva, L. B. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2000-03-13

    A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 {mu}m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10{sup 17} W /cm{sup 2} . Cross sections of the channel were obtained which show a 30 {mu}m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front. (c) 2000 The American Physical Society.

  14. Photon Temperatures of Hard X-Ray Emission of LHCD Plasmas in HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    Jawad YOUNIS; WAN Baonian; CHEN Zhongyong; LIN Shiyao; SHI Yuejiang; SHAN Jiafang; LIU Fukun

    2008-01-01

    A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented.The photon temperature increases with the increase in plasma current and decreases with the increase in plasma density.In lower hybrid power and phase scanning experiments;there is no appreciable change in the photon temperature.The numerical results based on ray-tracing calculation and Fokker-Planck solver gives reasonable explanation for the experimental observation.Both experimental and numerical results reveal that the photon temperature depends mainly on global effects of the fast electron population,synergy between the fast electron and the loop voltage and the Coulomb slowing down.

  15. X-Ray Diffraction Analysis of Bottom Ash Waste after Plasma Treatment

    Science.gov (United States)

    Volokitin, G.; Abzaev, Yu; Skripnikova, N.; Volokitin, O.; Shekhovtsov, V.

    2017-04-01

    The paper deals with the plasma-chemical synthesis of melts produced from the bottom ash waste for the production of new construction materials with enhanced performance characteristics. Phase composition of the plasma-treated bottom ash waste is detected by the X-ray diffraction analysis. The bottom ash waste is a mixture of SiO2 minerals. The structure and phase composition of this mixture are investigated after the plasma treatment. The obtained results are compared with the original state of the mixture. The identification and the qualitative content of ash waste as a multi-phase system are complicated by the overlapped reflections and a possible existence of the intermediate amorphous phase.

  16. Probing electron acceleration and X-ray emission in laser-plasma accelerator

    CERN Document Server

    Thaury, C; Corde, S; Brijesh, P; Lambert, G; Mangles, S P D; Bloom, M S; Kneip, S; Malka, V

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam is focused in the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  17. Active Detectors for Plasma Soft X-Ray Detection at PALS

    Directory of Open Access Journals (Sweden)

    C. Granja

    2010-01-01

    Full Text Available This paper summarizes the work carried out for an experimental study of low-energy nuclear excitation by laser-produced plasma at the PALS Prague laser facility. We describe the adaptation and shielding of single-quantum active radiation detectors developed at IEAP CTU Prague to facilitate their operation inside the laser interaction chamber in the vicinity of the plasma target. The goal of this effort is direct real-time single-quantum detection of plasma soft X-ray radiation with energy above a few keV and subsequent identification of the decay of the excited nuclear states via low-energy gamma rays in a highly radiative environment with strong electromagnetic interference.

  18. Measurements of X-ray spectral opacity of dense plasma at Iskra-5 laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Annenkov, V.I.; Bel' kov, S.A.; Bessarab, A.V.; Bondarenko, S.V.; Garanin, R.V.; Kochemasov, G.G.; Kovalenko, V.P.; Pinegin, A.V.; Suslov, N.A.; Zhidkov, N.V. [Russian Federal Nuclear Centre - VNIIEF, Sarov (Russian Federation)

    2006-06-15

    The powerful iodine ISKRA-5 laser facility has been upgraded and now operates on the second harmonic. Experiments were performed to measure the X-ray spectral opacity of dense plasma of different materials. Sample of Al and Au material under study was fabricated as a thin plate with the 0.1-0.15 {mu}m thickness and was heated by the soft X-rays generated by irradiation of a thin film gold converter by one beam of the ISKRA-5 laser facility. Typical laser intensity on the converter was (1-5).10{sup 13} W/cm{sup 2} and laser pulse duration was 0.5-0.6 ns. The effective temperature of sample under experimental conditions did not exceed 30-40 eV. The sample was tempered by about 1 {mu}m plastic layers on both sides to avoid its rarefaction during heating and to obtain a quasi-stationary layer of a dense plasma prepared to be probed by a back-lighter. The back-lighter was aluminum or dysprosium film irradiated by another beam of the ISKRA-5 laser facility with an intensity of 10{sup 14}-10{sup 15} W/cm{sup 2}. Probe X-rays were registered by a Bragg spectrometer with spatial resolution. Comparison between experimental data and simulations is discussed. In the case of Al sample, 3 absorption lines corresponding to 1s-2p transition of the Al{sup +4}-Al{sup +6} ions are recorded. The absorption of the Au sample is very close to the absorption of the cold material. The theoretical simulations show that the temperature of the heated Al sample is about 20-25 eV, substantial amount of the Au sample remains unheated at a solid density.

  19. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep

    2017-08-01

    We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.

  20. THE BURSTY NATURE OF SOLAR FLARE X-RAY EMISSION. II. THE NEUPERT EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    McAteer, R. T. James [Department of Astronomy, New Mexico State University, MSC 4500, NM 88003-8001 (United States); Bloomfield, D. Shaun, E-mail: mcateer@nmsu.edu [Astrophysics Research Group, School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland)

    2013-10-20

    We carry out a novel statistical test of the Neupert effect based on multifractal spectra. The multifractal spectrum is the number distribution of the strengths (i.e., the Hölder exponents) of bursts in a signal. This is tested on simulations and carried out on RHESSI X-ray data from a well observed GOES X4.8 magnitude flare. The multifractal spectra is ideally suited to quantifying the relative smooth and bursty signals typically found in (thermal) soft X-ray and (non-thermal) hard X-ray data of solar flares. We show that light curves from all energies between 3 keV and 25 keV are statistically similar, suggesting that all these signals are dominated by the same (presumably thermal) emission. Emission lying between 25 keV and 100 keV probably contains some contribution from both thermal and non-thermal sources. The multifractal spectrum of a signal and that of its (cumulative) temporal integration are statistically similar (i.e., low residuals upon subtraction), but shifted by one in the peak Hölder exponent. We find the pairs of 3-6 keV and 100-300 keV emissions, the 6-12 keV and 100-300 keV emissions and the 12-25 keV and 100-300 keV emissions are all consistent with the Neupert effect. The best agreement with the Neupert effect is between the 12-25 keV and 100-300 keV pair, although possibly with some secondary source of thermal emission present.

  1. A study on the fusion reactor - Development of x-ray spectrometer for diagnosis of tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hong Young; Choi, Duk In; Seo, Sung Hun; Kwon, Gi Chung; Jun, Sang Jin; Heo, Sung Hoi; Lee, Chan Hui [Korea Advanced Institute of Science and Technolgoy, Taejon (Korea, Republic of)

    1996-09-01

    This report of research is on the development of X-ray Photo-Electron Spectrometer (PES) for diagnosis of tokamak plasma. The spectrometer utilizes the fact that the energy of photo-electron is given by the difference between the energy of X-ray and the binding energy of materials. In the research of this year, we constructed two spectrometers; one is operated in KAIST tokamak and the other in KT1 tokamak. In addition, we reviewed the characteristics of the x-ray filter, the photo-electric effect of carbon foils and the detection efficiency of MCP and x-ray radiation of plasma. We measured the x-ray radiation in tokamak and diagnosed the qualitative plasma parameters from the analysis of data. The major interesting plasma parameters, which we can diagnose with the spectrometer, are the electron temperature, Z{sub eff}, the spatial distribution of x-ray radiation and etc. 27 refs., 2 tabs., 20 figs. (author)

  2. Soft X-ray Emission Optimization Studies with Krypton and Xenon Gases in Plasma Focus Using Lee Model

    Science.gov (United States)

    Akel, Mohamad

    2013-10-01

    The X-ray emission properties of krypton and xenon plasmas are numerically investigated using corona plasma equilibrium model. Numerical experiments have been investigated on various low energy plasma focus devices with Kr and Xe filling gases using Lee model. The Lee model was applied to characterize and to find the optimum combination of soft X-ray yields (Ysxr) for krypton (~4 Å) and xenon (~3 Å) plasma focus. These combinations give Ysxr = 0.018 J for krypton, and Ysxr = 0.5 J for xenon. Scaling laws on Kr and Xe soft X-ray yields, in terms of storage energies E0, peak discharge current Ipeak and focus pinch current Ipinch were found over the range from 2.8 to 900 kJ. Soft X-ray yields scaling laws in terms of storage energies were found to be as and for Kr and Xe, respectively, (E0 in kJ and Ysxr in J) with the scaling showing gradual deterioration as E0 rises over the range. The maximum soft X-ray yields are found to be about 0.5 and 27 J from krypton and xenon, respectively, for storage energy of 900 kJ. The optimum efficiencies for soft X-ray yields (0.0002 % for Kr) and (0.0047 % for Xe) are with capacitor bank energies of 67.5 and 225 kJ, respectively.

  3. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ``X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers``

    Energy Technology Data Exchange (ETDEWEB)

    Wan, A.S.; Cauble, R.; Da Silva, L.B.; Libby, S.B.; Moreno, J.C.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate and benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.

  4. Experimental study of soft X-ray intensity with different anode tips in Amirkabir plasma focus device

    Indian Academy of Sciences (India)

    HABIBI MORTEZA; MAHTAB MAHSA

    2016-07-01

    To study the effect of different anode tip geometries on the intensity of soft X-rays emitted from a 4 kJ plasma focus device (PFD), we considered five different anode tips which were cylindrical-flat, cylindricalhollow, spherical-convex, cone-flat and cone-hollow tips. BPX-65 PIN diodes covered by four different filters are used to register the intensity of soft X-rays. The use of cone-flat anode tip has augmented the emitted X-ray three times compared to the conventional cylindrical-flat anode.

  5. X-ray measurements of MHD activity in shaped TCV plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Furno, I.; Weisen, H.; Moret, J.M.; Blanchard, P. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Anton, M. [Max Planck Inst. fuer Plasmaphysik, Garching (Germany)

    1997-06-01

    The ability of TCV to produce a wide variety of plasma shapes has allowed an investigation of MHD behaviour in a large number of limited ohmic L-mode discharges in which the elongation {kappa} and the triangularity {delta} have been varied over a wide range: {kappa} = 1.1 {yields} 2.5, {delta} = -0.3 {yields} 0.7. A 200 channel soft X-ray tomography system in conjunction with toroidal spaced soft X-ray diodes has been used to study the structure of internal disruptions and MHD modes. A strong reduction of sawtooth amplitude is observed as the plasma triangularity is decreased together with an increase in mode activity. The reduced sawtooth amplitudes are not correlated with any significant changes of the inversion radius and hence are not simply due to changes in current profiles; the inversion radius however is strongly correlated with the Spitzer conductivity profile and with the edge safety factor. (author) 5 figs., 4 refs.

  6. Through the X-ray looking glass, and what plasma physics found there

    Science.gov (United States)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Jones, Christine; Roediger, Elke

    2017-08-01

    How energy is transported and dissipated is the most fundamental process in the thermalization and evolution of galaxy clusters. At temperatures of 1--10 keV, intracluster medium (ICM) approximates a highly ionized plasma. Contemporary X-ray observations have revealed a wealth of substructures in the ICM, even in relatively relaxed clusters. Of particular interest is the ubiquitous presence of cold fronts, resulting from the shear interface between gaseous regions of different entropies. This configuration inevitably leads to the Kelvin-Helmholtz Instability (KHI), appearing as “horn” or “roll” features in X-ray images. Both viscosity and ordered magnetic field can suppress the growth of KHI. We present results of Chandra, XMM-Newton, and Suzaku observations of Fornax and Virgo. We probe the cluster plasma physics through the gas properties of the sloshing cold fronts, merging cold fronts, AGN bubbles, and gaseous stripped tails in these systems. We found that the ICM ought to be inviscous and we can put an upper limit on the intracluster magnetic field. Our results have also provided insights into the merging history of galaxy clusters, which have been reproduced in tailored simulations.

  7. Purification and preliminary X-ray crystallographic studies of β-microseminoprotein from human seminal plasma

    Science.gov (United States)

    Kumar, Vijay; Roske, Yvette; Singh, Nagendra; Heinemann, Udo; Singh, Tej P.; Yadav, Savita

    2009-01-01

    β-Microseminoprotein (β-MSP) is a small cysteine-rich protein with a molecular mass of 10 kDa. It was first isolated from human seminal plasma and has subsequently been identified from several species. Comparison of the amino-acid sequences of β-MSP proteins suggests that the protein is a rapidly evolving protein. The function of β-MSP is poorly understood. Furthermore, no crystal structure has been reported of any β-MSP; therefore, determination of the crystal structure of β-MSP is the foremost task in order to understand the function of this protein completely. Here, the purification, crystallization and preliminary X-ray diffraction analysis of β-MSP from human seminal plasma are described. The protein was purified using anion-exchange and size-exclusion chromatography and the purified protein was crystallized using 0.1 M ammonium sulfate, 0.1 M HEPES buffer pH 7.0 and 20%(w/v) PEG 3350. The crystals belonged to the tetragonal space group P4322 and contained three β-MSP molecules in the asymmetric unit. X-ray intensity data were collected to 2.4 Å resolution. PMID:19407392

  8. High-temperature differential emission measure and altitude variations in the temperature and density of solar flare coronal X-ray sources

    CERN Document Server

    Jeffrey, Natasha; Dennis, Brian

    2015-01-01

    The detailed knowledge of plasma heating and acceleration region properties presents a major observational challenge in solar flare physics. Using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the high temperature differential emission measure, DEM(T), and the energy-dependent spatial structure of solar flare coronal sources are studied quantitatively. The altitude of the coronal X-ray source is observed to increase with energy by ~+0.2 arcsec/keV between 10 and 25 keV. Although an isothermal model can fit the thermal X-ray spectrum observed by RHESSI, such a model cannot account for the changes in altitude, and multi-thermal coronal sources are required where the temperature increases with altitude. For the first time, we show how RHESSI imaging information can be used to constrain the DEM(T) of a flaring plasma. We develop a thermal bremsstrahlung X-ray emission model with inhomogeneous temperature and density distributions to simultaneously reproduce: i) DEM(T), ii) altitude as a function of ...

  9. Data Mining Solar X-Ray Flares Triggered by Emerging Magnetic Flux

    Science.gov (United States)

    Loftus, Kaitlyn; Saar, Steven H.; Schanche, Nicole

    2017-01-01

    We investigate the association between emerging magnetic flux and solar X-ray flares to identify, and if possible quantify, distinguishing physical properties of flares triggered by flux emergence versus those triggered by other sources. Our study uses as its basis GOES-classified solar flares from March 2011 through June 2016 that have been identified by the Space Weather Prediction Center’s flare detection algorithm. The basic X-ray flare data is then enriched with data about related EUV-spectrum flares, emerging fluxes, active regions, eruptions, and sigmoids, which are all characterized by event-specific keywords, identified via SDO feature finding tools, and archived in the Heliophysics Events Knowledgebase (HEK). Using appropriate spatial and temporal parameters for each event type to determine association, we create a catalogue of solar events associated with each GOES-classified flare. After accounting for the primitive state of many of these event detection algorithms, we statistically analyze the compiled dataset to determine the effects of an emerging flux trigger on flare properties. A two-sample Kolmogorov-Smirnov test confirms with 99.9% confidence that flares triggered by emerging flux have a different peak flux distribution than non-emerging-flux-associated flares. We observe no linear or logarithmic correlations between flares’ and their associated emerging fluxes’ individual properties and find flares triggered by emerging flux are ~ 10% more likely to cause an eruption inside an active region while outside of an active region, the flare’s association with emerging flux has no effect on its likeliness to cause an eruption. We also compare the morphologies of the flares triggered by emerging flux and flares not via a superposed epoch analysis of lightcurves. Our results will be of interest for predicting flare behavior as a function of magnetic activity (where we can use enhanced rates of emerging flux as a proxy for heightened stellar

  10. Optimization of X-Ray-Emission from a Laser-Produced Plasma in a Narrow Wavelength Band

    NARCIS (Netherlands)

    van Dorssen, G. E.; E. Louis,; F. Bijkerk,

    1992-01-01

    The X-ray emission from laser-produced plasmas at an X-ray wavelength of approximately 10.4 nm was measured for Al and Gd target materials. The laser power density on the target surface was varied between 1.5 x 10(10) and 3 x 10(12) W/cm2 to obtain different electron temperatures. The output from th

  11. Morphology and Spectral Behavior of Solar Hard X-Ray Sources

    Directory of Open Access Journals (Sweden)

    F. C. R. Fernandes

    2002-01-01

    Full Text Available Las imágenes de 17 fulguraciones solares, correspondiendo a 61 explosiones de rayos-X observados en cuatro rangos de energía (14-23, 23-33, 33-53 y 53-93 keV por el experimento Hard X-Ray Telescope (HXT a bordo del satélite Yohkoh, han sido investigadas. Las imágenes sugieren que el tamaño de las fuentes de rayos-X duros es del orden de 20 segundos de arco y que existen 3 tipos: fuentes individuales simples (30%, fuentes dobles (41%, con separación mínima típica de 30{40 segundos de arco y fuentes múltiples (29%. Hemos ajustado un único espectro de potencia para las emisiones de rayos-X en el rango de 20{830 keV utilizando datos del experimento Hard X-Ray Spectrometer (HXS. La evolución temporal del espectro de estas explosiones también fue estudiada. El comportamiento típico del índice es "blando-duro-blando".

  12. Comparison of Damped Oscillations in Solar and Stellar X-Ray flares

    Science.gov (United States)

    Cho, I.-H.; Cho, K.-S.; Nakariakov, V. M.; Kim, S.; Kumar, P.

    2016-10-01

    We explore the similarity and difference of the quasi-periodic pulsations (QPPs) observed in the decay phase of solar and stellar flares at X-rays. We identified 42 solar flares with pronounced QPPs, observed with RHESSI, and 36 stellar flares with QPPs, observed with XMM-Newton. The empirical mode decomposition (EMD) method and least-squares fit by a damped sine function were applied to obtain the periods (P) and damping times (τ) of the QPPs. We found that (1) the periods and damping times of the stellar QPPs are 16.21 ± 15.86 minutes and 27.21 ± 28.73 minutes, while those of the solar QPPs are 0.90 ± 0.56 and 1.53 ± 1.10 minutes, respectively; (2) the ratios of the damping times to the periods (τ /P) observed in the stellar QPPs (1.69 ± 0.56) are statistically identical to those of solar QPPs (1.74 ± 0.77) and (3) the scalings of the QPP damping time with the period are well described by the power law in both solar and stellar cases. The power indices of the solar and stellar QPPs are 0.96 ± 0.10 and 0.98+/- 0.05, respectively. This scaling is consistent with the scalings found for standing slow magnetoacoustic and kink modes in solar coronal loops. Thus, we propose that the underlying mechanism responsible for the stellar QPPs is the natural magnetohydrodynamic oscillation in the flaring or adjacent coronal loops, as in the case of solar flares.

  13. Resonant K-alpha spectroscopy of a hot dense plasma created by the LCLS x-ray free electron laser

    Science.gov (United States)

    Cho, Byoung-Ick; Engelhorn, K.; Falcone, R. W.; Heimann, P. A.; Vinko, S. M.; Ciricosta, O.; Higginbotham, A.; Murphy, C.; Wark, J. S.; Chung, H.-K.; Brown, C. R. D.; Burian, T.; Vysin, L.; Juha, L.; Lee, H. J.; Messersmidt, M.; Schlotter, W.; Turner, J.; Nagler, B.; Ping, Y.; Lee, R. W.; Toleikis, S.; Zastrau, U.

    2011-10-01

    We present one of the first experimental studies of the interaction of high intensity x-ray free electron laser radiation with solid density matter. In the experiment performed at the LCLS, an intense 80 fs x-ray pulse at 1017 Wcm-2 with photon energies of 1480 ~ 1560 eV is focused on a thin Al foil and K-alpha emission spectra are observed. Although x-ray photon energy is lower than the absorption edge, because of its high intensity the sample is surprisingly heated up to 100 ~200 eV in the pulse duration and a hot dense plasma is created. Observed x-ray spectra indicate this dense plasma resonantly interacts with the x-ray photons. The emission spectra are also simulated using the collisional-radiative code, SCFLY which provides information about the electron temperature and density, the charge state distribution and opacity. The comparison of experiment and simulation provides a detailed description of a dense plasma resonantly interacting with an intense x-ray pulse.

  14. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    CERN Document Server

    Luo, Ji; Zeng, Ming; Vieira, Jorge; Yu, Lu-Le; Weng, Su-Ming; Silva, Luis O; Jaroszynski, Dino A; Sheng, Zheng-Ming; Zhang, Jie

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because their accelerating gradients are three orders of magnitude larger than traditional accelerators. However, X-ray radiation from such devices still lacks of tunability, especially the intensity and polarization distribution. Here we propose a tunable polarized radiation source from a helical plasma undulator based on plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of $2\\times10^{19} photons/s/mm^{2}/mrad^{2}/0.1%$ bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with the ...

  15. X-ray spectra of high temperature tungsten plasma calculated with collisional radiative model

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Zhang Hong; Cheng Xin-Lu

    2013-01-01

    Tungsten is regarded as an important candidate of plasma facing material in international thermonuclear experimental reactor (ITER),so the determination and modeling of spectra of tungsten plasma,especially the spectra at high temperature were intensely focused on recently.In this work,using the atomic structure code of Cowan,a collisional radiative model (CRM) based on the spin-orbit-split-arrays is developed.Based on this model,the charge state distribution of tungsten ions is determined and the soft X-ray spectra from high charged ions of tungsten at different temperatures are calculated.The results show that both the average ionization charge and line positions are well agreed with others calculations and measurements with discrepancies of less than 0.63% and 1.26%,respectively.The spectra at higher temperatures are also reported and the relationship between ion abundance and temperature is predicted in this work.

  16. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  17. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Science.gov (United States)

    Hara, Hiroyuki; Ohashi, Hayato; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Suzuki, Chihiro; Tamura, Naoki; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Higashiguchi, Takeshi; LHD Experiment Group

    2017-08-01

    The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA) emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5-7.5) × 1013 cm-3. The UTA spectral structure was due to emission from 4d-4f transitions in highly charged ions with average charge states of q = 20-40. A numerical simulation successfully reproduced the observed spectral behavior.

  18. Impulsive solar X-ray bursts. 4: Polarization, directivity and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    Science.gov (United States)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.

  19. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    Science.gov (United States)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  20. Solar Impulsive Hard X-Ray Emission and Two-Stage Electron Acceleration

    Institute of Scientific and Technical Information of China (English)

    Tian-Xi Zhang; Arjun Tan; Shi Tsan Wu

    2006-01-01

    Heating and acceleration of electrons in solar impulsive hard X-ray (HXR) flares are studied according to the two-stage acceleration model developed by Zhang for solar 3Herich events. It is shown that electrostatic H-cyclotron waves can be excited at a parallel phase velocity less than about the electron thermal velocity and thus can significantly heat the electrons (up to 40 MK) through Landau resonance. The preheated electrons with velocities above a threshold are further accelerated to high energies in the flare-acceleration process. The flareproduced electron spectrum is obtained and shown to be thermal at low energies and power law at high energies. In the non-thermal energy range, the spectrum can be double power law if the spectral power index is energy dependent or related. The electron energy spectrum obtained by this study agrees quantitatively with the result derived from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) HXR observations in the flare of 2002 July 23. The total flux and energy flux of electrons accelerated in the solar flare also agree with the measurements.

  1. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    Indian Academy of Sciences (India)

    A. Kolarski; D. Grubor

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  2. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    Science.gov (United States)

    Kolarski, A.; Grubor, D.

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  3. Morphology and Spectral Behavior of Solar Hard X-Ray Sources

    OpenAIRE

    F. C. R. Fernandes; Sawant, H. S.

    2002-01-01

    Las imágenes de 17 fulguraciones solares, correspondiendo a 61 explosiones de rayos-X observados en cuatro rangos de energía (14-23, 23-33, 33-53 y 53-93 keV) por el experimento Hard X-Ray Telescope (HXT) a bordo del satélite Yohkoh, han sido investigadas. Las imágenes sugieren que el tamaño de las fuentes de rayos-X duros es del orden de 20 segundos de arco y que existen 3 tipos: fuentes individuales simples (30%), fuentes dobles (41%), con separación mínima típica de 30{40 ...

  4. A potential lag between the open solar magnetic source flux and solar EUV and X-ray emissions as measured by the Earth's ionosphere during total solar eclipses

    Directory of Open Access Journals (Sweden)

    C. J. Davis

    2009-06-01

    Full Text Available Measurements of the ionospheric E-region during total solar eclipses have been used to provide information about the evolution of the solar magnetic field and EUV and X-ray emissions from the solar corona and chromosphere. By measuring levels of ionisation during an eclipse and comparing these measurements with an estimate of the unperturbed ionisation levels (such as those made during a control day, where available it is possible to estimate the percentage of ionising radiation being emitted by the solar corona and chromosphere. Previously unpublished data from the two eclipses presented here are particularly valuable as they provide information that supplements the data published to date. The eclipse of 23 October 1976 over Australia provides information in a data gap that would otherwise have spanned the years 1966 to 1991. The eclipse of 4 December 2002 over Southern Africa is important as it extends the published sequence of measurements. Comparing measurements from eclipses between 1932 and 2002 with the solar magnetic source flux reveals that changes in the solar EUV and X-ray flux lag the open source flux measurements by approximately 1.5 years. We suggest that this unexpected result comes about from changes to the relative size of the limb corona between eclipses, with the lag representing the time taken to populate the coronal field with plasma hot enough to emit the EUV and X-rays ionising our atmosphere.

  5. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    Science.gov (United States)

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR.

  6. Hydrodynamical winds from two-temperature plasma in X-ray binaries

    CERN Document Server

    Lin, D J; Taam, R E; Lin, David J.

    2000-01-01

    Hydrodynamical winds from a spherical two-temperature plasma surrounding a compact object are constructed. The mass-loss rate is computed as a function of electron temperature, optical depth and luminosity of the sphere, the values of which can be constrained by the fitting of the spectral energy distributions for known X-ray binary systems. The sensitive dependence of the mass loss rate with these parameters leads to the identification of two distinct regions in the parameter space separating wind-dominated from non wind dominated systems. A critical optical depth, tau_c, as a function of luminosity and electron temperature, is defined which differentiates these two regions. Systems with optical depths significantly smaller than tau_c are wind-dominated. The results are applied to black hole candidate X-ray binary systems in the hard spectral state (Cyg X-1, GX 339-4 and Nova Muscae), and it is found that the inferred optical depth (tau) is similar to tau_c suggesting that they are wind regulated systems. On...

  7. Opacity effects in a solid-density aluminium plasma created by photo-excitation with an X-ray laser

    Science.gov (United States)

    Rackstraw, D. S.; Vinko, S. M.; Ciricosta, O.; Cho, B. I.; Engelhorn, K.; Chung, H.-K.; Brown, C. R. D.; Burian, T.; Chalupský, J.; Falcone, R. W.; Graves, C.; Hájková, V.; Higginbotham, A.; Juha, L.; Krzywinski, J.; Lee, H. J.; Messerschmidt, M.; Murphy, C.; Ping, Y.; Scherz, A.; Schlotter, W.; Toleikis, S.; Turner, J. J.; Vysin, L.; Wang, T.; Wu, B.; Zastrau, U.; Zhu, D.; Nagler, B.; Lee, R. W.; Heimann, P. A.; Wark, J. S.

    2014-06-01

    The intensities within the focal spots of the output of recently developed X-ray sources based on free-electron-laser (FEL) technology are so great that atoms within the focal region can potentially absorb several photons during the few tens of femtosecond X-ray pulse. Furthermore, the duration of the FEL X-ray pulse is comparable to the Auger decay times of inner-shell holes created by the X-rays themselves. We report here how such a scenario can lead to opacity broadening of the fluorescence radiation emitted by the hot, dense plasma, which is created as a result of the X-radiation focussed onto a solid target, and in particular present calculations of the broadening of the Kα emission in a solid-density aluminium target, produced when the FEL photon energy is tuned below the Al K-edge, but is resonant with the Kα transition.

  8. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    Science.gov (United States)

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; Stratton, B.

    2016-11-01

    Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, ne 2 Z eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

  9. Simulation of Quiet-Sun Hard X-rays Related to Solar Wind Superhalo Electrons

    CERN Document Server

    Wang, Wen; Krucker, Sam; Hannah, Iain

    2016-01-01

    In this paper, we propose that the accelerated electrons in the quiet Sun could collide with the solar atmosphere to emit Hard X-rays (HXRs) via non-thermal bremsstrahlung, while some of these electrons would move upwards and escape into the interplanetary medium, to form a superhalo electron population measured in the solar wind. After considering the electron energy loss due to Coulomb collisions and the ambipolar electrostatic potential, we find that the sources of the superhalo could only occur high in the corona (at a heliocentric altitude $\\gtrsim 1.9$ R$_\\odot$ (the mean radius of the Sun)), to remain a power-law shape of electron spectrum as observed by STEREO at 1AU near solar minimum (Wang et al., 2012). The modeled quiet-Sun HXRs related to the superhalo electrons fit well to a power-law spectrum, $f \\sim \\varepsilon^{-\\gamma}$, with an index $\\gamma$ $\\approx$ 2.0 - 2.3 (3.3 - 3.7) at 10 - 100 keV, for the warm/cold thick-target (thin-target) emissions produced by the downward-traveling (upward-tr...

  10. The Low-High-Low Trend of Type III Radio Burst Starting Frequencies and Solar Flare Hard X-rays

    CERN Document Server

    Reid, Hamish A S; Kontar, Eduard P

    2014-01-01

    Using simultaneous X-ray and radio observations from solar flares, we investigate the link between the type III radio burst starting frequency and hard X-ray spectral index. For a proportion of events the relation derived between the starting height (frequency) of type III radio bursts and the electron beam velocity spectral index (deduced from X-rays) is used to infer the spatial properties (height and size) of the electron beam acceleration region. Both quantities can be related to the distance travelled before an electron beam becomes unstable to Langmuir waves. To obtain a list of suitable events we considered the RHESSI catalogue of X-ray flares and the Phoenix 2 catalogue of type III radio bursts. From the 200 events that showed both type III and X-ray signatures, we selected 30 events which had simultaneous emission in both wavelengths, good signal to noise in the X-ray domain and > 20 seconds duration. We find that > 50 % of the selected events show a good correlation between the starting frequencies ...

  11. Soft X-rays shedding light on thin-film solar cell surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bär, M., E-mail: marcus.baer@helmholtz-berlin.de [Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), D-14109 Berlin (Germany); Institut für Physik und Chemie, Brandenburgische Technische Universität Cottbus, D-03046 Cottbus (Germany); Department of Chemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, NV 89154 (United States); Pookpanratana, S. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, NV 89154 (United States); Weinhardt, L. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, NV 89154 (United States); Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany); Wilks, R.G.; Schubert, B.A.; Marsen, B.; Unold, T. [Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), D-14109 Berlin (Germany); Blum, M.; Krause, S. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, NV 89154 (United States); Zhang, Y. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, NV 89154 (United States); Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); Ranasinghe, A. [Department of Chemistry, University of Nevada, Las Vegas (UNLV), Las Vegas, NV 89154 (United States); Ramanathan, K.; Repins, I.; Contreras, M.A. [National Renewable Energy Laboratory (NREL), Golden, CO 80401 (United States); Nishiwaki, S. [Institute for Energy Conversion (IEC), University of Delaware, Newark, DE 19716 (United States); and others

    2013-10-15

    Highlights: ► S/Se gradient-driven chemical interaction at the CdS/CIG(S)Se interface. ► Depth-dependent band gap in chalcopyrites. ► Band alignment at the CdS/Cu{sub 2}ZnSnS{sub 4} solar cell heterojunction. ► Post-deposition treatment induces intermixing in the CdTe/CdS solar cell structure. -- Abstract: Thin-film solar cells based on compound semiconductors consist of a multilayer structure with various interfaces and contain a multitude of elements and impurities, etc. A rapid progress of these photovoltaic technologies can only be achieved by an insight-driven optimization/development. Hence it is crucial to characterize and understand the relationship between the chemical and electronic properties of these components. This paper reviews some examples of our recent work characterizing compound semiconductor thin films using laboratory- and synchrotron-based electron and soft X-ray spectroscopic characterization methods. It is demonstrated how these different analytical techniques are extraordinarily powerful to reveal the material characteristics from many different perspectives, ultimately resulting in a comprehensive picture of the related electronic and chemical properties. As examples, the paper will discuss the electronic surface structure of chalcopyrite thin-film solar cell absorbers, the chemical structure of the CdS/chalcopyrite interface, present the band alignment at the CdS/kesterite interface, and report on how post-deposition treatments cause chemical interaction/interdiffusion processes in CdTe/CdS thin-film solar cell structures.

  12. In-situ X-ray Nanocharacterization of Defect Kinetics in Chalcogenide Solar Cell Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, Mariana [Arizona State Univ., Tempe, AZ (United States); Lai, Barry [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Masser, Jorg [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-21

    For decades the optimization of polycrystalline absorbers has been done using an Edisonian approach, where trial and error and complex design of experiments in large parameter spaces have driven efficiencies to the record values we see today – CIGS at 22.5%, 22.1% for CdTe, 21.3% for high purity multi-crystalline silicon. Appropriate growth parameters are critical to ensure good quality crystals with low concentration of structural defects - low dislocation density and large grain sizes. However, to bridge the gap between the efficiencies today and the fundamental Shockley-Queisser limit for these materials a much more fundamental understanding of the role and interaction between composition, structure, defect density and electrical properties is required. In recent years multiple novel characterization techniques have shown the potential that nanoscale characterization can have in deciphering the composition of grain boundaries in materials like CIGS and CdTe. However, high resolution has come at the cost of small sampling areas and number of specimens, making it extremely difficult to draw conclusions based on the characteristic small sampling sizes. The missing links thus far have been: (1) the lack of statistical meaningfulness of the nanosclae studies and (2) the direct correlation of compositional variations to electrical performance with nanoscale resolution. In this work we present the use of synchrotron-based nano-X-ray fluorescence microscopy (nano-XRF), x-ray absorption nanospectroscopy (nano-XAS) coupled with nano-x-ray beam induced current (nano-XBIC) as ideal tools for investigating elemental, chemical and electrical properties of large areas of solar cell materials at the sub-micron scale with very high sensitivity. We show how the technique can provide statistical valuable information regarding the elemental segregation in CIGS and the direct correlation to current collection. For example, we demonstrate that Cu and Ga (and with that, CGI and GGI

  13. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat: instrument characterization techniques, instrument capabilities and solar science objectives.

    Science.gov (United States)

    Moore, Christopher; Caspi, Amir; Woods, Thomas N.; Mason, James

    2016-05-01

    The Miniature X-ray Solar Spectrometer (MinXSS) is a 3U CubeSat launched in December 2015 to the International Space Station for deployment in early 2016. MinXSS will utilize a commercial off the shelf (COTS) X-ray spectrometer from Amptek to measure the solar irradiance from 0.5 - 30 keV with a nominal 0.15 keV FWHM spectral resolution at 5.9 keV and a LASP developed X-ray photometer with similar spectral sensitivity. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder.The majority of previous solar X-ray measurements have been either at high spectral resolution with a narrow bandpass or spectrally integrating (broad band) photometers. MinXSS will conduct unique soft X-ray measurements of moderate spectral resolution over a relatively large energy range to study solar active region evolution, solar flares, and their effects on Earth’s ionosphere. This presentation focuses on the science instrument characterization involving radioactive X-ray sources and the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF). Detector spectral response, spectral resolution, response linearity are discussed as well as future solar science objectives.

  14. X-ray photoionized plasma diagnostics with Helium-like ions Application to Warm Absorber-Emitter in Active Galactic Nuclei

    CERN Document Server

    Porquet, D; Porquet, Delphine

    2000-01-01

    We present He-like line ratios (resonance, intercombination and forbiddenlines) for totally and partially photoionized media. For solar plasmas, theseline ratios are already widely used for density and temperature diagnostics ofcoronal (collisional) plasmas. In the case of totally and partiallyphotoionized plasmas, He-like line ratios allow for the determination of theionization processes involved in the plasma (photoionization with or without anadditional collisional ionization process), as well as the density and theelectronic temperature. With the new generation of X-ray satellites,Chandra/AXAF, XMM and Astro-E, it will be feasible to obtain both high spectralresolution and high sensitivity observations. Thus in the coming years, theratios of these three components will be measurable for a large number ofnon-solar objects. In particular, these ratios could be applied to the WarmAbsorber-Emitter, commonly present in Active Galactic Nuclei (AGN). A betterunderstanding of the Warm Absorber connection to other...

  15. Soft-x-ray imaging from an ultrashort-pulse laser-produced plasma using a multilayer coated optic

    Science.gov (United States)

    Norby, J. R.; van Woerkom, L. D.

    1996-02-01

    Measurements are presented of soft-x-ray images from a plasma produced by a high-intensity ultrashort-pulse laser. For the intensity range of 1015-1016 W / cm2 the soft-x-ray source appears to follow the spatial profile of the driving laser. A curved multilayer coated optic is used to collect 13.5-nm light and form a magnified image of the plasma. Knife-edge scans have been performed in the image plane and show a geometrically limited spot size of 280 mu m.

  16. Maxwell-Schrodinger Equation for X-Ray Laser Propagation and Interferometry Measurement of Plasma Electron Density

    Institute of Scientific and Technical Information of China (English)

    刘承宜; 郭弘; 付喜泉; 胡巍; 喻松

    2001-01-01

    By starting with the Maxwell theory of x-ray laser propagation in collisionless plasmas, we study the phase difference of the probe and reference beams of x-ray laser interferometry in measuring the plasma electron density. The basic idea is to reduce the Maxwell equation to a Schrodinger-like equation. By using the quantum mechanical technique and introducing a novel picture, we obtain a modified relation between the phase and the electron density, where the phase corresponds to the interference of probe and reference light and the contribution of gradient of the electron density has been taken into account.

  17. Superhot-X-ray and -electron transport in high-intensity CO2-laser-plasma interactions

    Science.gov (United States)

    Enright, G. D.; Burnett, N. H.

    1985-12-01

    A comprehensive investigation of the high-energy (70-400-keV) X-ray emission from CO2 laser-produced plasmas at intensities up to 3 x 10 to the 14th W/sq cm has revealed the presence of a 'superhot' component. The intensity of this component scales very strongly with incident laser intensity. It is expected that for intensities greater than about 5 x 10 to the 15th W/sq cm energy balance in CO2-laser-produced plasmas would be dominated by the energetic electrons responsible for this high-energy X-ray emission.

  18. Compression between ion and hard x-ray emissions from nitrogen and argon in Mather type plasma focus device

    Directory of Open Access Journals (Sweden)

    S Paghe

    2016-12-01

    Full Text Available In this study, some characteristics of a Mather type Plasma Focus (PF device such as a discharge current, pinch time, ion flux and hard x-ray intensity has been investigated simultaneously in argon and nitrogen gases separately for various operating gas pressures and charging voltages of capacitor bank. It was observed that pinch phenomena was energy and pressure dependent in current sheath as well as ion and hard x-ray emission intensity. Optimum pressure with maximum ion flux and the most intense hard x-ray showed a nearly linear dependence on the charging voltage of the device. Maximum ion flux was estimated in the order of 1018 ions per steradian in both gases. Hard x-ray emission was registered a little after discharge current and Faraday cup (FC signals. Also, optimum pressure for maximum ion flux was not the same as the pressure for intense hard x-rays. Hard x-ray intensity reached its peak at higher pressures

  19. The effect of pre-ionization by a shunt resistor on the reproducibility of plasma focus x-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Sadiq, Mehboob [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Shafiq, M [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Waheed, A [PINSTECH, PO Box 2151, 44000 Islamabad (Pakistan); Lee, P [Natural Sciences Academics Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616 (Singapore); Zakaullah, M [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan)

    2006-08-15

    The effect of pre-ionization by means of a shunt resistor on the x-ray emission of a low energy (1.8 kJ) plasma focus device powered by a 9 {mu}F capacitor bank, charged at 20 kV and giving a peak discharge current of about 175 kA is investigated. Quantrad Si pin-diodes along with a suitable filter are employed as time-resolved x-ray detectors, whereas a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray flux in 4{pi}-geometry is measured as a function of argon filling pressure with and without pre-ionization. It is found that appropriate selection of the shunt resistor increases shot-to-shot reproducibility of the x-ray emission as well as the stability of the pinch filament and broadens the x-ray pulse width. The x-ray emission is also enhanced by (45 {+-} 5)% at the optimum pressure.

  20. Catching some Sun : Probing the solar wind with cometary X-ray and far-ultraviolet emission

    NARCIS (Netherlands)

    Bodewits, D; Juhasz, Z; Hoekstra, R; Tielens, AGGM

    2004-01-01

    Strong X-ray and far-ultraviolet emission from comets is the direct result of charge exchange reactions of solar wind ions with the neutral coma of comets. Here we report experimental state-selective cross sections of electron capture and use these to predict cometary line emission. Our results show

  1. Catching some Sun : Probing the solar wind with cometary X-ray and far-ultraviolet emission

    NARCIS (Netherlands)

    Bodewits, D; Juhasz, Z; Hoekstra, R; Tielens, AGGM

    2004-01-01

    Strong X-ray and far-ultraviolet emission from comets is the direct result of charge exchange reactions of solar wind ions with the neutral coma of comets. Here we report experimental state-selective cross sections of electron capture and use these to predict cometary line emission. Our results show

  2. DIRECT SPATIAL ASSOCIATION OF AN X-RAY FLARE WITH THE ERUPTION OF A SOLAR QUIESCENT FILAMENT

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Gordon D.; Foord, Adi, E-mail: gordon.d.holman@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-05-10

    Solar flares primarily occur in active regions. Hard X-ray flares have been found to occur only in active regions. They are often associated with the eruption of active region filaments and coronal mass ejections (CMEs). CMEs can also be associated with the eruption of quiescent filaments, not located in active regions. Here we report the first identification of a solar X-ray flare outside an active region observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The X-ray emission was directly associated with the eruption of a long, quiescent filament and fast CME. Images from RHESSI show this flare emission to be located along a section of the western ribbon of the expanding, post-eruption arcade. EUV images from the Solar Dynamics Observatory Atmospheric Imaging Assembly show no connection between this location and nearby active regions. Therefore the flare emission is found not to be located in or associated with an active region. However, a nearby, small, magnetically strong dipolar region provides a likely explanation for the existence and location of the flare X-ray emission. This emerging dipolar region may have also triggered the filament eruption.

  3. High-throughput roll-to-roll X-ray characterization of polymer solar cell active layers

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.; Jørgensen, Mikkel; Menzel, Andreas

    2012-01-01

    Synchrotron-based X-rays were used to probe active materials for polymer solar cells on flexible polyester foil. The active material was coated onto a flexible 130 micron thick polyester foil using roll-to-roll differentially pumped slot-die coating and presented variation in composition, thickness...

  4. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...

  5. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser.

    Science.gov (United States)

    Vinko, S M; Ciricosta, O; Cho, B I; Engelhorn, K; Chung, H-K; Brown, C R D; Burian, T; Chalupský, J; Falcone, R W; Graves, C; Hájková, V; Higginbotham, A; Juha, L; Krzywinski, J; Lee, H J; Messerschmidt, M; Murphy, C D; Ping, Y; Scherz, A; Schlotter, W; Toleikis, S; Turner, J J; Vysin, L; Wang, T; Wu, B; Zastrau, U; Zhu, D; Lee, R W; Heimann, P A; Nagler, B; Wark, J S

    2012-01-25

    Matter with a high energy density (>10(5) joules per cm(3)) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived samples at homogeneous temperatures and densities. With the advent of the Linac Coherent Light Source (LCLS) X-ray laser, high-intensity radiation (>10(17) watts per cm(2), previously the domain of optical lasers) can be produced at X-ray wavelengths. The interaction of single atoms with such intense X-rays has recently been investigated. An understanding of the contrasting case of intense X-ray interaction with dense systems is important from a fundamental viewpoint and for applications. Here we report the experimental creation of a solid-density plasma at temperatures in excess of 10(6) kelvin on inertial-confinement timescales using an X-ray free-electron laser. We discuss the pertinent physics of the intense X-ray-matter interactions, and illustrate the importance of electron-ion collisions. Detailed simulations of the interaction process conducted with a radiative-collisional code show good qualitative agreement with the experimental results. We obtain insights into the evolution of the charge state distribution of the system, the electron density and temperature, and the timescales of collisional processes. Our results should inform future high-intensity X-ray experiments involving dense samples, such as X-ray diffractive imaging of biological systems, material science investigations, and the study of matter in extreme conditions.

  6. Simulation of Quiet-Sun Hard X-Rays Related to Solar Wind Superhalo Electrons

    Science.gov (United States)

    Wang, Wen; Wang, Linghua; Krucker, Säm; Hannah, Iain

    2016-05-01

    In this paper, we propose that the accelerated electrons in the quiet Sun could collide with the solar atmosphere to emit Hard X-rays (HXRs) via non-thermal bremsstrahlung, while some of these electrons would move upwards and escape into the interplanetary medium, to form a superhalo electron population measured in the solar wind. After considering the electron energy loss due to Coulomb collisions and the ambipolar electrostatic potential, we find that the sources of the superhalo could only occur high in the corona (at a heliocentric altitude ≳ 1.9 R_{⊙} (the mean radius of the Sun)), to remain a power-law shape of electron spectrum as observed by Solar Terrestrial Relations Observatory (STEREO) at 1 AU near solar minimum (Wang et al. in Astrophys. J. Lett. 753, L23, 2012). The modeled quiet-Sun HXRs related to the superhalo electrons fit well to a power-law spectrum, f ˜ ɛ^{-γ} in the photon energy ɛ, with an index γ≈2.0 - 2.3 (3.3 - 3.7) at 10 - 100 keV, for the warm/cold-thick-target (thin-target) emissions produced by the downward-traveling (upward-traveling) accelerated electrons. These simulated quiet-Sun spectra are significantly harder than the observed spectra of most solar HXR flares. Assuming that the quiet-Sun sources cover 5 % of the solar surface, the modeled thin-target HXRs are more than six orders of magnitude weaker than the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) upper limit for quiet-Sun HXRs (Hannah et al. in Astrophys. J. 724, 487, 2010). Using the thick-target model for the downward-traveling electrons, the RHESSI upper limit restricts the number of downward-traveling electrons to at most {≈} 3 times the number of escaping electrons. This ratio is fundamentally different from what is observed during solar flares associated with escaping electrons where the fraction of downward-traveling electrons dominates by a factor of 100 to 1000 over the escaping population.

  7. Derivation of Stochastic Acceleration Model Characteristics for Solar Flares from RHESSI Hard X-ray Observations

    Science.gov (United States)

    Petrosian, Vahé; Chen, Qingrong

    2010-04-01

    The model of stochastic acceleration of particles by turbulence has been successful in explaining many observed features of solar flares. Here, we demonstrate a new method to obtain the accelerated electron spectrum and important acceleration model parameters from the high-resolution hard X-ray (HXR) observations provided by RHESSI. In our model, electrons accelerated at or very near the loop top (LT) produce thin target bremsstrahlung emission there and then escape downward producing thick target emission at the loop footpoints (FPs). Based on the electron flux spectral images obtained by the regularized spectral inversion of the RHESSI count visibilities, we derive several important parameters for the acceleration model. We apply this procedure to the 2003 November 3 solar flare, which shows an LT source up to 100-150 keV in HXR with a relatively flat spectrum in addition to two FP sources. The results imply the presence of strong scattering and a high density of turbulence energy with a steep spectrum in the acceleration region.

  8. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  9. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    Science.gov (United States)

    Bailey, Scott Martin

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  10. Conditions for soft x-ray lasing action in a confined plasma column

    Energy Technology Data Exchange (ETDEWEB)

    Suckewer, S.; Fishman, H.

    1979-09-01

    The idea of using a multi-Z (e.g., carbon, oxygen) thin plasma column as a medium for soft x-ray lasing action is presented. A plasma confined by a strong magnetic field is first heated by a CO/sub 2/-laser, and then cools rapidly by radiation losses. This leads to a level population inversion of hydrogen-like carbon or oxygen ions. Two computational models are presented. One uses given electron temperature, T/sub e/(t), evolutions. The other uses T/sub e/(t) calculated from an energy balance equation ith CO/sub 2/-laser beam power as a parameter. According to calculations, a total gain of G > 100 is expected for 3 ..-->.. 2 and G > 10 for 4 ..-->.. 2 transitions (lambda = 182 A and lambda = 135 A, respectively) for CVI ions using a CO/sub 2/-laser beam with power approx. 5 x 10/sup 10/ W for plasma column heating.

  11. Study of soft X-ray emission during wire array implosion under plasma focus conditions at the PF-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Dan’ko, S. A. [National Research Centre Kurchatov Institute (Russian Federation); Mitrofanov, K. N., E-mail: mitrofan@triniti.ru [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Krauz, V. I.; Myalton, V. V.; Zhuzhunashvili, A. I.; Vinogradov, V. P.; Kharrasov, A. M.; Anan’ev, S. S.; Vinogradova, Yu. V.; Kalinin, Yu. G. [National Research Centre Kurchatov Institute (Russian Federation)

    2015-11-15

    Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measured soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.

  12. Soft X-ray irradiance measured by the Solar Aspect Monitor on the Solar Dynamic Observatory Extreme ultraviolet Variability Experiment

    CERN Document Server

    Lin, C Y; Jones, A; Woodraska, D; Caspi, A; Woods, T N; Eparvier, F G; Wieman, S R; Didkovsky, L V

    2016-01-01

    The Solar Aspect Monitor (SAM) is a pinhole camera on the Extreme-ultraviolet Variability Experiment (EVE) aboard the Solar Dynamics Observatory (SDO). SAM projects the solar disk onto the CCD through a metallic filter designed to allow only solar photons shortward of 7 nm to pass. Contamination from energetic particles and out-of-band irradiance is, however, significant in the SAM observations. We present a technique for isolating the 0.01--7 nm integrated irradiance from the SAM signal to produce the first results of broadband irradiance for the time period from May 2010 to May 2014. The results of this analysis agree with a similar data product from EVE's EUV SpectroPhotometer (ESP) to within 25%. We compare our results with measurements from the Student Nitric Oxide Explorer (SNOE) Solar X-ray Photometer (SXP) and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Solar EUV Experiment (SEE) at similar levels of solar activity. We show that the full-disk SAM broadband results compare we...

  13. The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs

    Energy Technology Data Exchange (ETDEWEB)

    Krucker, S. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Bednarzik, M. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, Villigen (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.ch [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); ETH Zürich (Switzerland); Hurford, G.J. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Sciences Laboratory, UC Berkeley (United States); Limousin, O.; Meuris, A. [CEA Saclay (France); Orleański, P. [University of Applied Sciences and Arts Northwestern Switzerland, Windisch (Switzerland); Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Seweryn, K.; Skup, K.R. [Space Research Center of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland)

    2016-07-11

    STIX is the X-ray spectral imaging instrument on-board the Solar Orbiter space mission of the European Space Agency, and together with nine other instruments will address questions of the interaction between the Sun and the heliosphere. STIX will study the properties of thermal and accelerated electrons near the Sun through their Bremsstrahlung X-ray emission, addressing in particular the emission from flaring regions on the Sun. The design phase of STIX has been concluded. This paper reports the final flight design of the instrument, focusing on design challenges that were faced recently and how they were addressed.

  14. Planetary X-ray studies: past, present and future

    Science.gov (United States)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the

  15. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    Science.gov (United States)

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-01

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  16. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    Science.gov (United States)

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm(-2). This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10(19) cm(-2) Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  17. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Science.gov (United States)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  18. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  19. Models for Flare Statistics and the Waiting-time Distribution of Solar Flare Hard X-ray Bursts

    Science.gov (United States)

    Wheatland, M. S.; Edney, S. D.

    1999-12-01

    In a previous study (Wheatland, Sturrock, McTiernan 1998), a waiting-time distribution was constructed for solar flare hard X-ray bursts observed by the ICE/ISEE-3 spacecraft. A comparison of the observed distribution with that of a time-dependent Poisson process indicated an overabundance of short waiting times (10~s -- 10~min), implying that the hard X-ray bursts are not independent events. Models for flare statistics assume or predict that flares are independent events -- in particular the avalanche model makes this specific prediction. The results of the previous study may be reconciled with the avalanche picture if individual flares produce several distinct bursts of hard X-ray emission. A detailed comparison of the avalanche model and the ICE/ISEE-3 waiting-time distribution is presented here.

  20. X-RAY SOURCE HEIGHTS IN A SOLAR FLARE: THICK-TARGET VERSUS THERMAL CONDUCTION FRONT HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Reep, J. W. [National Research Council Post-Doc Program, Naval Research Laboratory, Washington, DC 20375 (United States); Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Holman, G. D., E-mail: jeffrey.reep.ctr@nrl.navy.mil, E-mail: stephen.bradshaw@rice.edu, E-mail: gordon.d.holman@nasa.gov [Solar Physics Laboratory, Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-10

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O’Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  1. X-ray Source Heights in a Solar Flare: Thick-target versus Thermal Conduction Front Heating

    CERN Document Server

    Reep, Jeffrey W; Holman, Gordon D

    2015-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 28 November 2002 C1.1 flare, first observed with RHESSI by Sui et al. 2006 and quantitatively analyzed by O'Flannagain et al. 2013, very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  2. Stereoscopic observations of a solar flare hard X-ray source in the high corona

    Science.gov (United States)

    Kane, S. R.; Mctiernan, J.; Loran, J.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.

    1992-01-01

    The vertical structure of the impulsive and gradual hard X-ray sources in high coronae and the characteristics of the impulsive soft X-ray emission are investigated on the basis of PVE, ICE, and GOES observations of the energetic flare on February 16, 1984. The average photon spectra observed by these instruments during the impulsive and gradual hard X-ray bursts are summarized. A comparison of these unocculted and partially occulted spectra shows that the sources of the impulsive hard X-ray (greater than about 25 keV) and impulsive soft X-ray (2-5 keV) emissions in this flare extended to coronal altitudes greater than about 200,000 km above the photosphere. At about 100 keV, the ratio of the coronal source brightness to the total source brightness was 0.001 during the impulsive phase and less than about 0.01 during the gradual hard X-ray burst. The sources of the gradual hard X-ray burst and gradual soft X-ray burst were almost completely occulted, indicating that these sources were located at heights less than 200,000 km above the photosphere.

  3. X-ray reflectivity study of bias graded diamond like carbon film synthesized by ECR plasma

    Indian Academy of Sciences (India)

    R M Dey; S K Deshpande; S B Singh; N Chand; D S Patil; S K Kulkarni

    2013-02-01

    Diamond like carbon (DLC) coatings were deposited on silicon substrates by microwave electron cyclotron resonance (ECR) plasma CVD process using plasma of Ar and CH4 gases under the influence of negative d.c. self bias generated on the substrates by application of RF (13.56 MHz) power. The negative bias voltage was varied from −60 V to −150 V during deposition of DLC films on Si substrate. Detailed X-ray reflectivity (XRR) study was carried out to find out film properties like surface roughness, thickness and density of the films as a function of variation of negative bias voltage. The study shows that the DLC films constituted of composite layer i.e. the upper sub surface layer followed by denser bottom layer representing the bulk of the film. The upper layer is relatively thinner as compared to the bottom layer. The XRR study was an attempt to substantiate the sub-plantation model for DLC film growth.

  4. Degradation of Albumin on Plasma-Treated Polystyrene by Soft X-ray Exposure

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2016-06-01

    Full Text Available Thin films of human serum albumin (HSA were immobilized on polystyrene (PS substrates previously functionalized either with polar or nonpolar functional groups. The functionalization was performed by treatment with cold gaseous plasma created in pure oxygen and tetrafluoromethane (CF4 plasmas, respectively. Samples were examined with soft X-rays in the photon energy range of 520 to 710 eV in the ANTARES beam line at SOLEIL Synchrotron. NEXAFS spectra of O K-edge and F K-edge were collected at different spots of the sample, and measurements at each spot were repeated many times. A strong degradation of the HSA protein was observed. The weakly irradiated samples exhibited strong absorption at 531.5 eV associated with the O 1s→π*amide transitions, and a broad non distinctive peak at 540 eV was attributed to the O 1s→σ*C–O transitions. Both peaks decreased with increasing irradiation time until they were completely replaced by a broad non-distinctive peak at around 532 eV, indicating the destruction of the original protein conformation. The shortage of the amide groups indicated breakage of the peptide bonds.

  5. Plasma heating in a post eruption Current Sheet: a case study based on ultraviolet, soft, and hard X-ray data

    CERN Document Server

    Susino, Roberto; Krucker, Säm

    2013-01-01

    Off-limb observations of the solar corona after Coronal Mass Ejections (CMEs) often show strong, compact, and persistent UV sources behind the eruption. They are primarily observed by the SOHO/UVCS instrument in the "hot" Fe XVIII {\\lambda}974 {\\AA} line and are usually interpreted as a signature of plasma heating due to magnetic reconnection in the post-CME Current Sheet (CS). Nevertheless, the physical process itself and the altitude of the main energy release are currently not fully understood. In this work, we studied the evolution of plasma heating after the CME of 2004 July 28 by comparing UV spectra acquired by UVCS with soft X-ray (SXR) and hard X-ray (HXR)images of the post-flare loops taken by GOES/SXI and RHESSI. The X-ray data show a long-lasting extended source that is rising upwards, toward the high-temperature source detected by UVCS. UVCS data show the presence of significant non-thermal broadening in the CS (signature of turbulent motions) and a strong density gradient across the CS region. T...

  6. UFCORIN: A fully automated predictor of solar flares in GOES X-ray flux

    Science.gov (United States)

    Muranushi, Takayuki; Shibayama, Takuya; Muranushi, Yuko Hada; Isobe, Hiroaki; Nemoto, Shigeru; Komazaki, Kenji; Shibata, Kazunari

    2015-11-01

    We have developed UFCORIN, a platform for studying and automating space weather prediction. Using our system we have tested 6160 different combinations of Solar Dynamic Observatory/Helioseismic and Magnetic Imager data as input data, and simulated the prediction of GOES X-ray flux for 2 years (2011-2012) with 1 h cadence. We have found that direct comparison of the true skill statistic (TSS) from small cross-validation sets is ill posed and used the standard scores (z) of the TSS to compare the performance of the various prediction strategies. The z of a strategy is a stochastic variable of the stochastically chosen cross-validation data set, and the z for the three strategies best at predicting X-, ≥M-, and ≥C-class flares are better than the average z of the 6160 strategies by 2.3σ, 2.1σ, and 3.8σ confidence levels, respectively. The best three TSS values were 0.75 ± 0.07, 0.48 ± 0.02, and 0.56 ± 0.04, respectively.

  7. Reconciliation of Waiting Time Statistics of Solar Flares Observed in Hard X-Rays

    CERN Document Server

    Aschwanden, Markus J

    2010-01-01

    We study the waiting time distributions of solar flares observed in hard X-rays with ISEE-3/ICE, HXRBS/SMM, WATCH/GRANAT, BATSE/CGRO, and RHESSI. Although discordant results and interpretations have been published earlier, based on relatively small ranges ($< 2$ decades) of waiting times, we find that all observed distributions, spanning over 6 decades of waiting times ($\\Delta t \\approx 10^{-3}- 10^3$ hrs), can be reconciled with a single distribution function, $N(\\Delta t) \\propto \\lambda_0 (1 + \\lambda_0 \\Delta t)^{-2}$, which has a powerlaw slope of $p \\approx 2.0$ at large waiting times ($\\Delta t \\approx 1-1000$ hrs) and flattens out at short waiting times $\\Delta t \\lapprox \\Delta t_0 = 1/\\lambda_0$. We find a consistent breakpoint at $\\Delta t_0 = 1/\\lambda_0 = 0.80\\pm0.14$ hours from the WATCH, HXRBS, BATSE, and RHESSI data. The distribution of waiting times is invariant for sampling with different flux thresholds, while the mean waiting time scales reciprocically with the number of detected event...

  8. Spatio-temporal dynamics of sources of hard X-ray pulsations in solar flares

    CERN Document Server

    Kuznetsov, S A; Morgachev, A S; Struminsky, A B

    2016-01-01

    We present systematic analysis of spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phase are accompanied by a series of more than three peaks (pulsations) of HXR emission detected in the RHESSI 50-100 keV channel with 4-second cadence. 29 such flares observed from February 2002 to June 2015 with time differences between successive peaks of 8-270 s are studied. The main observational result is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent displacements from pulsation to pulsation. The flares can be subdivided into two groups depending on character of dynamics of HXR sources. The group-1 consists of 16 flares (55%) with systematic dynamics of HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has simple extended trace on the photosphere. The group-2 consists of 13 flares (45%) with more chaotic displacements of HXR sources with respe...

  9. Ground calibration of the Chandrayaan-1 X-ray Solar Monitor (XSM)

    Energy Technology Data Exchange (ETDEWEB)

    Alha, L. [Observatory, P.O. Box 14, FI-00014 University of Helsinki (Finland)], E-mail: alha@mappi.helsinki.fi; Huovelin, J. [Observatory, P.O. Box 14, FI-00014 University of Helsinki (Finland); Nygard, K. [Division of X-ray Physics, Department of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland); Andersson, H. [Oxford Instruments Analytical, P.O. Box 85, FIN-02631 Espoo (Finland); Esko, E. [Observatory, P.O. Box 14, FI-00014 University of Helsinki (Finland); Howe, C.J.; Kellett, B.J. [Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Narendranath, S. [Space Astronomy and Instrumentation Division, ISRO Satellite Centre, Bangalore 560017 (India); Maddison, B.J. [Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Crawford, I.A. [School of Earth Sciences, Birkbeck College, London (United Kingdom); Grande, M. [Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3BZ (United Kingdom); Shreekumar, P. [Space Astronomy and Instrumentation Division, ISRO Satellite Centre, Bangalore 560017 (India)

    2009-08-21

    The Chandrayaan-1 XSM ground calibrations are introduced. The aim of these calibrations was to characterize the performance of XSM, which enables a reliable spectral analysis with the solar X-ray data. The calibrations followed an improved procedure based on our experience from the SMART-1 XSM. The most important tasks in the calibrations were determination of the energy resolution as a function of the photon energy and mapping of the detector sensitivity over the FoV (Field of View) of the sensor. The FoV map was needed to determine the obscuration factor corresponding to various pointings with respect to the Sun. We made also a sensitivity comparison test between the Chandrayaan-1 XSM FM (Flight Model) and SMART-1 XSM FS (Flight Spare). The aim of this test was to link the new XSM performance to a performance of an already known and tested former instrument. We also performed a simple test to determine the pile up performance, and one specific test tailored for the operation of the new version of XSM. Also the first experiences on the in-flight operation are briefly described.

  10. Dense plasma focus PACO as a hard X-ray emitter: a study on the radiation source

    OpenAIRE

    Supán, L.; Guichón, S.; Milanese, Maria Magdalena; Niedbalski, Jorge Julio; Moroso, Roberto Luis; Acuña, H.; Malamud, Florencia

    2016-01-01

    The radiation in the X-ray range detected outside the vacuum chamber of the dense plasma focus (DPF) PACO, are produced on the anode zone. The zone of emission is studied in a shot-to-shot analysis, using pure deuterium as filling gas. We present a diagnostic method to determine the place and size of the hard X-ray source by image analysis of high density radiography plates. Fil: Supán, L.. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Insti...

  11. Investigation of defect luminescence from multicrystalline Si wafer solar cells using X-ray fluorescence and luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Peloso, Matthew P. [Department of Electrical and Computer Engineering, National University of Singapore (Singapore); Palina, Natalie; Hidayat, Hidayat; Hoex, Bram [Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (Singapore); Banas, Krzysztof; Banas, Agnieszka; Breese, Mark B.H. [Singapore Synchrotron Light Source, National University of Singapore (Singapore); Aberle, Armin G. [Department of Electrical and Computer Engineering, National University of Singapore (Singapore); Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (Singapore)

    2012-12-15

    Multicrystalline silicon wafer solar cells reveal performance- reducing defects by luminescence. X-ray fluorescence spectra are used to investigate the elemental constituents from regions of solar cells yielding reverse-bias or sub-bandgap luminescence from defects. It is found that a higher concentration of metals is present in regions yielding reverse-bias electroluminescence than in regions yielding sub-bandgap electroluminescence. This suggests, dislocations do not create strong breakdown currents in the absence of impurity precipitates. (a) Topographies of sub-bandgap (red) and reverse-bias (blue) luminescence from defects in a multicrystalline Si wafer solar cell. (b) Their distinct X-ray spectra indicate highest concentrations of metals in the blue regions. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: spectrometer characterization techniques, spectrometer capabilities, and solar science objectives

    CERN Document Server

    Moore, Christopher S; Caspi, Amir; Mason, James P

    2016-01-01

    The Miniature X-ray Solar Spectrometer (MinXSS) are twin 3U CubeSats. The first of the twin CubeSats (MinXSS-1) launched in December 2015 to the International Space Station for deployment in mid-2016. Both MinXSS CubeSats utilize a commercial off the shelf (COTS) X-ray spectrometer from Amptek to measure the solar irradiance from 0.5 to 30 keV with a nominal 0.15 keV FWHM spectral resolution at 5.9 keV, and a LASP-developed X-ray broadband photometer with similar spectral sensitivity. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. The majority of previous solar soft X-ray measurements have been either at high spectral resolution with a narrow bandpass or spectrally integrating (broadband) photometers. MinXSS will conduct unique soft X-ray measurements with moderate spectral resolution over a relatively large energy range to study solar active region evolution, solar flares, and the effects of solar soft ...

  13. Hard X-ray and ultraviolet emission during the 2011 June 7 solar flare

    CERN Document Server

    Inglis, Andrew R

    2013-01-01

    The relationship between X-ray and UV emission during flares, particularly in the context of quasi-periodic pulsations, remains unclear. To address this, we study the X-ray and UV emission during the eruptive flare of 2011 June 7 utilising X-ray imaging from RHESSI and UV 1700A imaging from SDO/AIA. This event is associated with synchronous quasi-periodic pulsations in both the X-ray and UV emission, as well as substantial motion of the hard X-ray footpoints. The motion of the footpoint associated with the left-hand flare ribbon is shown to reverse direction along the flare ribbons on at least two occasions. Over the same time interval, the footpoints also gradually move apart at v ~ 12 km/s. This is consistent with the measured plane-of-sky thermal X-ray source outward velocity of ~ 14 km/s, and matches the gradual outward expansion of the UV ribbons. However, there is no associated short-timescale motion of the UV bright regions. We find that the locations of the brightest X-ray and UV regions are different...

  14. On the relationship between soft X-rays and H-alpha-emitting structures during a solar flare

    Science.gov (United States)

    Zirin, H.; Feldman, U.; Doschek, G. A.; Kane, S.

    1981-01-01

    Based on data obtained during a solar flare on March 31, 1979, soft X-ray (SXR) and hard X-ray (HXR) bursts are analyzed and compared with other available data in order to identify structures in H-alpha that may correspond to the SXR-emitting site. Measurements taken with the X-ray telescope and the XUV spectroheliograph flown on Skylab, have shown that the SXR emission from many flares comes from rather small structures of about 10-20 arcsec across. These structures appear to be loops that cross the magnetic neutral line. Understanding of the morphology of SXR was based on data of the solar flare of June 15, 1973, observed from Skylab, and the work of Moore et al., (1980). Dense, highly emissive coronal structures, not suggested to be the X-ray source, were forming, lost energy rapidly by emission and conduction, and finally formed the loops. It is concluded that bright H-alpha loops form rapidly as the SXR emission rises, and the overall decay (cooling rate) of SXR emission is much slower than the formation time of individual loops.

  15. Soft X-Ray (1-7 nm) Solar Spectrometer based on novel Nanowriter Electron-Beam Nanofabrication Technology

    Science.gov (United States)

    Didkovsky, L. V.; Wieman, S. R.; Chao, W.

    2015-12-01

    A new soft X-ray (SXR) spectrometer combines proven detector technology demonstrated on the SOHO Solar EUV Monitor (SOHO/SEM) and SDO EUV SpectroPhotometer (SDO/EVE/ESP) instruments with novel technology for X-ray optics nanofabrication developed at the Lawrence Berkeley National Laboratory. The new spectrometer will provide solar SXR measurements of absolute irradiance in the 1.0 to 7.0 nm range spectrally resolved into bands narrower than 1 nm - measurements that are not available from existing solar-observing instruments but are important for studying and modeling coronal dynamics and the Sun-Earth's connection, e.g. the Earth's Ionosphere. For the proposed SXR spectrometer we will introduce a transmission grating based on novel Nanowriter Electron-Beam Nanofabrication technology developed at the Center for X-ray Optics (CXRO) at the Lawrence Berkeley National Laboratory. The CXRO technology has been used in the fabrication of X-ray zone plates with feature sizes as small as 25 nm in optical elements with overall sizes on the order of 1 cm. The CXRO technology has significant flexibility in terms of pattern geometry, and is thus capable of producing linear transmission gratings with aperture sizes similar to SEM and ESP but with four times the dispersion. With such dispersion, reasonable spectral resolution (< 1nm) can be obtained using commercial off-the shelf (COTS) X-ray sensitive AXUV type silicon photodiodes from the Optodiode Corp. in an instrument with overall size and mass similar to that of SEM or ESP.

  16. K-shell X-ray spectroscopy of laser produced aluminum plasma

    Science.gov (United States)

    Kaur, Channprit; Chaurasia, S.; Poswal, A. K.; Munda, D. S.; Rossall, A. K.; Deo, M. N.; Sharma, Surinder M.

    2017-01-01

    Optimization of a laser produced plasma (LPP) X-ray source has been performed by analyzing K-shell emission spectra of Al plasma at a laser intensity of 1013-1014 W/cm2. The effect of varying the laser intensity on the emissivity of the K-shell resonance lines is studied and found to follow a power law, Ix =(IL) α with α=2.2, 2.3, 2.4 for Heβ, Heγ, Heδ respectively. The emission of these resonance lines has been found to be heavily anisotropic. A Python language based code has been developed to generate an intensity profile of K-shell spectral lines from the raw data. In theoretical calculations, the temperature is estimated by taking the ratio of the Li-like satellite (1s22p-1s2p3p) and the Heβ (1s2-1s3p) resonance line and the ratio of the He-like satellite (1s2p-2p2) and the Lyα (1s-2p) resonance line. To determine the plasma density, stark broadening of the Lyβ spectral line is used. Simulation was carried out using the FLYCHK code to generate a synthetic emission spectrum. The results obtained by FLYCHK are Te=160 eV, Th=1 keV, f=0.008, ne=5×1020 cm-3 and the analytical model resulted Te=260-419 eV and ne=3x1020 cm-3.

  17. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    Science.gov (United States)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  18. Joint Experiments on X-ray/Particle Emission from Plasmas Produced by Laser Irradiating Nano Structured Targets

    Science.gov (United States)

    Hegazy, H.; Allam, S. H.; Chaurasia, S.; Dhareshwar, L.; El-Sherbini, Th. M.; Kunze, H.-J.; Mank, G.; McDaniel, D. H.; Rosinski, M.; Ryc, L.; Stewart, B.; Wolowski, J.; Abd El-Ghany, H.; Abd El-Latif, G.; Abd El-Rahim, F. M.; Bedrane, Z.; Diab, F.; Farrag, A.; Hedwig, R.; Helal, A.; Pardede, M.; Refaie, A.; Sharkawy, H.; El-khatim, A., Sir

    2008-04-01

    The 1st Joint (Host Laboratory) Experiment on laser plasma involving more than twenty scientists from eight countries has been carried out at the Laser and New Materials Laboratory, Faculty of Science, Cairo University, Egypt. It was co-ordinated by the International Atomic Energy Agency (IAEA) and supported through the IAEA and the ICTP (International Centre for Theoretical Physics, Trieste). The main experimental programme was aimed at characterising the possible enhancement of x-ray and particle emission from plasmas produced by laser incidence on nano-structured targets. Laser beams at 1.064 μm of 250 mJ and 532 nm of 165 mJ focused at the target surface using a nanosecond laser type Quantel were used in the present study. In the present experiments nano-copper structures evaporated onto copper bulk disks and nano-gold structures evaporated onto gold ones were used. The thickness of the nano-materials on their bulk material was 1 μm. An ion collector and x-ray semiconductor diode were used to study the ion and x-ray emission, respectively. Both were positioned at the same port at 90° with respect to the target surface and at 90 cm from the surface in the case of the ion collector and 55 cm in the case of the x-ray detector. These experiments were performed at vacuum pressures of (5—8)×10-6 mbar. Comparison of both studies in the case of nano structured targets and bulk targets were performed at different laser fluencies (1×109-1×1012 W/cm2) on the target. A 20% increase of the X-ray emission for nano gold with respect to bulk gold was observed, however, the x-ray emission in the of nano copper and copper was the same.

  19. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  20. Analysis of ultraviolet and X-ray observations of three homologous solar flares from SMM

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1987-01-01

    Three homologous flares observed in the UV lines of Fe XXI and O V and in X-rays from the SMM were studied. It was found that: (1) the homology of the flares was most noticeable in Fe XXI and soft X-ray emissions; (2) the three flares shared many of the same loop footprints which were located in O V bright kernals associated with hard X-ray bursts; and (3) in spite of the strong spatial homology, the temporal evolution in UV and X-ray emissions varied from flare to flare. A comparison between the UV observations and photospheric magnetograms revealed that the basic flare configuration was a complex loop system consisting of many loops or bundles of loops.

  1. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  2. Research of laser plasma X-ray spectrum from spherical targets

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, P.D. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation); Gusikhina, I.A. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation); Lobanova, Yu.L. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation); Zhidkov, N.V. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation); Subbotin, A.N. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation)]. E-mail: subbotin@otd470.vniief.ru; Tsoi, E.S. [RFNC-VNIIEF, Mira Avenue 37, 607190 Sarov (Russian Federation)

    2007-05-21

    The paper describes the results of measurements carried out at VNIIEF on a laser facility ISKRA-5 with spherical targets of different type. Spectra of X-rays are measured with the aid of cylindrical Ni/C multilayer mirror (MM). To absolutely normalize the results of spectral measurements, there is additionally registered X-rays by semiconductor detectors with different filters. Detectors' serviceability at operation in the mode of deep current saturation is demonstrated. Experimental and calculation data of spectrum of target X-rays are presented and compared.

  3. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    Science.gov (United States)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  4. Reconciliation of Waiting Time Statistics of Solar Flares Observed in Hard X-rays

    Science.gov (United States)

    Aschwanden, Markus J.; McTiernan, James M.

    2010-07-01

    We study the waiting time distributions of solar flares observed in hard X-rays with ISEE-3/ICE, HXRBS/SMM, WATCH/GRANAT, BATSE/CGRO, and RHESSI. Although discordant results and interpretations have been published earlier, based on relatively small ranges (<2 decades) of waiting times, we find that all observed distributions, spanning over 6 decades of waiting times (Δt ≈ 10-3-103 hr), can be reconciled with a single distribution function, N(Δt) vprop λ0(1 + λ0Δt)-2, which has a power-law slope of p ≈ 2.0 at large waiting times (Δt ≈ 1-1000 hr) and flattens out at short waiting times Δt <~ Δt 0 = 1/λ0. We find a consistent breakpoint at Δt 0 = 1/λ0 = 0.80 ± 0.14 hr from the WATCH, HXRBS, BATSE, and RHESSI data. The distribution of waiting times is invariant for sampling with different flux thresholds, while the mean waiting time scales reciprocically with the number of detected events, Δt 0 vprop 1/n det. This waiting time distribution can be modeled with a nonstationary Poisson process with a flare rate λ = 1/Δt that varies as f(λ) vprop λ-1exp - (λ/λ0). This flare rate distribution requires a highly intermittent flare productivity in short clusters with high rates, separated by relatively long quiescent intervals with very low flare rates.

  5. ELECTRON ENERGY PARTITION IN THE ABOVE-THE-LOOPTOP SOLAR HARD X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Mitsuo; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal, E-mail: moka@ssl.berkeley.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-02-01

    Solar flares produce non-thermal electrons with energies up to tens of MeVs. To understand the origin of energetic electrons, coronal hard X-ray (HXR) sources, in particular above-the-looptop sources, have been studied extensively. However, it still remains unclear how energies are partitioned between thermal and non-thermal electrons within the above-the-looptop source. Here we show that the kappa distribution, when compared to conventional spectral models, can better characterize the above-the-looptop HXRs (≳15 keV) observed in four different cases. The widely used conventional model (i.e., the combined thermal plus power-law distribution) can also fit the data, but it returns unreasonable parameter values due to a non-physical sharp lower-energy cutoff E{sub c}. In two cases, extreme-ultraviolet data were available from SDO/AIA and the kappa distribution was still consistent with the analysis of differential emission measure. Based on the kappa distribution model, we found that the 2012 July 19 flare showed the largest non-thermal fraction of electron energies about 50%, suggesting equipartition of energies. Considering the results of particle-in-cell simulations, as well as density estimates of the four cases studied, we propose a scenario in which electron acceleration is achieved primarily by collisionless magnetic reconnection, but the electron energy partition in the above-the-looptop source depends on the source density. In low-density above-the-looptop regions (few times 10{sup 9} cm{sup –3}), the enhanced non-thermal tail can remain and a prominent HXR source is created, whereas in higher-densities (>10{sup 10} cm{sup –3}), the non-thermal tail is suppressed or thermalized by Coulomb collisions.

  6. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  7. Research on pinches driven by Speed-2 generator: Hard X-ray and neutron emission in plasma focus configuration

    Energy Technology Data Exchange (ETDEWEB)

    Soto, L.; Moreno, J.; Silva, P.; Sylvester, G.; Zambra, M.; Pavez, C. [Comision Chilena de Energia Nuclear, Santiago (Chile); Pavez, C. [Universidad de Concepcion (Chile); Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Castillo, F. [Insitituto de Ciencias Nucleares, UNAM (Mexico); Kies, W. [Heinrich-Heine-Univ., Dusseldorf (Germany)

    2004-07-01

    Speed-2 is a generator based on Marx technology and was designed in the University of Dusseldorf. Speed-2 consists on 40 +/- Marx modules connected in parallel (4.1 {mu}F equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt {approx} 10{sup 13} A/s). Currently Speed-2 is operating at CCHEN (Chilean nuclear energy commission), being the most powerful and energetic device for dense transient plasma in the Southern Hemisphere. Most of the previous works developed in Speed-2 at Dusseldorf were done in a plasma focus configuration for soft X-ray emission and the neutron emission from Speed-2 was not completely studied. The research program at CCHEN considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded Z-pinch, wire arrays) at current of hundred of kilo- to mega-amperes, using the Speed-2 generator. The Chilean operation has begun implementing and developing diagnostics in a conventional plasma focus configuration operating in deuterium in order to characterize the neutron emission and the hard X-ray production. Silver activation counters, plastics CR39 and scintillator-photomultiplier detectors are used to characterize the neutron emission. Images of metallic plates with different thickness are obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize an effective energy of the hard X-ray outside of the discharge. (authors)

  8. Modeling the Magnetospheric X-ray Emission from Solar Wind Charge Exchange with Verification from XMM-Newton Observations

    Science.gov (United States)

    2016-08-26

    and Astronomy, University of Leicester, Leicester, UK, 2Finnish Meteorological Institute, Helsinki, Finland Abstract An MHD-based model of terrestrial...check confirms that we should continue the analysis with these new simulations. Figure 9 shows the comparison of these newly calculated model count rates...Journal of Geophysical Research: Space Physics Modeling the magnetospheric X-ray emission from solar wind charge exchange with verification from XMM

  9. Gamma-ray, neutron, and hard X-ray studies and requirements for a high-energy solar physics facility

    Science.gov (United States)

    Ramaty, R.; Dennis, B. R.; Emslie, A. G.

    1988-01-01

    The requirements for future high-resolution spatial, spectral, and temporal observation of hard X-rays, gamma rays and neutrons from solar flares are discussed in the context of current high-energy flare observations. There is much promise from these observations for achieving a deep understanding of processes of energy release, particle acceleration and particle transport in a complicated environment such as the turbulent and highly magnetized atmosphere of the active sun.

  10. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited).

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2014-11-01

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  11. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  12. Si XII X-ray Satellite Lines in Solar Flare Spectra

    Science.gov (United States)

    Phillips, K. J.; Sylwester, J.; Sylwester, B.; Dubau, J.

    2005-05-01

    We demonstrate the temperature dependence of the intensity ratio of dielectronic satellite lines due to Li-like Si (Si XII) to nearby He-like Si (Si XIII) 1s2 - 1snp(n=3, 4, 5) lines emitted in solar flare X-ray spectra. These lines, which occur in the wavelength range 5.253~Å--5.818~Å, have been observed by the RESIK bent crystal spectrometer on the Russian CORONAS-F solar mission. Line features made up of several strong satellites with transitions 1s2 n'l' - 1s n'l' nl lie near the `parent' Si XIII lines, transition 1s2 1S0 - 1snp 1P1; thus, the feature at 5.818~Å is made up of several blended Si XII satellites with `spectator' electrons n'l'=2s or 2p and nl=3p or 3d, and lies on the long-wavelength side of the Si XIII 1s2 - 1s3p line at 5.681~Å. A similar n=4 satellite feature at 5.565~Å is on the long-wavelength side of the Si XIII 1s2 - 1s4p line at 5.384~Å. The Si XII satellites are formed by dielectronic recombination and direct (inner-shell) excitation. The ratio Is/IHe (Is = Si XII satellite line flux, IHe = Si XIII line flux) depends on electron temperature approximately as Te-1. The atomic data needed to calculate Is/IHe for individual n=3 and n=4 Si XII satellite lines have been calculated and will be presented in this paper; excitation mechanisms including those by dielectronic recombination and inner-shell excitation were included using the SUPERSTRUCTURE and Distorted Wave formalisms. With these and theoretical fluxes of the Si XIII lines, synthetic spectra were calculated and compared with RESIK solar flare spectra. Values of Is/IHe measured from RESIK spectra during the decay of four long-duration solar flares, together with temperatures estimated both from the ratio of the GOES channels and from the ratio of total fluxes in two of the four RESIK channels, enable a comparison to be made with theoretical curves. The agreement with the theoretical curve based on synthetic spectra is within expected uncertainties, and the Te-1 dependence is

  13. Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions

    Science.gov (United States)

    Ferri, J.; Davoine, X.; Kalmykov, S. Y.; Lifschitz, A.

    2016-10-01

    Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ) facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup ("self-modulation") of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (˜1 012) with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons >1 09 . Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B >1 020 photons /s /mm2/mrad2/0.1 %BW . Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National Ignition Facility (NIF).

  14. Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions

    Directory of Open Access Journals (Sweden)

    J. Ferri

    2016-10-01

    Full Text Available Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (“self-modulation” of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (∼10^{12} with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons >10^{9}. Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B>10^{20}  photons/s/mm^{2}/mrad^{2}/0.1%BW. Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National

  15. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  16. X-ray and microwave emissions from the July 19, 2012 solar flare: Highly accurate observations and kinetic models

    Science.gov (United States)

    Gritsyk, P. A.; Somov, B. V.

    2016-08-01

    The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ˜5 × 1010 erg cm-2 s-1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ˜5. To independently test the model, we have calculated the microwave spectrum in the range 1-50 GHz that corresponds to the available radio observations.

  17. High-pressure duo-multichannel soft x-ray spectrometer for tokamak plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, J.L.; Wouters, A.W.; Suckewer, S.

    1987-03-01

    A high-resolution, time-resolving soft X-ray multichannel spectrometer (SOXMOS) that permits the simultaneous measurement of emission in two different spectral ranges has been developed and tested extensively for tokamak plasma diagnostics. The basic instrument is a high-resolution, interferometrically adjusted, extreme grazing incidence Schwob-Fraenkel duochromator. The instrument is equipped with two multichannel detectors that are adjusted interferometrically and scan along the Rowland circle. Each consists of an MgF/sub 2/ coated, funneled microchannel plate, associated with a phosphor screen image intensifier that is coupled to a 1024-element photodiode array by a flexible fibrer optic conduit. The total wavelength coverage of the instrument is 5 to 340/sup 0/ A with a measured resolution (FWHM) of about 0.2 A when equipped with a 600 g/mm grating, and 5 to 85 A with a resolution of about 0.06 A using a 2400 g/mm grating. The simultaneous spectral coverage of each detector varies from 15 A at the short wavelength limit to 70 A at the long wavelength limit with the lower dispersion grating. The minimum read-out time for a full spectral portion is 17 ms, but several individual lines can be measured with 1 ms time resolution by selected pixel readout. Higher time resolution can be achieved by replacing one multichannel detector with a single channel electron multiplier detector. Examples of data from the PLT and TFTR tokamaks are presented to illustrate the instrument's versatility, high spectral resolution, and high signal-to-noise ratio even in the 10 A region. 44 refs., 20 figs.

  18. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  19. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    Science.gov (United States)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  20. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W. [Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw (Poland)

    2016-11-15

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  1. Implications of the Detection of X-rays From Pluto by Chandra for Its Solar Wind - Neutral Atmosphere Interaction

    Science.gov (United States)

    Lisse, C. M.

    2016-12-01

    Using the Chandra X-Ray Observatory, we have obtained low-resolution imaging X-ray spectrophotometry of the Pluto system in support of the New Horizons (NH) flyby. In a total of 174 ksec of on-target time, we measured 8 photons from 0.31 to 0.60 keV in a co-moving 11 x 11 pixel2 box (the 90% flux aperture for fixed background sources in the field) measuring 121,000 x 121,000 km2 (or 100 x 100 RPluto) at Pluto. The Pluto photons do not have the spectral shape of the background, are coincident with a 90% flux aperture co-moving with Pluto, and are not confused with any background source, so we consider them as sourced from the Pluto system. Allowing for background, we find a net signal of 6.8 counts and a statistical noise level of 1.2 counts, for a detection of Pluto at > 99.95%. The mean 0.31 - 0.60 keV X-ray power from Pluto is 200 +200/-100 MW, in the middle range of X-ray power levels seen for other known solar system emission sources: auroral precipitation, solar X-ray scattering, and charge exchange (CXE) between solar wind (SW) ions and atmospheric neutrals. We eliminate auroral effects as a source, as Pluto has no known magnetic field and the NH/Alice UV spectrometer detected no airglow from Pluto during the flyby. Atmospheric haze particles could produce resonant scattering of solar X-rays from Pluto, but the energy signature of the detected photons does not match the solar spectrum and estimates of Pluto's scattered X-ray emission are 2 to 3 orders of magnitude lower than seen in our observations. CXE-driven emission from hydrogenic and heliogenic SW carbon, nitrogen, and oxygen ions can produce the energy signature seen, and the 6 x 1025 neutral gas escape rate from Pluto deduced from NH data (Gladstone et al. 2016) can support the 3.0 +3.0/-1.5 x 1024 X-ray photons/s emission rate required by our observations. Using the SW proton density and speed measured by the NH/SWAP instrument in the vicinity of Pluto at the time of the photon emissions, we find a

  2. Detection of a Cool, Accretion Shock-Generated X-ray Plasma in EX Lupi During the 2008 Optical Eruption

    CERN Document Server

    Teets, William K; Kastner, Joel H; Grosso, Nicolas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS ToO observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for a ~0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main sequence stars. From 2008 March through October, this cool p...

  3. A streaked X-ray spectroscopy platform for rapidly heated, near-solid density plasmas

    Science.gov (United States)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Begishev, I. A.; Junquist, R. K.; Nelson, D. J.; Froula, D. H.

    2016-11-01

    A picosecond, time-resolved, x-ray spectroscopy platform was developed to study the thermal line emission from rapidly heated solid targets containing buried aluminum or iron layers. The targets were driven by high-contrast 1ω or 2ω laser pulses at focused intensities up to 1 × 1019 W/cm2. The experimental platform combines time-integrating and time-resolved x-ray spectrometers. Picosecond time resolution was achieved with a pair of ultrafast x-ray streak cameras coupled to high-throughput Hall spectrometers. Time-integrated spectra were collected on each shot to correct the streaked data for variations in x-ray photocathode spectral sensitivity. The time-integrated spectrometer uses three elliptical crystals to disperse x rays with energies between 800 and 2100 eV with moderate (E/ΔE ˜ 450) resolving power. The streaked spectrometers accept four interchangeable conical crystals with higher resolving power (E/ΔE ˜ 650) to measure the brightest thermal lines in the 1300 to 1700 eV spectral range.

  4. Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions

    OpenAIRE

    Ferri, J.; Davoine, X.; S. Y. Kalmykov; Lifschitz, A.

    2016-01-01

    Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ) facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (“self...

  5. Study of the properties of Cosmic rays and solar X-Ray Flares by balloon borne experiments

    CERN Document Server

    Chakrabarti, S K; Chakraborty, S; Palit, S; Mondal, S K; Bhattacharya, A; Midya, S; Chakrabarti, S

    2013-01-01

    Indian Centre for Space Physics is engaged in pioneering balloon borne experiments with typical payloads less than ~ 3.5kg. Low cost rubber balloons are used to fly them to a height of about 40km. In a double balloon system, the booster balloon lifts the orbiter balloon to its cruising altitude where data is taken for a longer period of time. In this Paper, we present our first scientific report on the variation of Cosmic Rays and muons with altitude and detection of several solar flares in X-rays between 20keV and 100keV. We found the altitude of the Pfotzer maximum at Tropic of Cancer for cosmic rays and muons and catch several solar flares in hard X-rays. We find that the hard X-ray (> 40keV) sky becomes very transparent above Pfotzer maximum. We find the flare spectrum to have a power-law distribution. From these studies, we infer that valuable scientific research could be carried out in near space using low cost balloon borne experiments. Published in Online version of Indian Journal of Physics.

  6. Single crystal silicon carbide detector of emitted ions and soft x rays from power laser-generated plasmas

    Science.gov (United States)

    Torrisi, L.; Foti, G.; Giuffrida, L.; Puglisi, D.; Wolowski, J.; Badziak, J.; Parys, P.; Rosinski, M.; Margarone, D.; Krasa, J.; Velyhan, A.; Ullschmied, U.

    2009-06-01

    A single-crystal silicon carbide (SiC) detector was used for measurements of soft x rays, electrons, and ion emission from laser-generated plasma obtained with the use of the Prague Asterix Laser System (PALS) at intensities of the order of 1016 W/cm2 and pulse duration of 300 ps. Measurements were performed by varying the laser intensity and the nature of the irradiated target. The spectra obtained by using the SiC detector show not only the photopeak due to UV and soft x-ray detection, but also various peaks due to the detection of energetic charged particles. Time-of-flight technique was employed to determine the ion kinetic energy of particles emitted from the plasma and to perform a comparison between SiC and traditional ion collectors. The detector was also employed by inserting absorber films of different thickness in front of the SiC surface in order to determine, as a first approximation, the mean energy of the soft x-ray emission from the plasma.

  7. Spatio-temporal Dynamics of Sources of Hard X-Ray Pulsations in Solar Flares

    Science.gov (United States)

    Kuznetsov, S. A.; Zimovets, I. V.; Morgachev, A. S.; Struminsky, A. B.

    2016-11-01

    We present a systematic analysis of the spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phases are accompanied by a series of more than three successive peaks (pulsations) of HXR emission detected in the RHESSI 50 - 100 keV energy channel with a four-second time cadence. Twenty-nine such flares observed from February 2002 to June 2015 with characteristic time differences between successive peaks P ≈8 - 270 s are studied. The main observational result of the analysis is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent movements or displacements in the parent active regions from pulsation to pulsation. The flares can be subdivided into two main groups depending on the character of the dynamics of the HXR sources. Group 1 consists of 16 flares (55 %) that show systematic dynamics of the HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has a simple extended trace on the photosphere. Group 2 consists of 13 flares (45 %) that show more chaotic displacements of the HXR sources with respect to an MPIL with a more complex structure, and sometimes several MPILs are present in the parent active regions of such flares. Based on the observations, we conclude that the mechanism of the flare HXR pulsations (at least with time differences of the considered range) is related to successive triggering of the flare energy release process in different magnetic loops (or bundles of loops) of the parent active regions. Group 1 flare regions consist of loops stacked into magnetic arcades that are extended along MPILs. Group 2 flare regions have more complex magnetic structures, and the loops are arranged more chaotically and randomly there. We also found that at least 14 (88 %) group 1 flares and 11 (85 %) group 2 flares are accompanied by coronal mass ejections (CMEs), i.e. the absolute majority of the

  8. Characteristics of Solar Flare Hard X-ray Emissions: Observations and Models

    Science.gov (United States)

    Liu, Wei

    2007-05-01

    The main theme of this dissertation is the investigation of the physics of acceleration and transport of particles in solar flares and their radiative signatures. The observational studies, using hard X-rays (HXRs) observed by RHESSI, concentrate on four flares, which support the classical magnetic reconnection model of flares in various ways. In the 11/03/2003 X3.9 flare, there is an upward motion of the loop-top source, accompanied by a systematic increase in the separation of the foot-point sources at a comparable speed. This is consistent with the reconnection model with an inverted-Y geometry. The 04/30/2002 M1.3 event exhibits rarely observed two coronal sources, with very similar spectra and their higher-energy emission being close together. This suggests that reconnection occurs between the two sources. In the 10/29/2003 X10 flare, the logarithmic total HXR flux of the two foot-points correlates with their mean magnetic field. The foot-points show asymmetric HXR fluxes, qualitatively consistent with the magnetic mirroring effect. The 11/13/2003 M1.7 flare reveals evidence of chromospheric evaporation directly imaged by RHESSI for the first time. The emission centroids move toward the loop-top, indicating a density increase in the loop. The theoretical modeling of this work combines the Stanford stochastic acceleration model with the NRL hydrodynamic model to study the interplay of the particle acceleration, transport, and radiation effects and the atmospheric response to the energy deposition by electrons. I find that low-energy electrons in the quasi-thermal portion of the spectrum affects the hydrodynamics by producing more heating in the corona than the previous models that used a power-law spectrum with a low-energy cutoff. The Neupert effect is found to be present and effects of suppression of thermal conduction are tested in the presence of hydrodynamic flows. I gratefully thank my adviser, Prof. Vahe' Petrosian, my collaborators, and funding support

  9. Spatio-temporal Dynamics of Sources of Hard X-Ray Pulsations in Solar Flares

    Science.gov (United States)

    Kuznetsov, S. A.; Zimovets, I. V.; Morgachev, A. S.; Struminsky, A. B.

    2016-09-01

    We present a systematic analysis of the spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phases are accompanied by a series of more than three successive peaks (pulsations) of HXR emission detected in the RHESSI 50 - 100 keV energy channel with a four-second time cadence. Twenty-nine such flares observed from February 2002 to June 2015 with characteristic time differences between successive peaks P ≈8 - 270 s are studied. The main observational result of the analysis is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent movements or displacements in the parent active regions from pulsation to pulsation. The flares can be subdivided into two main groups depending on the character of the dynamics of the HXR sources. Group 1 consists of 16 flares ( 55~%) that show systematic dynamics of the HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has a simple extended trace on the photosphere. Group 2 consists of 13 flares ( 45~%) that show more chaotic displacements of the HXR sources with respect to an MPIL with a more complex structure, and sometimes several MPILs are present in the parent active regions of such flares. Based on the observations, we conclude that the mechanism of the flare HXR pulsations (at least with time differences of the considered range) is related to successive triggering of the flare energy release process in different magnetic loops (or bundles of loops) of the parent active regions. Group 1 flare regions consist of loops stacked into magnetic arcades that are extended along MPILs. Group 2 flare regions have more complex magnetic structures, and the loops are arranged more chaotically and randomly there. We also found that at least 14 ( 88~%) group 1 flares and 11 ( 85~%) group 2 flares are accompanied by coronal mass ejections (CMEs), i.e. the absolute majority of the

  10. Estimating the Properties of Hard X-Ray Solar Flares by Constraining Model Parameters

    Science.gov (United States)

    Ireland, J.; Tolbert, A. K.; Schwartz, R. A.; Holman, G. D.; Dennis, B. R.

    2013-01-01

    We wish to better constrain the properties of solar flares by exploring how parameterized models of solar flares interact with uncertainty estimation methods. We compare four different methods of calculating uncertainty estimates in fitting parameterized models to Ramaty High Energy Solar Spectroscopic Imager X-ray spectra, considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method is also based on the difference between the data and the model, but instead uses Bayesian data analysis and Markov chain Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from the Geostationary Operational Environmental Satellite X1.3 class flare of 2005 January 19, and the other from the X4.8 flare of 2002 July 23.We find that the four methods give approximately the same uncertainty estimates for the 2005 January 19 spectral fit parameters, but lead to very different uncertainty estimates for the 2002 July 23 spectral fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent results that can differ greatly depending on the shape of the hypersurface. The hypersurface arising from the 2005 January 19 analysis is consistent with a normal distribution; therefore, the assumptions behind the three non- Bayesian uncertainty estimation methods are satisfied and similar estimates are found. The 2002 July 23 analysis shows that the hypersurface is not consistent with a normal distribution, indicating that the assumptions behind the three non-Bayesian uncertainty estimation methods are not satisfied, leading to differing estimates of the uncertainty. We find that the shape of the hypersurface is crucial in understanding

  11. Observations of solar coronal holes using radio (GMRT & GRH), extreme ultra-violet (SOHO-EIT) and X-ray (GOES-SXI) imaging instruments

    Science.gov (United States)

    Madsen, F. R. H.; Ramesh, R.; Ananthakrishnan, S.; Subramanian, P.; Cecatto, J. R.; Sawant, H. S.

    Solar observations with the Giant Metrewave Radio Telescope GMRT on 06 04 2005 at 150 MHz show evidence for a radio counterpart to a Coronal Hole CH observed as a depression in the radio brightness distribution on the solar disk In this work we compare the structural details of the radio CH using the GMRT observations and the Extreme Ultra Violet EUV and Soft X-Ray SXR images obtained with the SoHO EIT and GOES SXI respectively We also study the density temperature inside the same CH using 115 MHz data from the Gauribidanur Radioheliograph GRH We present and discuss our results for the radio counterpart to this CH focusing on the comparison of its position and size as determined from EUV and SXR with the parameters determined from the GMRT map and on the determination of plasma parameters from the GRH map

  12. Science Fair Report: Detection of Solar X-Ray Flares with a Geiger Counter.

    Science.gov (United States)

    Mims, Vicki Rae

    1991-01-01

    Described is a science fair project in which M- and X-class x-ray flares on the surface of the earth were detected using a Geiger counter. Background information, the problem, hypothesis, a list of needed materials, the procedure, observations, conclusions, and a critique are included. (KR)

  13. Fabricating sub-collimating grids for an x-ray solar imaging spectrometer using LIGA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Brennen, R.A.; Hecht, M.H.; Wiberg, D.V. [Jet Propulsion Lab., Pasadena, CA (United States)] [and others

    1997-04-01

    The HESSI mission proposes to perform high resolution imaging and spectroscopy observations in the soft X-ray, hard X-ray, and gamma-ray regimes, with finer angular resolution (nearly 2 arcseconds) and finer energy resolution (approximately 1 keV) than has been previously possible. This combination of imaging and spectroscopy is achieved with a set of Rotating Modulation Collimators placed in front of an array of cooled germanium and silicon detectors. A set of 12 bi-grid collimators, each of which consists of a pair of identically pitched, widely-separated grids, is used to provide the imaging. Each grid consists of a planar array of equally-spaced, parallel, X-ray opaque slats separated by X-ray transparent slits. If the slits of each grid are parallel to each other and the pitch is identical for the two grids, then the transmission through the grid pair depends on the direction of incidence of the incoming X-rays. For slits and slats of equal width, the transmission varies between zero and 50% depending on whether the shadows of the slats in the top grid fall on the slits or slats of the lower grid. A complete transmission cycle from zero to 50% and back to zero corresponds to a change in source direction that is given by p/L, where L is the separation between the grids. The authors describe a deep etch lithography technique developed to fabricate the grids which have pitches below 100 {micro}m. They use a free standing sheet of PMMA as a base for the process, and use the ALS facility to perform the exposures of the PMMA.

  14. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror.

    Science.gov (United States)

    Minami, R; Imai, T; Kariya, T; Numakura, T; Eguchi, T; Kawarasaki, R; Nakazawa, K; Kato, T; Sato, F; Nanzai, H; Uehara, M; Endo, Y; Ichimura, M

    2014-11-01

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  15. Observations of the limb solar flare on 1980 April 30 with the SMM X-ray polychromator

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, A.H.; Acton, L.W.; Culhane, J.L.; Phillips, K.J.H.; Wolfson, C.J.; Rapley, C.G.; Antonucci, E.; Bentley, R.D.; Jordan, C.; Kayat, M.A.; Leibacher, J.W.; Levay, M.; Sherman, J.C.; Strong, K.T.; Veck, N.J.

    1981-03-15

    Soft X-ray observations of the limb event on 1980 April 30 are summarized. These consist of maps made with the Flat Crystal Spectrometer and calcium and iron spectra obtained with the Bent Crystal Spectrometer. The physical conditions, e.g., temperature, density, and energy fluxes, are estimated. The conductive losses exceed the radiative flux during the flare by a factor of about 100. Spectral lines were observed to have enhanced broadening, probably indicating turbulence, for several minutes, coincident with the hard X-ray burst. Since the estimated cooling time is less than the duration of the hot plasma, continuous heating is likely. An estimate is derived for the energy required of 3 x 10/sup 30/ ergs.

  16. An advanced high resolution x-ray imager for laser-plasma interaction observation

    Directory of Open Access Journals (Sweden)

    Dennetiere D.

    2013-11-01

    Full Text Available We present here the latest results obtained with our high resolution broadband X-ray microscope. These results, both spatial and spectral, were obtained in several facilities such as Berlin's synchrotron Bessy II and LULI's laser ELFIE 100TW. The results show clearly the opportunity in high resolution microscopy that offer mirror based diagnostics.

  17. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal Soft X-Ray Emission

    Science.gov (United States)

    McTiernan, J. M.; Caspi, A.; Warren, H.

    2016-12-01

    We combine observations of solar flares from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM). This improvement over the isothermal approximation is intended to help to resolve ambiguities in the range where thermal and non-thermal emission overlap. For this current project we are interested in constraining cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. (Previous work by Caspi et.al. 2014ApJ...788L..31C concentrated on obtaining DEM models that fit both instruments' observations well). Solar flare spectra are typically dominated by thermal bremsstrahlung emission in the soft X-ray ( 30 keV) the emission is non-thermal from beams of electrons. The low energy extent of non-thermal emission can typically only be loosely quantified. In particular, it is difficult to obtain a lower limit for any possible non-thermal cutoff energy due to the larger amount of thermal emission. In this model, thermal emission is due to a DEM that is parametrized as multiple gaussians in Log(T). Non-thermal emission is modeled as a photon spectrum obtained using thin and thick-target emission models. Spectra for both instruments are fit simultaneously in a self-consistent manner. Preliminary results have been obtained using a sample of 102 large (GOES X and M class) solar flares observed between February 2011 and February 2013. These results show that it is possible to determine low energy cutoffs and breaks early during large flares, and to get good values for the low energy limit to the non-thermal cutoff.

  18. Miniature X-Ray Solar Spectrometer (MinXSS) - A Science-Oriented, University 3U CubeSat

    CERN Document Server

    Mason, James P; Caspi, Amir; Chamberlin, Phillip C; Moore, Christopher; Jones, Andrew; Kohnert, Rick; Li, Xinlin; Palo, Scott; Solomon, Stanley

    2015-01-01

    The Miniature X-ray Solar Spectrometer (MinXSS) is a 3-Unit (3U) CubeSat developed at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado, Boulder (CU). Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at CU and from LASP scientists and engineers. The scientific objective of MinXSS is to study processes in the dynamic Sun, from quiet-Sun to solar flares, and to further understand how these changes in the Sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays (SXRs). The enabling technology providing the advanced solar SXR spectral measurements is the Amptek X123, a commercial-off-the-shelf (COTS) silicon drift detector (SDD). The Amptek X123 has a low mass (~324 g after modification), modest power consumption (~2.5 W), and small volume (2.7" x 3.9" x 1.0"), making it ideal for a CubeSat. This paper provides an overvi...

  19. Spectroscopic observations of active solar-analog stars having high X-ray luminosity, as a proxy of superflare stars

    CERN Document Server

    Notsu, Yuta; Maehara, Hiroyuki; Notsu, Shota; Namekata, Kosuke; Nogami, Daisaku; Shibata, Kazunari

    2016-01-01

    Recent studies of solar-type superflare stars have suggested that even old slowly rotating stars similar to the Sun can have large starspots and superflares. We conducted high dispersion spectroscopy of 49 nearby solar-analog stars (G-type main sequence stars with $T_{\\rm{eff}}\\approx5,600\\sim6,000$ K) identified as ROSAT soft X-ray sources, which are not binary stars from the previous studies. We expected that these stars can be used as a proxy of bright solar-analog superflare stars, since superflare stars are expected to show strong X-ray luminosity. More than half (37) of the 49 target stars show no evidence of binarity, and their atmospheric parameters ($T_{\\rm{eff}}$, $\\log g$, and [Fe/H]) are within the range of ordinary solar-analog stars. We measured Ca II 8542 and H$\\alpha$ lines, which are good indicators of the chromospheric activity. The intensity of these lines indicates that all the target stars have large starspots. We also measured $v\\sin i$ (projected rotational velocity) and Lithium abundan...

  20. The effect of anode shape on neon soft x-ray emissions and current sheath configuration in plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M A; Sobhanian, S [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Wong, C S [Plasma Research Laboratory, Physics Department, University of Malaya, Kuala Lumpur (Malaysia); Lee, S; Lee, P; Rawat, R S, E-mail: rajdeep.rawat@nie.edu.s [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University (Singapore)

    2009-02-21

    The effect of three different anode shapes, flat, tapered and hemispherical, on the x-ray emission characteristics of a neon filled UNU-ICTP plasma focus device is investigated. The current sheath dynamics, in the radial collapse phase, has been simultaneously interrogated using the laser shadowgraphy method to understand the variation in x-ray emission characteristics for anodes of different shapes used in the experiments. The maximum neon soft x-ray (SXR) yield for the flat anode is about 7.5 {+-} 0.4 J at 4 mbar, whereas for hemispherical and tapered anodes the neon SXR is almost halved with the optimum pressure shifting to a lower value of 3 mbar. The laser shadowgraphic images confirm that the reduction in the overall neon SXR yield is due to the reduced focused plasma column length for these anodes. The relative HXR yield was the highest for the hemispherical anode followed by the tapered and the flat anodes in that order. The shadowgraphic images and the voltage probe signals confirmed that for the hemispherical anode the multiple-pinch phenomenon was most commonly observed, which could be responsible for multiple HXR bursts for this anode with maximum HXR yields.

  1. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  2. Characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode

    Indian Academy of Sciences (India)

    A Moorti; A Raghuramaiah; P A Naik; P D Gupta

    2004-11-01

    Temporal, spatial and spectral characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode are presented. Electrons from a laser-produced aluminium plasma were accelerated towards a conical point tip titanium anode to generate K-shell x-ray radiation. Approximately 1010 photons/pulse were generated in x-ray pulses of ∼ 18 to ∼ 28 ns duration from a source of ∼ 300 m diameter, at ℎ = 4.51 keV ( emission of titanium), with a brightness of ∼ 1020 photons/cm2 /s/sr. This was sufficient to record single-shot x-ray radiographs of physical objects on a DEF-5 x-ray film kept at a distance of up to ∼ 10 cm.

  3. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    Science.gov (United States)

    Chernyshova, M.; Malinowski, K.; Czarski, T.; Wojeński, A.; Vezinet, D.; Poźniak, K. T.; Kasprowicz, G.; Mazon, D.; Jardin, A.; Herrmann, A.; Kowalska-Strzeciwilk, E.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P.

    2016-11-01

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  4. Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S. B., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Colgan, J.; Abdallah, J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Faenov, A. Ya., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Pikuz, S. A.; Skobelev, I. Yu. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Wagenaars, E.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Rossall, A. K.; Woolsey, N. C. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Booth, N.; Lancaster, K. L. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Evans, R. G. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Gray, R. J.; McKenna, P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom); Kaempfer, T.; Schulze, K. S. [Helmholtzinstitut Jena, Jena D-07743 (Germany); Uschmann, I. [Helmholtzinstitut Jena, Jena D-07743 (Germany); Institut für Optik und Quantenelektronic, Friedrich-Schiller-Universität Jena, Max-Wien Platz 1, Jena, D-07743 (Germany); and others

    2014-03-15

    X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.

  5. High-resolution hard x-ray spectroscopy of high-temperature plasmas using an array of quantum microcalorimeters.

    Science.gov (United States)

    Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L

    2008-10-01

    Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV.

  6. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl; Malinowski, K.; Czarski, T.; Kowalska-Strzęciwilk, E. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Wojeński, A.; Poźniak, K. T.; Kasprowicz, G.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P. [Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw (Poland); Vezinet, D.; Herrmann, A. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Mazon, D.; Jardin, A. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2016-11-15

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  7. Specific features of X-ray generation by plasma focus chambers with deuterium and deuterium-tritium fillings

    Science.gov (United States)

    Dulatov, A. K.; Krapiva, P. S.; Lemeshko, B. D.; Mikhailov, Yu. V.; Moskalenko, I. N.; Prokuratov, I. A.; Selifanov, A. N.

    2016-01-01

    The process of hard X-ray (HXR) generation in plasma focus (PF) chambers was studied experimentally. The radiation was recorded using scintillation detectors with a high time resolution and thermoluminescent detectors in combination with the method of absorbing filters. Time-resolved analysis of the processes of neutron and X-ray generation in PFs is performed. The spectra of HXR emission from PF chambers with deuterium and deuterium-tritium fillings are determined. In experiments with PF chambers filled with a deuterium-tritium mixture, in addition to the HXR pulse with photon energies of up to 200-300 keV, a γ-ray pulse with photon energies of up to 2.5-3.0 MeV is recorded, and a mechanism of its generation is proposed.

  8. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong; Ding, Yuantao; /SLAC; Schroeder, Carl B.; /LBL, Berkeley

    2012-09-13

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  9. Betatron x-rays from laser plasma accelerators: a new probe for warm dense matter at LCLS

    Science.gov (United States)

    Albert, Felicie

    2016-10-01

    Betatron x-ray radiation, driven by electrons from laser-wakefield acceleration, has unique properties to probe high energy density (HED) plasmas and warm dense matter. Betatron radiation is produced when relativistic electrons oscillate in the plasma wake of a laser pulse. Its properties are similar to those of synchrotron radiation, with a 1000 fold shorter pulse. This presentation will focus on the experimental challenges and results related to the development of betatron radiation for x-ray absorption spectroscopy of HED matter at large-scale laser facilities. A detailed presentation of the source mechanisms and characteristics in the blowout regime of laser-wakefield acceleration will be followed by a description of recent experiments performed at the Linac Coherent Light Source (LCLS). At LCLS, we have recently commissioned the betatron x-ray source driven by the MEC short pulse laser (1 J, 40 fs). The source is used as a probe for investigating the X-ray absorption near edge structure (XANES) spectrum at the K- or L-edge of iron and silicon oxide driven to a warm dense matter state (temperature of a few eV and solid densities). The driver is either LCLS itself or an optical laser. These experiments demonstrate the capability to study the electron-ion equilibration mechanisms in warm dense matter with sub-picosecond resolution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by the Laboratory Directed research and development program under tracking codes 13-LW-076, 16-ERD-041 and by the Office of Fusion Energy Sciences under SCW1476 and SCW1569.

  10. Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays

    Science.gov (United States)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-12-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter ξ, we find that on average there is about 30% deviation between the codes in ξ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in ξ is smaller at about 10% on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30% deviation between the codes in the optical depth of the lines produced at log ξ 1 to 2, reducing to about 20% deviation at log ξ 3. We also simulate spectra of the ionised outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionisation codes, which is about 10 to 40%. We compare the modelling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionisation codes for the upcoming era of X-ray astronomy with Athena.

  11. Systematic Comparison of Photoionized Plasma Codes with Application to Spectroscopic Studies of AGN in X-Rays

    Science.gov (United States)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-01-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.

  12. X-ray spectroscopic technique for energetic electron transport studies in short-pulse laser/plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tutt, T.E.

    1994-12-01

    When a solid target is irradiated by a laser beam, the material is locally heated to a high temperature and a plasma forms. The interaction of the laser with plasma can produce energetic electrons. By observing the behavior of these {open_quotes}hot{close_quotes} electrons, we hope to obtain a better understanding of Laser/Plasma Interactions. In this work we employ a layered-fluorescer technique to study the transport, and therefore the energetics, of the electrons. The plasma forms on a thin foil of metallic Pd which is bonded to thin layer of metallic Sn. Electrons formed from the plasma penetrate first the Pd and then the Sn. In both layers the energetic electrons promote inner (K) shell ionization of the metallic atoms which leads to the emission of characteristic K{sub {alpha}} x-rays of the fluorescers. By recording the x-ray spectrum emitted by the two foils, we can estimate the energy-dependent range of the electrons and their numbers.

  13. Analysis of intermittency in submillimeter radio and Hard X-Rays during the impulsive phase of a solar flare

    CERN Document Server

    de Castro, C Guillermo Giménez; Raulin, Jean-Pierre; Guimarães, Odilon M

    2016-01-01

    We present an analysis of intermittent processes occurred during the impulsive phase of the flare SOL2012-03-13, using hard X-rays and submillimeter radio data. Intermittency is a key characteristic in turbulent plasmas and have been a analyzed recently for Hard X-rays data only. Since in a typical flare the same accelerated electron population is believed to produce both Hard X-rays and gyrosynchrotron, we compare both time profiles searching for intermittency signatures. For that we define a cross-wavelet power spectrum, that is used to obtain the Local Intermittency Measure or LIM. When greater than 3, the square LIM coefficients indicate a local intermittent process. The LIM$^2$ coefficient distribution in time and scale helps to identify avalanche or cascade energy release processes. We find two different and well separated intermittent behaviors in the submillimeter data: for scales greater than 20 s, a broad distribution during the rising and maximum phases of the emission seems to favor a cascade proc...

  14. Prediction soft-X-ray spectrum of solar flares from Very Low Frequency observations: an inverse problem in ionospheric science

    Science.gov (United States)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    2016-07-01

    Earth's lower ionosphere and upper atmosphere absorb X-rays and gamma-rays from astronomical sources such as solar flares, Short Gamma ray Repeaters (SGRs) or Gamma Ray Bursts (GRBs). The electron-ion production rates due to the ionization of such energetic photons at different heights depend on the intensity and wavelength of the injected spectrum and hence vary from one source to another. Obviously the ion density vs. altitude profile has the imprint of the incident photon spectrum. In this paper, we examine the possibility of inverting the electron density-height profiles uniquely by deconvolution of the VLF amplitude signal to obtain information on the injected spectrum. We have been able to reproduce the soft-X-ray part of the injected spectra from two different classes of solar flares with satisfactory accuracy. With the possibilities of probing even lower parts of the atmosphere, the method presented here is useful to carry out a similar exercise to infer the higher energy part of solar flare spectra and spectra of more energetic events such as the GRBs, SGRs etc. We show that to a certain accuracy, the Earth's atmosphere may be used as a gigantic detector of relatively strong ionizing extra-terrestrial events.

  15. Catalogue of x-ray solar flare induced variations in sub-ionospheric very low frequency (VLF) waveguides

    Science.gov (United States)

    Eichelberger, Hans; Schwingenschuh, Konrad; Boudjada, Mohammed Y.; Besser, Bruno P.; Wolbang, Daniel; Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier F.; Stachel, Manfred; Prattes, Gustav; Aydogar, Özer; Muck, Cosima; Grill, Claudia; Jernej, Irmgard; Stachel, Thomas; Moro, Florian

    2017-04-01

    In this study we present a catalogue of solar flare induced very low frequency (VLF) variations along sub-ionospheric paths between several transmitters and the Graz seismo-electromagnetic UltraMSK receiving station. These measurements of non-seismic disturbances are important in order to carefully characterise the Earth-ionosphere VLF waveguide and disentangle possible earthquake related phenomena from natural and man-made ambient VLF amplitude and phase modifications. The period of investigation is from Jan. 2010 to April 2016, i.e. largely covers the sunspot cycle 24. In total we've 373 VLF amplitude and phase fluctuations related with C/M/X-class solar flare events (the data are from NOAA GOES x-ray flux measurements). We obtain the statistics (dependence on VLF signal vs. x-ray flux variations) for high signal-to-noise ratio VLF links under consideration of the zenith angle. We conclude, that with the mid-latitude Graz VLF knot, a part of the European receiver network, a reliable service for solar flare induced variations of the VLF waveguide can be established. In addition to complementary region-wide network multi-parameter observations this could be a crucial step towards a full characterisation of the behaviour of sub-ionospheric VLF paths including modifications related to seismic activity.

  16. Hard X-ray bursts and DD microfusion neutrons from complex plasmas of vacuum discharge

    Indian Academy of Sciences (India)

    Yu K Kurilenkov; M Skowronek

    2003-12-01

    We create the random complex media of high-power density in low-energy nanosecond vacuum discharges. Hard X-ray emission efficiency, generation of energetic ions (∼ 1 MeV) and neutrons, trapping and releasing of fast ions and/or X-rays from interelectrode aerosol ensembles are the subject of our study. The neutrons from DD microfusion, as well as the modelling of some interstellar nuclear burning due to microexplosive nucleosynthesis are discussed. The value of neutron yield from DD fusion in interelectrode space varies and amounts to ∼ 105-107/4 per shot under ≈ 1 J of total energy deposited to create all discharge processes.

  17. UV and x-ray spectral lines of FeXXIII ion for plasma diagnostics

    CERN Document Server

    Murakami, I; Murakami, Izumi; Kato, Takako

    1996-01-01

    We have calculated X-ray and UV spectra of Be-like Fe (FeXXIII) ion in collisional-radiative model including all fine-structure transitions among the 2s^2, 2s2p, 2p^2, 2snl, and 2pnl levels where n=3 and 4, adopting data for the collision strengths by Zhang & Sampson (1992) and by Sampson, Goett, & Clark (1984). Some line intensity ratios can be used for the temperature diagnostics. We show 5 ratios in UV region and 9 ratios in X-ray region as a function of electron temperature and density at 0.3keV < T_e < 10keV and n_e = 1 - 10^{25} cm^{-3}. The effect of cascade in these line ratios and in the level population densities are discussed.

  18. Multi-keV X-Ray Conversion Efficiency in Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Back, C A; Landen, O L; Hammer, J H; Suter, L J; Miller, M C; Davis, J; Grun, J

    2002-10-31

    X-ray sources are created at the Nova and Omega laser by irradiating a confined volume of Ar, Xe, or Kr gas. The gas is heated by forty 0.35 {micro}m wavelength, 1-ns square laser beams to produce He-like ions that radiate K-shell emission over mm-sized dimensions. The targets are designed to be ''underdense'', meaning that the initial gas density is lower than the critical density of the laser, n{sub c} {approx} 10{sup 21} cm{sup -3}. The laser energy is primarily absorbed by inverse bremsstrahlung and a supersonic heat wave efficiently ionizes the gas. Results from time-resolved and time-integrated diagnostics over a range of experimental parameters are compared. This work represents an important, new method for development of efficient, large-area, tailored multi-keV x-ray sources.

  19. On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange

    Science.gov (United States)

    Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; Holmstrom, M.; Kuntz, K. D.; Porter, F. Scott; Read, A.; Robertson, I. P.; Sembay, S. F.; Sibeck, D. G.; Stubbs, T. J.; Travnicek, P.; Walsh, B. M.

    2014-01-01

    We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.

  20. EBT2 Dosimetry of X-rays produced by the electron beam from PFMA-3, a Plasma Focus for medical applications

    CERN Document Server

    Ceccolini, Elisa; Mostacci, Domiziano; Sumini, Marco; Tartari, Agostino

    2011-01-01

    The electron beam emitted from the back of Plasma Focus devices is being studied as a radiation source for IORT (IntraOperative Radiation Therapy) applications. A Plasma Focus device is being developed to this aim, to be utilized as an X-ray source. The electron beam is driven to impinge on 50 {\\mu}m brass foil, where conversion X-rays are generated. Measurements with gafchromic film are performed to analyse the attenuation of the X-rays beam and to predict the dose given to the culture cell in radiobiological experiments to follow.

  1. Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics

    Science.gov (United States)

    1987-10-01

    Energy Fluorescent X-Ray Spectroscopy for Materials Analysis" 13. "Temporal Dependence of the Mass- Ablation Rate In UV- Laser -Irradiated Spherical...Rochester (utilizing 24 focussed UV laser beams of about 2000 joules total energy of 3510 A light within a 600 picosecond Gaussian pulse). Presented in...of the carbon, tungsten , and tungsten carbide layers, respectively. We estimate the mass densities p, (for amorphous carbon), py( tungsten ), and p

  2. Ultradast Absorption Spectroscopy of Aluminum Plasmas Created by LCLS using Betatron X-Ray Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Felicie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-12

    This document summarizes the goals and accomplishments of a six month-long LDRD project, awarded through the LLNL director Early and Mid Career Recognition (EMCR) program. This project allowed us to support beamtime awarded at the Matter under Extreme Conditions (MEC) end station of the Linac Coherent Light Source (LCLS). The goal of the experiment was to heat metallic samples with the bright x-rays from the LCLS free electron laser. Then, we studied how they relaxed back to equilibrium by probing them with ultrafast x-ray absorption spectroscopy using laser-based betatron radiation. Our work enabled large collaborations between LLNL, SLAC, LBNL, and institutions in France and in the UK, while providing training to undergraduate and graduate students during the experiment. Following this LDRD project, the PI was awarded a 5-year DOE early career research grant to further develop applications of laser-driven x-ray sources for high energy density science experiments and warm dense matter states.

  3. Ultrafast Absorption Spectroscopy of Aluminum Plasmas Created by LCLS using Betatron X-Ray Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Felicie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-12

    This document summarizes the goals and accomplishments of a six month-long LDRD project, awarded through the LLNL director Early and Mid Career Recognition (EMCR) program. This project allowed us to support beamtime awarded at the Matter under Extreme Conditions (MEC) end station of the Linac Coherent Light Source (LCLS). The goal of the experiment was to heat metallic samples with the bright x-rays from the LCLS free electron laser. Then, we studied how they relaxed back to equilibrium by probing them with ultrafast x-ray absorption spectroscopy using laser-based betatron radiation. Our work enabled large collaborations between LLNL, SLAC, LBNL, and institutions in France and in the UK, while providing training to undergraduate and graduate students during the experiment. Following this LDRD project, the PI was awarded a 5-year DOE early career research grant to further develop applications of laser-driven x-ray sources for high energy density science experiments and warm dense matter states.

  4. Experimental and numerical analysis of atmospheric air plasma induced by multi-MeV pulsed X-ray

    Science.gov (United States)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-10-01

    Quantification of electromagnetic stresses on electronic systems, following irradiation of the air by ionizing radiations, requires a thorough study of the plasma generated. In this work, the temporal evolution of non-equilibrium air plasmas self-induced by energetic X-rays is experimentally and theoretically investigated at atmospheric pressure. Time resolved electron density measurements are based on transmission measurements of an electromagnetic wave in the microwave range. The electromagnetic wave is launched into a wave guide, which is irradiated by a high flux of multi-MeV pulsed X-rays. For different X-ray fluxes, the electron density is determined from the comparison between the transmitted microwave signal at the waveguide output, and the result of the calculation of the propagation of an electromagnetic wave through time varying plasma contained in a waveguide. These measurements require a priori assumptions on electron temperature, which is obtained and confirmed by a reaction kinetics model of the evolution of the electron energy and the densities of the different humid air plasma species inside the waveguide. The considered chemical kinetics scheme involves 39 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 265 selected reactions. A good agreement is observed between the calculated and measured time evolution of the transmitted signal for specific profiles of electron energy and density. In our experiments, the maximum electron density is of the order of few 1012 cm-3, for a mean electron energy of about 0.5 eV. For doses range from 3 Gy to 21 Gy, the discrepancies between the measurements and the model for the maximum of the electron density are within a factor of 2.

  5. Spectroscopic observations of active solar-analog stars with high X-ray luminosity, as a proxy of superflare stars

    Science.gov (United States)

    Notsu, Yuta; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Namekata, Kosuke; Nogami, Daisaku; Shibata, Kazunari

    2017-02-01

    Recent studies of solar-type superflare stars have suggested that even old slowly rotating stars similar to the Sun can have large starspots and superflares. We conducted high-dispersion spectroscopy of 49 nearby solar-analog stars (G-type main-sequence stars with Teff ≈ 5600-6000 K) identified as ROSAT soft X-ray sources, which are not binary stars from previous studies. We expected that these stars could be used as a proxy of bright solar-analog superflare stars, since superflare stars are expected to show strong X-ray luminosity. More than half (37) of the 49 target stars show no evidence of binarity, and their atmospheric parameters (temperature, surface gravity, and metallicity) are within the range of ordinary solar-analog stars. We measured the intensity of Ca II 8542 and Hα lines, which are good indicators of the stellar chromospheric activity. The intensity of these lines indicates that all the target stars have large starspots. We also measured v sin i (projected rotational velocity) and lithium abundance for the target stars. Li abundance is a key to understanding the evolution of the stellar convection zone, which reflects the stellar age, mass and rotational history. We confirmed that many of the target stars rapidly rotate and have high Li abundance, compared with the Sun, as suggested by many previous studies. There are, however, also some target stars that rotate slowly (v sin i = 2-3 km s-1) and have low Li abundance like the Sun. These results support that old and slowly rotating stars similar to the Sun could have high activity levels and large starspots. This is consistent with the results of our previous studies of solar-type superflare stars. In the future, it is important to conduct long-term monitoring observations of these active solar-analog stars in order to investigate detailed properties of large starspots from the viewpoint of stellar dynamo theory.

  6. Single-Shot Wavefront Measurement of an Injection-seeded Plasma-based Soft X-Ray Laser

    Science.gov (United States)

    Wang, S.; Li, L.; Wang, Y.; Oliva, E.; Yin, L.; Luther, B.; Maynard, G.; Ros, D.; Rocca, J. J.; Zeitoun, Ph.

    2013-10-01

    The wavefront of a λ = 18.9 nm soft x-ray beam from an injection-seeded plasma amplifier created by irradiation of a solid target was measured using a Hartmann wavefront sensor with an accuracy of λ/32 in a single shot. A significant improvement in wavefront aberrations from 0.51 +/- 0.06 λ rms of high harmonic seed to 0.23 +/- 0.01 λ rms for the amplified seeded beam was observed. The variation of wavefront characteristic as a function of time delay between the injection of the seed and peak of soft x-ray amplifier pump was studied. The wavefront sensor allows for the independent measurement of the different aberrations. The strongest improvement of the wavefront as it exits the amplifier is observed for coma, with values improve by more than a factor of 2, from 0.4l λ to 0.18 λ rms. The measurements were used to reconstruct the soft x-ray source and confirm its high peak brightness of about 1 ×1026 photons/(s.mm2.mrad2. 0.01 % bandwidth). Work supported by AMOS program, Office of Basic Energy Sciences of the US DoE, and the NSF ERC Program with equipment developed under NSF Award MRI-ARRA 09-561, and by LASERLAB3-INREX European project and SHYLAX plus CIBORG RTRA `Triangle de la Physique.'

  7. Double core-hole spectroscopy of transient plasmas produced in the interaction of ultraintense x-ray pulses with neon

    CERN Document Server

    Gao, Cheng; Yuan, Jianmin

    2015-01-01

    Double core-hole (DCH) spectroscopy is investigated systematically for neon atomic system in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in the detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the highly transient plasmas. For x-ray pulses with photon energy in the range of 937-1030 eV, where $1s\\rightarrow 2p$ resonance absorption from single core-hole (SCH) states of neon charge states exist, inner-shell resonant absorption (IRA) effects play important roles in the time evolution of population and DCH spectroscopy. Such IRA physical effects are illustrated in detail by investigating the interaction of x-ray pulses at a photon energy of 944 eV, which corresponds to the $1s\\rightarrow 2p$ resonant absorption from the SCH states ($1s2s^22p^4$, $1s2s2p^5$ and $1s2p^6$) of Ne$^{3+}$. After averaging over the space and time distribution o...

  8. Development of a DAQ system for a plasma display panel-based X-ray detector (PXD)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hakjae [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of); Research Institute of Health Science, Korea University, Seoul (Korea, Republic of); Jung, Young-Jun [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of); Eom, Sangheum [Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si (Korea, Republic of); Kang, Jungwon [Department of Electronics and Electrical Engineering, Dankook University, Yongin, Gyeonggi (Korea, Republic of); Lee, Kisung, E-mail: kisung@korea.ac.kr [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of)

    2015-06-01

    Recently, a novel plasma display panel (PDP)-based X-ray detector (PXD) was developed. The goal of this study is to develop a data acquisition system for use with the PXD as an imaging detector. Since the prototype detector does not have any barrier ribs or a switching device in a detector pixel, a novel pixelation scheme—the line-scan method—is developed for this new detector. To implement line scanning, a multichannel high-voltage switching circuit and a multichannel charge-acquisition circuit are developed. These two circuits are controlled by an FPGA-based digital signal processing board, from which the information about the charge and position of each pixel can be sent to a PC. FPGA-based baseline compensation and switching noise rejection algorithms are used to improve the signal-to-noise ratio (SNR). The characteristic curve of the entire PXD system is acquired, and the correlation coefficients between the X-ray dose, and the signal intensity and the SNR were determined to be approximately 0.99 and 52.9, respectively. - Highlights: • We developed a data acquisition circuit for a novel X-ray imaging detector. • Line scan, noise rejection, and data transmission methods have been implemented by the FPGA. • The linearity and SNR of the proposed detector system have been measured quantitatively.

  9. Development of x-ray and ion diagnostics of plasma obtained with a 10-TW femtosecond laser

    Science.gov (United States)

    Ryć, L.; Dobrzański, L.; Dubecky, F.; Jabłoński, S.; Parys, P.; Słysz, W.; Rosiński, M.

    2016-07-01

    Several x-ray and ion semiconductor detectors have been developed for the diagnostics of femtosecond laser plasma generated by a 10-TW laser which was recently commissioned for operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw. A range of detectors has been employed including a CdTe detector for hard x-rays and four detectors for proton detection. These four are SiC and GaN employing a sandwich structure, an interdigitated M-S-M InP detector and finally a silicon photo-diode equipped with an aluminium filter (to shield against scattered light). The detectors presented are innovative as they are not commonly used for the diagnostic of laser plasma. The details of the internal structures of the detectors are presented. The immunity of the detectors to the noise coming from the laser system and the femtosecond plasma is discussed. Lastly, the possibility for further modifications and improvements are considered and discussed.

  10. Electron Distribution Functions in Solar Flares from combined X-ray and EUV Observations

    CERN Document Server

    Battaglia, Marina

    2013-01-01

    Simultaneous solar flare observations with SDO and RHESSI provide spatially resolved information about hot plasma and energetic particles in flares. RHESSI allows the properties of both hot (> 8 MK) thermal plasma and nonthermal electron distributions to be inferred, while SDO/AIA is more sensitive to lower temperatures. We present and implement a new method to reconstruct electron distribution functions from SDO/AIA data. The combined analysis of RHESSI and AIA data allows the electron distribution function to be inferred over the broad energy range from ~0.1 keV up to a few tens of keV. The analysis of two well observed flares suggests that the distributions in general agree to within a factor of three when the RHESSI values are extrapolated into the intermediate range 1-3 keV, with AIA systematically predicting lower electron distributions. Possible instrumental and numerical effects, as well as potential physical origins for this discrepancy are discussed. The inferred electron distribution functions in g...

  11. The extreme ultraviolet and X-ray Sun in Time: High-energy evolutionary tracks of a solar-like star

    Science.gov (United States)

    Tu, Lin; Johnstone, Colin P.; Güdel, Manuel; Lammer, Helmut

    2015-05-01

    Aims: We aim to describe the pre-main-sequence and main-sequence evolution of X-ray and extreme-ultaviolet radiation of a solar-mass star based on its rotational evolution starting with a realistic range of initial rotation rates. Methods: We derive evolutionary tracks of X-ray radiation based on a rotational evolution model for solar-mass stars and the rotation-activity relation. We compare these tracks to X-ray luminosity distributions of stars in clusters with different ages. Results: We find agreement between the evolutionary tracks derived from rotation and the X-ray luminosity distributions from observations. Depending on the initial rotation rate, a star might remain at the X-ray saturation level for very different time periods, from ≈10 Myr to ≈300 Myr for slow and fast rotators, respectively. Conclusions: Rotational evolution with a spread of initial conditions leads to a particularly wide distribution of possible X-ray luminosities in the age range of 20-500 Myr, before rotational convergence and therefore X-ray luminosity convergence sets in. This age range is crucial for the evolution of young planetary atmospheres and may thus lead to very different planetary evolution histories.

  12. High-brightness laser plasma soft X-ray source using a double-stream gas puff target irradiated with the Prague Asterix Laser System (PALS)

    Energy Technology Data Exchange (ETDEWEB)

    Fiedorowicz, H.; Bartnik, A.; Juha, L.; Jungwirth, K.; Kralikova, B.; Krasa, J.; Kubat, P.; Pfeifer, M.; Pina, L.; Prchal, P.; Rohlena, K.; Skala, J.; Ullschmied, J.; Horvath, M.; Wawer, J

    2004-01-14

    High brightness laser plasma soft X-ray source based on a recently developed double-stream gas puff target irradiated with 0.5 ns laser pulses with energies up to 700 J from the Prague Asterix Laser System (PALS) is presented. The gas puff target was created by pulsed injection of xenon into a hollow stream of helium using an electromagnetic valve system with the double-nozzle setup. Soft X-ray emission was measured using the transmission grating spectrograph coupled to a CCD camera and the calibrated silicon photodiodes. The absolute soft X-ray production was determined to be 160 J for 540 J of laser energy, giving the soft X-ray conversion efficiency of about 30%. The source has been used in initial experiments on soft X-ray ablation of organic polymers and elemental solids.

  13. An impulsive solar burst observed in H-alpha, microwaves, and hard X-rays

    Science.gov (United States)

    Gary, D. E.; Tang, F.

    1985-01-01

    H-alpha, microwave, and hard X-ray observations of an unusually short duration impulsive spike burst are presented. The observations are analyzed, and it is found that the single spike is in fact composed of two separate acceleration episodes. The differences found in the time profiles for the two components stress the role of the decay rate and lead to a simple explanation for the often observed delay of the microwave peak. The approximate numbers of electrons responsible for the two types of emission are derived and compared.

  14. DXL: A Sounding Rocket Mission for the Study of Solar Wind Charge Exchange and Local Hot Bubble X-Ray Emission

    Science.gov (United States)

    Galeazzi, M.; Prasai, K.; Uprety, Y.; Chiao, M.; Collier, M. R.; Koutroumpa, D.; Porter, F. S.; Snowden, S.; Cravens, T.; Robertson, I.; hide

    2011-01-01

    The Diffuse X-rays from the Local galaxy (DXL) mission is an approved sounding rocket project with a first launch scheduled around December 2012. Its goal is to identify and separate the X-ray emission generated by solar wind charge exchange from that of the local hot bubble to improve our understanding of both. With 1,000 square centimeters proportional counters and grasp of about 10 square centimeters sr both in the 1/4 and 3/4 keV bands, DXL will achieve in a 5-minute flight what cannot be achieved by current and future X-ray satellites.

  15. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  16. DXL: a sounding rocket mission for the study of solar wind charge exchange and local hot bubble X-ray emission

    CERN Document Server

    Galeazzi, M; Collier, M R; Cravens, T; Koutroumpa, D; Kuntz, K D; Lepri, S; McCammon, D; Porter, F S; Prasai, K; Robertson, I; Snowden, S; Uprety, Y

    2011-01-01

    The Diffuse X-rays from the Local galaxy (DXL) mission is an approved sounding rocket project with a first launch scheduled around December 2012. Its goal is to identify and separate the X-ray emission generated by solar wind charge exchange from that of the local hot bubble to improve our understanding of both. With 1,000 cm2 proportional counters and grasp of about 10 cm2 sr both in the 1/4 and 3/4 keV bands, DXL will achieve in a 5-minute flight what cannot be achieved by current and future X-ray satellites.

  17. Caliste-SO X-ray micro-camera for the STIX instrument on-board Solar Orbiter space mission

    Energy Technology Data Exchange (ETDEWEB)

    Meuris, A., E-mail: aline.meuris@cea.fr [CEA/DSM/Irfu, 91191 Gif-sur-Yvette Cedex (France); Hurford, G. [Institute of 4-D Technologies, School of Engineering, University of Applied Sciences for Northwestern Switzerland (FHNW), Steinackerstrasse 5, 5210 Windisch (Switzerland); Bednarzik, M. [PSI, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland); Limousin, O.; Gevin, O.; Le Mer, I.; Martignac, J.; Horeau, B. [CEA/DSM/Irfu, 91191 Gif-sur-Yvette Cedex (France); Grimm, O. [ETH Zurich, Institute for Particle Physics, Schafmattstrasse 20, 8093 Zurich (Switzerland); Resanovic, R. [PSI, Laboratory for Micro- and Nanotechnology, 5232 Villigen PSI (Switzerland); Krucker, S. [ETH Zurich, Institute for Particle Physics, Schafmattstrasse 20, 8093 Zurich (Switzerland); Orleanski, P. [Space Research Center of the Polish Academy of Sciences, 18A Bartycka, 00-716 Warsaw (Poland)

    2012-12-11

    The Spectrometer Telescope for Imaging X-rays (STIX) is an instrument on the Solar-Orbiter space mission that performs hard X-ray imaging spectroscopy of solar flares. It consists of 32 collimators with grids and 32 spectrometer units called Caliste-SO for indirect Fourier-transform imaging. Each Caliste-SO device integrates a 1 cm{sup 2} CdTe pixel sensor with a low-noise low-power analog front-end ASIC and circuits for supply regulation and filtering. The ASIC named IDeF-X HD is designed by CEA/Irfu (France) whereas CdTe-based semiconductor detectors are provided by the Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute (Switzerland). The design of the hybrid, based on 3D Plus technology (France), is well suited for STIX spectroscopic requirements (1 keV FWHM at 6 keV, 4 keV low-level threshold) and system constraints (4 W power and 5 kg mass). The performance of the sub-assemblies and the design of the first Caliste-SO prototype are presented.

  18. Caliste-SO X-ray micro-camera for the STIX instrument on-board Solar Orbiter space mission

    Science.gov (United States)

    Meuris, A.; Hurford, G.; Bednarzik, M.; Limousin, O.; Gevin, O.; Le Mer, I.; Martignac, J.; Horeau, B.; Grimm, O.; Resanovic, R.; Krucker, S.; Orleański, P.

    2012-12-01

    The Spectrometer Telescope for Imaging X-rays (STIX) is an instrument on the Solar-Orbiter space mission that performs hard X-ray imaging spectroscopy of solar flares. It consists of 32 collimators with grids and 32 spectrometer units called Caliste-SO for indirect Fourier-transform imaging. Each Caliste-SO device integrates a 1 cm2 CdTe pixel sensor with a low-noise low-power analog front-end ASIC and circuits for supply regulation and filtering. The ASIC named IDeF-X HD is designed by CEA/Irfu (France) whereas CdTe-based semiconductor detectors are provided by the Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute (Switzerland). The design of the hybrid, based on 3D Plus technology (France), is well suited for STIX spectroscopic requirements (1 keV FWHM at 6 keV, 4 keV low-level threshold) and system constraints (4 W power and 5 kg mass). The performance of the sub-assemblies and the design of the first Caliste-SO prototype are presented.

  19. Grazing incidence X-ray fluorescence analysis of buried interfaces in periodically structured crystalline silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhauer, David; Preidel, Veit; Becker, Christiane [Young Investigator Group Nanostructured Silicon for Photovoltaic and Photonic Implementations (Nano-SIPPE), Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Pollakowski, Beatrix; Beckhoff, Burkhard [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Baumann, Jonas; Kanngiesser, Birgit [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin (Germany); Amkreutz, Daniel; Rech, Bernd [Institut Silizium Photovoltaik, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Back, Franziska; Rudigier-Voigt, Eveline [SCHOTT AG, Mainz (Germany)

    2015-03-01

    We present grazing incidence X-ray fluorescence (GIXRF) experiments on 3D periodically textured interfaces of liquid phase crystallized silicon thin-film solar cells on glass. The influence of functional layers (SiO{sub x} or SiO{sub x}/SiC{sub x}) - placed between glass substrate and silicon during crystallization - on the final carbon and oxygen contaminations inside the silicon was analyzed. Baring of the buried structured silicon surface prior to GIXRF measurement was achieved by removal of the original nano-imprinted glass substrate by wet-chemical etching. A broad angle of incidence distribution was determined for the X-ray radiation impinging on this textured surface. Optical simulations were performed in order to estimate the incident radiation intensity on the structured surface profile considering total reflection and attenuation effects. The results indicate a much lower contamination level for SiO{sub x} compared to the SiO{sub x}/SiC{sub x} interlayers, and about 25% increased contamination when comparing structured with planar silicon layers, both correlating with the corresponding solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model

    Science.gov (United States)

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series Xt . The branching ratio bx is defined as bx=E[ξx/x] . The random variable ξx is the value of the next signal given that the previous one is equal to x , so ξx={Xt+1∣Xt=x} . If bx>1 , the process is on average supercritical when the signal is equal to x , while if bxefficient market hypothesis.” For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, bx is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where bx≃1 , which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for Xt and for ξx . For the BTW model the distribution of ξx is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x . Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where bx is close to one disappears once bulk dissipation is introduced in the BTW model—supporting our hypothesis that it is an indicator of criticality.

  1. The process of data formation for the Spectrometer/Telescope for Imaging X-rays (STIX) in Solar Orbiter

    CERN Document Server

    Giordano, Sara; Piana, Michele; Massone, Anna Maria

    2014-01-01

    The Spectrometer/Telescope for Imaging X-rays (STIX) is a hard X-ray imaging spectroscopy device to be mounted in the Solar Orbiter cluster with the aim of providing images and spectra of solar flaring regions at different photon energies in the range from a few keV to around 150 keV. The imaging modality of this telescope is based on the Moire pattern concept and utilizes 30 sub-collimators, each one containing a pair of co-axial grids. This paper applies Fourier analysis to provide the first rigorous description of the data formation process in STIX. Specifically, we show that, under first harmonic approximation, the integrated counts measured by STIX sub-collimators can be interpreted as specific spatial Fourier components of the incoming photon flux, named visibilities. Fourier analysis also allows the quantitative assessment of the reliability of such interpretation. The description of STIX data in terms of visibilities has a notable impact on the image reconstruction process, since it fosters the applic...

  2. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    Science.gov (United States)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  3. X-ray imaging and imaging spectroscopy of fusion plasmas and light-source experiments with spherical optics and pixel array detectors

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Beiersdorfer, P.; Sanchez del Rio, M.; Zhang, L.

    2012-10-01

    High resolution (λ/Δλ ~10,000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixelarray detector (PAD) is used world wide for Doppler measurements of ion-temperature (Ti) and plasma flow-velocityprofiles in magnetic confinement fusion (MCF) plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion (ICF) plasmas and targets on x-ray light source beam lines, with spatial resolution of microns. A new concept of using matched pairs of spherically bent crystals for monochromatic stigmatic 2D x-ray imaging of mm sized sources offers the possibility of spatial resolution of microns and large solid angle, relative to that achieved with pinhole imaging. Other potential applications of the 2D imaging schemes include x-ray lithography and x-ray microscopy for biological and materials science research. Measurements from MFE plasmas, as well as laboratory experiments and ray tracing computations validating the 1D imaging spectroscopy and 2D x-ray imaging techniques will be presented.

  4. Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D. A., E-mail: david.chapman@awe.co.uk [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kraus, D.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Guymer, T. M. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Neumayer, P. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Redmer, R. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

    2014-08-15

    We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

  5. Efficient multi-keV X-ray generation from high-contrast laser plasma interaction

    Directory of Open Access Journals (Sweden)

    Zhang Z.

    2013-11-01

    Full Text Available Kα line emission from Mo was experimentally and theoretically studied using clean, ultrahigh-intensity femtosecond laser pulses. The absolute yields of Kα x-rays at 17 keV from Mo were measured as a function of the laser pulse contrast ratio and irradiation intensity. Significantly enhanced Kα yields were obtained by employing high contrast ratio at optimum irradiance. Conversion efficiencies of 4.28 × 10−5/sr, the highest values obtained to date, was demonstrated with contrast ratios in the range of 10−10 to 10−11.

  6. In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substrates

    DEFF Research Database (Denmark)

    Rossander, Lea Hildebrandt; Larsen-Olsen, Thue T.; Dam, Henrik Friis

    2016-01-01

    and crystallographic development. Using our in situ slot-die micro roll-to-roll coater setup, we measured small and wide angle X-ray scattering in grazing incidence while the material dried, enabling us to follow the crystallization from just after the deposition and up to 25 minutes later. The data showed differing......In an effort to understand recent results showing differences between the power conversion efficiencies of lead halide (CH3NH3PbI3-xClx) solar cells on glass versus flexible substrates, this study investigates the influence that substrate and processing methods have on morphological...... that the flexible substrates absorb part of the solvent, thereby delaying evaporation and changing the solvent environment around the perovskite. As a further test, we produced solar cells with the same substrates and confirmed that the ones made on flexible substrates performed worse than those made on glass...

  7. Miocrowave spectral imaging, H-alpha and hard X-ray observations of a solar limb flare

    Science.gov (United States)

    Wang, H.; Gary, D. E.; Lim, J.; Schwartz, R. A.

    1994-01-01

    We compare the microwave, H-alpha, and hard X-ray observations for a west limb C7.3 flare that occurred at 17:10 UT, 1992 June 26. H-alpha movies were obtained at Big Bear Solar Observatory. Before the onset of the flare, overexposed H-alpha images show the complicated flux loop structure above the limb. Material was observed to descend along the loops toward the site where the flare occurred hours later. Using the five-antenna solar array at Owens Valley Radio Observatory, we obtain two-dimensional maps of flare emission from 1.4 to 14 GHz. In all three temporal peaks of the microwave bursts, the maps show the same characteristics. The peak low-frequency emission comes from the top of one bundle of the H-alpha loops and gradually shifts to the foot-point of the loops (the location of H-alpha flare) as the frequency increases. The location of the emission peak shifts 88 sec between 1 and 14 GHz. Seventy percent of the shift occurs between 1 and 5 GHz. The locus of the shift of the emission peak follows the shape of an H-alpha surge that occurred after the flare. For each point along the locus, we create the microwave brightness temperature spectrum and compare the radio-derived electron distribution with that derived from the high-resolution hard X-ray spectra measured with Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO). We find that the peak frequency changes from approximately 3 GHz at the loop top to approximately 7 GHz at the footprint, presumably due to the increase of the magnetic field from approximately 160 GHz at the loop top to approximately 300 G at the footpoint. The high-frequency slope of the microwave power-law spectrum decreases from approximately 10 at the loop top to approximately 5 at the footprint due to a change in the energy distribution of the dominant electrons. The microwave brightness temperature spectral index predicted by the BATSE power-law hard X-ray spectra agrees with the measured

  8. Ionization energy shift of characteristic K x-ray lines from high-Z materials for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Słabkowska, K.; Szymańska, E.; Polasik, M. [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Toruń (Poland); Pereira, N. R. [Ecopulse, Inc., 7844 Vervain Ct, Springfield, Virginia 22152 (United States); Rzadkiewicz, J. [National Centre for Nuclear Research, 05-400 Otwock (Poland); Seely, J. F. [Artep, Inc., 2922 Excelsior Springs Ct, Ellicott, Maryland 21042 (United States); Weber, B. V.; Schumer, J. W. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-03-15

    The energy of the characteristic x-rays emitted by high atomic number atoms in a plasma that contains energetic electrons depends on the atom's ionization. For tungsten, the ionization energy shift of the L-lines has recently been used to diagnose the plasma's ionization; the change in energy of a K-line has been measured for iridium and observed for ytterbium. Here, we present detailed computations of the ionization energy shift to K-lines of these and an additional element, dysprosium; for these atoms, some K-lines nearly coincide in energy with K-edges of slightly lower Z atoms so that a change in transmission behind a K-edge filter betrays a change in energy. The ionization energy shift of such high-energy K-lines may enable a unique diagnostic when the plasma is inside an otherwise opaque enclosure such as hohlraums used on the National Ignition Facility.

  9. X-ray emission processes in stars

    CERN Document Server

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the HR diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, evolution of X-ray activity with age), to X-ray generating processes (e.g. accretion, jets, magnetically confined winds) that were poorly understood in the pre-Chandra/XMM-Newton era. I discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics no...

  10. UFCORIN: A Fully Automated Predictor of Solar Flares in GOES X-Ray Flux

    CERN Document Server

    Muranushi, Takayuki; Muranushi, Yuko Hada; Isobe, Hiroaki; Nemoto, Shigeru; Komazaki, Kenji; Shibata, Kazunari

    2015-01-01

    We have developed UFCORIN, a platform for studying and automating space weather prediction. Using our system we have tested 6,160 different combinations of SDO/HMI data as input data, and simulated the prediction of GOES X-ray flux for 2 years (2011-2012) with one-hour cadence. We have found that direct comparison of the true skill statistics (TSS) is ill-posed, and used the standard scores ($z$) of the TSS to compare the performance of the various prediction strategies. The best strategies we have found for predicting X, $\\geq$M and $\\geq$C class flares are better than the average of the 6,160 strategies by 2.3$\\sigma$, 2.1$\\sigma$, 3.8$\\sigma$ confidence levels, respectively. The best three's TSS values were $0.745\\pm0.072$, $0.481\\pm0.017$, and $0.557\\pm0.043$, respectively.

  11. Cometary X-rays : solar wind charge exchange in cometary atmospheres

    NARCIS (Netherlands)

    Bodewits, Dennis

    2007-01-01

    The interaction of the solar wind with the planets and the interstellar medium is of key importance for the evolution of our solar system. The interaction with Earth's atmosphere is best known for the northern light. In case of Mars, the interaction with the solar wind might have lead to the erosion

  12. High-resolution spectroscopic diagnostics of very high-temperature plasmas in the hard x-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, K

    1999-12-06

    Motivated by the need for establishing a reliable database useful for the application of x-ray spectroscopic tools for the diagnostic of very high temperature plasmas, high-resolution crystal spectrometer measurements have been performed investigating the characteristic K-shell radiation of highly charged krypton and xenon. The measurements, which have been performed at the Electron-Beam-Ion-Trap (EBIT) facility of the Lawrence Livermore National Laboratory, include the investigation of the n = 2 {yields} 1 transitions in heliumlike krypton (Kr{sup 34+}) and innershell excited lithiumlike krypton (Kr{sup 33+}) utilizing a conventional reflection-type crystal spectrometer of von Hamos geometry. The electron-excitation-energy selective measurements map the contribution of the dielectronic recombination lines providing the means of accurate interpretation of the line profiles of the characteristic K{alpha} x-ray emission of plasmas. The high-resolution measurements of the n = 2 {yields} 1 transitions in heliumlike xenon (Xe{sup 52+}) and hydrogenlike xenon (Xe{sup 53+}) were based on a new transmission-type crystal spectrometer of DuMond geometry. The resolving power of the developed spectrometer was sufficient for charge state specific observation allowing the determination of the electron-impact excitation cross section for the hydrogen- and heliumlike K{alpha} transitions. The disagreement with theoretically predicted values is a measure of the magnitude of the Breit interaction for the highly charged high-Z ions.

  13. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    Science.gov (United States)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  14. Bayesian inference of x-ray diffraction spectra from warm dense matter with the one-component-plasma model

    Science.gov (United States)

    Clérouin, Jean; Desbiens, Nicolas; Dubois, Vincent; Arnault, Philippe

    2016-12-01

    We show that the Bayesian inference of recently measured x-ray diffraction spectra from laser-shocked aluminum [L. B. Fletcher et al., Nat. Photon. 9, 274 (2015), 10.1038/nphoton.2015.41] with the one-component-plasma (OCP) model performs remarkably well at estimating the ionic density and temperature. This statistical approach requires many evaluations of the OCP static structure factor, which were done using a recently derived analytic fit. The atomic form factor is approximated by an exponential function in the diffraction window of the first peak. The electronic temperature is then estimated from a comparison of this approximated form factor with the electronic structure of an average atom model. Out-of-equilibrium states, with electrons hotter than ions, are diagnosed for the spectra obtained early after the pump, whereas at a late time delay the plasma is at thermal equilibrium. Apart from the present findings, this OCP-based modeling of warm dense matter has an important role to play in the interpretation of x-ray Thomson scattering measurements currently performed at large laser facilities.

  15. Does There Exist a Relationship Between Acoustic and White-Light Emission in Hard-X ray Solar Flares?

    Science.gov (United States)

    Buitrago-Casas, J. C.; Martinez Oliveros, J. C.; Glesener, L.; Krucker, S.; Calvo-Mozo, B.

    2014-12-01

    Several mechanisms have been proposed to explain the observed seismicity during some solar flares. One theory associates high-energy electrons and white-light emission with sunquakes. This relationship is based on the back-warming model, where high-energy electrons and their subsequent heating of the photosphere induce acoustic waves in the solar interior. We carried out a correlative study of solar flares with emission in hard-X rays (HXRs) above 50 keV, enhanced white light emission at 6573Å, and acoustic sources. We selected those flares observed by RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) with a considerable flux in the 50-100 and 100-300 keV bands between January 1, 2010 and June 26, 2014. Additionally, we restricted the sample to flares close to disk center where it is observationally easiest to detect a sunquake. We then used data from the Helioseismic and Magnetic Imager onboard the Solar Dynamic Observatory (SDO/HMI) to search for white-light emission and helioseismic signatures. Finally, we calculated a coefficient of correlation for this set of dichotomic observables. We discuss the phenomenological connectivity between these physical quantities and the observational difficulties of detecting seismic signals and white-light radiation with terrestrial and space-borne observations.

  16. X-ray residual stress measurement of laminated coating layers produced by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Masayuki (Faculty of Engineering, Tokushima Univ. (Japan)); Hanabusa, Takao (Faculty of Engineering, Tokushima Univ. (Japan)); Fujiwara, Haruo (Faculty of Engineering, Tokushima Univ. (Japan))

    1993-12-03

    The present paper describes residual stress in laminated layers deposited by thermal spraying on a low carbon steel substrate. Laminated layers were made of Al[sub 2]O[sub 3]-NiCr or Al[sub 2]O[sub 3]-NiAl with various combinations of mixing ratios. X-Ray diffraction was used to measure residual stress in the outermost surface layer. The results of finite-element method (FEM) thermal stress analysis were compared with the experimental results of X-ray measurements. From the X-ray stress measurements, tensile residual stress (100-300 MPa) was measured in the as-coated surface layers of all specimens. The effect of annealing on residual stress variation was also examined. In the case of the Al[sub 2]O[sub 3] (100%) layer of the Al[sub 2]O[sub 3]-NiCr system, residual stress of surface layers was not greatly affected by the method of lamination and did not change significantly upon annealing. In contrast, in the layer with mixed Al[sub 2]O[sub 3] and NiAl, residual stress in the as-coated layer was influenced by the mixing ratio of Al[sub 2]O[sub 3] and NiAl. Furthermore, residual stresses were gradually reduced in both the Al[sub 2]O[sub 3] and Ni phase following annealing. FEM calculation revealed that large compressive residual stress (about -2 GPa) was produced in the 100% Al[sub 2]O[sub 3] layer after a full annealing treatment. The value of residual stress depends on the difference between the thermal expansion coefficients of the laminated layers and the substrate. This result was exactly opposite to the experimental results for the fully annealed Al[sub 2]O[sub 3]-NiCr system. However, residual stresses in the mixed layer (Al[sub 2]O[sub 3]-NiAl) depended on the mixing ration of Al[sub 2]O[sub 3] and NiAl. This agrees qualitatively with the experimental results. (orig.)

  17. Investigation of laser produced x-ray plasma created from high pressure gas-puff target using Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayuki [School of Science and Engineering, Kinki University, Higashi-Osaka, Osaka (Japan); Daido, Hiroyuki; Choi, I.W. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering] (and others)

    2000-03-01

    We characterize a laser produced gas puff plasma for soft x-ray generation. Strong emission in 11.4 nm wavelength region was observed, using krypton and xenon gas puff targets irradiated by a Nd:YAG laser with an energy of 0.7 J/8 ns. Space resolved x-ray spectral measurement indicated that the source size on the Rayleigh length and the gas density profile. (author)

  18. The relationship between hard X-ray pulse timings and the locations of footpoint sources during solar flares

    CERN Document Server

    Inglis, A R; 10.1088/0004-637X/748/2/139

    2013-01-01

    The cause of quasi-periodic pulsations (QPP) in solar flares remains the subject of debate. Recently, Nakariakov & Zimovets (2011) proposed a new model suggesting that, in two-ribbon flares, such pulsations could be explained by propagating slow waves. These waves may travel obliquely to the magnetic field, reflect in the chromosphere and constructively interfere at a spatially separate site in the corona, leading to quasi-periodic reconnection events progressing along the flaring arcade. Such a slow wave regime would have certain observational characteristics. We search for evidence of this phenomenon during a selection of two-ribbon flares observed by RHESSI, SOHO and TRACE; the flares of 2002 November 9, 2005 January 19 and 2005 August 22. We were not able to observe a clear correlation between hard X-ray footpoint separations and pulse timings during these events. Also, the motion of hard X-ray footpoints is shown to be continuous within the observational error, whereas a discontinuous motion might be...

  19. The Extreme Ultraviolet and X-Ray Sun in Time: High-Energy Evolutionary Tracks of a Solar-Like Star

    CERN Document Server

    Tu, Lin; Güdel, Manuel; Lammer, Helmut

    2015-01-01

    Aims. We aim to describe the pre-main sequence and main-sequence evolution of X-ray and extreme-ultaviolet radiation of a solar mass star based on its rotational evolution starting with a realistic range of initial rotation rates. Methods. We derive evolutionary tracks of X-ray radiation based on a rotational evolution model for solar mass stars and the rotation-activity relation. We compare these tracks to X-ray luminosity distributions of stars in clusters with different ages. Results. We find agreement between the evolutionary tracks derived from rotation and the X-ray luminosity distributions from observations. Depending on the initial rotation rate, a star might remain at the X-ray saturation level for very different time periods, approximately from 10 Myr to 300 Myr for slow and fast rotators, respectively. Conclusions. Rotational evolution with a spread of initial conditions leads to a particularly wide distribution of possible X-ray luminosities in the age range of 20 to 500 Myrs, before rotational co...

  20. Compact ring-based X-ray source with on-orbit and on-energy laser-plasma injection

    CERN Document Server

    Turner, Marlene; Edelen, Auralee; Gerity, James; Lajoie, Andrew; Lawler, Gerard; Lishilin, Osip; Moon, Kookjin; Sahai, Aakash Ajit; Seryi, Andrei; Shih, Kai; Zerbe, Brandon

    2016-01-01

    We report here the results of a one week long investigation into the conceptual design of an X-ray source based on a compact ring with on-orbit and on-energy laser-plasma accelerator. We performed these studies during the June 2016 USPAS class "Physics of Accelerators, Lasers, and Plasma..." applying the art of inventiveness TRIZ. We describe three versions of the light source with the constraints of the electron beam with energy $1\\,\\rm{GeV}$ or $3\\,\\rm{GeV}$ and a magnetic lattice design being normal conducting (only for the $1\\,\\rm{GeV}$ beam) or superconducting (for either beam). The electron beam recirculates in the ring, to increase the effective photon flux. We describe the design choices, present relevant parameters, and describe insights into such machines.

  1. Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays

    CERN Document Server

    Mehdipour, M; Kallman, T

    2016-01-01

    Atomic data and plasma models play a crucial role in diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter $\\xi$, we find that on average there is about 30% deviation between the codes in $\\xi$ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in $\\xi$ is smaller at about 10% on average. The comparison of the absorp...

  2. 2D hydrodynamic simulation of a line-focused plasma in Ni-like Ag x-ray laser research

    Institute of Scientific and Technical Information of China (English)

    Zheng Wu-Di; Zhang Guo-Ping

    2007-01-01

    In most collisional schemes of x-ray laser (XRL) experiments, a bow-like intensity distribution of XRL is often observed, and it is generally ascribed to the two-dimensional hydrodynamic behaviour of expanding plasma. In order to better understand its essence in physics, a newly developed two-dimensional non-equilibrium radiation hydrodynamic code XRL2D is used to simulate a quasi-steady state Ni-like Ag XRL experiment on ShenGuang-II facility. The simulation results show that the bow-like distribution of Ni-like ions caused by over-ionization in the central area of plasma is responsible for the bow-like shape of the XRL intensity distribution observed.

  3. Generation and characterization of plasma channels in gas puff targets using soft X-ray radiography technique

    Energy Technology Data Exchange (ETDEWEB)

    Wachulak, P. W., E-mail: wachulak@gmail.com; Bartnik, A.; Jarocki, R.; Fok, T.; Węgrzyński, Ł.; Kostecki, J.; Szczurek, M.; Jabczyński, J.; Fiedorowicz, H. [Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw (Poland)

    2014-10-15

    We present our recent results of a formation and characterization of plasma channels in elongated krypton and xenon gas puff targets. The study of their formation and temporal expansion was carried out using a combination of a soft X-ray radiography (shadowgraphy) and pinhole camera imaging. Two high-energy short laser pulses were used to produce the channels. When a pumping laser pulse was shaped into a line focus, using cylindrical and spherical lenses, the channels were not produced because much smaller energy density was deposited in the gas puff target. However, when a point focus was obtained, using just a spherical lens, the plasma channels appeared. The channels were up to 9 mm in length, had a quite uniform density profile, and expanded in time with velocities of about 2 cm/μs.

  4. Compact x-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator.

    Science.gov (United States)

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B

    2012-11-16

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent free-electron laser (FEL) radiation generation. We discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for self-amplified spontaneous emission and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  5. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  6. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  7. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source; Kurzzeit-Roentgenbeugung mit Hilfe einer Effizienz-optimierten, hochrepetierenden Laser-Plasma-Roentgenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Kaehle, Stephan

    2009-04-23

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10{sup 16} W/cm{sup 2} dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K{sub {alpha}} radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K{sub {alpha}} production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K{sub {alpha}} radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density. [German] Diese Arbeit befasst sich mit der Erzeugung und Anwendung ultrakurzer Roentgenimpulse. Zu Beginn werden verschiedene Moeglichkeiten zur

  8. Characteristics of ultrafast K line hard x-ray source from femtosecond terawatt laser-produced plasma

    Institute of Scientific and Technical Information of China (English)

    陈敏; 陈建文; 高鸿奕; 陆培祥; 徐至展

    2003-01-01

    Theoretical studies and analytical scalings were carried out to find the optimized laser parameters and target conditions so that ultrashort hard x-ray pulses and high x-ray power could be achieved. The dependence of laser intensity and wavelength on the yield of K-shell x-ray emission was studied. We propose an optimal design for a foil target for producing high-yield hard x-ray pulses of customizing duration.

  9. Band Gap Energy of Chalcopyrite Thin Film Solar Cell Absorbers Determined by Soft X-Ray Emission and Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bar, M.; Weinhardt, L.; Pookpanratana, S.; Heske, C.; Nishiwaki, S.; Shafarman, W.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J.D.

    2008-05-11

    The chemical and electronic structure of high efficiency chalcopyrite thin film solar cell absorbers significantly differs between the surface and the bulk. While it is widely accepted that the absorber surface exhibits a Cu-poor surface phase with increased band gap (Eg), a direct access to the crucial information of the depth-dependency of Eg is still missing. In this paper, we demonstrate that a combination of x-ray emission and absorption spectroscopy allows a determination of Eg in the surface-near bulk and thus complements the established surface- and bulk-sensitive techniques of Eg determination. As an example, we discuss the determination of Eg for a Cu(In,Ga)Se2 absorber [(1.52 +- 0.20) eV].

  10. Martian upper atmosphere response to solar EUV flux and soft X-ray flares

    Science.gov (United States)

    Jain, Sonal; Stewart, Ian; Schneider, Nicholas M.; Deighan, Justin; Stiepen, Arnaud; Evans, J. Scott; Stevens, Michael H.; Chaffin, Michael S.; Crismani, Matteo; McClintock, William; Montmessin, Franck; Thiemann, E. M.; Eparvier, Frank; Chamberlin, Phillip C.; Jacosky, Bruce

    2016-10-01

    Planetary upper atmosphere energetics is mainly governed by absorption of solar extreme ultraviolet (EUV) radiation. Understanding the response of planetary upper atmosphere to the daily, long and short term variation in solar flux is very important to quantify energy budget of upper atmosphere. We report a comprehensive study of Mars dayglow observations made by the IUVS instrument aboard the MAVEN spacecraft, focusing on upper atmospheric response to solar EUV flux. Our analysis shows both short and long term effect of solar EUV flux on Martian thermospheric temperature. We find a significant drop (> 100 K) in thermospheric temperature between Ls = 218° and Ls = 140°, attributed primarily to the decrease in solar activity and increase in heliocentric distance. IUVS has observed response of Martian thermosphere to the 27-day solar flux variation due to solar rotation.We also report effect of two solar flare events (19 Oct. 2014 and 24 March 2015) on Martian dayglow observations. IUVS observed about ~25% increase in observed brightness of major ultraviolet dayglow emissions below 120 km, where most of the high energy photons (< 10 nm) deposit their energy. The results presented in this talk will help us better understand the role of EUV flux in total heat budget of Martian thermosphere.

  11. Estimating the properties of hard X-ray solar flares by constraining model parameters

    CERN Document Server

    Ireland, Jack; Schwartz, Richard A; Holman, Gordon D; Dennis, Brian R

    2013-01-01

    We compare four different methods of calculating uncertainty estimates in fitting parameterized models to RHESSI X-ray spectra, considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method uses Bayesian data analysis and Markov chain Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from the GOES X1.3 class flare of 19 January 2005, and the other from the X4.8 flare of 23 July 2002. The four methods give approximately the same uncertainty estimates for the 19 January 2005 spectral fit parameters, but lead to very different uncertainty estimates for the 23 July 2002 spectral fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent re...

  12. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    CERN Document Server

    Höll, A

    2006-01-01

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  13. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2006-11-21

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  14. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model.

    Science.gov (United States)

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series X(t). The branching ratio b(x) is defined as b(x)=E[xi(x)/x]. The random variable xi(x) is the value of the next signal given that the previous one is equal to x, so xi(x)=[X(t+1) | X(t)=x]. If b(x)>1, the process is on average supercritical when the signal is equal to x, while if b(x)market hypothesis." For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, b(x) is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where b(x) approximately equal 1, which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for X(t) and for xi(x). For the BTW model the distribution of xi(x) is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x. Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where b(x) is close to one disappears once bulk dissipation is introduced in the BTW model-supporting our hypothesis that it is an indicator of criticality.

  15. Imploding process and x-ray emission of shotgun z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Ryusuke [Nihon University, College of Science and Technology, Tokyo (Japan); Takasugi, Keiichi; Miyamoto, Tetsu [Nihon University, Atomic Energy Research Institute, Tokyo (Japan)

    2001-09-01

    Rayleigh-Taylor instability was observed on the surface of a contracting z-pinch plasma. Wavelength of the instability was analyzed from the envelope of the profile, and it increased with implosion. Analysis with finite Larmor radius effect shows that there is some acceleration of ions during the contraction process. A suggestion to obtain macroscopically uniform plasma is to increase plasma current without heating the plasma. (author)

  16. Design of the detector to observe the energetic charged particles: a part of the solar X-ray spectrophotometer ChemiX onboard Interhelio-Probe mission

    Science.gov (United States)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Siarkowski, Marek; Evgen Kurbatov, mgr..

    2016-07-01

    Cosmic particle radiation may damages payload's electronics, optics, and sensors during of long-term scientific space mission especially the interplanetary ones. That is why it's extremely important to prevent failures of digital electronics, CCDs, semiconductor detectors at the times of passing through regions of enhanced charged particle fluxes. Well developed models of the Earth's radiation belts allow to predict and to protect sensitive equipment against disastrous influence of radiation due to energetic particle contained in the Van Allen belts. In the contrary interplanetary probes flying far away from our planet undergoes passages through clouds of plasma and solar cosmic rays not predictable by present models. Especially these concerns missions planned for non-ecliptic orbits. The practical approach to protect sensitive modules may be to measure the in situ particle fluxes with high time resolution and generation of alarm flags, which will switch off sensitive units of particular scientific equipment. The ChemiX (Chemical composition in X-rays) instrument is being developed by the Solar Physics Division of Polish Space Research Centre for the Interhelio-Probe interplanetary mission. Charged particle bursts can badly affect the regular measurements of X-ray spectra of solar origin. In order to detect presence of these enhanced particle fluxes the Background Particle Monitor (BPM) was developed constituting now a vital part of ChemiX. The BPM measurements of particle fluxes will assist to determine level of X-ray spectra contamination. Simultaneously BPM will measure the energy spectra of ambient particles. We present overall structure, design, technical and a scientific characteristic of BPM, particle sorts, and energy ranges to be registered. We describe nearly autonomous modular structure of BPM consisting of detector head, analogue and digital electronics modules, and of module of secondary power supply [1-3]. Detector head consists of three

  17. Research on pinches driven by SPPED 2 generator hard X-ray and neutron emission in plasma focus configuration

    CERN Document Server

    Sánchez-Soto, L L; Silva, P; Sylvester, G S; Zambra, M; Pavez, C; Raspa, V; Castillo, F; Kies, W; Soto, Leopoldo; Moreno, Jose; Silva, Patricio; Sylvester, Gustavo; Zambra, Marcelo; Pavez, Cristian; Raspa, Veronica; Castillo, Fermin; Kies, Walter

    2004-01-01

    SPEED2 is a generator based on Marx technology and was designed in the University of Dusseldorf. SPEED2 consists on 40 +/- Marx modules connected in parallel (4.1 mF equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt~1013 A/s). Currently the SPEED2 is operating at the Comision Chilena de Energia Nuclear, CCHEN, Chile, being the most powerful and energetic device for dense transient plasma in the Southern Hemisphere. Most of the previous works developed in SPEED2 at Dusseldorf were done in a plasma focus configuration for soft X-ray emission and the neutron emission from SPEED2 was not completely studied. The research program at CCHEN considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded Z-pinch, wire arrays) at current of hundred of kiloamperes to mega-amperes, using the SPEED2 generator. The Chilean operation has begun implementing and developing diagnostics in a conventional plasma focus configuration oper...

  18. Determination of plasma trace elements in tumor-bearing animals by proton-induced X-ray emission spectroscopy.

    Science.gov (United States)

    Fogle, M; Daly, B; Evans, M; Justiniano, E L; Kovacs, C J; Shinpaugh, J L; Toburen, L H

    2001-11-01

    Although altered levels of circulating essential trace elements are known to accompany malignant disease, the lack of sensitivity of conventional detection methods has generally limited their study to clinical conditions involving extensive disease (i.e., significant tumor burden). As such, the application of altered trace element levels as potential prognostic guides or as response indicators subsequent to treatment has been of limited use. During this study, proton-induced X-ray emission spectroscopy was evaluated as a tool to determine trace element imbalances in a murine tumor model. Using plasma from C57B1/6 mice bearing the syngeneic Lewis lung carcinoma (LLCa), levels of Fe, Cu, and Zn, as well as changes in the Cu /Zn ratio, were measured in animals carrying an increasing primary tumor burden. The plasma levels of Fe, Cu, and Zn were found to decrease significantly 7 d following implants of LLCa cells with no significant change observed in the Cu/Zn ratio. By d 21, however, an increase in the Cu/Zn ratio was found to accompany increased growth of the LLCa tumor; the plasma levels of Cu had returned to normal levels, whereas both the Fe and Zn plasma levels remained lowered. Collectively, the results suggest that although a net change in individual plasma trace element concentrations might not be accurately associated with tumor growth, a clear relationship was established between the Cu/Zn ratio and tumor size.

  19. X-ray plasma diagnostics for totally and partially photoionized plasmas such as warm absorbers in agn

    Directory of Open Access Journals (Sweden)

    Delphine Porquet

    2000-01-01

    Full Text Available Gracias a la nueva generaci on de satelites de rayos-X, como Chandra y XMM, se pueden obtener espectros de alta sensibilidad y resoluci on. En particular, se pueden separar las tres l neas m as intensas (resonantes, de intercombinaci on y prohibidas de iones de baja carga (baja Z como el He, en plasmas no solares. Basados en estas tres l neas, presentamos diagn osticos para densidad, procesos de ionizaci on y temperatura totalmente o parcialmente ionizados por fotoionizaci on. Estos poderosos diagn osticos pueden ser usados en plasmas calientes como los de AGN, galaxias con brotes de formaci on estelar, binarias de rayos-X, etc. En parti- cular, pueden ser usados en los absorbedores tibios que se ven en AGN (Porquet & Dubau 2000, que son herramientas importantes para entender las regiones centrales de diferentes tipos de AGN (Seyferts 1 y 2 y cuasares de bajo y alto corrimiento al rojo.

  20. The Focusing Optics X-ray Solar Imager (FOXSI): Update & Second Launch Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Particle acceleration in solar flares and its contribution to coronal heating are among the main  unsolved problems in heliophysics. Accelerated electrons in a...

  1. New diagnostic for X-ray diffraction measurements at extra-solar planets conditions (Invited)

    Science.gov (United States)

    Coppari, F.; Smith, R.; Eggert, J.; Rygg, J. R.; Lazicki, A.; Hawreliak, J.; Wang, J.; Duffy, T. S.; Hicks, D. G.; Boehly, T.; Collins, G. W.

    2013-12-01

    A method for obtaining powder diffraction data on dynamically-compressed solids at multi-megabar pressures has been implemented at the OMEGA Laser Facility [1]. We use laser-driven ramp-compression to generate pressures well within the multi-megabar regime. The drive laser pulse shape is designed so to avoid generation of lots of heating (as in shock-compression) so that the material stays into the solid state. Quasi-monochromatic x-ray radiation is generated by illumination of a metallic foil by laser beams and the diffraction patterns are recorded in transmission geometry by image plates. Simultaneous velocimetry measurements using VISAR allow pressure estimation. This diagnostic has been used to study the structure and phase transitions of a variety of materials (low and high-Z), including Ta, Sn and Mo. We have also studied elements and compounds relevant to geophysics and planetary science at unprecedented high pressures, providing experimental constraints to the equations of states of matter at conditions previously accessible to theoretical simulations only. Performing experiments at the pressure and temperature conditions expected in the interiors of massive planets is of fundamental importance for constraining models describing their interior structure and evolution [2]. These models are currently based on extrapolation of lower pressure-temperature experiments and untested theoretical simulations, resulting in large uncertainties [3]. Here I will present results obtained on MgO, Fe and preliminary analysis of recent FeO data. MgO has been ramp-compressed up to 9 Mbar and diffraction measurements provided the first structural evidence for the occurrence of the B1-B2 phase transition at 6 Mbar [4]. Fe has been studied up to 5 Mbar and the stability of the ɛ phase (hcp-Fe) has been demonstrated by x-ray diffraction measurements. Ramp-compression of FeO in the 3 and 7 Mbar pressure regime significantly extended the knowledge of the phase diagram of this

  2. Comparative Studies of Prediction Strategies for Solar X-ray Time Series

    Science.gov (United States)

    Muranushi, T.; Hattori, T.; Jin, Q.; Hishinuma, T.; Tominaga, M.; Nakagawa, K.; Fujiwara, Y.; Nakamura, T.; Sakaue, T.; Takahashi, T.; Seki, D.; Namekata, K.; Tei, A.; Ban, M.; Kawamura, A. D.; Hada-Muranushi, Y.; Asai, A.; Nemoto, S.; Shibata, K.

    2016-12-01

    Crucial virtues for operational space weather forecast are real-timeforecast ability, forecast precision and customizability to userneeds. The recent development of deep-learning makes it veryattractive to space weather, because (1) it learns gradually incomingdata, (2) it exhibits superior accuracy over conventional algorithmsin many fields, and (3) it makes the customization of the forecasteasier because it accepts raw images.However, the best deep-learning applications are only attainable bycareful human designers that understands both the mechanism of deeplearning and the application field. Therefore, we need to foster youngresearchers to enter the field of machine-learning aided forecast. So,we have held a seminar every Monday with undergraduate and graduatestudents from May to August 2016.We will review the current status of space weather science and theautomated real-time space weather forecast engine UFCORIN. Then, weintroduce the deep-learning space weather forecast environments wehave set up using Python and Chainer on students' laptop computers.We have started from simple image classification neural network, thenimplemented space-weather neural network that predicts future X-rayflux of the Sun based on the past X-ray lightcurve and magnetic fieldline-of-sight images.In order to perform each forecast faster, we have focused on simplelightcurve-to-lightcurve forecast, and performed comparative surveysby changing following parameters: The size and topology of the neural network Batchsize Neural network hyperparameters such as learning rates to optimize the preduction accuracy, and time for prediction.We have found how to design compact, fast but accurate neural networkto perform forecast. Our forecasters can perform predictionexperiment for four-year timespan in a few minutes, and achieveslog-scale errors of the order of 1. Our studies is ongoing, and inour talk we will review our progress till December.

  3. SMM observations of K-alpha radiation from fluorescence of photospheric iron by solar flare X-rays

    Science.gov (United States)

    Parmar, A. N.; Culhane, J. L.; Rapley, C. G.; Wolfson, C. J.; Acton, L. W.; Phillips, K. J. H.; Dennis, B. R.

    1984-01-01

    High-resolution Fe K-alpha spectra near 1.94 A observed during solar flares with the Bent Crystal Spectrometer on the Solar Maximum Mission are presented. The evidence for two possible excitation mechanisms, electron impact and fluorescence, is examined. It is found that the fluorescence mechanism satisfactorily describes the results, while the observations do not support electron collisional excitation of the Fe K-alpha transitions in low ionization stages (II-XII) of iron. Using Bai's model of the fluorescent excitation process, the photospheric iron abundance relative to that of hydrogen is estimated to be 5-6 x 10 to the -5th. The mean height of the soft X-ray source producing the K-alpha fluorescence is calculated on the basis of this model for about 40 large flares. The solar K-alpha lines are found to be about 25 percent wider than those measured in the laboratory. Weak line features observed at wavelengths shorter than that of the K-alpha lines are discussed.

  4. Single and double core-hole ion emission spectroscopy of transient neon plasmas produced by ultraintense x-ray laser pulses

    Science.gov (United States)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2016-05-01

    Single core-hole (SCH) and double core-hole (DCH) spectroscopy is investigated systematically for neon gas in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in the detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the laser-produced highly transient plasmas. The plasma density effects on level populations are demonstrated with an x-ray photon energy of 2000 eV. For laser photon energy in the range of 937 - 1360 eV, resonant absorptions (RA) of 1s-np (n> = 2) transitions play important roles in time evolution of the population and DCH emission spectroscopy. For x-ray photon energy larger than 1360 eV, no RA exist and transient plasmas show different features in the DCH spectroscopy.

  5. Investigating the electron density of multi-MeV X-ray-induced air plasmas at low pressures based on electromagnetic resonant cavity analysis

    Science.gov (United States)

    Ribière, M.; d'Almeida, T.; Cessenat, O.; Maulois, M.; Pouzalgues, R.; Crabos, B.; Delbos, C.; Garrigues, A.; Azaïs, B.

    2016-12-01

    We investigate air plasmas generated by multi-MeV pulsed X-rays at pressures ranging from 10-5 to 10-1 mbar. The experimental approach used for these studies is based on measurements of resonant frequencies damping and shift for different electromagnetic modes within a cylindrical cavity. Time-integrated electron densities in X-ray-induced air plasmas are inferred from the damping rate of the measured magnetic fields and their corresponding frequency shifts. In the present study, electron densities ranging from 108 to 109 cm-3 at pressures ranging from 10-3 to 10-1 mbar have been measured. Experimental results were confronted to 3D Maxwell-Vlasov Particle-In-Cell simulations incorporating a radiation-induced electric conductivity model. The method used in this work enables determining microscopic and macroscopic physical quantities within low pressure air plasmas generated by pulsed X-ray.

  6. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Weninger, Clemens

    2015-10-15

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  7. Imaging Grating SpectroPhotometer (I-GRASP) for Solar Soft X-Ray Spectra and Images from a Cube Sat Mission

    Science.gov (United States)

    Didkovsky, Leonid V.; Wieman, Seth; Woods, Thomas N.; Jones, Andrew; Chao, Weilun

    2016-05-01

    We describe the Soft X-ray Imaging Grating SpectroPhotometer (I-GRASP), a novel spectrophotometer with four times narrower transmission grating period (about 50 nm) compared to the MIT-designed 200 nm gratings successfully used for the SOHO/SEM, the SDO/EVE/ESP, and the Solar Aspect Monitor (SAM) onboard the EVE sounding rocket suite of instruments. The new grating is based on technology developed at the Lawrence Berkeley National Laboratory (LBNL) and provides four to five time greater diffraction dispersion than the 200 nm period gratings. Such new technology will provide detection of both 0.1 nm - resolved solar spectra in about 1.0 to 7.0 nm spectral range and a soft X-ray pin-hole solar image from the I-GRASP instrument that is appropriately sized for a CubeSat platform. The solar observations of this soft X-ray range do not currently have spectral resolution, so I-GRASP concurrent spectral and imaging X-ray observations will be important for:Improvements in modeling of coronal dynamics and heating by comparing measured and modeled spectra through identifying changes in abundances from different active regions- Resolving some differences in certain iron spectral line intensity ratios observed with SAM, identifying key emission lines, and comparing to those modeled with the CHIANTI atomic database- Studying SXR spectral variability for different solar activity periods including solar flares and the 27-day solar rotation- Studying of the Earth’s ionosphere, thermosphere and mesosphere responses using as input the detailed soft X-ray spectra from I-GRASP- Improving solar soft X-ray reference spectra for accurate calculations of absolute solar irradiance from the SDO/EVE/ESP, SDO/EVE/SAM, TIMED/SEE/XPS, and SORCE/XPS channels that have broadband measurements of the 1-7 nm band- Providing validation for the soft X-Ray observations from the MinXSS CubeSat X123 spectrometer (0.04 to 2.5 nm) with the I-GRASP spectral observations from 1.0 to 7.0 nm- Comparing I

  8. Optimization of soft x-ray line emission from laser-produced carbon plasma with laser intensity

    Indian Academy of Sciences (India)

    A Chowdhury; R A Joshi; G P Gupta; P A Naik; P D Gupta

    2003-12-01

    Absolute measurement for He- resonance (1s2 10-1s2p 11, at 40.2 Å) line emission from a laser-produced carbon plasma has been studied as a function of laser intensity. The optimum laser intensity is found to be ≈ 1.3 × 1012 W/cm2 for the maximum emission of 3.2 × 1013 photons sr-1 pulse-1. Since this line lies in the water window spectral region, it has potential application in x-ray microscopic imaging of biological sample in wet condition. Theoretical calculation using corona model for the emission of this line is also carried out with appropriate ionization and radiative recombination rate coefficients.

  9. Deposition of low stress, high transmittance SiC as an x-ray mask membrane using ECR plasma CVD

    CERN Document Server

    Lee, S Y; Lim, S T; Ahn, J H

    1998-01-01

    SiC for x-ray mask membrane is deposited by Electron Cyclotron Resonance plasma Chemical Vapor Deposition from SiH sub 4 /CH sub 4 Ar mixtures. Stoichiometric SiC is deposited at SiH sub 4 /CH sub 4 ratio of 0.4, deposition temperature of 600.deg.C and microwave power of 500 W with +- 5% thickness uniformity, As-deposited film has compressive residual stress, very smooth surface (31 A rms) and high optical transmittance of 90% at 633 nm wavelength. The microstructure of this film consists of the nanocrystalline particle (100 A approx 200A) embedded in amorphous matrix. Residual stress can be turned to tensile stress via Rapid Thermal Annealing in N sub 2 atmosphere, while suppressing structural change during annealing, As a result, smooth (37 A rms) SiC film with moderate tensile stress and high optical transmittance (85% at 633 nm wavelength) is obtained.

  10. Attenuation correction for X-ray emission computed tomography of laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Wei; Nakao, Zensho [Ryukyus Univ., Nishihara, Okinawa (Japan). Faculty of Engineering; Tamura, Shinichi

    1996-08-01

    An attenuation correction method was proposed for laser-produced plasma emission computed tomography (ECT), which is based on a relation of the attenuation coefficient and the emission coefficient in plasma. Simulation results show that the reconstructed images are dramatically improved in comparison to the reconstructions without attenuation correction. (J.P.N.)

  11. Forcast of TEXT plasma disruptions using soft X-rays as input signal in a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Vannucci, A.; Oliveira, K.A.; Tajima, T.

    1998-03-03

    A feed-forward neural network with two hidden layers is used in this work to forecast major and minor disruptive instabilities in TEXT discharges. Using soft X-ray signals as input data, the neural net is trained with one disruptive plasma pulse, and a different disruptive discharge is used for validation. After being properly trained the networks, with the same set of weights. is then used to forecast disruptions in two others different plasma pulses. It is observed that the neural net is able to predict the incoming of a disruption more than 3 ms in advance. This time interval is almost three times longer than the one already obtained previously when magnetic signal from a Mirnov coil was used to feed the neural networks with. To our own eye we fail to see any indication of an upcoming disruption from the experimental data this far back from the time of disruption. Finally, from what we observe in the predictive behavior of our network, speculations are made whether the disruption triggering mechanism would be associated to an increase of the m = 2 magnetic island, that disturbs the central part of the plasma column afterwards or, in face of the results from this work, the initial perturbation would have occurred first in the central part of the plasma column, within the q = 1 magnetic surface, and then the m = 2 MHD mode would be destabilized afterwards.

  12. Characteristics of a cylindrical collector mirror for laser-produced xenon plasma soft X-rays and improvement of mirror lifetime by buffer gas.

    Science.gov (United States)

    Inoue, Tomoaki; Mochizuki, Takayasu; Miyamoto, Shuji; Masuda, Kazuya; Amano, Sho; Kanda, Kazuhiro

    2012-12-01

    The focusing characteristics of a ruthenium-coated cylindrical mirror were investigated on the basis of its ability to collect and focus broadband 5-17-nm soft X-rays emitted from a laser-produced plasma. Based on the plasmas spectral intensity distribution and the reflectivity function of the mirror, we defined the optimum position of the integrated cylindrical mirror at which the X-ray energy flux transported and focused through the mirror was maximum. A minimum spot diameter of 22 mm at a distance of approximately 200 mm from a soft X-ray source was confirmed. The maximum intensity of the collected soft X-rays was 1.3 mJ/cm(2) at the center of the irradiation zone. Thus, the irradiation intensity was improved by approximately 27 times when compared to that of 47 μJ/cm(2) without the mirror. The debris sputtering rate on the reflection surface of the mirror can be reduced to 1/110 by argon gas at 11 Pa, while the attenuation rate of the soft X-rays due to absorption by the buffer gas can be suppressed to less than 10% at the focal point. The focusing property of the mirror is expected to be maintained for 3000 h or longer without significant degradation for a 100 W/320 pps laser shot if the ruthenium layer is thicker than 10 μm. These results suggest that a stand-alone broadband soft X-ray processing system can be realized by using laser-produced plasma soft X-rays.

  13. Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics

    Science.gov (United States)

    Bandler, S. R.; Adams, J. S.; Bailey, C. N.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; Kilbourne, C. A.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We are developing small-pixel transition-edge-sensor (TES) for solar physics and astrophysics applications. These large format close-packed arrays are fabricated on solid silicon substrates and are designed to accommodate count-rates of up to a few hundred counts/pixel/second at a FWHM energy resolution approximately 2 eV at 6 keV. We have fabricated versions that utilize narrow-line planar and stripline wiring. We present measurements of the performance and uniformity of kilo-pixel arrays, incorporating TESs with single 65-micron absorbers on a 7s-micron pitch, as well as versions with more than one absorber attached to the TES, 4-absorber and 9-absorber "Hydras". We have also fabricated a version of this detector optimized for lower energies and lower count-rate applications. These devices have a lower superconducting transition temperature and are operated just above the 40mK heat sink temperature. This results in a lower heat capacity and low thermal conductance to the heat sink. With individual single pixels of this type we have achieved a FWHM energy resolution of 0.9 eV with 1.5 keV Al K x-rays, to our knowledge the first x-ray microcalorimeter with sub-eV energy resolution. The 4-absorber and 9-absorber versions of this type achieved FWHM energy resolutions of 1.4 eV and 2.1 eV at 1.5 keV respectively. We will discuss the application of these devices for new astrophysics mission concepts.

  14. Use of soft x-ray diagnostic on the COMPASS tokamak for investigations of sawteeth crash neighborhood and of plasma position using fast inversion methods

    Energy Technology Data Exchange (ETDEWEB)

    Imrisek, M. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Weinzettl, V.; Mlynar, J.; Panek, R.; Hron, M. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Odstrcil, T. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Odstrcil, M. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Optical Research Center, University of Southampton, Southampton (United Kingdom); Ficker, O. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Pinzon, J. R. [Institue Jean Lamour, Université de Lorraine, Nancy (France); Ehrlacher, C. [ENS Cachan, Paris (France)

    2014-11-15

    The soft x-ray diagnostic is suitable for monitoring plasma activity in the tokamak core, e.g., sawtooth instability. Moreover, spatially resolved measurements can provide information about plasma position and shape, which can supplement magnetic measurements. In this contribution, fast algorithms with the potential for a real-time use are tested on the data from the COMPASS tokamak. In addition, the soft x-ray data are compared with data from other diagnostics in order to discuss possible connection between sawtooth instability on one side and the transition to higher confinement mode, edge localized modes and productions of runaway electrons on the other side.

  15. A novel technique for single-shot energy-resolved 2D X-ray imaging of plasmas relevant for the Inertial Confinement Fusion

    CERN Document Server

    Labate, L; Levato, T; Gizzi, L A

    2012-01-01

    A novel X-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any X-ray photon energy range, over a large domain, on a single-shot basis. The device (named Energy-encoded Pinhole Camera - EPiC) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available X-ray spectral domain is only limited by the Quantum Efficiency of scientific-grade X-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any X-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent ICF related experiments will be reported in order to detail the new diagnostic.

  16. Atmospheric pressure operation of a repetitive KrF laser-plasma x-ray source at hv = 1.1 keV

    Science.gov (United States)

    Turcu, I. C. Edmond; O'Neill, Fergus; Tallents, Gregory J.; Hannon, T.; Batani, Dimitri; Giulietti, Antonio; Wharton, C. W.; Meldrum, R. A.

    1990-08-01

    A repetitively pulsed (5Hz) KrF laser-based X-ray source producing photons at i-ru 1.1 keV (copper, L-shell) from a copper coated rotating target has been used to study soft X-ray induced DNA damage effects in Chinese hamster cells. The source was computer controlled for accurate delivery to the biological material of pre-set doses. DNA damage was induced by exposures lasting 7s for V79 cells and 40s for AA8 cells. To minimise the debris from the laser-plasma source and for convenient handling of biological specimens, the target chamber contained helium at 1 atmosphere with a slow flow. The X-ray yield of the source decreased by only at most 10-20% compared to vacuum operation and a further 16% of X-rays were absorbed in helium between target and the biological material placed outside the target chamber behind a beryllium filter. The measured spectral and spatial distribution of the copper X-ray emission was found to be largely independent of the ambient helium pressure. The time resolved X-ray signal lasted for only 3 ns starting at the beginning of the 2lns laser pulse and its shape was independent of helium pressure in the target chamber.

  17. Polarization of the Charge-Exchange X-rays Induced in the Heliosphere

    CERN Document Server

    Gacesa, Marko; Côt\\/e, Robin; Kharchenko, Vasili

    2011-01-01

    We report results of a theoretical investigation of polarization of the X-ray emissions induced in charge-exchange collisions of fully stripped solar wind ions C$^{6+}$ and O$^{8+}$ with the heliospheric hydrogen atoms. The polarization of X-ray emissions has been computed for line-of-sight observations within the ecliptic plane as a function of solar wind ion velocities, including a range of velocities corresponding to the slow and fast solar wind, and Coronal Mass Ejections. To determine the variability of polarization of heliospheric X-ray emissions, the polarization has been computed for solar minimum conditions with self-consistent parameters of the solar wind plasma and heliospheric gas and compared with the polarization calculated for an averaged solar activity. We predict the polarization of charge-exchange X-rays to be between 3% and 8%, depending on the line-of-sight geometry, solar wind ion velocity, and the selected emission lines.

  18. The Rossi X-Ray Timing Explorer (XTE) Solar Array Anomaly

    Science.gov (United States)

    Gaddy, Edward M.; Kichak, Robert; Niemeyer, Lee; Stegeman, Richard

    2004-01-01

    The XTE was launched December 30, 1995. Shortly after launch, it become apparent that the solar array was not performing as expected. On leaving shadow, the array exhibited many discontinuous drops in current output. The size of each of these drops was consistent with the loss of a part of a sell. The current decreases could not be caused by the loss of an entire circuit. This meant that the array may have had numerous cracked solar cells that opened as array got warmer. Studies performed on the array's qualification panel suggest that the cell cracks may have been cased by extensive tap testing performed on the array and that these cracks were undetectable at room temperature using usual inspection method.

  19. Study of a solar flare on 2005 August 22 observed in hard X-rays and microwaves

    Science.gov (United States)

    Liu, Zhong-Yin; Li, You-Ping; Gan, Wei-Qun; Firoz, Kazi A.

    2015-01-01

    We investigate the 2005 August 22 flare event (00:54 UT) exploiting hard X-ray (HXR) observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and microwave (MW) observations from the Nobeyama Solar Radio Observatory. The HXR time profile exposes well-damped quasi-periodic pulsations with four sequential peaks, and the MW time profile follows the corresponding peaks. Based on this feature, we derive the time relationship of HXRs and MWs with multi-frequency data from the Nobeyama Radio Polarimeter, and the spatially resolvable data from RHESSI and the Nobeyama Radioheliograph. We find that both frequency dependent delays in MWs and energy dependent delays in HXRs are significant. Furthermore, MW emissions from the south source are delayed with respect to those from the north source at both 17 GHz and 34 GHz, but no significant delays are found in HXR emissions from the different sources at the same energies. To better understand all these long time delays, we derive the electron fluxes of different energies by fitting the observed HXR spectra with a single power-law thick-target model, and speculate that these delays might be related to an extended acceleration process. We further compare the time profile of a MW spectral index derived from 17 and 34 GHz fluxes with the flux densities, and find that the spectral index shows a strong anti-correlation with the HXR fluxes.

  20. New Observations of the Solar 0.5-5 keV Soft X-ray Spectrum

    CERN Document Server

    Caspi, Amir; Warren, Harry P

    2015-01-01

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ~0.2 and ~4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer