WorldWideScience

Sample records for plasma sod activities

  1. Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice.

    Science.gov (United States)

    Le Pecheur, Marie; Bourdon, Emmanuel; Paly, Evelyne; Farout, Luc; Friguet, Bertrand; London, Jacqueline

    2005-07-04

    Premature ageing, one of the characteristics of Down syndrome (DS), may involve oxidative stress and impairment of proteasome activity. Transgenic mice overexpressing the human copper/zinc superoxide dismutase (SOD1) gene are one of the first murine models for DS and it has been shown that SOD1 overexpression might be either deleterious or beneficial. Here, we show a reduction in proteasome activities in the cortex of SOD1 transgenic mice and an associated increase in the content of oxidized SOD1 protein. As we demonstrate that in vitro oxidized SOD can inhibit purified proteasome peptidase activities, modified SOD1 might be partially responsible for proteasome inhibition shown in SOD1 transgenic mice.

  2. Superoxide dismutase (SOD) in boar spermatozoa: purification, biochemical properties and changes in activity during semen storage (16°C) in different extenders.

    Science.gov (United States)

    Orzołek, Aleksandra; Wysocki, Paweł; Strzeżek, Jerzy; Kordan, Władysław

    2013-03-01

    The antioxidant system in semen is composed of enzymes, low-molecular weight antioxidants and seminal plasma proteins. Loss of enzymatic activity of superoxide dismutase (SOD) during semen preservation may cause insufficient antioxidant defense of boar spermatozoa. The aim of this study was to isolate and characterize SOD molecular forms from spermatozoa and to describe changes in SOD activity in boar sperm during preservation at 16°C. Sperm extracts were prepared from fresh or diluted semen and used for SOD purification or activity measurement. Ion-exchange chromatography and gel filtration was used to purify SOD molecular forms. BTS, Dilu Cell, M III and Vitasem were used as diluents for 5-day storage of semen at +16°C. The molecular form of SOD released from spermatozoa after cold shock and homogenization had a molecular weight of approximately 67kDa. The activity of the SOD form was the highest at pH 10 within the temperature range between 20 and 45°C. The enzymatic activity of form released after cold shock was inhibited by H2O2 and diethyldithiocarbamate (DDC; by 65 and 40%, respectively). The SOD form released by homogenization was inhibited by H2O2 and DDC (40%). The molecular form released after urea treatment was a 30kDa protein with maximum activity at 20°C and pH 10. Enzymatic activity of this form was inhibited by H2O2 by 35%, DDC by 80% and 2-mercaptoethanol by 15%. The antigenic determinants of SOD isolated from boar seminal plasma and spermatozoa were similar to each other. Susceptibility of spermatozoa to cold shock increased during storage, but the differences between extenders were statistically non-significant. Copyright © 2013 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. SOD activity in cam plant kalanchoe daigremontiana exposed to S02

    Directory of Open Access Journals (Sweden)

    Zbigniew Miszalski

    2014-01-01

    Full Text Available The Kalanchoe daigremontiana CAM plants exhibit very low sensitivity to the action of sulphite dioxide. Fumigation for a week with 3 ppm SO2 leads to an increase in the dismutation rate of the oxygen radical expressed in units of SOD activity and an increase in SOD activity itself. This strong increase disappears 100 h after fumigation. A transient increase in SOD activity represents an adaptation mechanism to oxidative stress caused by SO2.

  5. A fused selenium-containing protein with both GPx and SOD activities

    International Nuclear Information System (INIS)

    Yu, Huijun; Ge, Yan; Wang, Ying; Lin, Chi-Tsai; Li, Jing; Liu, Xiaoman; Zang, Tianzhu; Xu, Jiayun; Liu, Junqiu; Luo, Guimin; Shen, Jiacong

    2007-01-01

    As a safeguard against oxidative stress, the balance between the main antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) was believed to be more important than any single one, for example, dual-functional SOD/CAT enzyme has been proved to have better antioxidant ability than either single enzyme. By combining traditional fusion protein technology with amino acid auxotrophic expression system, we generated a bifunctional enzyme with both GPx and SOD activities. It displayed better antioxidant ability than GPx or SOD. Such dual-functional enzymes could facilitate further studies of the cooperation of GPx and SOD and generation of better therapeutic agents

  6. Association of the SOD2 polymorphism (Val6Ala and SOD activity with vaso-occlusive crisis and acute splenic sequestration in children with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Isabela Cristina Cordeiro Farias

    2018-02-01

    Full Text Available The SOD2 polymorphism Val16Ala TàC influences the antioxidative response. This study investigated the association of the SOD2 polymorphism and superoxide dismutase (SOD activity with vaso-occlusive crisis (VOC and acute splenic sequestration (ASS in children with sickle cell anemia (SCA. One hundred ninety-five children aged 1-9 years old were analyzed. The TC and CC genotypes were associated with lower SOD activity compared with the TT genotype (p=0.0321; p=0.0253, respectively. Furthermore, TC/CC were more frequent in patients with VOC or ASS (p=0.0285; p=0.0090, respectively. These results suggest that the SOD2 polymorphism associated with low SOD activity could be involved in SCA physiopathology.

  7. Comprehensive analysis to explain reduced or increased SOD1 enzymatic activity in ALS patients and their relatives.

    Science.gov (United States)

    Keskin, Isil; Birve, Anna; Berdynski, Mariusz; Hjertkvist, Karin; Rofougaran, Reza; Nilsson, Torbjörn K; Glass, Jonathan D; Marklund, Stefan L; Andersen, Peter M

    2017-08-01

    To characterise stabilities in erythrocytes of mutant SOD1 proteins, compare SOD1 enzymatic activities between patients with different genetic causes of ALS and search for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. Blood samples from 4072 individuals, ALS patients with or without a SOD1 mutation, family members and controls were studied. Erythrocyte SOD1 enzymatic activities normalised to haemoglobin content were determined, and effects of haemoglobin disorders on dismutation assessed. Coding SOD1 sequences were analysed by Sanger sequencing, exon copy number variations by fragment length analysis and by TaqMan Assay. Of the 44 SOD1 mutations found, 75% caused severe destabilisation of the mutant protein but in 25% it was physically stable. Mutations producing structural changes caused halved erythrocyte SOD1 activities. There were no differences in SOD1 activities between patients without a SOD1 mutation and control individuals or carriers of TBK1 mutations and C9orf72 HRE . In the low and high SOD1 activity groups no deviations were found in exon copy numbers and intron gross structures. Thalassemias and iron deficiency were associated with increased SOD1 activity/haemoglobin ratios. Adjunct erythrocyte SOD1 activity analysis reliably signals destabilising SOD1 mutations including intronic mutations that are missed by exon sequencing.

  8. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Tobias eMühling

    2014-11-01

    Full Text Available Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS, a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs from a common ALS mouse model, endstage superoxide dismutase SOD1G93A transgenic mice, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT positive hMNs from wildtype (WT and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1 and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na2+/Ca2+exchanger NCX1 was also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a novel neuroprotective strategy for ALS.

  9. Superoxide Dismutase (SOD Enzyme Activity Assay in Fasciola spp. Para-sites and Liver Tissue Extract

    Directory of Open Access Journals (Sweden)

    M Assady

    2011-09-01

    Full Text Available Background: The purpose of this comparative study was to detect superoxide dismutase (SOD activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues, 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass. Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05.Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level.

  10. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    Science.gov (United States)

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  11. SOD2 Activity Is not Impacted by Hyperoxia in Murine Neonatal Pulmonary Artery Smooth Muscle Cells and Mice

    Directory of Open Access Journals (Sweden)

    Anita Gupta

    2015-03-01

    Full Text Available Pulmonary hypertension (PH complicates bronchopulmonary dysplasia (BPD in 25% of infants. Superoxide dismutase 2 (SOD2 is an endogenous mitochondrial antioxidant, and overexpression protects against acute lung injury in adult mice. Little is known about SOD2 in neonatal lung disease and PH. C57Bl/6 mice and isogenic SOD2+/+ and SOD2−/+ mice were placed in room air (control or 75% O2 (chronic hyperoxia, CH for 14 days. Right ventricular hypertrophy (RVH was assessed by Fulton’s index. Medial wall thickness (MWT and alveolar area were assessed on formalin fixed lung sections. Pulmonary artery smooth muscle cells (PASMC were placed in 21% or 95% O2 for 24 h. Lung and PASMC protein were analyzed for SOD2 expression and activity. Oxidative stress was measured with a mitochondrially-targeted sensor, mitoRoGFP. CH lungs have increased SOD2 expression, but unchanged activity. SOD2−/+ PASMC have decreased expression and activity at baseline, but increased SOD2 expression in hyperoxia. Hyperoxia increased mitochondrial ROS in SOD2+/+ and SOD2−/+ PASMC. SOD2+/+ and SOD2−/+ CH pups induced SOD2 expression, but not activity, and developed equivalent increases in RVH, MWT, and alveolar area. Since SOD2−/+ mice develop equivalent disease, this suggests other antioxidant systems may compensate for partial SOD2 expression and activity in the neonatal period during hyperoxia-induced oxidative stress.

  12. Effect of irradiation on sod activity and selenium content in garlic

    International Nuclear Information System (INIS)

    Xu Weimin; Zheng Anjian; Yan Jianmin; Cao Qingsui; Wu Haihong; Cao Shifeng

    2006-01-01

    The effects of irradiation at 0.1 kGy, 1.0 kGy on SOD activity and the content of total selenium, inorganic selenium, organic selenium in garlic (Allium sativum L.) stored at 10 degree C or 25 degree C were investigated. The results indicated that irradiation treatment with 0.1 kGy, 1 kGy significantly slowed the reduction of SOD activities in garlic stored at 10 degree C or 25 degree C, while the treatment irradiation had no influence on the content of all kinds of selenium. But the garlic stored at 25 degree C had higher content of total selenium, inorganic selenium, organic selenium than that in garlic stored at 10 degree C. (authors)

  13. Plasma extracellular superoxide dismutase concentration, allelic variations in the SOD3 gene and risk of myocardial infarction and all-cause mortality in people with type 1 and type 2 diabetes.

    Science.gov (United States)

    Mohammedi, Kamel; Bellili-Muñoz, Naïma; Marklund, Stefan L; Driss, Fathi; Le Nagard, Hervé; Patente, Thiago A; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Marre, Michel; Velho, Gilberto

    2015-01-15

    Oxidative stress is involved in development of diabetes complications. Extracellular superoxide dismutase (EC-SOD, SOD3) is a major extracellular antioxidant enzyme and is highly expressed in arterial walls. Advanced oxidation protein products (AOPP) and 8-iso-prostaglandin (isoprostane) are markers of oxidative stress. We investigated association of SOD3 gene variants, plasma concentrations of EC-SOD, AOPP and isoprostane with myocardial infarction and mortality in diabetic patients. We studied three cohorts designed to evaluate the vascular complications of diabetes: the GENEDIAB study (469 participants with type 1 diabetes at baseline; follow-up data for 259 participants), the GENESIS study (603 participants with type 1 diabetes at baseline; follow-up data for 525 participants) and the DIABHYCAR study (3137 participants with type 2 diabetes at baseline and follow-up). Duration of follow-up was 9, 5, and 5 years, respectively. Main outcome measures were incidence of myocardial infarction, and cardiovascular and total mortality during follow-up. Six single nucleotide polymorphisms in the SOD3 locus were genotyped in the three cohorts. Plasma concentrations of EC-SOD, AOPP, and isoprostane were measured in baseline samples of GENEDIAB participants. In GENEDIAB/GENESIS pooled cohorts, the minor T-allele of rs2284659 variant was inversely associated with the prevalence at baseline (Odds Ratio 0.48, 95% CI 0.29-0.78, p = 0.004) and the incidence during follow-up of myocardial infarction (Hazard Ratio 0.58, 95% CI 0.40-0.83, p = 0.003) and with cardiovascular (HR 0.33, 95% CI 0.08-0.74, p = 0.004) and all-cause mortality (HR 0.44, 95% CI 0.21-0.73, p = 0.0006). The protective allele was associated with higher plasma EC-SOD and lower plasma AOPP concentrations in GENEDIAB. It was also inversely associated with incidence of myocardial infarction (HR 0.75, 95% CI 0.59-0.94, p = 0.01) and all-cause mortality (HR 0.87, 95% CI 0.79-0.97, p = 0

  14. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain

    International Nuclear Information System (INIS)

    Robb, Ellen L.; Winkelmolen, Lieke; Visanji, Naomi; Brotchie, Jonathan; Stuart, Jeffrey A.

    2008-01-01

    trans-Resveratrol (3,4',5-trihydroxystilbene; RES) is of interest for its reported protective effects in a variety of pathologies, including neurodegeneration. Many of these protective properties have been attributed to the ability of RES to reduce oxidative stress. In vitro studies have shown an increase in antioxidant enzyme activities following exposure to RES, including upregulation of mitochondrial superoxide dismutase, an enzyme that is capable of reducing both oxidative stress and cell death. We sought to determine if a similar increase in endogenous antioxidant enzymes is observed with RES treatment in vivo. Three separate modes of RES delivery were utilized; in a standard diet, a high fat diet and through a subcutaneous osmotic minipump. RES given in a high fat diet proved to be effective in elevating antioxidant capacity in brain resulting in an increase in both MnSOD protein level (140%) and activity (75%). The increase in MnSOD was not due to a substantial proliferation of mitochondria, as RES treatment induced a 10% increase in mitochondrial abundance (Citrate Synthase activity). The potential neuroprotective properties of MnSOD have been well established, and we demonstrate that a dietary delivery of RES is able to increase the expression and activity of this enzyme in vivo

  15. EFFECTS OF CIGARETTE SMOKING ON ERYTHROCYTE ANTIOXIDATIVE ENZYME ACTIVITIES AND PLASMA CONCENTRATIONS OF THEIR COFACTORS

    Directory of Open Access Journals (Sweden)

    M. Zahraie

    2005-07-01

    Full Text Available Tobacco smoke contains numerous compounds, many ‎of which are oxidants and capable of producing free radical and enhancing ‎the oxidative stress. The aim of this study was to investigate the effect of cigarette smoking on the erythrocyte antioxidative enzyme activities and the plasma ‎concentration of their cofactors. ‎Sixty eight healthy men were enrolled, 32 of whom had never smoked and 36 had smoked at least 10 cigarettes per day for ‎at least one year. Hemolysate superoxide dismutase (Cu-Zn SOD, glutathione peroxidase (GSH-Px and ‎catalase (CAT activities were measured using spectrophotometer. Plasma copper, zinc and selenium concentrations were determined ‎using atomic absorption spectrophotometer. Plasma iron concentration was determined by colorimetric ‎method. We found that erythrocyte Cu-Zn SOD activity was significantly higher in tobacco smokers ‎compared with non-smokers (1294 ± 206.7 U/gHb in smokers vs. 1121.6 ± 237.8 U/gHb in non-‎smokers, P < 0.01. While plasma selenium concentration was significantly lower in tobacco ‎smokers (62.7±14.8 μg/L in smokers vs. 92.1 ± 17.5 μg/L in non-smokers, P < 0.01, there were no significant ‎differences in erythrocyte GSH-Px and CAT activities and plasma copper, zinc and iron concentrations between the two groups. ‎It seems that cigarette smoking can alter antioxidative enzymes activity and plasma concentration of some trace elements.

  16. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Identification of a single-nucleotide insertion in the promoter region affecting the sodC promoter activity in Brucella neotomae.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD, a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli β-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella.

  18. Effect of N+ beam exposure on the activities of Mn-SOD and catalase in deinococcus radiodurans

    International Nuclear Information System (INIS)

    Song Daojun; Chen Ruolei; Wu Lifang; Li Hong; Yao JIanming; Shao Chunlin; Wu Lijun; Yu Zengliang

    2000-01-01

    Though the radiation-resistant bacteria Deinococcus radiodurans (D. radiodurans) have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. The superoxide dismutase (SOD) and catalase (CAT) activities produced in bacteria (D. radiodurans AS1.633) and their change caused by 20 keV N'+ beam exposure were examined. Results showed that the activities of the enzymes were increased in the case of N + beam exposure from 8 x 10 14 ions/cm 2 to 6 x 10 15 ions/cm 2 . In addition, the treatment of H 2 O 2 and [CHCl 3 + CH 3 CH 2 OH] and the measurement of absorption spectrum showed that the increase of whole SOD activity resulted from inducible activities of Mn-SOD in (a sub-type) D. radiodurans AS1.633. These results suggested that these bacteria possess inducible defense mechanisms against the deleterious effects of oxidization

  19. Effect of N+ beam exposure on superoxide dismutase and catalase activities and induction of Mn-SOD in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Song Daojun; Chen Ruolei; Shao Chunlin; Wu Lijun; Yu Zengliang

    2000-01-01

    Though bacteria of the radiation-resistant Deinococcus radiodurans have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. The superoxide dismutase (SOD) and catalase (CAT) activities produced by these bacteria were measured, and the change of SOD and CAT activities by 20 keV N + beam exposure was examined. Their activities were increased by N + beam exposure from 8 x 10 14 ions/cm 2 to 6 x 10 15 ions/cm 2 . The treatment of H 2 O 2 and [CHCl 3 + CH 3 CH 2 OH] and the measurement of absorption spectrum showed that the increase in SOD activity was resulted from inducible activities of Mn-SOD in D. radiodurans AS1.633 by N + beam exposure. These results suggested that this bacteria possess inducible defense mechanisms against the deleterious effects of oxidisation

  20. Overexpression of Cu-Zn SOD in Brucella abortus suppresses bacterial intracellular replication via down-regulation of Sar1 activity

    Science.gov (United States)

    Liu, Xiaofeng; Zhou, Mi; Yang, Yanling; Wu, Jing; Peng, Qisheng

    2018-01-01

    Brucella Cu-Zn superoxide dismutase (Cu-Zn SOD) is a periplasmic protein, and immunization of mice with recombinant Cu-Zn SOD protein confers protection against Brucella abortus infection. However, the role of Cu-Zn SOD during the process of Brucella infection remains unknown. Here, we report that Cu-Zn SOD is secreted into culture medium and is translocated into host cells independent of type IV secretion systems (T4SS). Furthermore, co-immunoprecipitation and immunofluorescence studies reveal that Brucella abortus Cu-Zn SOD interacts with the small GTPase Sar1. Overexpression of Cu-Zn SOD in Brucella abortus inhibits bacterial intracellular growth by abolishing Sar1 activity in a manner independent of reactive oxygen species (ROS) production. PMID:29515756

  1. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.

    Science.gov (United States)

    Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C

    2008-06-15

    The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.

  2. Enhanced tethered-flight duration and locomotor activity by overexpression of the human gene SOD1 in Drosophila motorneurons

    Directory of Open Access Journals (Sweden)

    Agavni Petrosyan

    2015-03-01

    Full Text Available Mutation of the human gene superoxide dismutase (hSOD1 is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig’s disease. Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila‘s motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF as a function of age (5 to 50 days. Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking behavior in late life when flies had lost the ability to fly (age ≥ 60 d. hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life.

  3. An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na+-Activated K+ Channels in Aplysia Neurons.

    Science.gov (United States)

    Zhang, Yalan; Ni, Weiming; Horwich, Arthur L; Kaczmarek, Leonard K

    2017-02-22

    Mutations that alter levels of Slack (KCNT1) Na + -activated K + current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica , a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na + from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na + -activated K + channels in neurons. SIGNIFICANCE STATEMENT Slack Na + -activated K + channels (KCNT1, K Na 1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal

  4. Peripheral motor axons of SOD1(G127X) mutant mice are susceptible to activity-dependent degeneration

    DEFF Research Database (Denmark)

    Alvarez Herrero, Susana; Calin, A; Graffmo, K S

    2013-01-01

    -onset, fast-progression SOD1(G127X) mouse model of amyotrophic lateral sclerosis to long-lasting, high-frequency repetitive activity. Tibial nerves were stimulated at ankle in 7 to 8-month-old SOD1(G127X) mice when they were clinically indistinguishable from wild-type (WT) mice. The evoked compound muscle......-concentrations. It is possible that in SOD1(G127X) there is inadequate energy-dependent Na(+)/K(+) pumping, which may lead to a lethal Na(+) overload....

  5. The effect of nano-TiO2 photocatalysis on the antioxidant activities of Cu, Zn-SOD at physiological pH.

    Science.gov (United States)

    Zheng, Wen; Zou, Hai-Feng; Lv, Shao-Wu; Lin, Yan-Hong; Wang, Min; Yan, Fei; Sheng, Ye; Song, Yan-Hua; Chen, Jie; Zheng, Ke-Yan

    2017-09-01

    Security issues of nanoparticles on biological toxicity and potential environmental risk have attracted more and more attention with the rapid development and wide applications of nanotechnology. In this work, we explored the effect and probable mechanism of nano-TiO 2 on antioxidant activity of copper, zinc superoxide dismutase (Cu, Zn-SOD) under natural light and mixed light at physiological pH. Nano-TiO 2 was prepared by sol-hydrothermal method, and then characterized by X-ray Diffraction (XRD) and Transmission electron micrographs (TEM). The Cu, Zn-SOD was purified by sephadex G75 chromatography and qualitatively analyzed by sodium dodecyl sulfate polypropylene amide gel electrophoresis (SDS-PAGE). The effect and mechanism were elucidated base on Fourier Transform Infrared Spectrometer (FT-IR), Circular Dichroism (CD), zeta potential, and electron spin resonance (ESR) methods. Accompanying the results of FT-IR, CD and zeta potential, it could be concluded that nano-TiO 2 had no effect on the antioxidant activity of Cu, Zn-SOD by comparing the relative activity under natural light at physiological pH. But the relative activity of Cu, Zn-SOD significantly decreased along with the increase of nano-TiO 2 concentration under the mixed light. The results of ESR showed the cause of this phenomenon was the Cu(II) in the active site of Cu, Zn-SOD was reduced to Cu(I) by H 2 O 2 and decreased the content of active Cu, Zn-SOD. The reduction can be inhibited by catalase. Excess O 2 ·- produced by nano-TiO 2 photocatalysis under mixed light accumulated a mass of H 2 O 2 through disproportionation reaction in this experimental condition. The results show that nano-TiO 2 cannot affect the antioxidant activity of Cu, Zn-SOD in daily life. The study on the effect of nano-TiO 2 on Cu, Zn-SOD will provide a valid theory support for biological safety and the toxicological effect mechanism of nanomaterials on enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of high dietary zinc on plasma ceruloplasmin and erythrocyte superoxide dismutase activities in copper-depleted and repleted rats.

    Science.gov (United States)

    Panemangalore, M; Bebe, F N

    1996-01-01

    The effect of moderately high dietary zinc (Zn) on the activities of plasma (PL) ceruloplasmin (CP), and PL and erythrocyte (RBC) copper (Cu), Zn superoxide dismutase (SOD) was determined in weanling rats fed Cu-deficient (DEF; CON; 5 mg Cu/kg) copper diets containing normal or high Zn (HZn; 60 mg/kg) for 4 wk and supplemented with oral Cu (CuS; 5 mg/L) in drinking water for 0, 1, 3, or 7 d. PL Cu decreased (67% compared to CON; p DEF and increased to control level after 3 d of CuS; increased in the MAR group after 1 d of CuS. HZn reduced overall PL Cu by 27% in all groups, but did not alter the linear increase in PL Cu between 0 and 3 d of Cu S. PL CP activity altered concomitantly with PL Cu levels: The time course of increase in CP activity after 0-3 d of CuS was not influenced by HZn in the diet and CP declined in the DEF group by 92%. There was no correlation between dietary Cu level and PL CP. PL SOD activity decreased by 46% (p DEF group, increased to control activity after 1 d of CuS and declined slightly after 7 d; MAR diet did not alter PL SOD. HZn diet increased PL SOD activity in all groups by 150%, reduced activity in the DEF and MAR groups by 65 and 37% and delayed the recovery of PL SOD after CuS. RBC SOD declined in the DEF and MAR groups by 56 and 33% (p < or = 0.05) and did not respond to CuS; HZn diet did not influence RBC SOD activity. These data indicate that moderately high Zn in the diet reduces PL Cu, but not PL CP activity or the recovery of PL Cu or CP activity after oral CuS of Cu-deficient rats, modifies the response of PL SOD to dietary Cu, but does not influence RBC SOD activity.

  7. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca2+/Akt/ERK1/2 prosurvival pathway

    Science.gov (United States)

    Petrozziello, Tiziana; Secondo, Agnese; Tedeschi, Valentina; Esposito, Alba; Sisalli, MariaJosè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe human adult-onset neurodegenerative disease affecting lower and upper motor neurons. In >20% of cases, the familial form of ALS is caused by mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1). Interestingly, administration of wild-type SOD1 to SOD1G93A transgenic rats ameliorates motor symptoms through an unknown mechanism. Here we investigated whether the neuroprotective effects of SOD1 are due to the Ca2+-dependent activation of such prosurvival signaling pathway and not to its catalytic activity. To this aim, we also examined the mechanism of neuroprotective action of ApoSOD1, the metal-depleted state of SOD1 that lacks dismutase activity, in differentiated motor neuron-like NSC-34 cells and in primary motor neurons exposed to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA). Preincubation of ApoSOD1 and SOD1, but not of human recombinant SOD1G93A, prevented cell death in motor neurons exposed to L-BMAA. Moreover, ApoSOD1 elicited ERK1/2 and Akt phosphorylation in motor neurons through an early increase of intracellular Ca2+ concentration ([Ca2+]i). Accordingly, inhibition of ERK1/2 by siMEK1 and PD98059 counteracted ApoSOD1- and SOD1-induced neuroprotection. Similarly, transfection of the dominant-negative form of Akt in NSC-34 motor neurons and treatment with the selective PI3K inhibitor LY294002 prevented ApoSOD1- and SOD1-mediated neuroprotective effects in L-BMAA-treated motor neurons. Furthermore, ApoSOD1 and SOD1 prevented the expression of the two markers of L-BMAA-induced ER stress GRP78 and caspase-12. Collectively, our data indicate that ApoSOD1, which is devoid of any catalytic dismutase activity, exerts a neuroprotective effect through an early activation of Ca2+/Akt/ERK1/2 pro-survival pathway that, in turn, prevents ER stress in a neurotoxic model of ALS. PMID:28085149

  8. Repair effects of exogenous SOD on Bacillus subtilis against gamma radiation exposure

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Zhang, E.; Fang, Liu; Zhang, Jianguo; Zhu, Jie; He, Wei; Luo, Xuegang

    2013-01-01

    Superoxide dismutase (SOD) is an enzyme that removes free radicals from cells in many organisms. In order to further characterize these repair effects and their mechanism when subjected to radiation, Bacillus subtilis cells were exposed to gamma radiation and the cell survival rate, intracellular SOD activity, and DNA double-strand breakage were investigated. Vegetative cells of B. subtilis were irradiated by 60 Co gamma radiation at varying doses and subsequently exposed to varying levels of exogenous SOD. Standard plate-count, xanthine oxidase, and pulsed-field gel electrophoresis (PFGE) methods were employed to investigate the repair effects. The results showed that the exogenous SOD could significantly improve cell survival rate and intracellular SOD activity after gamma radiation. The cell survival rate was elevated 30–87 times above levels observed in control samples. Adding exogenous SOD into gamma irradiated cells may dramatically increase intracellular SOD activity (p 60 Co γ radiation and exposed to exogenous SOD. • Adding exogenous SOD into γ-irradiated cells may dramatically increase cell survival rate. • DNA strand scission may be prevented by addition of SOD. • Exogenous SOD may have the ability to repair cell damage after γ-rays radiation

  9. Production of Human Cu,Zn SOD with Higher Activity and Lower Toxicity in E. coli via Mutation of Free Cysteine Residues

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2017-01-01

    Full Text Available Although, as an antioxidant enzyme, human Cu,Zn superoxide dismutase 1 (hSOD1 can mitigate damage to cell components caused by free radicals generated by aerobic metabolism, large-scale manufacturing and clinical use of hSOD1 are still limited by the challenge of rapid and inexpensive production of high-quality eukaryotic hSOD1 in recombinant forms. We have demonstrated previously that it is a promising strategy to increase the expression levels of soluble hSOD1 so as to increase hSOD1 yields in E. coli. In this study, a wild-type hSOD1 (wtSOD1 and three mutant SOD1s (mhSOD1s, in which free cysteines were substituted with serine, were constructed and their expression in soluble form was measured. Results show that the substitution of Cys111 (mhSOD1/C111S increased the expression of soluble hSOD1 in E. coli whereas substitution of the internal Cys6 (mhSOD1/C6S decreased it. Besides, raised levels of soluble expression led to an increase in hSOD1 yields. In addition, mhSOD1/C111S expressed at a higher soluble level showed lower toxicity and stronger whitening and antiradiation activities than those of wtSOD1. Taken together, our data demonstrate that C111S mutation in hSOD1 is an effective strategy to develop new SOD1-associated reagents and that mhSOD1/C111S is a satisfactory candidate for large-scale production.

  10. Evaluation of superoxide dismutase activity and its impact on semen quality parameters of infertile men.

    Directory of Open Access Journals (Sweden)

    Jolanta Saczko

    2008-04-01

    Full Text Available The evaluation of superoxide dismutase (SOD activity, as one of the most important antioxidative defence enzymes, in seminal plasma of patients consulting for male infertility was presented in the article. The study included also the determination of its influence on selected human semen quality parameters. The material represents semen samples obtained from 15 men, which were divided into two groups: Group I (n=10 including patients consulting for infertility and Group II (n=5 containing healthy sperm donors as a control. All of the semen samples were cryopreserved and stored in liquid nitrogen. The frozen samples were thawed at the same time and then SOD activity was determined spectrophotometrically. The analysis of the investigations results indicates a significantly lower semen SOD activity detected in oligoasthenozoospermic patients, comparing to the activity found in normospermic men. The study showed a positive correlation between SOD activity in seminal plasma and semen quality parameters--sperm concentration and overall motility, which are regarded as the most important for normal fertilizing ability of the spermatozoa. Significantly lower SOD activity in seminal plasma of infertile patients, comparing to healthy sperm donors, as well as positive correlation and beneficial impact of SOD activity on human semen quality parameters seem to confirm the observations, that decreased seminal plasma scavenger antioxidant capacity, particularly in form of low SOD activity, can be responsible for male infertility. This trial shows that SOD activity survey in seminal plasma could be a useful tool for determining sperm fertilization potential and could improve the diagnosis of male infertility.

  11. Comparison of anti-oxidant enzymes activity and levels of zinc and selenium in sperm and seminal plasma between fertile and idiopathic infertile men

    Directory of Open Access Journals (Sweden)

    Hadi Kharazi

    2010-12-01

    Full Text Available Background: Reactive oxygen species (ROS-induced lipidperoxidation can lead to dysfunction of sperm and thereby, infertility may be occurred. So, always there is a balance between amount of ROS and anti-oxidant molecules in semen. Anti-oxidant enzymes of sperm; superoxide dismutase (SOD, glutathione peroxidase (GPX, catalse and zinc and selenium can protect it from destructive effects of ROS. Hence, the present study was designed to compare the activities of these enzymes and trace elements between fertile and idiopathic infertile men.Methods: Semen specimens were collected from 30 infertile men with proven infertility by an urologist, and 30 fertile men as control donors, with age range between 20-40 years old. Semen analysis was conducted by CASA method. Atomic absorption method was used for measuring of zinc and selenium concentration. Activity assays of SOD and GPX were performed by Randox Kits. Aebi method also was applied for evaluation of catalase activity.Results: There was no difference between the activities of enzymes in fertile men and infertile ones. Also, it wasn't seen any difference in the selenium and zinc levels of seminal plasma. There was no relationship between evaluated items with sperm parameters. Only, in asthenoteratospermic individuals negative correlations were found between GPX and sperm motility, selenium and sperm morphology. Also, in these individuals ,there was a positive correlation between SOD and catalse activity.Conclusion: Measuring activities of SOD, GPx, and catalase and the contents of zinc and selenium of seminal plasma do not appear to be suitable tools for determining the fertility potential of sperm.

  12. A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants.

    Science.gov (United States)

    Luchinat, Enrico; Barbieri, Letizia; Banci, Lucia

    2017-12-12

    Superoxide dismutase 1 (SOD1) is an important metalloprotein for cellular oxidative stress defence, that is mutated in familiar variants of Amyotrophic Lateral Sclerosis (fALS). Some mutations destabilize the apo protein, leading to the formation of misfolded, toxic species. The Copper Chaperone for SOD1 (CCS) transiently interacts with SOD1 and promotes its correct maturation by transferring copper and catalyzing disulfide bond formation. By in vitro and in-cell NMR, we investigated the role of the SOD-like domain of CCS (CCS-D2). We showed that CCS-D2 forms a stable complex with zinc-bound SOD1 in human cells, that has a twofold stabilizing effect: it both prevents the accumulation of unstructured mutant SOD1 and promotes zinc binding. We further showed that CCS-D2 interacts with apo-SOD1 in vitro, suggesting that in cells CCS stabilizes mutant apo-SOD1 prior to zinc binding. Such molecular chaperone function of CCS-D2 is novel and its implications in SOD-linked fALS deserve further investigation.

  13. Comparing of Cu/Zn SOD Gene Expression of Lymphocyte Cell and Malondialdehyde Level in Active Men and Women after Physical Training

    Directory of Open Access Journals (Sweden)

    Bakhtiar Tartibian

    2012-07-01

    Full Text Available Background: The purpose of this study is to compare Cu/Zn SOD mRNA and MDA level as a result of a session incremental exercise in active women and men. Materials and Methods: This research is a quasi-experimental study with repeated measurements in which 14 active female and 13 male subjects with age range 22-24 participated voluntarily. Then, blood was taken from brachial vein of the subjects in three stages before and after GXT (Graded exercise test and 3 hours after that and SYBER Green PCR Master mix reagent Kit and Real time-PCR were used to measure Cu/Zn SOD mRNA and spectrophotometer was used to measure MDA level.Results: MDA levels increased significantly in men during the recovery stage and after the exercise (p1=0.012 and p2 =0.014, but it did not increase significantly in active women. Also, MDA difference between the two genders was not reported significant in any of the exercise stages. Cu/Zn SOD gene expression did not increase significantly in either sex.Conclusion: The risk of injury from free radicals is more probable in active men than active women and vigorous physical activity does not significantly increase the Cu/Zn SOD gene expression.

  14. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    Directory of Open Access Journals (Sweden)

    Josef eBrandauer

    2015-03-01

    Full Text Available The mitochondrial protein deacetylase sirtuin (SIRT 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS handling. We determined the requirement of AMP-activated protein kinase (AMPK for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p<0.01 and superoxide dismutase 2 (MnSOD; p<0.05 protein abundance in quadriceps muscle of wild-type (WT; n=13-15, but not AMPK α2 kinase dead (KD; n=12-13 mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p=0.051; n=6. To further elucidate a role for AMPK in mediating these effects, we treated WT (n=7-8 and AMPK α2 KD (n=7-9 mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR. Four weeks of daily AICAR injections (500 mg/kg resulted in AMPK-dependent increases in SIRT3 (p<0.05 and MnSOD (p<0.01 in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n=9-10. Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p<0.01 and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p<0.05. Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122 or oligomycin-sensitivity conferring protein (OSCP; K139 was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training.

  15. Fisetin Exerts Antioxidant and Neuroprotective Effects in Multiple Mutant hSOD1 Models of Amyotrophic Lateral Sclerosis by Activating ERK.

    Science.gov (United States)

    Wang, T H; Wang, S Y; Wang, X D; Jiang, H Q; Yang, Y Q; Wang, Y; Cheng, J L; Zhang, C T; Liang, W W; Feng, H L

    2018-05-21

    Oxidative stress exhibits a central role in the course of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease commonly found to include a copper/zinc superoxide dismutase (SOD1) gene mutation. Fisetin, a natural antioxidant, has shown benefits in varied neurodegenerative diseases. The possible effect of fisetin in ALS has not been clarified as of yet. We investigated whether fisetin affected mutant hSOD1 ALS models. Three different hSOD1-related mutant models were used: Drosophila expressing mutant hSOD1 G85R , hSOD1 G93A NSC34 cells, and transgenic mice. Fisetin treatment provided neuroprotection as demonstrated by an improved survival rate, attenuated motor impairment, reduced ROS damage and regulated redox homeostasis compared with those in controls. Furthermore, fisetin increased the expression of phosphorylated ERK and upregulated antioxidant factors, which were reversed by MEK/ERK inhibition. Finally, fisetin reduced the levels of both mutant and wild-type hSOD1 in vivo and in vitro, as well as the levels of detergent-insoluble hSOD1 proteins. The results indicate that fisetin protects cells from ROS damage and improves the pathological behaviors caused by oxidative stress in disease models related to SOD1 gene mutations probably by activating ERK, thereby providing a potential treatment for ALS. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    Science.gov (United States)

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  18. [Activity of antioxidative enzymes and concentration of malondialdehyde as oxidative status markers in women with non-autoimmunological subclinical hyperthyroidism].

    Science.gov (United States)

    Rybus-Kalinowska, Barbara; Zwirska-Korczala, Krystyna; Kalinowski, Mariusz; Kukla, Michał; Birkner, Ewa; Jochem, Jerzy

    2009-01-01

    The recent investigations point out the significant role of oxidative stress in the development of thyroid gland disease. The present study was designed to investigate the variation of oxidative stae in women with non-autoimmunological subclinical hyperthyroidism. The study was conducted on 20 females with non-autoimmunological subclinical hyperthyroidism and 15 healthy women. Manganase-containing superoxide dismutase (Mn-SOD) and extracellular superoxide dismutase (EC-SOD) plasma activity, and malondialdehyde (MDA) plasma concentration were measured. EC-SOD plasma activity was significantly higher in women with subclinical hyperthyroidism when compared with the control group (13.3 +/- 2.1 vs. 10.9 +/- 1.4 NU/ml; p < 0.05), unlike Mn-SOD (4.2 +/- 0.5 vs. 4.0 +/- 1.0 NU/ml). MDA plasma concentration increased significantly in women with subclinical hyperthyroidism (3.5 +/- 1.2 vs. 2.0 +/- 0.6 micromol/l; p < 0.05). The increased EC-SOD plasma activity may reflect disturbances of oxidative state in subclinical hyperthyroidism. Parallel increase of MDA plasma concentration may indicate enhancement of lipid peroxidationin in patients with subclinical hyperthyroidism.

  19. Spinal cord homogenates from SOD1 familial amyotrophic lateral sclerosis induce SOD1 aggregation in living cells.

    Directory of Open Access Journals (Sweden)

    Edward Pokrishevsky

    Full Text Available Mutant Cu/Zn superoxide dismutase (SOD1 can confer its misfolding on wild-type SOD1 in living cells; the propagation of misfolding can also be transmitted between cells in vitro. Recent studies identified fluorescently-tagged SOD1G85R as a promiscuous substrate that is highly prone to aggregate by a variety of templates, in vitro and in vivo. Here, we utilized several SOD1-GFP reporter proteins with G37R, G85R, or G93A mutations in SOD1. We observed that human spinal cord homogenates prepared from SOD1 familial ALS (FALS can induce significantly more intracellular reporter protein aggregation than spinal cord homogenates from sporadic ALS, Alzheimer's disease, multiple system atrophy or healthy control individuals. We also determined that the induction of reporter protein aggregation by SOD1-FALS tissue homogenates can be attenuated by incubating the cells with the SOD1 misfolding-specific antibody 3H1, or the small molecule 5-fluorouridine. Our study further implicates SOD1 as the seeding particle responsible for the spread of SOD1-FALS neurodegeneration from its initial onset site(s, and demonstrates two potential therapeutic strategies for SOD1-mediated disease. This work also comprises a medium-throughput cell-based platform of screening potential therapeutics to attenuate propagated aggregation of SOD1.

  20. Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity.

    Science.gov (United States)

    Su, Le; Zhao, BaoXiang; Lv, Xin; Wang, Nan; Zhao, Jing; Zhang, ShangLi; Miao, JunYing

    2007-02-20

    Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.

  1. Basic study on low dose radiation effect: SOD activity of immune organs and hemogram in rats

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Kaneko, Ichiro; Mizutani, Takeo; Nakano, Kazushiro; Edamatsu, Rei; Mori, Akitane.

    1989-01-01

    We examined the effect of low dose radiation on SOD activities of immune organs such as thymus, spleen, bone marrow in rats and hematological findings changes. Animals were exposed to radiation in a wholebody fashion, 4 hours before sacrifice. SOD activities in thymus and bone marrow cells from the rats X-ray irradiated at doses of 0.25∼0.50 Gy/10 min were enhanced in comparison with those of non-irradiated rats. The enhancement was also observed in spleen cells obtained from group of rats irradiated at 0.05 Gy/10 min. Radiation exposure with over 0.50 Gy/10 min gave rats inhibitory responses in those immune organs. The changes in homogram were not observed with γ-ray exposure of less than 0.10 Gy/10 min. (author)

  2. Maximization of the sod peat load and treatment; Palaturpeen kuormituksen maksimointi ja kaesittely

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Nurmi, H.; Paappanen, T.; Frilander, P.

    1996-12-31

    The objective of this two year (1994-1995) project was to improve especially the efficiency of sod peat production, carried out using a spreading wagon, by increasing the sod peat load set for the field to value 20 kgDS/m{sup 2} (original value 10-14 kgDS/m{sup 2}), and by studying and developing a collection method for ridging and ridge processing, suitable for high-loads. The research was emphasized to laboratory tests, but some field test were also made. It was possible to increase the sod peat load most accurately to 20 kgDS/m{sup 2} by using wave-like sod peat. The drying speeds of horizontal and vertical wave-like sod peats were near to each other. The functioning of active-sod was rendered by the unevenness of the field. Production of active-sod requires less energy than production of wave-like sod. Horizontal wave-like sod was scaled using Malkov`s drying model, adjusted in cooperation with the researchers of the Russian research centre NIITP to suit better for wave-like sod peat. The best dimensions for wave were calculated for the horizontal wave-like sod using long-term weather conditions data (Pudasjaervi 1971-1990). The picking device of the ridger, developed using laboratory tests, consisted of a grid moving on the field, standing the sod up, above which there is a rotating truncheon coil which transfers the sod along the grid for further processing. The share of the fines by weight, loosened from the field during picking up the sod was 0.5 % of the sod-mass, and the losses were 11 % of the number of the sod. At the driving speed 2.9 km/h the suitable coil rotation speed was about 20 r/min, hence the rotation speed of the truncheons was twice as high as the driving speed

  3. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  4. Gaharu Leaf Extract Water Reduce MDA and 8-OHdG Levels and Increase Activities SOD and Catalase in Wistar Rats Provided Maximum Physical Activity

    Directory of Open Access Journals (Sweden)

    I Made Oka Adi Parwata

    2016-09-01

    Full Text Available Background: Oxidative stress occurs due to an imbalance of the number of free radicals by the number of endogenous antioxidant produced by the body i.e. Superoxide Dismutase (SOD, Gluthathione Peroxidase (GPx, and Catalase. The imbalance between the number of free radicals and antioxidants can be overcome with the endogenous antioxidant intake that exogenous oxidative stress can be reduced. One of exogenous antioxidants is natural Gaharu leaf water extract. Objective: This research focus on the effect of Gaharu leaf water extract in reducing MDA and 8-OHdG and increase the activity of SOD and Catalase. Methods: This study was an experimental with post only controls group design. Experiment was divided  into 5 groups of wistar rats, each consisting of 5 animals, i.e. negative control group without extract [K (-], treatment 1 treated 50 mg/kg BW/day of the extract (T1, treatment 2 treated 100 mg/kg BW/day of the extract (T2, treatment 3 treated 200 mg/ kg BW/day of the extract (T3, and positive control group [K (+] treated with vitamin Cat a dose 50 mg/kg BW/day. All groups treated for 10 weeks. Every day, before treatment, each group was given a maximum swimming activity for 1.5 hours for 10 weeks. ELISA was used to measure MDA, 8-OHdG, SOD, and Catalase activities. Result: The research results showed that treatment of extract of  leaves of Gaharu with an higher dose from 50 mg/kg BW up to 200 mg/ kg BW significantly decline (p <0.05 levels of MDA with the average ranging from 6.37±0.23, 5,56±0.27 and 4.32±0.27, 8-OHdG with a mean of 1.64±0.11, 1.26±0.46, and 1.09±0.17. On the other hand the treatment also increase SOD activity with less ranging from 12.15±1.04, 15.70±2.02, and 18.84±1.51, and Catalase ranging from 6,68±0.63, 8.20±1.14 and 9.29±0,79 in the blood of Wistar rats were given a maximum activity compared to the negative control group. This is probably higher phenol compounds (bioflavonoids quantity content of the extract

  5. Article Expression, Purification, and Characterization of Cu/ZnSOD from Panax Ginseng

    Directory of Open Access Journals (Sweden)

    Dayong Ding

    2014-06-01

    Full Text Available Superoxide dismutase (SOD has a strong antioxidant effect, but the traditional SOD extraction method is not the most efficient method of SOD amplification. In this study, we report the cloning of the Cu/ZnSOD gene from Panax ginseng into a temperature-regulated expression plasmid, pBV220. Cu/ZnSOD inclusion bodies were expressed in E. coli at a high level. Then, the inclusion bodies were purified by ion-exchange chromatography and molecular sieve chromatography. Finally, we obtained stable SOD in the bacterial broth, with a protein content of 965 mg/L and enzyme specific activity of 9389.96 U/mg. These results provide a foundation for future studies on the antioxidant mechanisms of ginseng and the development and application of ginseng Cu/ZnSOD.

  6. Immunoreactive Cu-SOD and Mn-SOD in lymphocytes sub-populations from normal and trisomy 21 subjects according to age

    International Nuclear Information System (INIS)

    Baeteman, M.A.; Baret, A.; Courtiere, A.; Rebuffel, P.; Mattei, J.F.

    1983-01-01

    Copper and manganese superoxide dismutases (Cu-SOD and Mn-SOD) were measured by radioimmunoassay in B and T lymphocytes and macrophages, in patients with trisomy 21 and in matched controls. In the controls, Cu-SOD was present in greater amounts than Mn-SOD and there were quantitative differences in the distribution in the three cellular sub-populations. In trisomy 21, levels of Cu-SOD were raised, with no change in levels of Mn-SOD, supporting the theory of a gene dosage effect. There were significant positive and negative correlations between age and Cu-SOD levels in controls, and a correlation approaching significance for Mn-SOD. In trisomy 21, there was no correlation between age and Cu-SOD levels, and the only significant correlation for Mn-SOD was for B lymphocytes

  7. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  8. Reciprocal Effects of Oxidative Stress on Heme Oxygenase Expression and Activity Contributes to Reno-Vascular Abnormalities in EC-SOD Knockout Mice

    Directory of Open Access Journals (Sweden)

    Tomoko Kawakami

    2012-01-01

    although, HO activity was significantly (P<0.05 attenuated along with attenuation of serum adiponectin and vascular epoxide levels (P<0.05. CoPP, in EC-SOD(−/− mice, enhanced HO activity (P<0.05 and reversed aforementioned pathophysiological abnormalities along with restoration of vascular EET, p-eNOS, p-AKT and serum adiponectin levels in these animals. Taken together our results implicate a causative role of insufficient activation of heme-HO-adiponectin system in pathophysiological abnormalities observed in animal models of chronic oxidative stress such as EC-SOD(−/− mice.

  9. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay

  10. Preparation and Characterization of Nanoparticles Made from Co-Incubation of SOD and Glucose

    Directory of Open Access Journals (Sweden)

    Liping Cai

    2017-12-01

    Full Text Available The attractive potential of natural superoxide dismutase (SOD in the fields of medicine and functional food is limited by its short half-life in circulation and poor permeability across the cell membrane. The nanoparticle form of SOD might overcome these limitations. However, most preparative methods have disadvantages, such as complicated operation, a variety of reagents—some of them even highly toxic—and low encapsulation efficiency or low release rate. The aim of this study is to present a simple and green approach for the preparation of SOD nanoparticles (NPs by means of co-incubation of Cu/Zn SOD with glucose. This method was designed to prepare nanoscale aggregates based on the possible inhibitory effect of Maillard reaction on heating-induced aggregation during the co-incubation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE results indicated that the Maillard reaction occurred during the co-incubation process. It was found that enzymatically active NPs of Cu/Zn SOD were simultaneously generated during the reaction, with an average particle size of 175.86 ± 0.71 nm, and a Zeta potential of −17.27 ± 0.59 mV, as established by the measurement of enzymatic activity, observations using field emission scanning electron microscope, and analysis of dynamic light scattering, respectively. The preparative conditions for the SOD NPs were optimized by response surface design to increase SOD activity 20.43 fold. These SOD NPs showed storage stability for 25 days and better cell uptake efficacy than natural SOD. Therefore, these NPs of SOD are expected to be a potential drug candidate or functional food factor. To our knowledge, this is the first report on the preparation of nanoparticles possessing the bioactivity of the graft component protein, using the simple and green approach of co-incubation with glucose, which occurs frequently in the food industry during thermal processing.

  11. The effect of the spaceship carrying on the biological characters and sod activity of eggplant

    International Nuclear Information System (INIS)

    Wang Shiheng; Zhang Ya; Zhu Shuijin; Wang Yanfan

    2004-01-01

    The effects of the space shuttle carrying on the growth and biological characters of eggplant SP 1 population were studied. The results showed that the effect of space shuttle carrying on the growth and development of eggplant SP 1 were very significant on the characters such as the plant height, reproductive development, leaf size, fruit length, fruit quality and fruiting rate etc, especially on the plant development and the fruit size, and it is hopeful to select some good eggplant germplasm or cultivars from the population. The SOD activity showed that the SOD level in the mutant-1 plant was one time more than that in control plant, indicating that the space shuttle carrying may increase the expression of some genes and lead to the great change in morphological characters

  12. Stability of Seven Days Sample Storage of Erythrocyte’s SOD and Blood’s GPx

    Directory of Open Access Journals (Sweden)

    Miswar Fattah

    2012-12-01

    Full Text Available The research was about SOD erythrocyte activities at day 0, 1, 3, 5, and 7 which centrifuged at room temperature (22.5 0C and storage temperature (-80 0C, SOD activities at day-0 which centrifuged at 4 0C, SOD whole blood activities with one day incubated at 2-8 0C and GPx activities at day 0, 1, 3, 5, and 7 with 2–8 0C storage temperature. Laboratory analysis were performed by using reagent from Randox Laboratories, and Hitachi 917 analyzer from Boehringer Mannheim. SOD activities were measured at 505 nm absorbance meanwhile 340 nm absorbance is used to measure GPx. Data was analyzed by using t-test method and showed that SOD activities at day 0, 1, 3, 5, and 7 with room temperature centrifuged had no significant differences. Significant differences are found at day-0 with centrifuged at 4 0C and one day incubated whole blood at 2–8 0C. GPx activities at day- 3 had no significant differences. Significant differences are found at day-0,1, 5 and 7 after storage.

  13. Antioxidative Activity of Onion Peel Extract in Obese Women: A Randomized, Double-blind, Placebo Controlled Study.

    Science.gov (United States)

    Kim, Kyung-Ah; Yim, Jung-Eun

    2015-09-01

    Quercetin, found abundantly in onion peel, has been known to have anticholesterol, antithrombotic and insulin-sensitizing properties. Here, we investigated the effect of quercetin-rich onion peel extract (OPE) on reactive oxygen species (ROS) production and antioxidative defense in obese woman. This study was randomized, double-blind, placebo controlled study. Thirty-seven healthy obese participants were randomly assigned that eighteen subjects received red soft capsuled OPE (100 mg/d, 50 mg bis in die), while the other nineteen subjects received same capsuled placebo for 12 weeks. ROS production and superoxide dismutase (SOD) activity in plasma were determined by using ROS and SOD assay kits, respectively. Baseline characteristics of anthropometric indicators and blood metabolic profiles were not significantly different between the two groups. Compared with baseline values, OPE consumption significantly reduced waist and hip circumference. Plasma ROS level and SOD activity were decreased in both placebo and OPE groups compared with baseline values. However, plasma ROS level in OPE group was significantly lower than in placebo group while plasma SOD activity in OPE group was significantly higher than in placebo group after 12 weeks of consumption. These findings indicate that OPE consumption may exert antioxidative effect by preventing the decrease of SOD activity as well as the production of ROS in obese women.

  14. Plasma lipid peroxidation, blood GSH concentration and erythrocyte antioxidant enzymes in menstruating females with ovulatory and anovulatory cycles compared with males

    Directory of Open Access Journals (Sweden)

    G Lutosławska

    2003-12-01

    Full Text Available This study was undertaken to evaluate plasma TBARS and blood GSH concentration and erythrocyte antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase in active, regularly menstruating female physical education students with ovulatory and anovulatory menstrual cycles and in their male counterparts. A total of 27 subjects (12 males and 15 females volunteered to participate in the study. All females were regularly menstruating with cycle length between 26-31 days. Plasma progesterone and 17-β-estradiol concentrations were assayed during the 7th-9th and 22nd-25th day of the menstrual cycle. Women with plasma progesterone concentration exceeding 19 nmol•l-1 during the 22nd-25th day were referred to as ovulatory (Group OV; n=7. Women without a peak plasma progesterone concentration were referred to as anovulatory (Group AN; n=8. Blood from male subjects was withdrawn twice - two weeks apart, at their convenience. It was found that the menstrual cycle phases did not affect plasma TBARS and blood glutathione concentration and erythrocyte GPX, CAT and SOD activity. However, erythrocyte GPX activity either in ovulatory or anovulatory women was by about 30% higher than in male subjects. Erythrocyte SOD activity in ovulatory women both in follicular and luteal phase of the menstrual cycle (1557 U/g Hb and 1394.6 U/g Hb, respectively was markedly lower than in men (1951.8 and 1937.7 U/g Hb for blood sampling I and II, respectively. In contrast, erythrocyte SOD activity in anovulatory women (1855.5 U/g Hb and 1745.7 U/g Hb in the follicular and luteal phases, respectively was similar to that found in men. The above data indicated that erythrocyte GPX and SOD activities are sensitive to plasma ovarian hormone concentration. In addition, they suggested that due to higher erythrocyte GPX activity females even with anovulatory menstrual cycles are protected better than males against hydrogen peroxide action. However, lower superoxide

  15. Synchronous oscillation prior to disruption caused by kink modes in HL-2A tokamak plasmas

    Science.gov (United States)

    Jiang, M.; Hu, D.; Wang, X. G.; Shi, Z. B.; Xu, Y.; Chen, W.; Ding, X. T.; Zhong, W. L.; Dong, Y. B.; Ji, X. Q.; Zhang, Y. P.; Gao, J. M.; Li, J. X.; Yang, Z. C.; Li, Y. G.; Liu, Y.

    2015-08-01

    A class of evident MHD activities prior to major disruption has been observed during recent radiation induced disruptions of the HL-2A tokamak discharges. It can be named SOD, synchronous oscillations prior to disruption, characterized by synchronous oscillation of electron cyclotron emission (ECE), core soft x-ray, Mirnov coil, and {{D}α} radiation signals at the divertor plate. The SOD activity is mostly observed in a parametric regime where the poloidal beta is low enough before disruption, typically corresponding to those radiation-induced disruptions. It has been found that the m/n = 2/1 mode is dominant during the SODs, and consequently it is the drop of the mode frequency and the final mode locking that lead to thermal quench. The mode frequency before the mode locking corresponds to the toroidal rotation frequency of the edge plasma. It is also found that during SODs, the location of the q = 2 surface is moving outward, and most of the plasma current is enclosed within the surface. This demonstrates that the current channel lies inside the rational surface during SOD, and thus the resistive kink mode is unstable. Further analysis of the electron temperature perturbation structure shows that the plasma is indeed dominated by the resistive kink mode, with kink-like perturbation in the core plasma region. It suggests that it is the nonlinear growth of the m/n = 2/1 resistive kink mode and its higher order harmonics, rather than the spontaneous overlapping of multiple neighboring islands, that ultimately triggered the disruption.

  16. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna eGajowiak

    2016-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS and associated with mutations, frequently in the superoxide dismutase 1 (SOD1 gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS – transgenic mice overexpressing human mutated SOD1G93A gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month old and symptomatic, 4-month old SOD1G93A mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1G93A genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.

  17. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    International Nuclear Information System (INIS)

    Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, K.I.; Narang, H.; Krishna, M.

    2008-01-01

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of γ-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K m and V max values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H 2 O 2 and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  18. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Kunwar, A; Mishra, B; Barik, A; Priyadarsini, K I [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India); Narang, H; Krishna, M [Radiation Biology and Health Sciences Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-01-15

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of {gamma}-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K{sub m} and V{sub max} values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H{sub 2}O{sub 2} and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  19. Transduced human copper chaperone for Cu,Zn-SOD (PEP-1-CCS) protects against neuronal cell death.

    Science.gov (United States)

    Choi, Soo Hyun; Kim, Dae Won; Kim, So Young; An, Jae Jin; Lee, Sun Hwa; Choi, Hee Soon; Sohn, Eun Jung; Hwang, Seok-Il; Won, Moo Ho; Kang, Tae-Cheon; Kwon, Hyung Joo; Kang, Jung Hoon; Cho, Sung-Woo; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2005-12-31

    Reactive oxygen species (ROS) contribute to the development of various human diseases. Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS. SOD activity is dependent upon bound copper ions supplied by its partner metallochaperone protein, copper chaperone for SOD (CCS). In the present study, we investigated the protective effects of PEP-1-CCS against neuronal cell death and ischemic insults. When PEP-1-CCS was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Moreover, transduced PEP-1-CCS markedly increased endogenous SOD activity in the cells. Immunohistochemical analysis revealed that it prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that CCS is essential to activate SOD, and that transduction of PEP-1-CCS provides a potential strategy for therapeutic delivery in various human diseases including stroke related to SOD or ROS.

  20. Interleukin-6, Creatine Kinase, and Antioxidant Enzyme Activities following Platelet-Rich Plasma Treatment on Muscle Injury: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lingling Lai

    2016-06-01

    Full Text Available The aim of this study was to investigate the effect of autologous platelet-rich plasma (PRP treatment alongside rehabilitation compared with rehabilitation alone on inflammatory cytokine (interleukin-6, IL-6, creatine kinase muscle type (CKM, and antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT following hamstring injury. This study was a randomised control trial. Participants diagnosed with grade-2 acute hamstring injury (n=16 were divided into 2 groups of PRP treatment with rehabilitation program (PRP-T and rehabilitation program (CON. Blood samples were collected at baseline, and 2 fortnightly for the various biochemical assessments. Participants were certified to have recovered upon fulfilling return to play (RTP criteria. Level of IL-6 and the activities of CKM, SOD, and CAT were measured. PRP-T group benefited from earlier time to RTP with significantly lower IL-6 level and CAT activity compared to CON group. There was no significant difference in CKM and SOD activities between the groups, though a trend of lower values in all variables was observed at week 4 compared to week 0. PRP treatment potentially improves muscle healing process by altering both the inflammatory and oxidative responses, hence hastens time to RTP. KEY WORDS:  Autologous, blood injection, rehabilitation, sports injury, hamstring injury

  1. Overexpression of human SOD1 improves survival of mice susceptible to endotoxic shock

    Directory of Open Access Journals (Sweden)

    Charchaflieh J

    2012-07-01

    Full Text Available Jean Charchaflieh,1,2 Georges I Labaze,1 Pulsar Li,1 Holly Van Remmen,3 Haekyung Lee,1 Helen Stutz,1 Arlan Richardson,3 Asher Emanuel,1 Ming Zhang1,41Department of Anesthesiology, State University of New York (SUNY Downstate Medical Center, New York, NY, USA; 2Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA; 3Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 4Department of Cell Biology, State University of New York (SUNY Downstate Medical Center, New York, NY, USABackground: Protective effects of the antioxidant enzyme Cu-Zn superoxide dismutase (SOD1 against endotoxic shock have not been demonstrated in animal models. We used a murine model to investigate whether overexpression of SOD1 protects against endotoxic shock, and whether the genetic background of SOD1 affects its effective protective effects and susceptibility to endotoxic shock.Methods: Transgenic (tg mice overexpressing human SOD1 and control mice were divided into four groups based on their genetic background: (1 tg mice with mixed genetic background (tg-JAX; (2 wild-type (WT littermates of tg-JAX strain (WT-JAX; (3 tg mice with C57BL/6J background (tg-TX; (4 WT littermates of tg-TX strain (WT-TX. Activity of SOD1 in the intestine, heart, and liver of tg and control mice was confirmed using a polyacrylamide activity gel. Endotoxic shock was induced by intraperitoneal injection of lipopolysaccharide. Survival rates over 120 hours (mean, 95% confidence interval were analyzed using Kaplan–Meier survival curves.Results: Human SOD1 enzymatic activities were significantly higher in the intestine, heart, and liver of both tg strains (tg-JAX and tg-TX compared with their WT littermates (WT-JAX and WT-TX, respectively. Interestingly, the endogenous SOD1 activities in tg-JAX mice were decreased compared with their WT littermates (WT-JAX, but such aberrant changes were not

  2. Influence of radiation damage repair inhibitor on superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in different sensitive crops

    International Nuclear Information System (INIS)

    Song Daojun; Xu Dengyi; Wan Zhaoliang; He Shoulin

    1997-01-01

    The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were affected remarkably by 60 Co γ-ray irradiation and radiation damage repair inhibitor (Caf, EDTA). SOD, CAT and POD activities showed the similar change pattern in both soybean (sensitive to radiation) and Brassica napus L. (resistant to radiation) seedlings in all treatments. After reaching the maximum value, SOD activity decreased with the increase of doses. CAT activity had the same change pattern as that of SOD in soybean, while with Brassica napus L., CAT activity remained relatively steady from 300 Gy to 1000 Gy. And POD activity increased with the increase of doses. Compared with H 2 O-treatments, CaF, EDAT post-treatments obviously enhanced SOD, CAT and POD activities. With all the treatments, the three enzyme activities were higher in Brassica napus L. than those in soybean seedlings

  3. Short and long time effects of low temperature Plasma Activated Media on 3D multicellular tumor spheroids

    Science.gov (United States)

    Judée, Florian; Fongia, Céline; Ducommun, Bernard; Yousfi, Mohammed; Lobjois, Valérie; Merbahi, Nofel

    2016-02-01

    This work investigates the regionalized antiproliferative effects of plasma-activated medium (PAM) on colon adenocarcinoma multicellular tumor spheroid (MCTS), a model that mimics 3D organization and regionalization of a microtumor region. PAM was generated by dielectric barrier plasma jet setup crossed by helium carrier gas. MCTS were transferred in PAM at various times after plasma exposure up to 48 hours and effect on MCTS growth and DNA damage were evaluated. We report the impact of plasma exposure duration and delay before transfer on MCTS growth and DNA damage. Local accumulation of DNA damage revealed by histone H2AX phosphorylation is observed on outermost layers and is dependent on plasma exposure. DNA damage is completely reverted by catalase addition indicating that H2O2 plays major role in observed genotoxic effect while growth inhibitory effect is maintained suggesting that it is due to others reactive species. SOD and D-mannitol scavengers also reduced DNA damage by 30% indicating that and OH* are involved in H2O2 formation. Finally, PAM is able to retain its cytotoxic and genotoxic activity upon storage at +4 °C or -80 °C. These results suggest that plasma activated media may be a promising new antitumor strategy for colorectal cancer tumors.

  4. PENINGKATAN AKTIVITAS ENZIM SOD SERUM DAN KELUHAN KESEHATAN TERHADAP PAPARAN ASAP PEMBAKARAN KAYU PADA PEKERJA

    Directory of Open Access Journals (Sweden)

    Fitri Rokhmalia

    2016-04-01

    Full Text Available The chronic exposure of nitrogen dioxide and formaldehyde gases effected cellular influence enzymes activity SOD. This study aim to analyze the effect of exposure to nitrogen dioxide and formaldehyde gases against SOD and health complaint of worker in home industry petis. The method of this study was analytical observation with prospective longitudinal study with design study cross-week. Research sites of home industry petis and government Sekardangan office. The population was 2 population that were the workers of home industry petis and the administration worker of government sekardangan office in Desa Sekardangan Kabupaten Sidoarjo with some criteria that worked at male, not getting sickness asma and willing to participate in this study. Sample size had 24 persons that was taken by simple random sampling, 12 persons from each workers home industry petis and administratif worker in government sekardangan office. The analysis result shown that nitrogen dioxide and formaldehyde gases in air effected of enzymes SOD difference before and after exposure working group and not exposed (p<0,05 using paired t-test. The effect of nitrogen dioxide and formaldehyde gases in air effected enzymes activity SOD (p<0,05 using linear regression, but health complaint was effected by enzymes activity SOD (p<0,05 using logistic regression. The conclusion of this study was exposure of nitrogen dioxide and formaldehyde gases effect increasing of enzymes activity SOD of worker at home industry petis. Otherwise, there is effect of exposure of nitrogen dioxide and formaldehyde gases to health complaints. Keywords: nitrogen dioxide, formaldehyde gases, wood burning smoke, SOD, health complaints

  5. Pyrimethamine significantly lowers cerebrospinal fluid Cu/Zn superoxide dismutase in amyotrophic lateral sclerosis patients with SOD1 mutations.

    Science.gov (United States)

    Lange, Dale J; Shahbazi, Mona; Silani, Vincenzo; Ludolph, Albert C; Weishaupt, Jochen H; Ajroud-Driss, Senda; Fields, Kara G; Remanan, Rahul; Appel, Stanley H; Morelli, Claudia; Doretti, Alberto; Maderna, Luca; Messina, Stefano; Weiland, Ulrike; Marklund, Stefan L; Andersen, Peter M

    2017-06-01

    Cu/Zn superoxide dismutase (SOD1) reduction prolongs survival in SOD1-transgenic animal models. Pyrimethamine produces dose-dependent SOD1 reduction in cell culture systems. A previous phase 1 trial showed pyrimethamine lowers SOD1 levels in leukocytes in patients with SOD1 mutations. This study investigated whether pyrimethamine lowered SOD1 levels in the cerebrospinal fluid (CSF) in patients carrying SOD1 mutations linked to familial amyotrophic lateral sclerosis (fALS/SOD1). A multicenter (5 sites), open-label, 9-month-duration, dose-ranging study was undertaken to determine the safety and efficacy of pyrimethamine to lower SOD1 levels in the CSF in fALS/SOD1. All participants underwent 3 lumbar punctures, blood draw, clinical assessment of strength, motor function, quality of life, and adverse effect assessments. SOD1 levels were measured in erythrocytes and CSF. Pyrimethamine was measured in plasma and CSF. Appel ALS score, ALS Functional Rating Scale-Revised, and McGill Quality of Life Single-Item Scale were measured at screening, visit 6, and visit 9. We enrolled 32 patients; 24 completed 6 visits (18 weeks), and 21 completed all study visits. A linear mixed effects model showed a significant reduction in CSF SOD1 at visit 6 (p < 0.001) with a mean reduction of 13.5% (95% confidence interval [CI] = 8.4-18.5) and at visit 9 (p < 0.001) with a mean reduction of 10.5% (95% CI = 5.2-15.8). Pyrimethamine is safe and well tolerated in ALS. Pyrimethamine is capable of producing a significant reduction in total CSF SOD1 protein content in patients with ALS caused by different SOD1 mutations. Further long-term studies are warranted to assess clinical efficacy. Ann Neurol 2017;81:837-848. © 2017 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  6. The decreasing effect of exogenous SOD on damage of mice irradiated with 5 Gy 60Co-γ rays

    International Nuclear Information System (INIS)

    Liu Fenju; Jiang Jiagui; Yi Jian

    1999-01-01

    The author presents a report on the activity of Superoxide Dismutase (SOD) and the content of LPO measured in tissue of Liver, heart and brain of mice irradiated by 60 Co-γ rays 5 Gy 1, 3, 5 and 8 days after irradiation respectively. After radiation exogenous SOD was immediately i.p. injected into mice. The variation of LPO content in the above mentioned three kinds of tissue has been observed. The result of the measurement shows that after radiation at a dose of 5 Gy 60 Co-γ rays, the LPO content and SOD activity of mice organs varied with radiation time. The LPO content varied earliest in liver, while the variation of LPO content in heart and cerebrum took place 8 days after radiation, meanwhile the activity of SOD in the tissues significantly decreased in comparison with that the control group (P<0.01). After injection with SOD, the LPO content and SOD activity of the organs irradiated for different time significantly decreased and increased in comparison with that in the control group. This shows that the enzyme of SOD is of significant anti-radiation effect

  7. ATM is required for SOD2 expression and homeostasis within the mammary gland.

    Science.gov (United States)

    Dyer, Lisa M; Kepple, Jessica D; Ai, Lingbao; Kim, Wan-Ju; Stanton, Virginia L; Reinhard, Mary K; Backman, Lindsey R F; Streitfeld, W Scott; Babu, Nivetha Ramesh; Treiber, Nicolai; Scharffetter-Kochanek, Karin; McKinnon, Peter J; Brown, Kevin D

    2017-12-01

    ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed Atm Δ/Δ ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in Atm Δ/Δ dams. We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.

  8. Regression analysis of γ-ray effect on sod activity and MDA content in four vegetable leaves

    International Nuclear Information System (INIS)

    Wang Zegang; Feng Min; Hu Jianwei; Gao Yue; Lv Haiyan; Luo Shishi; Zheng Haoxian; Ma Fei; Ge Cailin

    2005-01-01

    Dynamic effects of γ-ray on SOD, POD activities and MDA content in leaves of four vegetable varieties were studied. The results were quantitatively described by the method of curve fitting and establishing mathematical model. The parameters of the formula suggested that the four vegetable varieties' sensitivity to radiation appeared as following order: Basella rubra>Lactuca sativa>Lactuca sativa spp>Brassica Chinensis. (authors)

  9. Comparing the functional components, SOD-like activities, antimutagenicity, and nutrient compositions of Phellinus igniarius and Phellinus linteus mushrooms

    Directory of Open Access Journals (Sweden)

    Nae-Cherng Yang

    2016-04-01

    Full Text Available Many species of the genus Phellinus possess beneficial properties, including antioxidant, immune-enhancing, and antimutagenic effects. Phenolic compounds and polysaccharides are two kinds of bioactive compounds; however, few studies have compared the differences between Phellinus igniarius and Phellinus linteus in their functional components, functional activities, and nutrient compositions. Herein, the proximate compositions and microelements of the fruiting body of P. igniarius and P. linteus were determined. The fruiting body of P. igniarius and P. linteus were extracted by boiling water [water extract of P. igniarius (WEPI and P. linteus (WEPL]. The contents of total phenolics and polysaccharides, as well as superoxide dismutase (SOD-like and antimutagenic activities of WEPI and WEPL, were compared. We found that WEPI was rich in phenolics and polysaccharides and had higher SOD-like activity than WEPL. Nutrient compositions were mainly different in minerals, whereas anitmutagenicity was similar. All of these results suggested that P. igniarius has greater potential for the development of antioxidant and immunomodulating food products than P. linteus.

  10. A Manganese Superoxide Dismutase (SOD2 Gene Polymorphism in Insulin-Dependent Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Flemming Pociot

    1993-01-01

    Full Text Available Interleukin I (lL-I is selectively cytotoxic to the insulin producing beta cell of pancreatic islets. This effect may be due to IL-I induced generation of reactive oxygen species and nitric oxide. Since beta cells contain low amounts of the superoxide radical scavenger enzyme manganese superoxide dismutase (MnSOD, this may leave beta cells more susceptible to IL-I than other cell types. Genetic variation in the MnSOD locus could reflect differences in scavenger potential. We, therefore, studied possible restriction fragment length polymorphisms (RFLPs of this locus in patients with insulin-dependent diabetes mellitus (100M (n= 154 and control individuals (n=178, Taql revealed a double diallelic RFLP in patients as well as in controls. No overall difference in allelic or genotype frequencies were observed between 100M patients and control individuals (p=0.11 and no significant association of any particular RFLP pattern with 100M was found. Structurally polymorphic MnSOD protein variants with altered activities have been reported. If genetic variation results in MnSOD variants with reduced activities, the MnSOD locus may still be a candidate gene for 100M susceptibility. Whether the RFLPs reported in this study reflects differences in gene expression level, protein level and/or specific activity of the protein is yet to be studied.

  11. Effects of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Lu Yanda

    2001-01-01

    Objective: To study the effect of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in the tumor-bearing mice. Methods: Kunming strain male mice were implanted with S 180 sarcoma cells in the right inguen subcutaneously as an experimental in situ animal model. Six hours before implantation the mice were given 75 mG whole-body X-ray irradiation and tumor-formation rate was counted 5 days late. From then, every two days the tumor volume was measured to draw a tumor growth curve. Fifteen days later, all mice were killed to measure the tumor weight, observe the necrosis area and the tumor-infiltration lymphoreticular cells (TIL) in the tumor pathologically. At the same time, erythrocyte immune function and activity of SOD were tested. Results: (1) The mice pre-exposed to low dose radiation had a lower tumor formation rate than those without a pre-exposed (P < 0.05). (2) The tumor growth slowed down significantly in mice receiving a low does irradiation; The average tumor weight in mice receiving a low dose irradiation was lighter too (P < 0.05). (3) The tumor necrosis areas were larger and TILs were more in the irradiation group than those of the control group. (4) The erythrocyte immune function and activity of SOD in the irradiation group were all higher significantly than those of the control group ( P < 0.05). Conclusion: Low dose radiation could markedly increase anti-tumor ability of the organism and improve the erythrocyte immune function and activity of SOD in red cells, suggesting it could be useful in clinical cancer treatment

  12. Characterization of recombinant B. abortus strain RB51SOD towards understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51

    Directory of Open Access Journals (Sweden)

    Jianguo eZhu

    2011-11-01

    Full Text Available Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD in a recombinant strain of RB51 (strain RB51SOD significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte (CTL activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS. Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  13. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects.

    Science.gov (United States)

    Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N

    2017-01-25

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.

  14. Analysis of Serum Cytokines and Single-Nucleotide Polymorphisms of SOD1, SOD2, and CAT in Erysipelas Patients

    Directory of Open Access Journals (Sweden)

    Charles C. Emene

    2017-01-01

    Full Text Available Increased free radical production had been documented in group A (β-hemolytic streptococcus infection cases. Comparing 71 erysipelas patients to 55 age-matched healthy individuals, we sought for CAT, SOD1, and SOD2 single polymorphism mutation (SNPs interactions with erysipelas’ predisposition and serum cytokine levels in the acute and recovery phases of erysipelas infection. Whereas female patients had a higher predisposition to erysipelas, male patients were prone to having a facial localization of the infection. The presence of SOD1 G7958, SOD2 T2734, and CAT C262 alleles was linked to erysipelas’ predisposition. T and C alleles of SOD2 T2734C individually were linked to patients with bullous and erythematous erysipelas, respectively. G and A alleles of SOD1 G7958A individually were associated with lower limbs and higher body part localizations of the infection, respectively. Serum levels of IL-1β, CCL11, IL-2Rα, CXCL9, TRAIL, PDGF-BB, and CCL4 were associated with symptoms accompanying the infection, while IL-6, IL-9, IL-10, IL-13, IL-15, IL-17, G-CSF, and VEGF were associated with predisposition and recurrence of erysipelas. While variations of IL-1β, IL-7, IL-8, IL-17, CCL5, and HGF were associated with the SOD2 T2734C SNP, variations of PDFG-BB and CCL2 were associated with the CAT C262T SNP.

  15. Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.

    Science.gov (United States)

    Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F

    2006-10-01

    The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.

  16. A Model of Oxidative Stress Management: Moderation of Carbohydrate Metabolizing Enzymes in SOD1-Null Drosophila melanogaster

    Science.gov (United States)

    Bernard, Kristine E.; Parkes, Tony L.; Merritt, Thomas J. S.

    2011-01-01

    The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain. PMID

  17. Imidazole-containing phthalazine derivatives inhibit Fe-SOD performance in Leishmania species and are active in vitro against visceral and mucosal leishmaniasis.

    Science.gov (United States)

    Sánchez-Moreno, M; Gómez-Contreras, F; Navarro, P; Marín, C; Ramírez-Macías, I; Rosales, M J; Campayo, L; Cano, C; Sanz, A M; Yunta, M J R

    2015-07-01

    The in vitro leishmanicidal activity of a series of imidazole-containing phthalazine derivatives 1-4 was tested on Leishmania infantum, Leishmania braziliensis and Leishmania donovani parasites, and their cytotoxicity on J774·2 macrophage cells was also measured. All compounds tested showed selectivity indexes higher than that of the reference drug glucantime for the three Leishmania species, and the less bulky monoalkylamino substituted derivatives 2 and 4 were clearly more effective than their bisalkylamino substituted counterparts 1 and 3. Both infection rate measures and ultrastructural alterations studies confirmed that 2 and 4 were highly leishmanicidal and induced extensive parasite cell damage. Modifications to the excretion products of parasites treated with 2 and 4 were also consistent with substantial cytoplasmic alterations. On the other hand, the most active compounds 2 and 4 were potent inhibitors of iron superoxide dismutase enzyme (Fe-SOD) in the three species considered, whereas their impact on human CuZn-SOD was low. Molecular modelling suggests that 2 and 4 could deactivate Fe-SOD due to a sterically favoured enhanced ability to interact with the H-bonding net that supports the antioxidant features of the enzyme.

  18. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    Directory of Open Access Journals (Sweden)

    Sônia C. Melo

    2015-06-01

    Full Text Available Heterologous expression of a putative manganese superoxide dismutase gene (SOD2 of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs located the protein of M. perniciosa (MpSod2p in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  19. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    Science.gov (United States)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  20. A 50 bp deletion in the SOD1 promoter lowers enzyme expression but is not associated with ALS in Sweden.

    Science.gov (United States)

    Ingre, Caroline; Wuolikainen, Anna; Marklund, Stefan L; Birve, Anna; Press, Rayomand; Andersen, Peter M

    2016-01-01

    Mutations in the superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). A 50 base pair (bp) deletion of SOD1 has been suggested to reduce transcription and to be associated with later disease onset in ALS. This study was aimed to reveal if the 50 bp deletion influenced SOD1 enzymatic activity, occurrence and phenotype of the disease in a Swedish ALS/control cohort. Blood samples from 512 Swedish ALS patients and 354 Swedish controls without coding SOD1 mutations were analysed for the 50 bp deletion allele. The enzymatic activity of SOD1 in erythrocytes was analysed and genotype-phenotype correlations were assessed. Results demonstrated that the genotype frequencies of the 50 bp deletion were all found to be in Hardy-Weinberg equilibrium. No significant differences were found for age of onset, disease duration or site of onset. SOD1 enzymatic activity showed a statistically significant decreasing trend in the control group, in which the allele was associated with a 5% reduction in SOD1 activity. The results suggest that the 50 bp deletion has a moderate reducing effect on SOD1 synthesis. No modulating effects, however, were found on ALS onset, phenotype and survival in the Swedish population.

  1. Sod1 deficiency reduces incubation time in mouse models of prion disease.

    Directory of Open Access Journals (Sweden)

    Shaheen Akhtar

    Full Text Available Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02 and Sod1 (P<0.0001 suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.

  2. Oxidants and anti-oxidants in turbot seminal plasma and their effects on sperm quality

    Science.gov (United States)

    Han, Mingming; Ding, Fuhong; Meng, Zhen; Lei, Jilin

    2015-08-01

    In this research, the concentration and activity of oxidants and anti-oxidants in turbot semen, and their effects on sperm quality were studied. The results showed that superoxide dismutase (SOD), catalase, glutathione reductase (GR), uric acid, vitamin E (VE) and vitamin C (VC) were more abundant in seminal plasma than in spermatozoa. The variation for each of them was specific. In seminal plasma, the activity of SOD and GR increased from November 15, November 30 to December 15, and then decreased on December 30. The concentrations of both VC and uric acid decreased during the first 3 sampling times and increased on December 30. The oxidants in seminal plasma accumulated to the highest on December 30. Lactic acid (LA) and ATP levels decreased to the lowest on December 30. The correlation analysis showed that GR had the significant positive relevance to sperm motility and VSL/VCL, while ·OH had negative relevance to them.

  3. Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection.

    Science.gov (United States)

    Fenlon, Luke A; Slauch, James M

    2017-12-15

    Salmonella enterica serovar Typhimurium is a leading cause of foodborne disease worldwide. Severe infections result from the ability of S Typhimurium to survive within host immune cells, despite being exposed to various host antimicrobial factors. SodCI, a copper-zinc-cofactored superoxide dismutase, is required to defend against phagocytic superoxide. SodCII, an additional periplasmic superoxide dismutase, although produced during infection, does not function in the host. Previous studies suggested that CueP, a periplasmic copper binding protein, facilitates acquisition of copper by SodCII. CopA and GolT, both inner membrane ATPases that pump copper from the cytoplasm to the periplasm, are a source of copper for CueP. Using in vitro SOD assays, we found that SodCI can also utilize CueP to acquire copper. However, both SodCI and SodCII have a significant fraction of activity independent of CueP and cytoplasmic copper export. We utilized a series of mouse competition assays to address the in vivo role of CueP-mediated SodC activation. A copA golT cueP triple mutant was equally as competitive as the wild type, suggesting that sufficient SodCI is active to defend against phagocytic superoxide independent of CueP and cytoplasmic copper export. We also confirmed that a strain containing a modified SodCII, which is capable of complementing a sodCI deletion, was fully virulent in a copA golT cueP background competed against the wild type. These competitions also address the potential impact of cytoplasmic copper toxicity within the phagosome. Our data suggest that Salmonella does not encounter inhibitory concentrations of copper during systemic infection. IMPORTANCE Salmonella is a leading cause of gastrointestinal disease worldwide. In severe cases, Salmonella can cause life-threatening systemic infections, particularly in very young children, the elderly, or people who are immunocompromised. To cause disease, Salmonella must survive the hostile environment inside host

  4. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset.

    Directory of Open Access Journals (Sweden)

    Christine Vande Velde

    Full Text Available Mutations in superoxide dismutase (SOD1 are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.

  5. Studies on the Effect of 99Tc in colloid on enzyme activity(G.p.x ,G.S.T,SOD) before and after used diadzain

    International Nuclear Information System (INIS)

    Ahmood, A. M.; Alwan, I. F.; Abd Al-Kream, H. M.

    2012-12-01

    This study was conducted to determine the effect of Tin -colloid labeled with Technetium -99m on some enzyme activities of treated mice. it was noticed that an increase in the level of Glutathione-S- transferase (GST) glutathione peroxidase (Gpx), super oxide dismutase (SOD) and malonaldehyde (MDA) levels for treated (20) mice compared to the level of control mice Group (20). After That, the use diadzein extracted from soy been and linseed with concentrate of (0.250 mg/Kg), (0.500/Kg) on mice Group (20). It was found decreased activities GST, Gpx , SOD and MDA compared with 9 9mT c Tin-colloid Group without diadzein. (Author)

  6. Additive contributions of two manganese-cored superoxide dismutases (MnSODs to antioxidation, UV tolerance and virulence of Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Xue-Qin Xie

    Full Text Available The biocontrol potential of entomopathogenic fungi against arthropod pests depends on not only their virulence to target pests but tolerance to outdoor high temperature and solar UV irradiation. Two Beauveria bassiana superoxide dismutases (SODs, BbSod2 and BbSod3, were characterized as cytosolic and mitochondrial manganese-cored isoenzymes (MnSODs dominating the total SOD activity of the fungal entomopathogen under normal growth conditions. To probe their effects on the biocontrol potential of B. bassiana, ΔBbSod2, ΔBbSod3, and three hairpin RNA-interfered (RNAi mutants with the transcripts of both BbSod2 and BbSod3 being suppressed by 91-97% were constructed and assayed for various phenotypic parameters in conjunction with ΔBbSod2/BbSod2, ΔBbSod3/BbSod3 and wild-type (control strains. In normal cultures, the knockout and RNAi mutants showed significant phenotypic alterations, including delayed sporulation, reduced conidial yields, and impaired conidial quality, but little change in colony morphology. Their mycelia or conidia became much more sensitive to menadione or H(2O(2-induced oxidative stress but had little change in sensitivity to the hyperosmolarity of NaCl and the high temperature of 45°C. Accompanied with the decreased antioxidative capability, conidial tolerances to UV-A and UV-B irradiations were reduced by 16.8% and 45.4% for ΔBbSod2, 18.7% and 44.7% for ΔBbSod3, and ∼33.7% and ∼63.8% for the RNAi mutants, respectively. Their median lethal times (LT(50s against Myzus persicae apterae, which were topically inoculated under a standardized spray, were delayed by 18.8%, 14.5% and 37.1%, respectively. Remarkably, the effects of cytosolic BbSod2 and mitochondrial BbSod3 on the phenotypic parameters important for the fungal bioncontrol potential were additive, well in accordance with the decreased SOD activities and the increased superoxide levels in the knockout and RNAi mutants. Our findings highlight for the first time that

  7. Molecular and expression analysis of manganese superoxide dismutase (Mn-SOD) gene under temperature and starvation stress in rotifer Brachionus calyciflorus.

    Science.gov (United States)

    Yang, Jianghua; Dong, Siming; Zhu, Huanxi; Jiang, Qichen; Yang, Jiaxin

    2013-04-01

    Superoxide dismutase (SOD) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species. We cloned cDNA encoding SOD activated with manganese (Mn-SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of Mn-SOD was 1,016 bp and had a 669 bp open reading frame encoding 222 amino acids. The deduced amino acid sequence of B. calyciflorus Mn-SOD showed 89.1, 71.3, and 62.1 % similarity with the Mn-SOD of the marine rotifer Brachionus plicatilis, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, respectively. The phylogenetic tree constructed based on the amino acid sequences of Mn-SODs from B. calyciflorus and other organisms revealed that this rotifer is closely related to nematodes. Analysis of the mRNA expression of Mn-SOD under different conditions revealed that expression was enhanced 5.6-fold (p 0.05). Moderate starvation promoted Mn-SOD mRNA expression (p 12 < 0.01, p 36 < 0.05), which reached a maximum value (15.3 times higher than control, p 24 < 0.01) at 24 h. SOD and CAT activities also elevated at the 12 h-starved group. These results indicate that induction of Mn-SOD expression by stressors likely plays an important role in aging of B. calyciflorus.

  8. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  9. Influence of gross saponins from tribulus terrestris L on SOD activity and MDA content for chronic high intraocular pressure in rabbit

    Directory of Open Access Journals (Sweden)

    Nuo Li

    2013-05-01

    Full Text Available AIM:To observe influence of gross saponins from tribulus terrestris L(GSTTon SOD activity and MDA content for chronic high intraocular pressure in rabbit, and discusses the retina oxidative damage inhibition on chronic high intraocular pressure model of rabbit. METHODS:Totally 24 healthy New Zealand rabbits were randomly divided into 4 groups: normal control group(A group; high intraocular pressure model blank group(B group; high intraocular pressure model with GSTT treated group(C group; high intraocular pressure model with Erigeron brevicapas hand mass(EBHMtreated group(D group. High intraocular pressure model was induced by 20g/L methylcellulose injection into the anterior chamber in B group, C group and D group. D group was injected 5 mg/kg GSTT and C group was injected 4.5mg/kg EBHM and measured intraocular pressure with Schiotz tonometer every day for 4 weeks. The retina tissue superoxide dismutase(SODand maleic dialdehyde(MDAcontent were detected 28 days later. RESULTS: After glaucoma model of rabbit eyes were established, the intraocular pressure during observation period was maintained in 32-39mmHg; High intraocular pressure model blank group and normal control group, EBHM treatment group, GSTT treatment group were compared, the differences of retina MDA, SOD content had statistical significance(P0.05; EBHM treatment group, GSTT treatment group and normal control group were compared, the content of MDA in the retina was still slightly higher(P<0.05, the content of SOD slightly lower(P<0.05 CONCLUSION: GSTT can effectively improve the retina SOD activity of chronic high intraocular pressure in rabbit and reduce the content of MDA, which has a protective effect of persistent high intraocular retinal oxidative stress.

  10. Exposure of Mn and FeSODs, but not Cu/ZnSOD, to NO leads to nitrosonium and nitroxyl ions generation which cause enzyme modification and inactivation: an in vitro study.

    Science.gov (United States)

    Niketíc, V; Stojanović, S; Nikolić, A; Spasić, M; Michelson, A M

    1999-11-01

    The effect of NO treatment in vitro on structural and functional alterations of Cu/Zn, Mn, and Fe type of SODs was studied. Significant difference in response to NO of Cu/ZnSOD compared to the Mn and Fe types was demonstrated. Cu/ZnSOD was shown to be stable with respect to NO: even on prolonged exposure, NO produced negligible effect on its structure and activity. In contrast, both Mn and Fe types were found to be NO-sensitive: exposure to NO led to their fast and extensive inactivation, which was accompanied by extensive structural alterations, including (in some of the samples tested) the cleavage of enzyme polypeptide chains, presumably at His residues of the enzyme metal binding sites. The generation of nitrosonium (NO+) and nitroxyl (NO-) ions in NO treated Mn and FeSODs, which produce enzyme modifications and inactivation, was demonstrated. The physiological and biomedical significance of described findings is briefly discussed.

  11. The clinical significance of determining the plasma superoxide dismutase and neuropeptide Y in newborn hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Xu Xuezhong; Cui Zhenxing

    2002-01-01

    Objective: To investigate the contents of plasma superoxide dismutase (SOD) and neuropeptide Y (NPY) in newborn hypoxic-ischemic encephalopathy (HIE) babies in various clinic stages and their clinical significance. Methods: The plasma levels of SOD and NPY of 63 HIE babies and controls were determined by radioimmunoassay (RIA) and the values were studied for different clinical stages (severe 22, moderate 7 and mild 24). Results: The contents of plasma SOD and NPY of HIE babies of various stages were different and there existed remarkable contrast between those in patients and controls (p<0.05 or p<0.01). Conclusion: The contents of plasma SOD and NPY in HIE neonates were correlated to the clinic stage and severeness of the disease process

  12. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami; Deng, Shuo; Ganesan, Pugalenthi; Kumar, Alan Prem; Lim, Kiat Hon; Yang, Henry; Hooi, Shing Chuan; Goh, Yaw Chong; Maciver, Sutherland K.; Pervaiz, Shazib; Yap, Celestial T.

    2016-01-01

    , and this is mediated via gelsolin's effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained

  13. Defining SOD1 ALS natural history to guide therapeutic clinical trial design.

    Science.gov (United States)

    Bali, Taha; Self, Wade; Liu, Jingxia; Siddique, Teepu; Wang, Leo H; Bird, Thomas D; Ratti, Elena; Atassi, Nazem; Boylan, Kevin B; Glass, Jonathan D; Maragakis, Nicholas J; Caress, James B; McCluskey, Leo F; Appel, Stanley H; Wymer, James P; Gibson, Summer; Zinman, Lorne; Mozaffar, Tahseen; Callaghan, Brian; McVey, April L; Jockel-Balsarotti, Jennifer; Allred, Peggy; Fisher, Elena R; Lopate, Glenn; Pestronk, Alan; Cudkowicz, Merit E; Miller, Timothy M

    2017-02-01

    Understanding the natural history of familial amyotrophic lateral sclerosis (ALS) caused by SOD1 mutations (ALS SOD1 ) will provide key information for optimising clinical trials in this patient population. To establish an updated natural history of ALS SOD1 . Retrospective cohort study from 15 medical centres in North America evaluated records from 175 patients with ALS with genetically confirmed SOD1 mutations, cared for after the year 2000. Age of onset, survival, ALS Functional Rating Scale (ALS-FRS) scores and respiratory function were analysed. Patients with the A4V (Ala-Val) SOD1 mutation (SOD1 A4V ), the largest mutation population in North America with an aggressive disease progression, were distinguished from other SOD1 mutation patients (SOD1 non-A4V ) for analysis. Mean age of disease onset was 49.7±12.3 years (mean±SD) for all SOD1 patients, with no statistical significance between SOD1 A4V and SOD1 non-A4V (p=0.72, Kruskal-Wallis). Total SOD1 patient median survival was 2.7 years. Mean disease duration for all SOD1 was 4.6±6.0 and 1.4±0.7 years for SOD1 A4V . SOD1 A4V survival probability (median survival 1.2 years) was significantly decreased compared with SOD1 non-A4V (median survival 6.8 years; p<0.0001, log-rank). A statistically significant increase in ALS-FRS decline in SOD1 A4V compared with SOD1 non-A4V participants (p=0.02) was observed, as well as a statistically significant increase in ALS-forced vital capacity decline in SOD1 A4V compared with SOD1 non-A4V (p=0.02). SOD1 A4V is an aggressive, but relatively homogeneous form of ALS. These SOD1-specific ALS natural history data will be important for the design and implementation of clinical trials in the ALS SOD1 patient population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb

    Directory of Open Access Journals (Sweden)

    Hongqin Jiang

    2015-07-01

    Full Text Available Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p0.05. The levels of TG (p<0.001 and LDL-C (p<0.001 were decreased with the feeding time extension, and both showed a linear trend (p<0.01. Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01. Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001, total antioxidant capacity (T-AOC, p<0.05, and activities of catalase (CAT, p<0.01, glutathione peroxidase (GSH-Px, p<0.05 and superoxide dismutase (SOD, p<0.05. The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly and SOD (p<0.001, linearly. Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.

  15. Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study.

    Science.gov (United States)

    Lefaix, J L; Delanian, S; Leplat, J J; Tricaud, Y; Martin, M; Nimrod, A; Baillet, F; Daburon, F

    1996-05-01

    To establish how far liposomal copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD), respectively, reduce radiation-induced fibrosis (RIF), using a well-characterized pig model of RIF permitting the design of a controlled laboratory experiment. In this model of acute localized gamma irradiation simulating accidental overexposure in humans, three groups of five large white pigs were irradiated using a collimated 192Ir source to deliver a single dose of 160 Gy onto the skin surface (100%) of the outer side of the thigh. A well-defined block of subcutaneous fibrosis involving skin and skeletal muscle developed 6 months after irradiation. One experimental group of five pigs was then injected i.m. with 10 mg/10 kg b.wt. of Cu/Zn-SOD, twice a week for 3 weeks, and another experimental group of five was injected with 10 mg/10 kg b.wt. of Mn-SOD, three times a week for 3 weeks. Five irradiated control pigs were injected with physiological serum. Animals were assessed for changes in the density of the palpated fibrotic block and in the dimensions of the projected cutaneous surface. Block depth was determined by ultrasound. Physical and sonographic findings were confirmed by autopsy 12-14 weeks after completing SOD injections. The density, length, width, and depth of the fibrotic block, and the areas and volume of its projected cutaneous surface were compared before treatment, 1, 3, and 6 weeks thereafter, and at autopsy, 12-14 weeks after treatment ended. The experimental animals exhibited no change in behavior and no abnormal clinical or anatomic signs. Whether they were given Cu/Zn- or Mn-SOD, significant and roughly equivalent softening and shrinking of the fibrotic block were noted in all treated animals between the first week after treatment ended and autopsy, when mean regression was 45% for length and width, 30% for depth, and 70% for area and volume. Histologic examination showed completely normal muscle and subcutaneous tissue

  16. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling.

    Science.gov (United States)

    Parker, Lewan; Trewin, Adam; Levinger, Itamar; Shaw, Christopher S; Stepto, Nigel K

    2018-04-01

    Redox homeostasis and redox-sensitive protein signaling play a role in exercise-induced adaptation. The effects of sprint-interval exercise (SIE), high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CMIE), on post-exercise plasma redox status are unclear. Furthermore, whether post-exercise plasma redox status reflects skeletal muscle redox-sensitive protein signaling is unknown. In a randomized crossover design, eight healthy adults performed a cycling session of HIIE (5×4min at 75% W max ), SIE (4×30s Wingate's), and CMIE work-matched to HIIE (30min at 50% of W max ). Plasma hydrogen peroxide (H 2 O 2 ), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) activity, and catalase activity were measured immediately post, 1h, 2h and 3h post-exercise. Plasma redox status biomarkers were correlated with phosphorylation of skeletal muscle p38-MAPK, JNK, NF-κB, and IκBα protein content immediately and 3h post-exercise. Plasma catalase activity was greater with SIE (56.6±3.8Uml -1 ) compared to CMIE (42.7±3.2, pexercise plasma TBARS and SOD activity significantly (pexercise protocol. A significant positive correlation was detected between plasma catalase activity and skeletal muscle p38-MAPK phosphorylation 3h post-exercise (r=0.40, p=0.04). No other correlations were detected (all p>0.05). Low-volume SIE elicited greater post-exercise plasma catalase activity compared to HIIE and CMIE, and greater H 2 O 2 compared to CMIE. Plasma redox status did not, however, adequately reflect skeletal muscle redox-sensitive protein signaling. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. The SOD gene family in tomato: identification, phylogenetic relationships and expression patterns

    Directory of Open Access Journals (Sweden)

    kun feng

    2016-08-01

    Full Text Available Superoxide dismutases (SODs are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L. is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  18. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    Science.gov (United States)

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. © 2013.

  19. ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.

    Science.gov (United States)

    Wang, Huan; Yi, Jianxun; Li, Xuejun; Xiao, Yajuan; Dhakal, Kamal; Zhou, Jingsong

    2018-01-01

    While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1 G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1 G93A . Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1 G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1 G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1 G93A on mitochondrial network and dynamics, indicating that SOD1 G93A likely promotes

  20. Screening of a clinically and biochemically diagnosed SOD patient ...

    African Journals Online (AJOL)

    The disease follows an autosomal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and ...

  1. Manganese superoxide dismutase (MnSOD catalyzes NO-dependent tyrosine residue nitration

    Directory of Open Access Journals (Sweden)

    SRDJAN STOJANOVIC

    2005-04-01

    Full Text Available The peroxynitrite-induced nitration of manganese superoxide dismutase (MnSOD tyrosine residue, which causes enzyme inactivation, is well established. This led to suggestions that MnSOD nitration and inactivation in vivo, detected in various diseases associated with oxidative stress and overproduction of nitric monoxide (NO, conditions which favor peroxynitrite formation, is also caused by peroxynitrite. However, our previous in vitro study demonstrated that exposure of MnSOD to NO led to NO conversion into nitrosonium (NO+ and nitroxyl (NO– species, which caused enzyme modifications and inactivation. Here it is reported that MnSOD is tyrosine nitrated upon exposure to NO, as well as that MnSOD nitration contributes to inactivation of the enzyme. Collectively, these observations provide a compelling argument supporting the generation of nitrating species in MnSOD exposed to NO and shed a new light on MnSOD tyrosine nitration and inactivation in vivo. This may represent a novel mechanism by which MnSOD protects cell from deleterious effects associated with overproduction of NO. However, extensive MnSOD modification and inactivation associated with prolonged exposure to NO will amplify the toxic effects caused by increased cell superoxide and NO levels.

  2. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Akshay Bhinge

    2017-04-01

    Full Text Available Summary: Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS, it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential. : In this article, Bhinge, Stanton, and colleagues use genome editing of patient-derived iPSCs to model ALS phenotypic defects in vitro. Transcriptomic analysis of disease MNs reveals activation of MAPK, AP1, WNT, cell-cycle, and p53 signaling in ALS MNs. Pharmacological screening uncovers activated ERK and JNK signaling as therapeutic targets in ALS. Keywords: ALS, SOD1, FUS, CRISPR-Cas9, p38, ERK, JNK, WNT, TP53, JUN

  3. Manganese-superoxide dismutase (MnSOD), a role player in seahorse (Hippocampus abdominalis) antioxidant defense system and adaptive immune system.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Seongdo; Kim, Myoung-Jin; Hwang, Jee Youn; Kwon, Mun Gyeong; Hwang, Seong Don; Lee, Jehee

    2017-09-01

    Manganese superoxide dismutase (MnSOD) is a metaloenzyme that catalyzes dismutation of the hazardous superoxide radicals into less hazardous H 2 O 2 and H 2 O. Here, we identified a homolog of MnSOD from big belly seahorse (Hippocampus abdominalis; HaMnSOD) and characterized its structural and functional features. HaMnSOD transcript possessed an open reading frame (ORF) of 672 bp which codes for a peptide of 223 amino acids. Pairwise alignment showed that HaMnSOD shared highest identity with rock bream MnSOD. Results of the phylogenetic analysis of HaMnSOD revealed a close proximity with rock bream MnSOD which was consistent with the result of homology alignment. The intense expression of HaMnSOD was observed in the ovary, followed by the heart and the brain. Further, immune related responses of HaMnSOD towards pathogenic stimulation were observed through bacterial and viral challenges. Highest HaMnSOD expression in response to stimulants Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide (LPS), and polyinosinic-polycytidylic acid (Poly I:C) was observed in the late stage in the blood tissue. Xanthine/xanthine oxidase assay (XOD assay) indicated the ROS-scavenging ability of purified recombinant HaMnSOD (rHaMnSOD). The optimum conditions for the SOD activity of rHaMnSOD were pH 9 and the 25 °C. Collectively, the results obtained through the expressional analysis profiles and the functional assays provide insights into potential immune related and antioxidant roles of HaMnSOD in the big belly seahorse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Irradiation effect on the seed vigor, SOD activity and MDA content in germinating seeds of yellow-seeded and black-seeded rape seed (Brassica napus L.)

    International Nuclear Information System (INIS)

    Han Jixiang; Hu Danhong; Liu Houli

    1993-01-01

    Seeds of a set of near-isogenic lines (Brassica napus L.) with different seed coat color from yellow to black were irradiated by 60 Co γ-rays of 150 krad. Seed vigor, superoxide dismutase (SOD) and malondialdehyde (MDA) in germinating seeds were analysed. In these characters, no significant difference between yellow-seeded lines (YLs) and black-seeded lines (BLs) showed before irradiation. But after irradiation, SOD activity in YLs was lower than that in BLs. While MDA content in YLs was obviously higher that that in DLs. As a result of irradiation, seed vigor of YLs was lower than that in BLs. these results indicated that the irradiation resistance of rape seed was related to the level of SOD as well as protective structure or substances in seed coat and that the radiosensitivity of YLs was higher than that of DLs

  5. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1.

    Science.gov (United States)

    Ghadge, Ghanashyam D; Pavlovic, John D; Koduvayur, Sujatha P; Kay, Brian K; Roos, Raymond P

    2013-08-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Molecular Cloning, Characterization and Predicted Structure of a Putative Copper-Zinc SOD from the Camel, Camelus dromedarius

    Directory of Open Access Journals (Sweden)

    Ajamaluddin Malik

    2012-01-01

    Full Text Available Superoxide dismutase (SOD is the first line of defense against oxidative stress induced by endogenous and/or exogenous factors and thus helps in maintaining the cellular integrity. Its activity is related to many diseases; so, it is of importance to study the structure and expression of SOD gene in an animal naturally exposed most of its life to the direct sunlight as a cause of oxidative stress. Arabian camel (one humped camel, Camelus dromedarius is adapted to the widely varying desert climatic conditions that extremely changes during daily life in the Arabian Gulf. Studying the cSOD1 in C. dromedarius could help understand the impact of exposure to direct sunlight and desert life on the health status of such mammal. The full coding region of a putative CuZnSOD gene of C. dromedarius (cSOD1 was amplified by reverse transcription PCR and cloned for the first time (gene bank accession number for nucleotides and amino acids are JF758876 and AEF32527, respectively. The cDNA sequencing revealed an open reading frame of 459 nucleotides encoding a protein of 153 amino acids which is equal to the coding region of SOD1 gene and protein from many organisms. The calculated molecular weight and isoelectric point of cSOD1 was 15.7 kDa and 6.2, respectively. The level of expression of cSOD1 in different camel tissues (liver, kidney, spleen, lung and testis was examined using Real Time-PCR. The highest level of cSOD1 transcript was found in the camel liver (represented as 100% followed by testis (45%, kidney (13%, lung (11% and spleen (10%, using 18S ribosomal subunit as endogenous control. The deduced amino acid sequence exhibited high similarity with Cebus apella (90%, Sus scrofa (88%, Cavia porcellus (88%, Mus musculus (88%, Macaca mulatta (87%, Pan troglodytes (87%, Homo sapiens (87%, Canis familiaris (86%, Bos taurus (86%, Pongo abelii (85% and Equus caballus (82%. Phylogenetic analysis revealed that cSOD1 is grouped together with S. scrofa. The

  7. Molecular cloning, characterization and predicted structure of a putative copper-zinc SOD from the camel, Camelus dromedarius.

    Science.gov (United States)

    Ataya, Farid S; Fouad, Dalia; Al-Olayan, Ebtsam; Malik, Ajamaluddin

    2012-01-01

    Superoxide dismutase (SOD) is the first line of defense against oxidative stress induced by endogenous and/or exogenous factors and thus helps in maintaining the cellular integrity. Its activity is related to many diseases; so, it is of importance to study the structure and expression of SOD gene in an animal naturally exposed most of its life to the direct sunlight as a cause of oxidative stress. Arabian camel (one humped camel, Camelus dromedarius) is adapted to the widely varying desert climatic conditions that extremely changes during daily life in the Arabian Gulf. Studying the cSOD1 in C. dromedarius could help understand the impact of exposure to direct sunlight and desert life on the health status of such mammal. The full coding region of a putative CuZnSOD gene of C. dromedarius (cSOD1) was amplified by reverse transcription PCR and cloned for the first time (gene bank accession number for nucleotides and amino acids are JF758876 and AEF32527, respectively). The cDNA sequencing revealed an open reading frame of 459 nucleotides encoding a protein of 153 amino acids which is equal to the coding region of SOD1 gene and protein from many organisms. The calculated molecular weight and isoelectric point of cSOD1 was 15.7 kDa and 6.2, respectively. The level of expression of cSOD1 in different camel tissues (liver, kidney, spleen, lung and testis) was examined using Real Time-PCR. The highest level of cSOD1 transcript was found in the camel liver (represented as 100%) followed by testis (45%), kidney (13%), lung (11%) and spleen (10%), using 18S ribosomal subunit as endogenous control. The deduced amino acid sequence exhibited high similarity with Cebus apella (90%), Sus scrofa (88%), Cavia porcellus (88%), Mus musculus (88%), Macaca mulatta (87%), Pan troglodytes (87%), Homo sapiens (87%), Canis familiaris (86%), Bos taurus (86%), Pongo abelii (85%) and Equus caballus (82%). Phylogenetic analysis revealed that cSOD1 is grouped together with S. scrofa. The

  8. Muscle Expression of SOD1G93A Triggers the Dismantlement of Neuromuscular Junction via PKC-Theta.

    Science.gov (United States)

    Dobrowolny, Gabriella; Martini, Martina; Scicchitano, Bianca Maria; Romanello, Vanina; Boncompagni, Simona; Nicoletti, Carmine; Pietrangelo, Laura; De Panfilis, Simone; Catizone, Angela; Bouchè, Marina; Sandri, Marco; Rudolf, Rüdiger; Protasi, Feliciano; Musarò, Antonio

    2018-04-20

    Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1 G93A in transgenic MLC/SOD1 G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1 G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1 G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.

  9. Pengaruh variasi pemberian Snack bar ubi jalar kedelai hitam terhadap Kadar Superoksida Dismutase (SOD darah

    Directory of Open Access Journals (Sweden)

    Fitriyono Ayustaningwarno

    2014-12-01

    Full Text Available Background: Snack bar from sweet potatoes and black soybeans is low GI, fat and calorie snack which haveantioxidant content, such as β-carotene, anthocyanin, isoflavone, and antioxidant activity, so can be an alternativesnack for patients with DM type 2. Antioxidants intake can prevent the oxidative stress that lead micro- and macrovascularcomplications in DM type 2. Antioxidant intake may preserve endogen antioxidant capacity, which is can bedetermined by analyzing SOD concentration.Objective: analyze effect variety of Snack bar from sweet potatoes and black soybeans consume to SOD concentration.Methods: experimental post-pretest research used 3 varieties of sweet potato’s color (red, yellow, and purpleinterventions. SOD concentration was analyzed by colorimetric. Statistic data was analyzed by dependent t-test andOne Way Anova.Results: No different between groups interventions Snack bar from purple, yellow or red sweet potatoes (p=0,122.Group with snack bar from purple sweet potatoes intervention has lowest SOD decreasing percentage among otherintervention groups.Conclusion: Consume snack bar form purple sweet potatoes and black soybeans can preserve SOD concentrationbetter than consume snack bar form yellow or red sweet potatoes and black soybeans

  10. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress.

    Directory of Open Access Journals (Sweden)

    Qingjie Guan

    Full Text Available The 636-bp-long cDNA sequence of OsCu/Zn-SOD (AK059841 was cloned from Oryza sativa var. Longjing11 via reverse transcription polymerase chain reaction (RT-PCR. The encoded protein comprised of 211 amino acids is highly homologous to Cu/Zn-SOD proteins from tuscacera rice and millet. Quantitative RT-PCR revealed that in rice, the level of OsCu/Zn-SOD gene expression was lowest in roots and was highest in petals and during the S5 leaf stage. Moreover, the expression level of OsCu/Zn-SOD gene expression decreased during the L5 leaf stage to maturity. The level of OsCu/Zn-SOD gene expression, however, was increased under saline-sodic stress and NaHCO3 stress. Germination tests under 125, 150, and 175 mM NaCl revealed that OsCu/Zn-SOD-overexpressing lines performed better than the non-transgenic (NT Longjing11 lines in terms of germination rate and height. Subjecting seedlings to NaHCO3 and water stress revealed that OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of SOD activity, fresh weight, root length, and height. Under simulated NaHCO3 stress, OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of survival rate (25.19% > 6.67% and yield traits (average grain weight 20.6 > 18.15 g. This study showed that OsCu/Zn-SOD gene overexpression increases the detoxification capacity of reactive oxygen species in O. sativa and reduces salt-induced oxidative damage. We also revealed the regulatory mechanism of OsCu/Zn-SOD enzyme in saline-sodic stress resistance in O. sativa. Moreover, we provided an experimental foundation for studying the mechanism of OsCu/Zn-SOD enzymes in the chloroplast.

  11. Quercetin Protects Primary Human Osteoblasts Exposed to Cigarette Smoke through Activation of the Antioxidative Enzymes HO-1 and SOD-1

    Directory of Open Access Journals (Sweden)

    Karl F. Braun

    2011-01-01

    Full Text Available Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS. The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO- 1 and superoxide-dismutase- (SOD- 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers.

  12. Decreased serum Ou/Zn sOD in children with Autism

    Directory of Open Access Journals (Sweden)

    A.J. Russo

    2009-01-01

    Full Text Available Aim To assess serum Cu/Zn SOD (Superoxide Dismutase concentration in autistic children and evaluate its possible relationship to GI Symptoms. Subjects and Methods Serum from 50 autistic children (31 with chronic digestive disease (most with ileo-colonic lymphoid nodular hyperplasia (LNH and inflammation of the colorectal, small bowel and/or stomach and 19 autistic children without GI disease, and 29 non autistic controls (20 age matched non autistic children with no GI disease and 9 age matched non autistic children with GI disease were tested for Cu/Zn SOD using ELISAs. Results Serum Cu/Zn SOD levels of autistic children were significantly lower than all non autistic controls (p < 0.0001. Serum Cu/Zn SOD of autistic children with severe GI disease was significantly lower than autistic children with no GI disease (p < 0.0001, non autistic children without GI disease (<0.0001 and non autistic children with GI disease (p = 0.0003. Discussion These results suggest an association between Cu/Zn SOD serum levels and autism, particularly autistic children with GI disease, and that the concentration of serum Cu/Zn SOD may be a useful biomarker for autistic children with severe GI disease.

  13. Significant in vivo anti-inflammatory activity of Pytren4Q-Mn a superoxide dismutase 2 (SOD2 mimetic scorpiand-like Mn (II complex.

    Directory of Open Access Journals (Sweden)

    Carolina Serena

    Full Text Available The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight.We have recently reported that two SOD mimetic compounds, the Mn(II complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q Mn(II complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin.In this report we show that the Mn(II complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules.The effective anti-inflammatory activity of the Mn(II complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies.

  14. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Sheng, Y.; Cabelli, D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O 2 - ). This behavior limits the amount of H 2 O 2 produced at high [O 2 - ]; its desirability can be explained by the multiple roles of H 2 O 2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O 2 - ], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn 3+ species in yeast Mn 3+ SODs, including the well-characterized 5-coordinate Mn 3+ species and a 6-coordinate L-Mn 3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O 2 - ].

  15. Noziegums un sods Grama Svifta romānā "Dienas gaisma" un Fjodora Dostojevska romānā "Noziegums un sods"

    OpenAIRE

    Hohlova, Marija

    2008-01-01

    Šis bakalaura darbs pēta nozieguma un soda tēmu Fjodora Dostojevska romānā "Noziegums un sods" un Grema Svifta romānā "Dienas gaisma". Darbs sastāv no četrām nodaļām. Pirmajā nodaļā, kura pamatīgi aplūko nozieguma folozofiju, autore piemin integrēto pieeju nozieguma parādībai folozofijas skatījumā, kā arī analīzē nozieguma metafiziskās un socioloģiskās īpatnības uz Fjodora Dostojevska romāna "Noziegums un sods" pamata. Otrā nodaļa apraksta Fjodora Dostojevska romāna "Noziegums un sods" un Gre...

  16. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.

    Science.gov (United States)

    Zang, Dandan; Wang, Chao; Ji, Xiaoyu; Wang, Yucheng

    2015-06-01

    Zinc finger proteins (ZFPs) are a large family that play important roles in various biological processes, such as signal transduction, RNA binding, morphogenesis, transcriptional regulation, abiotic or biotic stress response. However, the functions of ZFPs involved in abiotic stress are largely not known. In the present study, we cloned and functionally characterized a ZFP gene, ThZFP1, from Tamarix hispida. The expression of ThZFP1 is highly induced by NaCl, mannitol or ABA treatment. To study the function of ThZFP1 involved in abiotic stress response, transgenic T. hispida plants with overexpression or knockdown of ThZFP1 were generated using a transient transformation system. Gain- and loss-of-function studies of ThZFP1 suggested that ThZFP1 can induce the expression of a series of genes, including delta-pyrroline-5-carboxylate synthetase (P5CS), peroxidase (POD) and superoxide dismutase (SOD), leading to accumulation of proline and enhanced activities of SOD and POD. These physiological changes enhanced proline content and reactive oxygen species (ROS) scavenging capability when exposed to salt or osmotic stress. All the results obtained from T. hispida plants were further confirmed by analyses of the transgenic Arabidopsis plants overexpressing ThZFP1. These data together suggested that ThZFP1 positively regulates proline accumulation and activities of SOD and POD under salt and osmotic stress conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    DEFF Research Database (Denmark)

    Brandauer, Josef; Andersen, Marianne A; Kellezi, Holti

    2015-01-01

    , the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling......The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases...... in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p

  18. SOD1 Transcriptional and Posttranscriptional Regulation and Its Potential Implications in ALS

    Directory of Open Access Journals (Sweden)

    Pamela Milani

    2011-01-01

    Full Text Available Copper-zinc superoxide dismutase (SOD1 is a detoxifying enzyme localized in the cytosol, nucleus, peroxisomes, and mitochondria. The discovery that mutations in SOD1 gene cause a subset of familial amyotrophic lateral sclerosis (FALS has attracted great attention, and studies to date have been mainly focused on discovering mutations in the coding region and investigation at protein level. Considering that changes in SOD1 mRNA levels have been associated with sporadic ALS (SALS, a molecular understanding of the processes involved in the regulation of SOD1 gene expression could not only unravel novel regulatory pathways that may govern cellular phenotypes and changes in diseases but also might reveal therapeutic targets and treatments. This review seeks to provide an overview of SOD1 gene structure and of the processes through which SOD1 transcription is controlled. Furthermore, we emphasize the importance to focus future researches on investigating posttranscriptional mechanisms and their relevance to ALS.

  19. Inhibitors of SOD1 Interaction as an Approach to Slow the Progressive Spread of ALS Symptoms

    Science.gov (United States)

    2016-07-01

    the progression of ALS caused by mutations in this protein . To accomplish this goal, we developed an assay that is based on the observation that the...force. In our assay , this force is the normal interaction that occurs when 2 individual SOD1 proteins come together to form a normal active enzyme...Using recombinant DNA, we create fusion proteins of SOD1 and each half of the luciferase enzyme. In the past year, we have characterized and optimized

  20. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.

    Directory of Open Access Journals (Sweden)

    Chynna N Broxton

    Full Text Available In eukaryotes, the Cu/Zn superoxide dismutase (SOD1 is a major cytosolic cuproprotein with a small fraction residing in the mitochondrial intermembrane space (IMS to protect against respiratory superoxide. Curiously, the opportunistic human fungal pathogen Candida albicans is predicted to express two cytosolic SODs including Cu/Zn containing SOD1 and manganese containing SOD3. As part of a copper starvation response, C. albicans represses SOD1 and induces the non-copper alternative SOD3. While both SOD1 and SOD3 are predicted to exist in the same cytosolic compartment, their potential role in mitochondrial oxidative stress had yet to be investigated. We show here that under copper replete conditions, a fraction of the Cu/Zn containing SOD1 localizes to the mitochondrial IMS to guard against mitochondrial superoxide. However in copper starved cells, localization of the manganese containing SOD3 is restricted to the cytosol leaving the mitochondrial IMS devoid of SOD. We observe that during copper starvation, an alternative oxidase (AOX form of respiration is induced that is not coupled to ATP synthesis but maintains mitochondrial superoxide at low levels even in the absence of IMS SOD. Surprisingly, the copper-dependent cytochrome c oxidase (COX form of respiration remains high with copper starvation. We provide evidence that repression of SOD1 during copper limitation serves to spare copper for COX and maintain COX respiration. Overall, the complex copper starvation response of C. albicans involving SOD1, SOD3 and AOX minimizes mitochondrial oxidative damage whilst maximizing COX respiration essential for fungal pathogenesis.

  1. Association SOD2 Polymorphism(-9C/T and Senile Cataract

    Directory of Open Access Journals (Sweden)

    A.R. Nakhaee

    2017-01-01

    Full Text Available Introduction: One of the most common causes of blindness around the world is cataract, which is a multifactorial eye disease and a major cause the loss lens transparency in the aging population. Oxidative stress is a major factor that often leads to cataract formation. Oxidative stress is defined as a disturbance in the balance of reactive oxygen species (ROS production  and antioxidant defenses, including enzymatic and non-enzymatic systems. One of the defense systems against free radicals is superoxide dismutase II (Mn SOD enzyme. SOD enzyme catalyses the dismutation of superoxide anion to O2 and H2O2. Several polymorphism  have been found associated with SOD2 gene. Present study has been done to evaluaet effects of genetic polymorphism, including SOD2 C/T polymorphism in the -9 position in senile cataract patiens and normal individuals. Material and methods: in this case- control study, there are 120 patients with senile cataract and 104 healthy people. We collected 2ml of whole blood in tubes containing EDTA, and then DNA extraction was performed. Polymorphisms were detected by PCR–RFLP technique. Findings: The distribution of CC, CT, TT genotypes of SOD2 gene were 28.3%, 43.3% and 28.3% in the patient group and 24%, 48.1% and 27.9% in the healthy group, respectively. Conclusion: No significant difference in the distribution SOD2 C/T polymorphism was observed between cases and controls. 

  2. Time- and dose-dependent differential regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase enzymatic activity and mRNA level by vitamin E in rat blood cells.

    Science.gov (United States)

    Hajiani, Maliheh; Razi, Farideh; Golestani, Aboualfazl; Frouzandeh, Mehdi; Owji, Ali Akbar; Khaghani, Shahnaz; Ghannadian, Naghmeh; Shariftabrizi, Ahmad; Pasalar, Parvin

    2012-01-01

    Vitamin E is the most important lipid-soluble antioxidant. Recently, it has been proposed as a gene regulator, and its gene modulation effects have been observed at different levels of gene expression and cell signaling. This study was performed to investigate the effects of vitamin E on the activity and expression of the most important endogenous antioxidant enzyme, superoxide dismutase (SOD), in rat plasma. Twenty-eight male Sprauge-Dawley rats were divided into four groups: control group and three dosing groups. The control group received the vehicle (liquid paraffin), and the dosing groups received twice-weekly intraperitoneal injections of 10, 30, and 100 mg/kg of vitamin E ((±)-α-Tocopherol) for 6 weeks. Quantitative real-time reverse transcription-polymerase chain reaction and enzyme assays were used to assess the levels of Cu/Zn-SOD and Mn-SOD mRNA and enzyme activity levels in blood cells at 0, 2, 4, and 6 weeks following vitamin E administration. Catalase enzyme activity and total antioxidant capacity were also assessed in plasma at the same time intervals. Mn-SOD activity was significantly increased in the 100 and 30 mg/kg dosing groups after 4 and 6 weeks, with corresponding significant increase in their mRNA levels. Cu/Zn-SOD activity was not significantly changed in response to vitamin E administration at any time points, whereas Cu/Zn-SOD mRNA levels were significantly increased after longer time points with high doses (30 and 100 mg/kg) of vitamin E. Catalase enzyme activity was transiently but significantly increased after 4 weeks of vitamin E treatment in 30 and 100 mg/kg dosing groups. Total antioxidant status was significantly increased after 4 and 6 weeks in the 100 mg/kg dosing group. Only the chronic administration of higher doses of alpha-tocopherol is associated with the increased activity and expression of Mn-SOD in rats. Cu/Zn-SOD activity and expression does not dramatically change in response to vitamin E.

  3. The effect of amyotrophic lateral sclerosis-linked exogenous SOD1-G93A on electrophysiological properties and intracellular calcium in cultured rat astrocytes.

    Science.gov (United States)

    Milošević, Milena; Bataveljić, Danijela; Nikolić, Ljiljana; Bijelić, Dunja; Andjus, Pavle

    2016-01-01

    Over 150 mutations in the SOD1 gene that encodes Cu/Zn superoxide dismutase (SOD1) cause 20-25% of familial ALS, albeit without a known gain-of-function mechanism. ALS is also non-cell-autonomous, the interactions between motor neurons and their glial neighbours being implicated in disease progression. The aim here was to investigate the biophysical effects of the exogenous human mutant SOD1-G93A on rat astrocytes in culture. Primary cortical astrocyte cultures were treated with recombinant human apo- mSOD1-G93A vs. wild-type control (wtSOD1) and recorded by patch-clamp and calcium imaging. Results showed that exogenous mSOD1 as well as wtSOD1 induced a decrease of membrane resistance, the effect being persistent (up to 13 min) only for the mutant form. Similarly, whole-cell inward currents in astrocytes were augmented by both wt and mSOD1, but the effect was twice larger and only progressed continuously for the latter. Both forms of SOD1 also induced a rise in intracellular Ca(2+) activity, the effect being dependent on external Ca(2+) and again only persisted with mSOD1, becoming significantly different from wtSOD1 only at longer times (14 min). In conclusion, this study points to membrane permeability and Ca(2+) signalling as processes affected by SOD1-G93A that presents the humoral factor triggering the role of astrocytes in ALS pathophysiology.

  4. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus.

    Science.gov (United States)

    Shin, Kwang-Soo; Park, Hee-Soo; Kim, Young-Hwan; Yu, Jae-Hyuk

    2013-07-11

    FlbA is a regulator of G-protein signaling protein that plays a central role in attenuating heterotrimeric G-protein mediated vegetative growth signaling in Aspergillus. The deletion of flbA (∆flbA) in the opportunistic human pathogen Aspergillus fumigatus results in accelerated cell death and autolysis in submerged culture. To further investigate the effects of ∆flbA on intracellular protein levels we carried out 2-D proteome analyses of 2-day old submerged cultures of ∆flbA and wild type (WT) strains and observed 160 differentially expressed proteins. Via nano-LC-ESI-MS/MS analyses, we revealed the identity of 10 and 2 proteins exhibiting high and low level accumulation, respectively, in ∆flbA strain. Notably, the GliT protein is accumulated at about 1800-fold higher levels in ∆flbA than WT. Moreover, GliT is secreted at high levels from ∆flbA strain, whereas Sod1 (superoxide dismutase) is secreted at a higher level in WT. Northern blot analyses reveal that ∆flbA results in elevated accumulation of gliT mRNA. Consequently, ∆flbA strain exhibits enhanced tolerance to gliotoxin toxicity. Finally, ∆flbA strain displayed enhanced SOD activity and elevated resistance to menadione and paraquat. In summary, FlbA-mediated signaling control negatively affects cellular responses associated with detoxification of reactive oxygen species and of exogenous gliotoxin in A. fumigatus. Regulator of G protein Signaling (RGS) proteins play crucial roles in fundamental biological processes in filamentous fungi. FlbA is the first studied filamentous fungal RGS protein, yet much remains to be understood about its roles in the opportunistic human pathogen Aspergillus fumigatus. In the present study, we examined the effects of the deletion of flbA using comprehensive analyses of the intra- and extracellular proteomes of A. fumigatus wild type and the flbA deletion mutant. Via MS analyses, we identified 10 proteins exhibiting high level accumulation in the flbA deletion

  5. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  6. Molecular Cloning and Expression Analysis of Cu/Zn SOD Gene from Gynura bicolor DC.

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2017-01-01

    Full Text Available Superoxide dismutase is an important antioxidant enzyme extensively existing in eukaryote, which scavenges reactive oxygen species (ROS and plays an essential role in stress tolerance of higher plants. A full-length cDNA encoding Cu/Zn SOD was cloned from leaves of Gynura bicolor DC. by rapid amplification of cDNA ends (RACE. The full-length cDNA of Cu/Zn SOD is 924 bp and has a 681 bp open reading frame encoding 227 amino acids. Bioinformatics analysis revealed that belonged to the plant SOD super family. Cu/Zn SODs of the Helianthus annuus, Mikania micrantha, and Solidago canadensis var. scabra all have 86% similarity to the G. bicolor Cu/Zn SOD. Analysis of the expression of Cu/Zn SOD under different treatments revealed that Cu/Zn SOD was a stress-responsive gene, especially to 1-MCP. It indicates that the Cu/Zn SOD gene would be an important gene in the resistance to stresses and will be helpful in providing evidence for future research on underlying molecular mechanism and choosing proper postharvest treatments for G. bicolor.

  7. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis

    Directory of Open Access Journals (Sweden)

    Melissa S Rotunno

    2013-12-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder that targets motor neurons, leading to paralysis and death within a few years of disease onset. While several genes have been linked to the inheritable, or familial, form of ALS, much less is known about the cause(s of sporadic ALS, which accounts for approximately 90% of ALS cases. Due to the clinical similarities between familial and sporadic ALS, it is plausible that both forms of the disease converge on a common pathway and, therefore, involve common factors. Recent evidence suggests the Cu,Zn-superoxide dismutase (SOD1 protein to be one such factor that is common to both sporadic and familial ALS. In 1993, mutations were uncovered in SOD1 that represent the first known genetic cause of familial ALS. While the exact mechanism of mutant-SOD1 toxicity is still not known today, most evidence points to a gain of toxic function that stems, at least in part, from the propensity of this protein to misfold. In the wild-type SOD1 protein, non-genetic perturbations such as metal depletion, disruption of the quaternary structure, and oxidation, can also induce SOD1 to misfold. In fact, these aforementioned post-translational modifications cause wild-type SOD1 to adopt a toxic conformation that is similar to familial ALS-linked SOD1 variants. These observations, together with the detection of misfolded wild-type SOD1 within human post-mortem sporadic ALS samples, have been used to support the controversial hypothesis that misfolded forms of wild-type SOD1 contribute to sporadic ALS pathogenesis. In this review, we present data from the literature that both support and contradict this hypothesis. We also discuss SOD1 as a potential therapeutic target for both familial and sporadic ALS.

  8. Carbohydrate-dependent binding of langerin to SodC, a cell wall glycoprotein of Mycobacterium leprae.

    Science.gov (United States)

    Kim, Hee Jin; Brennan, Patrick J; Heaslip, Darragh; Udey, Mark C; Modlin, Robert L; Belisle, John T

    2015-02-01

    Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. A single nucleotide change affects fur-dependent regulation of sodB in H. pylori.

    Directory of Open Access Journals (Sweden)

    Beth M Carpenter

    Full Text Available Helicobacter pylori is a significant human pathogen that has adapted to survive the many stresses found within the gastric environment. Superoxide Dismutase (SodB is an important factor that helps H. pylori combat oxidative stress. sodB was previously shown to be repressed by the Ferric Uptake Regulator (Fur in the absence of iron (apo-Fur regulation [1]. Herein, we show that apo regulation is not fully conserved among all strains of H. pylori. apo-Fur dependent changes in sodB expression are not observed under iron deplete conditions in H. pylori strains G27, HPAG1, or J99. However, Fur regulation of pfr and amiE occurs as expected. Comparative analysis of the Fur coding sequence between G27 and 26695 revealed a single amino acid difference, which was not responsible for the altered sodB regulation. Comparison of the sodB promoters from G27 and 26695 also revealed a single nucleotide difference within the predicted Fur binding site. Alteration of this nucleotide in G27 to that of 26695 restored apo-Fur dependent sodB regulation, indicating that a single base difference is at least partially responsible for the difference in sodB regulation observed among these H. pylori strains. Fur binding studies revealed that alteration of this single nucleotide in G27 increased the affinity of Fur for the sodB promoter. Additionally, the single base change in G27 enabled the sodB promoter to bind to apo-Fur with affinities similar to the 26695 sodB promoter. Taken together these data indicate that this nucleotide residue is important for direct apo-Fur binding to the sodB promoter.

  10. Contact activation of blood-plasma coagulation

    Science.gov (United States)

    Golas, Avantika

    Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 moderated by adsorption of plasma proteins unrelated to coagulation through an "adsorption-dilution" effect that blocks FXII contact with hydrophobic activator surfaces. The adsorption-dilution effect explains the apparent specificity for hydrophilic activators pursued by earlier investigators. Finally a comparison of FXII autoactivation in buffer, serum, protein cocktail, and plasma solutions is shown herein. Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. However, activation of factor XII dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not

  11. MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity.

    Science.gov (United States)

    Chen, Hainan; Li, Xiaoyan; Epstein, Paul N

    2005-05-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are proposed mediators of cytokine-induced beta-cell destruction in type 1 diabetes. We produced transgenic mice with increased beta-cell expression of manganese superoxide dismutase (MnSOD) and catalase. Expression of these antioxidants increased beta-cell ROS scavenging and improved beta-cell survival after treatment with different sources of ROS. MnSOD or catalase conferred protection against streptozotocin (STZ)-induced beta-cell injury. Coexpression of MnSOD and catalase provided synergistic protection against peroxynitrite and STZ. To determine the potential effect of these antioxidants on cytokine-induced toxicity, we exposed isolated islets to a cytokine mixture, including interleukin-1beta and interferon-gamma. Cytokine toxicity was measured as reduced metabolic activity after 6 days and reduced insulin secretion after 1 day. Cytokines increased ROS production, and both antioxidants were effective in reducing cytokine-induced ROS. However, MnSOD and/or catalase provided no protection against cytokine-induced injury. To understand this, the nuclear factor-kappaB (NF-kappaB) signaling cascade was investigated. Antioxidants reduced NF-kappaB activation by ROS, but none of the antioxidants altered activation by cytokines, as measured by inhibitor of kappaB phosphorylation, NF-kappaB translocation, inducible NO synthase activation, and NO production. Our data agree with previous reports that antioxidants benefit beta-cell survival against ROS damage, but they are not consistent with reports that antioxidants reduce cytokine toxicity. ROS appear to have no role in cytokine toxicity in primary beta-cells.

  12. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    KAUST Repository

    Tochhawng, Lalchhandami

    2016-07-07

    The actin-binding protein, gelsolin, is a well known regulator of cancer cell invasion. However, the mechanisms by which gelsolin promotes invasion are not well established. As reactive oxygen species (ROS) have been shown to promote cancer cell invasion, we investigated on the hypothesis that gelsolin-induced changes in ROS levels may mediate the invasive capacity of colon cancer cells. Herein, we show that increased gelsolin enhances the invasive capacity of colon cancer cells, and this is mediated via gelsolin\\'s effects in elevating intracellular superoxide (O2 .-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained elevation of intracellular O2 .-. Using microarray data of human colorectal cancer tissues from Gene Omnibus, we found that gelsolin gene expression positively correlates with urokinase plasminogen activator (uPA), an important matrix-degrading protease invovled in cancer invasion. Consistent with the in vivo evidence, we show that increased levels of O2 .- induced by gelsolin overexpression triggers the secretion of uPA. We further observed reduction in invasion and intracellular O2 .- levels in colon cancer cells, as a consequence of gelsolin knockdown using two different siRNAs. In these cells, concurrent repression of Cu/ ZnSOD restored intracellular O2 .- levels and rescued invasive capacity. Our study therefore identified gelsolin as a novel regulator of intracellular O2 .- in cancer cells via interacting with Cu/ZnSOD and inhibiting its enzymatic activity. Taken together, these findings provide insight into a novel function of gelsolin in promoting tumor invasion by directly impacting the cellular redox milieu.

  13. Structures of the G85R Variant of SOD1 in Familial Amyotrophic Lateral Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaohang; Antonyuk, Svetlana V.; Seetharaman, Sai V.; Whitson, Lisa J.; Taylor, Alexander B.; Holloway, Stephen P.; Strange, Richard W.; Doucette, Peter A.; Valentine, Joan Selverstone; Tiwari, Ashutosh; Hayward, Lawrence J.; Padua, Shelby; Cohlberg, Jeffrey A.; Hasnain, S. Samar; Hart, P. John (Texas-HSC); (Cal. State); (UMASS, MED); (UCLA); (Daresbury)

    2008-07-21

    Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ion deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.

  14. Molecular identification of Nocardia species using the sodA gene: Identificación molecular de especies de Nocardia utilizando el gen sodA.

    Science.gov (United States)

    Sánchez-Herrera, K; Sandoval, H; Mouniee, D; Ramírez-Durán, N; Bergeron, E; Boiron, P; Sánchez-Saucedo, N; Rodríguez-Nava, V

    2017-09-01

    Currently for bacterial identification and classification the rrs gene encoding 16S rRNA is used as a reference method for the analysis of strains of the genus Nocardia. However, it does not have enough polymorphism to differentiate them at the species level. This fact makes it necessary to search for molecular targets that can provide better identification. The sod A gene (encoding the enzyme superoxide dismutase) has had good results in identifying species of other Actinomycetes. In this study the sod A gene is proposed for the identification and differentiation at the species level of the genus Nocardia. We used 41 type species of various collections; a 386 bp fragment of the sod A gene was amplified and sequenced, and a phylogenetic analysis was performed comparing the genes rrs (1171 bp), hsp 65 (401 bp), sec A1 (494 bp), gyr B (1195 bp) and rpo B (401 bp). The sequences were aligned using the Clustal X program. Evolutionary trees according to the neighbour-joining method were created with the programs Phylo_win and MEGA 6. The specific variability of the sod A genus of the genus Nocardia was analysed. A high phylogenetic resolution, significant genetic variability, and specificity and reliability were observed for the differentiation of the isolates at the species level. The polymorphism observed in the sod A gene sequence contains variable regions that allow the discrimination of closely related Nocardia species. The clear specificity, despite its small size, proves to be of great advantage for use in taxonomic studies and clinical diagnosis of the genus Nocardia.

  15. The effect of dietary Chlorella vulgaris inclusion on goat's milk chemical composition, fatty acids profile and enzymes activities related to oxidation.

    Science.gov (United States)

    Tsiplakou, E; Abdullah, M A M; Mavrommatis, A; Chatzikonstantinou, M; Skliros, D; Sotirakoglou, K; Flemetakis, E; Labrou, N E; Zervas, G

    2018-02-01

    The impact of dietary supplementation with microalgae on goat's milk chemical composition, fatty acids (FA) profile and enzymes activities related to antioxidant mechanism has not been well documented. Thus, this study aimed to investigate the effects of dietary inclusion of Chlorella vulgaris on the following: (i) milk yield, chemical composition and FA profile, (ii) the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GSH-Px) in blood plasma and (iii) the activities of SOD, GR and lactoperoxidase (LPO) in milk of goats. Furthermore, the oxidative stress indicators for measuring total antioxidant and free radical scavenging activity [ferric reducing ability of plasma (FRAP) and 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays] and oxidative stress biomarkers [malondialdehyde (MDA) and protein carbonyls (PC)] were also determined in blood plasma and milk of the animals. For this purpose, 16 cross-bred goats were divided into two homogenous groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group (Control) had no microalgae, while those of the Chlorella group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrates (Chlorella). Thus, the average intake was 5.15 g Chlorella vulgaris/kg DM. The results showed that the dietary inclusion of Chlorella vulgaris had not noticeable impact on goat's milk yield, chemical composition and FA profile. Significantly higher SOD (by 10.31%) and CAT (by 18.66%) activities in the blood plasma of goats fed with Chlorella vulgaris compared with the control were found. Moreover, the dietary supplementation with Chlorella vulgaris caused a significant increase in SOD (by 68.84%) activity and a reduction in PC (by 24.07%) content in goat's milk. In conclusion, the Chlorella vulgaris inclusion in goat's diets improved the

  16. Coal combustion by-product (CCB) utilization in turfgrass sod production

    Energy Technology Data Exchange (ETDEWEB)

    Schlossberg, M.J.; Miller, W.P. [University of Georgia, Athens, GA (United States). Dept. of Crop & Soil Science

    2004-04-01

    Coal combustion by-products (CCB) are produced nationwide, generating 101 Mg of waste annually. Though varied, the majority of CCB are crystalline alumino-silicate minerals. Both disposal costs of CCB and interest in alternative horticultural/agricultural production systems have increased recently. Field studies assessed the benefit of CCB and organic waste/product mixtures as supplemental soil/growth media for production of hybrid bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod. Growth media were applied at depths of 2 to 4 cm (200 to 400 m{sup 3}{center_dot}ha{sup -1}) and vegetatively established by sprigging. Cultural practices typical of commercial methods were employed over 99- or 114-day growth periods. Sod was monitored during these propagation cycles, then harvested, evaluated, and installed offsite in a typical lawn-establishment method. Results showed mixtures of CCB and biosolids as growth media increased yield of biomass, with both media and tissue having greater nutrient content than the control media. Volumetric water content of CCB-containing media significantly exceeded that of control media and soil included with a purchased bermudagrass sod. Once installed, sod grown on CCB-media did not differ in rooting strength from control or purchased sod. When applied as described, physicochemical characteristics of CCB-media are favorable and pose little environmental risk to soil or water resources.

  17. Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats

    Science.gov (United States)

    Satriotomo, Irawan; Grebe, Ashley M.

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model (SOD1G93A), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: Gq-protein-coupled 5-HT2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: Gs-protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male SOD1G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1G93A rats (∼30% survival; p phrenic motor neurons (p phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. PMID:28500219

  18. In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1G93A mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Bonifacino, Tiziana; Cattaneo, Luca; Gallia, Elena; Puliti, Aldamaria; Melone, Marcello; Provenzano, Francesca; Bossi, Simone; Musante, Ilaria; Usai, Cesare; Conti, Fiorenzo; Bonanno, Giambattista; Milanese, Marco

    2017-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder due to loss of upper and lower motor neurons (MNs). The mechanisms of neuronal death are largely unknown, thus prejudicing the successful pharmacological treatment. One major cause for MN degeneration in ALS is represented by glutamate(Glu)-mediated excitotoxicity. We have previously reported that activation of Group I metabotropic Glu receptors (mGluR1 and mGluR5) at glutamatergic spinal cord nerve terminals produces abnormal Glu release in the widely studied SOD1 G93A mouse model of ALS. We also demonstrated that halving mGluR1 expression in the SOD1 G93A mouse had a positive impact on survival, disease onset, disease progression, and on a number of cellular and biochemical readouts of ALS. We generated here SOD1 G93A mice with reduced expression of mGluR5 (SOD1 G93A Grm5 -/+ ) by crossing the SOD1 G93A mutant mouse with the mGluR5 heterozigous Grm5 -/+ mouse. SOD1 G93A Grm5 -/+ mice showed prolonged survival probability and delayed pathology onset. These effects were associated to enhanced number of preserved MNs, decreased astrocyte and microglia activation, reduced cytosolic free Ca 2+ concentration, and regularization of abnormal Glu release in the spinal cord of SOD1 G93A Grm5 -/+ mice. Unexpectedly, only male SOD1 G93A Grm5 -/+ mice showed improved motor skills during disease progression vs. SOD1 G93A mice, while SOD1 G93A Grm5 -/+ females did not. These results demonstrate that a lower constitutive level of mGluR5 has a significant positive impact in mice with ALS and support the idea that blocking Group I mGluRs may represent a potentially effective pharmacological approach to the disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Maximization and handling of sod peat loading. Final report; Palaturpeen kuormituksen maksimointi ja kaesittely. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Nurmi, H.; Paappanen, T.; Frilander, P.

    1996-11-01

    The objective of this two year (1994-1995) project was to improve especially the efficiency of sod peat production, carried out using spreading wagon method, by increasing the sod peat load set for the field to value 20 kgDgm{sup 2} (original value 10-14 kgDgm{sup 2}), and by studying and developing a collection method for ridging and ridge processing, suitable for high-loads. The research was emphasized to laboratory tests, but some field test were also made. Laboratory test equipment, to be mounted to peat machine simulator, were constructed, and picking-up of sod peat was tested in laboratory. It was possible to increase the sod peat load most accurately to 20 kgDgm{sup 2} by using wave-like sod peat. The picking device of the ridger consisted of a grid, standing the sod up, moving on the field. Above this there is a rotating truncheon coil which transfers the sod along the grid to further processing. The share of the fines by weight, loosened from the field during picking up of the sod was 0.5 % of the sod-mass, and the losses were 11 % of the number of the sod. At the driving speed 2.9 km/h the suitable coil rotation speed was about 20 r/min, hence the rotation speed of the truncheons was twice as high as the driving speed. A picking device, which consisted of two vertical truncheon-coils rotating into opposite directions, was constructed for collection of sod in the ridge. The operation of the device appeared to be good. While picking-up the sod in the ridge on the average 1.3 % of fines was loosened from the field with respect to the sod-mass. 41 % of the fines mixed with the ridge was sieved. The losses were on the average 3.9 % of the sod-mass. The highest measured power demand was 12 kW as the driving speed was 3.0 km/h. Collection method developed within this project, requires more field tests before commercial use

  20. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation

    Directory of Open Access Journals (Sweden)

    Qi Min

    2006-01-01

    Full Text Available Abstract Detailed study of glial inflammation has been hindered by lack of cell culture systems that spontaneously demonstrate the "neuroinflammatory phenotype". Mice expressing a glycine → alanine substitution in cytosolic Cu, Zn-superoxide dismutase (G93A-SOD1 associated with familial amyotrophic lateral sclerosis (ALS demonstrate age-dependent neuroinflammation associated with broad-spectrum cytokine, eicosanoid and oxidant production. In order to more precisely study the cellular mechanisms underlying glial activation in the G93A-SOD1 mouse, primary astrocytes were cultured from 7 day mouse neonates. At this age, G93A-SOD1 mice demonstrated no in vivo hallmarks of neuroinflammation. Nonetheless astrocytes cultured from G93A-SOD1 (but not wild-type human SOD1-expressing transgenic mouse pups demonstrated a significant elevation in either the basal or the tumor necrosis alpha (TNFα-stimulated levels of proinflammatory eicosanoids prostaglandin E2 (PGE2 and leukotriene B4 (LTB4; inducible nitric oxide synthase (iNOS and •NO (indexed by nitrite release into the culture medium; and protein carbonyl products. Specific cytokine- and TNFα death-receptor-associated components were similarly upregulated in cultured G93A-SOD1 cells as assessed by multiprobe ribonuclease protection assays (RPAs for their mRNA transcripts. Thus, endogenous glial expression of G93A-SOD1 produces a metastable condition in which glia are more prone to enter an activated neuroinflammatory state associated with broad-spectrum increased production of paracrine-acting substances. These findings support a role for active glial involvement in ALS and may provide a useful cell culture tool for the study of glial inflammation.

  1. Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Liyu Chen

    2017-08-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a fatal neurodegenerative disease affecting the upper and lower motor neurons in the motor cortex and spinal cord. Abnormal accumulation of mutant superoxide dismutase I (SOD1 in motor neurons is a pathological hallmark of some forms of the disease. We have shown that the orderly progression of the disease may be explained by misfolded SOD1 cell-to-cell propagation, which is reliant upon its active endogenous synthesis. Reducing the levels of SOD1 is therefore a promising therapeutic approach. Antisense oligonucleotides (ASOs can efficiently silence proteins with gain-of-function mutations. However, naked ASOs have a short circulation half-life and are unable to cross the blood brain barrier (BBB warranting the use of a drug carrier for effective delivery. In this study, calcium phosphate lipid coated nanoparticles (CaP-lipid NPs were developed for delivery of SOD1 ASO to motor neurons. The most promising nanoparticle formulation (Ca/P ratio of 100:1, had a uniform spherical core–shell morphology with an average size of 30 nm, and surface charge (ζ-potential of −4.86 mV. The encapsulation efficiency of ASO was 48% and stability studies found the particle to be stable over a period of 20 days. In vitro experiments demonstrated that the negatively charged ASO-loaded CaP-lipid NPs could effectively deliver SOD1-targeted ASO into a mouse motor neuron-like cell line (NSC-34 through endocytosis and significantly down-regulated SOD1 expression in HEK293 cells. The CaP-lipid NPs exhibited a pH-dependant dissociation, suggesting that that the acidification of lysosomes is the likely mechanism responsible for facilitating intracellular ASO release. To demonstrate tissue specific delivery and localization of these NPs we performed in vivo microinjections into zebrafish. Successful delivery of these NPs was confirmed for the zebrafish brain, the blood stream, and the spinal cord. These results suggest that Ca

  2. Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses.

    Science.gov (United States)

    Kaouthar, Feki; Ameny, Farhat-Khemakhem; Yosra, Kamoun; Walid, Saibi; Ali, Gargouri; Faiçal, Brini

    2016-07-01

    In plant cells, the manganese superoxide dismutase (Mn-SOD) plays an elusive role in the response to oxidative stress. In this study, we describe the isolation and functional characterization of a novel Mn-SOD from durum wheat (Triticum turgidum L. subsp. Durum), named TdMnSOD. Molecular phylogeny analysis showed that the durum TdMnSOD exhibited high amino acids sequence identity with other Mn-SOD plants. The three-dimensional structure showed that TdMnSOD forms a homotetramer and each subunit is composed of a predominantly α-helical N-terminal domain and a mixed α/β C-terminal domain. TdMnSOD gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdMnSOD enhances tolerance of the transformed yeast cells to salt, osmotic, cold and H2O2-induced oxidative stresses. Moreover, the analysis of TdMnSOD transgenic Arabidopsis plants subjected to different environmental stresses revealed low H2O2 and high proline levels as compared to the wild-type plants. Compared with the non-transformed plants, an increase in the total SOD and two other antioxidant enzyme activities including catalase (CAT) and peroxidases (POD) was observed in the three transgenic lines subjected to abiotic stress. Taken together, these data provide evidence for the involvement of durum wheat TdMnSOD in tolerance to multiple abiotic stresses in crop plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Plasma oxidative stress level of IgA nephropathy in children and the effect of early intervention with angiotensin-converting enzyme inhibitors.

    Science.gov (United States)

    Pei, Yuxin; Xu, Yuanyuan; Ruan, Jingwei; Rong, Liping; Jiang, Mengjie; Mo, Ying; Jiang, Xiaoyun

    2016-01-01

    The purpose of this study was to investigate the change of the plasma oxidative stress level in children with IgA nephropathy (IgAN) and analyze its relativity to the clinical and pathological classification. To discuss the early effects of angiotensin-converting enzyme inhibitors (ACEIs) on the plasma oxidative stress level in children with IgA nephropathy. Thirty-eight children with IgAN were divided into groups according to their clinical features, pathologic grades, and treatments. Twenty healthy children were included in the control group. The plasma level of advanced oxidation protein products (AOPPs), malonaldehyde (MDA), and superoxide dismutase (SOD) were detected. The plasma level of oxidative stress was significantly increased in the IgAN group, including a higher plasma level of AOPP and MDA and a lower plasma level of SOD. After treatment, the plasma level of oxidative stress was significantly decreased in the ACEI group. The children with IgAN had an increase in the plasma level of oxidative stress, expressed as an increased plasma level of AOPP and MDA and a decreased plasma level of SOD. Oxidative stress was associated with the progression of IgAN in children. Early treatment with ACEI therapy can significantly reduce the plasma level of oxidative stress in children with IgAN. © The Author(s) 2016.

  4. A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1

    Directory of Open Access Journals (Sweden)

    Larmet Yves

    2011-04-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. Results SOD1(G93A mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice. Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. Conclusions These findings suggest that the protection against SOD1(G93A offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.

  5. FDIC Summary of Deposits (SOD) Download File

    Data.gov (United States)

    Federal Deposit Insurance Corporation — The FDIC's Summary of Deposits (SOD) download file contains deposit data for branches and offices of all FDIC-insured institutions. The Federal Deposit Insurance...

  6. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    Science.gov (United States)

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  7. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    Science.gov (United States)

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  8. Prognostic role of ‘prion-like propagation’ in SOD1-linked familial ALS: an alternative view

    Directory of Open Access Journals (Sweden)

    Keizo eSugaya

    2014-10-01

    Full Text Available ‘Prion-like propagation’ has recently been proposed for disease spread in Cu/Zn superoxide dismutase 1 (SOD1-linked familial amyotrophic lateral sclerosis (ALS. Pathological SOD1 conformers are presumed to propagate via cell-to-cell transmission. In this model, the risk-based kinetics of neuronal cell loss over time appears to be represented by a sigmoidal function that reflects the kinetics of intercellular transmission. Here, we describe an alternative view of prion-like propagation in SOD1-linked ALS−its relation to disease prognosis under the protective-aggregation hypothesis. Nucleation-dependent polymerization has been widely accepted as the molecular mechanism of prion propagation. If toxic species of misfolded SOD1, as soluble oligomers, are formed as on-pathway intermediates of nucleation-dependent polymerization, further fibril extension via sequential addition of monomeric mutant SOD1 would be protective against neurodegeneration. This is because the concentration of unfolded mutant SOD1 monomers, which serve as precursor of nucleation and toxic species of mutant SOD1, would decline in proportion to the extent of aggregation. The nucleation process requires that native conformers exist in an unfolded state that may result from escaping the cellular protein quality control machinery. However, prion-like propagation−SOD1 aggregated form self-propagates by imposing its altered conformation on normal SOD1−appears to antagonize the protective role of aggregate growth. The cross-seeding reaction with normal SOD1 would lead to a failure to reduce the concentration of unfolded mutant SOD1 monomers, resulting in continuous nucleation and subsequent generation of toxic species, and influence disease prognosis. In this alternative view, the kinetics of neuronal loss appears to be represented by an exponential function, with decreasing risk reflecting the protective role of aggregate and the potential for cross-seeding reactions between

  9. The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Pierdomenico Ruggeri

    Full Text Available The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs, correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.

  10. Molecular identification of Nocardia species using the sodA gene

    Directory of Open Access Journals (Sweden)

    K. Sánchez-Herrera

    2017-09-01

    Full Text Available Currently for bacterial identification and classification the rrs gene encoding 16S rRNA is used as a reference method for the analysis of strains of the genus Nocardia. However, it does not have enough polymorphism to differentiate them at the species level. This fact makes it necessary to search for molecular targets that can provide better identification. The sodA gene (encoding the enzyme superoxide dismutase has had good results in identifying species of other Actinomycetes. In this study the sodA gene is proposed for the identification and differentiation at the species level of the genus Nocardia. We used 41 type species of various collections; a 386 bp fragment of the sodA gene was amplified and sequenced, and a phylogenetic analysis was performed comparing the genes rrs (1171 bp, hsp65 (401 bp, secA1 (494 bp, gyrB (1195 bp and rpoB (401 bp. The sequences were aligned using the Clustal X program. Evolutionary trees according to the neighbour-joining method were created with the programs Phylo_win and MEGA 6. The specific variability of the sodA genus of the genus Nocardia was analysed. A high phylogenetic resolution, significant genetic variability, and specificity and reliability were observed for the differentiation of the isolates at the species level. The polymorphism observed in the sodA gene sequence contains variable regions that allow the discrimination of closely related Nocardia species. The clear specificity, despite its small size, proves to be of great advantage for use in taxonomic studies and clinical diagnosis of the genus Nocardia.

  11. Reduced endogenous urinary total antioxidant power and its relation of plasma antioxidant activity of superoxide dismutase in individuals with autism spectrum disorder.

    Science.gov (United States)

    Yui, Kunio; Tanuma, Nasoyuki; Yamada, Hiroshi; Kawasaki, Yohei

    2017-08-01

    Individuals with autism spectrum disorders (ASD) have impaired detoxification capacity. Investigating the neurobiological bases of impaired antioxidant capacity is thus a research priority in the pathophysiology of ASD. We measured the urinary levels of hexanoyl-lysine (HEL) which is a new oxidative stress biomarker, total antioxidant power (TAP) and DNA methylation biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the plasma levels of superoxide dismutase (SOD), which is a major antioxidant enzyme. We examined whether the urinary levels of these enzymes and biomarkers may be related to symptoms of social impairment in 20 individuals with ASD (meanage,11.1±5.2years) and 12 age- and gender-matched healthy controls (meanage,14.3±6.2years). Symptoms of social impairment were assessed using the Social Responsiveness Scale (SRS). The dietary TAP of the fruit juice, chocolate, cookies, biscuits, jam and marmalade were significantly higher in the ASD group than in the control group, although the intake of nutrients was not significantly different between the groups. The urinary TAP levels were significantly lower in the ASD group than in the control group. There were no significantly differences in urinary HEL and 8-OHdG levels between the ASD and control groups. The SRS scores were significantly higher in the ASD group than in the control group. Stepwise regression analysis revealed that urinary TAP levels and plasma SOD levels can differences in the biomarkers and the SRS scores between the ASD group and the control group. The endogenous antioxidant capacity may be deficient without altered urinary HEL and 8-OHdG levels in individuals with ASD. The plasma SOD levels may be related to reduced endogenous antioxidant capacity. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  12. The Effect of Seaweed Eucheuma cottonii on Superoxide Dismutase (SOD Liver of Hypercholesterolemic Rats

    Directory of Open Access Journals (Sweden)

    TUTIK WRESDIYATI

    2008-09-01

    Full Text Available Intracellular antioxidant superoxide dismutase (SOD was reported decreased in the liver and kidney of hypercholesterolemic rats. This study was conducted to observe the effect of seaweed Eucheuma cottonii powder on the profile of blood cholesterol and the level of SOD in liver tissues of hypercholesterolemic rats by using immunohistochemical technique. Twenty male Wistar rats were used for this study. Those rats were divided into four groups; (i negative control group (A, (ii hypercholesterolemia group treated by 5% seaweed powder (B, (iii hypercholesterolemia group treated by 10% seaweed powder (C, and (iv Positive control group or hypercholesterolemia group (D. The experiment was carried out for 35 days. Hypercholesterolemia condition (> 130 mg/dl, except group A, was achieved by feeding the rats with commercial diet containing 1% cholesterol. Drinking water was given ad libitum for 40 days. The results showed that seaweed powder decreased the total cholesterol, low density lipoprotein (LDL, triglyceride, and increased the level of high density lipoprotein (HDL and SOD status in the liver tissues of hypercholesterolemic rats. The treatment of 10% seaweed powder gave better results than that of 5%. These results suggested that dietary fiber such in the seaweed powder has antioxidant activity.

  13. Status of plasma physics research activities in Egypt

    International Nuclear Information System (INIS)

    Masoud, M.M.

    1997-01-01

    The status of plasma physics research activities in Egypt is reviewed. There are nine institutes with plasma research activities. The largest is the Atomic energy Authority (AEA), which has activities in fundamental plasma studies, fusion technology, plasma and laser applications, and plasma simulation. The experiments include Theta Pinches, a Z Pinch, a coaxial discharge, a glow discharge, a CO 2 laser, and the EGYPTOR tokamak. (author)

  14. Redox susceptibility of SOD1 mutants is associated with the differential response to CCS over-expression in vivo.

    Science.gov (United States)

    Son, Marjatta; Fu, Qiao; Puttaparthi, Krishna; Matthews, Christina M; Elliott, Jeffrey L

    2009-04-01

    Over-expression of CCS in G93A SOD1 mice accelerates neurological disease and enhances mitochondrial pathology. We studied the effect of CCS over-expression in transgenic mice expressing G37R, G86R or L126Z SOD1 mutations in order to understand factors which influence mitochondrial dysfunction. Over-expression of CCS markedly decreased survival and produced mitochondrial vacuolation in G37R SOD1 mice but not in G86R or L126Z SOD1 mice. Moreover, CCS/G37R SOD1 spinal cord showed specific reductions in mitochondrial complex IV subunits consistent with an isolated COX deficiency, while no such reductions were detected in CCS/G86R or CCS/L126Z SOD1 mice. CCS over-expression increased the ratio of reduced to oxidized SOD1 monomers in the spinal cords of G37R SOD1 as well as G93A SOD1 mice, but did not influence the redox state of G86R or L126Z SOD1 monomers. The effects of CCS on disease are SOD1 mutation dependent and correlate with SOD1 redox susceptibility.

  15. Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells

    International Nuclear Information System (INIS)

    Hosoki, Ayaka; Yonekura, Shin-Ichiro; Zhao, Qing-Li

    2012-01-01

    Reactive oxygen species (ROS) act as a mediator of ionizing radiation-induced cellular damage. Previous studies have indicated that MnSOD (SOD2) plays a critical role in protection against ionizing radiation in mammalian cells. In this study, we constructed two types of stable HeLa cell lines overexpressing SOD2, HeLa S3/SOD2 and T-REx HeLa/SOD2, to elucidate the mechanisms underlying the protection against radiation by SOD2. SOD2 overexpression in mitochondria enhanced the survival of HeLa S3 and T-REx HeLa cells following γ-irradiation. The levels of γH2AX significantly decreased in HeLa S3/SOD2 and T-REx HeLa/SOD2 cells compared with those in the control cells. MitoSox TM Red assays showed that both lines of SOD2-expressing cells showed suppression of the superoxide generation in mitochondria. Furthermore, flow cytometry with a fluorescent probe (2',7'-dichlorofluorescein) revealed that the cellular levels of ROS increased in HeLa S3 cells during post-irradiation incubation, but the increase was markedly attenuated in HeLa S3/SOD2 cells. DNA microarray analysis revealed that, of 47,000 probe sets analyzed, 117 and 166 probes showed more than 2-fold changes after 5.5 Gy of γ-irradiation in control and HeLa S3/SOD2 cells, respectively. Pathway analysis revealed different expression profiles in irradiated control cells and irradiated SOD2-overexpressing cells. These results indicate that SOD2 protects HeLa cells against cellular effects of γ-rays through suppressing oxidative stress in irradiated cells caused by ROS generated in the mitochondria and through regulating the expression of genes which play a critical role in protection against ionizing radiation. (author)

  16. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    International Nuclear Information System (INIS)

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura; Santillo, Mariarosaria; Mondola, Paolo

    2008-01-01

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor

  17. Influence of Aging on Plasma Renin Activity

    International Nuclear Information System (INIS)

    Cho, K. W.; Kim, S. H.; Kang, S. K.; Choi, H. Y.

    1982-01-01

    Influence of aging on plasma renin activity was evaluated in healthy normotensive subjects(age range 21-63 years, 413 males) devoid of cardiorenal or endocrinological problems. The age-related decrease of plasma renin activity in the subjects between 21-28 years group and 36-42 years group was slight, but over the 43 years groups was significantly different. The age-related suppression of plasma renin activity was much more smooth and continuous all over the age ranges evaluated. The sexual difference in plasma renin activity was noticed between the subjects of 22 years old group (34 males) and 19 years group (34 females) (p<0.003). The data suggest that the age-related suppression of plasma renin activity appeared in healthy normotensive subjects should be considered in the case of evaluation of low renin essential hypertension.

  18. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    Science.gov (United States)

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  19. Age-Related Hearing Loss in Mn-SOD Heterozygous Knockout Mice

    Directory of Open Access Journals (Sweden)

    Makoto Kinoshita

    2013-01-01

    Full Text Available Age-related hearing loss (AHL reduces the quality of life for many elderly individuals. Manganese superoxide dismutase (Mn-SOD, one of the antioxidant enzymes acting within the mitochondria, plays a crucial role in scavenging reactive oxygen species (ROS. To determine whether reduction in Mn-SOD accelerates AHL, we evaluated auditory function in Mn-SOD heterozygous knockout (HET mice and their littermate wild-type (WT C57BL/6 mice by means of auditory brainstem response (ABR. Mean ABR thresholds were significantly increased at 16 months when compared to those at 4 months in both WT and HET mice, but they did not significantly differ between them at either age. The extent of hair cell loss, spiral ganglion cell density, and thickness of the stria vascularis also did not differ between WT and HET mice at either age. At 16 months, immunoreactivity of 8-hydroxydeoxyguanosine was significantly greater in the SGC and SV in HET mice compared to WT mice, but that of 4-hydroxynonenal did not differ between them. These findings suggest that, although decrease of Mn-SOD by half may increase oxidative stress in the cochlea to some extent, it may not be sufficient to accelerate age-related cochlear damage under physiological aging process.

  20. Physics of Space Plasma Activity

    International Nuclear Information System (INIS)

    Cramer, N F

    2007-01-01

    This book provides a timely review of our present understanding of plasma phenomena in magnetized terrestrial and solar space plasmas. The author's emphasis is on the fluid and particle modeling and interpretation of observed active processes in space plasmas, i.e. 'the physical background of large plasma eruptions in space'. It is somewhat alarming for a plasma physicist to read that an emphasis on processes in spatially inhomogeneous plasmas means that the work '... excludes a considerable fraction of the available methods in space plasma physics, such as the theory of waves, instabilities and wave particle interactions on a homogeneous background', particularly in light of the fact that much of our knowledge of these plasmas is derived from observations of such waves. However, it is clear on reading the book that such a restriction is not a disadvantage, but allows the author to concentrate on the main theme of the book, namely the use of fluid and particle pictures to model the equilibrium and active states of space plasmas. There are many other books which cover the wave aspects of space plasmas, and would complement this book. The book's coverage is based on the extensive and profound research of the author and his colleagues in the area of fluid and particle modeling of space plasma structures. After an introduction to the physical setting of active plasmas, and a necessarily concise, but effective, discussion of the fluid and particle models to be used, the steady states of the magnetized plasmas of interest are treated, including the magnetosphere, solar plasmas and current sheets. Next the dynamics of unstable states is covered, including MHD and tearing instabilities, and nonlinear aspects, with a detailed discussion of magnetic reconnection. Finally, the models are applied to magnetospheric and solar observations. The book is attractively written and produced, and this reviewer managed to find a minimum number of errors. A particularly attractive

  1. PPARγ activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    International Nuclear Information System (INIS)

    Heo, Kyung-Sun; Kim, Dong-Uk; Ryoo, Sungwoo; Nam, Miyoung; Baek, Seung Tae; Kim, Lila; Park, Song-Kyu; Myung, Chang-Seon; Hoe, Kwang-Lae

    2007-01-01

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPARα activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPARγ activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H 2 O 2 , but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G 1 -S progression to control levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21 Cip1 expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation

  2. TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies.

    Science.gov (United States)

    Kumar, Vijay; Prakash, Amresh; Pandey, Preeti; Lynn, Andrew M; Hassan, Md Imtaiyaz

    2018-05-18

    Misfolding and aggregation of Cu, Zn Superoxide dismutase (SOD1) is involved in the neurodegenerative disease, amyotrophic lateral sclerosis. Many studies have shown that metal-depleted, monomeric form of SOD1 displays substantial local unfolding dynamics and is the precursor for aggregation. Here, we have studied the structure and dynamics of different apo monomeric SOD1 variants associated with unfolding and aggregation in aqueous trifluoroethanol (TFE) through experiments and simulation. TFE induces partially unfolded β-sheet-rich extended conformations in these SOD1 variants, which subsequently develops aggregates with fibril-like characteristics. Fibrillation was achieved more easily in disulfide-reduced monomeric SOD1 when compared with wild-type and mutant monomeric SOD1. At higher concentrations of TFE, a native-like structure with the increase in α-helical content was observed. The molecular dynamics simulation results illustrate distinct structural dynamics for different regions of SOD1 variants and show uniform local unfolding of β-strands. The strands protected by the zinc-binding and electrostatic loops were found to unfold first in 20% (v/v) TFE, leading to a partial unfolding of β-strands 4, 5, and 6 which are prone to aggregation. Our results thus shed light on the role of local unfolding and conformational dynamics in SOD1 misfolding and aggregation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Radioimmunoassay of serum SOD-1 in the elderly

    International Nuclear Information System (INIS)

    Ren Yu'an; Lin Baoyuan

    1995-01-01

    A RIA for serum SOD-1 was performed in 168 aged subjects including 47 aged healthy subjects and 121 aged patients as well as in 35 healthy young and adult cases serving as control. The measuring results are as follows: serum SOD-1 value of 47 aged healthy subjects are 279.42 +- 89.38 μg/l, 121 aged patients are 405.10 +- 181.29 μg/l, and 35 young and adult cases are 185.80 +- 56.44 μg/l. It shows the obvious difference between the aged group and control group. It also shows the obvious difference between the aged healthy subjects and aged patients. In addition, the clinical evaluation is also discussed

  4. Bermudagrass sod growth and metal uptake in coal combustion by-product-amended media

    Energy Technology Data Exchange (ETDEWEB)

    Schlossberg, M.J.; Vanags, C.P.; Miller, W.P. [University of Georgia, Athens, GA (USA). Dept. of Crop & Soil Science

    2004-04-01

    Coal combustion by-products (CCB) include fly ash and bottom ash and are generated nationally at rates of 10{sup 8} Mg yr{sup -1}. Land applications of CCB have improved physicochemical properties of soil, yet inherent bulkiness and trace metal content of CCB often limit their use. Likewise, utilization of biosolids and manure as fertilizer can be problematic due to unfavorable nutrient ratios. A 2-yr field study evaluated environmental and technical parameters associated with CCB-organic waste utilization as growth media in turfgrass sod production. Experimental growth media formulated with CCB and organic waste and a sand-compost control mixture were uniformly spread at rates from 200 to 400 m{sup 3} ha{sup -1} and sprigged with hybrid bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy). Leaf clippings were collected and analyzed for total elemental content each year. In Year 2, growth media samples were collected during establishment 47 and 84 days after planting (DAP) and viable Escherichia coli organisms were quantified. At harvest (99 or 114 DAP), sod biomass and physicochemical properties of the growth media were measured. During sod propagation, micronutrient and metal content in leaf clippings varied by growth media and time. After 47 d of typical sod field management, viable E. coli pathogens were detected in only one biosolids-amended plot. No viable E. coli were measured at 84 DAP. In both years, sod biomass was greatest in media containing biosolids and fly ash. Following installation of sod, evaluations did not reveal differences by media type or application volume. Using CCB-organic waste mixes at the rates described herein is a rapid and environmentally safe method of bermudagrass sod production.

  5. Effect of well-established plasma treatment technology on some physiological characteristics in maize leaves during seedling stage

    International Nuclear Information System (INIS)

    Zhao Hongxiang; Fang Xiangqian; Bian Shaofeng; Zhang Lihua; Tan Guobo; Meng Xiangmeng; Yan Weiping; Liu Yaliang; Sun Ning

    2010-01-01

    In order to provide theoretical references and technical support for application of plasma treatment technology in agriculture, the seeds of maize were treated by well-established plasma treatment technology, then the changes of physiological characteristics of maize leaves during seedling stage were studied. The results indicated that the stress resistance of maize was improved by plasma treatment. The SOD, POD and CAT activities, soluble protein content and soluble sugar content of leaves at two-leave stage, four-leave stage, six-leave stage and eight-leave stage treated by plasma were higher than that of CK, but the MDA content was lower than CK. Although NR activity in leaves at twoleave stage and four-leave stage was slightly lower than CK, but higher than CK at six-leave stage (26.81%) and eightleaves stage (26.75%). Plasma treatment enhanced the nitrogen metabolism capacity, and this tendency was increased remarkable with the growth stages processes. (authors)

  6. In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress.

    Science.gov (United States)

    Klöppel, Christine; Michels, Christine; Zimmer, Julia; Herrmann, Johannes M; Riemer, Jan

    2010-12-03

    The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1(G93A) becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1(G85R). Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Plasma diamine oxidase activity in asthmatic children

    Directory of Open Access Journals (Sweden)

    Kyoichiro Toyoshima

    1996-01-01

    Full Text Available Histamine plays an important role in the development of asthmatic symptoms. Diamine oxidase (DAO histaminase, which inactivates histamine, is located in the intestine and kidney and is released into plasma. Plasma DAO activity in asthmatic children was measured by a recently developed high performance liquid chromatographic method using histamine as the DAO substrate. Diamine oxidase activity was higher in severely asthmatic children than in those with mild asthma. A time course study during the acute exacerbation phase revealed that DAO activity rose during acute asthmatic attacks and then decreased gradually over several days. Although the mechanisms of plasma DAO activity increase during acute asthmatic attacks could not be explained, data showed that plasma DAO activity is an important index of histamine metabolism in asthmatics and may relate to some mechanisms of acute exacerbation of airway inflammation. Consequently, fluctuations in plasma DAO can be used as one of various indices of instability in management of asthma.

  8. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways.

    Science.gov (United States)

    Celic, T; Španjol, J; Bobinac, M; Tovmasyan, A; Vukelic, I; Reboucas, J S; Batinic-Haberle, I; Bobinac, D

    2014-12-01

    Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive

  9. Radiation damage, treatment of tumor and acute benzene toxicosis effects of superoxide dismutase (SOD)

    International Nuclear Information System (INIS)

    Jiang Jiagui; Lin Xingcheng; Zhu Yuyu

    1987-09-01

    The protective effects of SOD on irradiated-mice were studied by white cell counts, determination of taurine in urine, and survival of irradiated-animals. The enzyme was protective against radiation-induced inhibition of lymphocyte blastogenesis. The protective effect of SOD on patients suffered from cancer was also studied by white cell counts. The effect of SOD on white cell counts in mice of benzene toxicosis was also discussed

  10. Radioimmunoassay for plasma renin activity

    International Nuclear Information System (INIS)

    1975-01-01

    A radioimmunoassay for the determination of renin activity in blood plasma is described. The plasma sample is mixed with a generator buffer solution also containing an inhibitor for enzymes which convert angiotensin I into other substances. The renin in the plasma sample converts angiotensinogen into angiotensin I. The amount of angiotensin I is then measured with a competitive binding method using 125 I-labelled angiotensin I and antibodies to angiotensin I

  11. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.

    Science.gov (United States)

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-11-01

    Cu, Zn, superoxide dismutase (SOD1) is a ubiquitous enzyme localized in multiple cellular compartments, including mitochondria, where it concentrates in the intermembrane space (IMS). Similar to other small IMS proteins, the import and retention of SOD1 in the IMS is linked to its folding and maturation, involving the formation of critical intra- and intermolecular disulfide bonds. Therefore, the cysteine residues of SOD1 play a fundamental role in its IMS localization. IMS import of SOD1 involves its copper chaperone, CCS, whose mitochondrial distribution is regulated by the Mia40/Erv1 disulfide relay system in a redox-dependent manner: CCS promotes SOD1 maturation and retention in the IMS. The function of SOD1 in the IMS is still unknown, but it is plausible that it serves to remove superoxide released from the mitochondrial respiratory chain. Mutations in SOD1 cause familial amyotrophic lateral sclerosis (ALS), whose pathologic features include mitochondrial bioenergetic dysfunction. Mutant SOD1 localization in the IMS is not dictated by oxygen concentration and the Mia40/Erv1 system, but is primarily dependent on aberrant protein folding and aggregation. Mutant SOD1 localization and aggregation in the IMS might cause the mitochondrial abnormalities observed in familial ALS and could play a significant role in disease pathogenesis.

  12. Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates.

    Science.gov (United States)

    Shuvaev, Vladimir V; Muro, Silvia; Arguiri, Evguenia; Khoshnejad, Makan; Tliba, Samira; Christofidou-Solomidou, Melpo; Muzykantov, Vladimir R

    2016-07-28

    Controlled endothelial delivery of SOD may alleviate abnormal local surplus of superoxide involved in ischemia-reperfusion, inflammation and other disease conditions. Targeting SOD to endothelial surface vs. intracellular compartments is desirable to prevent pathological effects of external vs. endogenous superoxide, respectively. Thus, SOD conjugated with antibodies to cell adhesion molecule PECAM (Ab/SOD) inhibits pro-inflammatory signaling mediated by endogenous superoxide produced in the endothelial endosomes in response to cytokines. Here we defined control of surface vs. endosomal delivery and effect of Ab/SOD, focusing on conjugate size and targeting to PECAM vs. ICAM. Ab/SOD enlargement from about 100 to 300nm enhanced amount of cell-bound SOD and protection against extracellular superoxide. In contrast, enlargement inhibited endocytosis of Ab/SOD and diminished mitigation of inflammatory signaling of endothelial superoxide. In addition to size, shape is important: endocytosis of antibody-coated spheres was more effective than that of polymorphous antibody conjugates. Further, targeting to ICAM provides higher endocytic efficacy than targeting to PECAM. ICAM-targeted Ab/SOD more effectively mitigated inflammatory signaling by intracellular superoxide in vitro and in animal models, although total uptake was inferior to that of PECAM-targeted Ab/SOD. Therefore, both geometry and targeting features of Ab/SOD conjugates control delivery to cell surface vs. endosomes for optimal protection against extracellular vs. endosomal oxidative stress, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function.

    Science.gov (United States)

    Muscogiuri, Giovanna; Salmon, Adam B; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L; Reyna, Sara M; Weir, Gordon; Defronzo, Ralph A; Van Remmen, Holly; Musi, Nicolas

    2013-12-01

    Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.

  14. Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Milanese, Marco; Giribaldi, Francesco; Melone, Marcello; Bonifacino, Tiziana; Musante, Ilaria; Carminati, Enrico; Rossi, Pia I A; Vergani, Laura; Voci, Adriana; Conti, Fiorenzo; Puliti, Aldamaria; Bonanno, Giambattista

    2014-04-01

    Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS. We recently demonstrated that the activation of Group I metabotropic Glu autoreceptors, belonging to both type 1 and type 5 receptors (mGluR1 and mGluR5), at glutamatergic spinal cord nerve terminals, produces excessive Glu release in mice over-expressing human superoxide-dismutase carrying the G93A point mutation (SOD1(G93A)), a widely used animal model of human ALS. To establish whether these receptors are implicated in ALS, we generated mice expressing half dosage of mGluR1 in the SOD1(G93A) background (SOD1(G93A)Grm1(crv4/+)), by crossing the SOD1(G93A) mutant mouse with the Grm1(crv4/+) mouse, lacking mGluR1 because of a spontaneous recessive mutation. SOD1(G93A)Grm1(crv4/+) mice showed prolonged survival probability, delayed pathology onset, slower disease progression and improved motor performances compared to SOD1(G93A) mice. These effects were associated to reduction of mGluR5 expression, enhanced number of MNs, decreased astrocyte and microglia activation, normalization of metallothionein and catalase mRNA expression, reduced mitochondrial damage, and decrease of abnormal Glu release in spinal cord of SOD1(G93A)Grm1(crv4/+)compared to SOD1(G93A) mice. These results demonstrate that a lower constitutive level of mGluR1 has a significant positive impact on mice with experimental ALS, thus providing the rationale for future pharmacological approaches to ALS by selectively blocking Group I metabotropic Glu receptors. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Delayed Disease Onset and Extended Survival in the SOD1G93A Rat Model of Amyotrophic Lateral Sclerosis after Suppression of Mutant SOD1 in the Motor Cortex

    Science.gov (United States)

    Thomsen, Gretchen M.; Gowing, Genevieve; Latter, Jessica; Chen, Maximus; Vit, Jean-Philippe; Staggenborg, Kevin; Avalos, Pablo; Alkaslasi, Mor; Ferraiuolo, Laura; Likhite, Shibi; Kaspar, Brian K.

    2014-01-01

    Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3–5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1G93A rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1G93A rats through targeted delivery of AAV9–SOD1–shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease. PMID:25411487

  16. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  17. Resveratrol Derivative-Rich Melinjo Seed Extract Attenuates Skin Atrophy in Sod1-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Kenji Watanabe

    2015-01-01

    Full Text Available The oxidative damages induced by a redox imbalance cause age-related changes in cells and tissues. Superoxide dismutase (SOD enzymes play a pivotal role in the antioxidant system and they also catalyze superoxide radicals. Since the loss of cytoplasmic SOD (SOD1 resulted in aging-like phenotypes in several types of murine tissue, SOD1 is essential for the maintenance of tissue homeostasis. Melinjo (Gnetum gnemon Linn seed extract (MSE contains trans-resveratrol (RSV and resveratrol derivatives, including gnetin C, gnemonoside A, and gnemonoside D. MSE intake also exerts no adverse events in human study. In the present studies, we investigated protective effects of MSE on age-related skin pathologies in mice. Orally MSE and RSV treatment reversed the skin thinning associated with increased oxidative damage in the Sod1−/− mice. Furthermore, MSE and RSV normalized gene expression of Col1a1 and p53 and upregulated gene expression of Sirt1 in skin tissues. In vitro experiments revealed that RSV significantly promoted the viability of Sod1−/− fibroblasts. These finding demonstrated that RSV in MSE stably suppressed an intrinsic superoxide generation in vivo and in vitro leading to protecting skin damages. RSV derivative-rich MSE may be a powerful food of treatment for age-related skin diseases caused by oxidative damages.

  18. U.S. Burning Plasma Organization Activities

    International Nuclear Information System (INIS)

    Fonck, Raymond J.

    2009-01-01

    The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: (1) activities of the Director and support staff in continuing management and development of the USBPO activity; (2) activation of the advisory Council; (3) formation and initial research activities of the research community Topical Groups; (4) formation of Task Groups to perform specific burning plasma related research and development activities; (5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

  19. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    Science.gov (United States)

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  20. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard [Laboratoire de Chimie Nucleaire Analytique et Bioenvironnementale, CNRS UMR5084, Universite Bordeaux 1, Chemin du Solarium, F-33175 Gradignan cedex (France); Solari, Pier Lorenzo [Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, F-91192 Gif-sur-Yvette cedex, Saint-Aubin (France); Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis, E-mail: ortega@cenbg.in2p3.f [FAME, ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble cedex (France)

    2009-11-15

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  1. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Science.gov (United States)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  2. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    International Nuclear Information System (INIS)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard; Solari, Pier Lorenzo; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis

    2009-01-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  3. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion.

    Science.gov (United States)

    Pokrishevsky, Edward; Grad, Leslie I; Cashman, Neil R

    2016-03-01

    Amyotrophic lateral sclerosis (ALS), which appears to spread through the neuroaxis in a spatiotemporally restricted manner, is linked to heritable mutations in genes encoding SOD1, TDP-43, FUS, C9ORF72, or can occur sporadically without recognized genetic mutations. Misfolded human wild-type (HuWt) SOD1 has been detected in both familial and sporadic ALS patients, despite mutations in SOD1 accounting for only 2% of total cases. We previously showed that accumulation of pathological TDP-43 or FUS coexist with misfolded HuWtSOD1 in patient motor neurons, and can trigger its misfolding in cultured cells. Here, we used immunocytochemistry and immunoprecipitation to demonstrate that TDP-43 or FUS-induced misfolded HuWtSOD1 can propagate from cell-to-cell via conditioned media, and seed cytotoxic misfolding of endogenous HuWtSOD1 in the recipient cells in a prion-like fashion. Knockdown of SOD1 using siRNA in recipient cells, or incubation of conditioned media with misfolded SOD1-specific antibodies, inhibits intercellular transmission, indicating that HuWtSOD1 is an obligate seed and substrate of propagated misfolding. In this system, intercellular spread of SOD1 misfolding is not accompanied by transmission of TDP-43 or FUS pathology. Our findings argue that pathological TDP-43 and FUS may exert motor neuron pathology in ALS through the initiation of propagated misfolding of SOD1.

  4. Plasma Metabolites Predict Severity of Depression and Suicidal Ideation in Psychiatric Patients-A Multicenter Pilot Analysis.

    Science.gov (United States)

    Setoyama, Daiki; Kato, Takahiro A; Hashimoto, Ryota; Kunugi, Hiroshi; Hattori, Kotaro; Hayakawa, Kohei; Sato-Kasai, Mina; Shimokawa, Norihiro; Kaneko, Sachie; Yoshida, Sumiko; Goto, Yu-Ichi; Yasuda, Yuka; Yamamori, Hidenaga; Ohgidani, Masahiro; Sagata, Noriaki; Miura, Daisuke; Kang, Dongchon; Kanba, Shigenobu

    2016-01-01

    Evaluating the severity of depression (SOD), especially suicidal ideation (SI), is crucial in the treatment of not only patients with mood disorders but also psychiatric patients in general. SOD has been assessed on interviews such as the Hamilton Rating Scale for Depression (HAMD)-17, and/or self-administered questionnaires such as the Patient Health Questionnaire (PHQ)-9. However, these evaluation systems have relied on a person's subjective information, which sometimes lead to difficulties in clinical settings. To resolve this limitation, a more objective SOD evaluation system is needed. Herein, we collected clinical data including HAMD-17/PHQ-9 and blood plasma of psychiatric patients from three independent clinical centers. We performed metabolome analysis of blood plasma using liquid chromatography mass spectrometry (LC-MS), and 123 metabolites were detected. Interestingly, five plasma metabolites (3-hydroxybutyrate (3HB), betaine, citrate, creatinine, and gamma-aminobutyric acid (GABA)) are commonly associated with SOD in all three independent cohort sets regardless of the presence or absence of medication and diagnostic difference. In addition, we have shown several metabolites are independently associated with sub-symptoms of depression including SI. We successfully created a classification model to discriminate depressive patients with or without SI by machine learning technique. Finally, we produced a pilot algorithm to predict a grade of SI with citrate and kynurenine. The above metabolites may have strongly been associated with the underlying novel biological pathophysiology of SOD. We should explore the biological impact of these metabolites on depressive symptoms by utilizing a cross species study model with human and rodents. The present multicenter pilot study offers a potential utility for measuring blood metabolites as a novel objective tool for not only assessing SOD but also evaluating therapeutic efficacy in clinical practice. In addition

  5. Plasma Metabolites Predict Severity of Depression and Suicidal Ideation in Psychiatric Patients-A Multicenter Pilot Analysis.

    Directory of Open Access Journals (Sweden)

    Daiki Setoyama

    Full Text Available Evaluating the severity of depression (SOD, especially suicidal ideation (SI, is crucial in the treatment of not only patients with mood disorders but also psychiatric patients in general. SOD has been assessed on interviews such as the Hamilton Rating Scale for Depression (HAMD-17, and/or self-administered questionnaires such as the Patient Health Questionnaire (PHQ-9. However, these evaluation systems have relied on a person's subjective information, which sometimes lead to difficulties in clinical settings. To resolve this limitation, a more objective SOD evaluation system is needed. Herein, we collected clinical data including HAMD-17/PHQ-9 and blood plasma of psychiatric patients from three independent clinical centers. We performed metabolome analysis of blood plasma using liquid chromatography mass spectrometry (LC-MS, and 123 metabolites were detected. Interestingly, five plasma metabolites (3-hydroxybutyrate (3HB, betaine, citrate, creatinine, and gamma-aminobutyric acid (GABA are commonly associated with SOD in all three independent cohort sets regardless of the presence or absence of medication and diagnostic difference. In addition, we have shown several metabolites are independently associated with sub-symptoms of depression including SI. We successfully created a classification model to discriminate depressive patients with or without SI by machine learning technique. Finally, we produced a pilot algorithm to predict a grade of SI with citrate and kynurenine. The above metabolites may have strongly been associated with the underlying novel biological pathophysiology of SOD. We should explore the biological impact of these metabolites on depressive symptoms by utilizing a cross species study model with human and rodents. The present multicenter pilot study offers a potential utility for measuring blood metabolites as a novel objective tool for not only assessing SOD but also evaluating therapeutic efficacy in clinical practice. In

  6. Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Allen, Latoya L; Grebe, Ashley M; Mitchell, Gordon S

    2017-06-14

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model ( SOD1 G93A ), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1 G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: G q -protein-coupled 5-HT 2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: G s -protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male S OD1 G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1 G93A rats (∼30% survival; p phrenic motor neurons ( p phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. Copyright © 2017 the authors 0270-6474/17/375834-12$15.00/0.

  7. SOD1 aggregation in ALS mice shows simplistic test tube behavior.

    Science.gov (United States)

    Lang, Lisa; Zetterström, Per; Brännström, Thomas; Marklund, Stefan L; Danielsson, Jens; Oliveberg, Mikael

    2015-08-11

    A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general.

  8. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture.

    Science.gov (United States)

    Huang, Chien-Hsun; Jayakumar, Thanasekaran; Chang, Chao-Chien; Fong, Tsorng-Harn; Lu, Shing-Hwa; Thomas, Philip Aloysius; Choy, Cheuk-Sing; Sheu, Joen-Rong

    2015-09-25

    Melanoma is extremely resistant to chemotherapy and the death rate is increasing hastily worldwide. Extracellular matrix promotes the migration and invasion of tumor cells through the production of matrix metalloproteinase (MMP)-2 and -9. Evidence has shown that natural dietary antioxidants are capable of inhibiting cancer cell growth. Our recent studies showed that hinokitiol, a natural bioactive compound, inhibited vascular smooth muscle cell proliferation and platelets aggregation. The present study is to investigate the anticancer efficacy of hinokitiol against B16-F10 melanoma cells via modulating tumor invasion factors MMPs, antioxidant enzymes in vitro. An in vivo mice model of histological investigation was performed to study the patterns of elastic and collagen fibers. Hinokitiol inhibited the expression and activity of MMPs-2 and -9 in B16-F10 melanoma cells, as measured by western blotting and gelatin zymography, respectively. An observed increase in protein expression of MMPs 2/9 in melanoma cells was significantly inhibited by hinokitiol. Notably, hinokitiol (1-5 μM) increased the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in melanoma cells. Also, hinokitiol (2-10 µM) concentration dependently reduced in vitro Fenton reaction induced hydroxyl radical (OH·) formation. An in vivo study showed that hinokitiol treatment increased elastic fibers (EF), collagens dispersion, and improved alveolar alterations in the lungs of B16/F10 injected mice. Overall, our findings propose that hinokitiol may be a potent anticancer candidate through down regulation of MMPs 9/2, reduction of OH· production and enhancement of antioxidant enzymes SOD and CAT.

  9. Vulnerability of white matter tracts and cognition to the SOD2 polymorphism: A preliminary study of antioxidant defense genes in brain aging.

    Science.gov (United States)

    Salminen, Lauren E; Schofield, Peter R; Pierce, Kerrie D; Bruce, Steven E; Griffin, Michael G; Tate, David F; Cabeen, Ryan P; Laidlaw, David H; Conturo, Thomas E; Bolzenius, Jacob D; Paul, Robert H

    2017-06-30

    Oxidative stress is a key mechanism of the aging process that can cause damage to brain white matter and cognitive functions. Polymorphisms in the superoxide dismutase 2 (SOD2) and catalase (CAT) genes have been associated with abnormalities in antioxidant enzyme activity in the aging brain, suggesting a risk for enhanced oxidative damage to white matter and cognition among older individuals with these genetic variants. The present study compared differences in white matter microstructure and cognition among 96 older adults with and without genetic risk factors of SOD2 (rs4880) and CAT (rs1001179). Results revealed higher radial diffusivity in the anterior thalamic radiation among SOD2 CC genotypes compared to CT/TT genotypes. Further, the CC genotype moderated the relationship between the hippocampal cingulum and processing speed, though this did not survive multiple test correction. The CAT polymorphism was not associated with brain outcomes in this cohort. These results suggest that the CC genotype of SOD2 is an important genetic marker of suboptimal brain aging in healthy individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Maria D Esteve-Gassent

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat. HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348 exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560, and outer surface protein A (OspA, BBA15 were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC, Decorin binding protein A (DbpA, fibronectin binding protein (BBK32, RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox-⁄- and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of

  11. Effects of onion extract on endogenous vascular H2S and adrenomedulin in rat atherosclerosis.

    Science.gov (United States)

    Li, Wei; Tang, Chaoshu; Jin, Hongfang; Du, Junbao

    2011-09-01

    This study aimed to explore the effect of onion extract on endogenous hydrogen sulfide (H2S) and adrenomedulin (ADM) and on atherosclerotic progression in rats with atherosclerosis (AS). Male Sprague-Dawley rats were randomly divided into control, AS and AS+onion groups. Ultrastructure of aorta and atherosclerotic lesions both in aorta and in coronary artery were detected. Plasma and aortic H2S were detected by using a sulfide- sensitive electrode. Plasma and aortic ADM was determined with radioimmunoassay. Cystathionine-γ-lyase (CSE), calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein (RAMP1, RAMP2 and RAMP3) mRNA expressions were analysed. Glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and NO synthase (NOS) contents in plasma, SOD1, SOD2 and ICAM-1 expressions in aorta were detected. Rats in the AS group showed marked atherosclerotic lesions both in aorta and in coronary artery but decreased aortic H2S production. Decreased plasma and aortic ADM content, but increased levels of aortic CRLR, RAMP2 and RAMP3 mRNAs were observed. Plasma GSH-PX and SOD were reduced but MDA elevated. Plasma ICAM-1 and NO contents and iNOS activity were increased. Onion extract, however, lessened atherosclerotic lesions and increased endogenous aortic H2S production, but decreased plasma ADM content, aortic ADM content and aortic CRLR, RAMP2 and RAMP3 mRNAs. In addition, it increased plasma GSH-PX level and SOD activities but reduced MDA; it decreased inflammatory response but increased plasma eNOS activity and NO content. Onion extract exerted a marked antiatherogenic effect in association with the up-regulation of the endogenous CSE/H2S pathway but down-regulation of the ADM/CRLR family in atherosclerotic rats.

  12. Deregulation of manganese superoxide dismutase (SOD2) expression and lymph node metastasis in tongue squamous cell carcinoma

    International Nuclear Information System (INIS)

    Liu, Xiqiang; Crowe, David L; Zhou, Xiaofeng; Wang, Anxun; Muzio, Lorenzo Lo; Kolokythas, Antonia; Sheng, Shihu; Rubini, Corrado; Ye, Hui; Shi, Fei; Yu, Tianwei

    2010-01-01

    Lymph node metastasis is a critical event in the progression of tongue squamous cell carcinoma (TSCC). The identification of biomarkers associated with the metastatic process would provide critical prognostic information to facilitate clinical decision making. Previous studies showed that deregulation of manganese superoxide dismutase (SOD2) expression is a frequent event in TSCC and may be associated with enhanced cell invasion. The purpose of this study is to further evaluate whether the expression level of SOD2 is correlated with the metastatic status in TSCC patients. We first examined the SOD2 expression at mRNA level on 53 TSCC and 22 normal control samples based on pooled-analysis of existing microarray datasets. To confirm our observations, we examined the expression of SOD2 at protein level on an additional TSCC patient cohort (n = 100), as well as 31 premalignant dysplasias, 15 normal tongue mucosa, and 32 lymph node metastatic diseases by immunohistochemistry (IHC). The SOD2 mRNA level in primary TSCC tissue is reversely correlated with lymph node metastasis in the first TSCC patient cohort. The SOD2 protein level in primary TSCC tissue is also reversely correlated with lymph node metastasis in the second TSCC patient cohort. Deregulation of SOD2 expression is a common event in TSCC and appears to be associated with disease progression. Statistical analysis revealed that the reduced SOD2 expression in primary tumor tissue is associated with lymph node metastasis in both TSCC patient cohorts examined. Our study suggested that the deregulation of SOD2 in TSCC has potential predictive values for lymph node metastasis, and may serve as a therapeutic target for patients at risk of metastasis

  13. Restoration of wet dune slacks on the Dutch Wadden Sea islands : Recolonization after large-scale sod cutting

    NARCIS (Netherlands)

    Grootjans, AP; Everts, H; Bruin, K; Fresco, L; Grootjans, Ab P.

    The effects of sod cutting were studied in a dune area on the Dutch Wadden Sea Island of Texel. Sod cutting was carried out in a range of different dune slacks in order to restore dune slack vegetation with many endangered Red List species. Sod cutting removed approximately 96% of the soil seed

  14. Restoration of Wet Dune Slacks on the Dutch Wadden Sea Islands: Recolonization After Large-Scale Sod Cutting

    NARCIS (Netherlands)

    Grootjans, A.P.; Everts, H.; Bruin, K.; Fresco, L.

    2011-01-01

    The effects of sod cutting were studied in a dune area on the Dutch Wadden Sea Island of Texel. Sod cutting was carried out in a range of different dune slacks in order to restore dune slack vegetation with many endangered Red List species. Sod cutting removed approximately 96% of the soil seed

  15. Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice

    Directory of Open Access Journals (Sweden)

    Stalleicken Dirk

    2006-11-01

    Full Text Available Abstract Background Chronic therapy with nitroglycerin (GTN results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS. According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2 play an important role for the development of nitrate and cross-tolerance. Methods Tolerance was induced by infusion of wild type (WT and heterozygous manganese superoxide dismutase mice (Mn-SOD+/- with ethanolic solution of GTN (12.5 μg/min/kg for 4 d. For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 17.5 μg/min/kg for 4 d was infused in DMSO. Vascular reactivity was measured by isometric tension studies of isolated aortic rings. ROS formation and aldehyde dehydrogenase (ALDH-2 activity was measured in isolated heart mitochondria. Results Chronic GTN infusion lead to impaired vascular responses to GTN and acetylcholine (ACh, increased the ROS formation in mitochondria and decreased ALDH-2 activity in Mn-SOD+/- mice. In contrast, PETN infusion did not increase mitochondrial ROS formation, did not decrease ALDH-2 activity and accordingly did not lead to tolerance and cross-tolerance in Mn-SOD+/- mice. PETN but not GTN increased heme oxygenase-1 mRNA in EA.hy 926 cells and bilirubin efficiently scavenged GTN-derived ROS. Conclusion Chronic GTN infusion stimulates mitochondrial ROS production which is an important mechanism leading to tolerance and cross-tolerance. The tetranitrate PETN is devoid of mitochondrial oxidative stress induction and according to the present animal study as well as numerous previous clinical studies can be used without limitations due to tolerance and cross-tolerance.

  16. Effects of Greek legume plant extracts on xanthine oxidase, catalase and superoxide dismutase activities.

    Science.gov (United States)

    Spanou, Chrysoula I; Veskoukis, Aristidis S; Stagos, Dimitrios; Liadaki, Kalliopi; Aligiannis, Nectarios; Angelis, Apostolos; Skaltsounis, Alexios-Leandros; Anastasiadi, Maria; Haroutounian, Serkos A; Kouretas, Dimitrios

    2012-03-01

    Legumes are considered to have beneficial health implications, which have been attributed to their phytochemical content. Polyphenols are considered the most important phytochemical compounds extensively studied for their antioxidant properties. The aim of the present study was to examine the effects of potent antioxidant legume plant extracts on xanthine oxidase (XO), catalase (CAT) and superoxide dismutase (SOD) activities. XO exerts a dual role, as it is the major contributor of free radicals during exercise while it generates uric acid, the most potent antioxidant molecule in plasma. CAT and SOD are two of the main enzymes of the antioxidant defence of tissues. We demonstrate that the majority of the extracts inhibited XO activity, but they had no effect on CAT inhibition and SOD induction when used at low concentrations. These results imply that the tested extracts may be considered as possible source of novel XO inhibitors. However, we have shown that allopurinol administration, a known XO inhibitor, before exercise reduces performance and induces oxidative stress in rats. Considering the fact that the extracts examined had an inhibitory effect on XO activity, possibly posing a restriction in their characterization as antioxidants, phytochemical antioxidant administration before exercise should probably be reconsidered.

  17. Determining the Effect of Catechins on SOD1 Conformation and Aggregation by Ion Mobility Mass Spectrometry Combined with Optical Spectroscopy

    Science.gov (United States)

    Zhao, Bing; Zhuang, Xiaoyu; Pi, Zifeng; Liu, Shu; Liu, Zhiqiang; Song, Fengrui

    2018-02-01

    The aggregation of Cu,Zn-superoxide dismutase (SOD1) plays an important role in the etiology of amyotrophic lateral sclerosis (ALS). For the disruption of ALS progression, discovering new drugs or compounds that can prevent SOD1 aggregation is important. In this study, ESI-MS was used to investigate the interaction of catechins and SOD1. The noncovalent complex of catechins that interact with SOD1 was found and retained in the gas phase under native ESI-MS condition. The conformation changes of SOD1 after binding with catechins were also explored via traveling wave ion mobility (IM) spectrometry. Epigallocatechin gallate (EGCG) can stabilize SOD1 conformation against unfolding in three catechins. To further evaluate the efficacy of EGCG, we monitored the fluorescence changes of dimer E2,E2,-SOD1(apo-SOD1, E:empty) with and without ligands under denaturation conditions, and found that EGCG can inhibit apo-SOD1 aggregation. In addition, the circular dichroism spectra of the samples showed that EGCG can decrease the β-sheet content of SOD1, which can produce aggregates. These results indicated that orthogonal separation dimension in the gas-phase IM coupled with ESI-MS (ESI-IM-MS) can potentially provide insight into the interaction between SOD1 and small molecules. The advantage is that it dramatically decreases the analysis time. Meantime, optical spectroscopy techniques can be used to confirm ESI-IM-MS results. [Figure not available: see fulltext.

  18. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer.

    Science.gov (United States)

    Arsova-Sarafinovska, Zorica; Eken, Ayse; Matevska, Nadica; Erdem, Onur; Sayal, Ahmet; Savaser, Ayhan; Banev, Saso; Petrovski, Daniel; Dzikova, Sonja; Georgiev, Vladimir; Sikole, Aleksandar; Ozgök, Yaşar; Suturkova, Ljubica; Dimovski, Aleksandar J; Aydin, Ahmet

    2009-08-01

    The study was aimed to evaluate the oxidative/nitrosative stress status in prostate cancer (CaP) and benign prostatic hyperplasia (BPH). 312 men from two different populations were included: 163 men from Macedonia (73 CaP patients, 67 BPH patients and 23 control subjects) and 149 men from Turkey (34 prostate cancer patients, 100 BPH patients and 15 control subjects). We measured erythrocyte malondialdehyde (MDA) levels, erythrocyte activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase (GPX) and catalase (CAT); plasma nitrite/nitrate (NO(2)(-)/NO(3)(-)), cGMP and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. A similar pattern of alteration in the oxidative/nitrosative stress-related parameters was found in both, Macedonian and Turkish studied samples: higher MDA concentrations with lower GPX and CuZn-SOD activities in CaP patients versus controls and BPH groups. The CAT activity was decreased in the CaP patients versus controls in the Turkish studied sample. Furthermore, CaP patients had increased plasma NO(2)(-)/NO(3)(-) and cGMP levels versus controls and BPH groups in both studied samples. This study has confirmed an imbalance in the oxidative stress/antioxidant status and revealed an altered nitrosative status in prostate cancer patients.

  19. Superior PSZ-SOD Gap-Fill Process Integration Using Ultra-Low Dispensation Amount in STI for 28 nm NAND Flash Memory and Beyond

    Directory of Open Access Journals (Sweden)

    Chun Chi Lai

    2015-01-01

    Full Text Available The gap-fill performance and process of perhydropolysilazane-based inorganic spin-on dielectric (PSZ-SOD film in shallow trench isolation (STI with the ultra-low dispensation amount of PSZ-SOD solution have been investigated in this study. A PSZ-SOD film process includes liner deposition, PSZ-SOD coating, and furnace curing. For liner deposition, hydrophilic property is required to improve the contact angle and gap-fill capability of PSZ-SOD coating. Prior to PSZ-SOD coating, the additional treatment on liner surface is beneficial for the fluidity of PSZ-SOD solution. The superior film thickness uniformity and gap-fill performance of PSZ-SOD film are achieved due to the improved fluidity of PSZ-SOD solution. Following that up, the low dispensation rate of PSZ-SOD solution leads to more PSZ-SOD filling in the trenches. After PSZ-SOD coating, high thermal curing process efficiently promotes PSZ-SOD film conversion into silicon oxide. Adequate conversion from PSZ-SOD into silicon oxide further increases the etching resistance inside the trenches. Integrating the above sequence of optimized factors, void-free gap-fill and well-controlled STI recess uniformity are achieved even when the PSZ-SOD solution dispensation volume is reduced 3 to 6 times compared with conventional condition for the 28 nm node NAND flash and beyond.

  20. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK cells

    Directory of Open Access Journals (Sweden)

    Akira Marine

    2014-01-01

    Full Text Available Superoxide is widely regarded as the primary reactive oxygen species (ROS which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ, a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS inhibitor demonstrated that peroxynitrite (at low micromolar levels induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.

  1. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Huang

    2015-09-01

    Full Text Available Melanoma is extremely resistant to chemotherapy and the death rate is increasing hastily worldwide. Extracellular matrix promotes the migration and invasion of tumor cells through the production of matrix metalloproteinase (MMP-2 and -9. Evidence has shown that natural dietary antioxidants are capable of inhibiting cancer cell growth. Our recent studies showed that hinokitiol, a natural bioactive compound, inhibited vascular smooth muscle cell proliferation and platelets aggregation. The present study is to investigate the anticancer efficacy of hinokitiol against B16-F10 melanoma cells via modulating tumor invasion factors MMPs, antioxidant enzymes in vitro. An in vivo mice model of histological investigation was performed to study the patterns of elastic and collagen fibers. Hinokitiol inhibited the expression and activity of MMPs-2 and -9 in B16-F10 melanoma cells, as measured by western blotting and gelatin zymography, respectively. An observed increase in protein expression of MMPs 2/9 in melanoma cells was significantly inhibited by hinokitiol. Notably, hinokitiol (1–5 μM increased the activities of antioxidant enzymes catalase (CAT and superoxide dismutase (SOD from the reduction in melanoma cells. Also, hinokitiol (2–10 µM concentration dependently reduced in vitro Fenton reaction induced hydroxyl radical (OH· formation. An in vivo study showed that hinokitiol treatment increased elastic fibers (EF, collagens dispersion, and improved alveolar alterations in the lungs of B16/F10 injected mice. Overall, our findings propose that hinokitiol may be a potent anticancer candidate through down regulation of MMPs 9/2, reduction of OH· production and enhancement of antioxidant enzymes SOD and CAT.

  2. Early energy metabolism-related molecular events in skeletal muscle of diabetic rats: The effects of l-arginine and SOD mimic.

    Science.gov (United States)

    Stancic, Ana; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Masovic, Sava; Jankovic, Aleksandra; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2017-06-25

    Considering the vital role of skeletal muscle in control of whole-body metabolism and the severity of long-term diabetic complications, we aimed to reveal the molecular pattern of early diabetes-related skeletal muscle phenotype in terms of energy metabolism, focusing on regulatory mechanisms, and the possibility to improve it using two redox modulators, l-arginine and superoxide dismutase (SOD) mimic. Alloxan-induced diabetic rats (120 mg/kg) were treated with l-arginine or the highly specific SOD mimic, M40403, for 7 days. As appropriate controls, non-diabetic rats received the same treatments. We found that l-arginine and M40403 restored diabetes-induced impairment of phospho-5'-AMP-activated protein kinase α (AMPKα) signaling by upregulating AMPKα protein itself and its downstream effectors, peroxisome proliferator-activated receptor-γ coactivator-1α and nuclear respiratory factor 1. Also, there was a restitution of the protein levels of oxidative phosphorylation components (complex I, complex II and complex IV) and mitofusin 2. Furthermore, l-arginine and M40403 induced translocation of glucose transporter 4 to the membrane and upregulation of protein of phosphofructokinase and acyl coenzyme A dehydrogenase, diminishing negative diabetic effects on limiting factors of glucose and lipid metabolism. Both treatments abolished diabetes-induced downregulation of sarcoplasmic reticulum calcium-ATPase proteins (SERCA 1 and 2). Similar effects of l-arginine and SOD mimic treatments suggest that disturbances in the superoxide/nitric oxide ratio may be responsible for skeletal muscle mitochondrial and metabolic impairment in early diabetes. Our results provide evidence that l-arginine and SOD mimics have potential in preventing and treating metabolic disturbances accompanying this widespread metabolic disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes.

    Science.gov (United States)

    Turkseven, Saadet; Kruger, Adam; Mingone, Christopher J; Kaminski, Pawel; Inaba, Muneo; Rodella, Luigi F; Ikehara, Susumu; Wolin, Michael S; Abraham, Nader G

    2005-08-01

    Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.

  4. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    International Nuclear Information System (INIS)

    Smietana, Michael J.; Arruda, Ellen M.; Faulkner, John A.; Brooks, Susan V.; Larkin, Lisa M.

    2010-01-01

    Research highlights: → Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. → Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. → Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Mice deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1 -/- mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1 -/- mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm 2 ) and strength (MPa) is diminished in Sod1 -/- compared to WT mice. Femurs were obtained from male and female WT and Sod1 -/- mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1 -/- mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1 -/- mice compared to WT as well as between genders. These data indicate that increased oxidative stress

  5. Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI.

    Science.gov (United States)

    Agosta, Federica; Spinelli, Edoardo Gioele; Marjanovic, Ivan V; Stevic, Zorica; Pagani, Elisabetta; Valsasina, Paola; Salak-Djokic, Biljana; Jankovic, Milena; Lavrnic, Dragana; Kostic, Vladimir S; Filippi, Massimo

    2018-02-20

    To explore structural and functional changes of the brain and cervical cord in patients with amyotrophic lateral sclerosis (ALS) due to mutation in the superoxide dismutase ( SOD1 ) gene compared with sporadic ALS. Twenty patients with SOD1 ALS, 11 with sporadic ALS, and 33 healthy controls underwent clinical evaluation and brain MRI. Cortical thickness analysis, diffusion tensor MRI of the corticospinal tracts (CST) and corpus callosum, and resting-state functional connectivity were performed. Patients with ALS also underwent cervical cord MRI to evaluate cord cross-sectional area and magnetization transfer ratio (MTR). Patients with SOD1 ALS showed longer disease duration and slower rate of functional decline relative to those with sporadic ALS. No cortical thickness abnormalities were found in patients with ALS compared with controls. Fractional anisotropy showed that sporadic ALS patients had significant CST damage relative to both healthy controls ( p = 0.001-0.02) and SOD1-related ALS ( p = 0.05), although the latter showed alterations that were intermediate between controls and sporadic ALS. Functional hyperconnectivity of the motor cortex in the sensorimotor network was observed in patients with sporadic ALS relative to controls. Conversely, patients with SOD1 ALS showed lower cord cross-sectional area along the whole cervical cord relative to those with sporadic ALS ( p ALS showed cervical cord atrophy relative to those with sporadic ALS and a relative preservation of brain motor structural and functional networks. Neurodegeneration in SOD1 ALS is likely to occur primarily in the spinal cord. An objective and accurate estimate of spinal cord damage has potential in the future assessment of preventive SOD1 ALS therapies. © 2018 American Academy of Neurology.

  6. Altered Antioxidant Status and Increased Lipid Per-Oxidation in Seminal Plasma of Tunisian Infertile Men

    Science.gov (United States)

    Atig, Fatma; Raffa, Monia; Ali, Habib Ben; Abdelhamid, Kerkeni; Saad, Ali; Ajina, Mounir

    2012-01-01

    Human seminal plasma is a natural reservoir of antioxidants that protect spermatozoa from oxidative damages. There is evidence in literature supports the fact that impairments in seminal antioxidant and lipid per-oxidation status play important roles in the physiopathology of male infertility. Our present study forms the first one which was carried out in Tunisia. We evaluated the antioxidant status in the seminal plasma of 120 infertile men programmed to In Vitro Fertilization (IVF) for the first tentative. Patients were characterized by an idiopathic infertility. They were divided into three groups: normozoospermics who were considered as controls (n=40), asthenozoospermics (Astheno; n=45) and oligoasthenoteratozoospermics (OAT; n=35). Seminal activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) and the levels of glutathione (GSH), zinc (Zn) and malondialdehyde (MDA) were measured. With the significant increase of the seminal activities of SOD and GPX in normozoospermics group, there were positive correlations observed between this enzymes and sperm quality. Also, significant elevated rates of seminal zinc and GSH were observed in control group, but there was contradictory associations reflecting the effects of these antioxidants on semen parameters. However, we noted significant increase of MDA levels in groups with abnormal seminogram. We showed negative associations between this per-oxidative marker and sperm parameters. These results obviously suggested that impairment on seminal antioxidants is an important risk factor for low sperm quality associated to idiopathic infertility and as a result can lead to poor IVF outcome. PMID:22211112

  7. Oxidative Stress Induced Age Dependent Meibomian Gland Dysfunction in Cu, Zn-Superoxide Dismutase-1 (Sod1) Knockout Mice

    Science.gov (United States)

    Ibrahim, Osama M. A.; Dogru, Murat; Matsumoto, Yukihiro; Igarashi, Ayako; Kojima, Takashi; Wakamatsu, Tais Hitomi; Inaba, Takaaki; Shimizu, Takahiko; Shimazaki, Jun; Tsubota, Kazuo

    2014-01-01

    Purpose The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse. Methods Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed. Results Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice. Conclusions Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations. PMID:25036096

  8. Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A

    Energy Technology Data Exchange (ETDEWEB)

    Galaleldeen, Ahmad; Strange, Richard W.; Whitson, Lisa J.; Antonyuk, Svetlana V.; Narayana, Narendra; Taylor, Alexander B.; Schuermann, Jonathan P.; Holloway, Stephen P.; Hasnain, S.Samar; Hart, P. John; (Texas-HSC); (Liverpool)

    2010-07-19

    Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here we report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.

  9. Long-Lived Termite Queens Exhibit High Cu/Zn-Superoxide Dismutase Activity

    Directory of Open Access Journals (Sweden)

    Eisuke Tasaki

    2018-01-01

    Full Text Available In most organisms, superoxide dismutases (SODs are among the most effective antioxidant enzymes that regulate the reactive oxygen species (ROS generated by oxidative energy metabolism. ROS are considered main proximate causes of aging. However, it remains unclear if SOD activities are associated with organismal longevity. The queens of eusocial insects, such as termites, ants, and honeybees, exhibit extraordinary longevity in comparison with the nonreproductive castes, such as workers. Therefore, the queens are promising candidates to study the underlying mechanisms of aging. Here, we found that queens have higher Cu/Zn-SOD activity than nonreproductive individuals of the termite Reticulitermes speratus. We identified three Cu/Zn-SOD sequences and one Mn-SOD sequence by RNA sequencing in R. speratus. Although the queens showed higher Cu/Zn-SOD activity than the nonreproductive individuals, there were no differences in their expression levels of the Cu/Zn-SOD genes RsSOD1 and RsSOD3A. Copper (Cu2+ and Cu+ is an essential cofactor for Cu/Zn-SOD enzyme activity, and the queens had higher concentrations of copper than the workers. These results suggest that the high Cu/Zn-SOD activity of termite queens is related to their high levels of the cofactor rather than gene expression. This study highlights that Cu/Zn-SOD activity contributes to extraordinary longevity in termites.

  10. REGENERASI DAN PERBANYAKAN RUMPUT LAUT Kappaphycus alvarezii HASIL TRANSFORMASI GEN SUPEROKSIDA DISMUTASE (MaSOD

    Directory of Open Access Journals (Sweden)

    Emma Suryati

    2017-01-01

    Full Text Available Transformasi gen superoxide dismutase (MaSOD pada rumput laut Kappaphycus alvarezii menggunakan Agrobacterium tumefacient telah dilakukan secara in vitro. Transformasi gen MaSOD ke dalam genom rumput laut diharapkan dapat mengurangi cekaman oksidatif terutama yang disebabkan oleh perubahan suhu, salinitas, dan cemaran logam di perairan. Penelitian ini bertujuan untuk regenerasi rumput laut hasil introduksi gen MaSOD dan non-transgenik pada labu kultur. Regenerasi dan perbanyakan rumput laut hasil transformasi gen MaSOD dilakukan di laboratorium pada labu kultur yang diletakkan dalam “culture chamber” yang dilengkapi dengan aerasi menggunakan media kultur yang diperkaya dengan pupuk PES, Grund, Conwy, dan SSW sebagai kontrol, salinitas 20, 25, 30, 35, dan 40 g/L, pH 4, 5, 6, 7, dan 8. Intensitas cahaya antara 500-2.000 lux dengan fotoperiode terang dan gelap 8:16; 12:12; dan 16:8. Untuk merangsang pertumbuhan eksplan dilakukan pemeliharaan dengan penambahan hormon tumbuh IAA dan BAP dengan perbandingan 1:1, 1:2, dan 2:1. Penelitian dilakukan secara bertahap. Evaluasi transgenik dilakukan menggunakan teknik PCR. Hasil penelitian memperlihatkan bahwa sintasan yang paling tinggi diperoleh menggunakan media PES (94%, salinitas 30 g/L (90%, pH 7 (96%, intensitas cahaya pada 1.500 lux (80%, fotoperiode 12:12 (84%, komposisi ZPT dengan campuran IAA dan BAP dengan perbandingan 2:1. Hasil analisis PCR memperlihatkan K. alvarezii transgenik putatif mengandung transgen MaSOD sebanyak 78% dari hasil transformasi. Superoxide dismutase transformation (MaSOD gene of seaweed Kappaphycus alvarezii mediated by Agrobacterium tumefacient has been successfully done in vitro. MaSOD genes introduced into the seaweed genome is expected to reduce oxidative stress caused by environmental conditions such as changes in temperature, salinity and metal contamination of the water. This study aimed to regenerate both the MaSOD transformed seaweed and non-transgenic in a

  11. Effects of N2O plasma treatment on perhydropolysilazane spin-on-dielectrics for inter-layer-dielectric applications

    International Nuclear Information System (INIS)

    Park, Kyoung-Seok; Ko, Pil-Seok; Kim, Sam-Dong

    2014-01-01

    Effects of the N 2 O plasma treatment (PT) on perhydropolysilazane spin-on-dielectric (PHPS SOD) were examined as potential inter-layer-dielectrics (ILDs) for sub-30 nm Si circuits. The spin-coated PHPS (18.5 wt.%) ILD layers converted at 650 °C were integrated with the 0.18 μm Si front-end-of-the line process. A modified contact pre-cleaning scheme using N 2 O PT produced more uniform and stable contact chain resistances from the SOD ILDs than the case of pre-cleaning only by buffered oxide etcher. Our analysis shows that this enhancement is due to the minimized carbon contamination on the PHPS side-wall surface densified by PT. - Highlights: • Perhydropolysilazane (PHPS) layer is evaluated as a Si interlayer dielectric. • Examine effects of the N 2 O plasma treatment (PT) on PHPS spin-on-dielectrics (SODs) • Significantly improved metal contact resistances are achieved using the N 2 O PT. • Contact resistance enhancement by PT is due to the minimized carbon contamination

  12. Influence of percutaneous stimulation of hepatic region with mid-frequency pulse current on the activity of serum GSH-PX, SOD, T-AOC and the content of malondialdehyde in exercise-induced fatigued soldiers

    Directory of Open Access Journals (Sweden)

    Peng-yi DAI

    2014-03-01

    Full Text Available Objective  To explore the influence of percutaneous stimulation of the hepatic region with mid-frequency pulsed current on the serum activity of glutathione peroxidase (GSH-PX, superoxide dismutase (SOD and total antioxidant capacity and content of malondialdehyde (MDA in exercise-induced fatigued soldiers. Methods  Sixty healthy male recruits without training history were randomly divided into control group and stimulation group (n=30. Subjects in both groups received intensive training for 5 weeks (trained from Monday to Saturday, and rest on Sunday to establish an exercise-induced fatigue model. The recruits in stimulation group received rehabilitation therapy of percutaneous stimulation of the hepatic region with mid-frequency pulse current (frequency was 1024Hz, dynamic cycle 1s, stimulation time 20min, output intensity ≤80mA after the training immediately. In every Sunday morning of the 1st, 3rd and 5th week, venous blood samples were obtained from recruits of both groups for determination of the serum activity of GSH-PX, SOD and T-AOC and content of MDA. Results  In both groups, the serum activity of GSH-PX and T-AOC on 5th weekend was lower than that of 1st and 3rd weekends, and the serum activity of GSH-PX and T-AOC on 3rd weekend was lower than that of 1st weekend (P0.05; the serum MDA content on 5th weekend was higher than that of 3rd and 1st weekends, and the content on 3rd weekend was higher than that of 1st weekend (P<0.01. The activity of GSH-PX, SOD and T-AOC increased and the MDA content decreased on 1st, 3rd and 5th weekends in stimulation group when compared with control group (P<0.05, P<0.01. Conclusions  The percutaneous stimulation of the hepatic region by mid-frequency pulsed current in exercise-induced fatigued soldiers may improve the activity of antioxidant enzymes in the liver, enhance the function of antioxidant system, promote free radical scavenging, delay the occurrence of and promote the recovery from

  13. Absence of Nrf2 or its selective overexpression in neurons and muscle does not affect survival in ALS-linked mutant hSOD1 mouse models.

    Directory of Open Access Journals (Sweden)

    Marcelo R Vargas

    Full Text Available The nuclear factor erythroid 2-related factor 2 (Nrf2 governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1 cause familial forms of amyotrophic lateral sclerosis (ALS, a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1(G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS.

  14. A Novel Iron Chelator-Radical Scavenger Ameliorates Motor Dysfunction and Improves Life Span and Mitochondrial Biogenesis in SOD1G93A ALS Mice.

    Science.gov (United States)

    Golko-Perez, Sagit; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H; Weinreb, Orly

    2017-02-01

    The aim of the present study was to evaluate the therapeutic effect of the novel neuroprotective multitarget brain permeable monoamine oxidase inhibitor/iron chelating-radical scavenging drug, VAR10303 (VAR), co-administered with high-calorie/energy-supplemented diet (ced) in SOD1 G93A transgenic amyotrophic lateral sclerosis (ALS) mice. Administration of VAR-ced was initiated after the appearance of disease symptoms (at day 88), as this regimen is comparable with the earliest time at which drug therapy could start in ALS patients. Using this rescue protocol, we demonstrated in the current study that VAR-ced treatment provided several beneficial effects in SOD1 G93A mice, including improvement in motor performance, elevation of survival time, and attenuation of iron accumulation and motoneuron loss in the spinal cord. Moreover, VAR-ced treatment attenuated neuromuscular junction denervation and exerted a significant preservation of myofibril regular morphology, associated with a reduction in the expression levels of genes related to denervation and atrophy in the gastrocnemius (GNS) muscle in SOD1 G93A mice. These effects were accompanied by upregulation of mitochondrial DNA and elevated activities of complexes I and II in the GNS muscle. We have also demonstrated that VAR-ced treatment upregulated the mitochondrial biogenesis master regulator, peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) and increased PGC-1α-targeted metabolic genes and proteins, such as, PPARγ, UCP1/3, NRF1/2, Tfam, and ERRα in GNS muscle. These results provide evidence of therapeutic potential of VAR-ced in SOD1 G93A mice with underlying molecular mechanisms, further supporting the importance role of multitarget iron chelators in ALS treatment.

  15. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Bercier, Valérie; Lissouba, Alexandra; Liao, Meijiang; Brustein, Edna; Rouleau, Guy A; Drapeau, Pierre

    2011-08-01

    Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.

  16. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Edor Kabashi

    2011-08-01

    Full Text Available Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS. Recently, mutations in the Fused in sarcoma gene (FUS were identified in familial (FALS ALS cases and sporadic (SALS patients. Similarly to TDP-43 (coded by TARDBP gene, FUS is an RNA binding protein. Using the zebrafish (Danio rerio, we examined the consequences of expressing human wild-type (WT FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C and FUS (R521H or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A. Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.

  17. Cysteine peroxidase activity in rat blood plasma | Razygraev ...

    African Journals Online (AJOL)

    The rat plasma found to be able to accelerate greatly the H2O2-dependent oxidation of cysteine. The activity was a characteristic of a protein fraction precipitated at 30—44% ammonium sulfate saturation, and the specific activity in protein fraction was significantly higher than in plasma. Cysteine:H2O2 oxidoreductase ...

  18. Acute effect of sorghum flour-containing pasta on plasma total polyphenols, antioxidant capacity and oxidative stress markers in healthy subjects: A randomised controlled trial.

    Science.gov (United States)

    Khan, Imran; Yousif, Adel M; Johnson, Stuart K; Gamlath, Shirani

    2015-06-01

    It has been previously reported that pasta containing wholegrain sorghum flour exhibits high content of polyphenols and antioxidant capacity and hence might enhance antioxidant status and reduce markers of oxidative stress in vivo; however no clinical studies have yet been reported. Therefore, the present study assessed the effect of pasta containing red or white wholegrain sorghum flour on plasma total polyphenols, antioxidant capacity and oxidative stress markers in humans. The study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN: 12612000324819). In a randomised crossover design, healthy subjects (n = 20) consumed three test meals of control pasta (CP), 30% red sorghum pasta (RSP) or 30% white sorghum pasta (WSP), 1-2 wk apart. The test meals were consumed as breakfast after an overnight fast. Blood samples were obtained at fasting and 2 h after consumption and analysed for total polyphenols, antioxidant capacity, superoxide dismutase (SOD) activity, protein carbonyl and 8-isoprostanes. Compared to baseline, the 2 h post-prandial levels following the RSP meal of plasma polyphenols, antioxidant capacity and SOD activity were significantly (P pasta containing red wholegrain sorghum flour enhanced antioxidant status and improved markers of oxidative stress in healthy subjects. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Structure directing agents induced morphology evolution and phase transition from indium-based rho- to sod-ZMOF

    KAUST Repository

    Shi, Yanshu; Cairns, Amy; Liu, Yunling; Belmabkhout, Youssef; Cai, Xuechao; Pang, Maolin; Eddaoudi, Mohamed

    2017-01-01

    In this report, indium-based rho-and sod-ZMOFs with different morphologies and sizes were prepared. Simultaneous morphology evolution and phase transformation from porous rho-to nonporous sod-ZMOFs were reported for the first time by simply varying the concentration of structure directing agents (SDAs).

  20. Structure directing agents induced morphology evolution and phase transition from indium-based rho- to sod-ZMOF

    KAUST Repository

    Shi, Yanshu

    2017-06-23

    In this report, indium-based rho-and sod-ZMOFs with different morphologies and sizes were prepared. Simultaneous morphology evolution and phase transformation from porous rho-to nonporous sod-ZMOFs were reported for the first time by simply varying the concentration of structure directing agents (SDAs).

  1. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    Energy Technology Data Exchange (ETDEWEB)

    Picco, Agnese; Ferrara, Michela; Arnaldi, Dario; Brugnolo, Andrea; Nobili, Flavio [University of Genoa and IRCCS San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Largo P. Daneo, 3, 16132, Genoa (Italy); Polidori, M.C. [University of Cologne, Institute of Geriatrics, Cologne (Germany); Cecchetti, Roberta; Baglioni, Mauro; Bastiani, Patrizia; Mecocci, Patrizia [University of Perugia, Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, Perugia (Italy); Morbelli, Silvia; Bossert, Irene [University of Genoa and IRCCS San Martino-IST, Nuclear Medicine, Department of Health Science (DISSAL), Genoa (Italy); Fiorucci, Giuliana; Dottorini, Massimo Eugenio [Nuclear Medicine, S. M. della Misericordia Hospital, Perugia (Italy)

    2014-04-15

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain{sup 18}F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  2. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    International Nuclear Information System (INIS)

    Picco, Agnese; Ferrara, Michela; Arnaldi, Dario; Brugnolo, Andrea; Nobili, Flavio; Polidori, M.C.; Cecchetti, Roberta; Baglioni, Mauro; Bastiani, Patrizia; Mecocci, Patrizia; Morbelli, Silvia; Bossert, Irene; Fiorucci, Giuliana; Dottorini, Massimo Eugenio

    2014-01-01

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain 18 F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  3. Acute Pre-/Post-Treatment with 8th Day SOD-Like Supreme (a Free Radical Scavenging Health Product Protects against Oxidant-Induced Injury in Cultured Cardiomyocytes and Hepatocytes In Vitro as Well as in Mouse Myocardium and Liver In Vivo

    Directory of Open Access Journals (Sweden)

    Pou Kuan Leong

    2017-04-01

    Full Text Available 8th Day superoxide dismutase (SOD-Like Supreme (SOD-Like Supreme, a free radical scavenging health product is an antioxidant-enriched fermentation preparation with free radical scavenging properties. In the present study, the cellular/tissue protective actions of SOD-Like Supreme against menadione toxicity in cultured H9c2 cardiomyocytes and in AML12 hepatocytes as well as oxidant-induced injury in the mouse myocardium and liver were investigated. SOD-Like Supreme was found to possess potent free radical scavenging activity in vitro as assessed by an oxygen radical absorbance capacity assay. Incubation with SOD-Like Supreme (0.5–3% (v/v was shown to protect against menadione-induced toxicity in H9c2 and AML12 cells, as evidenced by increases in cell viability. The ability of SOD-Like Supreme to protect against menadione cytotoxicity was associated with an elevation in the cellular reduced glutathione (GSH/oxidized glutathione (GSSG ratio in menadione-challenged cells. Consistent with the cell-based studies, pre-/post-treatment with SOD-Like Supreme (0.69 and 2.06 mL/kg, three intermittent doses per day for two consecutive days was found to protect against isoproterenol-induced myocardial injury and carbon tetrachloride hepatotoxicity in mice. The cardio/hepatoprotection afforded by SOD-Like Supreme was also paralleled by increases in myocardial/hepatic mitochondrial GSH/GSSG ratios in the SOD-Like Supreme-treated/oxidant-challenged mice. In conclusion, incubation/treatment with SOD-Like Supreme was found to protect against oxidant-induced injury in vitro and in vivo, presumably by virtue of its free radical scavenging activity.

  4. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    Directory of Open Access Journals (Sweden)

    Marlien Pieters

    Full Text Available Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g, platelet-containing (352 g and platelet-rich plasma (200 g were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation. Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly

  5. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Harrigan, Daniel J; Mitchell, Gordon S

    2015-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated super-oxide dismutase-1 (SOD1(G93A)), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1(G93A) (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600 μM; 12 μL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms

  6. Active neutral particle diagnostics for high temperature plasma

    International Nuclear Information System (INIS)

    Tobita, Kenji

    1993-01-01

    This paper describes experimental studies related to active neutral particle diagnostics in the JT-60 tokamak. Detection efficiencies of a micro-channel plate (MCP), which has widely used in plasma diagnostics, were determined for ions and neutrals. Multi-step processes for a neutral beam is predicted to enhance the beam stopping cross section in a plasma. In order to confirm the predictions, shine-through for a hydrogen and for a helium beam was measured in the JT-60 ohmic plasmas. The measurements for a hydrogen beam resulted in the cross sectional enhancement in the beam stopping. The same experiment using a helium beam indicated that the cross sectional enhancement for helium was much smaller than that for hydrogen at almost same plasma parameters. Ion temperature diagnostic using active beam scattering was developed in data processing technique, in consideration of the device function of a neutral particle analyzer and in estimation of the effect of beam ion component. Fundamental experiments for detecting helium ions in a plasma were performed using two-electron transfer reaction between a helium atomic beam and helium ions, and the energy distribution and the density of the helium ions were determined. These experiments demonstrated promise of the two-electron transfer reaction as an alpha ash detection in a burning plasma. A parasitic neutral efflux accompanied by active beam injection was investigated. (J.P.N.)

  7. Plasma renin activity profile in normal and hypertensive Filipinos

    International Nuclear Information System (INIS)

    Guevara, R.; Torres, J. Jr.; Abundo, H.P.; Perez, A.P.

    To establish a base line profile of plasma renin activity in normotensive and hypertensive Filipinos, 1.019 cases, 479 males and 540 females with an age range 14 - 89 years (mean - 46 + -20) were studied at the Santo Tomas University Hospital of various life styles from the Metro-Manila area, 248 comprised the normotensive group (male - 122 or 49.2 %, female 126 or 50.8 %) and 771 were hypertensive. Of these, 711 (92.6 %) has essential hypertension and are presented in this report. Plasma Renin Activity was determined by radioimmunoassay using Dainabot Renin-Ricket. Concurrent 24 hr. urine sodium and potassium were determined. Nomograms of plasma renin activity as related to urine sodium excretion were drawn after computerized statistical analysis of data. The normal mean value of plasma renin activity was found to be 1.64 + - 0.81 ng./ml./hr. in the upright position and 1.15 + - .68 ng./ml./hr. in the supine position. Based on the nomogram derived, the values obtained in the 711 cases of essential hypertension were classified into High Renin - 14.3 % Normal Renin - 56.1 % and Low Renin - 29.6 %. This study establishes normal levels of plasma renin activity as well as define and classify same renin activity among hypertensive Filipinos, a useful and practicable guide for treatment and can be of prognostic significance. (author)

  8. Effects of Shenlong Decoction on Learning and Memory Abilities as well as SOD and MDA in Brain-aging Model Mice Induced by D-Galactose

    Institute of Scientific and Technical Information of China (English)

    Liu Yi; Wang Fawei; Yang Minghui; Zheng Qingping; Wang Youjing

    2006-01-01

    @@ Brain aging (dementia) model mice were made by cervical subcutaneous injection of D-galactose solution.Learning and memory abilities were detected with water maze test and superoxide dismulase(SOD)activities and malondiadehyde (MDA) contents in the liver and brain were determined after intragastrical administration of Shenlong Decoction (参龙汤) for 6 weeks. The results indicated that the swimming time was shortened and the correct swimming times increased, SOD activity raised and MDA content decreased in the three Shenlong Decoction groups with different doses as compared with the model group. It is concluded that Shenlong Decoction has the effects of anti-free radical injuries and improving the learning and memory abilities of the brain-aging mice induced by D-galactose.

  9. Tissue and plasma enzyme activities in juvenile green iguanas.

    Science.gov (United States)

    Wagner, R A; Wetzel, R

    1999-02-01

    To determine activities of intracellular enzymes in 8 major organs in juvenile green iguanas and to compare tissue and plasma activities. 6 green iguanas iguanas, but high values may not always indicate overt muscle disease. The AMS activity may be specific for the pancreas, but the wide range of plasma activity would likely limit its diagnostic usefulness. Activities of AST and LDH may reflect tissue damage or inflammation, but probably do not reflect damage to specific tissues or organs.

  10. Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats.

    Science.gov (United States)

    Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor

    2018-01-05

    In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Kim, J.; Yang, D.A.; Ahn, W.S. [Inha University, Inchon (Republic of Korea). Dept. of Chemical Engineering

    2011-04-15

    Zeolite-like metal organic framework (ZMOF) materials having rho and sod topologies were experimentally investigated as CO{sub 2} adsorbents for the first time. As-prepared ZMOF materials showed reasonably high CO{sub 2} adsorption capacities (ca. 51 and 53 mg/g(adsorbent) for rho- and sod-ZMOF, respectively) and high CO{sub 2}/N{sub 2} selectivity (> 20) at 298 K and 1 bar. The latter showed a higher heat of adsorption (27-45 kJ/mol). These ZMOFs exhibited better CO{sub 2} adsorption than ZIF-8, a commonly investigated zeolitic imidazolate framework (ZIF) material having the same sod topology but in a neutral framework. Partially ion-exchanged sod-ZMOFs by alkali-metals resulted in improved CO{sub 2} adsorption performance compared with the as-prepared ZMOF. The highest CO{sub 2} adsorption was obtained with K{sup +}-exchanged sod-ZMOF (61 mg/g(adsorbent)), representing a ca. 15% increase in adsorption capacity. Complete desorption of CO{sub 2} in the K{sup +}-sod-ZMOF was attained at mild conditions (40{sup o}C, He purging), and reversible and sustainable CO{sub 2} adsorption performance was demonstrated in 5 sets of recycling runs.

  12. Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS.

    Science.gov (United States)

    Leitch, Jeffry M; Jensen, Laran T; Bouldin, Samantha D; Outten, Caryn E; Hart, P John; Culotta, Valeria C

    2009-08-14

    Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.

  13. APP/SOD1 overexpressing mice present reduced neuropathic pain sensitivity.

    Science.gov (United States)

    Kotulska, Katarzyna; Larysz-Brysz, Magdalena; LePecheur, Marie; Marcol, Wiesław; Olakowska, Edyta; Lewin-Kowalik, Joanna; London, Jacqueline

    2011-07-15

    There are controversies regarding pain expression in mentally disabled people, including Down syndrome patients. The aim of this study was to examine neuropathic pain-related behavior and peripheral nerve regeneration in mouse model of Down syndrome. Sciatic nerves of double transgenic mice, overexpressing both amyloid precursor protein (APP) and Cu/Zn superoxide dismutase (SOD1) genes, and FVB/N wild type mice were transected and immediately resutured. Evaluation of autotomy and functional recovery was carried out during 4-week follow-up. We found markedly less severe autotomy in transgenic animals, although the onset of autotomy was significantly delayed in control mice. Interestingly, neuroma formation at the injury site was significantly more prominent in transgenic animals. Sciatic function index outcome was better in transgenic mice than in wild-type group. Histological evaluation revealed no statistically significant differences in the number of GAP-43-positive growth cones and macrophages in the distal stump of the transected nerve between groups. However, in transgenic animals, the regenerating axons were arranged more chaotically. The number of Schwann cells in the distal stump of the transected nerves was significantly lower in transgenic mice. The number of surviving motoneurons was markedly decreased in transgenic group. We measured also the atrophy of denervated muscles and found it decreased in APP/SOD1 overexpressing mice. Taken together, in this model of Down syndrome, we observed increased neuroma formation and decreased autotomy after peripheral nerve injury. Our findings suggest that APP/SOD1 overexpressing mice are less sensitive for neuropathic pain associated with neuroma. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Lupin seeds lower plasma lipid concentrations and normalize antioxidant parameters in rats

    Directory of Open Access Journals (Sweden)

    Osman, M.

    2011-06-01

    Full Text Available This study was designed to test bitter and sweet lupin seeds for lipid-lowering and for their antioxidative activities in hypercholesterolemic rats. The levels of plasma lipid, malondialdehyde (MDA and whole blood reduced glutathione (GSH, as well as the activities of transaminases (ALT and AST, lactate dehydrogenase (LDH in plasma, superoxide dismutase (SOD, glutathione peroxidase (GPx in erythrocytes and plasma glutathione reductase (GR, glutathione-S-transferase (GST and catalase (CAT were examined. A hypercholesterolemia-induced diet manifested in the elevation of total lipids (TL, total cholesterol (TC, triglycerides (TG, LDL-C and MDA levels, ALT, AST, LDH activities and the depletion of GSH and enzymic antioxidants. The supplementation of a hypercholesterolemia-induced diet with bitter and sweet lupin seeds significantly lowered the plasma levels of TL, TC, TG and LDL-C. ALT, AST and LDH activities slightly decreased in treated groups compared with the hypercholesterolemic group (HC. Furthermore, the content of GSH significantly increased while MDA significantly decreased in treated groups compared with the HC group. In addition, the bitter lupin seed group improved enzymic antioxidants compared with the HC group. In general, the results indicated that the bitter lupin seed supplements are better than those containing sweet lupin seeds. These results suggested that the hypocholesterolemic effect of bitter and sweet lupin seed supplements might be due to their abilities to lower the plasma cholesterol level as well as to slow down the lipid peroxidation process and to enhance the antioxidant enzyme activity.

    Este estudio fue diseñado para evaluar semillas de altramuces dulces y amargas como agentes que bajan los lípidos y estudiar su efecto en la actividad antioxidante en ratas hipercolesterolémicas. El nivel de lípidos en plasma, malondialdehido (MDA y glutatión reducido (GSH, así como la actividad transaminasa (ALT y AST

  15. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.

    Science.gov (United States)

    Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan

    2008-01-01

    Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.

  16. Effect of oral preparation of astragalus membranaceous on serum SOD levels in aged patients with chronic bronchial asthma

    International Nuclear Information System (INIS)

    Sun Zhiyong

    2005-01-01

    Objective: To investigate the therapeutic effect of oral liquid preparation of astragalus membranaceous in aged patients with chronic bronchial asthma with special reference on the serum SOD levels. Methods: Serum SOD levels were measured with RIA in 42 aged patients with chronic bronchial asthma both before and after a course of treatment with oral liquid preparation of astragalus membranaceous (10ml b. i. d for 3 months) as well as in 35 controls. Results: The patients general condition was greatly improved after the treatment. Before treatment, the serum SOD levels in the patients were significantly lower than those in controls (P 0.05). Conclusion: Oral liquid preparation of astragalus membranaceous was therapeutically useful for chronic bronchial asthma in aged patients with correction of the serum SOD levels. (authors)

  17. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  18. Radio-sensitivity of the cells from amyotrophic lateral sclerosis model mice transfected with human mutant SOD1

    International Nuclear Information System (INIS)

    Wate, Reika; Ito, Hidefumi; Kusaka, Hirofumi; Takahashi, Sentaro; Kubota, Yoshihisa; Suetomi, Katsutoshi; Sato, Hiroshi; Okayasu, Ryuichi

    2005-01-01

    In order to clarify the possible involvement of oxidative damage induced by ionizing radiation in the onset and/or progression of familial amyotrophic lateral sclerosis (ALS), we studied radio-sensitivity in primary cells derived from ALS model mice expressing human mutant Cu/Zn superoxide dismutase (SOD1). The primary mouse cells expressed both mouse and the mutant human SOD1. The cell survival of the transgenic mice (with mutant SOD1), determined by counting cell numbers at a scheduled time after X-irradiation, is very similar to that of cells from wild type animals. The induction and repair of DNA damage in the transgenic cells, measured by single cell gel electrophoresis and pulsed field gel electrophoresis, are also similar to those of wild type cells. These results indicate that the human mutant SOD1 gene does not seem to contribute to the alteration of radio-sensitivity, at least in the fibroblastic cells used here. Although it is necessary to consider the difference in cell types between fibroblastic and neuronal cells, the present results may suggest that ionizing radiation is not primarily responsible for the onset of familial ALS with the SOD1 mutation, and that the excess risks are probably not a concern for radiation diagnosis and therapy in familial ALS patients. (author)

  19. Changes of blood levels of LPO, SOD and GSH-Px after endovenous laser treatment of varicose greater saphenous vein

    International Nuclear Information System (INIS)

    Han Li'na; Gu Ying; Liu Fanguang

    2004-01-01

    Objective: To investigate the changes of the blood levels of lipid peroxide (LPO), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) after treatment of varicose greater saphenous vein with either endovenous laser or conventional surgery (high ligation plus stripping). Methods: Thirty-seven patients with varicose greater saphenous vein were treated with endovenous laser and another 33 patients were treated with conventional surgery. Levels of LPO (serum, with TBA fluorescein), SOD (whole blood, with RIA) and GSH-Px (whole blood, with direct DTNB) were determined in these patients both before and 1, 3, 5, 7, 10, 15 days after treatment. Levels in 30 controls were also measured. Results: The levels of LPO were higher and levels of SOD, GSH-Px lower in the patients than those in the controls. After either form of therapy, the levels LPO rose and levels of SOD, GSH-Px dropped immediately but gradually approached the control values by the 15 th day (slower with SOD and GSH-Px). However, the early increase of LPO levels were less and recovery sooner in the group of patients treated with laser. Conclusion: Changes of levels of LPO, SOD and GSH-Px were closely related to the degree of stress and recovery condition after the treatment

  20. Genetic Polymorphisms in SOD (rs2070424, rs7880) and CAT (rs7943316, rs1001179) Enzymes Are Associated with Increased Body Fat Percentage and Visceral Fat in an Obese Population from Central Mexico.

    Science.gov (United States)

    Hernández-Guerrero, César; Hernández-Chávez, Paulina; Romo-Palafox, Inés; Blanco-Melo, Grecia; Parra-Carriedo, Alicia; Pérez-Lizaur, Ana

    2016-07-01

    Oxidative disturbance is an important factor involved in the etiology of comorbidities associated with obesity. Genetic polymorphisms such as SOD1 -251A>G, SOD2 47 C>T, CAT -21A>T and CAT -262 C>T have been described to alter the activity of antioxidant enzymes. The aim of the present work was to analyze the association of the mentioned SNPs with obesity and their relationship with anthropometric and clinical variables in this group. The study included 416 Mexican women (208 normal weight, NW and 208 subjects with obesity, OB). Dietary intake, anthropometric, biochemical and clinical features were evaluated and then analyzed in function of the genotypes. The mutated carriers (GA+GG) of SOD -251 were significantly higher in the OB group (0.24) compared to the NW group (0.08). The other SNPs showed no differences compared with control group. When comparing carrier mutated subjects with obesity vs. wild-type obese participants with the SNPs SOD1 -251, SOD2 47 and CAT -262, the carriers showed a significantly (p G is associated with obesity independent of the presence of diabetes or dyslipidemia. Mutated obese carries of SOD1 -251, SOD2 47 and CAT -262 are associated with a higher distribution of fat in comparison with obese wild-type carriers. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  1. Advanced age-related denervation and fiber-type grouping in skeletal muscle of SOD1 knockout mice.

    Science.gov (United States)

    Kostrominova, Tatiana Y

    2010-11-30

    In this study skeletal muscles from 1.5- and 10-month-old Cu/Zn superoxide dismutase (SOD1) homozygous knockout (JLSod1(-/-)) mice obtained from The Jackson Laboratory (C57Bl6/129SvEv background) were compared with muscles from age- and sex-matched heterozygous (JLSod1(+/-)) littermates. The results of this study were compared with previously published data on two different strains of Sod1(-/-) mice: one from Dr. Epstein's laboratory (ELSod1(-/-); C57Bl6 background) and the other from Cephalon, Inc. (CSod1(-/-); 129/CD-1 background). Grouping of succinate dehydrogenase-positive fibers characterized muscles of Sod1(-/-) mice from all three strains. The 10-month-old Sod1(-/-)C and JL mice displayed pronounced denervation of the gastrocnemius muscle, whereas the ELSod1(-/-) mice displayed a small degree of denervation at this age, but developed accelerated age-related denervation later on. Denervation markers were up-regulated in skeletal muscle of 10-month-old JLSod1(-/-) mice. This study is the first to show that metallothionein mRNA and protein expression was up-regulated in the skeletal muscle of 10-month-old JLSod1(-/-) mice and was mostly localized to the small atrophic muscle fibers. In conclusion, all three strains of Sod1(-/-) mice develop accelerated age-related muscle denervation, but the genetic background has significant influence on the progress of denervation. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS.

    Science.gov (United States)

    Kunze, Anja; Lengacher, Sylvain; Dirren, Elisabeth; Aebischer, Patrick; Magistretti, Pierre J; Renaud, Philippe

    2013-07-24

    Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. ALS is believed to be a non-cell autonomous condition, as other cell types, including astrocytes, have been implicated in disease pathogenesis. Hence, to facilitate the development of therapeutics against ALS, it is crucial to better understand the interactions between astrocytes and neural cells. Furthermore, cell culture assays are needed that mimic the complexity of cell to cell communication at the same time as they provide control over the different microenvironmental parameters. Here, we aim to validate a previously developed microfluidic system for an astrocyte-neuron cell culture platform, in which astrocytes have been genetically modified to overexpress either a human wild-type (WT) or a mutated form of the super oxide dismutase enzyme 1 (SOD1). Cortical neural cells were co-cultured with infected astrocytes and studied for up to two weeks. Using our microfluidic device that prevents direct cell to cell contact, we could evaluate neural cell response in the vicinity of astrocytes. We showed that neuronal cell density was reduced by about 45% when neurons were co-cultured with SOD-mutant astrocytes. Moreover, we demonstrated that SOD-WT overexpressing astrocytes reduced oxidative stress on cortical neurons that were in close metabolic contact. In contrast, cortical neurons in metabolic contact with SOD-mutant astrocytes lost their synapsin protein expression after severe glutamate treatment, an indication of the toxicity potentiating effect of the SOD-mutant enzyme.

  3. ALS-linked mutant SOD1 proteins promote Aβ aggregates in ALS through direct interaction with Aβ.

    Science.gov (United States)

    Jang, Ja-Young; Cho, Hyungmin; Park, Hye-Yoon; Rhim, Hyangshuk; Kang, Seongman

    2017-11-04

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons. Aggregation of ALS-linked mutant Cu/Zn superoxide dismutase (SOD1) is a hallmark of a subset of familial ALS (fALS). Recently, intracellular amyloid-β (Aβ) is detected in motor neurons of both sporadic and familial ALS. We have previously shown that intracellular Aβ specifically interacts with G93A, an ALS-linked SOD1 mutant. However, little is known about the pathological and biological effect of this interaction in neurons. In this study, we have demonstrated that the Aβ-binding region is exposed on the SOD1 surface through the conformational changes due to misfolding of SOD1. Interestingly, we found that the intracellular aggregation of Aβ is enhanced through the direct interaction of Aβ with the Aβ-binding region exposed to misfolded SOD1. Ultimately, increased Aβ aggregation by this interaction promotes neuronal cell death. Consistent with this result, Aβ aggregates was three-fold higher in the brains of G93A transgenic mice than those of non Tg. Our study provides the first direct evidence that Aβ, an AD-linked factor, is associated to the pathogenesis of ALS and provides molecular clues to understand common aggregation mechanisms in the pathogenesis of neurodegenerative diseases. Furthermore, it will provide new insights into the development of therapeutic approaches for ALS. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans

    Directory of Open Access Journals (Sweden)

    Vandesompele Jo

    2008-01-01

    Full Text Available Abstract Background In the nematode Caenorhabditis elegans the conserved Ins/IGF-1 signaling pathway regulates many biological processes including life span, stress response, dauer diapause and metabolism. Detection of differentially expressed genes may contribute to a better understanding of the mechanism by which the Ins/IGF-1 signaling pathway regulates these processes. Appropriate normalization is an essential prerequisite for obtaining accurate and reproducible quantification of gene expression levels. The aim of this study was to establish a reliable set of reference genes for gene expression analysis in C. elegans. Results Real-time quantitative PCR was used to evaluate the expression stability of 12 candidate reference genes (act-1, ama-1, cdc-42, csq-1, eif-3.C, mdh-1, gpd-2, pmp-3, tba-1, Y45F10D.4, rgs-6 and unc-16 in wild-type, three Ins/IGF-1 pathway mutants, dauers and L3 stage larvae. After geNorm analysis, cdc-42, pmp-3 and Y45F10D.4 showed the most stable expression pattern and were used to normalize 5 sod expression levels. Significant differences in mRNA levels were observed for sod-1 and sod-3 in daf-2 relative to wild-type animals, whereas in dauers sod-1, sod-3, sod-4 and sod-5 are differentially expressed relative to third stage larvae. Conclusion Our findings emphasize the importance of accurate normalization using stably expressed reference genes. The methodology used in this study is generally applicable to reliably quantify gene expression levels in the nematode C. elegans using quantitative PCR.

  5. Association between single nucleotide polymorphisms in the antioxidant genes CAT, GR and SOD1, erythrocyte enzyme activities, dietary and life style factors and breast cancer risk in a Danish, prospective cohort study

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov; Vogel, Ulla; Dragsted, Lars Ove

    2017-01-01

    investigated in 703 breast cancer case-control pairs in the Danish, prospective "Diet, Cancer and Health" cohort together with gene-environment interactions between the polymorphisms, enzyme activities and intake of fruits and vegetables, alcohol and smoking in relation to breast cancer risk. Our results...... showed that genetically determined variations in the antioxidant enzyme activities of SOD1, CAT and GSR were not associated with risk of breast cancer per se. However, intake of alcohol, fruit and vegetables, and smoking status interacted with some of the polymorphisms in relation to breast cancer risk...

  6. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats.

    Science.gov (United States)

    Ramiro-Puig, Emma; Urpí-Sardà, Mireia; Pérez-Cano, Francisco J; Franch, Angels; Castellote, Cristina; Andrés-Lacueva, Cristina; Izquierdo-Pulido, Maria; Castell, Margarida

    2007-08-08

    Cocoa is a rich source of flavonoids, mainly (-)-epicatechin, (+)-catechin, and procyanidins. This article reports the effect of continuous cocoa intake on antioxidant capacity in plasma and tissues, including lymphoid organs and liver, from young rats. Weaned Wistar rats received natural cocoa (4% or 10% food intake) for three weeks, corresponding to their infancy. Flavonoid absorption was confirmed through the quantification of epicatechin metabolites in urine. Total antioxidant capacity (TAC) and the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase, were examined. Cocoa intake enhanced TAC in all tissues especially in thymus. Moreover, thymus SOD and catalase activities were also dose-dependently increased by cocoa. It was also analyzed whether the enhanced antioxidant system in thymus could influence its cellular composition. An increase in the percentage of thymocytes in advanced development stage was found. In summary, cocoa diet enhances thymus antioxidant defenses and influences thymocyte differentiation.

  7. Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Nishigori, C.; Miyachi, Y.; Imamura, S.; Takebe, H.

    1989-01-01

    This study was performed in order to assess the possible protective effect of superoxide dismutase (SOD) on ultraviolet (UV) damage in xeroderma pigmentosum (XP) fibroblasts. SOD activity in fibroblasts originating from seven xeroderma pigmentosum (XP) patients was significantly lower than that in normal cells (p less than 0.005). Average SOD activity in XP cells belonging to complementation group A was 3.68 +/- 0.54 (n = 7) and that in normal human cells was 5.79 +/- 1.59 (n = 6). Addition of SOD before and during UV irradiation (UVB and UVC) to the cells caused no change in the amount of unscheduled DNA synthesis and UV survival. A possible involvement of reduced SOD in XP and a possible protective effect by SOD on UV damage is discussed

  8. Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice

    Directory of Open Access Journals (Sweden)

    Patrick M. Cowley

    2017-10-01

    Full Text Available Down syndrome (DS is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1; a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p 0.05. Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05. In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress.

  9. Ruxolitinib synergizes with DMF to kill via BIM+BAD-induced mitochondrial dysfunction and via reduced SOD2/TRX expression and ROS.

    Science.gov (United States)

    Tavallai, Mehrad; Booth, Laurence; Roberts, Jane L; McGuire, William P; Poklepovic, Andrew; Dent, Paul

    2016-04-05

    We determined whether the myelofibrosis drug ruxolitinib, an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could interact with the multiple sclerosis drug dimethyl-fumarate (DMF) to kill tumor cells; studies used the in vivo active form of the drug, mono-methyl fumarate (MMF). Ruxolitinib interacted with MMF to kill brain, breast, lung and ovarian cancer cells, and enhanced the lethality of standard of care therapies such as paclitaxel and temozolomide. MMF also interacted with other FDA approved drugs to kill tumor cells including Celebrex® and Gilenya®. The combination of [ruxolitinib + MMF] inactivated ERK1/2, AKT, STAT3 and STAT5; reduced expression of MCL-1, BCL-XL, SOD2 and TRX; increased BIM expression; decreased BAD S112 S136 phosphorylation; and enhanced pro-caspase 3 cleavage. Expression of activated forms of STAT3, MEK1 or AKT each significantly reduced drug combination lethality; prevented BAD S112 S136 dephosphorylation and decreased BIM expression; and preserved TRX, SOD2, MCL-1 and BCL-XL expression. The drug combination increased the levels of reactive oxygen species in cells, and over-expression of TRX or SOD2 prevented drug combination tumor cell killing. Over-expression of BCL-XL or knock down of BAX, BIM, BAD or apoptosis inducing factor (AIF) protected tumor cells. The drug combination increased AIF : HSP70 co-localization in the cytosol but this event did not prevent AIF : eIF3A association in the nucleus.

  10. Novel Mechanism of Plasma Prekallikrein (PK) Activation by Vascular Smooth Muscle Cells: Evidence of the presence of PK Activator

    OpenAIRE

    Keum, Joo-Seob; Jaffa, Miran A; Luttrell, Louis M; Jaffa, Ayad A.

    2014-01-01

    The contribution of plasma prekallikrein (PK) to vascular remodeling is becoming increasingly recognized. Plasma PK is activated when the zymogen PK is digested to an active enzyme by activated factor XII (FXII). Here, we present our findings that vascular smooth muscle cells (VSMC) activate plasma PK in the absence of FXII. Extracted plasma membrane and cytosolic fractions of VSMCs activate PK, but the rate of PK activation was greater by the membrane fraction. FXII neutralizing antibody did...

  11. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone.

    Science.gov (United States)

    Carroll, Mark C; Girouard, Jody B; Ulloa, Janella L; Subramaniam, Jamuna R; Wong, Phillip C; Valentine, Joan Selverstone; Culotta, Valeria Cizewski

    2004-04-20

    The Cu- and Zn-containing superoxide dismutase 1 (SOD1) largely obtains Cu in vivo by means of the action of the Cu chaperone CCS. Yet, in the case of mammalian SOD1, a secondary pathway of activation is apparent. Specifically, when human SOD1 is expressed in either yeast or mammalian cells that are null for CCS, the SOD1 enzyme retains a certain degree of activity. This CCS-independent activity is evident with both wild-type and mutant variants of SOD1 that have been associated with familial amyotrophic lateral sclerosis. We demonstrate here that the CCS-independent activation of mammalian SOD1 involves glutathione, particularly the reduced form, or GSH. A role for glutathione in CCS-independent activation was seen with human SOD1 molecules that were expressed in either yeast cells or immortalized fibroblasts. Compared with mammalian SOD1, the Saccharomyces cerevisiae enzyme cannot obtain Cu without CCS in vivo, and this total dependence on CCS involves the presence of dual prolines near the C terminus of the SOD1 polypeptide. Indeed, the insertion of such prolines into human SOD1 rendered this molecule refractory to CCS-independent activation. The possible implications of multiple pathways for SOD1 activation are discussed in the context of SOD1 evolutionary biology and familial amyotrophic lateral sclerosis.

  12. Is Xanthine oxidase activity in polycystic ovary syndrome associated with inflammatory and cardiovascular risk factors?

    Science.gov (United States)

    Isık, Hatice; Aynıoglu, Oner; Tımur, Hakan; Sahbaz, Ahmet; Harma, Muge; Can, Murat; Guven, Berrak; Alptekin, Husnu; Kokturk, Furuzan

    2016-08-01

    The aim of this study is to examine women with polycystic ovary syndrome (PCOS) to determine the relationship between xanthine oxidase (XO) and oxidative stress, inflammatory status, and various clinical and biochemical parameters. In this cross-sectional study a total of 83 women including 45 PCOS patients and 38 healthy women were enrolled. We collected blood samples for XO and superoxide dismutase (SOD) activity, hormone levels, cholesterol values, and inflammatory markers. Body mass index (BMI) , waist-to-hip ratio (WHR), and blood pressure were assessed. Blood samples were taken for hormonal levels, cholesterol levels, fasting plasma glucose (FPG), fasting plasma insulin (FPI), homeostatic model assessment-insulin resistance (HOMA-IR) index, quantitative insulin sensitivity check index (QUICKI), C-reactive protein (CRP), white blood cell and neutrophil counts, XO and SOD activities. The basal hormone levels, triglyceride (TG) levels, TG/HDL-C (high density lipoprotein-cholesterol) ratios FPG, FPI and HOMA-IR levels were higher in PCOS patients compared to controls (pPCOS patients (pPCOS patients. Positive correlations between XO and inflammatory markers and cardiovascular disease risk factors suggest that XO plays an important role in the pathogenesis of PCOS and its metabolic complications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma-membrane Na+/H+ antiporter.

    Science.gov (United States)

    Kinclova-Zimmermannova, Olga; Falson, Pierre; Cmunt, Denis; Sychrova, Hana

    2015-04-24

    Na(+)/H(+) antiporters may recognize all alkali-metal cations as substrates but may transport them selectively. Plasma-membrane Zygosaccharomyces rouxii Sod2-22 antiporter exports Na(+) and Li(+), but not K(+). The molecular basis of this selectivity is unknown. We combined protein structure modeling, site-directed mutagenesis, phenotype analysis and cation efflux measurements to localize and characterize the cation selectivity region. A three-dimensional model of the ZrSod2-22 transmembrane domain was generated based on the X-ray structure of the Escherichia coli NhaA antiporter and primary sequence alignments with homologous yeast antiporters. The model suggested a close proximity of Thr141, Ala179 and Val375 from transmembrane segments 4, 5 and 11, respectively, forming a hydrophobic hole in the putative cation pathway's core. A series of mutagenesis experiments verified the model and showed that structural modifications of the hole resulted in altered cation selectivity and transport activity. The triple ZrSod2-22 mutant T141S-A179T-V375I gained K(+) transport capacity. The point mutation A179T restricted the antiporter substrate specificity to Li(+) and reduced its transport activity, while serine at this position preserved the native cation selectivity. The negative effect of the A179T mutation can be eliminated by introducing a second mutation, T141S or T141A, in the preceding transmembrane domain. Our experimental results confirm that the three residues found through modeling play a central role in the determination of cation selectivity and transport activity in Z. rouxii Na(+)/H(+) antiporter and that the cation selectivity can be modulated by repositioning a single local methyl group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dietary carotenoid-rich oil supplementation improves exercise-induced anisocytosis in runners: influences of haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms in dilutional pseudoanemia (sports anemia).

    Science.gov (United States)

    Miranda-Vilela, Ana L; Akimoto, Arthur K; Alves, Penha C Z; Pereira, Luiz C S; Klautau-Guimarães, Maria N; Grisolia, Cesar K

    2010-04-01

    Physical training induces beneficial adaptation, whereas exhaustive exercises increase reactive oxygen-species generation, thereby causing oxidative damage in plasma and erythrocytes, fractions susceptible to lipid peroxidation. Pequi (Caryocar brasiliense Camb.) is a Brazilian Cerrado fruit containing a carotenoid-rich oil. The aim was to investigate the effects of pequi-oil on exercise-induced oxidative damage in plasma and erythrocytes, after running in the same environment and undergoing weekly training under the same conditions as to type, intensity and length. Evaluations were accomplished after outdoor running on flat land before and after ingestion of 400 mg pequi-oil capsules for 14 days. Blood samples were taken after running and submitted to TBARS assay and erythrogram analysis. Haptoglobin, MnSOD (Val9Ala), CAT (21A/T) and GPX1 (Pro198Leu) gene polymorphisms were priorly investigated, so as to estimate genetic influence The reduction in erythrocytes, hemoglobin and hematocrit after pequi-oil treatment was notably associated with higher plasma expansion. Except for MCHC (mean corpuscular hemoglobin concentration) and RDW (red cell distribution width), the results were influenced by the polymorphisms studied. The best response to pequi-oil was presented by MnSOD Val/Val, CAT AA or AT genotypes and the GPX1 Pro allele. The significantly lower RDW and higher MHCH values were related to pequi-oil protective effects. Pequi oil, besides possessing other nutritional properties, showed protective blood effects.

  15. Role of nitric oxide and antioxidant enzymes in the pathogenesis of oral cancer.

    Science.gov (United States)

    Patel, Jayendrakumar B; Shah, Franky D; Shukla, Shilin N; Shah, Pankaj M; Patel, Prabhudas S

    2009-01-01

    Oral cancer is the leading malignancy in India. Nitric oxide and antioxidant enzymes play an important role in etiology of oral cancer. Therefore, the present study evaluates nitric oxide and antioxidant enzyme levels in healthy individual without tobacco habits (NHT, N=30) and healthy individuals with tobacco habits (WHT, n=90), patients with oral precancers (OPC, n=15) and oral cancer patients (n=126). Blood samples were collected from the subjects. NO2 + NO3 (nitrite+nitrate), superoxide dismutase (SOD) and catalase levels were estimated using highly specific spectrophotometeric methods. Statistical analysis was done by SPSS statistical software version 10. Mean plasma NO2 + NO3 levels were elevated in patients with OPC and oral cancer patients as compared to the controls. Mean activities of erythrocyte SOD and catalase were higher in WHT than NHT. Erythrocyte SOD and catalase levels were higher in WHT and patients with OPC as compared to NHT. The erythrocyte SOD and catalase activities were lower in oral cancer patients than patients with OPC. The erythrocyte SOD activity was higher in advanced oral cancer than the early disease. Erythrocyte catalase activity was lower in poorly differentiated tumors than well and moderately differentiated tumors. Pearson's correlation analysis revealed that alterations in plasma NO2 + NO3 levels were negatively associated with changes in erythrocyte SOD activities. The data revealed that the alterations in antioxidant activities were associated with production of nitric oxide in oral cancer, which may have significant role in oral carcinogenesis.

  16. Mitragyna ciliata and its trypanocidal activity

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... activities of oxidative stress enzymes; superoxide dismutase (SOD) and catalase in the infected rats were determined. SOD activity ... trypanocides being faced with toxicity and drug resis- tance problems (FAO, 1998). ... to possess in vitro antipro- liferative activity against Plasmodium falciparium (Traore.

  17. PGC-1 silencing compounds the perturbation of mitochondrial function caused by mutant SOD1 in skeletal muscle of ALS mouse model

    Directory of Open Access Journals (Sweden)

    Yan eQi

    2015-10-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal neurodegenerative disease causing death of motor neurons. This study investigated the roles of energy metabolism in the pathogenesis of ALS in the SOD1(G93A transgenic mouse model. Control and SOD1(G93A mice were administered with shcontrol or shPGC-1α in combination with PBS or TZD for 8 weeks. Gene expression was analyzed by quantitative real-time PCR and western blot. ROS and fibrosis were assessed with a colorimetric kit and Sirius staining respectively. Inflammatory cytokines were measured using ELISA kits. The levels of tissue ROS and serum inflammatory cytokines were significantly higher in SOD1(G93A mice compared to control mice, and knocking down PGC-1α drastically increased cytokine levels in both control and SOD1(G93A mice. Muscle fibrosis was much severer in SOD1(G93A mice, and worsened by silencing PGC-1α and attenuate d by TZD. The expression levels of PGC-1α, SOD1, UCP2, and cytochrome C were substantially reduced by shPGC-1α and increased by TZD in muscle of both control and SOD1(G93A mice whereas the level of NF-B was significantly elevated in SOD1(G93A mice, which was further increased by PGC-1α silencing. These data indicated that disruption of energy homeostasis would exacerbate the pathological changes caused by SOD1 mutations to promote the pathogenesis of ALS.

  18. Use of sodC versus ctrA for real-time polymerase chain reaction-based detection of Neisseria meningitidis in sterile body fluids

    Directory of Open Access Journals (Sweden)

    Fábio Takenori Higa

    2013-04-01

    Full Text Available We evaluated the use of a newly described sodC-based real-time-polymerase chain reaction (RT-PCR assay for detecting Neisseria meningitidis in normally sterile sites, such as cerebrospinal fluid and serum. The sodC-based RT-PCR assay has an advantage over ctrA for detecting nongroupable N. meningitidis isolates, which are commonly present in asymptomatic pharyngeal carriage. However, in our study, sodC-based RT-PCR was 7.5% less sensitive than ctrA. Given the public health impact of possible false-negative results due to the use of the sodC target gene alone, sodC-based RT-PCR for the diagnosis of meningococcal meningitis should be used with caution.

  19. Immunoradiometric quantitation of tissue plasminogen activator-related antigen in human plasma: crypticity phenomenon and relationship to plasma fibrinolysis

    International Nuclear Information System (INIS)

    Wun, T.C.; Capuano, A.

    1987-01-01

    A two-site immunoradiometric assay for tissue plasminogen activator (tPA) antigen has been developed using immunoaffinity purified antibody. Various treatments enhanced the detection of tPA antigen in the plasma samples. Maximum detection was obtained by acidification of plasma to pH 4.8 to 6.5 or addition of 0.5 mol/L of L-lysine or L-arginine. Acidification or addition of lysine to plasma is also required for maximum immunoadsorption of plasma tPA antigen on anti-tPA-Ig-sepharose. These results indicate that plasma tPA antigen is partially cryptic to antibody in untreated plasma. The plasma tPA antigen isolated by immunoadsorption of either untreated plasma or acidified plasma on anti-tPA-Ig-sepharose consists mainly of a 100-kd plasminogen activator species as determined by fibrin-agar zymography. The 100-kd activity is possibly a tPA:inhibitor complex. A standardized sample preparation method was conveniently adopted by mixing 3 vol of plasma and 1 vol of 2 mol/L of L-lysine for the assay. Reconstitution and recovery studies showed that the method is specific and permits full detection of both free tPA and tPA:inhibitor complex. The validity of the assay is further supported by the finding that the spontaneous plasma fibrinolysis previously demonstrated to be dependent on plasma tPA antigen is correlated with tPA antigen content. Using the standardized assay, we found that tPA antigen concentrations in 16 blood bank plasmas are equivalent to 3.7 to 20 ng of 60 kd tPA/mL. In all the plasma tested, more than half of the antigen is undetected unless the plasma is treated as described above

  20. Immunoradiometric quantitation of tissue plasminogen activator-related antigen in human plasma: crypticity phenomenon and relationship to plasma fibrinolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wun, T.C.; Capuano, A.

    1987-05-01

    A two-site immunoradiometric assay for tissue plasminogen activator (tPA) antigen has been developed using immunoaffinity purified antibody. Various treatments enhanced the detection of tPA antigen in the plasma samples. Maximum detection was obtained by acidification of plasma to pH 4.8 to 6.5 or addition of 0.5 mol/L of L-lysine or L-arginine. Acidification or addition of lysine to plasma is also required for maximum immunoadsorption of plasma tPA antigen on anti-tPA-Ig-sepharose. These results indicate that plasma tPA antigen is partially cryptic to antibody in untreated plasma. The plasma tPA antigen isolated by immunoadsorption of either untreated plasma or acidified plasma on anti-tPA-Ig-sepharose consists mainly of a 100-kd plasminogen activator species as determined by fibrin-agar zymography. The 100-kd activity is possibly a tPA:inhibitor complex. A standardized sample preparation method was conveniently adopted by mixing 3 vol of plasma and 1 vol of 2 mol/L of L-lysine for the assay. Reconstitution and recovery studies showed that the method is specific and permits full detection of both free tPA and tPA:inhibitor complex. The validity of the assay is further supported by the finding that the spontaneous plasma fibrinolysis previously demonstrated to be dependent on plasma tPA antigen is correlated with tPA antigen content. Using the standardized assay, we found that tPA antigen concentrations in 16 blood bank plasmas are equivalent to 3.7 to 20 ng of 60 kd tPA/mL. In all the plasma tested, more than half of the antigen is undetected unless the plasma is treated as described above.

  1. Alternative pathways of thromboplastin-dependent activation of human factor X in plasma

    International Nuclear Information System (INIS)

    Marlar, R.A.; Griffin, J.H.

    1981-01-01

    To determine the interrelationships of the major coagulation pathways, the activation of 3H-labeled factor X in normal and various deficient human plasmas was evaluated when clotting was triggered by dilute rabbit or human thromboplastin. Various dilutions of thromboplastin and calcium were added to plasma samples containing 3H-factor X, and the time course of factor X activation was determined. At a 1/250 dilution of rabbit brain thromboplastin, the rate of factor X activation in plasmas deficient in factor VIII or factor IX was 10% of the activation rate of normal plasma or of factor XI deficient plasma. Reconstitution of the deficient plasmas with factors VIII or IX, respectively, reconstituted normal factor X activation. Similar results were obtained when various dilutions of human thromboplastin replaced the rabbit thromboplastin. From these plasma experiments, it is inferred that the dilute thromboplastin-dependent activation of factor X requires factors VII, IX, and VIII. An alternative extrinsic pathway that involves factors IX and VIII may be the physiologic extrinsic pathway and hence help to explain the consistent clinical observations of bleeding diatheses in patients deficient in factors IX or VIII

  2. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

    Science.gov (United States)

    Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin

    2014-04-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. [Effects of desulfurization waste on calcium distribution, Ca(2+)-ATPase activity, and antioxidant characteristics of rice leaf under alkali stress].

    Science.gov (United States)

    Mao, Gui-Lian; Xu, Xing; Zeng, Jin; Yue, Zi-Hui; Yang, Shu-Juan

    2012-02-01

    To approach the action mechanisms of desulfurization waste on alleviating alkali stress-induced injury of rice, a pot experiment was conducted to study the variations of leaf total calcium content, calcium distribution, plasma membrane Ca(2+)-ATPase activity, and reactive oxygen content of rice seedlings under alkali stress after the application of desulfurization waste. In the control, a few calcium particulates scattered in the cell wall and chloroplasts, while applying desulfurization waste or CaSO4 increased the calcium particulates in the plasma membrane, intercellular space, cell wall, and vacuole significantly. With the increasing application rate of desulfurization waste or CaSO4, the leaf total calcium content increased, Ca(2+)-ATPase activity in plasma membrane and tonoplast presented an increasing trend, plasma membrane relative permeability, MDA content, and O2 production rate decreased, and SOD and POD activities increased. The desulfurization waste could relieve the alkali stress to rice in some extent, and the main reactive compound in the waste could be CaSO4.

  4. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan); Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Ma, Ning [Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-0293 (Japan); Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Hospital, Sendai, Miyaki 980-8574 (Japan); Pinlaor, Somchai [Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Hiraku, Yusuke; Oikawa, Shinji; Murata, Mariko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Kawanishi, Shosuke, E-mail: kawanisi@suzuka-u.ac.jp [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the risk of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and

  5. Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L. seedlings.

    Directory of Open Access Journals (Sweden)

    Yi-Kai Zhang

    Full Text Available Soil acidification is the main problem in the current rice production. Here, the effects of low pH on the root growth, reactive oxygen species metabolism, plasma membrane functions, and the transcript levels of the related genes were investigated in rice seedlings (Oryza sativa L. in a hydroponic system at pH 3.5, 4.5, and 5.5. There were two hybrid rice cultivars in this trial, including Yongyou 12 (YY12, a japonica hybrid and Zhongzheyou 1 (ZZY1, an indica hybrid. Higher H+ activity markedly decreased root length, the proportion of fine roots, and dry matter production, but induced a significant accumulation of hydrogen peroxide (H2O2, and led to serious lipid peroxidation in the roots of the two varieties. The transcript levels of copper/zinc superoxide dismutase 1 (Cu/Zn SOD1, copper/zinc superoxide dismutase 2 (Cu/Zn SOD2, catalase A (CATA and catalase B (CATB genes in YY12 and ZZY1 roots were significantly down-regulated after low pH exposure for two weeks. Meanwhile, a significant decrease was observed in the expression of the P-type Ca2+-ATPases in roots at pH 3.5. The activities of antioxidant enzymes (SOD, CAT and plasma membrane (PM Ca2+-ATPase in the two varieties were dramatically inhibited by strong rhizosphere acidification. However, the expression levels of ascorbate peroxidase 1 (APX1 and PM H+-ATPase isoform 7 were up-regulated under H+ stress compared with the control. Significantly higher activities of APX and PM H+-ATPase could contribute to the adaptation of rice roots to low pH.

  6. Local and systemic oxidative stress and glucocorticoid receptor levels in chronic obstructive pulmonary disease patients

    Science.gov (United States)

    Zeng, Mian; Li, Yue; Jiang, Yujie; Lu, Guifang; Huang, Xiaomei; Guan, Kaipan

    2013-01-01

    BACKGROUND: Previous studies have indicated that oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). OBJECTIVES: To study local and systemic oxidative stress status in COPD patients, and to clarify the relationship between local and systemic oxidative stress. METHODS: Lipid peroxide malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and GSH peroxidase (GSH-PX) levels in induced sputum and plasma, as well as glucocorticoid receptor (GR) levels in peripheral blood leukocytes were examined in 43 acute exacerbation of COPD patients (group A), 35 patients with stable COPD (group B) and 28 healthy controls (14 smokers [group C]; 14 nonsmokers [group D]). RESULTS: MDA levels in induced sputum and plasma decreased progressively in groups A to D, with significant differences between any two groups (P<0.001). GSH, SOD and GSH-PX levels in both induced sputum and plasma increased progressively in groups A to D, with significant differences between any two groups (P<0.001). GR levels in peripheral blood leukocytes decreased progressively in groups D to A (all comparisons P<0.001). Pearson analysis revealed strong correlations between MDA, GSH, SOD and GSH-PX levels in plasma and induced sputum. The activity of SOD in plasma and sputum were both positively correlated with GR levels (partial correlation coefficients 0.522 and 0.574, respectively [P<0.001]). CONCLUSIONS: Oxidative stress levels were elevated in COPD patients. There was a correlation between local and systemic oxidative status in COPD, and between decreased SOD activity and decreased GR levels in COPD patients. PMID:23457673

  7. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin.

    Science.gov (United States)

    Jankovic, Aleksandra; Ferreri, Carla; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Stancic, Ana; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2016-11-01

    Setting the correct ratio of superoxide anion (O 2 •- ) and nitric oxide ( • NO) radicals seems to be crucial in restoring disrupted redox signaling in diabetic skin and improvement of • NO physiological action for prevention and treatment of skin injuries in diabetes. In this study we examined the effects of L-arginine and manganese(II)-pentaazamacrocyclic superoxide dismutase (SOD) mimic - M40403 in diabetic rat skin. Following induction of diabetes by alloxan (blood glucose level ≥12 mMol l  -1 ) non-diabetic and diabetic male Mill Hill hybrid hooded rats were divided into three subgroups: (i) control, and receiving: (ii) L-arginine, (iii) M40403. Treatment of diabetic animals started after diabetes induction and lasted for 7 days. Compared to control, lower cutaneous immuno-expression of endothelial NO synthase (eNOS), heme oxygenase 1 (HO1), manganese SOD (MnSOD) and glutathione peroxidase (GSH-Px), in parallel with increased NFE2-related factor 2 (Nrf2) and nitrotyrosine levels characterized diabetic skin. L-arginine and M40403 treatments normalized alloxan-induced increase in nitrotyrosine. This was accompanied by the improvement/restitution of eNOS and HO1 or MnSOD and GSH-Px protein expression levels in diabetic skin following L-arginine, i.e. SOD mimic treatments, respectively. The results indicate that L-arginine and M40403 stabilize redox balance in diabetic skin and suggest the underlying molecular mechanisms. Restitution of skin redox balance by L-arginine and M40403 may represent an effective strategy to ameliorate therapy of diabetic skin.

  8. Plasma cholinesterase activity of rats, western grey kangaroos, alpacas, sheep, cattle, and horses.

    Science.gov (United States)

    Mayberry, Chris; Mawson, Peter; Maloney, Shane K

    2015-01-01

    Plasma cholinesterase activity levels of various species may be of interest to toxicologists or pathologists working with chemicals that interfere with the activity of plasma cholinesterase. We used a pH titration method to measure the plasma cholinesterase activity of six mammalian species. Plasma cholinesterase activity varied up to 50-fold between species: sheep (88 ± 45 nM acetylcholine degraded per ml of test plasma per minute), cattle (94 ± 35), western grey kangaroos (126 ± 92), alpaca (364 ± 70), rats (390 ± 118) and horses (4539 ± 721). We present a simple, effective technique for the assay of plasma cholinesterase activity levels from a range of species. Although labour-intensive, it requires only basic laboratory equipment. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Plasma-enhanced atomic layer deposition of silicon dioxide films using plasma-activated triisopropylsilane as a precursor

    International Nuclear Information System (INIS)

    Jeon, Ki-Moon; Shin, Jae-Su; Yun, Ju-Young; Jun Lee, Sang; Kang, Sang-Woo

    2014-01-01

    The plasma-enhanced atomic layer deposition (PEALD) process was developed as a growth technique of SiO 2 thin films using a plasma-activated triisopropylsilane [TIPS, ((iPr) 3 SiH)] precursor. TIPS was activated by an argon plasma at the precursor injection stage of the process. Using the activated TIPS, it was possible to control the growth rate per cycle of the deposited films by adjusting the plasma ignition time. The PEALD technique allowed deposition of SiO 2 films at temperatures as low as 50 °C without carbon impurities. In addition, films obtained with plasma ignition times of 3 s and 10 s had similar values of root-mean-square surface roughness. In order to evaluate the suitability of TIPS as a precursor for low-temperature deposition of SiO 2 films, the vapor pressure of TIPS was measured. The thermal stability and the reactivity of the gas-phase TIPS with respect to water vapor were also investigated by analyzing the intensity changes of the C–H and Si–H peaks in the Fourier-transform infrared spectrum of TIPS

  10. Fission and activation of uranium by fashion-plasma neutrons

    International Nuclear Information System (INIS)

    Lee, J.H.; Hochl, F.; McFarland, D.R.

    1978-01-01

    Disks of enriched and depleted uranium were irradiated by neutrons from the D-D fusions in a dense plasma-focus. A fission yield of 10 6 fissions-cm -3 in U 235 per pulse was determined with Ge(Li) gamme-ray spectrometry. Activation of U 238 caused increased beta activity after the plasma-neutron irradiation but alpha-particle spectrometry showed Pu 239 production was negligible. In addition, with a disk of lithium in the apparatus, 13.3 MeV neutrons from 7 Li(d,n) 8 Be was observed with a 80-m time-of-flight neutron detector. Dense plasma focuses are now operated not only in a single coaxial gun, but also in improved geometries, such as the hypocycloidal pinch and the staged plasma focus, from which a multiple plasma-focus array suitable for experimental verification of, and eventuel development into a fusion-fission hybrid reactor could be produced. (orig.) [de

  11. Detection of Sequence-Specific Tyrosine Nitration of Manganese SOD and SERCA in Cardiovascular Disease and Aging

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shanqin; Ying, Jia; Jiang, Bingbing; Guo, Wei; Adachi, Takeshi; Sharov, Victor; Lazar, Harold; Menzoian, James; Knyushko, Tanya V.; Bigelow, Diana J.; Schoneich, Christian; Cohen, Richard

    2006-06-01

    Nitration of protein tyrosine residues (nY) is a marker of oxidative stress and may alter the biological activity of the modified proteins. The aim of this study was to develop antibodies towards site-specific nY-modified proteins and to use histochemical and immunoblotting to demonstrate protein nitration in tissues. Affinity-purified polyclonal antibodies towards peptides with known nY sites in MnSOD nY-34 and of two adjacent nY in the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA2 di-nY-294,295) were developed. Kidneys from rats infused with angiotensin II with known MnSOD nY and aorta from atherosclerotic rabbits and aging rat skeletal and cardiac sarcoplasmic reticulum with known SERCA di-nY were used for positive controls. Staining for MnSOD nY-34 was most intense in distal renal tubules and collecting ducts. Staining of atherosclerotic aorta for SERCA2 di-nY was most intense in atherosclerotic plaques. Aging rat skeletal muscle and atherosclerotic aorta and cardiac atrium from human diabetic patients also stained positively. Staining was decreased by sodium dithionite that chemically reduces nitrotyrosine to aminotyrosine, and the antigenic nY-peptide blocked staining for each respective nY site, but not for the other. As previously demonstrated, immunoblotting failed to detect these modified proteins in whole tissue lysates, but did when the proteins were concentrated. Immunohistochemical staining for specific nY-modified tyrosine residues offers the ability to assess the effects of oxidant stress associated with pathological conditions on individual proteins whose function may be affected in specific tissue sites.

  12. Dynamic changes in plasma tissue plasminogen activator, plasminogen activator inhibitor-1 and beta-thromboglobulin content in ischemic stroke.

    Science.gov (United States)

    Zhuang, Ping; Wo, Da; Xu, Zeng-Guang; Wei, Wei; Mao, Hui-ming

    2015-07-01

    The aim of this paper is to investigate the corresponding variations of plasma tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) activities, and beta-thromboglobulin (β-TG) content in patients during different stages of ischemic stroke. Ischemic stroke is a common disease among aging people and its occurrence is associated with abnormalities in the fibrinolytic system and platelet function. However, few reports focus on the dynamic changes in the plasma fibrinolytic system and β-TG content in patients with ischemic stroke. Patients were divided into three groups: acute, convalescent and chronic. Plasma t-PA and PAI-1 activities were determined by chromogenic substrate analysis and plasma β-TG content was detected by radioimmunoassay. Patients in the acute stage of ischemic stroke had significantly increased levels of t-PA activity and β-TG content, but PAI-1 activity was significantly decreased. Negative correlations were found between plasma t-PA and PAI-1 activities and between plasma t-PA activity and β-TG content in patients with acute ischemic stroke. There were significant differences in plasma t-PA and PAI-1 activities in the aged control group, as well as in the acute, convalescent and chronic groups. It can be speculated that the increased activity of t-PA in patients during the acute stage was the result of compensatory function, and that the increase in plasma β-TG level not only implies the presence of ischemic stroke but is likely a cause of ischemic stroke. During the later stages of ischemic stroke, greater attention is required in monitoring levels of PAI-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Aberrant association of misfolded SOD1 with Na(+)/K(+)ATPase-α3 impairs its activity and contributes to motor neuron vulnerability in ALS

    NARCIS (Netherlands)

    Ruegsegger, Céline; Maharjan, Niran; Goswami, Anand; Filézac de L'Etang, Audrey; Weis, Joachim; Troost, Dirk; Heller, Manfred; Gut, Heinz; Saxena, Smita

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron

  14. Betel Leaf Extract (Piper betle L. Antihyperuricemia Effect Decreases Oxidative Stress by Reducing the Level of MDA and Increase Blood SOD Levels of Hyperuricemia Wistar Rats (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    I Made Sumarya

    2016-06-01

    Full Text Available Background: Betel leaf extracts (Piper betle L. antioxidant activity and enzyme inhibitors of XO. Hyperuricemia cause oxidative stress by increasing the formation of reactive oxygen species (ROS cause lipid peroxidation and oxygenation of low-density lipoprotein cholesterol (LDLc. Objective: The aim of this research was to determine the betel leaf extract as an anti hyperuricemia that can lower the blood uric acid levels and oxidative stress by lowering the levels of MDA and increase the SOD of hyperuricemia of the rat’s blood. Method: Experimental research was conducted with the design of The Randomized Post Test Only Control Group Design, on normal Wistar rats (Rattus norvegicus, administered with oxonic potassium (hyperuricemia and the hyperuricemia rats either given betel leaf extract and allopurinol. After the experiment of uric acid levels, MDA and SOD in rat blood determined. Results: The results showed that the betel leaf extract significantly (p <0.05 lower uric acid levels, MDA and increase levels of SOD in rat blood. There is a positive correlation between the levels of uric acid with MDA levels and a negative correlation, although not significantly with SOD (p >0.05. Conclusion: It can be concluded that the betel leaf extract as an anti-hyperuricemia can lower the uric acid levels and decreases oxidative stress by lowering the levels of MDA and increasing the SOD.

  15. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Savina Apolloni

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.

  16. The Effects of Bee Venom Acupuncture on the Central Nervous System and Muscle in an Animal hSOD1G93A Mutant

    Directory of Open Access Journals (Sweden)

    MuDan Cai

    2015-03-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is caused by the degeneration of lower and upper motor neurons, leading to muscle paralysis and respiratory failure. However, there is no effective drug or therapy to treat ALS. Complementary and alternative medicine (CAM, including acupuncture, pharmacopuncture, herbal medicine, and massage is popular due to the significant limitations of conventional therapy. Bee venom acupuncture (BVA, also known as one of pharmacopunctures, has been used in Oriental medicine to treat inflammatory diseases. The purpose of this study is to investigate the effect of BVA on the central nervous system (CNS and muscle in symptomatic hSOD1G93A transgenic mice, an animal model of ALS. Our findings show that BVA at ST36 enhanced motor function and decreased motor neuron death in the spinal cord compared to that observed in hSOD1G93A transgenic mice injected intraperitoneally (i.p. with BV. Furthermore, BV treatment at ST36 eliminated signaling downstream of inflammatory proteins such as TLR4 in the spinal cords of symptomatic hSOD1G93A transgenic mice. However, i.p. treatment with BV reduced the levels of TNF-α and Bcl-2 expression in the muscle hSOD1G93A transgenic mice. Taken together, our findings suggest that BV pharmacopuncture into certain acupoints may act as a chemical stimulant to activate those acupoints and subsequently engage the endogenous immune modulatory system in the CNS in an animal model of ALS.

  17. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS.

    Science.gov (United States)

    Jensen, Laran T; Culotta, Valeria Cizewski

    2005-12-16

    Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.

  18. Combined proteomic and molecular approaches for cloning and characterization of copper-zinc superoxide dismutase (Cu, Zn-SOD2) from garlic (Allium sativum).

    Science.gov (United States)

    Hadji Sfaxi, Imen; Ezzine, Aymen; Coquet, Laurent; Cosette, Pascal; Jouenne, Thierry; Marzouki, M Nejib

    2012-09-01

    Superoxide dismutases (SODs; EC 1.15.1.1) are key enzymes in the cells protection against oxidant agents. Thus, SODs play a major role in the protection of aerobic organisms against oxygen-mediated damages. Three SOD isoforms were previously identified by zymogram staining from Allium sativum bulbs. The purified Cu, Zn-SOD2 shows an antagonist effect to an anticancer drug and alleviate cytotoxicity inside tumor cells lines B16F0 (mouse melanoma cells) and PAE (porcine aortic endothelial cells). To extend the characterization of Allium SODs and their corresponding genes, a proteomic approach was applied involving two-dimensional gel electrophoresis and LC-MS/MS analyses. From peptide sequence data obtained by mass spectrometry and sequences homologies, primers were defined and a cDNA fragment of 456 bp was amplified by RT-PCR. The cDNA nucleotide sequence analysis revealed an open reading frame coding for 152 residues. The deduced amino acid sequence showed high identity (82-87%) with sequences of Cu, Zn-SODs from other plant species. Molecular analysis was achieved by a protein 3D structural model.

  19. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis.

    Science.gov (United States)

    Parone, Philippe A; Da Cruz, Sandrine; Han, Joo Seok; McAlonis-Downes, Melissa; Vetto, Anne P; Lee, Sandra K; Tseng, Eva; Cleveland, Don W

    2013-03-13

    Mitochondria have been proposed as targets for toxicity in amyotrophic lateral sclerosis (ALS), a progressive, fatal adult-onset neurodegenerative disorder characterized by the selective loss of motor neurons. A decrease in the capacity of spinal cord mitochondria to buffer calcium (Ca(2+)) has been observed in mice expressing ALS-linked mutants of SOD1 that develop motor neuron disease with many of the key pathological hallmarks seen in ALS patients. In mice expressing three different ALS-causing SOD1 mutants, we now test the contribution of the loss of mitochondrial Ca(2+)-buffering capacity to disease mechanism(s) by eliminating ubiquitous expression of cyclophilin D, a critical regulator of Ca(2+)-mediated opening of the mitochondrial permeability transition pore that determines mitochondrial Ca(2+) content. A chronic increase in mitochondrial buffering of Ca(2+) in the absence of cyclophilin D was maintained throughout disease course and was associated with improved mitochondrial ATP synthesis, reduced mitochondrial swelling, and retention of normal morphology. This was accompanied by an attenuation of glial activation, reduction in levels of misfolded SOD1 aggregates in the spinal cord, and a significant suppression of motor neuron death throughout disease. Despite this, muscle denervation, motor axon degeneration, and disease progression and survival were unaffected, thereby eliminating mutant SOD1-mediated loss of mitochondrial Ca(2+) buffering capacity, altered mitochondrial morphology, motor neuron death, and misfolded SOD1 aggregates, as primary contributors to disease mechanism for fatal paralysis in these models of familial ALS.

  20. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: Protective effects of myo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Dan; Liu, Yang [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Hu, Kai [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Li, Shu-Hong [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin, E-mail: fenglin@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Zhou, Xiao-Qiu, E-mail: xqzhouqq@tom.com [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China)

    2014-10-15

    Highlights: • Cu exposure increased ROS production, lipid and protein oxidation of fish brain. • Cu exposure caused depletion of some antioxidants in the brain of fish. • Cu exposure up-regulated mRNA levels of brain CuZnSOD, GPx1a and GR genes in fish. • Cu exposure induced Nrf2 nuclear translocation and binding to ARE in fish brain. • Myo-inositol can inhibit Cu-induced toxic effects in the brain of fish. - Abstract: The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of

  1. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: Protective effects of myo-inositol

    International Nuclear Information System (INIS)

    Jiang, Wei-Dan; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu

    2014-01-01

    Highlights: • Cu exposure increased ROS production, lipid and protein oxidation of fish brain. • Cu exposure caused depletion of some antioxidants in the brain of fish. • Cu exposure up-regulated mRNA levels of brain CuZnSOD, GPx1a and GR genes in fish. • Cu exposure induced Nrf2 nuclear translocation and binding to ARE in fish brain. • Myo-inositol can inhibit Cu-induced toxic effects in the brain of fish. - Abstract: The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of

  2. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus.

    Science.gov (United States)

    Xu, Yingyin; Tian, Ying; Ma, Ruonan; Liu, Qinghong; Zhang, Jue

    2016-04-15

    Non-thermal plasma is a new approach to improving microbiological safety while maintaining the sensory attributes of the treated foods. Recent research has reported that plasma activated water (PAW) can also efficiently inactivate a wide variety of microorganisms. This study invested the effects of plasma-activated water soaking on the postharvest preservation of button mushrooms (Agaricus bisporus) over seven days of storage at 20°C. Plasma activated water reduced the microbial counts by 1.5 log and 0.5 log for bacteria and fungi during storage, respectively. Furthermore, the corresponding physicochemical and biological properties were assessed between plasma activated water soaking groups and control groups. The results for firmness, respiration rate and relative electrical conductivity suggested that plasma activated water soaking can delay mushroom softening. Meanwhile, no significant change was observed in the color, pH, or antioxidant properties of A. bisporus treated with plasma activated water. Thus, plasma activated water soaking is a promising method for postharvest fresh-keeping of A. bisporus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The R213G polymorphism in SOD3 protects against allergic airway inflammation

    DEFF Research Database (Denmark)

    Gaurav, Rohit; Varasteh, Jason T; Weaver, Michael R

    2017-01-01

    ) in bronchoalveolar lavage fluid and reduced type II innate lymphoid cells (ILC2s) in lungs. SOD mimetic (Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin) attenuated Alternaria-induced expression of IL-33 and IL-8 release in BEAS-2B cells. These results suggest that R213G SNP potentially benefits its carriers...... by resulting in high EC-SOD in airway-lining fluid, which ameliorates allergic airway inflammation by dampening the innate immune response, including IL-33/ST2-mediated changes in ILC2s....

  4. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  5. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Roberts, Blaine R; Lim, Nastasia K H; McAllum, Erin J; Donnelly, Paul S; Hare, Dominic J; Doble, Philip A; Turner, Bradley J; Price, Katherine A; Lim, Sin Chun; Paterson, Brett M; Hickey, James L; Rhoads, Timothy W; Williams, Jared R; Kanninen, Katja M; Hung, Lin W; Liddell, Jeffrey R; Grubman, Alexandra; Monty, Jean-Francois; Llanos, Roxana M; Kramer, David R; Mercer, Julian F B; Bush, Ashley I; Masters, Colin L; Duce, James A; Li, Qiao-Xin; Beckman, Joseph S; Barnham, Kevin J; White, Anthony R; Crouch, Peter J

    2014-06-04

    Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1. Copyright © 2014 the authors 0270-6474/14/348021-11$15.00/0.

  6. Contribution to the Chemistry of Plasma-Activated Water

    Science.gov (United States)

    Julák, J.; Hujacová, A.; Scholtz, V.; Khun, J.; Holada, K.

    2018-01-01

    Plasma-activated water (PAW) was prepared by exposure to nonthermal plasma produced by a positive dc corona discharge in a transient spark regime. The activation of water was performed in atmosphere of various surrounding gases (air, nitrogen, carbon dioxide, and argon). This PAW retains its biological activity, measured on the mouse neuroblastoma cells culture, even after storage for more than one year. The highest hydrogen peroxide content was found for PAWs prepared in the atmospheres of argon or carbon dioxide, whereas the PAWs prepared in air and nitrogen exhibited lower hydrogen peroxide content. The acidity of PAWs mediated by nitric and nitrous acid formation displayed an opposite trend. It is concluded that the long-lasting biological effect of PAW is mediated by hydrogen peroxide in acid milieu only, whereas other possible active components decompose rapidly.

  7. Plasma Membrane ATPase Activity following Reversible and Irreversible Freezing Injury 1

    Science.gov (United States)

    Iswari, S.; Palta, Jiwan P.

    1989-01-01

    Plasma membrane ATPase has been proposed as a site of functional alteration during early stages of freezing injury. To test this, plasma membrane was purified from Solanum leaflets by a single step partitioning of microsomes in a dextran-polyethylene glycol two phase system. Addition of lysolecithin in the ATPase assay produced up to 10-fold increase in ATPase activity. ATPase activity was specific for ATP with a Km around 0.4 millimolar. Presence of the ATPase enzyme was identified by immunoblotting with oat ATPase antibodies. Using the phase partitioning method, plasma membrane was isolated from Solanum commersonii leaflets which had four different degrees of freezing damage, namely, slight (reversible), partial (partially reversible), substantial and total (irreversible). With slight (reversible) damage the plasma membrane ATPase specific activity increased 1.5- to 2-fold and its Km was decreased by about 3-fold, whereas the specific activity of cytochrome c reductase and cytochrome c oxidase in the microsomes were not different from the control. However, with substantial (lethal, irreversible) damage, there was a loss of membrane protein, decrease in plasma membrane ATPase specific activity and decrease in Km, while cytochrome c oxidase and cytochrome c reductase were unaffected. These results support the hypothesis that plasma membrane ATPase is altered by slight freeze-thaw stress. Images Figure 1 Figure 2 PMID:16666856

  8. Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes-Filho, Z O; Santos Lima, G Z dos; Caldas, I L; Nascimento, I C; Kuznetsov, Yu K [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Viana, R L, E-mail: viana@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, PR (Brazil)

    2010-09-01

    One of the challenges in obtaining long lasting magnetic confinement of fusion plasmas in tokamaks is to control electrostatic turbulence near the vessel wall. A necessary step towards achieving this goal is to characterize the turbulence level and so as to quantify its effect on the transport of energy and particles of the plasma. In this paper we present experimental results on the characterization of electrostatic turbulence in Tokamak Chauffage Alfven Bresilien (TCABR), operating in the Institute of Physics of University of Sao Paulo, Brazil. In particular, we investigate the effect of certain magnetic field fluctuations, due to magnetohydrodynamical (MHD) instabilities activity, on the spectral properties of electrostatic turbulence at plasma edge. In some TCABR discharges we observe that this MHD activity may increase spontaneously, following changes in the edge safety factor, or after changes in the radial electric field achieved by electrode biasing. During the high MHD activity, the magnetic oscillations and the plasma edge electrostatic turbulence present several common linear spectral features with a noticeable dominant peak in the same frequency. In this article, dynamical analyses were applied to find other alterations on turbulence characteristics due to the MHD activity and turbulence enhancement. A recurrence quantification analysis shows that the turbulence determinism radial profile is substantially changed, becoming more radially uniform, during the high MHD activity. Moreover, the bicoherence spectra of these two kinds of fluctuations are similar and present high bicoherence levels associated with the MHD frequency. In contrast with the bicoherence spectral changes, that are radially localized at the plasma edge, the turbulence recurrence is broadly altered at the plasma edge and the scrape-off layer.

  9. Dietary carotenoid-rich oil supplementation improves exercise-induced anisocytosis in runners: influences of haptoglobin, MnSOD (Val9Ala, CAT (21A/T and GPX1 (Pro198Leu gene polymorphisms in dilutional pseudoanemia ("sports anemia"

    Directory of Open Access Journals (Sweden)

    Ana L. Miranda-Vilela

    2010-01-01

    Full Text Available Physical training induces beneficial adaptation, whereas exhaustive exercises increase reactive oxygen-species generation, thereby causing oxidative damage in plasma and erythrocytes, fractions susceptible to lipid peroxidation. Pequi (Caryocar brasiliense Camb. is a Brazilian Cerrado fruit containing a carotenoid-rich oil. The aim was to investigate the effects of pequi-oil on exercise-induced oxidative damage in plasma and erythrocytes, after running in the same environment and undergoing weekly training under the same conditions as to type, intensity and length. Evaluations were accomplished after outdoor running on flat land before and after ingestion of 400 mg pequi-oil capsules for 14 days. Blood samples were taken after running and submitted to TBARS assay and erythrogram analysis. Haptoglobin, MnSOD (Val9Ala, CAT (21A/T and GPX1 (Pro198Leu gene polymorphisms were priorly investigated, so as to estimate genetic influence The reduction in erythrocytes, hemoglobin and hematocrit after pequi-oil treatment was notably associated with higher plasma expansion. Except for MCHC (mean corpuscular hemoglobin concentration and RDW (red cell distribution width, the results were influenced by the polymorphisms studied. The best response to pequi-oil was presented by MnSOD Val/Val, CAT AA or AT genotypes and the GPX1 Pro allele. The significantly lower RDW and higher MHCH values were related to pequi-oil protective effects. Pequi oil, besides possessing other nutritional properties, showed protective blood effects.

  10. Effect of nitrogen fertilization, grass species and cultivar on sod production on Valkeasuo peat bog - a case study

    Directory of Open Access Journals (Sweden)

    Perttu Virkajärvi

    1997-09-01

    Full Text Available As part of a research project concerning the agricultural utilization of cut-away peat bogs, a sod production experiment was conducted at Valkeasuo, Tohmajärvi, in 1990-1993. The aim of the experiment was to study the effect of nitrogen and choice of cultivar on sod production and sod quality on peat bogs. The N fertilization rates were 50, 100 and 150kg ha-1. The Poa pratensis cultivars were ‘Conni’, ‘Cynthia’, ‘Haga’ and ‘Julia’, the Festuca rubra cultivars were ‘Center’, ‘Juliska’, ‘Koket’ and ‘Näpsä’ and the Agrostis capillaris cultivar was ‘Rasti’. Two mixtures of P. pratensis/F. rubra and one of A. capillaris/F. rubra imitated commercial sod products. Increasing of N fertilization from 50 kg up to 150 kg ha-1 a had positive effect on general the quality of sod as well as on the green cover before and after transplanting. It increased the thatch formation. The positive effect of N on the number of tillers and green cover in the year following transplanting was dependent on the species and the cultivar. Species and cultivar affected all measured variables excluding thatch formation. Generally, the P. pratensis cultivars tested suited better for sod production than cultivars of F. rubra, but there were clear differences between cultivars within species as well. Although the soil was infertile, the contents of Ca, K, Mg, P, Cu, Fe, Mn, Mo and Zn in the herbage samples were within normal range. The botanical purity was high, which supports the hypothesis that the absence of seed bank of weeds on peat bogs immediately after harvesting the peat can be utilized.

  11. Neuroprotective Effect of Bexarotene in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Riancho, Javier; Ruiz-Soto, María; Berciano, María T.; Berciano, José; Lafarga, Miguel

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1G93A mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1G93A mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations. PMID:26190974

  12. Evaluation of the effects of a plasma activated medium on cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohades, S.; Laroussi, M., E-mail: mlarouss@odu.edu; Sears, J.; Barekzi, N.; Razavi, H. [Plasma Engineering and Medicine Institute, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  13. Antibacterial activity of plasma from crocodile (Crocodylus siamensis against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Kommanee Jintana

    2012-07-01

    Full Text Available Abstract Background The Siamese crocodile (Crocodylus siamensis is a critically endangered species of freshwater crocodiles. Crocodilians live with opportunistic bacterial infection but normally suffer no adverse effects. They are not totally immune to microbial infection, but their resistance thereto is remarkably effective. In this study, crude and purified plasma extracted from the Siamese crocodile were examined for antibacterial activity against clinically isolated, human pathogenic bacterial strains and the related reference strains. Methods Crude plasma was prepared from whole blood of the Siamese crocodile by differential sedimentation. The crude plasma was examined for antibacterial activity by the liquid growth inhibition assay. The scanning electron microscopy was performed to confirm the effect of crude crocodile plasma on the cells of Salmonella typhi ATCC 11778. Effect of crude crocodile plasma on cell viability was tested by MTT assay. In addition, the plasma was purified by anion exchange column chromatography with DEAE-Toyopearl 650 M and the purified plasma was tested for antibacterial activity. Results Crude plasma was prepared from whole blood of the Siamese crocodile and exhibited substantial antibacterial activities of more than 40% growth inhibition against the six reference strains of Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus epidermidis, and the four clinical isolates of Staphylococcus epidermidis, Pseudomonas aeruginosa, Salmonella typhi, and Vibrio cholerae. Especially, more than 80% growth inhibition was found in the reference strains of Salmonella typhi, Vibrio cholerae, and Staphylococcus epidermidis and in the clinical isolates of Salmonella typhi and Vibrio cholerae. The effect of the crude plasma on bacterial cells of Salmonella typhi, a certain antibacterial material probably penetrates progressively into the cytoplasmic space

  14. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice.

    Science.gov (United States)

    Liu, Yuan; Cao, Aiping; Li, Yawen; Li, Xun; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2017-06-07

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4 + T cells and CD8 + T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.

  15. Study on the clinical significance of changes of serum SOD, LPO and GSH-PX levels in patients with leukemia after chemotherapy

    International Nuclear Information System (INIS)

    Li Xiumei; He Haoming; Teng Yuexin; Zhu Guihua; Han Xiuhua

    2002-01-01

    Objective: To explore the changes of serum SOD, LPO and GSH-PX levels after chemotherapy in patients with leukemia. Methods: Levels of serum SOD were determined by RIA, LPO, GSH-PX were determined by biochemical methods in 42 cases of leukemia both before and after chemotherapy and 30 normal controls. Results: The results showed that in patients with leukemia the SOD, GSH-PX levels were significantly lower than those in normal controls (p < 0.01) and LPO levels were higher than those in normal control (p<0.01) before, six months after chemotherapy, SOD, LPO, GSH-PX levels remained abnormal in the patients with recurrence but returned to normal in patients without relapse. Conclusion: Changes in these factors are closely related to prognosis of leukemia

  16. Determination of activated plasma fibronectin using radioactive labelled collagen I

    DEFF Research Database (Denmark)

    Fenger, M

    1984-01-01

    The plasma concentration of biological active fibronectin was assayed by a protein binding assay using 125I-collagen I as ligand and heparin as activator. The standard curve is linear for a fibronectin range of 1.1-11 pmol (0.5-5.0 micrograms) and the coefficient of variation was less than 10......%. The active or activable fibronectin was compared to the immunoreactive fibronectin in plasma from patients with various bacterial diseases. Similar concentrations were detected by the two assays suggesting that all the circulating fibronectin was functionally active. The assay was also applied to determine...

  17. Biochar activated by oxygen plasma for supercapacitors

    Science.gov (United States)

    Gupta, Rakesh Kumar; Dubey, Mukul; Kharel, Parashu; Gu, Zhengrong; Fan, Qi Hua

    2015-01-01

    Biochar, also known as black carbon, is a byproduct of biomass pyrolysis. As a low-cost, environmental-friendly material, biochar has the potential to replace more expensive synthesized carbon nanomaterials (e.g. carbon nanotubes) for use in future supercapacitors. To achieve high capacitance, biochar requires proper activation. A conventional approach involves mixing biochar with a strong base and baking at a high temperature. However, this process is time consuming and energy inefficient (requiring temperatures >900 °C). This work demonstrates a low-temperature (characteristics are studied. Significant enhancement of the capacitance is achieved: 171.4 F g-1 for a 5-min oxygen plasma activation, in comparison to 99.5 F g-1 for a conventional chemical activation and 60.4 F g-1 for untreated biochar. This enhancement of the charge storage capacity is attributed to the creation of a broad distribution in pore size and a larger surface area. The plasma activation mechanisms in terms of the evolution of the biochar surface and microstructure are further discussed.

  18. Detection of novel key residues of MnSOD enzyme and its role in ...

    Indian Academy of Sciences (India)

    avoidance mechanism and morphological changes (Flowers ... The MnSOD proteins of different species available in salinity condition with their uniprot IDs and domain information ...... relative Lycopersicon pennellii to salt-dependent oxidative.

  19. CuZnSOD gene expression and its relationship with anti-oxidative ...

    African Journals Online (AJOL)

    ... and the minimum in the LY. The proportion of gene expression was positively correlated with the anti-oxidative capacity in muscle. The expression of the CuZnSOD gene was positively correlated with meat colour and tenderness; and negatively correlated with marbling score, drip loss, cooking loss and intramuscular fat.

  20. Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum.

    Science.gov (United States)

    Wang, Wei; Xia, Minxuan; Chen, Jie; Deng, Fenni; Yuan, Rui; Zhang, Xiaopei; Shen, Fafu

    2016-12-01

    The data presented in this paper is supporting the research article "Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum" [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4), "Bayesian phylogenetic inference under mixed models" [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, "SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information." [3] and motif sequences of SODs identified by InterProScan (version 4.8) with the Pfam database, "Pfam: the protein families database" [4].

  1. Anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), SOD or catalase on antimycin A-induced HeLa cell death.

    Science.gov (United States)

    Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2009-01-01

    Antimycin A (AMA) is an inhibitor of the electron transport chain in mitochondria. In this study, we investigated the anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), superoxide dismutase (SOD) or catalase on AMA-induced HeLa cell death in relation to the cell cycle. Treatment with Z-VAD, SOD or catalase rescued some HeLa cells from AMA-induced apoptosis, but did not prevent the growth inhibition of HeLa cells by AMA. DNA flow cytometric analysis indicated that treatment with AMA significantly induced an S-phase arrest of the cell cycle at 72 h. Interestingly, Z-VAD, SOD and catalase intensified S-phase arrest in AMA-treated cells. In conclusion, treatment with Z-VAD, SOD or catalase decreased apoptotic levels in AMA-treated cells, which was associated with the enhancement of the S-phase arrest of the cell cycle in these cells.

  2. Purification of a Fe-SOD excreted by Leishmania braziliensis for specific antibodies detection in Mexican human sera: Cutting-edge the knowledge

    Directory of Open Access Journals (Sweden)

    Silvia Stefania Longoni

    2016-06-01

    Full Text Available Clinical diagnosis of leishmaniasis is highly complex, presenting a wide range of clinical manifestations, sometimes non-specific, and thus the epidemiological study and diagnostic need specific molecular markers for each Leishmania species. Leishmania spp. posses different Fe-SOD isoforms, one of which is excreted into the external milieu and, presenting immunogenic characteristics, is a very reliable molecular marker. Superoxide dismutases (SODs are antioxidant metal-enzymes responsible for the dismutation of superoxide ion into hydrogen peroxide and molecular oxygen, and it is considered an important virulence factor. In this manuscript we have purified the iron(Fe-SOD excreted by Leishmania braziliensis using ion-exchange and molecular-sieve chromatography and we have studied it as an antigen in serodiagnostic analyses in ELISA and Western blot techniques, testing 213 human sera from Mexico. Indeed, L. braziliensis Fe-SODe has been purified 123.26 times with a specific activity of about 893.66 U/mg of protein. Applying the purified enzymes in serological tests we found 17.84% sera positive. We have demonstrated that the purified enzyme is more sensitive than the non-purified ones and we also demonstrated, for the first time, the presence of antibodies against L. braziliensis, not the main species in the country, in human population from Hidalgo and Nuevo Leon States.

  3. Development of active porous medium filters based on plasma textiles

    International Nuclear Information System (INIS)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-01-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  4. Development of active porous medium filters based on plasma textiles

    Science.gov (United States)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath ("plasma shield") that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  5. Development of active porous medium filters based on plasma textiles

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren [Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, NC 27695 (United States)

    2012-05-15

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  6. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  7. Plasma dihydroxyphenylalanine (DOPA) is independent of sympathetic activity in humans

    DEFF Research Database (Denmark)

    Eldrup, E; Christensen, N J; Andreasen, J

    1989-01-01

    in diabetic patients with autonomic neuropathy compared to diabetics without neuropathy, whereas baseline plasma DOPA concentrations were similar in the three groups investigated: 6.55 (5.03-7.26, median [interquartile range], n = 8) nmol l-1 in diabetics with neuropathy, 7.41 (5.79-7.97, n = 8) nmol l-1...... in diabetics without neuropathy, and 6.85 (5.58-7.36, n = 8) nmol l-1 in controls. No relationship was obtained between baseline values of plasma NE and plasma DOPA. Plasma DOPA did not change in the upright position, whereas plasma NE increased significantly. Our results indicate that plasma DOPA...... is not related to sympathetic activity and may be of non-neuronal origin....

  8. Bactericidal active ingredient in cryopreserved plasma-treated water with the reduced-pH method for plasma disinfection

    Science.gov (United States)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2016-09-01

    For the plasma disinfection of human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition. Physicochemical properties of PTW is discussed based on chemical kinetics. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. High performance PTW, corresponding to the disinfection power of 22 log reduction (B. subtilis spore), can be obtained by special plasma system equipped with cooling device. This is equivalent to 65% H2O2, 14% sodium hypochlorite and 0.33% peracetic acid, which are deadly poison for human. But, it is deactivated soon at higher temperature (4 sec. at body temperature), and toxicity to human body seems low. For dental application, PTW was effective on infected models of human extracted tooth. Although PTW has many chemical components, respective chemical components in PTW were isolated by ion chromatography. In addition to peaks of H2O2, NO2- and NO3-, a specific peak was detected. and only this fraction had bactericidal activity. Purified active ingredient of PTW is the precursor of HOO, and further details will be discussed in the presentation. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  9. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    Directory of Open Access Journals (Sweden)

    Aiping Zeng

    2017-01-01

    Full Text Available The plasma treatment on commercial active carbon (AC was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI.

  10. A botanical containing freeze dried açai pulp promotes healthy aging and reduces oxidative damage in sod1 knockdown flies

    OpenAIRE

    Laslo, Mara; Sun, Xiaoping; Hsiao, Cheng-Te; Wu, Wells W.; Shen, Rong-Fong; Zou, Sige

    2012-01-01

    Superoxide dismutase 1 (SOD1), a critical enzyme against oxidative stress, is implicated in aging and degenerative diseases. We previously showed that a nutraceutical containing freeze-dried açai pulp promotes survival of flies fed a high-fat diet or sod1 knockdown flies fed a standard diet. Here, we investigated the effect of açai supplementation initiated at the early or late young adulthood on lifespan, physiological function, and oxidative damage in sod1 knockdown flies. We found that Aça...

  11. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  12. Radiation effects on diamine oxidase activities in intestine and plasma of the rat

    International Nuclear Information System (INIS)

    Ely, M.J.; Speicher, J.M.; Snyder, S.L.; Catravas, G.N.

    1985-01-01

    Diamine oxidase (DAO; EC 1.4.3.6) activity was measured in plasma and ileal tissue homogenates prepared from male Sprague-Dawley rats sacrificed at 1-15 days after acute whole-body irradiation with 14.5-MeV electrons. Animals irradiated with 1 Gy showed no significant changes in plasma and ileal DAO activities through day 13 relative to nonirradiated controls. Animals irradiated with 5, 10 and 12 Gy displayed marked declines in ileal DAO, with levels reaching a nadir on day 3. This was paralleled by a decrease in plasma DAO activity in all three dose groups. Recovery of ileal and plasma DAO levels was later seen as early as day 4 in animals irradiated with 5 and 10 Gy doses, but animals receiving 12 Gy did not survive beyond day 3. A further study highlights the relationship between radiation dose and levels of plasma and mucosal DAO on day 3, the time of maximum decrease at all doses tested. Mucosal DAO activity decreased almost linearly with doses up to 6 Gy. Plasma DAO levels closely paralleled the dose dependency of the mucosal levels. These data suggest that plasma DAO activity might be useful as a readily measurable marker of intestinal epithelial injury and recovery after acute radiation exposure

  13. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  14. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    Science.gov (United States)

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  15. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing

    Directory of Open Access Journals (Sweden)

    Antoniotto Guidobono Cavalchini

    2013-09-01

    Full Text Available Compared to traditional plowing and minimum tillage, the sod seeding technique has been tested in order to evaluate the differences in energy consumption, labor and machinery requirement and CO2 emission reduction. The experiments were conducted on winter cereal seeding in a Po valley farm in October 2011. The tests were carried out as follows: wheat variety seeding, over corn and alfalfa crops, in large plots with three repetitions for each thesis. They included: sod seeding anticipated by round up weeding in the case of the plots over alfalfa; traditional plowing at 35 cm followed by rotary tillage and combined seeding (seeder plus rotary tiller; minimum tillage based on ripping at the same depth (35 cm and combined seeder ( seeder plus rotary tiller. The following farm operations - fertilizer, and other agrochemical distributionshave been the same in all the considered theses. The results, statistically significant (P<0.001 in terms of yields, highlighted slight differences: the best data in the case of the traditional plowing both in the case of wheat crop over corn and alfalfa (84.43 and 6.75 t/ha; slightly lower yields for the sod seeding (6.23 and 79.9 t/ha for corn and alfalfa respectively; lower in the case of minimum tillage (5.87; 79.77 t/ha in the two situations. Huge differences in energy and oil consumption have been recorded: in the case of succession to corn 61.47; 35.31; 4.27 kg oil/ha respectively for, traditional plowing, minimum tillage and sod seeding; in the case of alfalfa 61.2; 50.96; 5.14 kg oil/ha respectively for traditional plowing, minimum tillage and sod seeding. The innovative technique, highlighted huge energy saving with an oil consumption equal to 92% and 89% (P<0.001 of what happens in traditional plowing and minimum tillage. Large differences concern labor and machine productivity. These parameters together with oil consumption and machine size [power (kW and weight (t] lead to even greater differences in

  16. Effect of Diuresis on Plasma Renin Activity and Aldosterone Concentration in Normal and Toxemic Pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Sung, H. K.; Lee, H. S.; Cho, S. S.; Koh, J. H.; Lee, J. K.; Kim, H. S. [Korea Atomic Emergy Research Institute, Seoul (Korea, Republic of)

    1973-03-15

    The changes of plasma renin activity, aldosterone concentration, serum sodium, and potassium levels were studied before and after the water loading followed by diuretics injection. The materials were: 13 non-, 11 normal-, and 11 toxemic pregnancy cases. The plasma renin activity and aldosterone concentration of the cord and postpartum blood were also measured. Following were the results: 1. The plasma renin activity was elevated significantly in normal pregnancy, and slightly in toxemic pregnancy. The serum sodium levels were decreased in pregnancy. 2. The plasma aldosterone concentration was slightly decreased in normal pregnancy, and slightly increased in toxemic pregnancy, however, statistically insignificant. 3. The plasma renin activity of the cord and postpartum blood were lower than those of pregnancy cases. 4. The changes of plasma renin activity after the diuretic administration showed an initial increase, which recovered within 2 hours. These changes were the least in normal pregnancy, and the most in toxemic pregnancy. 5. The changes of plasma aldosterone concentration after the diuretic administration were similar to those of plasma renin activity, although the variations were not so wide.

  17. Effect of Diuresis on Plasma Renin Activity and Aldosterone Concentration in Normal and Toxemic Pregnancy

    International Nuclear Information System (INIS)

    Sung, H. K.; Lee, H. S.; Cho, S. S.; Koh, J. H.; Lee, J. K.; Kim, H. S.

    1973-01-01

    The changes of plasma renin activity, aldosterone concentration, serum sodium, and potassium levels were studied before and after the water loading followed by diuretics injection. The materials were: 13 non-, 11 normal-, and 11 toxemic pregnancy cases. The plasma renin activity and aldosterone concentration of the cord and postpartum blood were also measured. Following were the results: 1. The plasma renin activity was elevated significantly in normal pregnancy, and slightly in toxemic pregnancy. The serum sodium levels were decreased in pregnancy. 2. The plasma aldosterone concentration was slightly decreased in normal pregnancy, and slightly increased in toxemic pregnancy, however, statistically insignificant. 3. The plasma renin activity of the cord and postpartum blood were lower than those of pregnancy cases. 4. The changes of plasma renin activity after the diuretic administration showed an initial increase, which recovered within 2 hours. These changes were the least in normal pregnancy, and the most in toxemic pregnancy. 5. The changes of plasma aldosterone concentration after the diuretic administration were similar to those of plasma renin activity, although the variations were not so wide.

  18. Pre-analytical and Analytical Variables Affecting the Measurement of Plasma-Derived Microparticle Tissue Factor Activity

    Science.gov (United States)

    Lee, RD; Barcel, DA; Williams, JC; Wang, JG; Boles, JC; Manly, DA; Key, NS; Mackman, N

    2011-01-01

    Introduction Elevated levels of tissue factor positive (TF+) microparticles (MPs) are observed in plasma from a variety of patients with an increased risk of thrombosis. We and others have described the measurement of TF activity in MPs isolated from plasma. The aim of this study was to investigate the effects of pre-analytical and analytical variables on TF activity of MPs isolated from blood of healthy volunteers treated ex vivo with or without bacterial lipopolysaccharide. Materials and Methods We evaluated the following parameters: use of different centrifugation speeds to isolate the MPs; comparison of TF activity of MPs isolated from platelet poor plasma versus platelet free plasma; effect of freeze/thaw on MP TF activity; and comparison of the MP TF activity assay with the measurement of TF protein by ELISA or flow cytometry. Results MPs prepared from platelet poor plasma by centrifugation at 20,000 × g or 100,000 × g for 15 minutes had similar levels of TF activity. However, significantly less TF activity was found in MPs isolated from platelet free plasma compared with platelet poor plasma. Interestingly, freeze/thawing of the plasma showed donor to donor variation in MP TF activity, with a moderate increase in some individuals. Conclusion TF+ MPs can be quantitatively isolated from platelet poor or platelet free plasma by centrifugation at 20,000 × g for 15 minutes. Measurement of MP TF activity in plasma can be used to detect a prothrombotic state in patients with various diseases. PMID:21737126

  19. Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man

    Science.gov (United States)

    Convertino, V. A.; Keil, L. C.; Bernauer, E. M.; Greenleaf, J. E.

    1981-01-01

    The influence of work intensity on plasma volume, osmolality, vasopressin and renin activity and the interrelationships between these responses are investigated. Plasma volume, renin activity and osmotic, sodium and arginine vasopressin concentrations were measured in venous blood samples taken from 15 healthy male subjects before and after six minutes of bicycle ergometer exercise at 100, 175 and 225 W. Plasma volume is found to decrease significantly with increasing work intensity, while increases in Na(+) concentration, osmolality and vasopressin are only observed to be significant when the work intensity exceeds 40% maximal aerobic capacity and plasma resin activity increased linearly at all work levels. In addition, significant correlations are observed between plasma volume and osmolality and sodium changes, and between vasopressin and osmolality and sodium content changes. Data thus support the hypotheses that (1) vasopressin may be the primary controlling endocrine for fluid and electrolyte levels following exercise; (2) an exercise intensity greater than 40% maximal aerobic capacity is required to stimulate vasopressin release through changes in plasma osmolality; and (3) the stimulation of the renin-angiotensin system is a more general stress response.

  20. Parathyroid mitogenic activity in plasma from patients with familial multiple endocrine neoplasia type 1

    International Nuclear Information System (INIS)

    Brandi, M.L.; Aurbach, G.D.; Fitzpatrick, L.A.; Quarto, R.; Spiegel, A.M.; Bliziotes, M.M.; Norton, J.A.; Doppman, J.L.; Marx, S.J.

    1986-01-01

    Hyperplasia of the parathyroid glands is a central feature of familial multiple endocrine neoplasia type 1. We used cultured bovine parathyroid cells to test for mitogenic activity in plasma from patients with this disorder. Normal plasma stimulated [ 3 H]thymidine incorporation, on the average, to the same extent as it was stimulated in a plasma-free control culture. This contrasted with the results of the tests with plasma from patients with familial multiple endocrine neoplasia type 1, in which parathyroid mitogenic activity increased 2400 percent over the control value (P less than 0.001). Plasma from these patients also stimulated the proliferation of bovine parathyroid cells in culture, whereas plasma from normal subjects inhibited it. Parathyroid mitogenic activity in plasma from the patients with familial multiple endocrine neoplasia type 1 was greater than that in plasma from patients with various other disorders, including sporadic primary hyperparathyroidism (with adenoma, hyperplasia, or cancer of the parathyroid), sporadic primary hypergastrinemia, sporadic pituitary tumor, familial hypocalciuric hypercalcemia, and multiple endocrine neoplasia type 2 (P less than 0.05). Parathyroid mitogenic activity in the plasma of patients with familial multiple endocrine neoplasia type 1 persisted for up to four years after total parathyroidectomy. The plasma also had far more mitogenic activity in cultures of parathyroid cells than did optimal concentrations of known growth factors or of any parathyroid secretagogue. This mitogenic activity had an apparent molecular weight of 50,000 to 55,000. We conclude that primary hyperparathyroidism in familial multiple endocrine neoplasia type 1 may have a humoral cause

  1. Tissue Factor Coagulant Activity is Regulated by the Plasma Membrane Microenvironment.

    Science.gov (United States)

    Yu, Yuanjie; Böing, Anita N; Hau, Chi M; Hajji, Najat; Ruf, Wolfram; Sturk, Auguste; Nieuwland, Rienk

    2018-06-01

     Tissue factor (TF) can be present in a non-coagulant and coagulant form. Whether the coagulant activity is affected by the plasma membrane microenvironment is unexplored.  This article studies the presence and coagulant activity of human TF in plasma membrane micro-domains.  Plasma membranes were isolated from human MIA PaCa2 cells, MDA-MB-231 cells and human vascular smooth muscle cells by Percoll gradient ultracentrifugation after cell disruption. Plasma membranes were fractionated by OptiPrep gradient ultracentrifugation, and the presence of TF, flotillin, caveolin, clathrin, protein disulphide isomerase (PDI), TF pathway inhibitor (TFPI) and phosphatidylserine (PS) were determined.  Plasma membranes contain two detergent-resistant membrane (DRM) compartments differing in density and biochemical composition. High-density DRMs (DRM-H) have a density ( ρ ) of 1.15 to 1.20 g/mL and contain clathrin, whereas low-density DRMs (DRM-L) have a density between 1.09 and 1.13 g/mL and do not contain clathrin. Both DRMs contain TF, flotillin and caveolin. PDI is detectable in DRM-H, TFPI is not detectable in either DMR-H or DRM-L and PS is detectable in DRM-L. The DRM-H-associated TF (> 95% of the TF antigen) lacks detectable coagulant activity, whereas the DRM-L-associated TF triggers coagulation. This coagulant activity is inhibited by lactadherin and thus PS-dependent, but seemed insensitive to 16F16, an inhibitor of PDI.  Non-coagulant and coagulant TF are present within different types of DRMs in the plasma membrane, and the composition of these DRMs may affect the TF coagulant activity. Schattauer GmbH Stuttgart.

  2. Effects of alginate on frozen-thawed boar spermatozoa quality, lipid peroxidation and antioxidant enzymes activities.

    Science.gov (United States)

    Hu, Jinghua; Geng, Guoxia; Li, Qingwang; Sun, Xiuzhu; Cao, Hualin; Liu, Yawei

    2014-06-30

    Although alginate was reported to play an important role as free radical scavengers in vitro and could be used as sources of natural antioxidants, there was no study about the cryoprotective effects of alginate on boar spermatozoa freezing. The objective of this research was to evaluate the effects of different concentrations of alginate added to the freezing extenders on boar spermatozoa motility, plasma membrane integrity, acrosomal integrity, mitochondrial activities, lipid peroxidation and antioxidative enzymes activities (SOD and GSH-Px) after thawing. Alginate was added to the TCG extender to yield six different final concentrations: 0, 0.2, 0.4, 0.6, 0.8, and 1.0mg/mL. The semen extender supplemented with various doses of alginate increased (Pboar spermatozoa acrosomal integrity at concentrations of 0.6, 0.8, 1.0mg/mL, compared with that of the control (Pextenders with the presence of alginate led to higher SOD and GSH-Px activities and lower MDA levels, in comparison to the control (Pboar spermatozoa motility, functional integrity and antioxidative capacity at appropriate concentrations. Therefore alginate could be employed as an effective cryoprotectant in boar spermatozoa cryopreservation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Fluorogenic MMP activity assay for plasma including MMPs complexed to α2-macroglobulin

    NARCIS (Netherlands)

    Beekman, B.; Drijfhout, J.W.; Ronday, H.K.; TeKoppele, J.M.

    1999-01-01

    Elevated MMP activities are implicated in tissue degradation in, e.g., arthritis and cancer. The present study was designed to measure MMP enzyme activity in plasma. Free active MMP is unlikely to be present in plasma: upon entering the circulation, active MMP is expected to be captured by the

  4. Quest for anionic MOF membranes: Continuous sod -ZMOF membrane with Co2 adsorption-driven selectivity

    KAUST Repository

    Almaythalony, Bassem

    2015-02-11

    We report the fabrication of the first continuous zeolite-like metal-organic framework (ZMOF) thin-film membrane. A pure phase sod-ZMOF, sodalite topology, membrane was grown and supported on a porous alumina substrate using a solvothermal crystallization method. The absence of pinhole defects in the film was confirmed and supported by the occurrence of quantifiable time-lags, for all studied gases, during constant volume/variable pressure permeation tests. For both pure and mixed gas feeds, the sod-ZMOF-1 membrane exhibits favorable permeation selectivity toward carbon dioxide over relevant industrial gases such as H2, N2, and CH4, and it is mainly governed by favorable CO2 adsorption.

  5. Optimization of dietary zinc for egg production and antioxidant capacity in Chinese egg-laying ducks fed a diet based on corn-wheat bran and soybean meal.

    Science.gov (United States)

    Chen, W; Wang, S; Zhang, H X; Ruan, D; Xia, W G; Cui, Y Y; Zheng, C T; Lin, Y C

    2017-07-01

    The aim of this study was to evaluate the effect of zinc supplementation on productive performance and antioxidant status in laying ducks. Five-hundred-four laying ducks were divided into 7 treatments, each containing 6 replicates of 12 ducks. The ducks were caged individually and fed a corn-soybean meal and wheat bran basal diet (37 mg Zn/kg) or the basal diet supplemented with 15, 30, 45, 60, 75, or 90 mg Zn/kg (as zinc sulfate). During the early laying period of 10 d (daily egg production 80%). Average egg weight and feed intake did not differ among the groups of graded Zn supplementation.The egg quality was not affected by dietary Zn, including the egg shape index, Haugh unit, yolk color score, egg composition, and shell thickness. The activities of plasma activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) increased in a quadratic manner (P < 0.001) with increasing supplemental Zn. Plasma concentration of Zn increased quadratically (P < 0.05) as dietary Zn increased. The hepatic activity of Cu/Zn-SOD and GSH-PX increased quadratically (P < 0.05) with increasing dietary Zn. Plasma Zn concentrations were positively correlated with activities of T-SOD (P < 0.05), and positively with plasma Cu. Plasma concentration of reduced glutathione was correlated with plasma Cu. In conclusion, supplementation of Zn at 30 or 45 mg/kg to a corn-wheat bran and soybean basal diet may improve the productive performance and enhance the antioxidant capacity. © 2017 Poultry Science Association Inc.

  6. Na+/H+ exchange activity in the plasma membrane of Arabidopsis.

    Science.gov (United States)

    Qiu, Quan-Sheng; Barkla, Bronwyn J; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S

    2003-06-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt.

  7. Wildtype motoneurons, ALS-Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling.

    Science.gov (United States)

    Madji Hounoum, Blandine; Mavel, Sylvie; Coque, Emmanuelle; Patin, Franck; Vourc'h, Patrick; Marouillat, Sylviane; Nadal-Desbarats, Lydie; Emond, Patrick; Corcia, Philippe; Andres, Christian R; Raoul, Cédric; Blasco, Hélène

    2017-04-01

    The selective degeneration of motoneuron that typifies amyotrophic lateral sclerosis (ALS) implicates non-cell-autonomous effects of astrocytes. However, mechanisms underlying astrocyte-mediated neurotoxicity remain largely unknown. According to the determinant role of astrocyte metabolism in supporting neuronal function, we propose to explore the metabolic status of astrocytes exposed to ALS-associated conditions. We found a significant metabolic dysregulation including purine, pyrimidine, lysine, and glycerophospholipid metabolism pathways in astrocytes expressing an ALS-causing mutated superoxide dismutase-1 (SOD1) when co-cultured with motoneurons. SOD1 astrocytes exposed to glutamate revealed a significant modification of the astrocyte metabolic fingerprint. More importantly, we observed that SOD1 mutation and glutamate impact the cellular shuttling of lactate between astrocytes and motoneurons with a decreased in extra- and intra-cellular lactate levels in astrocytes. Based on the emergent strategy of metabolomics, this work provides novel insight for understanding metabolic dysfunction of astrocytes in ALS conditions and opens the perspective of therapeutics targets through focusing on these metabolic pathways. GLIA 2017 GLIA 2017;65:592-605. © 2017 Wiley Periodicals, Inc.

  8. Effects of Resveratrol on Methotrexate-Induced Testicular Damage in Rats

    Directory of Open Access Journals (Sweden)

    Esin Yuluğ

    2013-01-01

    Full Text Available This study investigated the probable protective effects of resveratrol (RES, an antioxidant, against methotrexate- (MTX- induced testis damage. Twenty-four male Sprague Dawley rats were randomly divided into four groups: control, RES, MTX, and MTX + RES groups. Rats were sacrificed at the end of the experiment. Plasma and tissue malondialdehyde (MDA levels, superoxide dismutase (SOD and catalase (CAT activity in tissue, testicular histopathological damage scores, and testicular and epididymal epithelial apoptotic index (AI were evaluated. The MTX group had significantly higher plasma and tissue MDA levels and significantly lower SOD and CAT activity than those of the control group. In the MTX + RES group, plasma and tissue MDA levels decreased significantly and SOD activity rose significantly compared to the MTX group. The MTX group had significantly lower Johnsen’s testicular biopsy score (JTBS values than those of the control group. JTBS was significantly higher in the MTX + RES group than in the MTX group. AI increased in the testis and epididymis in the MTX group and significantly decreased in the MTX + RES group. Our results indicate that RES has protective effects against MTX-induced testis damage at the biochemical, histopathological, and apoptotic levels.

  9. Plasma B-esterase activities in European raptors.

    Science.gov (United States)

    Roy, Claudie; Grolleau, Gérard; Chamoulaud, Serge; Rivière, Jean-Louis

    2005-01-01

    B-esterases are serine hydrolases composed of cholinesterases, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and carboxylesterase (CbE). These esterases, found in blood plasma, are inhibited by organophosphorus (OP) and carbamate (CB) insecticides and can be used as nondestructive biomarkers of exposure to anticholinesterase insecticides. Furthermore, B-esterases are involved in detoxification of these insecticides. In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders. The diurnal families of the Falconiforme order were represented by Accipitridae and Falconidae and the nocturnal families of the Strigiforme order by Tytonidae and Strigidae. Intraspecies differences in cholinesterase activities according to sex and/or age were investigated in buzzards (Buteo buteo), sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus), barn owls (Tyto alba), and tawny owls (Strix aluco). Sex-related differences affecting ChE and AChE activities were observed in young kestrels (2-3-mo-old) and age-related differences in kestrels (ChE and AChE), sparrowhawks (AChE), and tawny owls (ChE, AChE, and BChE). The interspecies analysis yielded a negative correlation between ChE activity and body mass taking into account the relative contribution of AChE and BChE to ChE activity, with the exception of the honey buzzard (Pernis apivorus). The lowest ChE activities were found in the two largest species, Bonelli's eagle (Hieraaetus fasciatus) and Egyptian vulture (Neophron percnopterus) belonging to the Accipitridae family. The highest ChE activities were found in the relatively small species belonging to the Tytonidae and Strigidae families and in honey buzzard of the Accipitridae family. Species of the Accipitridae, Tytonidae, and

  10. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  11. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  12. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Tresp, H; Hammer, M U; Winter, J; Reuter, S; Weltmann, K-D

    2013-01-01

    In this paper the qualitative and quantitative detection of oxygen radicals in liquids after plasma treatment with an atmospheric pressure argon plasma jet by electron paramagnetic resonance spectroscopy is investigated. Absolute values for · OH and O 2 ·- radical concentration and their net production rate in plasma-treated liquids are determined without the use of additional scavenging chemicals such as superoxide dismutase (SOD) or mannitol (D-MAN). The main oxygen-centred radical generation in PBS was found to originate from the superoxide radical. It is shown that hidden parameters such as the manufacturer of chemical components could have a big influence on the comparability and reproducibility of the results. Finally, the effect of a shielding gas device for the investigated plasma jet with a shielding gas composition of varying oxygen-to-nitrogen ratio on radical generation after plasma treatment of phosphate-buffered saline solution was investigated. (paper)

  13. Post-heparin plasma lipoprotein lipase, but not hepatic lipase activity, is related to plasma adiponectin in type 2 diabetic patients and healthy subjects

    NARCIS (Netherlands)

    De Vries, R; Wolffenbuttel, BHR; Sluiter, WJ; Van Tol, A; Dullaart, RPF

    2005-01-01

    The aim of this study was to determine the relationships of plasma adiponectin with post-heparin plasma lipoprotein lipase (LPL) and hepatic lipase (HL) activities, and to evaluate whether plasma adiponectin contributes to diabetes-associated dyslipidaemia. Plasma adiponectin, post-heparin plasma

  14. Effects of chestnut tannins on performance and antioxidative status of transition dairy cows.

    Science.gov (United States)

    Liu, H W; Zhou, D W; Li, K

    2013-09-01

    This study was conducted to evaluate the effects of chestnut tannins (CT) on performance and antioxidative status of transition dairy cows. Twenty multiparous Chinese Holstein cows in late gestation were paired according to expected calving date and randomly assigned either to a diet supplemented with CT (CNT, 10 g of CT/kg of diet, dry matter basis) or to an unsupplemented control (CON) diet from 3 wk prepartum to 3 wk postpartum. Blood samples were taken on d -21, 1, 7, and 21 relative to calving for analysis of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and malondialdehyde (MDA). Liver samples were taken by puncture biopsy on d 1 and 21 relative to calving for analysis of SOD, GSH-Px, and MDA. Data were analyzed for a completely randomized block design with repeated measures. The addition of CT had no significant effects on dry matter intake, body weight, body condition score, milk yield, 3.5% fat-corrected milk yield, and milk composition but did decrease milk MDA and somatic cell score in transition dairy cows. Dry matter intake decreased from d -21 to 0 and increased from d 1 to 21 relative to calving across treatments. During the experimental period, body weight and body condition score decreased, whereas milk MDA and somatic cell score increased across treatments. A time effect was also observed for plasma MDA, which peaked on d 1 relative to calving and remained higher than that on d -21 relative to calving across treatments. Addition of CT decreased MDA concentrations in plasma and liver. Neither time nor CT × time effects were observed for SOD and T-AOC in plasma and SOD and GSH-Px in liver; a time effect was observed for plasma GSH-Px, which peaked on d 1 relative to calving and remained higher than those on d -21 relative to calving across treatments. Addition of CT increased SOD, GSH-Px, and T-AOC activities in plasma and SOD and GSH-Px activities in liver. In conclusion, addition of CT might

  15. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  16. Influence of genetic variations in the SOD1 gene on the development of ascites and spontaneous bacterial peritonitis in decompensated liver cirrhosis

    DEFF Research Database (Denmark)

    Schwab, Sebastian; Lehmann, Jennifer; Lutz, Philipp

    2017-01-01

    BACKGROUND: The balance between generation and elimination of reactive oxygen species by superoxide dismutase (SOD) is crucially involved in the pathophysiology of liver cirrhosis. Reactive oxygen species damage cells and induce inflammation/fibrosis, but also play a critical role in immune defense...... in carriers of rs1041740. In this cohort, rs1041740 was not associated with survival. CONCLUSION: These data suggest a complex role of SOD1 in different processes leading to complications of liver cirrhosis. rs1041740 might be associated with the development of ascites and possibly plays a role in SBP once...... from pathogens. As both processes are involved in the development of liver cirrhosis and its complications, genetic variation of the SOD1 gene was investigated. PATIENTS AND METHODS: Two SOD1 single nucleotide polymorphisms (rs1041740 and rs3844942) were analyzed in 49 cirrhotic patients undergoing...

  17. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb.

    Science.gov (United States)

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-07-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p0.05). The levels of TG (pCAT, pCAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.

  18. Gene Cloning, Expression and Activity Analysis of Manganese Superoxide Dismutase from Two Strains of Gracilaria lemaneiformis (Gracilariaceae, Rhodophyta under Heat Stress

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2012-04-01

    Full Text Available Manganese superoxide dismutase (Mn-SOD plays a crucial role in antioxidant responses to environmental stress. To determine whether Mn-SOD affects heat resistance of Gracilaria lemaneiformis, we cloned Mn-SOD cDNA sequences of two strains of this red alga, wild type and cultivar 981. Both cDNA sequences contained an ORF of 675 bp encoding 224 amino acid residues. The cDNA sequences and the deduced amino acid sequences of the two strains shared relatively high identity (more than 99%. No intron existed in genomic DNA of Mn-SOD in G. lemaneiformis. Southern blotting indicated that there were multiple copies, possibly four, of Mn-SOD in both strains. Both in the wild type and cultivar 981, SOD mRNA transcription and SOD activity increased under high temperature stress, while cultivar 981 was more heat resistant based on its SOD activity. This research suggests that there may be a direct relationship between SOD activity and the heat resistance of G. lemaneiformis.

  19. Seeking homeostasis: Temporal trends in respiration, oxidation, and calcium in SOD1 G93A Amyotrophic Lateral Sclerosis mice

    Directory of Open Access Journals (Sweden)

    Cameron W Irvin

    2015-07-01

    Full Text Available Impairments in mitochondria, oxidative regulation, and calcium homeostasis have been well documented in numerous amyotrophic lateral sclerosis (ALS experimental models, especially in the superoxide dismutase 1 glycine 93 to alanine (SOD1 G93A transgenic mouse. However, the timing of these deficiencies has been debatable. In a systematic review of 45 articles, we examine experimental measurements of cellular respiration, mitochondrial mechanisms, oxidative markers, and calcium regulation. We evaluate the quantitative magnitude and statistical temporal trend of these aggregated assessments in high transgene copy SOD1 G93A mice compared to wild type mice. Analysis of overall trends reveals cellular respiration, intracellular ATP, and corresponding mitochondrial elements (Cox, cytochrome c, complex I, enzyme activity are depressed for the entire lifespan of the SOD1 G93A mouse. Oxidant markers (H2O2, 8OH2’dG, MDA are initially similar to wild type but are double that of wild type by the time of symptom onset despite early post-natal elevation of protective heat shock proteins. All aspects of calcium regulation show early disturbances, although a notable and likely compensatory convergence to near wild type levels appears to occur between 40-80 days (pre-onset, followed by a post-onset elevation in intracellular calcium. The identified temporal trends and compensatory fluctuations provide evidence that the cause of ALS may lay within failed homeostatic regulation, itself, rather than any one particular perturbing event or cellular mechanism. We discuss the vulnerabilities of motoneurons to regulatory instability and possible hypotheses regarding failed regulation and its potential treatment in ALS.

  20. In vitro and in silico cloning of Xenopus laevis SOD2 cDNA and its phylogenetic analysis.

    Science.gov (United States)

    Purrello, Michele; Di Pietro, Cinzia; Ragusa, Marco; Pulvirenti, Alfredo; Giugno, Rosalba; Di Pietro, Valentina; Emmanuele, Giovanni; Travali, Salvo; Scalia, Marina; Shasha, Dennis; Ferro, Alfredo

    2005-02-01

    By using the methodology of both wet and dry biology (i.e., RT-PCR and cycle sequencing, and biocomputational technology, respectively) and the data obtained through the Genome Projects, we have cloned Xenopus laevis SOD2 (MnSOD) cDNA and determined its nucleotide sequence. These data and the deduced protein primary structure were compared with all the other SOD2 nucleotide and amino acid sequences from eukaryotes and prokaryotes, published in public databases. The analysis was performed by using both Clustal W, a well known and widely used program for sequence analysis, and AntiClustAl, a new algorithm recently created and implemented by our group. Our results demonstrate a very high conservation of the enzyme amino acid sequence during evolution, which proves a close structure-function relationship. This is to be expected for very ancient molecules endowed with critical biological functions, performed through a specific structural organization. The nucleotide sequence conservation is less pronounced: this too was foreseeable, due to neutral mutations and to the species-specific codon usage. The data obtained by using AntiClustAl are comparable with those produced with Clustal W, which validates this algorithm as an important new tool for biocomputational analysis. Finally, it is noteworthy that evolutionary trees, drawn by using all the available data on SOD2 nucleotide sequences and amino acid and either Clustal W or AntiClustAl, are comparable to those obtained through phylogenetic analysis based on fossil records.

  1. Plasma soluble urokinase plasminogen activator receptor in children with urinary tract infection

    DEFF Research Database (Denmark)

    Wittenhagen, Per; Andersen, Jesper Brandt; Hansen, Anita

    2011-01-01

    In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection.......In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection....

  2. Aminotransferases and Leucine Aminopeptidase Activity in Blood Plasma of Chickens

    International Nuclear Information System (INIS)

    Kraljevic, P.; Stojevic, Z.; Milinkovic-Tur, S.; Simpraga, M.; Miljanic, S.

    1998-01-01

    It has been reported that irradiation of mammals by gama-rays cause increase of some enzyme activity in their blood plasma (Miller and Gates 1949; Milch and Albaum 1959; Hughes 1958; Miholjcic et al. 1979). In our previous papers (Kraljevic et al., 1982; Kraljevic and Emanovic 1993) it has been shown that activities of some enzymes in the blood plasma of chickens after an intramuscular injection of radioactive isotope 32 P. In this paper an attempt has been made to investigate the influence of gamma-ray irradiation of the whole body of chickens upon activity of some enzymes in their blood plasma. We also wanted to investigate whether the activity of aspartate-aminotransferase (AST), alanine aminotransferase (ALT) and leucine-aminopeptidase (LAP) may serve as an additional test for functional liver damage in chickens caused by gamma-ray. Fifty day old hybrid male chickens of heavy Jata breeds were irradiated by gamma-ray in the dose of 7,23±0,95 Gy. Blood samples were taken from the wing vein on days 1, 3, 5, 7, 9 and 15 after irradiation. Activity of AST, ALT, and LAP in the blood plasma were determined spectrophotometrically using Boehringer Mannheim GmbH optimized kits. At the end of the experiment all birds were sacrificed and, as well as died birds were photomorphologically and histologically investigated. The obtained results showed decrease of activity of all three enzymes during the whole period of investigation, but significant decrease showed only AST and LAP. It seems that both enzymes may serve as additional test for functional liver damage in chickens by external gamma-rays. (author)

  3. Genetic biomarkers for ALS disease in transgenic SOD1(G93A mice.

    Directory of Open Access Journals (Sweden)

    Ana C Calvo

    Full Text Available The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10 could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.

  4. Effects of chilled storage and cryopreservation on sperm characteristics, antioxidant enzyme activities, and lipid peroxidation in Pacific cod Gadus microcephalus

    Science.gov (United States)

    Wang, Xueying; Shi, Xuehui; Liu, Yifan; Yu, Daode; Guan, Shuguang; Liu, Qinghua; Li, Jun

    2016-07-01

    The present study evaluated the effects of chilled storage and cryopreservation on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod Gadus macrocephalus. Sperm motility and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (Gr), and lipid peroxidation (measured via malondialdehyde (MDA) content) were determined after the milt was stored at 4°C for 12 h, cryopreserved without cryoprotectant in 12% propylene glycol (PG), cryopreserved in 12% PG+0.1 mol/L trehalose, or cryopreserved in 12% PG spermatozoa but centrifuged to decant the supernatant prior to cryopreservation (only sperm cells were cryopreserved). After chilled storage or cryopreservation, the SOD, CAT and GPx activities were reduced in sperm cells and increased in seminal plasma in almost all treatments; sperm motility parameters were also decreased. However, the addition of trehalose into the cryoprotectant could significantly improve the postthaw sperm quality as revealed by the sperm average path velocity. This improvement might be attributed to the function of trehalose in scavenging reactive oxygen species. Chilled storage and cryopreservation had significant effects on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod.

  5. [Status of vitamin A, vitamin B2, iron and an-oxidantive activity in anemic pregnant women in China].

    Science.gov (United States)

    Yang, Fang; Ma, Ai-Guo; Zhang, Xiu-Zhen; Jiang, Dian-Chen

    2006-05-01

    To investigate the status of vitamin A(VA), vitamin B2 (VB2), iron and anoxidative function in anemic and non-anemic pregnant women. 426 anemic and 36 non-anemic pregnant women were included in the study. The survey of 24-hour's diet recall of pregnant women was made to evaluate intake of iron, VB2, folic acid, etc by the nutrition software provided by Beijing 301 hospital, iron and VA were measured by Radioimmunoassay (RIA) and by high-pressure liquid chromatography. VB2 status was detected using the assay for erythrocyte glutathione reductase (Egr; EC 1.6.4.2) activity. SOD and GSH-Px activities and MDA were determined using commercial kits. Peripheral blood erythrocyte membrane fluidity was detected by using 1,6-diphenyl-1,3,5-hexatriene as a probe, the degree of fluorescence polarization (P) at 25 degrees C of disrupted cells plasma membranes were compared for a variety of systems. Median intakes of protein and vitamin C met the current Chinese RNIs for pregnancy, whereas intakes of(VA) and VB2 were well below the recommendations. Intake of iron were above 90%, but the main sources of iron are vegetables. Plasma VA (1.25 micromol/L) and iron (20.57 microg/L) were lower, BGRAC (1.79) was higher than that in non-anemia group (VA 1.57 micromol/L, SF 33.16 microg/L, BGRAC 1.52). The level of plasma SOD (77.1U/ml) and the activity of GSH-Px (61.9U) were lower than those in non-anemia group (92.2U/ml, 71.6U, P membrane (P = 0.2622, eta = 2.7465) fluidity were higher than those non-anemia group(MDA = 3.78 nmol/ ml, P = 0.2360, eta = 2.3658). Plasam VA, VB2 and iron, antioxidantcapacity and erythrocyte membrane fluidity were decreased in the anemic pregnant women.

  6. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    Science.gov (United States)

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  8. Evaluation of Antioxidants in Bone Mineral Density of Iranian

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Oveisi

    2011-03-01

    Full Text Available AbstractObjective(s Bone is a dynamic tissue that is continuously renewed throughout life by the process of bone remodeling. Antioxidant system might be involved in the pathogenesis of bone loss, so the aim of this study was to evaluate the total antioxidant capacity (TAC, vitamin C and vitamin E levels of plasma besides measuring enzymatic antioxidants, superoxide dismutase (SOD, catalase (CAT and glutathione reductase (GR enzymes activity in Iranian osteoporotic women comparing to the control group.Materials and MethodsBone mineral density (BMD of the femoral neck and lumbar spine was measured by dual x-ray absorptiometry. The participants were divided into groups: a total participants (-3.9 ≤ T–score ≤ 3.6 including 192 women, b the control group (T-score ≥ -1 including 76 women, c the total patients (T-score < -1 including 76 women. Then, plasma TAC, vitamin C levels, SOD and GR activities, erythrocyte CAT were measured using spectrophotometrical methods separately, and for vitamin E by HPLC analysis.ResultsComparing the control group and osteoporotic women showed that: a plasma levels for vitamin C and erythrocyte CAT were markedly lower in the patients than in the controls, but plasma activity of TAC, SOD and GR were significantly higher, respectively. b the differences were higher between control and patients with severe disease (T-score <-1.7 comparing to patients in the group with milder disease (-1.7 ≤ T-score <-1. c Femoral neck BMD adjusted with age and BMI showed a positive and significant correlation with plasma levels of vitamin C in all subjects, but this relation was reverse or negative for TAC, SOD and GR.ConclusionIt seems that a physiologic increase in the amount of some antioxidants occurs in osteoporosis; even though this amount may not be sufficient for the human body requirements.

  9. Differential motor neuron impairment and axonal regeneration in sporadic and familiar amyotrophic lateral sclerosis with SOD-1 mutations: lessons from neurophysiology.

    Science.gov (United States)

    Bocci, Tommaso; Pecori, Chiara; Giorli, Elisa; Briscese, Lucia; Tognazzi, Silvia; Caleo, Matteo; Sartucci, Ferdinando

    2011-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O(-2)) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS patients (34 males; 26 females) were enrolled in the study and examined basally (T0) and every 4 months (T1, T2, and T3). Fifteen of these patients are SOD-1 symptomatic mutation carriers (nine males, six females). We used Macro-EMG and Motor Unit Number Estimation (MUNE) in order to evaluate the neuronal loss and the re-innervation process at the onset of disease and during follow-up period. SOD-1 mutation carriers have a higher number of motor units at the moment of diagnosis when compared with the sporadic form, despite a more dramatic drop in later stages. Moreover, in familiar SOD-1 ALS there is not a specific time interval in which the axonal regeneration can balance the neuronal damage. Taken together, these results strengthen the idea of a different pathogenetic mechanism at the base of sALS and fALS.

  10. Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

    Directory of Open Access Journals (Sweden)

    Tommaso Bocci

    2011-12-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1 gene. SOD-1 catalyses the superoxide radical (O−2 into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS patients (34 males; 26 females were enrolled in the study and examined basally (T0 and every 4 months (T1, T2, and T3. Fifteen of these patients are SOD-1 symptomatic mutation carriers (nine males, six females. We used Macro-EMG and Motor Unit Number Estimation (MUNE in order to evaluate the neuronal loss and the re-innervation process at the onset of disease and during follow-up period. Results and Discussion: SOD-1 mutation carriers have a higher number of motor units at the moment of diagnosis when compared with the sporadic form, despite a more dramatic drop in later stages. Moreover, in familiar SOD-1 ALS there is not a specific time interval in which the axonal regeneration can balance the neuronal damage. Taken together, these results strengthen the idea of a different pathogenetic mechanism at the base of sALS and fALS.

  11. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Yoshitaka Kondo

    2014-01-01

    Full Text Available Superoxide dismutase 1 (SOD1 is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30 is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1 higher plasma levels of triglyceride and aspartate aminotransferase; (2 severe accumulation of hepatic triglyceride and total cholesterol; (3 higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4 decreased mRNA and protein levels of Apolipoprotein B (ApoB in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion.

  12. Gene expression changes in spinal motoneurons of the SOD1G93A transgenic model for ALS after treatment with G-CSF

    Science.gov (United States)

    Henriques, Alexandre; Kastner, Stefan; Chatzikonstantinou, Eva; Pitzer, Claudia; Plaas, Christian; Kirsch, Friederike; Wafzig, Oliver; Krüger, Carola; Spoelgen, Robert; Gonzalez De Aguilar, Jose-Luis; Gretz, Norbert; Schneider, Armin

    2015-01-01

    Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS. PMID:25653590

  13. Gene expression changes in spinal motoneurons of the SOD1G93A transgenic model for ALS after treatment with G-CSF.

    Directory of Open Access Journals (Sweden)

    Alexandre eHenriques

    2015-01-01

    Full Text Available ABSTRACTBackgroundAmyotrophic lateral sclerosis (ALS is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3-5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. ResultsMotoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age, when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age. Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12.ConclusionsOur data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.

  14. Gene expression changes in spinal motoneurons of the SOD1(G93A) transgenic model for ALS after treatment with G-CSF.

    Science.gov (United States)

    Henriques, Alexandre; Kastner, Stefan; Chatzikonstantinou, Eva; Pitzer, Claudia; Plaas, Christian; Kirsch, Friederike; Wafzig, Oliver; Krüger, Carola; Spoelgen, Robert; Gonzalez De Aguilar, Jose-Luis; Gretz, Norbert; Schneider, Armin

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3-5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1(G93A) mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Motoneurons from SOD1(G93A) mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1(G93A) motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1(G93A) motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.

  15. Effect of Mailuoning injection on 8-iso-prostaglandin F2 alpha and superoxide dismutase in rabbits with extremity ischemia-reperfusion injury.

    Science.gov (United States)

    Wang, Dai-Jun; Tian, Hua

    2014-12-01

    To date, there are no effective treatments for extremity ischemia-reperfusion (IR) injury. The objective of the present study was to explore the protective effect of Mailuoning on IR injury by investigating the plasma levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF2α) and the activity of superoxide dismutase (SOD) in rabbits. The experimental models of posterior limb IR injury were established in thirty rabbits that were divided into three groups: the sham, IR, and IR + Mailuoning groups. At the end of ischemia, Mailuoning was injected intravenously into the rabbits in the IR + Mailuoning group, and normal saline solution was administered to the rabbits in the sham and IR groups. Venous blood samples were collected to measure the levels of 8-iso-PGF2α and the activity of SOD in the plasma at the following time points: at the onset of ischemia, the end of ischemia, and 2, 4, 8, 12, and 24 h after reperfusion. The skeletal muscles were harvested to examine the ultrastructure. The levels of 8-iso-PGF2α increased significantly and SOD activity decreased in the IR group at every time point after reperfusion (P iso-PGF2α and SOD activity were not significantly different after reperfusion in the IR + Mailuoning group (P >0.05) but were significantly different compared with the IR group (P iso-PGF2α and protecting SOD activity, thereby exhibiting a protective effect on extremity IR injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation

    Science.gov (United States)

    Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Partecke, Lars-Ivo; van der Linde, Julia

    2018-03-01

    Cold atmospheric (physical) plasma has long been suggested to be a useful tool for blood coagulation. However, the clinical applicability of this approach has not been addressed sufficiently. We have previously demonstrated the ability of a clinically accepted atmospheric pressure argon plasma jet (kINPen® MED) to coagulate liver incisions in mice with similar performance compared to the gold standard electrocauterization. We could show that plasma-mediated blood coagulation was dependent on platelet activation. In the present work, we extended on this by investigating kINPen®-mediated platelet activation in anticoagulated human donor blood ex vivo. With focus on establishing high-throughput, multi-parametric platelet activation assays and performing argon feed gas parameter studies we achieved the following results: (i) plasma activated platelets in heparinized but not in EDTA-anticoagulated blood; (ii) plasma decreased total platelet counts but increased numbers of microparticles; (iii) plasma elevated the expression of several surface activation markers on platelets (CD62P, CD63, CD69, and CD41/61); (iv) in platelet activation, wet and dry argon plasma outperformed feed gas admixtures with oxygen and/or nitrogen; (v) plasma-mediated platelet activation was accompanied by platelet aggregation. Platelet aggregation is a necessary requirement for blood clot formation. These findings are important to further elucidate molecular details and clinical feasibility of cold physical plasma-mediated blood coagulation.

  17. Preliminary studies of plasma growth hormone releasing activity during medical therapy of acromegaly

    International Nuclear Information System (INIS)

    Hagen, T.C.; Lawrence, A.M.; Kirsteins, L.

    1978-01-01

    The in vitro growth hormone releasing activity of plasma obtained from six acromegalic subjects was measured before and during therapy. In five subjects, plasmas were obtained before and during successful medical therapy with medroxyprogesterone acetate (MPA). The sixth subject was sampled before and after transphenoidal Sr 90 -induced hypopituitarism. All subjects had a decrement in fasting growth hormone levels with respective therapies (29-88%). The in vitro growth hormone released from Rhesus monkey anterior pituitaries was assessed after incubating one lateral half in control plasma (pre-therapy) and the contralateral pituitary half in plasma obtained during or after therapy. Studies with plasmas obtained from the five patients successfully treated with MPA showed a decrease in growth hormone releasing activity during therapy in all (18-57%). Plasma obtained after Sr 90 pituitary ablation in the sixth subject had 35% more growth hormone releasing activity than obtained before therapy. These results suggest that active acromegalics who respond to MPA with significantly lowered growth hormone levels may actually achieve this response because of a decrease in growth hormone releasing factor measured peripherally. The opposite response in one acromegalic subject, following Sr 90 pituitary ablation and hypopituitarism, suggests that growth hormone releasing factor secretion may increase when growth hormone levels are lowered by ablative therapy. (orig.) [de

  18. Etiology and evidence of systemic acidification in SOD-affected forests of California

    Science.gov (United States)

    Lee Klinger; Ralph Zingaro

    2006-01-01

    Pathologists investigating the widespread death of oak trees in the forest ecosystems of northern California concluded, in 2000, that the problem was due to a new plant disease, dubbed sudden oak death (SOD), which is caused by the fungal pathogen Phytophthora ramorum. Since then this one organism has been the focal point of notable efforts to...

  19. Effect of breed on plasma endothelin-1 concentration, plasma renin activity, and serum cortisol concentration in healthy dogs

    DEFF Research Database (Denmark)

    Höglund, K.; Lequarré, A.-S.; Ljungvall, I.

    2016-01-01

    BACKGROUND: There are breed differences in several blood variables in healthy dogs. OBJECTIVE: Investigate breed variation in plasma endothelin-1 (ET-1) concentration, plasma renin activity, and serum cortisol concentration. ANIMALS: Five-hundred and thirty-one healthy dogs of 9 breeds examined...... at 5 centers (2-4 breeds/center). METHODS: Prospective observational study. Circulating concentrations of ET-1 and cortisol, and renin activity, were measured using commercially available assays. Absence of organ-related or systemic disease was ensured by thorough clinical investigations, including...

  20. Changes of serum contents of LPO, SOD after treatment with vita. E-C complex in patients with liver spot

    International Nuclear Information System (INIS)

    Li Qing; Feng Zheng

    2005-01-01

    Objective: To investigate the changes of serum contents of LPO, SOD and therapeutic efficacy after treatment with Vita. E-C complex in patients with liver spot. Methods: Serum LPO and SOD contents were measured both before and after treatment with Vita E-C complex (Vita. E l00mg, Vita. C 200mg x 3/d for 3 months) in 30 patients with liver spot as well as in 10 controls. Results: Before treatment, the serum LPO contents in the patients were significantly higher than those in controls. After treatment, the LPO contents dropped markedly, being significantly lower than the values before treatment. However, the SOD contents were about the same as those in controls and changes little after treatment. Conclusion: Vita. E-C complex was of definite therapeutic value for the treatment of liver spot. (authors)

  1. Mutagenicity and co-mutagenicity of static magnetic field in SOD-deficient Escherichia coli

    International Nuclear Information System (INIS)

    Yoshie, Sachiko; Ikehata, Masateru; Hayakawa, Toshio; Hirota, Noriyuki; Takemura, Taro; Minowa, Takashi; Hanagata, Nobutaka

    2008-01-01

    The effects of strong static magnetic fields (SMFs) on mutagenesis related to reactive oxygen species were investigated. To estimate mutagenicity of SMFs, superoxide dismutase (SOD)-deficient Escherichia coli QC774 and its parental strain GC4468 were employed. Tester strains were exposed to 5, 10 and 13 T SMFs for 24 hr at 37 C degrees in LB medium. After exposure, mutation frequency on thymine synthesis genes was determined for evaluation of mutagenicity of SMFs exposure. In the result, no statistically significant difference in mutation frequency on thymine synthesis genes was observed between SMF-exposed cells and unexposed cells in all of magnetic flux densities. Furthermore, SMFs up to 13 T did not affect mutagenicity of plumbagine under its presence of 25 μM, respectively. It suggests that SMF did not have either mutagenicity or co-mutagenicity in SOD-deficient and its parental E. coli strains under the condition in this study. (author)

  2. Sequential plasma activation methods for hydrophilic direct bonding at sub-200 °C

    Science.gov (United States)

    He, Ran; Yamauchi, Akira; Suga, Tadatomo

    2018-02-01

    We present our newly developed sequential plasma activation methods for hydrophilic direct bonding of silica glasses and thermally grown SiO2 films. N2 plasma was employed to introduce a metastable oxynitride layer on wafer surfaces for the improvement of bond energy. By using either O2-plasma/N2-plasma/N-radical or N2-plasma/N-radical sequential activation, the quartz-quartz bond energy was increased from 2.7 J/m2 to close to the quartz bulk fracture energy that was estimated to be around 9.0 J/m2 after post-bonding annealing at 200 °C. The silicon bulklike bond energy between thermal SiO2 films was also obtained. We suggest that the improvement is attributable to surface modification such as N-related defect formation and asperity softening by the N2 plasma surface treatment.

  3. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    Science.gov (United States)

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  4. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu [Vanderbilt Institute for Integrative Biosystems Research and Education and Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2015-06-15

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  5. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    Science.gov (United States)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  6. MnSOD and CAT polymorphisms modulate the effect of the Mediterranean diet on breast cancer risk among Greek-Cypriot women.

    Science.gov (United States)

    Kakkoura, Maria G; Demetriou, Christiana A; Loizidou, Maria A; Loucaides, Giorgos; Neophytou, Ioanna; Malas, Simon; Kyriacou, Kyriacos; Hadjisavvas, Andreas

    2016-06-01

    Oxidative stress arises due to a cellular imbalance in oxidants and antioxidants and/or due to an altered activity of antioxidant enzymes, caused by SNPs. Oxidative stress increases susceptibility to breast cancer (BC) risk, and we previously showed that the Mediterranean diet (MD), which is rich in antioxidants, reduces BC risk in Greek-Cypriot women. Here, we investigated the effect of MnSOD (p.Val16Ala, rs4880) and CAT (-262C>T, rs1001179) SNPs on the association between the MD and BC risk in the case-control study of BC MASTOS in Cyprus. Dietary intake data were obtained using a 32-item food frequency questionnaire, from which a dietary pattern was previously derived, using principal component analysis. This pattern included high loadings of vegetables, fruit, legumes and fish, a combination that closely resembles the MD and was used as our dietary variable. High vegetable intake lowered BC risk in women with at least one MnSOD Val allele (ORHigh vs. Low for Val/Val = 0.56, 95 % CI 0.35-0.88, for Val/Ala = 0.57, 95 % CI 0.39-0.82), or one CAT -262C allele (ORHigh vs. Low for -262CC = 0.66, 95 % CI 0.47-0.92, for -262CT = 0.53, 95 % CI 0.35-0.81). High fish intake conferred a decreased BC risk of CAT -262CC women (ORQ4 vs. Q1 0.66, 95 % CI 0.47-0.92) compared with the CAT -262TT women and low fish intake (ORQ2 vs. Q1 2.79, 95 % CI 1.08-7.17). Additionally, high fish intake reduced BC risk in MnSOD Val/Val women (ORQ4 vs. Q1 0.63, 95 % CI 0.40-0.98). p interaction values were, however, not statistically significant. Our results demonstrate that the antioxidative effects of the MD against BC risk may be enhanced by the wild-type alleles of the MnSOD or CAT SNPs among Greek-Cypriot women.

  7. Effect of scuba diving on the oxidant/antioxidant status, SIRT1 and SIRT3 expression in recreational divers after a winter nondive period.

    Science.gov (United States)

    Perović, Antonija; Sobočanec, Sandra; Dabelić, Sanja; Balog, Tihomir; Dumić, Jerka

    2018-02-01

    The aim of this study was to examine the effects of scuba diving on oxidative damage markers in erythrocytes and plasma, antioxidant system in peripheral blood mononuclear cells (PBMCs), as well as sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3) gene expressions in recreational divers after a winter nondive period (at least 5 months). For that purpose, 17 male recreational divers performed an immersion at a depth of 30 m for 30 min. Blood samples were collected immediately before and after diving, 3 and 6 h after diving. Erythrocyte lipid peroxidation measured by thiobarbituric-reactive substances (TBARS) method was significantly increased immediately after diving, but returned to the baseline 6 h after diving, while no significant change was found for plasma TBARS and protein carbonyl derivates in both plasma and erythrocytes. Diving-induced catalase (CAT), superoxide dismutase 2 (SOD2), and consequently total superoxide dismutase (SOD) activities in the PBMC samples (significantly increased immediately after diving, reached the maximum activities 3 h after diving, while 6 h after diving only CAT activity remained significantly increased). No significant change was observed for SOD1 activity and gene expression, as well as SOD2 expression, while CAT and SIRT1 expressions were slightly decreased immediately after diving and 3 h after diving. Interestingly, SIRT3 expression was significantly increased 6 h after diving. In conclusion, after the first dive to 30 m after a nondive season, activation of antioxidant defence was not sufficient to prevent oxidative damage, while SIRT3 upregulation could be a step towards an adaptive response to the diving.

  8. Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS

    Science.gov (United States)

    De Rose, Francescaelena; Marotta, Roberto; Talani, Giuseppe; Catelani, Tiziano; Solari, Paolo; Poddighe, Simone; Borghero, Giuseppe; Marrosu, Francesco; Sanna, Enrico; Kasture, Sanjay; Acquas, Elio; Liscia, Anna

    2017-01-01

    The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptoms. PMID:28102336

  9. Obesity decreases the oxidant stress induced by tobacco smoke in a rat model.

    Science.gov (United States)

    Montaño, Martha; Pérez-Ramos, J; Esquivel, A; Rivera-Rosales, R; González-Avila, G; Becerril, C; Checa, M; Ramos, C

    2016-09-01

    Obesity and emphysema are associated with low-grade systemic inflammation and oxidant stress. Assuming that the oxidant stress induced by emphysema would be decreased by obesity, we analyzed the oxidant/antioxidant state in a rat model combining both diseases simultaneously. Obesity was induced using sucrose, while emphysema by exposure to tobacco smoke. End-points evaluated were: body weight, abdominal fat, plasma dyslipidemia and malondialdehyde (MDA), insulin and glucose AUC, activities of Mn-superoxide dismutase (Mn-SOD), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GPx); lung MnSOD and 3-nitrotyrosine (3-NT) immunostaining, and expression of αV and β6 integrin subunits. In rats with obesity, the body weight, abdominal fat, plasma triglyceride levels, glucose AUC, insulin levels, GST activity, and αV and β6 integrin expressions were amplified. The rats with emphysema had lower values of body weight, abdominal fat, plasma insulin, triglycerides and glucose AUC but higher values of plasma MDA, GPx activity, and the lung expression of the αV and β6 integrins. The combination of obesity and emphysema compared to either condition alone led to diminished body weight, abdominal fat, plasma insulin MDA levels, GPx and GST activities, and αV and β6 integrin expressions; these parameters were all previously increased by obesity. Immunostaining for MnSOD augmented in all experimental groups, but the staining for 3-NT only increased in rats treated with tobacco alone or combined with sucrose. Results showed that obesity reduces oxidant stress and integrin expression, increasing antioxidant enzyme activities; these changes seem to partly contribute to a protective mechanism of obesity against emphysema development.

  10. Grapefruit-seed extract attenuates ethanol-and stress-induced gastric lesions via activation of prostaglandin, nitric oxide and sensory nerve pathways.

    Science.gov (United States)

    Brzozowski, Tomasz; Konturek, Peter C; Drozdowicz, Danuta; Konturek, Stanislaw J; Zayachivska, Oxana; Pajdo, Robert; Kwiecien, Slawomir; Pawlik, Wieslaw W; Hahn, Eckhart G

    2005-11-07

    Grapefruit-seed extract (GSE) containing flavonoids, possesses antibacterial and antioxidative properties but whether it influences the gastric defense mechanism and gastroprotection against ethanol- and stress-induced gastric lesions remains unknown. We compared the effects of GSE on gastric mucosal lesions induced in rats by topical application of 100% ethanol or 3.5 h of water immersion and restraint stress (WRS) with or without (A) inhibition of cyclooxygenase (COX)-1 activity by indomethacin and rofecoxib, the selective COX-2 inhibitor, (B) suppression of NO-synthase with L-NNA (20 mg/kg ip), and (C) inactivation by capsaicin (125 mg/kg sc) of sensory nerves with or without intragastric (ig) pretreatment with GSE applied 30 min prior to ethanol or WRS. One hour after ethanol and 3.5 h after the end of WRS, the number and area of gastric lesions were measured by planimetry, the gastric blood flow (GBF) was assessed by H2-gas clearance technique and plasma gastrin levels and the gastric mucosal generation of PGE2, superoxide dismutase (SOD) activity and malonyldialdehyde (MDA) concentration, as an index of lipid peroxidation were determined. Ethanol and WRS caused gastric lesions accompanied by the significant fall in the GBF and SOD activity and the rise in the mucosal MDA content. Pretreatment with GSE (8-64 mg/kg i g) dose-dependently attenuated gastric lesions induced by 100% ethanol and WRS; the dose reducing these lesions by 50% (ID50) was 25 and 36 mg/kg, respectively, and this protective effect was similar to that obtained with methyl PGE2 analog (5 microg/kg i g). GSE significantly raised the GBF, mucosal generation of PGE2, SOD activity and plasma gastrin levels while attenuating MDA content. Inhibition of PGE2 generation with indomethacin or rofecoxib and suppression of NO synthase by L-NNA or capsaicin denervation reversed the GSE-induced protection and the accompanying hyperemia. Co-treatment of exogenous calcitonine gene-related peptide (CGRP) with

  11. Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma

    Science.gov (United States)

    Glonek, Karolina; Wróblewska, Agnieszka; Makuch, Edyta; Ulejczyk, Bogdan; Krawczyk, Krzysztof; Wróbel, Rafał. J.; Koren, Zvi C.; Michalkiewicz, Beata

    2017-10-01

    The waste from industrial fruits processing is utilized for the extraction of limonene, a renewable terpene biomass compound obtained from orange peels. This was followed by limonene oxidation, which produces highly useful oxygenated derivatives (carveol, and perillyl alcohol, 1,2-epoxylimonene and its diol). New catalysts were obtained by treating relatively inexpensive commercially available EuroPh and FPV activated carbons with plasma. These catalysts were characterized by the following instrumental methods XRD, sorption of N2 and CO2, SEM, EDS, TEM, XPS, and Raman spectroscopy. The activities of the plasma-treated catalysts were measured in the oxidation of limonene by means of either hydrogen peroxide or t-butyl hydroperoxide as the oxidizing agents. During the oxidation with hydrogen peroxide the new plasma-treated catalysts were more active than their untreated counterparts. This effect was noticeable in the considerable increase in the conversion of limonene. The mechanism explaining this property is proposed, and it takes into account the role of the appropriate functional groups on the surface of the catalysts. This work has shown for the first time that the commercial EuroPh and FPV activated carbons, after having been treated by plasma, are active catalysts for the selective limonene oxidation for the production of value-added industrial products.

  12. SOD-induced changes in foraging and nesting behavior of insectivorous, cavity-nesting birds

    Science.gov (United States)

    Kyle Apigian; Barbara Allen-Diaz

    2006-01-01

    Sudden oak death (SOD) is a tree disease caused by a recently described pathogen, Phytophthora ramorum. The disease affects dozens of plant species, but its effects are particularly pronounced in stands of coast live oak (Quercus agrifolia), often resulting in large stands with dead canopies and many downed trees. Such disease-...

  13. Correlation of serum GP73, SOD and GPC3 contents with cell proliferation and angiogenesis in liver cancer lesion

    Directory of Open Access Journals (Sweden)

    Hua Xin

    2017-11-01

    Full Text Available Objective: To study the correlation of serum GP73, SOD and GPC3 contents with cell proliferation and angiogenesis in liver cancer lesion. Methods: Patients who were diagnosed with primary liver cancer in Jianghan Oilfield General Hospital between June 2014 and February 2017 were selected as liver cancer group, and healthy subjects who received physical examination in Jianghan Oilfield General Hospital during the same period were selected as control group. Serum was collected from two groups of subjects to determine the contents of GP73, SOD and GPC3; liver cancer lesion and adjacent lesion were collected from liver cancer group to determine the expression of cell proliferation molecules and angiogenesis molecules. Results: Serum GP73 and GPC3 levels of liver cancer group were obviously higher than those of control group while SOD content was obviously lower than that of control group; DNMT3B, STC2, SIRT6, LETM1, EphB4, SULT2B1, HIF-1α, VEGF, Ang-2, HGF and TGF-β1 protein expression levels in liver cancer lesion of liver cancer group were significantly higher than those in adjacent lesion; DNMT3B, STC2, SIRT6, LETM1, EphB4, SULT2B1, HIF-1α, VEGF, Ang-2, HGF and TGF-β1 protein expression levels in liver cancer lesion of liver cancer group were positively correlated with serum GP73 and GPC3 levels, and negatively correlated with serum SOD level. Conclusion: The changes of GP73, SOD and GPC3 levels in the serum of patients with liver cancer are closely related to the cell proliferation and angiogenesis in liver cancer lesion.

  14. Plasma Renin Activity in Children with Protein Energy Malnutrition ...

    African Journals Online (AJOL)

    Plasma renin activity was measured by bio-assay in 100 children with kwashiorkor and in 20 healthy children, and also by radio-immunoassay in another 26 children with kwashiorkor and in another 20 healthy children. Both methods showed that (compared with healthy children) renin activity was significantly increased in ...

  15. Liver insulinase and insulin-like activity of the blood plasma in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhikhareva, A I; Dokshina, G A [Tomskij Gosudarstvennyj Univ. (USSR)

    1975-05-01

    Comparative quantitative analysis of the functional effect of radiation on the activity of liver insulinase of irradiated rats has shown that the insulinase activity of the blood plasma decreases (21-45%) one to three days after the exposure at betatron. Insulinase activity of the liver extracts is also inhibited (16-22%) as compared to intact liver extracts. Twelve days after the exposure and later, insulin-like activity of the plasma and the enzyme activity increase up to 37 per cent.

  16. Active calcium transport in plasma membrane vesicles from developing cotyledons of common bean

    International Nuclear Information System (INIS)

    Huang Jianzhong; Chen Ziyuan

    1995-01-01

    Plasma membrane vesicles were prepared from the developing cotyledons of common bean (Phaseolus vulgaris L cv Diyundou) by aqueous two-phase partitioning and characterized as to their purity by assaying marker enzymes for other membranes. The putative plasma membrane fraction was minimally contaminated by membranes other than plasma membrane and hence was of high purity. It exhibited a Ca 2+ -dependent ATPase activity, which was inhibited by 1 μmol/L EB and promoted by calcium ionophore A23187. Such an activity was responsible for the observed ATP-dependent 45 Ca 2+ uptake into inside-out plasma membrane vesicles. This process was stimulated by 0.6 μmol/L CaM and 20 μmol/L IAA but inhibited by 2 μmol/L ABA and abolished by A23187. Possible role of cytoplasmic Ca 2+ in mediating phytohormones activity is discussed

  17. Conditions of activation of yeast plasma membrane ATPase.

    Science.gov (United States)

    Sychrová, H; Kotyk, A

    1985-04-08

    The in vivo activation of the H+-ATPase of baker's yeast plasma membrane found by Serrano in 1983 was demonstrated with D-glucose aerobically and anaerobically (as well as in a respiration-deficient mutant) and, after suitable induction, with maltose, trehalose, and galactose. The activated but not the control ATPase was sensitive to oligomycin. No activation was possible in a cell-free extract with added glucose. The ATPase was not activated in yeast protoplasts which may account for the absence of glucose-stimulated secondary active transports in these wall-less cells and provide support for a microscopic coupling between ATPase activity and these transports in yeast cells.

  18. A Comparative Study on the Antioxidant Activity of Commonly Used South Asian Herbs

    Directory of Open Access Journals (Sweden)

    Viduranga Waisundara

    2013-10-01

    Full Text Available The antioxidant activities of curry leaves, fenugreek seeds, Indian malabar leaves, red silk cotton tree leaves, cowitch leaves, holyfruit tree leaves, and black mustard seeds were compared. Their effects on reactive oxygen species (ROS and superoxide dismutase (SOD activity were investigated. The Oxygen Radical Absorbance Capacity (ORAC assay determined the antioxidant potential of the extracts, while the ROS scavenging ability was explored in hyperglycemia-induced human umbilical vein endothelial cells (HUVECs. The SOD assay determined if the extracts stimulated the enzyme activity in the HUVECs. Curry leaf and fenugreek extracts had high ORAC values and superior free radical scavenging abilities compared with the rest of the extracts. The curry leaf extract had also increased the SOD activity. Fenugreek extract had not increased the SOD activity of the HUVECs. Thus, the two herbs displayed two distinct pathways of action for scavenging of ROS.

  19. Clinical significance of changes of serum IGF-II, IL-2 and SOD levels after treatment in pediatric patients with bronchial pneumonia

    International Nuclear Information System (INIS)

    Zhou Hong; Hu Yan; Wei Guoyu; Huang Jufeng

    2011-01-01

    Objective: To investigate the clinical significance of changes of serum IGF-II, IL-2 and SOD levels after treatment in pediatric patients with bronchial pneumonia. Methods: Serum IGF-II, IL-2 and SOD (with RIA) levels were measured in 33 pediatric patients with bronchial pneumonia both before and after treatment as well as in 35 controls. Results: Before treatment, serum IGF-II levels in the patients were significantly higher than those in controls (P 0.05). Conclusion: Changes of serum IGF-II, IL-2 and SOD levels both before and after treatment could reflect the diseases status of the patients as well as the progress of diseases, and might be of prognostic importance in pediatric patients with bronchial pneumonia. (authors)

  20. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deng, Han-Xiang; Zhai, Hong; Bigio, Eileen H; Yan, Jianhua; Fecto, Faisal; Ajroud, Kaouther; Mishra, Manjari; Ajroud-Driss, Senda; Heller, Scott; Sufit, Robert; Siddique, Nailah; Mugnaini, Enrico; Siddique, Teepu

    2010-06-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disorder of motor neuron degeneration. Most cases of ALS are sporadic (SALS), but about 5 to 10% of ALS cases are familial (FALS). Recent studies have shown that mutations in FUS are causal in approximately 4 to 5% of FALS and some apparent SALS cases. The pathogenic mechanism of the mutant FUS-mediated ALS and potential roles of FUS in non-FUS ALS remain to be investigated. Immunostaining was performed on postmortem spinal cords from 78 ALS cases, including SALS (n = 52), ALS with dementia (ALS/dementia, n = 10), and FALS (n = 16). In addition, postmortem brains or spinal cords from 22 cases with or without frontotemporal lobar degeneration were also studied. In total, 100 cases were studied. FUS-immunoreactive inclusions were observed in spinal anterior horn neurons in all SALS and FALS cases, except for those with SOD1 mutations. The FUS-containing inclusions were also immunoreactive with antibodies to TDP43, p62, and ubiquitin. A fraction of tested FUS antibodies recognized FUS inclusions, and specific antigen retrieval protocol appeared to be important for detection of the skein-like FUS inclusions. Although mutations in FUS account for only a small fraction of FALS and SALS, our data suggest that FUS protein may be a common component of the cellular inclusions in non-SOD1 ALS and some other neurodegenerative conditions, implying a shared pathogenic pathway underlying SALS, non-SOD1 FALS, ALS/dementia, and related disorders. Our data also indicate that SOD1-linked ALS may have a pathogenic pathway distinct from SALS and other types of FALS.

  1. SOD1 Gene +35A/C (exon3/intron3 Polymorphism in Type 2 Diabetes Mellitus among South Indian Population

    Directory of Open Access Journals (Sweden)

    K. Nithya

    2016-01-01

    Full Text Available Superoxide dismutase is an antioxidant enzyme that is involved in defence mechanisms against oxidative stress. Cu/Zn SOD is a variant that is located in exon3/intron3 boundary. The aim of the present study was to investigate whether the Cu/Zn SOD (+35A/C gene polymorphism is associated with the susceptibility to type 2 diabetes mellitus among south Indian population. The study included patients with type 2 diabetes mellitus (n=100 and healthy controls (n=75. DNA was isolated from the blood and genotyping of Cu/Zn SOD gene polymorphism was done by polymerase chain reaction based restriction fragment length polymorphism method. Occurrence of different genotypes and normal (A and mutant (C allele frequencies were determined. The frequency of the three genotypes of the total subjects was as follows: homozygous wild-type A/A (95%, heterozygous genotype A/C (3%, and homozygous mutant C/C (2%. The mutant (C allele and the mutant genotypes (AC/CC were found to be completely absent among the patients with type 2 diabetes mellitus. Absence of mutant genotype (CC shows that the Cu/Zn SOD gene polymorphism may not be associated with the susceptibility to type 2 diabetes mellitus among south Indian population.

  2. Functional implications of plasma membrane condensation for T cell activation.

    Directory of Open Access Journals (Sweden)

    Carles Rentero

    2008-05-01

    Full Text Available The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC, which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process.

  3. Relationship between plasma xanthine oxidoreductase activity and left ventricular ejection fraction and hypertrophy among cardiac patients.

    Directory of Open Access Journals (Sweden)

    Yuki Fujimura

    Full Text Available Xanthine oxidoreductase (XOR, which catalyzes purine catabolism, has two interconvertible forms, xanthine dehydrogenase and xanthine oxidase, the latter of which produces superoxide during uric acid (UA synthesis. An association between plasma XOR activity and cardiovascular and renal outcomes has been previously suggested. We investigated the potential association between cardiac parameters and plasma XOR activity among cardiology patients.Plasma XOR activity was measured by [13C2,15N2]xanthine coupled with liquid chromatography/triplequadrupole mass spectrometry. Among 270 patients who were not taking UA-lowering drugs, XOR activity was associated with body mass index (BMI, alanine aminotransferase (ALT, HbA1c and renal function. Although XOR activity was not associated with serum UA overall, patients with chronic kidney disease (CKD, those with higher XOR activity had higher serum UA among patients without CKD. Compared with patients with the lowest XOR activity quartile, those with higher three XOR activity quartiles more frequently had left ventricular hypertrophy. In addition, plasma XOR activity showed a U-shaped association with low left ventricular ejection fraction (LVEF and increased plasma B-type natriuretic peptide (BNP levels, and these associations were independent of age, gender, BMI, ALT, HbA1C, serum UA, and CKD stages.Among cardiac patients, left ventricular hypertrophy, low LVEF, and increased BNP were significantly associated with plasma XOR activity independent of various confounding factors. Whether pharmaceutical modification of plasma XOR activity might inhibit cardiac remodeling and improve cardiovascular outcome should be investigated in future studies.

  4. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su; Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk

    2016-01-01

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats

  5. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk [Research and Development Center, VENTEX Co. Ltd., Seoul (Korea, Republic of)

    2016-09-15

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats.

  6. Activities of some enzymes associated with oxygen metablolism ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-26

    Apr 26, 2010 ... SOD and CAT activities in 20 days seedlings were higher than those in ... content and cell permeability in leaves were lower than those in root which in turn .... The water soluble protein content of all crude SOD, CAT and MDA.

  7. Quest for anionic MOF membranes: Continuous sod -ZMOF membrane with Co2 adsorption-driven selectivity

    KAUST Repository

    Almaythalony, Bassem; Shekhah, Osama; Swaidan, Raja; Belmabkhout, Youssef; Pinnau, Ingo; Eddaoudi, Mohamed

    2015-01-01

    We report the fabrication of the first continuous zeolite-like metal-organic framework (ZMOF) thin-film membrane. A pure phase sod-ZMOF, sodalite topology, membrane was grown and supported on a porous alumina substrate using a solvothermal

  8. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

    Science.gov (United States)

    Makino, Naoki; Maeda, Toyoki; Oyama, Jun-ichi; Sasaki, Makoto; Higuchi, Yoshihiro; Mimori, Koji; Shimizu, Takahiko

    2011-04-01

    Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2(-/-) mice for four weeks beginning at 8 weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 (lox/ lox)) and H/M-SOD2(-/-) mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2(-/-) mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2(-/-) mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2(-/-) heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2(-/-) hearts. All of the changes seen in H/M-SOD2(-/-) heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma

    International Nuclear Information System (INIS)

    Morrison, S.A.; Jesty, J.

    1984-01-01

    A comparism was made of the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and a study was made of the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin

  10. PLASMA INSULIN AND IGF-1 AND HEPATIC ACTIVITY IN SAANEN GOAT KIDS, AROUND WEANING

    Directory of Open Access Journals (Sweden)

    Damiano Magistrelli

    2009-02-01

    Full Text Available Weaning is a crucial event in the life of young ruminants. At weaning ruminal and digestive activity are still incomplete, so weaning may coincide with a period of growth stasis. Since insulin and insulin-like growth factor 1 (IGF-1 can play a fundamental role in post-natal development, the aim of the present study was to evaluate plasma variations of insulin and IGF-1 levels and their relationships with the hepatic activity, around weaning.For this purpose, eleven 3-days-old Saanen goat kids were randomly divided into MILK (6 animals and WMIX (5 animals groups. All kids were fed goat milk to age 29 days. After that, MILK kids continued to receive milk, while WMIX ones underwent weaning, based on the progressive replacement of milk with solid feed. WMIX kids were completely weaned on day 48. Blood samples were weekly analyzed for metabolic traits, insulin and IGF-1 levels, alanine aminotransferase (ALT and aspartate aminotransferase (AST activities. On day 50, all animals were slaughtered, liver weight was recorded and liver samples were analyzed for DNA, RNA, phospholipids, glicogen and soluble protein content, ALT and AST activity.On day 50, plasma insulin and IGF-1 were lower in WMIX group, as possible consequence of the lower plasma glucose and amino acids levels. Liver weight was not different between groups, but liver weight expressed as percentage of body weight was lower in WMIX kids and highly correlated to plasma IGF-1. Liver glycogen was also lower in WMIX kids, as possible consequence of the lower plasma glucose.Hepatic ALT and AST activities were not different between groups and both were strongly correlated to plasma insulin. Moreover, insulin was positively correlated to the proteosynthetic capability per cell (RNA/DNA of the liver.Our results indicate that the adopted livestock practice permitted the normal development of the animal used, avoiding growth stasis. Anyway, weaning altered plasma insulin and IGF-1, without affecting

  11. The effect of red ginseng extract on superoxide dismutase activity in the kidney of gamma-ray irradiated mice

    International Nuclear Information System (INIS)

    Park, Yong Soon

    1992-01-01

    This study was prepared to observe the change of enzyme activities in kidney treated with red ginseng extract in the gamma ray irradiated mice. Determine the activity of SOD, peroxidase, catalase in the kidney a period of 1 day, 2 day, 3 day, 4 day, 5 day after a saline injection or injection of red ginseng extract or gamma ray irradiated group into four classify. The activity SOD and catalase showed a tendency to increase and recovery at the early state but pay no regard. Where ase, the activity of peroxide restored and increased pay regard. A physiological saline injection group after gamma ray irradiation showed a tendency to diminish after remarkable increase of activity of SOD, peroxidase and catalase than control group. Injection group of red ginseng extract after gamma ray irradiation observed rapid recovery on activity of SOD, peroxidase, catalase than a saline injection group. Experimental result suggested that injection of red ginseng extract after irradiation have the recovery effect on the changed of activity of SOD, peroxidase and catalase against radiation injury

  12. Pre-conceptual design activities for the materials plasma exposure experiment

    International Nuclear Information System (INIS)

    Lumsdaine, Arnold; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-01-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m"2 with ion fluxes up to 10"2"4/m"2 s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.

  13. Pre-conceptual design activities for the materials plasma exposure experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Arnold, E-mail: lumsdainea@ornl.gov; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-11-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m{sup 2} with ion fluxes up to 10{sup 24}/m{sup 2} s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.

  14. The activity of superoxide dismutase in animal liver and erythrocyte at Sea Area nearby Dayawan Nuclear Power Station

    International Nuclear Information System (INIS)

    Cheng, Ge; Cai, Yana; Chen, Huizhen

    1995-01-01

    Many tests, the effect of ionizing radiation on SOD in vivo and vitro, had proved that the irradiation can cause the SOD activity to decrease with the increase of irradiation dose, change some physicochemical properties and structure. This artical was to study the activity of SOD in Fish (Thearpon jorbua) and Toad(Bufo melanostictus) liver erythrocyte at sea area nearby Dayawan Nuclear Power Station (Nps). We found that the SOD activity in fish liver, after NPS revolved one year, was higher than that of before revoling (7.30 ± 1.35U/mg protein, 5.49 ±1.56 U/mg protein respectively). The SOD activity in the toad liver at NPS revolving one year after was decreased (4.54 ± 0.75 U/mg protein 5.68± 1.49U/mg protein P < 0.001) but in erythrocyte increased (2.32 ± 0.75 U/mg Hb, 0.70 ± 0.33 U/mg Hb P < 0.001). These results indicated that the SOD activity was changed in different with the animal variety. The effect of irradiation on fish at present was absent, on toad need to research in the future

  15. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    Science.gov (United States)

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Molecular mechanisms of action of styrene toxicity in blood plasma and liver.

    Science.gov (United States)

    Niaz, Kamal; Mabqool, Faheem; Khan, Fazlullah; Ismail Hassan, Fatima; Baeeri, Maryam; Navaei-Nigjeh, Mona; Hassani, Shokoufeh; Gholami, Mahdi; Abdollahi, Mohammad

    2017-10-01

    Styrene is an aromatic colorless hydrocarbon available in liquid form and highly volatile. In its pure form, it gives a sweet smell. The primary source of exposure in the environment is from plastic materials, rubber industries, packaging materials, insulations, and fiber glass and carpet industry. Natural sources of styrene include: few metabolites in plants which are transferred through food chain. The current study was designed to evaluate styrene toxicity, including: superoxide dismutase (SOD) and protein carbonyl, oxidative stress, glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GP), and phosphoenolpyruvate carboxykinase (PEPCK) activities, adenosine triphosphate (ATP) to adenosine diphosphate (ADP) ratio, and changes in gene expressions such as glutamate dehydrogenase 1 (GLUD1), glucose transporter 2 (GLUT2), and glucokinase (GCK) in the rat liver tissue. For this purpose, styrene was dissolved in corn oil and was administered via gavage, at doses 250, 500, 1000, 1500, 2000, mg/kg/day per mL and control (corn oil) to each rat with one day off in a week, for 42 days. Plasma SOD and protein carbonyl of plasma were significantly up-regulated in 1000, 1500, and 2000 mg/kg/day styrene administrated groups (P < .001). In addition, styrene caused an increase in lipid peroxidation (LPO) and reactive oxygen species (ROS) in the dose-dependent manners in liver tissue (P < .001). Furthermore, the ferrous reducing antioxidant power (FRAP) and total thiol molecules (TTM) in styrene-treated groups were significantly decreased in liver tissue (P < .001) with increasing doses. In treated rats, styrene significantly increased G6Pase activity (P < .001) and down-regulated GP activity (P < .001) as compared to the control group. The PEPCK activity was significantly raised in a dose-dependent manner (P < .001). The ATP/ADP ratio of live cells was significantly raised by increasing the dose (P < .001). There was significantly an up

  17. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    Science.gov (United States)

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Non-thermal hydrogen plasma processing effectively increases the antibacterial activity of graphene oxide

    Science.gov (United States)

    Ke, Zhigang; Ma, Yulong; Zhu, Zhongjie; Zhao, Hongwei; Wang, Qi; Huang, Qing

    2018-01-01

    Graphene-based materials (GMs) are promising antibacterial agents which provide an alternative route to treat pathogenic bacteria with resistance to conventional antibiotics. To further improve their antibacterial activity, many methods have been developed to functionalize the GMs with chemicals. However, the application of additional chemicals may pose potential risks to the environment and human being. Herein, a radio-frequency-driven inductively coupled non-thermal hydrogen plasma was used to treat and reduce graphene oxide (GO) without using any other chemicals, and we found that the plasma-reduced GO (prGO) is with significantly higher bactericidal activity against Escherichia coli. The mechanism of the increased antibacterial activity of prGO is due to that plasma processing breaks down the GO sheets into smaller layers with more rough surface defects, which can thus induce more destructive membrane damages to the bacteria. This work sets another good example, showing that plasma processing is a green and low-cost alternative for GM modification for biomedical applications.

  19. Plasma edge physics in an actively cooled tokamak

    International Nuclear Information System (INIS)

    Gunn, J.P.; Adamek, A.; Boucher, C.

    2005-01-01

    Tore Supra is a large tokamak with a plasma of circular cross section (major radius 2.4 m and minor radius 0.72 m) lying on a toroidal limiter. Tore Supra's main mission is the development of technology to inject up to 25 MW of microwave heating power and extract it continuously for up to 1000 s in steady state without uncontrolled overheating of, or outgassing from, plasma-facing components. The entire first wall of the tokamak is actively cooled by a high pressure water loop and special carbon fiber composite materials have been designed to handle power fluxes up to 10 MW/m 2 . The edge plasma on open magnetic flux surfaces that intersect solid objects plays an important role in the overall behaviour of the plasma. The transport of sputtered impurity ions and the fueling of the core plasma are largely governed by edge plasma density, temperature, and flow profiles. Measurements of these quantities are becoming more reliable and frequent in many tokamaks, and it has become clear that we do not understand them very well. Classical two-dimensional fluid modelling fails to reproduce many aspects of the experimental observations such as the significant thickness of the edge plasma, and the near-sonic flows that occur where none should be expected. It is suspected that plasma turbulence is responsible for these anomalies. In the Tore Supra tokamak, various kinds of Langmuir probes are used to characterize the edge plasma. We will present original measurements that demonstrate the universality of many phenomena that have been observed in X-point divertor tokamaks, especially concerning the ion flows. As in the JET tokamak, surprisingly large values of parallel Mach number are measured midway between the two strike zones, where one would expect to find nearly stagnant plasma if the particle source were poloidally uniform. We will present results of a novel experiment that provides evidence for a poloidally localized particle and energy source on the outboard midplane of

  20. Effect of high flux hemodialysis on plasma toxin molecule contents and body’s microinflammatory state in patients with uremia

    Directory of Open Access Journals (Sweden)

    Zheng-Nan We

    2016-03-01

    Full Text Available Objective: To analyze the effect of high flux hemodialysis on plasma toxin molecule contents and body’s microinflammatory state in patients with uremia. Methods: A total of 96 cases of patients with uremia receiving inpatient dialysis in our hospital from June 2011 to March 2015 were selected as research subjects and randomly divided into observation group and control group, each group with 48 cases. Control group received low flux hemodialysis (LF-HD, observation group received high flux hemodialysis (HF-HD, and then levels of plasma renal function-related toxins, oxidative stress-related toxins, leptin, intact parathyroid hormone and asymmetric dimethylarginine as well as levels of microinflammatory state-related factors of two groups were compared. Results: Plasma BUN, Scr, UA and β2-MG levels of observation group after dialysis were significantly lower than those of control group; plasma MDA and Cor levels of observation group after dialysis were lower than those of control group, and levels of GSH and SOD were higher than those of control group; plasma Leptin, iPTH and ADMA levels of observation group after 1 time and 5 times of dialysis were significantly lower than those of control group; plasma hs-CRP, IL-6, TNF-α and ASAA levels of observation group after dialysis were significantly lower than those of control group. Conclusion: High flux hemodialysis for patients with uremia can effectively eliminate related toxins in the body and reduce systemic microinflammatory state, and it has active clinical significance.

  1. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes

    International Nuclear Information System (INIS)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping; Yang, Hongying

    2015-01-01

    Highlights: • After co-culture with α-irradiated HaCaT cells, WS1 cells displayed oxidative stress and DNA damage. • Increased miR-21 expression in bystander cells was critical to the occurrence of RIBEs. • SOD2 of bystander cells played an important role in bystander responses. • miR-21 mediated bystander effects through its regulation on SOD2. - Abstract: Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30 min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3 h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects

  2. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping [School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Yang, Hongying, E-mail: yanghongying@suda.edu.cn [School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Institute of Radiotherapy & Oncology, Soochow University (China)

    2015-10-15

    Highlights: • After co-culture with α-irradiated HaCaT cells, WS1 cells displayed oxidative stress and DNA damage. • Increased miR-21 expression in bystander cells was critical to the occurrence of RIBEs. • SOD2 of bystander cells played an important role in bystander responses. • miR-21 mediated bystander effects through its regulation on SOD2. - Abstract: Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30 min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3 h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects

  3. On methods of measuring the relative plasma composition by active charge exchange

    International Nuclear Information System (INIS)

    Herrmann, W.

    1991-04-01

    Two methods of measuring the hydrogenic composition of plasma with an active diagnostic beam are discussed: Evaluation at equal energies of the neutrals leaving the plasma and at equal velocities. Evaluation at equal velocity has the advantage that the plasma composition, particle penetration and stripping efficiency of the analyzer do not enter the evaluation. The only plasma parameter that has to be known is the plasma temperature. If measurement at two different velocities is possible, the temperature can also be evaluated from the corresponding four fluxes without any further knowledge of plasma or beam parameters. It is discussed under what circumstances evaluation of the plasma composition is possible for non-Maxwellian distribution functions. As the halo effect may be the main source of error, it is shown that the application of a helium beam may considerably reduce this problem. (orig.)

  4. Clinical significance of determination of changes of serum SOD and T-cell subsets distribution type after leukocyte-deduced red blood cell transfusion in patients with lung cancer

    International Nuclear Information System (INIS)

    Yu Zhengqin; Li Keqin; Xiang Hengquan

    2006-01-01

    Objective: To investigate the changes of serum SOD contents and T-cell subsets distribution type after leukocyte-deduced red blood cell transfusion in patients with lung cancer. Methods: Serum SOD levels was measured with RIA and T-cell subsets distribution type was detected with monoclonal antibody technic both before and after leukocyte-deduced red blood cell transfusion in 32 patients with lung cancer and 35 normal controls. Results: Before treatment, the serum levels of SOD and T-cell CIM/ CD8 value were significantly lower in the patients than those in controls (P 0.05). Conclusion: Determination of serum SOD level and T-cell subsets distribution type is clinically useful in the management of patients with lung cancer. (authors)

  5. Active feedback stabilization of axisymmetric modes in highly elongated tokamak plasmas

    International Nuclear Information System (INIS)

    Ward, D.J.; Hofmann, F.

    1993-07-01

    Active feedback stabilization of the vertical instability is studied for highly elongated tokamak plasmas (1≤κ≤3), and evaluated in particular for the TCV configuration. It is shown that the feedback can strongly affect the form of the eigenfunction for these highly elongated equilibria, and this can have detrimental effects on the ability of the feedback system to properly detect and stabilize the plasma. A calculation of the vertical displacement that uses poloidal flux measurements, poloidal magnetic field measurements, and corrections for the vessel eddy currents and active feedback currents was found to be effective even in the cases with the worst deformations of the eigenfunction. We also examine how these deformations affect differently shaped equilibria, and it is seen that the magnitude of the deformation of the eigenfunction is strongly function of the plasma elongation. (author) 15 figs., 13 refs

  6. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-01-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN - ) for murine Cu-Zn-SOD was determined to be 6.8 x 10 -6 M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied

  7. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  8. Measuring Neuromuscular Junction Functionality in the SOD1(G93A) Animal Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Rizzuto, Emanuele; Pisu, Simona; Musarò, Antonio; Del Prete, Zaccaria

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to motor neuron degeneration, alteration in neuromuscular junctions (NMJs), muscle atrophy, and paralysis. To investigate the NMJ functionality in ALS we tested, in vitro, two innervated muscle types excised from SOD1(G93A) transgenic mice at the end-stage of the disease: the Soleus, a postural muscle almost completely paralyzed at that stage, and the diaphragm, which, on the contrary, is functional until death. To this aim we employed an experimental protocol that combined two types of electrical stimulation: the direct stimulation and the stimulation through the nerve. The technique we applied allowed us to determine the relevance of NMJ functionality separately from muscle contractile properties in SOD1(G93A) animal model. Functional measurements revealed that the muscle contractility of transgenic diaphragms is almost unaltered in comparison to control muscles, while transgenic Soleus muscles were severely compromised. In contrast, when stimulated via the nerve, both transgenic muscle types showed a strong decrease of the contraction force, a slowing down of the kinetic parameters, as well as alterations in the neurotransmission failure parameter. All together, these results confirm a severely impaired functionality in the SOD1(G93A) neuromuscular junctions.

  9. Effect of platelet activating factor on endothelial permeability to plasma macromolecules

    International Nuclear Information System (INIS)

    Handley, D.A.; Arbeeny, C.M.; Lee, M.L.; Van Valen, R.G.; Saunders, R.N.

    1984-01-01

    The effect of intrajugular administration of platelet activating factor (PAF-C16) on vascular permeability was examined in the guinea pig. To examine the loss of selective endothelial permeability, the extravasative effect of PAF was assessed by monitoring hemoconcentration and the plasma loss of 125 I-albumin (6.7 nm), 125 I-low density lipoproteins (22.0 nm) or 125 I-very low density lipoproteins (62.1 nm). Extravasation was dose-dependent and began 1 min after PAF administration, continuing for 5-7 min. During extravasation, there was no evidence for selective plasma retention of any of the labeled plasma tracers, as measured by plasma radioactivity. These results suggest that PAF-induced extravasation is dose-dependent, with increases in vascular permeability sufficient to permit similar plasma efflux rates of albumin, low density lipoproteins and very low density lipoproteins

  10. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ostrikov, K. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); School of Physics, University of Sydney, Sydney NSW 2006 (Australia); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  11. Bee Venom Acupuncture Augments Anti-Inflammation in the Peripheral Organs of hSOD1G93A Transgenic Mice.

    Science.gov (United States)

    Lee, Sun-Hwa; Choi, Sun-Mi; Yang, Eun Jin

    2015-07-29

    Amyotrophic lateral sclerosis (ALS) includes progressively degenerated motor neurons in the brainstem, motor cortex, and spinal cord. Recent reports demonstrate the dysfunction of multiple organs, including the lungs, spleen, and liver, in ALS animals and patients. Bee venom acupuncture (BVA) has been used for treating inflammatory diseases in Oriental Medicine. In a previous study, we demonstrated that BV prevented motor neuron death and increased anti-inflammation in the spinal cord of symptomatic hSOD1G93A transgenic mice. In this study, we examined whether BVA's effects depend on acupuncture point (ST36) in the organs, including the liver, spleen and kidney, of hSOD1G93A transgenic mice. We found that BV treatment at ST36 reduces inflammation in the liver, spleen, and kidney compared with saline-treatment at ST36 and BV injected intraperitoneally in symptomatic hSOD1G93A transgenic mice. Those findings suggest that BV treatment combined with acupuncture stimulation is more effective at reducing inflammation and increasing immune responses compared with only BV treatment, at least in an ALS animal model.

  12. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    International Nuclear Information System (INIS)

    Sakai, T.; Kisiel, W.

    1990-01-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which 125 I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity

  13. Active Detectors for Plasma Soft X-Ray Detection at PALS

    Directory of Open Access Journals (Sweden)

    C. Granja

    2010-01-01

    Full Text Available This paper summarizes the work carried out for an experimental study of low-energy nuclear excitation by laser-produced plasma at the PALS Prague laser facility. We describe the adaptation and shielding of single-quantum active radiation detectors developed at IEAP CTU Prague to facilitate their operation inside the laser interaction chamber in the vicinity of the plasma target. The goal of this effort is direct real-time single-quantum detection of plasma soft X-ray radiation with energy above a few keV and subsequent identification of the decay of the excited nuclear states via low-energy gamma rays in a highly radiative environment with strong electromagnetic interference.

  14. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  15. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  16. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  17. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  18. Influence of antihypertensive therapy, sodium intake and the concentration of potassium in plasma on concentration of aldosterone and plasma renin activity

    Directory of Open Access Journals (Sweden)

    Lalić Tijana

    2013-01-01

    Full Text Available Introduction: Primary aldosteronism (PA is a group of disorders which are characterized by inadequate and non-suppressible production of aldosterone. The prevalence of PA is increasing in hypertensive population. The golden standard of screening for primary aldosteronism, determination of aldosterone/plasma renin activity (ARR, is influenced by numerous exogenous and endogenous factors. Testing cannot always be conducted under optimal conditions. Objective: To determine influence of antihypertensive drugs and concentrations of potassium and sodium in blood and urine on values of aldosterone and plasma renin activity. Methods: In this retrospective study, we analyzed medical reports of patients admitted to Department of thyroid gland disease in the period from 2009 to 2011, with increased risk for primary aldosteronism. Body weight and height, sodium and potassium in serum and urine, plasma aldosterone concentrations and plasma renin activity, data on medicines and comorbidity were analyzed in all patients. In processing data, statistical methods descriptive analysis, Student T test and univariate linear regression were applied. Result: Of 137 patients, there were more patients with resistant hypertension (53,28% than with adrenal tumors (46,72%. Most patients used calcium channel blockers. Treatment with alpha blockers and calcium channel blockers does not influence ARR. Beta blockers and ACE inhibitors can influence ARR and diuretics and vasodilatators have definite influence. Diabetes mellitus can have higher risk of false negative results. Urine sodium excretion is significantly correlated with plasma aldosteron and serum potassium. Plasma aldosteron and PRA are significantly correlated with concentrations of electrolites in urine. Conclusion: Increased prevalence of primary aldosteronism necessitates need for accurate and better diagnostics.

  19. Effect of γ irradiation on the activity of lecithin-cholesterol acyltransferase in plasma of the rat

    International Nuclear Information System (INIS)

    Dousset, N.; Douste-Blazy, L.

    1975-01-01

    Plasma cholesterol and lecithin-cholesterol-acyl-transferase activity are studied in irradiated rats. Ionizing radiations cause an increase of cholesterol levels in plasma, concerning mainly ester fraction. Lecithin-cholesterol-acyltransferase activity in plasma of irradiated rats is lowered 48 hours after exposure. This decreased rate of LCAT is probably the consequence of the post-irradiation hypercholesterolemia [fr

  20. Administration of 4-(α-L-Rhamnosyloxy-benzyl Isothiocyanate Delays Disease Phenotype in SOD1G93A Rats: A Transgenic Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Maria Galuppo

    2015-01-01

    Full Text Available 4-(α-L-Rhamnosyloxy-benzyl glucosinolate (glucomoringin, GMG is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy-benzyl isothiocyanate (GMG-ITC. The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg bioactivated with myrosinase (20 µL/rat via intraperitoneal (i.p. injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease.

  1. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    Science.gov (United States)

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  2. Determination of activated plasma fibronectin using radioactive labelled collagen I

    DEFF Research Database (Denmark)

    Fenger, M

    1984-01-01

    The plasma concentration of biological active fibronectin was assayed by a protein binding assay using 125I-collagen I as ligand and heparin as activator. The standard curve is linear for a fibronectin range of 1.1-11 pmol (0.5-5.0 micrograms) and the coefficient of variation was less than 10...

  3. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  4. Influence of thyroid disorders on the kidney expression and plasma activity of aminopeptidase A.

    Science.gov (United States)

    Wangensteen, R; Segarra, A B; Ramirez-Sanchez, M; Gasparo, M De; Dominguez, G; Banegas, I; Vargas, F; Vives, F; Prieto, I

    2015-04-01

    Thyroid disorders may affect blood pressure and renal function modifying factors of the plasmatic and kidney renin-angiotensin system such as aminopeptidase A (AP A) that metabolizes angiotensin II to angiotensin III. We investigated the expression of AP A in the kidney, as well as its enzymatic activity in the plasma of euthyroid, hyperthyroid, and hypothyroid adult male rats. Hyperthyroidism was induced by daily subcutaneous injections of tetraiodothyronine. Hypothyroid rats were obtained by administration of methimazole in drinking water. Expression of AP A was determined by Western blot analysis. Plasma AP A activity was measured fluorometrically using glutamyl-β-naphthylamide as substrate. While hyperthyroid rats exhibited lower levels of plasma AP A activity than controls, the kidney of hyperthyroid animals expressed significantly higher AP A than controls and hypothyroid animals. A discrepancy between the high expression of AP A in kidney of hyperthyroid rats and the low activity of AP A measured in plasma and kidney of hyperthyroid animals was found. The posttranslational influence of environmental biochemical factors may be in part responsible for that divergence.

  5. Advanced qualification methodology for actively cooled plasma facing components

    Science.gov (United States)

    Durocher, A.; Escourbiac, F.; Grosman, A.; Boscary, J.; Merola, M.; Cismondi, F.; Courtois, X.; Farjon, J. L.; Missirlian, M.; Schlosser, J.; Tivey, R.

    2007-12-01

    The use of high heat flux plasma facing components (PFCs) in steady state fusion devices requires high reliability. These components have to withstand heat fluxes in the range 10-20 MW m-2 involving a number of severe engineering constraints. Feedback from the experience of various industrial manufacturings showed that the bonding of the refractory armour material onto the metallic heat sink causes generic difficulties strongly depending on material qualities and specific design. As the heat exhaust capability and lifetime of PFCs during plasma operation are directly linked to the manufacturing quality, a set of qualification activities such as active infrared thermography, lock-in and acoustic measurements were performed during the component development phases following a qualification route. This paper describes the major improvements stemming from better measurement accuracy and refined data processing and analyses recent developments aimed at investigating the capability to qualify the component in situ during its lifetime.

  6. Advanced qualification methodology for actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Durocher, A.; Escourbiac, F.; Grosman, A.; Boscary, J.; Merola, M.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Missirlian, M.; Schlosser, J.; Tivey, R.

    2007-01-01

    The use of high heat flux plasma facing components (PFCs) in steady state fusion devices requires high reliability. These components have to withstand heat fluxes in the range 10-20 MW m -2 involving a number of severe engineering constraints. Feedback from the experience of various industrial manufacturings showed that the bonding of the refractory armour material onto the metallic heat sink causes generic difficulties strongly depending on material qualities and specific design. As the heat exhaust capability and lifetime of PFCs during plasma operation are directly linked to the manufacturing quality, a set of qualification activities such as active infrared thermography, lock-in and acoustic measurements were performed during the component development phases following a qualification route. This paper describes the major improvements stemming from better measurement accuracy and refined data processing and analyses recent developments aimed at investigating the capability to qualify the component in situ during its lifetime

  7. Phenoloxidase activity in larval and juvenile homogenates and adult plasma and haemocytes of bivalve molluscs.

    Science.gov (United States)

    Luna-González, Antonio; Maeda-Martínez, Alfonso N; Vargas-Albores, Francisco; Ascencio-Valle, Felipe; Robles-Mungaray, Miguel

    2003-10-01

    Phenoloxidase (PO) activity was studied in larval and juvenile homogenates and in the plasma and haemocytes of adult Crassostrea gigas, Argopecten ventricosus, Nodipecten subnodosus, and Atrina maura. Samples were tested for the presence of PO activity by incubation with the substrate L-3, 4-dihydroxyphenylalanine using trypsin, alpha-chymotrypsin, laminarin, lipopolysaccharides (LPS), and sodium dodecyl sulphate (SDS) to elicit activation of prophenoloxidase (proPO) system. PO activity was not detected in larval homogenate. In juvenile homogenate, PO activity was found only in C. gigas and N. subnodosus. PO activity was present in adult samples and was enhanced by elicitors in the plasma of all species tested, but in haemocyte lysate supernatant (HLS) of only N. subnodosus. Activation of proPO by laminarin was suppressed by a protease inhibitor cocktail (P-2714) in plasma and HLS of all species tested.

  8. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    Science.gov (United States)

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    2016-04-22

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5p might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2 are down

  10. The effect of SOD1 mutation on cellular bioenergetic profile and viability in response to oxidative stress and influence of mutation-type.

    Directory of Open Access Journals (Sweden)

    Katie Richardson

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. Substantial evidence implicates oxidative stress and mitochondrial dysfunction as early events in disease progression. Our aim was to ascertain whether mutation of the SOD1 protein increases metabolic functional susceptibility to oxidative stress. Here we used a motor neuron-like cell line (NSC34 stably transfected with various human mutant SOD1 transgenes (G93A, G37R, H48Q to investigate the impact of oxidative stress on cell viability and metabolic function within intact cells. NSC34 cells expressing mutant SOD1 showed a dose dependent reduction in cell viability when exposed to oxidative stress induced by hydrogen peroxide, with variation between mutations. The G93A transfectants showed greater cell death and LDH release compared to cells transfected with the other SOD1 mutations, and H48Q showed an accelerated decline at later time points. Differences in mitochondrial bioenergetics, including mitochondrial respiration, coupling efficiency and proton leak, were identified between the mutations, consistent with the differences observed in viability. NSC34 cells expressing G93A SOD1 displayed reduced coupled respiration and mitochondrial membrane potential compared to controls. Furthermore, the G93A mutation had significantly increased metabolic susceptibility to oxidative stress, with hydrogen peroxide increasing ROS production, reducing both cellular oxygen consumption and glycolytic flux in the cell. This study highlights bioenergetic defects within a cellular model of ALS and suggests that oxidative stress is not only detrimental to oxygen consumption but also glycolytic flux, which could lead to an energy deficit in the cell.

  11. Allium Cepa Ameliorates Ethanol-Induced Gastric Injury in Rats Via ...

    African Journals Online (AJOL)

    ACER

    (SOD) and Catalase (CAT) activities) were carried out in plasma and gastric tissue. ... glandular destruction in the gastric mucosa and infiltration of inflammatory ... Gastric injury is one of major diseases affecting ..... inflammatory bowel disease.

  12. Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

    OpenAIRE

    Bocci, Tommaso; Pecori, Chiara; Giorli, Elisa; Briscese, Lucia; Tognazzi, Silvia; Caleo, Matteo; Sartucci, Ferdinando

    2011-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O−2) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS pa...

  13. Garlic activates SIRT-3 to prevent cardiac oxidative stress and mitochondrial dysfunction in diabetes.

    Science.gov (United States)

    Sultana, Md Razia; Bagul, Pankaj K; Katare, Parameshwar B; Anwar Mohammed, Soheb; Padiya, Raju; Banerjee, Sanjay K

    2016-11-01

    Cardiac complications are major contributor in the mortality of diabetic people. Mitochondrial dysfunctioning is a crucial contributor for the cardiac complications in diabetes, and SIRT-3 remains the major mitochondrial deacetylase. We hypothesized whether garlic has any role on SIRT-3 to prevent mitochondrial dysfunction in diabetic heart. Rats with developed hyperglycemia after STZ injection were divided into two groups; diabetic (Dia) and diabetic+garlic (Dia+Garl). Garlic was administered at a dose of 250mg/kg/day, orally for four weeks. An additional group was maintained to evaluate the effect of raw garlic administration on control rat heart. We have observed altered functioning of cardiac mitochondrial enzymes involved in metabolic pathways, and increased levels of cardiac ROS with decreased activity of catalase and SOD in diabetic rats. Cardiac mRNA expression of TFAM, PGC-1α, and CO1 was also altered in diabetes. In addition, reduced levels of electron transport chain complexes that observed in Dia group were normalized with garlic administration. This indicates the presence of increased oxidative stress with mitochondrial dysfunctioning in diabetic heart. We have observed reduced activity of SIRT3 and increased acetylation of MnSOD. Silencing SIRT-3 in cells also revealed the same. However, administration of garlic improved the SIRT-3 and MnSOD activity, by deacetylating MnSOD. Increased SOD activity was correlated with reduced levels of ROS in garlic-administered rat hearts. Collectively, our results provide an insight into garlic's protection to T1DM heart through activation of SIRT3-MnSOD pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Polymorphism variant of MnSOD A16V and risk of female infertility in northern Iran

    Directory of Open Access Journals (Sweden)

    Mostafa Pournourali

    2016-12-01

    Conclusion: It is suggested that the MnSOD A16V polymorphism may be associated with a risk of female infertility in northern Iran. More studies should be considered with a larger number of patients and controls to confirm our results.

  15. Effect of antigravity suit inflation on cardiovascular, PRA, and PVP responses in humans. [Plasma Renin Activity and Plasma VasoPressin

    Science.gov (United States)

    Kravik, S. E.; Keil, L. C.; Geelen, G.; Wade, C. E.; Barnes, P. R.

    1986-01-01

    The effects of lower body and abdominal pressure, produced by antigravity suit inflation, on blood pressure, pulse rate, fluid and electrolyte shift, plasma vasopressin and plasma renin activity in humans in upright postures were studied. Five men and two women stood upright for 3 hr with the suit being either inflated or uninflated. In the control tests, the suit was inflated only during the latter part of the trials. Monitoring was carried out with a sphygnomanometer, with sensors for pulse rates, and using a photometer and osmometer to measure blood serum characteristics. The tests confirmed earlier findings that the anti-g suit eliminates increases in plasma renin activity. Also, the headward redistribution of blood obtained in the tests commends the anti-g suit as an alternative to water immersion or bed rest for initial weightlessness studies.

  16. Plasma Dopamine-Beta-Hydroxylase as an Index of Peripheral Noradrenergic Activity

    Science.gov (United States)

    1981-08-17

    and an acidic buffer are included in the DBH mix along with the substrate. In addition, a monoamine oxidase inhibitor is added to the mix to prevent ...diseases (41 , 155, 97). Patients with hyperthyroidism have significantly lower DBH values than those of controls (190, 192), and patients with hypo... hyperthyroidism , and plasma DBH activity was inversely related to thyroxin levels during therapy for hypothyroidism. Although this and plasma NE

  17. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes.

    Science.gov (United States)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping; Yang, Hongying

    2015-10-01

    Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects, overexpression of SOD2 abolished the bystander oxidative stress and DNA damage, indicating that SOD2 was critical to the induction of RIBEs. Moreover, we found that miR-21 regulated SOD2, suggesting that miR-21 might mediate bystander responses through its regulation on SOD2. In conclusion, this study revealed a profound role of miR-21-regulated SOD2 of unirradiated WS1

  18. The modulatory effect of estradiol benzoate on superoxide dismutase activity in the developing rat brain

    Directory of Open Access Journals (Sweden)

    Pejic S.

    2003-01-01

    Full Text Available The sensitivity of copper,zinc (CuZn- and manganese (Mn-superoxide dismutase (SOD to exogenous estradiol benzoate (EB was investigated in Wistar rats during postnatal brain development. Enzyme activities were measured in samples prepared from brains of rats of both sexes and various ages between 0 and 75 days, treated sc with 0.5 µg EB/100 g body weight in 0.1 ml olive oil/100 g body weight, 48 and 24 h before sacrifice. In females, EB treatment stimulated MnSOD activity on days 0 (66.1%, 8 (72.7% and 15 (81.7%. In males, the stimulatory effect of EB on MnSOD activity on day 0 (113.6% disappeared on day 8 and on days 15 and 45 it became inhibitory (40.3 and 30.5%, respectively. EB had no effect on the other age groups. The stimulatory effect of EB on CuZnSOD activity in newborn females (51.8% changed to an inhibitory effect on day 8 (38.4% and disappeared by day 45 when inhibition was detected again (48.7%. In males, the inhibitory effect on this enzyme was observed on days 0 (45.0% and 15 (28.9%, and then disappeared until day 60 when a stimulatory effect was observed (38.4%. EB treatment had no effect on the other age groups. The sensitivity of MnSOD to estradiol differed significantly between sexes during the neonatal and prepubertal period, whereas it followed a similar pattern thereafter. The sensitivity of CuZnSOD to estradiol differed significantly between sexes during most of the study period. Regression analysis showed that the sensitivity of MnSOD to this estrogen tended to decrease similarly in both sexes, whereas the sensitivity of CuZnSOD showed a significantly different opposite tendency in female and male rats. These are the first reports indicating hormonal modulation of antioxidant enzyme activities related to the developmental process.

  19. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

    Science.gov (United States)

    Lupia, E; Bosco, O; Mariano, F; Dondi, A E; Goffi, A; Spatola, T; Cuccurullo, A; Tizzani, P; Brondino, G; Stella, M; Montrucchio, G

    2009-06-01

    Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte-platelet binding and P-selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte-platelet binding, and the role of TPO in these effects were also studied in vitro. Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte-platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte-platelet binding and P-selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte-platelet binding and platelet P-selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi-organ failure in these diseases.

  20. Effects of Thermal Stress on the mRNA Expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass ( Lateolabrax maculatus)

    Science.gov (United States)

    Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam

    2018-03-01

    The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.

  1. Recognition of acidic phospholipase A2 activity in plasma membranes of resident peritoneal macrophages

    International Nuclear Information System (INIS)

    Shibata, Y.; Abiko, Y.; Ohno, H.; Araki, T.; Takiguchi, H.

    1988-01-01

    Phospholipase (PLase) activities in the plasma membrane of guinea pig peritoneal macrophages were studied, as these enzymes having such activity may be candidates for the release of arachidonic acid (AA) from phosphatidylcholine (PC). An AA release system operating at acidic pH was identified in the macrophage plasma membrane and characterized. This membrane-bound acidic PLase A 2 had an optimum pH at 4.5, and enzyme activation was observed in Ca ++ -free medium; but the maximum activity was found at 0.5 mM Ca ++ concentration. The Km value for PC of acidic PLase A 2 was 4.2 μM, and a Michaelis-Menten relationship was evident. Calcium might act as a cofactor at some intermediate step during the activation of acidic PLase A 2 in light of the uncompetitive manner of Ca ++ action. Furthermore, the release of [ 3 H]-AA from preradiolabelled macrophage plasma membranes occurred with the addition of Ca ++ at pH 4.5. These data suggest that the acid PLase A 2 is a component of the plasma membrane and is not due to lysosomal contamination since membrane-bound acidic PLase A 2 properties are opposite to those found for lysosomal PLase A 2

  2. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    International Nuclear Information System (INIS)

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet

    2014-01-01

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process

  3. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    Energy Technology Data Exchange (ETDEWEB)

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet, E-mail: ahmetkoc@iyte.edu.tr

    2014-02-07

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.

  4. Stimulation effects of low dose-rate irradiation on pancreatic antioxidant activity in type II diabetes model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu; Sakai, Kazuo

    2005-01-01

    The effects of low dose-rate gamma irradiation on the type II diabetes mellitus were investigated in BKS.Cg-+Lepr db /+Lepr db /Jcl (DB mice). Ten-week-old female DB mice (5 mice in each group) were irradiated with gamma ray at 0.35, 0.70, or 1.2 mGy/hr. During the course of the 12 weeks the glucose level slightly increased with little difference between the irradiated and the non-irradiated groups. The plasma insulin concentration decreased within the first 4 weeks in all groups. The level was kept low in the non-irradiated mice; while the insulin level in the irradiated groups showed a tendency to increase. In the 0.70 mGy/hr group the increase was statistically significant after 12 weeks of irradiation. Total activity of SOD, one of antioxidative enzymes, decreased both in non-irradiated and irradiated groups; however the decrease was less in the irradiated groups, especially 0.70 mGy/hr group. In the 0.70 mGy/hr group Mn-SOD activity, one of the components of total SOD activity, increased after 12-week irradiation. A pathological examination of the pancreas revealed that damage to β cells responsible for the secretion of insulin was much less in the 0.70 mGy/hr group compared to that in the non-irradiated group. These results indicated that the low dose-rate irradiation increase the antioxidative capacity in the pancreas to protect β cells from oxidative damage, and the to increase the insulin level. This mechanism would lead the mice to the recovery from the disease and the prolongation of the life span as is demonstrated in our previous report. (author)

  5. Relationship between physical activity and plasma fibrinogen concentrations in adults without chronic diseases.

    Directory of Open Access Journals (Sweden)

    Manuel A Gomez-Marcos

    Full Text Available To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR, and plasma fibrinogen concentrations.A cross-sectional study in a previously established cohort of healthy subjects was performed. This study analyzed 1284 subjects who were included in the EVIDENT study (mean age 55.0±13.6 years; 60.90% women. Fibrinogen concentrations were measured in blood plasma. Physical activity was assessed with a 7-day PAR (metabolic equivalents (METs/hour/week and GT3X ActiGraph accelerometer (counts/minute for 7 days.Physical exercise, which was evaluated with both an accelerometer (Median: 237.28 counts/minute and 7-day PAR (Median: 8 METs/hour/week. Physical activity was negatively correlated with plasma fibrinogen concentrations, which was evaluated by counts/min (r = -0.100; p<0.001 and METs/hour/week (r = -0.162; p<0.001. In a multiple linear regression analysis, fibrinogen concentrations of the subjects who performed more physical activity (third tertile of count/minute and METs/hour/week respect to subjects who performed less (first tertile, maintained statistical significance after adjustments for age and others confounders (β = -0.03; p = 0.046 and β = -0.06; p<0.001, respectively.Physical activity, as assessed by accelerometer and 7-day PAR, was negatively associated with plasma fibrinogen concentrations. This relation is maintained in subjects who performed more exercise even after adjusting for age and other confounders.

  6. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin

    2016-09-10

    Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach-using a remote hydrogen-plasma process-to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. © 2016 Elsevier Ltd.

  7. Soluble CD206 plasma levels in rheumatoid arthritis reflect decrease in disease activity

    DEFF Research Database (Denmark)

    Heftdal, Line Dam; Stengaard-Pedersen, Kristian; Ørnbjerg, Lykke Midtbøll

    2017-01-01

    internalization and degradation. The soluble form has been suggested as a biomarker of M2A-macrophage activation. The aim of this study was to investigate sCD206 plasma levels in early RA patients initiating anti-TNFα treatment. Plasma levels of sCD206 were measured by ELISA in samples from 155 early RA patients...... from baseline after 6 months. In the ADA group, however, levels remained lower than baseline throughout the treatment period. In conclusion, initially, plasma sCD206 in early RA patients decreased in accordance with disease activity and initiation of DMARD treatment. Treatment with anti-TNFα preserved......Rheumatoid arthritis (RA) is characterized by chronic joint inflammation and infiltration by activated macrophages. TNFα is a central mediator in this process. The mannose receptor, CD206, is a scavenger receptor expressed by M2A-macrophages and dendritic cells. It is involved in collagen...

  8. A radioreceptor assay for measurement of plasma glucocorticoid binding activity

    International Nuclear Information System (INIS)

    Fan Jie

    1990-01-01

    A radioreceptor assay (RRA) for plasma glucocorticoid binding activity (GCBA) has been developed using glucocorticoid receptor in rat thymocytes. Unlike other assays for natural and certain synthetic corticosteroids, RRA measures the GCBA of all natural and synthetic GC in plasma. The range of standard curve was 0 ∼ 1.00 mg/L. The sensitivity was 0.01 mg/l. The recovery rate was 92.1%, and the intra and inter assay CV was 0.7% (n = 3) and 4.4% (n = 3) respectively. The level of corticosterone in 9 rat plasma samples was determined by RRA and CBG-isotope binding assay. There was a general correlation over a wide range between the values determined by the two assays (r = 0.95; P < 0.001). The measuring condition was described in detail

  9. Radioreceptor assay for evaluation of the plasma glucocorticoid activity of natural and synthetic steroids in man

    International Nuclear Information System (INIS)

    Ballard, P.L.; Carter, J.P.; Graham, B.S.; Baxter, J.D.

    1975-01-01

    An assay for plasma glucocorticoid activity has been developed using specific glucocorticoid receptors. Unlike other assays for cortisol and certain synthetic corticosteroids, this radioreceptor assay measures the glucocorticoid activity of all natural and synthetic steroids. Steroids extracted from as little as 0.05 ml of plasma are incubated with 3 H-dexamethasone and cytosol receptors from cultured rat hepatoma cells. From 0.5 to 50 ng of cortisol are accurately detected. Glucocorticoid activities of adult plasmas determined by the assay correlate closely with corticoid levels obtained in the CBG-isotope and fluorometric assays. Other steroids are measured in proportion to both concentration and potency as glucocorticoids. Relative activities include: cortisol 100, dexamethasone 940, prednisolone 230, prednisone 3, estradiol 1 and androstenedione 1. A similar ranking of steroids was found using receptors from a human source (fetal lung). The assay has been useful in detecting glucocorticoid activity in unidentified medications and in measuring plasma glucocorticoid levels after administration of synthetic corticosteroids. (auth)

  10. Protease activity of plasma hemopexin

    NARCIS (Netherlands)

    Bakker, WW; Borghuis, T; Harmsen, MC; van den Berg, Anke; Kema, IP; Niezen, KE; Kapojos, JJ

    Background. Previous studies into the relevance of a putative circulating factor in the pathogenesis of minimal change nephrotic syndrome have opened the possibility that plasma hemopexin might be an important effector molecule in this disorder. Thus, intra renal infusion of isolated plasma

  11. Associations of geomagnetic activity with plasma sheet thinning and expansion: A statistical study

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Pytte, T.; West, H.I. Jr.

    1984-01-01

    Associations of geomagnetic activity in the auroral zone with thinnings and expansions of the magnetotail plasma sheet are examined statistically in this paper. We first identified many plasma sheet thinnings and expansions in plasma and particle data from VELA satellites and from OGO 5 without reference to the ground magnetic data. These events were grouped according to the location of the detecting satellite in the magnetotail. For each such group the times of thinning or expansion were then used as fiducial times in a superposed-epoch analysis of the geomagnetic AL index values that were recorded in 8-hour intervals centered on the event times. The results show that many plasma sheet thinnings and expansions are related to discrete negative bay structures that are the classical signature of substorms. Furthermore, they support earlier findings that plasma sheet thinning and expansion at the VELA orbit (rroughly-equal18 R/sub E/) tend to be associated with the onset of the auroral zone negative bay and the beginning of its subsidence, respectively. Earthward of rroughly-equal13-15 R/sub E/, plasma sheet expansion occurs near the time of the onset of the negative bay, again in agreement with earlier findings. A large fraction of plasma sheet expansions to half thicknesses of > or approx. =6 R/sub E/ at the VELA orbit are associated not with a baylike geomagnetic disturbance but with subsidence of a prolonged interval of disturbance. The study also shows that many plasma sheet expansions are related simply to generally enhanced geomagnetic activity showing no baylike or other distinctive features

  12. Activities of superoxide dismutase and catalase in two L5178Y murine lymphoma cell strains with different radiosensitivities

    International Nuclear Information System (INIS)

    Jaworska, A.; Rosiek, O.; Witkowska, K.

    1987-01-01

    Activities of superoxide dismutase (SOD) and catalase (CAT) in two murine leukemia L5178Y strains were determined. It was found that the relatively resistant to ionizing radiation L5178Y-R (LY-R) strain has the SOD activity two times higher than L5178Y-S (LY-S), the sensitive one. On the contrary, LY-S has two times higher activity of CAT than LY-R. These results are in agreement with hypotheses of deleterious role of O 2 - and radioprotective role of SOD. 33 refs., 2 tabs. (author)

  13. Activities report of the National Space Research Institute Plasma Laboratory for the period 1988/1989

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto.

    1990-11-01

    This report describes the activities performed in the period 1988/1989 by the National Space Research Institute (INPE/SCT) Plasma Laboratory (LAP). The report presents the main results in the following research lines: plasma physics, plasma technology, and controlled thermonuclear fusion. (author). 49 figs., 3 tabs

  14. Plasma homovanillic acid, plasma anti-D1 and -D2 dopamine-receptor activity, and negative symptoms in chronically mediated schizophrenia.

    Science.gov (United States)

    Suzuki, E; Kanba, S; Nibuya, M; Koshikawa, H; Nakaki, T; Yagi, G

    1992-02-15

    We have investigated the relationship between the concentration of homovanillic acid in human plasma (pHVA) and plasma anti-D1 and anti-D2 dopamine receptor activity in chronic schizophrenic patients whose neuroleptic dosage was changed. The change in pHVA level correlated with that in anti-D1, not anti-D2 activity, thus suggesting that the neuroleptic-induced changes in pHVA concentration may be associated with the blocking of D1- as well as D2- receptors. The change of scores on the Scale for the Assessment of Negative Symptoms did not significantly correlate with changes in anti-D1 or anti-D2 activity, but did so correlated with the change in pHVA level.

  15. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    Science.gov (United States)

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  16. Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Hadil F Al-Jallad

    2011-01-01

    Full Text Available Transglutaminase activity, arising potentially from transglutaminase 2 (TG2 and Factor XIIIA (FXIIIA, has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.

  17. Differences in muscle pain and plasma creatine kinase activity after ...

    African Journals Online (AJOL)

    encephalopathy,18 and the decrement in muscle power associated with muscle damage.6 ... A high degree of intra-individual variability in plasma. CK activity was ..... 21. Komi PV. Stretch-shortening cycle exercise: a powerful model to study.

  18. Inherited variations in the SOD and GPX gene families and cancer risk.

    Science.gov (United States)

    Yuzhalin, Arseniy E; Kutikhin, Anton G

    2012-05-01

    Antioxidant defence enzymes are essential protectors of living organisms against oxidative stress. These enzymes are involved in the detoxification and decomposition of harmful chemical compounds called reactive oxygen species (ROS), which are, first and foremost, a source of intracellular oxidative stress. ROS directly promote the oxidative damage of genes resulting in aberrant regulation of many vital cell processes. As a consequence, the presence of ROS can lead to genomic instability, deregulation of transcription, induction of mitogenic signal transduction pathways and replication errors, all of which may increase the risk of cancer development. Single nucleotide polymorphisms of antioxidant defence genes may significantly modify the functional activity of the encoded proteins; therefore, certain alleles can be established as risk factors for particular cancer types. In the future, these risk alleles may be utilized as genomic markers of cancer predisposition to allow for early prevention measures among carriers of these alleles. The review is devoted to common single nucleotide polymorphisms of the superoxide dismutase (SOD) and glutathione peroxidase (GPX) gene families and their impact on carcinogenesis. The predictive significance of several polymorphisms was determined, and these polymorphisms were recommended for further in-depth research.

  19. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  20. The influence of blood plasma of irradiated animals on activity of Ca2+ - ATPase and Mg2+ - ATPase in plasma membrane of thymocytes

    International Nuclear Information System (INIS)

    Dreval', V.I.

    1994-01-01

    Rats were irradiated at doses 1.5, 4.0, 7.0 and 10 Gy. After 1, 8, 15, 22 and 30 days the effect of blood plasma on activity of Ca 2+ -ATPase and Mg 2+ -ATPase in plasma membrane of thymocytes was investigated. It was found that the raise of irradiation dose leads to increasing of blood plasma effect on membrane-bound enzymes

  1. Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency.

    LENUS (Irish Health Repository)

    Krijt, Jakub

    2011-02-01

    Cystathionine β-synthase (CBS) deficiency is usually confirmed by assaying the enzyme activity in cultured skin fibroblasts. We investigated whether CBS is present in human plasma and whether determination of its activity in plasma could be used for diagnostic purposes. We developed an assay to measure CBS activity in 20 μL of plasma using a stable isotope substrate - 2,3,3-(2)H serine. The activity was determined by measurement of the product of enzyme reaction, 3,3-(2)H-cystathionine, using LC-MS\\/MS. The median enzyme activity in control plasma samples was 404 nmol\\/h\\/L (range 66-1,066; n = 57). In pyridoxine nonresponsive CBS deficient patients, the median plasma activity was 0 nmol\\/ho\\/L (range 0-9; n = 26), while in pyridoxine responsive patients the median activity was 16 nmol\\/hour\\/L (range 0-358; n = 28); this overlapped with the enzyme activity from control subject. The presence of CBS in human plasma was confirmed by an in silico search of the proteome database, and was further evidenced by the activation of CBS by S-adenosyl-L-methionine and pyridoxal 5\\'-phosphate, and by configuration of the detected reaction product, 3,3-(2)H-cystathionine, which was in agreement with the previously observed CBS reaction mechanism. We hypothesize that the CBS enzyme in plasma originates from liver cells, as the plasma CBS activities in patients with elevated liver aminotransferase activities were more than 30-fold increased. In this study, we have demonstrated that CBS is present in human plasma and that its catalytic activity is detectable by LC-MS\\/MS. CBS assay in human plasma brings new possibilities in the diagnosis of pyridoxine nonresponsive CBS deficiency.

  2. Superoxide dismutase recombinant Lactobacillus fermentum ameliorates intestinal oxidative stress through inhibiting NF-κB activation in a trinitrobenzene sulphonic acid-induced colitis mouse model.

    Science.gov (United States)

    Hou, C L; Zhang, J; Liu, X T; Liu, H; Zeng, X F; Qiao, S Y

    2014-06-01

    Superoxide dismutase (SOD) can prevent and cure inflammatory bowel diseases by decreasing the amount of reactive oxygen species. Unfortunately, short half-life of SOD in the gastrointestinal tract limited its application in the intestinal tract. This study aimed to investigate the treatment effects of recombinant SOD Lactobacillus fermentum in a colitis mouse model. In this study, we expressed the sodA gene in Lact. fermentum I5007 to obtain the SOD recombinant strain. Then, we determined the therapeutic effects of this SOD recombinant strain in a trinitrobenzene sulphonic acid (TNBS)-induced colitis mouse model. We found that SOD activity in the recombinant Lact. fermentum was increased by almost eightfold compared with that in the wild type. Additionally, both the wild type and the recombinant Lact. fermentum increased the numbers of lactobacilli in the colon of mice (P < 0·05). Colitis mice treated with recombinant Lact. fermentum showed a higher survival rate and lower disease activity index (P < 0·05). Recombinant Lact. fermentum significantly decreased colonic mucosa histological scoring for infiltration of inflammatory cells, lipid peroxidation, the expression of pro-inflammatory cytokines and myeloperoxidase (P < 0·05) and inhibited NF-κB activity in colitis mice (P < 0·05). SOD recombinant Lact. fermentum significantly reduced oxidative stress and inflammation through inhibiting NF-κB activation in the TNBS-induced colitis model. This study provides insights into the anti-inflammatory effects of SOD recombinant Lact. fermentum, indicating the potential therapeutic effects in preventing and curing intestinal bowel diseases. © 2014 The Society for Applied Microbiology.

  3. Large-scale production and properties of human plasma-derived activated Factor VII concentrate.

    Science.gov (United States)

    Tomokiyo, K; Yano, H; Imamura, M; Nakano, Y; Nakagaki, T; Ogata, Y; Terano, T; Miyamoto, S; Funatsu, A

    2003-01-01

    An activated Factor VII (FVIIa) concentrate, prepared from human plasma on a large scale, has to date not been available for clinical use for haemophiliacs with antibodies against FVIII and FIX. In the present study, we attempted to establish a large-scale manufacturing process to obtain plasma-derived FVIIa concentrate with high recovery and safety, and to characterize its biochemical and biological properties. FVII was purified from human cryoprecipitate-poor plasma, by a combination of anion exchange and immunoaffinity chromatography, using Ca2+-dependent anti-FVII monoclonal antibody. To activate FVII, a FVII preparation that was nanofiltered using a Bemberg Microporous Membrane-15 nm was partially converted to FVIIa by autoactivation on an anion-exchange resin. The residual FVII in the FVII and FVIIa mixture was completely activated by further incubating the mixture in the presence of Ca2+ for 18 h at 10 degrees C, without any additional activators. For preparation of the FVIIa concentrate, after dialysis of FVIIa against 20 mm citrate, pH 6.9, containing 13 mm glycine and 240 mm NaCl, the FVIIa preparation was supplemented with 2.5% human albumin (which was first pasteurized at 60 degrees C for 10 h) and lyophilized in vials. To inactivate viruses contaminating the FVIIa concentrate, the lyophilized product was further heated at 65 degrees C for 96 h in a water bath. Total recovery of FVII from 15 000 l of plasma was approximately 40%, and the FVII preparation was fully converted to FVIIa with trace amounts of degraded products (FVIIabeta and FVIIagamma). The specific activity of the FVIIa was approximately 40 U/ micro g. Furthermore, virus-spiking tests demonstrated that immunoaffinity chromatography, nanofiltration and dry-heating effectively removed and inactivated the spiked viruses in the FVIIa. These results indicated that the FVIIa concentrate had both high specific activity and safety. We established a large-scale manufacturing process of human plasma

  4. Factors influencing zinc status of apparently healthy indians.

    Science.gov (United States)

    Agte, Vaishali V; Chiplonkar, Shashi A; Tarwadi, Kirtan V

    2005-10-01

    To identify dietary, environmental and socio-economic factors associated with mild zinc deficiency, three zinc status indices; erythrocyte membrane zinc (RBCMZn), plasma zinc and super oxide dismutase (SOD) were assessed in free living and apparently healthy Indian population. Dietary patterns of 232 men and 223 women (20-65 yr) from rural, industrial and urban regions of Western India were evaluated by food frequency questionnaire. RBCMZn was estimated using atomic absorption spectrometry, hemoglobin and serum ceruloplasmin by spectrophotometer. On a sub sample (48 men and 51 women) plasma zinc and SOD were also assessed. Mean RBCMZn was 0.5 +/- 0.1 micromols/g protein with 46% individuals showing zinc deficiency. Mean plasma zinc was 0.98 +/- 0.12 microg/mL with 25% men and 2.5% women having values below normal range. Mean SOD was 0.97 +/- 0.1 (u/mL cells). A significant positive correlation was observed between intakes of green leafy vegetables, other vegetables and milk products with RBCMZn status (p plasma zinc (p > 0.2). Cereal and legume intakes were negatively correlated with RBCMZn (p plasma zinc (p 0.2). Fruit and other vegetable intake were positively correlated with SOD (p Plasma zinc indicated positive association with zinc, thiamin and riboflavin intakes (p plasma zinc and SOD. Prominent determinants of zinc status were intakes of beta-carotene and zinc along with environmental conditions and family size.

  5. Study of plasma charging-induced white pixel defect increase in CMOS active pixel sensor

    International Nuclear Information System (INIS)

    Tokashiki, Ken; Bai, KeunHee; Baek, KyeHyun; Kim, Yongjin; Min, Gyungjin; Kang, Changjin; Cho, Hanku; Moon, Jootae

    2007-01-01

    Plasma process-induced 'white pixel defect' (WPD) of CMOS active pixel sensor (APS) is studied for Si3N4 spacer etch back process by using a magnetically enhanced reactive ion etching (MERIE) system. WPD preferably takes place at the wafer edge region when the magnetized plasma is applied to Si3N4 etch. Plasma charging analysis reveals that the plasma charge-up characteristic is well matching the edge-intensive WPD generation, rather than the UV radiation. Plasma charging on APS transfer gate might lead to a gate leakage, which could play a role in generation of signal noise or WPD. In this article the WPD generation mechanism will be discussed from plasma charging point of view

  6. Present status of plasma-wall interactions research and materials development activities in the US

    International Nuclear Information System (INIS)

    Hirooka, Y.; Conn, R.W.

    1989-08-01

    It is well known in the fusion engineering community that the plasma confinement performance in magnetic fusion devices is strongly affected by edge-plasma interactions with surface components. These plasma-material interactions (PMI) include fuel particle recycling and impurity generation both during normal and off-normal operation. To understand and then to control PMI effects, considerable effort has been made, particularly over the last decade in US, supported by Department of Energy, Division of Development and Technology. Also, because plasma-facing components are generally expected to receive significant amount of heat due to plasma bombardment and run-away electrons, materials must tolerate high-heat fluxes (HHF). The HHF-component research has been conducted in parallel with PMI research. One strong motivation for these research activities is that DT-burning experiments are currently planned in the Tokamak Test Fusion Reactor (TFTR) in early 1990s. Several different but mutually complementary approaches have been taken in the PMI+HHF research. The first approach is to conduct PMI experiments using toroidal fusion devices such as TFTR. The second one is to simulate elemental processes involved in PMI using ion beams and electron beams, etc. The last one but not least is to use non-tokamak plasma facilities. Along with these laboratory activities, new materials have been developed and evaluated from the PMI+HHF point of view. In this paper, several major PMI+HHF research facilities in US and their activities are briefly reviewed. 21 refs., 10 figs., 2 tabs

  7. Effect of Vitamin E and Selenium Supplement on Paraoxonase-1 Activity, Oxidized Low Density Lipoprotein and Antioxidant Defense in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Rashidi

    2011-08-01

    Full Text Available Introduction: The aim of the present study was to assess the effects of vitamin E and selenium supplementation on serum paraoxonase (PON1 activity, lipid peroxidation and antioxidant defense in streptozotocin-induced diabetic rats. Methods: Thirty two female Sprague Dawley rats were divided into 3 groups: the control group (n=8 received a standard diet; streptozotocin (STZ-induced diabetic rats (n=12, received corn oil and physiological solution; and vitamin E and selenium supplemented diabetic rats (n=12 were treated with oral administration of vitamin E (300 mg/kg and sodium selenite (0.5 mg/kg once a day for 4 weeks. Results: Significantly lower total antioxidant status (TAS, PON1and erythrocyte SOD activities and a higher fasting plasma glucose level were observed in the diabetic rats compared to the control. A significant increase in SOD and GPX activities in vitamin E and selenium supplemented diabetic group was observed after 5 weeks of the experiment. Compared to the normal rats, malondialdehyde (MDA and oxidized LDL (Ox-LDL levels were higher in the diabetic animals; however, these values reduced significantly following vitamin E and selenium supplementation. Conclusion: Vitamin E and selenium supplementation in diabetic rats has hypolipidemic, hypoglycemic and antioxidative effects and may slow down the progression of diabetic complications through its protective effect on PON1 activity and lipoproteins oxidation.

  8. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus.

    Science.gov (United States)

    Hamed, Saher; Brenner, Benjamin; Aharon, Anat; Daoud, Deeb; Roguin, Ariel

    2009-10-30

    The function of endothelial progenitor cells (EPCs), which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO) and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD), the enzyme that neutralizes superoxide anion (O2-). Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. EPCs from diabetic patients generated more O2-, had higher NAD(P)H oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  9. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2013-05-01

    Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance.

  10. Effects of Exercise on Oxidative Stress in Rats Induced by Ozone

    Directory of Open Access Journals (Sweden)

    Catalina Martinez-Campos

    2012-01-01

    Full Text Available Oxidative stress (OS induced by acute exercise is reduced by chronic exercise. Ozone (O3 exposure produces OS. The aim of this study was to determine if aerobic exercise (AE reduced OS produced by O3. A pilot experiment was performed with male Wistar rats submitted to AE (trained to swim 90 min/day. Adaptation to exercise was demonstrated three weeks after training by means of changes in reduced nitrates (NOx in plasma. Therefore, two-week training was chosen for the following experiments. Six of twelve trained rats were exposed to O3 (0.5 ppm, 4 h/day, one hour before exercise. Two groups of sedentary animals (n=6 each were used as controls, one of which was exposed to O3. At the end of the experiments NOx, 8-isoprostane (8-IP, malondialdehyde (MDA, superoxide dismutase (SOD activity, and carbonyls (CBs were measured in plasma. CBs did not change in any group. O3-induced OS was manifested by reduced NOx and SOD activity, as well as increased 8-IP and MDA. Exercise significantly blocked O3 effects although SOD was also decreased by exercise (a greater drop occurring in the O3 group. It is concluded that AE protects against OS produced by O3 and the effect is independent of SOD.

  11. Evaluation of behavioural and antioxidant activity of Cytisus scoparius Link in rats exposed to chronic unpredictable mild stress

    Directory of Open Access Journals (Sweden)

    Harisudhan Thanukrishnan

    2008-04-01

    Full Text Available Abstract Background Various human diseases have oxidative stress as one of their component. Many herbs have been reported to exhibit properties that combat oxidative stress through their active constituents such as flavonoids, tannins, phenolic compounds etc. Cytisus scoparius (CS Link, (Family: Leguminosae, also called Sarothamnus scoparius, has been shown in invitro experiments to be endowed with anti-diabetic, hypnotic and sedative and antioxidant activity. Therefore this study was carried out to evaluate CS for its anxiolytic, antidepressant and anti-oxidant activity in stressed rats. Methods 60% methanolic extract of CS was quantified for phenolic content by Folin-Ciocalteau's method. Chronic unpredictable mild stress (CMS was employed to induce stress in rats. CS (125 and 250 mg/kg, p.o and diazepam (DZM (2 mg/kg, p.o was administered during the 21 day stress exposure period. Anxiolytic and antidepressant activities of CS were assessed in open field exploratory and behavioural despair paradigms, respectively. Plasma glucose and total lipids; endogenous antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT; non-enzymic-ascorbic acid and thiobarbituric acid reactive substances (TBARS levels were measured in brain, kidneys and adrenals using standard protocols to assess the effect of CS. Results Total phenolic content of CS was found to be 8.54 ± 0.16% w/w. CMS produced anxiogenic and depressive behaviour in experimental rats with metabolic disturbance. Significant decrease in SOD, CAT levels and increase in lipid peroxidation level was observed in stressed rats. CS administration for 21 days during stress exposure significantly increased the ambulatory behaviour and decreased the freezing time in open field behaviour. In behavioural despair test no significant alteration in the immobility period was observed. CS also improved SOD, CAT, and ascorbic acid level and controlled the lipid peroxidation in different tissues

  12. Potential oxidative stress in the bodies of electric arc welding operators: effect of photochemical smog.

    Science.gov (United States)

    Zhu, You-Gen; Zhou, Jun-Fu; Shan, Wei-Ying; Zhou, Pei-Su; Tong, Gui-Zhong

    2004-12-01

    To investigate whether photochemical smog emitted during the process of electric arc welding might cause oxidative stress and potential oxidative damage in the bodies of welding operators. Seventy electric arc welding operators (WOs) and 70 healthy volunteers (HVs) were enrolled in a randomized controlled study design, in which the levels of vitamin C (VC) and vitamin E (VE) in plasma as well as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and the level of lipoperoxide (LPO) in erythrocytes were determined by spectrophotometry. Compared with the average values of the above experimental parameters in the HVs group, the average values of VC and VE in plasma as well as those of SOD, CAT and GPX in erythrocytes in the WOs group were significantly decreased (P smog the values of VC, VE, SOD, and GPX, except for CAT, in the WOs were decreased gradually (P smog in the bodies of WOs, thereby causing potential oxidative and lipoperoxidative damages in their bodies.

  13. An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET

    International Nuclear Information System (INIS)

    Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.

    1989-01-01

    A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs

  14. ZNStress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    McGown, Alexander; Shaw, Dame Pamela J; Ramesh, Tennore

    2016-07-26

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease with death on average within 2-3 years of symptom onset. Mutations in superoxide dismutase 1 (SOD1) have been identified to cause ALS. Riluzole, the only neuroprotective drug for ALS provides life extension of only 3 months on average. Thishighlights the need for compound screening in disease models to identify new neuroprotective therapies for this disease. Zebrafish is an emerging model system that is well suited for the study of diseasepathophysiology and also for high throughput (HT) drug screening. The mutant sod1 zebrafish model of ALS mimics the hallmark features of ALS. Using a fluorescence based readout of neuronal stress, we developed a high throughput (HT) screen to identify neuroprotective compounds. Here we show that the zebrafish screen is a robust system that can be used to rapidly screen thousands ofcompounds and also demonstrate that riluzole is capable of reducing neuronal stress in this model system. The screen shows optimal quality control, maintaining a high sensitivity and specificity withoutcompromising throughput. Most importantly, we demonstrate that many compounds previously failed in human clinical trials, showed no stress reducing activity in the zebrafish assay. We conclude that HT drug screening using a mutant sod1 zebrafish is a reliable model system which supplemented with secondary assays would be useful in identifying drugs with potential for neuroprotective efficacy in ALS.

  15. Plasma factor VII-activating protease is increased by oral contraceptives and induces factor VII activation in-vivo

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Skouby, Sven O.; Kluft, Cornelis

    2011-01-01

    progestins. FSAP genotypes, FSAP and factor VII (FVII) plasma measures were assessed at baseline and after 6 cycles of OC. The 1601GA genotype was present in 49 (8.3%) of the women and was associated with significantly reduced levels of FSAP (P≤0.001). OC use increased FSAP antigen by 25% and FSAP activity......Oral contraceptive (OC) use influences the hemostatic system significantly and is a risk factor for development of cardiovascular disease. Factor VII-activating protease (FSAP) has potential effects on hemostasis. The 1601GA genotype of the 1601G/A polymorphism in the FSAP gene expresses a FSAP...... by 59% (P0.05). The relative increase in FSAP activity was significantly higher in women carrying the 1601GG genotype (63%) than in women carrying 1601GA genotype (50%) (P=0.01) and was associated with an increased activation of FVII. In conclusion: OC use increases the plasma measures of FSAP...

  16. Mononuclear nonheme iron(III) complexes that show superoxide dismutase-like activity and antioxidant effects against menadione-mediated oxidative stress.

    Science.gov (United States)

    Hitomi, Yutaka; Iwamoto, Yuji; Kashida, Akihiro; Kodera, Masahito

    2015-05-21

    This communication describes the superoxide dismutase (SOD)-like activity of mononuclear iron(III) complexes with pentadentate monocarboxylamido ligands. The SOD activity can be controlled by the electronic nature of the substituent group on the ligand. The nitro-substituted complex showed clear cytoprotective activity against menadione-mediated oxidative stress in cultured cells.

  17. Seasonal variations of melatonin in ram seminal plasma are correlated to those of testosterone and antioxidant enzymes

    Directory of Open Access Journals (Sweden)

    Muiño-Blanco Teresa

    2010-06-01

    Full Text Available Abstract Background Some breeds of sheep are highly seasonal in terms of reproductive capability, and these changes are regulated by photoperiod and melatonin secretion. These changes affect the reproductive performance of rams, impairing semen quality and modifying hormonal profiles. Also, the antioxidant defence systems seem to be modulated by melatonin secretion, and shows seasonal variations. The aim of this study was to investigate the presence of melatonin and testosterone in ram seminal plasma and their variations between the breeding and non-breeding seasons. In addition, we analyzed the possible correlations between these hormones and the antioxidant enzyme defence system activity. Methods Seminal plasma from nine Rasa Aragonesa rams were collected for one year, and their levels of melatonin, testosterone, superoxide dismutase (SOD, glutathione reductase (GRD, glutathione peroxidase (GPX and catalase (CAT were measured. Results All samples presented measurable quantities of hormones and antioxidant enzymes. Both hormones showed monthly variations, with a decrease after the winter solstice and a rise after the summer solstice that reached the maximum levels in October-November, and a marked seasonal variation (P Conclusions These results show the presence of melatonin and testosterone in ram seminal plasma, and that both hormones have seasonal variations, and support the idea that seasonal variations of fertility in the ram involve interplay between melatonin and the antioxidant defence system.

  18. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    Science.gov (United States)

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the

  19. Activations of c-fos/c-jun signaling are involved in the modulation of hypothalamic superoxide dismutase (SOD) and neuropeptide Y (NPY) gene expression in amphetamine-mediated appetite suppression

    International Nuclear Information System (INIS)

    Hsieh, Y.-S.; Yang, S.-F.; Chiou, H.-L.; Kuo, D.-Y.

    2006-01-01

    Amphetamine (AMPH) is known as an anorectic agent. The mechanism underlying the anorectic action of AMPH has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. This study was aimed to examine the molecular mechanisms behind the anorectic effect of AMPH. Results showed that AMPH treatment decreased food intake, which was correlated with changes of NPY mRNA level, but increased c-fos, c-jun and superoxide dismutase (SOD) mRNA levels in hypothalamus. To determine if c-fos or c-jun was involved in the anorectic response of AMPH, infusions of antisense oligonucleotide into the brain were performed at 1 h before daily AMPH treatment in freely moving rats, and the results showed that c-fos or c-jun knockdown could block this anorectic response and restore NPY mRNA level. Moreover, c-fos or c-jun knockdown could partially block SOD mRNA level that might involve in the modulation of NPY gene expression. It was suggested that c-fos/c-jun signaling might involve in the central regulation of AMPH-mediated feeding suppression via the modulation of NPY gene expression

  20. Opposite effects of catalase and MnSOD ectopic expression on stress induced defects and mortality in the desmin deficient cardiomyopathy model.

    Science.gov (United States)

    Rapti, Kleopatra; Diokmetzidou, Antigoni; Kloukina, Ismini; Milner, Derek J; Varela, Aimilia; Davos, Constantinos H; Capetanaki, Yassemi

    2017-09-01

    Oxidative stress has been linked strongly to cell death and cardiac remodeling processes, all hallmarks of heart failure. Mice deficient for desmin (des-/-), the major muscle specific intermediate filament protein, develop dilated cardiomyopathy and heart failure characterized by mitochondrial defects and cardiomyocyte death. The cellular and biochemical alterations in the hearts of these mice strongly suggest that oxidative stress is one of the mechanisms contributing to the pathogenesis of the phenotype. Recently, we showed that indeed the desmin deficient cardiomyocytes are under increased oxidative stress. In order to verify these findings in vivo, we generated transgenic animals overexpressing SOD2 (MnSOD) and/or catalase in the heart and crossed them with des-/- mice, thus allowing us to evaluate the contribution of oxidative injury in inherited cardiomyopathies, as well as the therapeutic potential of antioxidant strategies. Moderate MnSOD and/or catalase overexpression in des-/- hearts leads to a marked decrease in intracellular reactive oxygen species (ROS), ameliorates mitochondrial and other ultrastructural defects, minimizes myocardial degeneration and leads to a significant improvement of cardiac function. Importantly, catalase overexpression increased the 50% survival rate of des-/- mice in an obligatory exercise to 100%. In contrast, MnSOD overexpression enhanced the lethality of des-/- mice, underscoring the importance of a fine balanced cellular redox status. Overall, the present study supports the contribution of oxidative stress in the development of des-/- cardiomyopathy and points to a well-considered antioxidant treatment as therapeutic for cardiomyopathies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Mead, Richard J; Bennett, Ellen J; Kennerley, Aneurin J; Sharp, Paul; Sunyach, Claire; Kasher, Paul; Berwick, Jason; Pettmann, Brigitte; Battaglia, Guiseppe; Azzouz, Mimoun; Grierson, Andrew; Shaw, Pamela J

    2011-01-01

    The human SOD1(G93A) transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS). In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months) is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6) SOD1(G93A) transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.

  2. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays

    NARCIS (Netherlands)

    M. Pieters (Marlien); S.A. Barnard (Sunelle A.); D.T. Loots (Du Toit); D.C. Rijken (Dingeman)

    2017-01-01

    textabstractDue to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen

  3. Specific, sensitive, precise, and rapid functional chromogenic assay of activated first complement component (C1) in plasma

    DEFF Research Database (Denmark)

    Munkvad, S; Jespersen, J; Sidelmann, Johannes Jakobsen

    1990-01-01

    We present a new functional assay for the first complement component (C1) in plasma, based on its activation by inhibition of the C1-esterase inhibitor (C1-inh) when monospecific antiserum to C1-inh is added to the plasma. After maximal activation, we can determine the concentration of activated ...

  4. Circadian time structure of circulating plasma lipid peroxides, antioxidant enzymes and other small molecules in peptic ulcers.

    Science.gov (United States)

    Singh, Ranjana; Singh, Rajesh Kumar; Masood, Tariq; Tripathi, Anil Kumar; Mahdi, Abbas Ali; Singh, Raj Kumar; Schwartzkopff, Othild; Cornelissen, Germaine

    2015-12-07

    The circadian rhythm, as part of a broad time structure (chronome) of lipid peroxides and antioxidant defense mechanisms may relate to prevention, efficacy and management of preventive and curative chronotherapy. Fifty newly diagnosed patients with peptic ulcers, 30-45 years of age, and 60 age-matched clinically healthy volunteers were synchronized for one week with diurnal activity from about 06:00 to about 22:00 and nocturnal rest. Breakfast was served around 08:30, lunch around 13:30 and dinner around 20:30. Drugs known to affect the free-radical systems were not taken. Blood samples were collected at 6-hour intervals for 24h under standardized, presumably 24-hour synchronized conditions. Plasma lipid peroxides, in the form of malondialdehyde (MDA), blood superoxide dismutase (SOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT) activities, and serum total protein, albumin, ascorbic acid, total serum cholesterol, and HDL-cholesterol concentrations were determined. By population-mean cosinor analysis, a marked circadian variation was demonstrated for all variables in healthy subjects and in ulcer patients (pascorbic acid, and HDL-C. They also had smaller circadian amplitude of SOD, CAT, GPx, GR, ascorbic acid, T-C, and HDL-C, but larger circadian amplitude of MDA and albumin. As compared to healthy subjects, the circadian acrophase of ulcer patients occurred later for MDA and GR and earlier for GPx. Mapping circadian rhythms, important chronome components that include trends with age and extra-circadian components characterizing antioxidants and pro-oxidants, is needed for exploring their putative role as markers in the treatment and management of peptic ulcers. Copyright © 2015. Published by Elsevier B.V.

  5. Angiotensin converting enzyme 2 activity and human atrial fibrillation: increased plasma angiotensin converting enzyme 2 activity is associated with atrial fibrillation and more advanced left atrial structural remodelling.

    Science.gov (United States)

    Walters, Tomos E; Kalman, Jonathan M; Patel, Sheila K; Mearns, Megan; Velkoska, Elena; Burrell, Louise M

    2017-08-01

    Angiotensin converting enzyme 2 (ACE2) is an integral membrane protein whose main action is to degrade angiotensin II. Plasma ACE2 activity is increased in various cardiovascular diseases. We aimed to determine the relationship between plasma ACE2 activity and human atrial fibrillation (AF), and in particular its relationship to left atrial (LA) structural remodelling. One hundred and three participants from a tertiary arrhythmia centre, including 58 with paroxysmal AF (PAF), 20 with persistent AF (PersAF), and 25 controls, underwent clinical evaluation, echocardiographic analysis, and measurement of plasma ACE2 activity. A subgroup of 20 participants underwent invasive LA electroanatomic mapping. Plasma ACE2 activity levels were increased in AF [control 13.3 (9.5-22.3) pmol/min/mL; PAF 16.9 (9.7-27.3) pmol/min/mL; PersAF 22.8 (13.7-33.4) pmol/min/mL, P = 0.006]. Elevated plasma ACE2 was associated with older age, male gender, hypertension and vascular disease, elevated left ventricular (LV) mass, impaired LV diastolic function and advanced atrial disease (P < 0.05 for all). Independent predictors of elevated plasma ACE2 activity were AF (P = 0.04) and vascular disease (P < 0.01). There was a significant relationship between elevated ACE2 activity and low mean LA bipolar voltage (adjusted R2 = 0.22, P = 0.03), a high proportion of complex fractionated electrograms (R2 = 0.32, P = 0.009) and a long LA activation time (R2 = 0.20, P = 0.04). Plasma ACE2 activity is elevated in human AF. Both AF and vascular disease predict elevated plasma ACE2 activity, and elevated plasma ACE2 is significantly associated with more advanced LA structural remodelling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  6. Dispersion formulae for waves in a magneto-active relativistic plasma

    International Nuclear Information System (INIS)

    Misra, P.; Mohanty, J.N.

    1980-01-01

    Dispersion formulae are derived for the transverse waves propagating through a collisionless magneto-active plasma in the direction of the magnetic field valid for relativistic as well as non-relativistic temperatures. Wave propagation under various limiting conditions of temperatures and magnetic field are discussed. (author)

  7. Dispersion formulae for waves in a magneto-active relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Misra, P. (Ravenshaw Coll., Cuttack (India)); Mohanty, J.N. (F.M. College, Balasore (India). Dept. of Physics)

    1980-12-01

    Dispersion formulae are derived for the transverse waves propagating through a collisionless magneto-active plasma in the direction of the magnetic field valid for relativistic as well as non-relativistic temperatures. Wave propagation under various limiting conditions of temperatures and magnetic field are discussed.

  8. Effects of UV-B irradiation on isoforms of antioxidant enzymes and their activities in red alga Grateloupia filicina (Rhodophyta)

    Science.gov (United States)

    Zhao, Jiqiang; Li, Lixia

    2014-11-01

    Macroalgae in a littoral zone are inevitably exposed to UV-B irradiance. We analyzed the effects of UV-B on isoenzyme patterns and activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) of red algae Grateloupia filicina (Lamour.) C. Agardh. The activities of SOD, CAT, and APX changed in response to UV-B in a time- and dose-dependent manner. POX activity increased significantly under all three UV-B treatments. The enzymatic assay showed three distinct bands of SODI (Mn-SOD), SODII (Fe-SOD), and SODIII (CuZn-SOD) under a low (Luv) and medium (Muv) dose of UV-B irradiation, while SODI and SODIII activities decreased significantly when exposed to a high dose of UV-B irradiation (Huv). The activity of POX isoenzymes increased significantly after exposure to UV-B, which is consistent with the total activity. In addition, a clear decrease in activity of CATIV was detected in response to all the three doses of UV treatments. Some bands of APX isoenzyme were also clearly influenced by UV-B irradiation. Correspondingly, the daily growth rate declined under all the three exposure doses, and was especially significant under Muv and Huv treatments. These data suggest that, although the protection mechanisms of antioxidant defense system are partly inducible by UV-B to prevent the damage, G. filicina has incomplete tolerance to higher UV-B irradiation stress.

  9. Computer modeling of active experiments in space plasmas

    International Nuclear Information System (INIS)

    Bollens, R.J.

    1993-01-01

    The understanding of space plasmas is expanding rapidly. This is, in large part, due to the ambitious efforts of scientists from around the world who are performing large scale active experiments in the space plasma surrounding the earth. One such effort was designated the Active Magnetospheric Particle Tracer Explorers (AMPTE) and consisted of a series of plasma releases that were completed during 1984 and 1985. What makes the AMPTE experiments particularly interesting was the occurrence of a dramatic anomaly that was completely unpredicted. During the AMPTE experiment, three satellites traced the solar-wind flow into the earth's magnetosphere. One satellite, built by West Germany, released a series of barium and lithium canisters that were detonated and subsequently photo-ionized via solar radiation, thereby creating an artificial comet. Another satellite, built by Great Britain and in the vicinity during detonation, carried, as did the first satellite, a comprehensive set of magnetic field, particle and wave instruments. Upon detonation, what was observed by the satellites, as well as by aircraft and ground-based observers, was quite unexpected. The initial deflection of the ion clouds was not in the ambient solar wind's flow direction (rvec V) but rather in the direction transverse to the solar wind and the background magnetic field (rvec V x rvec B). This result was not predicted by any existing theories or simulation models; it is the main subject discussed in this dissertation. A large three dimensional computer simulation was produced to demonstrate that this transverse motion can be explained in terms of a rocket effect. Due to the extreme computer resources utilized in producing this work, the computer methods used to complete the calculation and the visualization techniques used to view the results are also discussed

  10. Protection of the Extracts of Lentinus edodes Mycelia against Carbon-Tetrachloride-Induced Hepatic Injury in Rats

    Directory of Open Access Journals (Sweden)

    Mei-Fen Chen

    2012-01-01

    Full Text Available Lentinus edodes is the medicinal macrofungus showing potential for therapeutic applications in infectious disorders including hepatitis. In an attempt to develop the agent for handling hepatic injury, we used the extracts of Lentinus edodes mycelia (LEM to screen the effect on hepatic injury in rats induced by carbon tetrachloride (CCl4. Intraperitoneal administration of CCl4 not only increased plasma glutamic oxaloacetic transaminase (GOT and glutamic pyruvic transaminase (GPT but also decreased hepatic superoxide dismutase (SOD and glutathione peroxidase (GPx levels in rats. Similar to the positive control silymarin, oral administration (three times daily of this product (LEM for 8 weeks significantly reduced plasma GOT and GPT. Also, the activities of antioxidant enzymes of SOD and GPx were elevated by LEM. in liver from CCl4-treated rats, indicating that mycelium can increase antioxidant-like activity. Moreover, the hepatic mRNA and protein levels of SOD and GPx were both markedly raised by LEM. The obtained results suggest that oral administration of the extracts of Lentinus edodes mycelia (LEM has the protective effect against CCl4-induced hepatic injury in rats, mainly due to an increase in antioxidant-like action.

  11. Cardiac and renal antioxidant enzymes and effects of tempol in hyperthyroid rats.

    Science.gov (United States)

    Moreno, Juan Manuel; Rodríguez Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Bueno, Pablo; Vargas, Félix

    2005-11-01

    This study evaluated the activity of cardiac and renal antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR)] and whether chronic treatment with tempol, a cell membrane-permeable SOD mimetic, ameliorates the hypertension of hyperthyroidism. Two experiments were performed. In experiment I, the following four groups of male Wistar rats were used: control group and three groups that received thyroxine (T4) at 10, 50, or 75 microg x rat(-1) x day(-1). In experiment II, tempol was orally administered (18 mg x kg(-1) x day(-1)) to control and T4-treated (75 microg x rat(-1) x day(-1)) rats. All treatments were maintained for 6 wk. Body weight, tail systolic blood pressure (BP), and heart rate were measured one time a week, and direct BP and morphological, metabolic, plasma, and renal variables were measured at the end of the experiment. Enzymatic activities were measured in renal cortex and medulla and right and left ventricles. In renal cortex, SOD activity was decreased in the T4-75 group, and there was a dose-related increase in CAT activity and decrease in GPX and GR activities in T4-treated groups. Activity of all antioxidant enzymes was reduced in left ventricle in T4-50 and T4-75 groups and in right ventricle in the T4-75 group. Tempol reduced BP, plasma malondialdehyde, and total urinary excretion of F2 isoprostanes in hypertensive hyperthyroid rats but not in controls. Tempol did not improve cardiac hypertrophy, proteinuria, or creatinine clearance in hyperthyroid rats. In conclusion, the results obtained indicate that the activity of SOD, GPX, and GR in renal and cardiac tissues is decreased in hyperthyroidism and that antioxidant treatment with tempol ameliorates T4-induced hypertension.

  12. A Cystine-Rich Whey Supplement (Immunocal® Delays Disease Onset and Prevents Spinal Cord Glutathione Depletion in the hSOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Erika K. Ross

    2014-12-01

    Full Text Available Depletion of the endogenous antioxidant, glutathione (GSH, underlies progression of the devastating neurodegenerative disease, amyotrophic lateral sclerosis (ALS. Thus, strategies aimed at elevating GSH may yield new therapeutics for ALS. Here, we investigated the effects of a unique non-denatured whey protein supplement, Immunocal®, in the transgenic Gly position 93 to Ala (G93A mutant hSOD1 (hSOD1G93A mouse model of ALS. Immunocal® is rich in the GSH precursor, cystine, and is therefore capable of bolstering GSH content. Transgenic hSOD1G93A mice receiving Immunocal® displayed a significant delay in disease onset compared to untreated hSOD1G93A controls. Additionally, Immunocal® treatment significantly decreased the rate of decline in grip strength and prevented disease-associated reductions in whole blood and spinal cord tissue GSH levels in end-stage hSOD1G93A mice. However, Immunocal® did not extend survival, likely due to its inability to preserve the mitochondrial GSH pool in spinal cord. Combination treatment with Immunocal® and the anti-glutamatergic compound, riluzole, delayed disease onset and extended survival in hSOD1G93A mice. These findings demonstrate that sustaining tissue GSH with Immunocal® only modestly delays disease onset and slows the loss of skeletal muscle strength in hSOD1G93A mice. Moreover, the inability of Immunocal® to rescue mitochondrial GSH in spinal cord provides a possible mechanism for its lack of effect on survival and is a limiting factor in the potential utility of this supplement as a therapeutic for ALS.

  13. Phosphine Plasma Activation of α-Fe 2 O 3 for High Energy Asymmetric Supercapacitors

    KAUST Repository

    Liang, Hanfeng

    2018-04-12

    We report a phosphine (PH3) plasma activation strategy for significantly boosting the electrochemical performance of supercapacitor electrodes. Using Fe2O3 as a demonstration, we show that the plasma activation simultaneously improves the conductivity, creates atomic-scale vacancies (defects), as well as increases active surface area, and thus leading to a greatly enhanced performance with a high areal capacitance of 340 mF cm-2 at 1 mA cm-2, compared to 66 mF cm-2 of pristine Fe2O3. Moreover, the asymmetric supercapacitor devices based on plasma-activated Fe2O3 anodes and electrodeposited MnO2 cathodes can achieve a high stack energy density of 0.42 mWh cm-3 at a stack power density of 10.3 mW cm-3 along with good stability (88% capacitance retention after 9000 cycles at 10 mA cm-2). Our work provides a simple yet effective strategy to greatly enhance the electrochemical performance of Fe2O3 anodes and to further promote their application in asymmetric supercapacitors.

  14. Study on the interaction between active components from traditional Chinese medicine and plasma proteins.

    Science.gov (United States)

    Jiao, Qishu; Wang, Rufeng; Jiang, Yanyan; Liu, Bin

    2018-05-04

    Traditional Chinese medicine (TCM), as a unique form of natural medicine, has been used in Chinese traditional therapeutic systems over two thousand years. Active components in Chinese herbal medicine are the material basis for the prevention and treatment of diseases. Research on drug-protein binding is one of the important contents in the study of early stage clinical pharmacokinetics of drugs. Plasma protein binding study has far-reaching influence on the pharmacokinetics and pharmacodynamics of drugs and helps to understand the basic rule of drug effects. It is important to study the binding characteristics of the active components in Chinese herbal medicine with plasma proteins for the medical science and modernization of TCM. This review summarizes the common analytical methods which are used to study the active herbal components-protein binding and gives the examples to illustrate their application. Rules and influence factors of the binding between different types of active herbal components and plasma proteins are summarized in the end. Finally, a suggestion on choosing the suitable technique for different types of active herbal components is provided, and the prospect of the drug-protein binding used in the area of TCM research is also discussed.

  15. Effect of PTA on blood pressure, renal plasma flow and renal venous renin activity in renovascular hypertension

    International Nuclear Information System (INIS)

    Arlart, I.P.; Dewitz, H. von; Rosenthal, J.

    1983-01-01

    Percutaneous transluminal angioplasty (PTA) is more and more accepted for interventional management of renal artery stenosis in hypertensive patients. This study was carried out to assess the behaviour of arterial blood-pressure, renal plasma flow and renal venous rening activity in renovascular hypertension following catheter dilatation. Using the data the possibility is calculated to predict the effect of PTA on blood pressure preinterventionally. The results demonstrate that a successful employment of PTA depends on a normal contralateral renal plasma flow and a normalization of plasma flow of the poststenotic kidney. Determination of plasma renin activity is only of restricted value. (orig.)

  16. Oxidation of the tryptophan 32 residue of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity triggers the non-amyloid aggregation of the enzyme.

    Science.gov (United States)

    Coelho, Fernando R; Iqbal, Asif; Linares, Edlaine; Silva, Daniel F; Lima, Filipe S; Cuccovia, Iolanda M; Augusto, Ohara

    2014-10-31

    The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1(WT) and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp(32) residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp(32) residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1(WT) and hSOD1(G93A) mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp(32) residue in the process. The results showed that Trp(32) residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp(32) residue (bovine SOD1 and hSOD1(W32F) mutant). The results support a role for the oxidation products of the hSOD1-Trp(32) residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    Science.gov (United States)

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose.

  18. Association between single nucleotide polymorphisms in the antioxidant genes CAT, GR and SOD1, erythrocyte enzyme activities, dietary and life style factors and breast cancer risk in a Danish, prospective cohort study

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov; Vogel, Ulla; Dragsted, Lars Ove

    2017-01-01

    Exposure to estrogens and alcohol consumption - the two only well-established risk factors for breast cancer - are capable of causing oxidative stress, which has been linked to progression of breast cancer. Here, five functional polymorphisms in the antioxidant genes SOD1, CAT and GSR were...

  19. Optimised and rapid pre-clinical screening in the SOD1(G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS.

    Directory of Open Access Journals (Sweden)

    Richard J Mead

    Full Text Available The human SOD1(G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS. In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6 SOD1(G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.

  20. A Quick Phenotypic Neurological Scoring System for Evaluating Disease Progression in the SOD1-G93A Mouse Model of ALS.

    Science.gov (United States)

    Hatzipetros, Theo; Kidd, Joshua D; Moreno, Andy J; Thompson, Kenneth; Gill, Alan; Vieira, Fernando G

    2015-10-06

    The SOD1-G93A transgenic mouse is the most widely used animal model of amyotrophic lateral sclerosis (ALS). At ALS TDI we developed a phenotypic screening protocol, demonstrated in video herein, which reliably assesses the neuromuscular function of SOD1-G93A mice in a quick manner. This protocol encompasses a simple neurological scoring system (NeuroScore) designed to assess hindlimb function. NeuroScore is focused on hindlimb function because hindlimb deficits are the earliest reported neurological sign of disease in SOD1-G93A mice. The protocol developed by ALS TDI provides an unbiased assessment of onset of paresis (slight or partial paralysis), progression and severity of paralysis and it is sensitive enough to identify drug-induced changes in disease progression. In this report, the combination of a detailed manuscript with video minimizes scoring ambiguities and inter-experimenter variability thus allowing for the protocol to be adopted by other laboratories and enabling comparisons between studies taking place at different settings. We believe that this video protocol can serve as an excellent training tool for present and future ALS researchers.